]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu.c
OpenZFS 9962 - zil_commit should omit cache thrash
[mirror_zfs.git] / module / zfs / dmu.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 */
29
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dbuf.h>
34 #include <sys/dnode.h>
35 #include <sys/zfs_context.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dmu_traverse.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zio_compress.h>
48 #include <sys/sa.h>
49 #include <sys/zfeature.h>
50 #include <sys/abd.h>
51 #include <sys/trace_dmu.h>
52 #include <sys/zfs_rlock.h>
53 #ifdef _KERNEL
54 #include <sys/vmsystm.h>
55 #include <sys/zfs_znode.h>
56 #endif
57
58 /*
59 * Enable/disable nopwrite feature.
60 */
61 int zfs_nopwrite_enabled = 1;
62
63 /*
64 * Tunable to control percentage of dirtied blocks from frees in one TXG.
65 * After this threshold is crossed, additional dirty blocks from frees
66 * wait until the next TXG.
67 * A value of zero will disable this throttle.
68 */
69 unsigned long zfs_per_txg_dirty_frees_percent = 30;
70
71 /*
72 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
73 */
74 int zfs_dmu_offset_next_sync = 0;
75
76 /*
77 * This can be used for testing, to ensure that certain actions happen
78 * while in the middle of a remap (which might otherwise complete too
79 * quickly).
80 */
81 int zfs_object_remap_one_indirect_delay_ticks = 0;
82
83 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
84 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
85 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
86 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
87 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
88 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
89 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
90 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
91 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
93 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
94 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
95 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
96 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
97 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
98 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
99 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
100 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
101 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
102 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
103 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
104 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
105 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
106 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
107 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
108 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
109 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
110 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
111 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
113 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
114 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
115 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
116 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
117 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
118 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
119 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
120 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
121 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
122 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
123 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
124 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
128 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
129 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
130 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
133 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
134 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
135 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
136 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
137 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
138 };
139
140 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
141 { byteswap_uint8_array, "uint8" },
142 { byteswap_uint16_array, "uint16" },
143 { byteswap_uint32_array, "uint32" },
144 { byteswap_uint64_array, "uint64" },
145 { zap_byteswap, "zap" },
146 { dnode_buf_byteswap, "dnode" },
147 { dmu_objset_byteswap, "objset" },
148 { zfs_znode_byteswap, "znode" },
149 { zfs_oldacl_byteswap, "oldacl" },
150 { zfs_acl_byteswap, "acl" }
151 };
152
153 int
154 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
155 void *tag, dmu_buf_t **dbp)
156 {
157 uint64_t blkid;
158 dmu_buf_impl_t *db;
159
160 blkid = dbuf_whichblock(dn, 0, offset);
161 rw_enter(&dn->dn_struct_rwlock, RW_READER);
162 db = dbuf_hold(dn, blkid, tag);
163 rw_exit(&dn->dn_struct_rwlock);
164
165 if (db == NULL) {
166 *dbp = NULL;
167 return (SET_ERROR(EIO));
168 }
169
170 *dbp = &db->db;
171 return (0);
172 }
173 int
174 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
175 void *tag, dmu_buf_t **dbp)
176 {
177 dnode_t *dn;
178 uint64_t blkid;
179 dmu_buf_impl_t *db;
180 int err;
181
182 err = dnode_hold(os, object, FTAG, &dn);
183 if (err)
184 return (err);
185 blkid = dbuf_whichblock(dn, 0, offset);
186 rw_enter(&dn->dn_struct_rwlock, RW_READER);
187 db = dbuf_hold(dn, blkid, tag);
188 rw_exit(&dn->dn_struct_rwlock);
189 dnode_rele(dn, FTAG);
190
191 if (db == NULL) {
192 *dbp = NULL;
193 return (SET_ERROR(EIO));
194 }
195
196 *dbp = &db->db;
197 return (err);
198 }
199
200 int
201 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
202 void *tag, dmu_buf_t **dbp, int flags)
203 {
204 int err;
205 int db_flags = DB_RF_CANFAIL;
206
207 if (flags & DMU_READ_NO_PREFETCH)
208 db_flags |= DB_RF_NOPREFETCH;
209 if (flags & DMU_READ_NO_DECRYPT)
210 db_flags |= DB_RF_NO_DECRYPT;
211
212 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
213 if (err == 0) {
214 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
215 err = dbuf_read(db, NULL, db_flags);
216 if (err != 0) {
217 dbuf_rele(db, tag);
218 *dbp = NULL;
219 }
220 }
221
222 return (err);
223 }
224
225 int
226 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
227 void *tag, dmu_buf_t **dbp, int flags)
228 {
229 int err;
230 int db_flags = DB_RF_CANFAIL;
231
232 if (flags & DMU_READ_NO_PREFETCH)
233 db_flags |= DB_RF_NOPREFETCH;
234 if (flags & DMU_READ_NO_DECRYPT)
235 db_flags |= DB_RF_NO_DECRYPT;
236
237 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
238 if (err == 0) {
239 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
240 err = dbuf_read(db, NULL, db_flags);
241 if (err != 0) {
242 dbuf_rele(db, tag);
243 *dbp = NULL;
244 }
245 }
246
247 return (err);
248 }
249
250 int
251 dmu_bonus_max(void)
252 {
253 return (DN_OLD_MAX_BONUSLEN);
254 }
255
256 int
257 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
258 {
259 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
260 dnode_t *dn;
261 int error;
262
263 DB_DNODE_ENTER(db);
264 dn = DB_DNODE(db);
265
266 if (dn->dn_bonus != db) {
267 error = SET_ERROR(EINVAL);
268 } else if (newsize < 0 || newsize > db_fake->db_size) {
269 error = SET_ERROR(EINVAL);
270 } else {
271 dnode_setbonuslen(dn, newsize, tx);
272 error = 0;
273 }
274
275 DB_DNODE_EXIT(db);
276 return (error);
277 }
278
279 int
280 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
281 {
282 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
283 dnode_t *dn;
284 int error;
285
286 DB_DNODE_ENTER(db);
287 dn = DB_DNODE(db);
288
289 if (!DMU_OT_IS_VALID(type)) {
290 error = SET_ERROR(EINVAL);
291 } else if (dn->dn_bonus != db) {
292 error = SET_ERROR(EINVAL);
293 } else {
294 dnode_setbonus_type(dn, type, tx);
295 error = 0;
296 }
297
298 DB_DNODE_EXIT(db);
299 return (error);
300 }
301
302 dmu_object_type_t
303 dmu_get_bonustype(dmu_buf_t *db_fake)
304 {
305 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
306 dnode_t *dn;
307 dmu_object_type_t type;
308
309 DB_DNODE_ENTER(db);
310 dn = DB_DNODE(db);
311 type = dn->dn_bonustype;
312 DB_DNODE_EXIT(db);
313
314 return (type);
315 }
316
317 int
318 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
319 {
320 dnode_t *dn;
321 int error;
322
323 error = dnode_hold(os, object, FTAG, &dn);
324 dbuf_rm_spill(dn, tx);
325 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
326 dnode_rm_spill(dn, tx);
327 rw_exit(&dn->dn_struct_rwlock);
328 dnode_rele(dn, FTAG);
329 return (error);
330 }
331
332 /*
333 * returns ENOENT, EIO, or 0.
334 */
335 int
336 dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
337 dmu_buf_t **dbp)
338 {
339 dnode_t *dn;
340 dmu_buf_impl_t *db;
341 int error;
342 uint32_t db_flags = DB_RF_MUST_SUCCEED;
343
344 if (flags & DMU_READ_NO_PREFETCH)
345 db_flags |= DB_RF_NOPREFETCH;
346 if (flags & DMU_READ_NO_DECRYPT)
347 db_flags |= DB_RF_NO_DECRYPT;
348
349 error = dnode_hold(os, object, FTAG, &dn);
350 if (error)
351 return (error);
352
353 rw_enter(&dn->dn_struct_rwlock, RW_READER);
354 if (dn->dn_bonus == NULL) {
355 rw_exit(&dn->dn_struct_rwlock);
356 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 if (dn->dn_bonus == NULL)
358 dbuf_create_bonus(dn);
359 }
360 db = dn->dn_bonus;
361
362 /* as long as the bonus buf is held, the dnode will be held */
363 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
364 VERIFY(dnode_add_ref(dn, db));
365 atomic_inc_32(&dn->dn_dbufs_count);
366 }
367
368 /*
369 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 * a dnode hold for every dbuf.
372 */
373 rw_exit(&dn->dn_struct_rwlock);
374
375 dnode_rele(dn, FTAG);
376
377 error = dbuf_read(db, NULL, db_flags);
378 if (error) {
379 dnode_evict_bonus(dn);
380 dbuf_rele(db, tag);
381 *dbp = NULL;
382 return (error);
383 }
384
385 *dbp = &db->db;
386 return (0);
387 }
388
389 int
390 dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
391 {
392 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
393 }
394
395 /*
396 * returns ENOENT, EIO, or 0.
397 *
398 * This interface will allocate a blank spill dbuf when a spill blk
399 * doesn't already exist on the dnode.
