]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_recv.c
Fix ENXIO from spa_ld_verify_logs() in ztest
[mirror_zfs.git] / module / zfs / dmu_recv.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 */
30
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/spa_impl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/zap.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/zfs_znode.h>
49 #include <zfs_fletcher.h>
50 #include <sys/avl.h>
51 #include <sys/ddt.h>
52 #include <sys/zfs_onexit.h>
53 #include <sys/dmu_recv.h>
54 #include <sys/dsl_destroy.h>
55 #include <sys/blkptr.h>
56 #include <sys/dsl_bookmark.h>
57 #include <sys/zfeature.h>
58 #include <sys/bqueue.h>
59 #include <sys/zvol.h>
60 #include <sys/policy.h>
61
62 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
63
64 static char *dmu_recv_tag = "dmu_recv_tag";
65 const char *recv_clone_name = "%recv";
66
67 static void byteswap_record(dmu_replay_record_t *drr);
68
69 typedef struct dmu_recv_begin_arg {
70 const char *drba_origin;
71 dmu_recv_cookie_t *drba_cookie;
72 cred_t *drba_cred;
73 dsl_crypto_params_t *drba_dcp;
74 uint64_t drba_snapobj;
75 } dmu_recv_begin_arg_t;
76
77 static int
78 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
79 uint64_t fromguid, uint64_t featureflags)
80 {
81 uint64_t val;
82 int error;
83 dsl_pool_t *dp = ds->ds_dir->dd_pool;
84 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
85 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
86 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
87
88 /* temporary clone name must not exist */
89 error = zap_lookup(dp->dp_meta_objset,
90 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
91 8, 1, &val);
92 if (error != ENOENT)
93 return (error == 0 ? EBUSY : error);
94
95 /* new snapshot name must not exist */
96 error = zap_lookup(dp->dp_meta_objset,
97 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
98 drba->drba_cookie->drc_tosnap, 8, 1, &val);
99 if (error != ENOENT)
100 return (error == 0 ? EEXIST : error);
101
102 /*
103 * Check snapshot limit before receiving. We'll recheck again at the
104 * end, but might as well abort before receiving if we're already over
105 * the limit.
106 *
107 * Note that we do not check the file system limit with
108 * dsl_dir_fscount_check because the temporary %clones don't count
109 * against that limit.
110 */
111 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
112 NULL, drba->drba_cred);
113 if (error != 0)
114 return (error);
115
116 if (fromguid != 0) {
117 dsl_dataset_t *snap;
118 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
119
120 /* Can't perform a raw receive on top of a non-raw receive */
121 if (!encrypted && raw)
122 return (SET_ERROR(EINVAL));
123
124 /* Encryption is incompatible with embedded data */
125 if (encrypted && embed)
126 return (SET_ERROR(EINVAL));
127
128 /* Find snapshot in this dir that matches fromguid. */
129 while (obj != 0) {
130 error = dsl_dataset_hold_obj(dp, obj, FTAG,
131 &snap);
132 if (error != 0)
133 return (SET_ERROR(ENODEV));
134 if (snap->ds_dir != ds->ds_dir) {
135 dsl_dataset_rele(snap, FTAG);
136 return (SET_ERROR(ENODEV));
137 }
138 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
139 break;
140 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
141 dsl_dataset_rele(snap, FTAG);
142 }
143 if (obj == 0)
144 return (SET_ERROR(ENODEV));
145
146 if (drba->drba_cookie->drc_force) {
147 drba->drba_snapobj = obj;
148 } else {
149 /*
150 * If we are not forcing, there must be no
151 * changes since fromsnap.
152 */
153 if (dsl_dataset_modified_since_snap(ds, snap)) {
154 dsl_dataset_rele(snap, FTAG);
155 return (SET_ERROR(ETXTBSY));
156 }
157 drba->drba_snapobj = ds->ds_prev->ds_object;
158 }
159
160 dsl_dataset_rele(snap, FTAG);
161 } else {
162 /* if full, then must be forced */
163 if (!drba->drba_cookie->drc_force)
164 return (SET_ERROR(EEXIST));
165
166 /*
167 * We don't support using zfs recv -F to blow away
168 * encrypted filesystems. This would require the
169 * dsl dir to point to the old encryption key and
170 * the new one at the same time during the receive.
171 */
172 if ((!encrypted && raw) || encrypted)
173 return (SET_ERROR(EINVAL));
174
175 /*
176 * Perform the same encryption checks we would if
177 * we were creating a new dataset from scratch.
178 */
179 if (!raw) {
180 boolean_t will_encrypt;
181
182 error = dmu_objset_create_crypt_check(
183 ds->ds_dir->dd_parent, drba->drba_dcp,
184 &will_encrypt);
185 if (error != 0)
186 return (error);
187
188 if (will_encrypt && embed)
189 return (SET_ERROR(EINVAL));
190 }
191
192 drba->drba_snapobj = 0;
193 }
194
195 return (0);
196
197 }
198
199 static int
200 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
201 {
202 dmu_recv_begin_arg_t *drba = arg;
203 dsl_pool_t *dp = dmu_tx_pool(tx);
204 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
205 uint64_t fromguid = drrb->drr_fromguid;
206 int flags = drrb->drr_flags;
207 ds_hold_flags_t dsflags = 0;
208 int error;
209 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
210 dsl_dataset_t *ds;
211 const char *tofs = drba->drba_cookie->drc_tofs;
212
213 /* already checked */
214 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
215 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
216
217 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
218 DMU_COMPOUNDSTREAM ||
219 drrb->drr_type >= DMU_OST_NUMTYPES ||
220 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
221 return (SET_ERROR(EINVAL));
222
223 /* Verify pool version supports SA if SA_SPILL feature set */
224 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
225 spa_version(dp->dp_spa) < SPA_VERSION_SA)
226 return (SET_ERROR(ENOTSUP));
227
228 if (drba->drba_cookie->drc_resumable &&
229 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
230 return (SET_ERROR(ENOTSUP));
231
232 /*
233 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
234 * record to a plain WRITE record, so the pool must have the
235 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
236 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
237 */
238 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
239 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
240 return (SET_ERROR(ENOTSUP));
241 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
242 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
243 return (SET_ERROR(ENOTSUP));
244
245 /*
246 * The receiving code doesn't know how to translate large blocks
247 * to smaller ones, so the pool must have the LARGE_BLOCKS
248 * feature enabled if the stream has LARGE_BLOCKS. Same with
249 * large dnodes.