400 *
401 * if you only want to find an already existing spill db, then
402 * dmu_spill_hold_existing() should be used.
403 */
404 int
405 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
406 {
407 dmu_buf_impl_t *db = NULL;
408 int err;
409
410 if ((flags & DB_RF_HAVESTRUCT) == 0)
411 rw_enter(&dn->dn_struct_rwlock, RW_READER);
412
413 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
414
415 if ((flags & DB_RF_HAVESTRUCT) == 0)
416 rw_exit(&dn->dn_struct_rwlock);
417
418 if (db == NULL) {
419 *dbp = NULL;
420 return (SET_ERROR(EIO));
421 }
422 err = dbuf_read(db, NULL, flags);
423 if (err == 0)
424 *dbp = &db->db;
425 else {
426 dbuf_rele(db, tag);
427 *dbp = NULL;
428 }
429 return (err);
430 }
431
432 int
433 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
434 {
435 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
436 dnode_t *dn;
437 int err;
438
439 DB_DNODE_ENTER(db);
440 dn = DB_DNODE(db);
441
442 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
443 err = SET_ERROR(EINVAL);
444 } else {
445 rw_enter(&dn->dn_struct_rwlock, RW_READER);
446
447 if (!dn->dn_have_spill) {
448 err = SET_ERROR(ENOENT);
449 } else {
450 err = dmu_spill_hold_by_dnode(dn,
451 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
452 }
453
454 rw_exit(&dn->dn_struct_rwlock);
455 }
456
457 DB_DNODE_EXIT(db);
458 return (err);
459 }
460
461 int
462 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
463 dmu_buf_t **dbp)
464 {
465 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
466 dnode_t *dn;
467 int err;
468 uint32_t db_flags = DB_RF_CANFAIL;
469
470 if (flags & DMU_READ_NO_DECRYPT)
471 db_flags |= DB_RF_NO_DECRYPT;
472
473 DB_DNODE_ENTER(db);
474 dn = DB_DNODE(db);
475 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
476 DB_DNODE_EXIT(db);
477
478 return (err);
479 }
480
481 /*
482 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
483 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
484 * and can induce severe lock contention when writing to several files
485 * whose dnodes are in the same block.
486 */
487 static int
488 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
489 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
490 {
491 dmu_buf_t **dbp;
492 uint64_t blkid, nblks, i;
493 uint32_t dbuf_flags;
494 int err;
495 zio_t *zio;
496
497 ASSERT(length <= DMU_MAX_ACCESS);
498
499 /*
500 * Note: We directly notify the prefetch code of this read, so that
501 * we can tell it about the multi-block read. dbuf_read() only knows
502 * about the one block it is accessing.
503 */
504 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
505 DB_RF_NOPREFETCH;
506
507 rw_enter(&dn->dn_struct_rwlock, RW_READER);
508 if (dn->dn_datablkshift) {
509 int blkshift = dn->dn_datablkshift;
510 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
511 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
512 } else {
513 if (offset + length > dn->dn_datablksz) {
514 zfs_panic_recover("zfs: accessing past end of object "
515 "%llx/%llx (size=%u access=%llu+%llu)",
516 (longlong_t)dn->dn_objset->
517 os_dsl_dataset->ds_object,
518 (longlong_t)dn->dn_object, dn->dn_datablksz,
519 (longlong_t)offset, (longlong_t)length);
520 rw_exit(&dn->dn_struct_rwlock);
521 return (SET_ERROR(EIO));
522 }
523 nblks = 1;
524 }
525 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
526
527 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
528 blkid = dbuf_whichblock(dn, 0, offset);
529 for (i = 0; i < nblks; i++) {
530 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
531 if (db == NULL) {
532 rw_exit(&dn->dn_struct_rwlock);
533 dmu_buf_rele_array(dbp, nblks, tag);
534 zio_nowait(zio);
535 return (SET_ERROR(EIO));
536 }
537
538 /* initiate async i/o */
539 if (read)
540 (void) dbuf_read(db, zio, dbuf_flags);
541 dbp[i] = &db->db;
542 }
543
544 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
545 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
546 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
547 read && DNODE_IS_CACHEABLE(dn));
548 }
549 rw_exit(&dn->dn_struct_rwlock);
550
551 /* wait for async i/o */
552 err = zio_wait(zio);
553 if (err) {
554 dmu_buf_rele_array(dbp, nblks, tag);
555 return (err);
556 }
557
558 /* wait for other io to complete */
559 if (read) {
560 for (i = 0; i < nblks; i++) {
561 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
562 mutex_enter(&db->db_mtx);
563 while (db->db_state == DB_READ ||
564 db->db_state == DB_FILL)
565 cv_wait(&db->db_changed, &db->db_mtx);
566 if (db->db_state == DB_UNCACHED)
567 err = SET_ERROR(EIO);
568 mutex_exit(&db->db_mtx);
569 if (err) {
570 dmu_buf_rele_array(dbp, nblks, tag);
571 return (err);
572 }
573 }
574 }
575
576 *numbufsp = nblks;
577 *dbpp = dbp;
578 return (0);
579 }
580
581 static int
582 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
583 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
584 {
585 dnode_t *dn;
586 int err;
587
588 err = dnode_hold(os, object, FTAG, &dn);
589 if (err)
590 return (err);
591
592 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
593 numbufsp, dbpp, DMU_READ_PREFETCH);
594
595 dnode_rele(dn, FTAG);
596
597 return (err);
598 }
599
600 int
601 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
602 uint64_t length, boolean_t read, void *tag, int *numbufsp,
603 dmu_buf_t ***dbpp)
604 {
605 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
606 dnode_t *dn;
607 int err;
608
609 DB_DNODE_ENTER(db);
610 dn = DB_DNODE(db);
611 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
612 numbufsp, dbpp, DMU_READ_PREFETCH);
613 DB_DNODE_EXIT(db);
614
615 return (err);
616 }
617
618 void
619 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
620 {
621 int i;
622 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
623
624 if (numbufs == 0)
625 return;
626
627 for (i = 0; i < numbufs; i++) {
628 if (dbp[i])
629 dbuf_rele(dbp[i], tag);
630 }
631
632 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
633 }
634
635 /*
636 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
637 * indirect blocks prefeteched will be those that point to the blocks containing
638 * the data starting at offset, and continuing to offset + len.
639 *
640 * Note that if the indirect blocks above the blocks being prefetched are not
641 * in cache, they will be asychronously read in.
642 */
643 void
644 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
645 uint64_t len, zio_priority_t pri)
646 {
647 dnode_t *dn;
648 uint64_t blkid;
649 int nblks, err;
650
651 if (len == 0) { /* they're interested in the bonus buffer */
652 dn = DMU_META_DNODE(os);
653
654 if (object == 0 || object >= DN_MAX_OBJECT)
655 return;
656
657 rw_enter(&dn->dn_struct_rwlock, RW_READER);
658 blkid = dbuf_whichblock(dn, level,
659 object * sizeof (dnode_phys_t));
660 dbuf_prefetch(dn, level, blkid, pri, 0);
661 rw_exit(&dn->dn_struct_rwlock);
662 return;
663 }
664
665 /*
666 * XXX - Note, if the dnode for the requested object is not
667 * already cached, we will do a *synchronous* read in the
668 * dnode_hold() call. The same is true for any indirects.
669 */
670 err = dnode_hold(os, object, FTAG, &dn);
671 if (err != 0)
672 return;
673
674 rw_enter(&dn->dn_struct_rwlock, RW_READER);
675 /*
676 * offset + len - 1 is the last byte we want to prefetch for, and offset
677 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
678 * last block we want to prefetch, and dbuf_whichblock(dn, level,
679 * offset) is the first. Then the number we need to prefetch is the
680 * last - first + 1.
681 */
682 if (level > 0 || dn->dn_datablkshift != 0) {
683 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
684 dbuf_whichblock(dn, level, offset) + 1;
685 } else {
686 nblks = (offset < dn->dn_datablksz);
687 }
688
689 if (nblks != 0) {
690 blkid = dbuf_whichblock(dn, level, offset);
691 for (int i = 0; i < nblks; i++)
692 dbuf_prefetch(dn, level, blkid + i, pri, 0);
693 }
694
695 rw_exit(&dn->dn_struct_rwlock);
696
697 dnode_rele(dn, FTAG);
698 }
699
700 /*
701 * Get the next "chunk" of file data to free. We traverse the file from
702 * the end so that the file gets shorter over time (if we crashes in the
703 * middle, this will leave us in a better state). We find allocated file
704 * data by simply searching the allocated level 1 indirects.
705 *
706 * On input, *start should be the first offset that does not need to be
707 * freed (e.g. "offset + length"). On return, *start will be the first
708 * offset that should be freed.
709 */
710 static int
711 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
712 {
713 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
714 /* bytes of data covered by a level-1 indirect block */
715 uint64_t iblkrange =
716 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
717
718 ASSERT3U(minimum, <=, *start);
719
720 if (*start - minimum <= iblkrange * maxblks) {
721 *start = minimum;
722 return (0);
723 }
724 ASSERT(ISP2(iblkrange));
725
726 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
727 int err;
728
729 /*
730 * dnode_next_offset(BACKWARDS) will find an allocated L1
731 * indirect block at or before the input offset. We must
732 * decrement *start so that it is at the end of the region
733 * to search.