250 */
251 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
252 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
253 return (SET_ERROR(ENOTSUP));
254 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
255 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
256 return (SET_ERROR(ENOTSUP));
257
258 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
259 /* raw receives require the encryption feature */
260 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
261 return (SET_ERROR(ENOTSUP));
262
263 /* embedded data is incompatible with encryption and raw recv */
264 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
265 return (SET_ERROR(EINVAL));
266 } else {
267 dsflags |= DS_HOLD_FLAG_DECRYPT;
268 }
269
270 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
271 if (error == 0) {
272 /* target fs already exists; recv into temp clone */
273
274 /* Can't recv a clone into an existing fs */
275 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
276 dsl_dataset_rele_flags(ds, dsflags, FTAG);
277 return (SET_ERROR(EINVAL));
278 }
279
280 error = recv_begin_check_existing_impl(drba, ds, fromguid,
281 featureflags);
282 dsl_dataset_rele_flags(ds, dsflags, FTAG);
283 } else if (error == ENOENT) {
284 /* target fs does not exist; must be a full backup or clone */
285 char buf[ZFS_MAX_DATASET_NAME_LEN];
286
287 /*
288 * If it's a non-clone incremental, we are missing the
289 * target fs, so fail the recv.
290 */
291 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
292 drba->drba_origin))
293 return (SET_ERROR(ENOENT));
294
295 /*
296 * If we're receiving a full send as a clone, and it doesn't
297 * contain all the necessary free records and freeobject
298 * records, reject it.
299 */
300 if (fromguid == 0 && drba->drba_origin &&
301 !(flags & DRR_FLAG_FREERECORDS))
302 return (SET_ERROR(EINVAL));
303
304 /* Open the parent of tofs */
305 ASSERT3U(strlen(tofs), <, sizeof (buf));
306 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
307 error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds);
308 if (error != 0)
309 return (error);
310
311 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
312 drba->drba_origin == NULL) {
313 boolean_t will_encrypt;
314
315 /*
316 * Check that we aren't breaking any encryption rules
317 * and that we have all the parameters we need to
318 * create an encrypted dataset if necessary. If we are
319 * making an encrypted dataset the stream can't have
320 * embedded data.
321 */
322 error = dmu_objset_create_crypt_check(ds->ds_dir,
323 drba->drba_dcp, &will_encrypt);
324 if (error != 0) {
325 dsl_dataset_rele_flags(ds, dsflags, FTAG);
326 return (error);
327 }
328
329 if (will_encrypt &&
330 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
331 dsl_dataset_rele_flags(ds, dsflags, FTAG);
332 return (SET_ERROR(EINVAL));
333 }
334 }
335
336 /*
337 * Check filesystem and snapshot limits before receiving. We'll
338 * recheck snapshot limits again at the end (we create the
339 * filesystems and increment those counts during begin_sync).
340 */
341 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
342 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
343 if (error != 0) {
344 dsl_dataset_rele_flags(ds, dsflags, FTAG);
345 return (error);
346 }
347
348 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
349 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
350 if (error != 0) {
351 dsl_dataset_rele_flags(ds, dsflags, FTAG);
352 return (error);
353 }
354
355 if (drba->drba_origin != NULL) {
356 dsl_dataset_t *origin;
357
358 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
359 dsflags, FTAG, &origin);
360 if (error != 0) {
361 dsl_dataset_rele_flags(ds, dsflags, FTAG);
362 return (error);
363 }
364 if (!origin->ds_is_snapshot) {
365 dsl_dataset_rele_flags(origin, dsflags, FTAG);
366 dsl_dataset_rele_flags(ds, dsflags, FTAG);
367 return (SET_ERROR(EINVAL));
368 }
369 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
370 fromguid != 0) {
371 dsl_dataset_rele_flags(origin, dsflags, FTAG);
372 dsl_dataset_rele_flags(ds, dsflags, FTAG);
373 return (SET_ERROR(ENODEV));
374 }
375 if (origin->ds_dir->dd_crypto_obj != 0 &&
376 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
377 dsl_dataset_rele_flags(origin, dsflags, FTAG);
378 dsl_dataset_rele_flags(ds, dsflags, FTAG);
379 return (SET_ERROR(EINVAL));
380 }
381 dsl_dataset_rele_flags(origin,
382 dsflags, FTAG);
383 }
384 dsl_dataset_rele_flags(ds, dsflags, FTAG);
385 error = 0;
386 }
387 return (error);
388 }
389
390 static void
391 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
392 {
393 dmu_recv_begin_arg_t *drba = arg;
394 dsl_pool_t *dp = dmu_tx_pool(tx);
395 objset_t *mos = dp->dp_meta_objset;
396 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
397 const char *tofs = drba->drba_cookie->drc_tofs;
398 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
399 dsl_dataset_t *ds, *newds;
400 objset_t *os;
401 uint64_t dsobj;
402 ds_hold_flags_t dsflags = 0;
403 int error;
404 uint64_t crflags = 0;
405 dsl_crypto_params_t dummy_dcp = { 0 };
406 dsl_crypto_params_t *dcp = drba->drba_dcp;
407
408 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
409 crflags |= DS_FLAG_CI_DATASET;
410
411 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
412 dsflags |= DS_HOLD_FLAG_DECRYPT;
413
414 /*
415 * Raw, non-incremental recvs always use a dummy dcp with
416 * the raw cmd set. Raw incremental recvs do not use a dcp
417 * since the encryption parameters are already set in stone.