734 */
735 (*start)--;
736 err = dnode_next_offset(dn,
737 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
738
739 /* if there are no indirect blocks before start, we are done */
740 if (err == ESRCH) {
741 *start = minimum;
742 break;
743 } else if (err != 0) {
744 return (err);
745 }
746
747 /* set start to the beginning of this L1 indirect */
748 *start = P2ALIGN(*start, iblkrange);
749 }
750 if (*start < minimum)
751 *start = minimum;
752 return (0);
753 }
754
755 /*
756 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
757 * otherwise return false.
758 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
759 */
760 /*ARGSUSED*/
761 static boolean_t
762 dmu_objset_zfs_unmounting(objset_t *os)
763 {
764 #ifdef _KERNEL
765 if (dmu_objset_type(os) == DMU_OST_ZFS)
766 return (zfs_get_vfs_flag_unmounted(os));
767 #endif
768 return (B_FALSE);
769 }
770
771 static int
772 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
773 uint64_t length)
774 {
775 uint64_t object_size;
776 int err;
777 uint64_t dirty_frees_threshold;
778 dsl_pool_t *dp = dmu_objset_pool(os);
779
780 if (dn == NULL)
781 return (SET_ERROR(EINVAL));
782
783 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
784 if (offset >= object_size)
785 return (0);
786
787 if (zfs_per_txg_dirty_frees_percent <= 100)
788 dirty_frees_threshold =
789 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
790 else
791 dirty_frees_threshold = zfs_dirty_data_max / 4;
792
793 if (length == DMU_OBJECT_END || offset + length > object_size)
794 length = object_size - offset;
795
796 while (length != 0) {
797 uint64_t chunk_end, chunk_begin, chunk_len;
798 uint64_t long_free_dirty_all_txgs = 0;
799 dmu_tx_t *tx;
800
801 if (dmu_objset_zfs_unmounting(dn->dn_objset))
802 return (SET_ERROR(EINTR));
803
804 chunk_end = chunk_begin = offset + length;
805
806 /* move chunk_begin backwards to the beginning of this chunk */
807 err = get_next_chunk(dn, &chunk_begin, offset);
808 if (err)
809 return (err);
810 ASSERT3U(chunk_begin, >=, offset);
811 ASSERT3U(chunk_begin, <=, chunk_end);
812
813 chunk_len = chunk_end - chunk_begin;
814
815 mutex_enter(&dp->dp_lock);
816 for (int t = 0; t < TXG_SIZE; t++) {
817 long_free_dirty_all_txgs +=
818 dp->dp_long_free_dirty_pertxg[t];
819 }
820 mutex_exit(&dp->dp_lock);
821
822 /*
823 * To avoid filling up a TXG with just frees wait for
824 * the next TXG to open before freeing more chunks if
825 * we have reached the threshold of frees
826 */
827 if (dirty_frees_threshold != 0 &&
828 long_free_dirty_all_txgs >= dirty_frees_threshold) {
829 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
830 txg_wait_open(dp, 0);
831 continue;
832 }
833
834 tx = dmu_tx_create(os);
835 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
836
837 /*
838 * Mark this transaction as typically resulting in a net
839 * reduction in space used.
840 */
841 dmu_tx_mark_netfree(tx);
842 err = dmu_tx_assign(tx, TXG_WAIT);
843 if (err) {
844 dmu_tx_abort(tx);
845 return (err);
846 }
847
848 mutex_enter(&dp->dp_lock);
849 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
850 chunk_len;
851 mutex_exit(&dp->dp_lock);
852 DTRACE_PROBE3(free__long__range,
853 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
854 uint64_t, dmu_tx_get_txg(tx));
855 dnode_free_range(dn, chunk_begin, chunk_len, tx);
856
857 dmu_tx_commit(tx);
858
859 length -= chunk_len;
860 }
861 return (0);
862 }
863
864 int
865 dmu_free_long_range(objset_t *os, uint64_t object,
866 uint64_t offset, uint64_t length)
867 {
868 dnode_t *dn;
869 int err;
870
871 err = dnode_hold(os, object, FTAG, &dn);
872 if (err != 0)
873 return (err);
874 err = dmu_free_long_range_impl(os, dn, offset, length);
875
876 /*
877 * It is important to zero out the maxblkid when freeing the entire
878 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
879 * will take the fast path, and (b) dnode_reallocate() can verify
880 * that the entire file has been freed.
881 */
882 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
883 dn->dn_maxblkid = 0;
884
885 dnode_rele(dn, FTAG);
886 return (err);
887 }
888
889 int
890 dmu_free_long_object(objset_t *os, uint64_t object)
891 {
892 dmu_tx_t *tx;
893 int err;
894
895 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
896 if (err != 0)
897 return (err);
898
899 tx = dmu_tx_create(os);
900 dmu_tx_hold_bonus(tx, object);
901 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
902 dmu_tx_mark_netfree(tx);
903 err = dmu_tx_assign(tx, TXG_WAIT);
904 if (err == 0) {
905 if (err == 0)
906 err = dmu_object_free(os, object, tx);
907
908 dmu_tx_commit(tx);
909 } else {
910 dmu_tx_abort(tx);
911 }
912
913 return (err);
914 }
915
916 int
917 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
918 uint64_t size, dmu_tx_t *tx)
919 {
920 dnode_t *dn;
921 int err = dnode_hold(os, object, FTAG, &dn);
922 if (err)
923 return (err);
924 ASSERT(offset < UINT64_MAX);
925 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
926 dnode_free_range(dn, offset, size, tx);
927 dnode_rele(dn, FTAG);
928 return (0);
929 }
930
931 static int
932 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
933 void *buf, uint32_t flags)
934 {
935 dmu_buf_t **dbp;
936 int numbufs, err = 0;
937
938 /*
939 * Deal with odd block sizes, where there can't be data past the first
940 * block. If we ever do the tail block optimization, we will need to
941 * handle that here as well.
942 */
943 if (dn->dn_maxblkid == 0) {
944 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
945 MIN(size, dn->dn_datablksz - offset);
946 bzero((char *)buf + newsz, size - newsz);
947 size = newsz;
948 }
949
950 while (size > 0) {
951 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
952 int i;
953
954 /*
955 * NB: we could do this block-at-a-time, but it's nice
956 * to be reading in parallel.
957 */
958 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
959 TRUE, FTAG, &numbufs, &dbp, flags);
960 if (err)
961 break;
962
963 for (i = 0; i < numbufs; i++) {
964 uint64_t tocpy;
965 int64_t bufoff;
966 dmu_buf_t *db = dbp[i];
967
968 ASSERT(size > 0);
969
970 bufoff = offset - db->db_offset;
971 tocpy = MIN(db->db_size - bufoff, size);
972
973 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
974
975 offset += tocpy;
976 size -= tocpy;
977 buf = (char *)buf + tocpy;
978 }
979 dmu_buf_rele_array(dbp, numbufs, FTAG);
980 }
981 return (err);
982 }
983
984 int
985 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
986 void *buf, uint32_t flags)
987 {
988 dnode_t *dn;
989 int err;
990
991 err = dnode_hold(os, object, FTAG, &dn);
992 if (err != 0)
993 return (err);
994
995 err = dmu_read_impl(dn, offset, size, buf, flags);
996 dnode_rele(dn, FTAG);
997 return (err);
998 }
999
1000 int
1001 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1002 uint32_t flags)
1003 {
1004 return (dmu_read_impl(dn, offset, size, buf, flags));
1005 }
1006
1007 static void
1008 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1009 const void *buf, dmu_tx_t *tx)
1010 {
1011 int i;
1012
1013 for (i = 0; i < numbufs; i++) {
1014 uint64_t tocpy;
1015 int64_t bufoff;
1016 dmu_buf_t *db = dbp[i];
1017
1018 ASSERT(size > 0);
1019
1020 bufoff = offset - db->db_offset;
1021 tocpy = MIN(db->db_size - bufoff, size);
1022
1023 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1024
1025 if (tocpy == db->db_size)
1026 dmu_buf_will_fill(db, tx);
1027 else
1028 dmu_buf_will_dirty(db, tx);
1029
1030 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1031
1032 if (tocpy == db->db_size)
1033 dmu_buf_fill_done(db, tx);
1034
1035 offset += tocpy;
1036 size -= tocpy;
1037 buf = (char *)buf + tocpy;
1038 }
1039 }
1040
1041 void
1042 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1043 const void *buf, dmu_tx_t *tx)
1044 {
1045 dmu_buf_t **dbp;
1046 int numbufs;
1047
1048 if (size == 0)
1049 return;
1050
1051 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1052 FALSE, FTAG, &numbufs, &dbp));
1053 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1054 dmu_buf_rele_array(dbp, numbufs, FTAG);
1055 }
1056
1057 void
1058 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1059 const void *buf, dmu_tx_t *tx)
1060 {
1061 dmu_buf_t **dbp;
1062 int numbufs;
1063
1064 if (size == 0)
1065 return;
1066
1067 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1068 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1069 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1070 dmu_buf_rele_array(dbp, numbufs, FTAG);
1071 }
1072
1073 static int
1074 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1075 uint64_t last_removal_txg, uint64_t offset)
1076 {
1077 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1078 int err = 0;
1079
1080 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1081 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1082 ASSERT3P(dbuf, !=, NULL);
1083
1084 /*
1085 * If the block hasn't been written yet, this default will ensure
1086 * we don't try to remap it.