418 */
419 if (dcp == NULL && drba->drba_snapobj == 0 &&
420 drba->drba_origin == NULL) {
421 ASSERT3P(dcp, ==, NULL);
422 dcp = &dummy_dcp;
423
424 if (featureflags & DMU_BACKUP_FEATURE_RAW)
425 dcp->cp_cmd = DCP_CMD_RAW_RECV;
426 }
427
428 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
429 if (error == 0) {
430 /* create temporary clone */
431 dsl_dataset_t *snap = NULL;
432
433 if (drba->drba_snapobj != 0) {
434 VERIFY0(dsl_dataset_hold_obj(dp,
435 drba->drba_snapobj, FTAG, &snap));
436 ASSERT3P(dcp, ==, NULL);
437 }
438
439 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
440 snap, crflags, drba->drba_cred, dcp, tx);
441 if (drba->drba_snapobj != 0)
442 dsl_dataset_rele(snap, FTAG);
443 dsl_dataset_rele_flags(ds, dsflags, FTAG);
444 } else {
445 dsl_dir_t *dd;
446 const char *tail;
447 dsl_dataset_t *origin = NULL;
448
449 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
450
451 if (drba->drba_origin != NULL) {
452 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
453 FTAG, &origin));
454 ASSERT3P(dcp, ==, NULL);
455 }
456
457 /* Create new dataset. */
458 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
459 origin, crflags, drba->drba_cred, dcp, tx);
460 if (origin != NULL)
461 dsl_dataset_rele(origin, FTAG);
462 dsl_dir_rele(dd, FTAG);
463 drba->drba_cookie->drc_newfs = B_TRUE;
464 }
465
466 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
467 VERIFY0(dmu_objset_from_ds(newds, &os));
468
469 if (drba->drba_cookie->drc_resumable) {
470 dsl_dataset_zapify(newds, tx);
471 if (drrb->drr_fromguid != 0) {
472 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
473 8, 1, &drrb->drr_fromguid, tx));
474 }
475 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
476 8, 1, &drrb->drr_toguid, tx));
477 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
478 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
479 uint64_t one = 1;
480 uint64_t zero = 0;
481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
482 8, 1, &one, tx));
483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
484 8, 1, &zero, tx));
485 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
486 8, 1, &zero, tx));
487 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
488 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
489 8, 1, &one, tx));
490 }
491 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
492 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
493 8, 1, &one, tx));
494 }
495 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
496 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
497 8, 1, &one, tx));
498 }
499 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
500 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
501 8, 1, &one, tx));
502 }
503 }
504
505 /*
506 * Usually the os->os_encrypted value is tied to the presence of a
507 * DSL Crypto Key object in the dd. However, that will not be received
508 * until dmu_recv_stream(), so we set the value manually for now.
509 */
510 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
511 os->os_encrypted = B_TRUE;
512 drba->drba_cookie->drc_raw = B_TRUE;
513 }
514
515 dmu_buf_will_dirty(newds->ds_dbuf, tx);
516 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
517
518 /*
519 * If we actually created a non-clone, we need to create the objset
520 * in our new dataset. If this is a raw send we postpone this until
521 * dmu_recv_stream() so that we can allocate the metadnode with the
522 * properties from the DRR_BEGIN payload.
523 */
524 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
525 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
526 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
527 (void) dmu_objset_create_impl(dp->dp_spa,
528 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
529 }
530 rrw_exit(&newds->ds_bp_rwlock, FTAG);
531
532 drba->drba_cookie->drc_ds = newds;
533
534 spa_history_log_internal_ds(newds, "receive", tx, "");
535 }
536
537 static int
538 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
539 {
540 dmu_recv_begin_arg_t *drba = arg;
541 dsl_pool_t *dp = dmu_tx_pool(tx);
542 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
543 int error;
544 ds_hold_flags_t dsflags = 0;
545 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
546 dsl_dataset_t *ds;
547 const char *tofs = drba->drba_cookie->drc_tofs;
548
549 /* already checked */
550 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
551 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
552
553 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
554 DMU_COMPOUNDSTREAM ||
555 drrb->drr_type >= DMU_OST_NUMTYPES)
556 return (SET_ERROR(EINVAL));
557
558 /* Verify pool version supports SA if SA_SPILL feature set */
559 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
560 spa_version(dp->dp_spa) < SPA_VERSION_SA)
561 return (SET_ERROR(ENOTSUP));
562
563 /*
564 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
565 * record to a plain WRITE record, so the pool must have the
566 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
567 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
568 */
569 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
570 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
571 return (SET_ERROR(ENOTSUP));
572 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
573 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
574 return (SET_ERROR(ENOTSUP));
575
576 /*
577 * The receiving code doesn't know how to translate large blocks
578 * to smaller ones, so the pool must have the LARGE_BLOCKS
579 * feature enabled if the stream has LARGE_BLOCKS. Same with
580 * large dnodes.
581 */
582 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
583 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
584 return (SET_ERROR(ENOTSUP));
585 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
586 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
587 return (SET_ERROR(ENOTSUP));
588
589 /* 6 extra bytes for /%recv */
590 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
591 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
592 tofs, recv_clone_name);
593
594 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
595 dsflags |= DS_HOLD_FLAG_DECRYPT;
596
597 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
598 /* %recv does not exist; continue in tofs */
599 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
600 if (error != 0)
601 return (error);
602 }
603
604 /* check that ds is marked inconsistent */
605 if (!DS_IS_INCONSISTENT(ds)) {
606 dsl_dataset_rele_flags(ds, dsflags, FTAG);
607 return (SET_ERROR(EINVAL));
608 }
609
610 /* check that there is resuming data, and that the toguid matches */
611 if (!dsl_dataset_is_zapified(ds)) {
612 dsl_dataset_rele_flags(ds, dsflags, FTAG);
613 return (SET_ERROR(EINVAL));
614 }
615 uint64_t val;
616 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
617 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
618 if (error != 0 || drrb->drr_toguid != val) {
619 dsl_dataset_rele_flags(ds, dsflags, FTAG);
620 return (SET_ERROR(EINVAL));
621 }
622
623 /*
624 * Check if the receive is still running. If so, it will be owned.
625 * Note that nothing else can own the dataset (e.g. after the receive
626 * fails) because it will be marked inconsistent.
627 */
628 if (dsl_dataset_has_owner(ds)) {
629 dsl_dataset_rele_flags(ds, dsflags, FTAG);
630 return (SET_ERROR(EBUSY));
631 }
632
633 /* There should not be any snapshots of this fs yet. */
634 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
635 dsl_dataset_rele_flags(ds, dsflags, FTAG);
636 return (SET_ERROR(EINVAL));
637 }
638
639 /*
640 * Note: resume point will be checked when we process the first WRITE
641 * record.
642 */
643
644 /* check that the origin matches */
645 val = 0;
646 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
647 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
648 if (drrb->drr_fromguid != val) {
649 dsl_dataset_rele_flags(ds, dsflags, FTAG);
650 return (SET_ERROR(EINVAL));
651 }
652
653 dsl_dataset_rele_flags(ds, dsflags, FTAG);
654 return (0);
655 }
656
657 static void
658 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
659 {
660 dmu_recv_begin_arg_t *drba = arg;
661 dsl_pool_t *dp = dmu_tx_pool(tx);
662 const char *tofs = drba->drba_cookie->drc_tofs;
663 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
664 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
665 dsl_dataset_t *ds;
666 objset_t *os;
667 ds_hold_flags_t dsflags = 0;
668 uint64_t dsobj;
669 /* 6 extra bytes for /%recv */
670 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
671
672 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
673 tofs, recv_clone_name);
674
675 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
676 drba->drba_cookie->drc_raw = B_TRUE;
677 } else {
678 dsflags |= DS_HOLD_FLAG_DECRYPT;
679 }
680
681 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
682 /* %recv does not exist; continue in tofs */
683 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
684 drba->drba_cookie->drc_newfs = B_TRUE;
685 }
686
687 /* clear the inconsistent flag so that we can own it */
688 ASSERT(DS_IS_INCONSISTENT(ds));
689 dmu_buf_will_dirty(ds->ds_dbuf, tx);
690 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
691 dsobj = ds->ds_object;
692 dsl_dataset_rele_flags(ds, dsflags, FTAG);
693
694 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
695 VERIFY0(dmu_objset_from_ds(ds, &os));
696
697 dmu_buf_will_dirty(ds->ds_dbuf, tx);
698 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
699
700 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
701 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
702 drba->drba_cookie->drc_raw);
703 rrw_exit(&ds->ds_bp_rwlock, FTAG);
704
705 drba->drba_cookie->drc_ds = ds;
706
707 spa_history_log_internal_ds(ds, "resume receive", tx, "");
708 }
709
710 /*
711 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
712 * succeeds; otherwise we will leak the holds on the datasets.
713 */
714 int
715 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
716 boolean_t force, boolean_t resumable, nvlist_t *localprops,
717 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
718 {
719 dmu_recv_begin_arg_t drba = { 0 };
720
721 bzero(drc, sizeof (dmu_recv_cookie_t));
722 drc->drc_drr_begin = drr_begin;
723 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
724 drc->drc_tosnap = tosnap;
725 drc->drc_tofs = tofs;
726 drc->drc_force = force;
727 drc->drc_resumable = resumable;
728 drc->drc_cred = CRED();
729 drc->drc_clone = (origin != NULL);
730
731 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
732 drc->drc_byteswap = B_TRUE;
733 (void) fletcher_4_incremental_byteswap(drr_begin,
734 sizeof (dmu_replay_record_t), &drc->drc_cksum);
735 byteswap_record(drr_begin);
736 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
737 (void) fletcher_4_incremental_native(drr_begin,
738 sizeof (dmu_replay_record_t), &drc->drc_cksum);
739 } else {
740 return (SET_ERROR(EINVAL));
741 }
742
743 drba.drba_origin = origin;
744 drba.drba_cookie = drc;
745 drba.drba_cred = CRED();
746
747 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
748 DMU_BACKUP_FEATURE_RESUMING) {
749 return (dsl_sync_task(tofs,
750 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
751 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
752 } else {
753 int err;
754
755 /*
756 * For non-raw, non-incremental, non-resuming receives the
757 * user can specify encryption parameters on the command line
758 * with "zfs recv -o". For these receives we create a dcp and
759 * pass it to the sync task. Creating the dcp will implicitly
760 * remove the encryption params from the localprops nvlist,
761 * which avoids errors when trying to set these normally
762 * read-only properties. Any other kind of receive that
763 * attempts to set these properties will fail as a result.
764 */
765 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
766 DMU_BACKUP_FEATURE_RAW) == 0 &&
767 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
768 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
769 localprops, hidden_args, &drba.drba_dcp);
770 if (err != 0)
771 return (err);
772 }
773
774 err = dsl_sync_task(tofs,
775 dmu_recv_begin_check, dmu_recv_begin_sync,
776 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
777 dsl_crypto_params_free(drba.drba_dcp, !!err);
778
779 return (err);
780 }
781 }
782
783 struct receive_record_arg {
784 dmu_replay_record_t header;
785 void *payload; /* Pointer to a buffer containing the payload */
786 /*
787 * If the record is a write, pointer to the arc_buf_t containing the
788 * payload.
789 */
790 arc_buf_t *arc_buf;
791 int payload_size;
792 uint64_t bytes_read; /* bytes read from stream when record created */
793 boolean_t eos_marker; /* Marks the end of the stream */
794 bqueue_node_t node;
795 };
796
797 struct receive_writer_arg {
798 objset_t *os;
799 boolean_t byteswap;
800 bqueue_t q;
801
802 /*
803 * These three args are used to signal to the main thread that we're
804 * done.
805 */
806 kmutex_t mutex;
807 kcondvar_t cv;
808 boolean_t done;
809
810 int err;
811 /* A map from guid to dataset to help handle dedup'd streams. */
812 avl_tree_t *guid_to_ds_map;
813 boolean_t resumable;
814 boolean_t raw;
815 uint64_t last_object;
816 uint64_t last_offset;
817 uint64_t max_object; /* highest object ID referenced in stream */
818 uint64_t bytes_read; /* bytes read when current record created */
819
820 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
821 boolean_t or_crypt_params_present;
822 uint64_t or_firstobj;
823 uint64_t or_numslots;
824 uint8_t or_salt[ZIO_DATA_SALT_LEN];
825 uint8_t or_iv[ZIO_DATA_IV_LEN];
826 uint8_t or_mac[ZIO_DATA_MAC_LEN];
827 boolean_t or_byteorder;
828 };
829
830 struct objlist {
831 list_t list; /* List of struct receive_objnode. */
832 /*
833 * Last object looked up. Used to assert that objects are being looked
834 * up in ascending order.
835 */
836 uint64_t last_lookup;
837 };
838
839 struct receive_objnode {
840 list_node_t node;
841 uint64_t object;
842 };
843
844 struct receive_arg {
845 objset_t *os;
846 vnode_t *vp; /* The vnode to read the stream from */
847 uint64_t voff; /* The current offset in the stream */
848 uint64_t bytes_read;
849 /*
850 * A record that has had its payload read in, but hasn't yet been handed
851 * off to the worker thread.