1087 */
1088 uint64_t birth = UINT64_MAX;
1089 ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1090 if (dbuf->db_blkptr != NULL)
1091 birth = dbuf->db_blkptr->blk_birth;
1092 rw_exit(&dn->dn_struct_rwlock);
1093
1094 /*
1095 * If this L1 was already written after the last removal, then we've
1096 * already tried to remap it.
1097 */
1098 if (birth <= last_removal_txg &&
1099 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1100 dbuf_can_remap(dbuf)) {
1101 dmu_tx_t *tx = dmu_tx_create(os);
1102 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1103 err = dmu_tx_assign(tx, TXG_WAIT);
1104 if (err == 0) {
1105 (void) dbuf_dirty(dbuf, tx);
1106 dmu_tx_commit(tx);
1107 } else {
1108 dmu_tx_abort(tx);
1109 }
1110 }
1111
1112 dbuf_rele(dbuf, FTAG);
1113
1114 delay(zfs_object_remap_one_indirect_delay_ticks);
1115
1116 return (err);
1117 }
1118
1119 /*
1120 * Remap all blockpointers in the object, if possible, so that they reference
1121 * only concrete vdevs.
1122 *
1123 * To do this, iterate over the L0 blockpointers and remap any that reference
1124 * an indirect vdev. Note that we only examine L0 blockpointers; since we
1125 * cannot guarantee that we can remap all blockpointer anyways (due to split
1126 * blocks), we do not want to make the code unnecessarily complicated to
1127 * catch the unlikely case that there is an L1 block on an indirect vdev that
1128 * contains no indirect blockpointers.
1129 */
1130 int
1131 dmu_object_remap_indirects(objset_t *os, uint64_t object,
1132 uint64_t last_removal_txg)
1133 {
1134 uint64_t offset, l1span;
1135 int err;
1136 dnode_t *dn;
1137
1138 err = dnode_hold(os, object, FTAG, &dn);
1139 if (err != 0) {
1140 return (err);
1141 }
1142
1143 if (dn->dn_nlevels <= 1) {
1144 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1145 err = SET_ERROR(EINTR);
1146 }
1147
1148 /*
1149 * If the dnode has no indirect blocks, we cannot dirty them.
1150 * We still want to remap the blkptr(s) in the dnode if
1151 * appropriate, so mark it as dirty.
1152 */
1153 if (err == 0 && dnode_needs_remap(dn)) {
1154 dmu_tx_t *tx = dmu_tx_create(os);
1155 dmu_tx_hold_bonus(tx, dn->dn_object);
1156 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
1157 dnode_setdirty(dn, tx);
1158 dmu_tx_commit(tx);
1159 } else {
1160 dmu_tx_abort(tx);
1161 }
1162 }
1163
1164 dnode_rele(dn, FTAG);
1165 return (err);
1166 }
1167
1168 offset = 0;
1169 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1170 dn->dn_datablkshift);
1171 /*
1172 * Find the next L1 indirect that is not a hole.
1173 */
1174 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1175 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1176 err = SET_ERROR(EINTR);
1177 break;
1178 }
1179 if ((err = dmu_object_remap_one_indirect(os, dn,
1180 last_removal_txg, offset)) != 0) {
1181 break;
1182 }
1183 offset += l1span;
1184 }
1185
1186 dnode_rele(dn, FTAG);
1187 return (err);
1188 }
1189
1190 void
1191 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1192 dmu_tx_t *tx)
1193 {
1194 dmu_buf_t **dbp;
1195 int numbufs, i;
1196
1197 if (size == 0)
1198 return;
1199
1200 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1201 FALSE, FTAG, &numbufs, &dbp));
1202
1203 for (i = 0; i < numbufs; i++) {
1204 dmu_buf_t *db = dbp[i];
1205
1206 dmu_buf_will_not_fill(db, tx);
1207 }
1208 dmu_buf_rele_array(dbp, numbufs, FTAG);
1209 }
1210
1211 void
1212 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1213 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1214 int compressed_size, int byteorder, dmu_tx_t *tx)
1215 {
1216 dmu_buf_t *db;
1217
1218 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1219 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1220 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1221 FTAG, &db));
1222
1223 dmu_buf_write_embedded(db,
1224 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1225 uncompressed_size, compressed_size, byteorder, tx);
1226
1227 dmu_buf_rele(db, FTAG);
1228 }
1229
1230 /*
1231 * DMU support for xuio
1232 */
1233 kstat_t *xuio_ksp = NULL;
1234
1235 typedef struct xuio_stats {
1236 /* loaned yet not returned arc_buf */
1237 kstat_named_t xuiostat_onloan_rbuf;
1238 kstat_named_t xuiostat_onloan_wbuf;
1239 /* whether a copy is made when loaning out a read buffer */
1240 kstat_named_t xuiostat_rbuf_copied;
1241 kstat_named_t xuiostat_rbuf_nocopy;
1242 /* whether a copy is made when assigning a write buffer */
1243 kstat_named_t xuiostat_wbuf_copied;
1244 kstat_named_t xuiostat_wbuf_nocopy;
1245 } xuio_stats_t;
1246
1247 static xuio_stats_t xuio_stats = {
1248 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1249 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1250 { "read_buf_copied", KSTAT_DATA_UINT64 },
1251 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1252 { "write_buf_copied", KSTAT_DATA_UINT64 },
1253 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1254 };
1255
1256 #define XUIOSTAT_INCR(stat, val) \
1257 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1258 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
1259
1260 #ifdef HAVE_UIO_ZEROCOPY
1261 int
1262 dmu_xuio_init(xuio_t *xuio, int nblk)
1263 {
1264 dmu_xuio_t *priv;
1265 uio_t *uio = &xuio->xu_uio;
1266
1267 uio->uio_iovcnt = nblk;
1268 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1269
1270 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1271 priv->cnt = nblk;
1272 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1273 priv->iovp = (iovec_t *)uio->uio_iov;
1274 XUIO_XUZC_PRIV(xuio) = priv;
1275
1276 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1277 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1278 else
1279 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1280
1281 return (0);
1282 }
1283
1284 void
1285 dmu_xuio_fini(xuio_t *xuio)
1286 {
1287 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1288 int nblk = priv->cnt;
1289
1290 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1291 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1292 kmem_free(priv, sizeof (dmu_xuio_t));
1293
1294 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1295 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1296 else
1297 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1298 }
1299
1300 /*
1301 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1302 * and increase priv->next by 1.
1303 */
1304 int
1305 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1306 {
1307 struct iovec *iov;
1308 uio_t *uio = &xuio->xu_uio;
1309 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1310 int i = priv->next++;
1311
1312 ASSERT(i < priv->cnt);
1313 ASSERT(off + n <= arc_buf_lsize(abuf));
1314 iov = (iovec_t *)uio->uio_iov + i;
1315 iov->iov_base = (char *)abuf->b_data + off;
1316 iov->iov_len = n;
1317 priv->bufs[i] = abuf;
1318 return (0);
1319 }
1320
1321 int
1322 dmu_xuio_cnt(xuio_t *xuio)
1323 {
1324 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1325 return (priv->cnt);
1326 }
1327
1328 arc_buf_t *
1329 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1330 {
1331 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1332
1333 ASSERT(i < priv->cnt);
1334 return (priv->bufs[i]);
1335 }
1336
1337 void
1338 dmu_xuio_clear(xuio_t *xuio, int i)
1339 {
1340 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1341
1342 ASSERT(i < priv->cnt);
1343 priv->bufs[i] = NULL;
1344 }
1345 #endif /* HAVE_UIO_ZEROCOPY */
1346
1347 static void
1348 xuio_stat_init(void)
1349 {
1350 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1351 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1352 KSTAT_FLAG_VIRTUAL);
1353 if (xuio_ksp != NULL) {
1354 xuio_ksp->ks_data = &xuio_stats;
1355 kstat_install(xuio_ksp);
1356 }
1357 }
1358
1359 static void
1360 xuio_stat_fini(void)
1361 {
1362 if (xuio_ksp != NULL) {
1363 kstat_delete(xuio_ksp);
1364 xuio_ksp = NULL;
1365 }
1366 }
1367
1368 void
1369 xuio_stat_wbuf_copied(void)
1370 {
1371 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1372 }
1373
1374 void
1375 xuio_stat_wbuf_nocopy(void)
1376 {
1377 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1378 }
1379
1380 #ifdef _KERNEL
1381 int
1382 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1383 {
1384 dmu_buf_t **dbp;
1385 int numbufs, i, err;
1386 #ifdef HAVE_UIO_ZEROCOPY
1387 xuio_t *xuio = NULL;
1388 #endif
1389
1390 /*
1391 * NB: we could do this block-at-a-time, but it's nice
1392 * to be reading in parallel.