852 */
853 struct receive_record_arg *rrd;
854 /* A record that has had its header read in, but not its payload. */
855 struct receive_record_arg *next_rrd;
856 zio_cksum_t cksum;
857 zio_cksum_t prev_cksum;
858 int err;
859 boolean_t byteswap;
860 boolean_t raw;
861 uint64_t featureflags;
862 /* Sorted list of objects not to issue prefetches for. */
863 struct objlist ignore_objlist;
864 };
865
866 typedef struct guid_map_entry {
867 uint64_t guid;
868 boolean_t raw;
869 dsl_dataset_t *gme_ds;
870 avl_node_t avlnode;
871 } guid_map_entry_t;
872
873 static int
874 guid_compare(const void *arg1, const void *arg2)
875 {
876 const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
877 const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
878
879 return (AVL_CMP(gmep1->guid, gmep2->guid));
880 }
881
882 static void
883 free_guid_map_onexit(void *arg)
884 {
885 avl_tree_t *ca = arg;
886 void *cookie = NULL;
887 guid_map_entry_t *gmep;
888
889 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
890 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
891
892 if (gmep->raw) {
893 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
894 dsflags &= ~DS_HOLD_FLAG_DECRYPT;
895 }
896
897 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
898 kmem_free(gmep, sizeof (guid_map_entry_t));
899 }
900 avl_destroy(ca);
901 kmem_free(ca, sizeof (avl_tree_t));
902 }
903
904 static int
905 receive_read(struct receive_arg *ra, int len, void *buf)
906 {
907 int done = 0;
908
909 /*
910 * The code doesn't rely on this (lengths being multiples of 8). See
911 * comment in dump_bytes.
912 */
913 ASSERT(len % 8 == 0 ||
914 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
915
916 while (done < len) {
917 ssize_t resid;
918
919 ra->err = vn_rdwr(UIO_READ, ra->vp,
920 (char *)buf + done, len - done,
921 ra->voff, UIO_SYSSPACE, FAPPEND,
922 RLIM64_INFINITY, CRED(), &resid);
923
924 if (resid == len - done) {
925 /*
926 * Note: ECKSUM indicates that the receive
927 * was interrupted and can potentially be resumed.
928 */
929 ra->err = SET_ERROR(ECKSUM);
930 }
931 ra->voff += len - done - resid;
932 done = len - resid;
933 if (ra->err != 0)
934 return (ra->err);
935 }
936
937 ra->bytes_read += len;
938
939 ASSERT3U(done, ==, len);
940 return (0);
941 }
942
943 noinline static void
944 byteswap_record(dmu_replay_record_t *drr)
945 {
946 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
947 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
948 drr->drr_type = BSWAP_32(drr->drr_type);
949 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
950
951 switch (drr->drr_type) {
952 case DRR_BEGIN:
953 DO64(drr_begin.drr_magic);
954 DO64(drr_begin.drr_versioninfo);
955 DO64(drr_begin.drr_creation_time);
956 DO32(drr_begin.drr_type);
957 DO32(drr_begin.drr_flags);
958 DO64(drr_begin.drr_toguid);
959 DO64(drr_begin.drr_fromguid);
960 break;
961 case DRR_OBJECT:
962 DO64(drr_object.drr_object);
963 DO32(drr_object.drr_type);
964 DO32(drr_object.drr_bonustype);
965 DO32(drr_object.drr_blksz);
966 DO32(drr_object.drr_bonuslen);
967 DO32(drr_object.drr_raw_bonuslen);
968 DO64(drr_object.drr_toguid);
969 DO64(drr_object.drr_maxblkid);
970 break;
971 case DRR_FREEOBJECTS:
972 DO64(drr_freeobjects.drr_firstobj);
973 DO64(drr_freeobjects.drr_numobjs);
974 DO64(drr_freeobjects.drr_toguid);
975 break;
976 case DRR_WRITE:
977 DO64(drr_write.drr_object);
978 DO32(drr_write.drr_type);
979 DO64(drr_write.drr_offset);
980 DO64(drr_write.drr_logical_size);
981 DO64(drr_write.drr_toguid);
982 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
983 DO64(drr_write.drr_key.ddk_prop);
984 DO64(drr_write.drr_compressed_size);
985 break;
986 case DRR_WRITE_BYREF:
987 DO64(drr_write_byref.drr_object);
988 DO64(drr_write_byref.drr_offset);
989 DO64(drr_write_byref.drr_length);
990 DO64(drr_write_byref.drr_toguid);
991 DO64(drr_write_byref.drr_refguid);
992 DO64(drr_write_byref.drr_refobject);
993 DO64(drr_write_byref.drr_refoffset);
994 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
995 drr_key.ddk_cksum);
996 DO64(drr_write_byref.drr_key.ddk_prop);
997 break;
998 case DRR_WRITE_EMBEDDED:
999 DO64(drr_write_embedded.drr_object);
1000 DO64(drr_write_embedded.drr_offset);
1001 DO64(drr_write_embedded.drr_length);
1002 DO64(drr_write_embedded.drr_toguid);
1003 DO32(drr_write_embedded.drr_lsize);
1004 DO32(drr_write_embedded.drr_psize);
1005 break;
1006 case DRR_FREE:
1007 DO64(drr_free.drr_object);
1008 DO64(drr_free.drr_offset);
1009 DO64(drr_free.drr_length);
1010 DO64(drr_free.drr_toguid);
1011 break;
1012 case DRR_SPILL:
1013 DO64(drr_spill.drr_object);
1014 DO64(drr_spill.drr_length);
1015 DO64(drr_spill.drr_toguid);
1016 DO64(drr_spill.drr_compressed_size);
1017 DO32(drr_spill.drr_type);
1018 break;
1019 case DRR_OBJECT_RANGE:
1020 DO64(drr_object_range.drr_firstobj);
1021 DO64(drr_object_range.drr_numslots);
1022 DO64(drr_object_range.drr_toguid);
1023 break;
1024 case DRR_END:
1025 DO64(drr_end.drr_toguid);
1026 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1027 break;
1028 default:
1029 break;
1030 }
1031
1032 if (drr->drr_type != DRR_BEGIN) {
1033 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1034 }
1035
1036 #undef DO64
1037 #undef DO32
1038 }
1039
1040 static inline uint8_t
1041 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1042 {
1043 if (bonus_type == DMU_OT_SA) {
1044 return (1);
1045 } else {
1046 return (1 +
1047 ((DN_OLD_MAX_BONUSLEN -
1048 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1049 }
1050 }
1051
1052 static void
1053 save_resume_state(struct receive_writer_arg *rwa,
1054 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1055 {
1056 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1057
1058 if (!rwa->resumable)
1059 return;
1060
1061 /*
1062 * We use ds_resume_bytes[] != 0 to indicate that we need to
1063 * update this on disk, so it must not be 0.
1064 */
1065 ASSERT(rwa->bytes_read != 0);
1066
1067 /*
1068 * We only resume from write records, which have a valid
1069 * (non-meta-dnode) object number.
1070 */
1071 ASSERT(object != 0);
1072
1073 /*
1074 * For resuming to work correctly, we must receive records in order,
1075 * sorted by object,offset. This is checked by the callers, but
1076 * assert it here for good measure.
1077 */
1078 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1079 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1080 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1081 ASSERT3U(rwa->bytes_read, >=,
1082 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1083
1084 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1085 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1086 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1087 }
1088
1089 noinline static int
1090 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1091 void *data)
1092 {
1093 dmu_object_info_t doi;
1094 dmu_tx_t *tx;
1095 uint64_t object;
1096 int err;
1097 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1098 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1099
1100 if (drro->drr_type == DMU_OT_NONE ||
1101 !DMU_OT_IS_VALID(drro->drr_type) ||
1102 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1103 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1104 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1105 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1106 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1107 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1108 drro->drr_bonuslen >
1109 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1110 dn_slots >
1111 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1112 return (SET_ERROR(EINVAL));
1113 }
1114
1115 if (rwa->raw) {
1116 /*
1117 * We should have received a DRR_OBJECT_RANGE record
1118 * containing this block and stored it in rwa.
1119 */
1120 if (drro->drr_object < rwa->or_firstobj ||
1121 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1122 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1123 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1124 drro->drr_nlevels > DN_MAX_LEVELS ||
1125 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1126 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1127 drro->drr_raw_bonuslen)
1128 return (SET_ERROR(EINVAL));
1129 } else {
1130 if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 ||
1131 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 ||
1132 drro->drr_nblkptr != 0)
1133 return (SET_ERROR(EINVAL));
1134 }
1135
1136 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1137 if (err != 0 && err != ENOENT && err != EEXIST)
1138 return (SET_ERROR(EINVAL));
1139
1140 if (drro->drr_object > rwa->max_object)
1141 rwa->max_object = drro->drr_object;
1142
1143 /*
1144 * If we are losing blkptrs or changing the block size this must
1145 * be a new file instance. We must clear out the previous file
1146 * contents before we can change this type of metadata in the dnode.
1147 * Raw receives will also check that the indirect structure of the
1148 * dnode hasn't changed.
1149 */
1150 if (err == 0) {
1151 uint32_t indblksz = drro->drr_indblkshift ?
1152 1ULL << drro->drr_indblkshift : 0;
1153 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1154 drro->drr_bonuslen);
1155
1156 object = drro->drr_object;
1157
1158 /* nblkptr will be bounded by the bonus size and type */
1159 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1160 return (SET_ERROR(EINVAL));
1161
1162 if (drro->drr_blksz != doi.doi_data_block_size ||
1163 nblkptr < doi.doi_nblkptr ||
1164 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
1165 (rwa->raw &&
1166 (indblksz != doi.doi_metadata_block_size ||
1167 drro->drr_nlevels < doi.doi_indirection))) {
1168 err = dmu_free_long_range(rwa->os,
1169 drro->drr_object, 0, DMU_OBJECT_END);
1170 if (err != 0)
1171 return (SET_ERROR(EINVAL));
1172 }
1173
1174 /*
1175 * The dmu does not currently support decreasing nlevels
1176 * on an object. For non-raw sends, this does not matter
1177 * and the new object can just use the previous one's nlevels.
1178 * For raw sends, however, the structure of the received dnode
1179 * (including nlevels) must match that of the send side.
1180 * Therefore, instead of using dmu_object_reclaim(), we must
1181 * free the object completely and call dmu_object_claim_dnsize()
1182 * instead.
1183 */
1184 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
1185 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
1186 err = dmu_free_long_object(rwa->os, drro->drr_object);
1187 if (err != 0)
1188 return (SET_ERROR(EINVAL));
1189
1190 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1191 object = DMU_NEW_OBJECT;
1192 }
1193 } else if (err == EEXIST) {
1194 /*
1195 * The object requested is currently an interior slot of a
1196 * multi-slot dnode. This will be resolved when the next txg
1197 * is synced out, since the send stream will have told us
1198 * to free this slot when we freed the associated dnode
1199 * earlier in the stream.
1200 */
1201 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1202 object = drro->drr_object;
1203 } else {
1204 /* object is free and we are about to allocate a new one */
1205 object = DMU_NEW_OBJECT;
1206 }
1207
1208 /*
1209 * If this is a multi-slot dnode there is a chance that this
1210 * object will expand into a slot that is already used by
1211 * another object from the previous snapshot. We must free
1212 * these objects before we attempt to allocate the new dnode.
1213 */
1214 if (dn_slots > 1) {
1215 boolean_t need_sync = B_FALSE;
1216
1217 for (uint64_t slot = drro->drr_object + 1;
1218 slot < drro->drr_object + dn_slots;
1219 slot++) {
1220 dmu_object_info_t slot_doi;
1221
1222 err = dmu_object_info(rwa->os, slot, &slot_doi);
1223 if (err == ENOENT || err == EEXIST)
1224 continue;
1225 else if (err != 0)
1226 return (err);
1227
1228 err = dmu_free_long_object(rwa->os, slot);
1229
1230 if (err != 0)
1231 return (err);
1232
1233 need_sync = B_TRUE;
1234 }
1235
1236 if (need_sync)
1237 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1238 }
1239
1240 tx = dmu_tx_create(rwa->os);
1241 dmu_tx_hold_bonus(tx, object);
1242 dmu_tx_hold_write(tx, object, 0, 0);
1243 err = dmu_tx_assign(tx, TXG_WAIT);
1244 if (err != 0) {
1245 dmu_tx_abort(tx);
1246 return (err);
1247 }
1248
1249 if (object == DMU_NEW_OBJECT) {
1250 /* currently free, want to be allocated */
1251 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1252 drro->drr_type, drro->drr_blksz,
1253 drro->drr_bonustype, drro->drr_bonuslen,
1254 dn_slots << DNODE_SHIFT, tx);
1255 } else if (drro->drr_type != doi.doi_type ||
1256 drro->drr_blksz != doi.doi_data_block_size ||
1257 drro->drr_bonustype != doi.doi_bonus_type ||
1258 drro->drr_bonuslen != doi.doi_bonus_size) {
1259 /* currently allocated, but with different properties */
1260 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1261 drro->drr_type, drro->drr_blksz,
1262 drro->drr_bonustype, drro->drr_bonuslen,
1263 dn_slots << DNODE_SHIFT, tx);
1264 }
1265 if (err != 0) {
1266 dmu_tx_commit(tx);
1267 return (SET_ERROR(EINVAL));
1268 }
1269
1270 if (rwa->or_crypt_params_present) {
1271 /*
1272 * Set the crypt params for the buffer associated with this
1273 * range of dnodes. This causes the blkptr_t to have the
1274 * same crypt params (byteorder, salt, iv, mac) as on the
1275 * sending side.