1393 */
1394 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1395 TRUE, FTAG, &numbufs, &dbp, 0);
1396 if (err)
1397 return (err);
1398
1399 for (i = 0; i < numbufs; i++) {
1400 uint64_t tocpy;
1401 int64_t bufoff;
1402 dmu_buf_t *db = dbp[i];
1403
1404 ASSERT(size > 0);
1405
1406 bufoff = uio->uio_loffset - db->db_offset;
1407 tocpy = MIN(db->db_size - bufoff, size);
1408
1409 #ifdef HAVE_UIO_ZEROCOPY
1410 if (xuio) {
1411 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1412 arc_buf_t *dbuf_abuf = dbi->db_buf;
1413 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1414 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1415 if (!err) {
1416 uio->uio_resid -= tocpy;
1417 uio->uio_loffset += tocpy;
1418 }
1419
1420 if (abuf == dbuf_abuf)
1421 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1422 else
1423 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1424 } else
1425 #endif
1426 err = uiomove((char *)db->db_data + bufoff, tocpy,
1427 UIO_READ, uio);
1428 if (err)
1429 break;
1430
1431 size -= tocpy;
1432 }
1433 dmu_buf_rele_array(dbp, numbufs, FTAG);
1434
1435 return (err);
1436 }
1437
1438 /*
1439 * Read 'size' bytes into the uio buffer.
1440 * From object zdb->db_object.
1441 * Starting at offset uio->uio_loffset.
1442 *
1443 * If the caller already has a dbuf in the target object
1444 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1445 * because we don't have to find the dnode_t for the object.
1446 */
1447 int
1448 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1449 {
1450 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1451 dnode_t *dn;
1452 int err;
1453
1454 if (size == 0)
1455 return (0);
1456
1457 DB_DNODE_ENTER(db);
1458 dn = DB_DNODE(db);
1459 err = dmu_read_uio_dnode(dn, uio, size);
1460 DB_DNODE_EXIT(db);
1461
1462 return (err);
1463 }
1464
1465 /*
1466 * Read 'size' bytes into the uio buffer.
1467 * From the specified object
1468 * Starting at offset uio->uio_loffset.
1469 */
1470 int
1471 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1472 {
1473 dnode_t *dn;
1474 int err;
1475
1476 if (size == 0)
1477 return (0);
1478
1479 err = dnode_hold(os, object, FTAG, &dn);
1480 if (err)
1481 return (err);
1482
1483 err = dmu_read_uio_dnode(dn, uio, size);
1484
1485 dnode_rele(dn, FTAG);
1486
1487 return (err);
1488 }
1489
1490 int
1491 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1492 {
1493 dmu_buf_t **dbp;
1494 int numbufs;
1495 int err = 0;
1496 int i;
1497
1498 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1499 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1500 if (err)
1501 return (err);
1502
1503 for (i = 0; i < numbufs; i++) {
1504 uint64_t tocpy;
1505 int64_t bufoff;
1506 dmu_buf_t *db = dbp[i];
1507
1508 ASSERT(size > 0);
1509
1510 bufoff = uio->uio_loffset - db->db_offset;
1511 tocpy = MIN(db->db_size - bufoff, size);
1512
1513 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1514
1515 if (tocpy == db->db_size)
1516 dmu_buf_will_fill(db, tx);
1517 else
1518 dmu_buf_will_dirty(db, tx);
1519
1520 /*
1521 * XXX uiomove could block forever (eg.nfs-backed
1522 * pages). There needs to be a uiolockdown() function
1523 * to lock the pages in memory, so that uiomove won't
1524 * block.
1525 */
1526 err = uiomove((char *)db->db_data + bufoff, tocpy,
1527 UIO_WRITE, uio);
1528
1529 if (tocpy == db->db_size)
1530 dmu_buf_fill_done(db, tx);
1531
1532 if (err)
1533 break;
1534
1535 size -= tocpy;
1536 }
1537
1538 dmu_buf_rele_array(dbp, numbufs, FTAG);
1539 return (err);
1540 }
1541
1542 /*
1543 * Write 'size' bytes from the uio buffer.
1544 * To object zdb->db_object.
1545 * Starting at offset uio->uio_loffset.
1546 *
1547 * If the caller already has a dbuf in the target object
1548 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1549 * because we don't have to find the dnode_t for the object.
1550 */
1551 int
1552 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1553 dmu_tx_t *tx)
1554 {
1555 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1556 dnode_t *dn;
1557 int err;
1558
1559 if (size == 0)
1560 return (0);
1561
1562 DB_DNODE_ENTER(db);
1563 dn = DB_DNODE(db);
1564 err = dmu_write_uio_dnode(dn, uio, size, tx);
1565 DB_DNODE_EXIT(db);
1566
1567 return (err);
1568 }
1569
1570 /*
1571 * Write 'size' bytes from the uio buffer.
1572 * To the specified object.
1573 * Starting at offset uio->uio_loffset.
1574 */
1575 int
1576 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1577 dmu_tx_t *tx)
1578 {
1579 dnode_t *dn;
1580 int err;
1581
1582 if (size == 0)
1583 return (0);
1584
1585 err = dnode_hold(os, object, FTAG, &dn);
1586 if (err)
1587 return (err);
1588
1589 err = dmu_write_uio_dnode(dn, uio, size, tx);
1590
1591 dnode_rele(dn, FTAG);
1592
1593 return (err);
1594 }
1595 #endif /* _KERNEL */
1596
1597 /*
1598 * Allocate a loaned anonymous arc buffer.
1599 */
1600 arc_buf_t *
1601 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1602 {
1603 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1604
1605 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1606 }
1607
1608 /*
1609 * Free a loaned arc buffer.
1610 */
1611 void
1612 dmu_return_arcbuf(arc_buf_t *buf)
1613 {
1614 arc_return_buf(buf, FTAG);
1615 arc_buf_destroy(buf, FTAG);
1616 }
1617
1618 void
1619 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1620 dmu_buf_t *handle, dmu_tx_t *tx)
1621 {
1622 dmu_buf_t *dst_handle;
1623 dmu_buf_impl_t *dstdb;
1624 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1625 dmu_object_type_t type;
1626 arc_buf_t *abuf;
1627 uint64_t datalen;
1628 boolean_t byteorder;
1629 uint8_t salt[ZIO_DATA_SALT_LEN];
1630 uint8_t iv[ZIO_DATA_IV_LEN];
1631 uint8_t mac[ZIO_DATA_MAC_LEN];
1632
1633 ASSERT3P(srcdb->db_buf, !=, NULL);
1634
1635 /* hold the db that we want to write to */
1636 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1637 DMU_READ_NO_DECRYPT));
1638 dstdb = (dmu_buf_impl_t *)dst_handle;
1639 datalen = arc_buf_size(srcdb->db_buf);
1640
1641 DB_DNODE_ENTER(dstdb);
1642 type = DB_DNODE(dstdb)->dn_type;
1643 DB_DNODE_EXIT(dstdb);
1644
1645 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1646 if (arc_is_encrypted(srcdb->db_buf)) {
1647 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1648 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1649 byteorder, salt, iv, mac, type,
1650 datalen, arc_buf_lsize(srcdb->db_buf),
1651 arc_get_compression(srcdb->db_buf));
1652 } else {
1653 /* we won't get a compressed db back from dmu_buf_hold() */
1654 ASSERT3U(arc_get_compression(srcdb->db_buf),
1655 ==, ZIO_COMPRESS_OFF);
1656 abuf = arc_loan_buf(os->os_spa,
1657 DMU_OT_IS_METADATA(type), datalen);
1658 }
1659
1660 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1661
1662 /* copy the data to the new buffer and assign it to the dstdb */
1663 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1664 dbuf_assign_arcbuf(dstdb, abuf, tx);
1665 dmu_buf_rele(dst_handle, FTAG);
1666 }
1667
1668 /*
1669 * When possible directly assign passed loaned arc buffer to a dbuf.
1670 * If this is not possible copy the contents of passed arc buf via
1671 * dmu_write().
1672 */
1673 void
1674 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1675 dmu_tx_t *tx)
1676 {
1677 dmu_buf_impl_t *db;
1678 objset_t *os = dn->dn_objset;
1679 uint64_t object = dn->dn_object;
1680 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1681 uint64_t blkid;
1682
1683 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1684 blkid = dbuf_whichblock(dn, 0, offset);
1685 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1686 rw_exit(&dn->dn_struct_rwlock);
1687
1688 /*
1689 * We can only assign if the offset is aligned, the arc buf is the
1690 * same size as the dbuf, and the dbuf is not metadata.
1691 */
1692 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1693 dbuf_assign_arcbuf(db, buf, tx);
1694 dbuf_rele(db, FTAG);
1695 } else {
1696 /* compressed bufs must always be assignable to their dbuf */
1697 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1698 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1699
1700 dbuf_rele(db, FTAG);
1701 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1702 dmu_return_arcbuf(buf);
1703 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1704 }
1705 }
1706
1707 void
1708 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1709 dmu_tx_t *tx)
1710 {
1711 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1712
1713 DB_DNODE_ENTER(dbuf);
1714 dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1715 DB_DNODE_EXIT(dbuf);
1716 }
1717
1718 typedef struct {
1719 dbuf_dirty_record_t *dsa_dr;
1720 dmu_sync_cb_t *dsa_done;
1721 zgd_t *dsa_zgd;
1722 dmu_tx_t *dsa_tx;
1723 } dmu_sync_arg_t;
1724
1725 /* ARGSUSED */
1726 static void
1727 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1728 {
1729 dmu_sync_arg_t *dsa = varg;
1730 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1731 blkptr_t *bp = zio->io_bp;
1732
1733 if (zio->io_error == 0) {
1734 if (BP_IS_HOLE(bp)) {
1735 /*
1736 * A block of zeros may compress to a hole, but the
1737 * block size still needs to be known for replay.
1738 */
1739 BP_SET_LSIZE(bp, db->db_size);
1740 } else if (!BP_IS_EMBEDDED(bp)) {
1741 ASSERT(BP_GET_LEVEL(bp) == 0);
1742 BP_SET_FILL(bp, 1);
1743 }
1744 }
1745 }
1746
1747 static void
1748 dmu_sync_late_arrival_ready(zio_t *zio)
1749 {
1750 dmu_sync_ready(zio, NULL, zio->io_private);
1751 }
1752
1753 /* ARGSUSED */
1754 static void
1755 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1756 {
1757 dmu_sync_arg_t *dsa = varg;
1758 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1759 dmu_buf_impl_t *db = dr->dr_dbuf;
1760 zgd_t *zgd = dsa->dsa_zgd;
1761
1762 /*
1763 * Record the vdev(s) backing this blkptr so they can be flushed after
1764 * the writes for the lwb have completed.
1765 */
1766 if (zio->io_error == 0) {
1767 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1768 }
1769
1770 mutex_enter(&db->db_mtx);
1771 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1772 if (zio->io_error == 0) {
1773 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1774 if (dr->dt.dl.dr_nopwrite) {
1775 blkptr_t *bp = zio->io_bp;
1776 blkptr_t *bp_orig = &zio->io_bp_orig;
1777 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1778
1779 ASSERT(BP_EQUAL(bp, bp_orig));
1780 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1781 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1782 VERIFY(zio_checksum_table[chksum].ci_flags &
1783 ZCHECKSUM_FLAG_NOPWRITE);
1784 }
1785 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1786 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1787 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1788
1789 /*
1790 * Old style holes are filled with all zeros, whereas
1791 * new-style holes maintain their lsize, type, level,
1792 * and birth time (see zio_write_compress). While we
1793 * need to reset the BP_SET_LSIZE() call that happened
1794 * in dmu_sync_ready for old style holes, we do *not*
1795 * want to wipe out the information contained in new
1796 * style holes. Thus, only zero out the block pointer if
1797 * it's an old style hole.
1798 */
1799 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1800 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1801 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1802 } else {
1803 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1804 }
1805 cv_broadcast(&db->db_changed);
1806 mutex_exit(&db->db_mtx);
1807
1808 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1809
1810 kmem_free(dsa, sizeof (*dsa));
1811 }
1812
1813 static void
1814 dmu_sync_late_arrival_done(zio_t *zio)
1815 {
1816 blkptr_t *bp = zio->io_bp;
1817 dmu_sync_arg_t *dsa = zio->io_private;
1818 zgd_t *zgd = dsa->dsa_zgd;
1819
1820 if (zio->io_error == 0) {
1821 /*
1822 * Record the vdev(s) backing this blkptr so they can be
1823 * flushed after the writes for the lwb have completed.
1824 */
1825 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1826
1827 if (!BP_IS_HOLE(bp)) {
1828 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1829 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1830 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1831 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1832 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1833 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1834 }
1835 }
1836
1837 dmu_tx_commit(dsa->dsa_tx);
1838
1839 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1840
1841 abd_put(zio->io_abd);
1842 kmem_free(dsa, sizeof (*dsa));
1843 }
1844
1845 static int
1846 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1847 zio_prop_t *zp, zbookmark_phys_t *zb)
1848 {
1849 dmu_sync_arg_t *dsa;
1850 dmu_tx_t *tx;
1851
1852 tx = dmu_tx_create(os);
1853 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1854 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1855 dmu_tx_abort(tx);
1856 /* Make zl_get_data do txg_waited_synced() */
1857 return (SET_ERROR(EIO));
1858 }
1859
1860 /*
1861 * In order to prevent the zgd's lwb from being free'd prior to
1862 * dmu_sync_late_arrival_done() being called, we have to ensure
1863 * the lwb's "max txg" takes this tx's txg into account.
1864 */
1865 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1866
1867 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1868 dsa->dsa_dr = NULL;
1869 dsa->dsa_done = done;
1870 dsa->dsa_zgd = zgd;
1871 dsa->dsa_tx = tx;
1872
1873 /*
1874 * Since we are currently syncing this txg, it's nontrivial to
1875 * determine what BP to nopwrite against, so we disable nopwrite.
1876 *
1877 * When syncing, the db_blkptr is initially the BP of the previous
1878 * txg. We can not nopwrite against it because it will be changed
1879 * (this is similar to the non-late-arrival case where the dbuf is
1880 * dirty in a future txg).
1881 *
1882 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1883 * We can not nopwrite against it because although the BP will not
1884 * (typically) be changed, the data has not yet been persisted to this
1885 * location.
1886 *
1887 * Finally, when dbuf_write_done() is called, it is theoretically
1888 * possible to always nopwrite, because the data that was written in
1889 * this txg is the same data that we are trying to write. However we
1890 * would need to check that this dbuf is not dirty in any future
1891 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1892 * don't nopwrite in this case.
1893 */
1894 zp->zp_nopwrite = B_FALSE;
1895
1896 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1897 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1898 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1899 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1900 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1901
1902 return (0);
1903 }
1904
1905 /*
1906 * Intent log support: sync the block associated with db to disk.
1907 * N.B. and XXX: the caller is responsible for making sure that the
1908 * data isn't changing while dmu_sync() is writing it.
1909 *
1910 * Return values:
1911 *
1912 * EEXIST: this txg has already been synced, so there's nothing to do.
1913 * The caller should not log the write.
1914 *
1915 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1916 * The caller should not log the write.
1917 *
1918 * EALREADY: this block is already in the process of being synced.
1919 * The caller should track its progress (somehow).
1920 *
1921 * EIO: could not do the I/O.
1922 * The caller should do a txg_wait_synced().
1923 *
1924 * 0: the I/O has been initiated.
1925 * The caller should log this blkptr in the done callback.
1926 * It is possible that the I/O will fail, in which case
1927 * the error will be reported to the done callback and
1928 * propagated to pio from zio_done().
1929 */
1930 int
1931 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1932 {
1933 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1934 objset_t *os = db->db_objset;
1935 dsl_dataset_t *ds = os->os_dsl_dataset;
1936 dbuf_dirty_record_t *dr;
1937 dmu_sync_arg_t *dsa;
1938 zbookmark_phys_t zb;
1939 zio_prop_t zp;
1940 dnode_t *dn;
1941
1942 ASSERT(pio != NULL);
1943 ASSERT(txg != 0);
1944
1945 SET_BOOKMARK(&zb, ds->ds_object,
1946 db->db.db_object, db->db_level, db->db_blkid);
1947
1948 DB_DNODE_ENTER(db);
1949 dn = DB_DNODE(db);
1950 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1951 DB_DNODE_EXIT(db);
1952
1953 /*
1954 * If we're frozen (running ziltest), we always need to generate a bp.
1955 */
1956 if (txg > spa_freeze_txg(os->os_spa))
1957 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1958
1959 /*
1960 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1961 * and us. If we determine that this txg is not yet syncing,
1962 * but it begins to sync a moment later, that's OK because the
1963 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1964 */
1965 mutex_enter(&db->db_mtx);
1966
1967 if (txg <= spa_last_synced_txg(os->os_spa)) {
1968 /*
1969 * This txg has already synced. There's nothing to do.
1970 */
1971 mutex_exit(&db->db_mtx);
1972 return (SET_ERROR(EEXIST));
1973 }
1974
1975 if (txg <= spa_syncing_txg(os->os_spa)) {
1976 /*
1977 * This txg is currently syncing, so we can't mess with
1978 * the dirty record anymore; just write a new log block.
1979 */
1980 mutex_exit(&db->db_mtx);
1981 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1982 }
1983
1984 dr = db->db_last_dirty;
1985 while (dr && dr->dr_txg != txg)
1986 dr = dr->dr_next;
1987
1988 if (dr == NULL) {
1989 /*
1990 * There's no dr for this dbuf, so it must have been freed.
1991 * There's no need to log writes to freed blocks, so we're done.