1276 *
1277 * Since we are committing this tx now, it is possible for
1278 * the dnode block to end up on-disk with the incorrect MAC,
1279 * if subsequent objects in this block are received in a
1280 * different txg. However, since the dataset is marked as
1281 * inconsistent, no code paths will do a non-raw read (or
1282 * decrypt the block / verify the MAC). The receive code and
1283 * scrub code can safely do raw reads and verify the
1284 * checksum. They don't need to verify the MAC.
1285 */
1286 dmu_buf_t *db = NULL;
1287 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1288
1289 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1290 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1291 if (err != 0) {
1292 dmu_tx_commit(tx);
1293 return (SET_ERROR(EINVAL));
1294 }
1295
1296 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1297 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1298
1299 dmu_buf_rele(db, FTAG);
1300
1301 rwa->or_crypt_params_present = B_FALSE;
1302 }
1303
1304 dmu_object_set_checksum(rwa->os, drro->drr_object,
1305 drro->drr_checksumtype, tx);
1306 dmu_object_set_compress(rwa->os, drro->drr_object,
1307 drro->drr_compress, tx);
1308
1309 /* handle more restrictive dnode structuring for raw recvs */
1310 if (rwa->raw) {
1311 /*
1312 * Set the indirect block shift and nlevels. This will not fail
1313 * because we ensured all of the blocks were free earlier if
1314 * this is a new object.
1315 */
1316 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1317 drro->drr_blksz, drro->drr_indblkshift, tx));
1318 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1319 drro->drr_nlevels, tx));
1320 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1321 drro->drr_maxblkid, tx));
1322 }
1323
1324 if (data != NULL) {
1325 dmu_buf_t *db;
1326 uint32_t flags = DMU_READ_NO_PREFETCH;
1327
1328 if (rwa->raw)
1329 flags |= DMU_READ_NO_DECRYPT;
1330
1331 VERIFY0(dmu_bonus_hold_impl(rwa->os, drro->drr_object,
1332 FTAG, flags, &db));
1333 dmu_buf_will_dirty(db, tx);
1334
1335 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1336 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1337
1338 /*
1339 * Raw bonus buffers have their byteorder determined by the
1340 * DRR_OBJECT_RANGE record.
1341 */
1342 if (rwa->byteswap && !rwa->raw) {
1343 dmu_object_byteswap_t byteswap =
1344 DMU_OT_BYTESWAP(drro->drr_bonustype);
1345 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1346 DRR_OBJECT_PAYLOAD_SIZE(drro));
1347 }
1348 dmu_buf_rele(db, FTAG);
1349 }
1350 dmu_tx_commit(tx);
1351
1352 return (0);
1353 }
1354
1355 /* ARGSUSED */
1356 noinline static int
1357 receive_freeobjects(struct receive_writer_arg *rwa,
1358 struct drr_freeobjects *drrfo)
1359 {
1360 uint64_t obj;
1361 int next_err = 0;
1362
1363 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1364 return (SET_ERROR(EINVAL));
1365
1366 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1367 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
1368 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1369 dmu_object_info_t doi;
1370 int err;
1371
1372 err = dmu_object_info(rwa->os, obj, &doi);
1373 if (err == ENOENT)
1374 continue;
1375 else if (err != 0)
1376 return (err);
1377
1378 err = dmu_free_long_object(rwa->os, obj);
1379
1380 if (err != 0)
1381 return (err);
1382
1383 if (obj > rwa->max_object)
1384 rwa->max_object = obj;
1385 }
1386 if (next_err != ESRCH)
1387 return (next_err);
1388 return (0);
1389 }
1390
1391 noinline static int
1392 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
1393 arc_buf_t *abuf)
1394 {
1395 int err;
1396 dmu_tx_t *tx;
1397 dnode_t *dn;
1398
1399 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
1400 !DMU_OT_IS_VALID(drrw->drr_type))
1401 return (SET_ERROR(EINVAL));
1402
1403 /*
1404 * For resuming to work, records must be in increasing order
1405 * by (object, offset).
1406 */
1407 if (drrw->drr_object < rwa->last_object ||
1408 (drrw->drr_object == rwa->last_object &&
1409 drrw->drr_offset < rwa->last_offset)) {
1410 return (SET_ERROR(EINVAL));
1411 }
1412 rwa->last_object = drrw->drr_object;
1413 rwa->last_offset = drrw->drr_offset;
1414
1415 if (rwa->last_object > rwa->max_object)
1416 rwa->max_object = rwa->last_object;
1417
1418 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
1419 return (SET_ERROR(EINVAL));
1420
1421 tx = dmu_tx_create(rwa->os);
1422 dmu_tx_hold_write(tx, drrw->drr_object,
1423 drrw->drr_offset, drrw->drr_logical_size);
1424 err = dmu_tx_assign(tx, TXG_WAIT);
1425 if (err != 0) {
1426 dmu_tx_abort(tx);
1427 return (err);
1428 }
1429
1430 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1431 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1432 dmu_object_byteswap_t byteswap =
1433 DMU_OT_BYTESWAP(drrw->drr_type);
1434 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1435 DRR_WRITE_PAYLOAD_SIZE(drrw));
1436 }
1437
1438 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
1439 dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
1440 dnode_rele(dn, FTAG);
1441
1442 /*
1443 * Note: If the receive fails, we want the resume stream to start
1444 * with the same record that we last successfully received (as opposed
1445 * to the next record), so that we can verify that we are
1446 * resuming from the correct location.
1447 */
1448 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
1449 dmu_tx_commit(tx);
1450
1451 return (0);
1452 }
1453
1454 /*
1455 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
1456 * streams to refer to a copy of the data that is already on the
1457 * system because it came in earlier in the stream. This function
1458 * finds the earlier copy of the data, and uses that copy instead of
1459 * data from the stream to fulfill this write.
1460 */
1461 static int
1462 receive_write_byref(struct receive_writer_arg *rwa,
1463 struct drr_write_byref *drrwbr)
1464 {
1465 dmu_tx_t *tx;
1466 int err;
1467 guid_map_entry_t gmesrch;
1468 guid_map_entry_t *gmep;
1469 avl_index_t where;
1470 objset_t *ref_os = NULL;
1471 int flags = DMU_READ_PREFETCH;
1472 dmu_buf_t *dbp;
1473
1474 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
1475 return (SET_ERROR(EINVAL));
1476
1477 /*
1478 * If the GUID of the referenced dataset is different from the
1479 * GUID of the target dataset, find the referenced dataset.