1992 */
1993 mutex_exit(&db->db_mtx);
1994 return (SET_ERROR(ENOENT));
1995 }
1996
1997 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1998
1999 if (db->db_blkptr != NULL) {
2000 /*
2001 * We need to fill in zgd_bp with the current blkptr so that
2002 * the nopwrite code can check if we're writing the same
2003 * data that's already on disk. We can only nopwrite if we
2004 * are sure that after making the copy, db_blkptr will not
2005 * change until our i/o completes. We ensure this by
2006 * holding the db_mtx, and only allowing nopwrite if the
2007 * block is not already dirty (see below). This is verified
2008 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2009 * not changed.
2010 */
2011 *zgd->zgd_bp = *db->db_blkptr;
2012 }
2013
2014 /*
2015 * Assume the on-disk data is X, the current syncing data (in
2016 * txg - 1) is Y, and the current in-memory data is Z (currently
2017 * in dmu_sync).
2018 *
2019 * We usually want to perform a nopwrite if X and Z are the
2020 * same. However, if Y is different (i.e. the BP is going to
2021 * change before this write takes effect), then a nopwrite will
2022 * be incorrect - we would override with X, which could have
2023 * been freed when Y was written.
2024 *
2025 * (Note that this is not a concern when we are nop-writing from
2026 * syncing context, because X and Y must be identical, because
2027 * all previous txgs have been synced.)
2028 *
2029 * Therefore, we disable nopwrite if the current BP could change
2030 * before this TXG. There are two ways it could change: by
2031 * being dirty (dr_next is non-NULL), or by being freed
2032 * (dnode_block_freed()). This behavior is verified by
2033 * zio_done(), which VERIFYs that the override BP is identical
2034 * to the on-disk BP.
2035 */
2036 DB_DNODE_ENTER(db);
2037 dn = DB_DNODE(db);
2038 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
2039 zp.zp_nopwrite = B_FALSE;
2040 DB_DNODE_EXIT(db);
2041
2042 ASSERT(dr->dr_txg == txg);
2043 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2044 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2045 /*
2046 * We have already issued a sync write for this buffer,
2047 * or this buffer has already been synced. It could not
2048 * have been dirtied since, or we would have cleared the state.
2049 */
2050 mutex_exit(&db->db_mtx);
2051 return (SET_ERROR(EALREADY));
2052 }
2053
2054 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2055 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2056 mutex_exit(&db->db_mtx);
2057
2058 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2059 dsa->dsa_dr = dr;
2060 dsa->dsa_done = done;
2061 dsa->dsa_zgd = zgd;
2062 dsa->dsa_tx = NULL;
2063
2064 zio_nowait(arc_write(pio, os->os_spa, txg,
2065 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
2066 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
2067 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
2068
2069 return (0);
2070 }
2071
2072 int
2073 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2074 {
2075 dnode_t *dn;
2076 int err;
2077
2078 err = dnode_hold(os, object, FTAG, &dn);
2079 if (err)
2080 return (err);
2081 err = dnode_set_nlevels(dn, nlevels, tx);
2082 dnode_rele(dn, FTAG);
2083 return (err);
2084 }
2085
2086 int
2087 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2088 dmu_tx_t *tx)
2089 {
2090 dnode_t *dn;
2091 int err;
2092
2093 err = dnode_hold(os, object, FTAG, &dn);
2094 if (err)
2095 return (err);
2096 err = dnode_set_blksz(dn, size, ibs, tx);
2097 dnode_rele(dn, FTAG);
2098 return (err);
2099 }
2100
2101 int
2102 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2103 dmu_tx_t *tx)
2104 {
2105 dnode_t *dn;
2106 int err;
2107
2108 err = dnode_hold(os, object, FTAG, &dn);
2109 if (err)
2110 return (err);
2111 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2112 dnode_new_blkid(dn, maxblkid, tx, B_FALSE);
2113 rw_exit(&dn->dn_struct_rwlock);
2114 dnode_rele(dn, FTAG);
2115 return (0);
2116 }
2117
2118 void
2119 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2120 dmu_tx_t *tx)
2121 {
2122 dnode_t *dn;
2123
2124 /*
2125 * Send streams include each object's checksum function. This
2126 * check ensures that the receiving system can understand the
2127 * checksum function transmitted.
2128 */
2129 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2130
2131 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2132 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2133 dn->dn_checksum = checksum;
2134 dnode_setdirty(dn, tx);
2135 dnode_rele(dn, FTAG);
2136 }
2137
2138 void
2139 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2140 dmu_tx_t *tx)
2141 {
2142 dnode_t *dn;
2143
2144 /*
2145 * Send streams include each object's compression function. This
2146 * check ensures that the receiving system can understand the
2147 * compression function transmitted.
2148 */
2149 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2150
2151 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2152 dn->dn_compress = compress;
2153 dnode_setdirty(dn, tx);
2154 dnode_rele(dn, FTAG);
2155 }
2156
2157 /*
2158 * When the "redundant_metadata" property is set to "most", only indirect
2159 * blocks of this level and higher will have an additional ditto block.
2160 */
2161 int zfs_redundant_metadata_most_ditto_level = 2;
2162
2163 void
2164 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2165 {
2166 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2167 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2168 (wp & WP_SPILL));
2169 enum zio_checksum checksum = os->os_checksum;
2170 enum zio_compress compress = os->os_compress;
2171 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2172 boolean_t dedup = B_FALSE;
2173 boolean_t nopwrite = B_FALSE;
2174 boolean_t dedup_verify = os->os_dedup_verify;
2175 boolean_t encrypt = B_FALSE;
2176 int copies = os->os_copies;
2177
2178 /*
2179 * We maintain different write policies for each of the following
2180 * types of data:
2181 * 1. metadata
2182 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2183 * 3. all other level 0 blocks
2184 */
2185 if (ismd) {
2186 /*
2187 * XXX -- we should design a compression algorithm
2188 * that specializes in arrays of bps.
2189 */
2190 compress = zio_compress_select(os->os_spa,
2191 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2192
2193 /*
2194 * Metadata always gets checksummed. If the data
2195 * checksum is multi-bit correctable, and it's not a
2196 * ZBT-style checksum, then it's suitable for metadata
2197 * as well. Otherwise, the metadata checksum defaults
2198 * to fletcher4.
2199 */
2200 if (!(zio_checksum_table[checksum].ci_flags &
2201 ZCHECKSUM_FLAG_METADATA) ||
2202 (zio_checksum_table[checksum].ci_flags &
2203 ZCHECKSUM_FLAG_EMBEDDED))
2204 checksum = ZIO_CHECKSUM_FLETCHER_4;
2205
2206 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2207 (os->os_redundant_metadata ==
2208 ZFS_REDUNDANT_METADATA_MOST &&
2209 (level >= zfs_redundant_metadata_most_ditto_level ||
2210 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2211 copies++;
2212 } else if (wp & WP_NOFILL) {
2213 ASSERT(level == 0);
2214
2215 /*
2216 * If we're writing preallocated blocks, we aren't actually
2217 * writing them so don't set any policy properties. These
2218 * blocks are currently only used by an external subsystem
2219 * outside of zfs (i.e. dump) and not written by the zio
2220 * pipeline.
2221 */
2222 compress = ZIO_COMPRESS_OFF;
2223 checksum = ZIO_CHECKSUM_OFF;
2224 } else {
2225 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2226 compress);
2227
2228 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2229 zio_checksum_select(dn->dn_checksum, checksum) :
2230 dedup_checksum;
2231
2232 /*
2233 * Determine dedup setting. If we are in dmu_sync(),
2234 * we won't actually dedup now because that's all
2235 * done in syncing context; but we do want to use the
2236 * dedup checkum. If the checksum is not strong
2237 * enough to ensure unique signatures, force
2238 * dedup_verify.
2239 */
2240 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2241 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2242 if (!(zio_checksum_table[checksum].ci_flags &
2243 ZCHECKSUM_FLAG_DEDUP))
2244 dedup_verify = B_TRUE;
2245 }
2246
2247 /*
2248 * Enable nopwrite if we have secure enough checksum
2249 * algorithm (see comment in zio_nop_write) and
2250 * compression is enabled. We don't enable nopwrite if
2251 * dedup is enabled as the two features are mutually
2252 * exclusive.
2253 */
2254 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2255 ZCHECKSUM_FLAG_NOPWRITE) &&
2256 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2257 }
2258
2259 /*
2260 * All objects in an encrypted objset are protected from modification
2261 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2262 * in the bp, so we cannot use all copies. Encrypted objects are also
2263 * not subject to nopwrite since writing the same data will still
2264 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2265 * to avoid ambiguity in the dedup code since the DDT does not store
2266 * object types.
2267 */
2268 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2269 encrypt = B_TRUE;
2270
2271 if (DMU_OT_IS_ENCRYPTED(type)) {
2272 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2273 nopwrite = B_FALSE;
2274 } else {
2275 dedup = B_FALSE;
2276 }
2277
2278 if (level <= 0 &&
2279 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2280 compress = ZIO_COMPRESS_EMPTY;
2281 }
2282 }
2283
2284 zp->zp_compress = compress;
2285 zp->zp_checksum = checksum;
2286 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2287 zp->zp_level = level;
2288 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2289 zp->zp_dedup = dedup;
2290 zp->zp_dedup_verify = dedup && dedup_verify;
2291 zp->zp_nopwrite = nopwrite;
2292 zp->zp_encrypt = encrypt;
2293 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2294 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2295 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2296 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2297 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2298 os->os_zpl_special_smallblock : 0;
2299
2300 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2301 }
2302
2303 /*
2304 * This function is only called from zfs_holey_common() for zpl_llseek()
2305 * in order to determine the location of holes. In order to accurately
2306 * report holes all dirty data must be synced to disk. This causes extremely
2307 * poor performance when seeking for holes in a dirty file. As a compromise,
2308 * only provide hole data when the dnode is clean. When a dnode is dirty
2309 * report the dnode as having no holes which is always a safe thing to do.
2310 */
2311 int
2312 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2313 {
2314 dnode_t *dn;
2315 int i, err;
2316 boolean_t clean = B_TRUE;
2317
2318 err = dnode_hold(os, object, FTAG, &dn);
2319 if (err)
2320 return (err);
2321
2322 /*
2323 * Check if dnode is dirty
2324 */
2325 for (i = 0; i < TXG_SIZE; i++) {
2326 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2327 clean = B_FALSE;
2328 break;
2329 }
2330 }
2331
2332 /*
2333 * If compatibility option is on, sync any current changes before
2334 * we go trundling through the block pointers.
2335 */
2336 if (!clean && zfs_dmu_offset_next_sync) {
2337 clean = B_TRUE;
2338 dnode_rele(dn, FTAG);
2339 txg_wait_synced(dmu_objset_pool(os), 0);
2340 err = dnode_hold(os, object, FTAG, &dn);
2341 if (err)
2342 return (err);
2343 }
2344
2345 if (clean)
2346 err = dnode_next_offset(dn,
2347 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2348 else
2349 err = SET_ERROR(EBUSY);
2350
2351 dnode_rele(dn, FTAG);
2352
2353 return (err);
2354 }
2355
2356 void
2357 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2358 {
2359 dnode_phys_t *dnp = dn->dn_phys;
2360
2361 doi->doi_data_block_size = dn->dn_datablksz;
2362 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2363 1ULL << dn->dn_indblkshift : 0;
2364 doi->doi_type = dn->dn_type;
2365 doi->doi_bonus_type = dn->dn_bonustype;
2366 doi->doi_bonus_size = dn->dn_bonuslen;
2367 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2368 doi->doi_indirection = dn->dn_nlevels;
2369 doi->doi_checksum = dn->dn_checksum;
2370 doi->doi_compress = dn->dn_compress;
2371 doi->doi_nblkptr = dn->dn_nblkptr;
2372 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2373 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2374 doi->doi_fill_count = 0;
2375 for (int i = 0; i < dnp->dn_nblkptr; i++)
2376 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2377 }
2378
2379 void
2380 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2381 {
2382 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2383 mutex_enter(&dn->dn_mtx);
2384
2385 __dmu_object_info_from_dnode(dn, doi);
2386
2387 mutex_exit(&dn->dn_mtx);
2388 rw_exit(&dn->dn_struct_rwlock);
2389 }
2390
2391 /*
2392 * Get information on a DMU object.
2393 * If doi is NULL, just indicates whether the object exists.
2394 */
2395 int
2396 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2397 {
2398 dnode_t *dn;
2399 int err = dnode_hold(os, object, FTAG, &dn);
2400
2401 if (err)
2402 return (err);
2403
2404 if (doi != NULL)
2405 dmu_object_info_from_dnode(dn, doi);
2406
2407 dnode_rele(dn, FTAG);
2408 return (0);
2409 }
2410
2411 /*
2412 * As above, but faster; can be used when you have a held dbuf in hand.
2413 */
2414 void
2415 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2416 {
2417 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2418
2419 DB_DNODE_ENTER(db);
2420 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2421 DB_DNODE_EXIT(db);
2422 }
2423
2424 /*
2425 * Faster still when you only care about the size.
2426 * This is specifically optimized for zfs_getattr().
2427 */
2428 void
2429 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2430 u_longlong_t *nblk512)
2431 {
2432 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2433 dnode_t *dn;
2434
2435 DB_DNODE_ENTER(db);
2436 dn = DB_DNODE(db);
2437
2438 *blksize = dn->dn_datablksz;
2439 /* add in number of slots used for the dnode itself */
2440 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2441 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2442 DB_DNODE_EXIT(db);
2443 }
2444
2445 void
2446 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2447 {
2448 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2449 dnode_t *dn;
2450
2451 DB_DNODE_ENTER(db);
2452 dn = DB_DNODE(db);
2453 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2454 DB_DNODE_EXIT(db);
2455 }
2456
2457 void
2458 byteswap_uint64_array(void *vbuf, size_t size)
2459 {
2460 uint64_t *buf = vbuf;
2461 size_t count = size >> 3;
2462 int i;
2463
2464 ASSERT((size & 7) == 0);
2465
2466 for (i = 0; i < count; i++)
2467 buf[i] = BSWAP_64(buf[i]);
2468 }
2469
2470 void
2471 byteswap_uint32_array(void *vbuf, size_t size)
2472 {
2473 uint32_t *buf = vbuf;
2474 size_t count = size >> 2;
2475 int i;
2476
2477 ASSERT((size & 3) == 0);
2478
2479 for (i = 0; i < count; i++)
2480 buf[i] = BSWAP_32(buf[i]);
2481 }
2482
2483 void
2484 byteswap_uint16_array(void *vbuf, size_t size)
2485 {
2486 uint16_t *buf = vbuf;
2487 size_t count = size >> 1;
2488 int i;
2489
2490 ASSERT((size & 1) == 0);
2491
2492 for (i = 0; i < count; i++)
2493 buf[i] = BSWAP_16(buf[i]);
2494 }
2495
2496 /* ARGSUSED */
2497 void
2498 byteswap_uint8_array(void *vbuf, size_t size)
2499 {
2500 }
2501
2502 void
2503 dmu_init(void)
2504 {
2505 abd_init();
2506 zfs_dbgmsg_init();
2507 sa_cache_init();
2508 xuio_stat_init();
2509 dmu_objset_init();
2510 dnode_init();
2511 zfetch_init();
2512 dmu_tx_init();
2513 l2arc_init();
2514 arc_init();
2515 dbuf_init();
2516 }
2517
2518 void
2519 dmu_fini(void)
2520 {
2521 arc_fini(); /* arc depends on l2arc, so arc must go first */
2522 l2arc_fini();
2523 dmu_tx_fini();
2524 zfetch_fini();
2525 dbuf_fini();
2526 dnode_fini();
2527 dmu_objset_fini();
2528 xuio_stat_fini();
2529 sa_cache_fini();
2530 zfs_dbgmsg_fini();
2531 abd_fini();
2532 }
2533
2534 #if defined(_KERNEL)
2535 EXPORT_SYMBOL(dmu_bonus_hold);
2536 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2537 EXPORT_SYMBOL(dmu_buf_rele_array);
2538 EXPORT_SYMBOL(dmu_prefetch);
2539 EXPORT_SYMBOL(dmu_free_range);
2540 EXPORT_SYMBOL(dmu_free_long_range);
2541 EXPORT_SYMBOL(dmu_free_long_object);
2542 EXPORT_SYMBOL(dmu_read);
2543 EXPORT_SYMBOL(dmu_read_by_dnode);
2544 EXPORT_SYMBOL(dmu_write);
2545 EXPORT_SYMBOL(dmu_write_by_dnode);
2546 EXPORT_SYMBOL(dmu_prealloc);
2547 EXPORT_SYMBOL(dmu_object_info);
2548 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2549 EXPORT_SYMBOL(dmu_object_info_from_db);
2550 EXPORT_SYMBOL(dmu_object_size_from_db);
2551 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2552 EXPORT_SYMBOL(dmu_object_set_nlevels);
2553 EXPORT_SYMBOL(dmu_object_set_blocksize);
2554 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2555 EXPORT_SYMBOL(dmu_object_set_checksum);
2556 EXPORT_SYMBOL(dmu_object_set_compress);
2557 EXPORT_SYMBOL(dmu_write_policy);
2558 EXPORT_SYMBOL(dmu_sync);
2559 EXPORT_SYMBOL(dmu_request_arcbuf);
2560 EXPORT_SYMBOL(dmu_return_arcbuf);
2561 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2562 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2563 EXPORT_SYMBOL(dmu_buf_hold);
2564 EXPORT_SYMBOL(dmu_ot);
2565
2566 /* BEGIN CSTYLED */
2567 module_param(zfs_nopwrite_enabled, int, 0644);
2568 MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2569
2570 module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2571 MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2572 "percentage of dirtied blocks from frees in one TXG");
2573
2574 module_param(zfs_dmu_offset_next_sync, int, 0644);
2575 MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2576 "Enable forcing txg sync to find holes");
2577
2578 /* END CSTYLED */
2579
2580 #endif