1480 */
1481 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
1482 gmesrch.guid = drrwbr->drr_refguid;
1483 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
1484 &where)) == NULL) {
1485 return (SET_ERROR(EINVAL));
1486 }
1487 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
1488 return (SET_ERROR(EINVAL));
1489 } else {
1490 ref_os = rwa->os;
1491 }
1492
1493 if (drrwbr->drr_object > rwa->max_object)
1494 rwa->max_object = drrwbr->drr_object;
1495
1496 if (rwa->raw)
1497 flags |= DMU_READ_NO_DECRYPT;
1498
1499 /* may return either a regular db or an encrypted one */
1500 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
1501 drrwbr->drr_refoffset, FTAG, &dbp, flags);
1502 if (err != 0)
1503 return (err);
1504
1505 tx = dmu_tx_create(rwa->os);
1506
1507 dmu_tx_hold_write(tx, drrwbr->drr_object,
1508 drrwbr->drr_offset, drrwbr->drr_length);
1509 err = dmu_tx_assign(tx, TXG_WAIT);
1510 if (err != 0) {
1511 dmu_tx_abort(tx);
1512 return (err);
1513 }
1514
1515 if (rwa->raw) {
1516 dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
1517 drrwbr->drr_offset, dbp, tx);
1518 } else {
1519 dmu_write(rwa->os, drrwbr->drr_object,
1520 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
1521 }
1522 dmu_buf_rele(dbp, FTAG);
1523
1524 /* See comment in restore_write. */
1525 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
1526 dmu_tx_commit(tx);
1527 return (0);
1528 }
1529
1530 static int
1531 receive_write_embedded(struct receive_writer_arg *rwa,
1532 struct drr_write_embedded *drrwe, void *data)
1533 {
1534 dmu_tx_t *tx;
1535 int err;
1536
1537 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
1538 return (SET_ERROR(EINVAL));
1539
1540 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
1541 return (SET_ERROR(EINVAL));
1542
1543 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
1544 return (SET_ERROR(EINVAL));
1545 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
1546 return (SET_ERROR(EINVAL));
1547 if (rwa->raw)
1548 return (SET_ERROR(EINVAL));
1549
1550 if (drrwe->drr_object > rwa->max_object)
1551 rwa->max_object = drrwe->drr_object;
1552
1553 tx = dmu_tx_create(rwa->os);
1554
1555 dmu_tx_hold_write(tx, drrwe->drr_object,
1556 drrwe->drr_offset, drrwe->drr_length);
1557 err = dmu_tx_assign(tx, TXG_WAIT);
1558 if (err != 0) {
1559 dmu_tx_abort(tx);
1560 return (err);
1561 }
1562
1563 dmu_write_embedded(rwa->os, drrwe->drr_object,
1564 drrwe->drr_offset, data, drrwe->drr_etype,
1565 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
1566 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
1567
1568 /* See comment in restore_write. */
1569 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
1570 dmu_tx_commit(tx);
1571 return (0);
1572 }
1573
1574 static int
1575 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
1576 arc_buf_t *abuf)
1577 {
1578 dmu_tx_t *tx;
1579 dmu_buf_t *db, *db_spill;
1580 int err;
1581 uint32_t flags = 0;
1582
1583 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
1584 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
1585 return (SET_ERROR(EINVAL));
1586
1587 if (rwa->raw) {
1588 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
1589 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
1590 drrs->drr_compressed_size == 0)
1591 return (SET_ERROR(EINVAL));
1592
1593 flags |= DMU_READ_NO_DECRYPT;
1594 }
1595
1596 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
1597 return (SET_ERROR(EINVAL));
1598
1599 if (drrs->drr_object > rwa->max_object)
1600 rwa->max_object = drrs->drr_object;
1601
1602 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
1603 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
1604 &db_spill)) != 0) {
1605 dmu_buf_rele(db, FTAG);
1606 return (err);
1607 }
1608
1609 tx = dmu_tx_create(rwa->os);
1610
1611 dmu_tx_hold_spill(tx, db->db_object);
1612
1613 err = dmu_tx_assign(tx, TXG_WAIT);
1614 if (err != 0) {
1615 dmu_buf_rele(db, FTAG);
1616 dmu_buf_rele(db_spill, FTAG);
1617 dmu_tx_abort(tx);
1618 return (err);
1619 }
1620
1621 if (db_spill->db_size < drrs->drr_length)
1622 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
1623 drrs->drr_length, tx));
1624
1625 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1626 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1627 dmu_object_byteswap_t byteswap =
1628 DMU_OT_BYTESWAP(drrs->drr_type);
1629 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1630 DRR_SPILL_PAYLOAD_SIZE(drrs));
1631 }
1632
1633 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
1634
1635 dmu_buf_rele(db, FTAG);
1636 dmu_buf_rele(db_spill, FTAG);
1637
1638 dmu_tx_commit(tx);
1639 return (0);
1640 }
1641
1642 /* ARGSUSED */
1643 noinline static int
1644 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
1645 {
1646 int err;
1647
1648 if (drrf->drr_length != DMU_OBJECT_END &&
1649 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
1650 return (SET_ERROR(EINVAL));
1651
1652 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
1653 return (SET_ERROR(EINVAL));
1654
1655 if (drrf->drr_object > rwa->max_object)
1656 rwa->max_object = drrf->drr_object;
1657
1658 err = dmu_free_long_range(rwa->os, drrf->drr_object,
1659 drrf->drr_offset, drrf->drr_length);
1660
1661 return (err);
1662 }
1663
1664 static int
1665 receive_object_range(struct receive_writer_arg *rwa,
1666 struct drr_object_range *drror)
1667 {
1668 /*
1669 * By default, we assume this block is in our native format
1670 * (ZFS_HOST_BYTEORDER). We then take into account whether
1671 * the send stream is byteswapped (rwa->byteswap). Finally,
1672 * we need to byteswap again if this particular block was
1673 * in non-native format on the send side.
1674 */
1675 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
1676 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
1677
1678 /*
1679 * Since dnode block sizes are constant, we should not need to worry
1680 * about making sure that the dnode block size is the same on the
1681 * sending and receiving sides for the time being. For non-raw sends,
1682 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
1683 * record at all). Raw sends require this record type because the
1684 * encryption parameters are used to protect an entire block of bonus
1685 * buffers. If the size of dnode blocks ever becomes variable,
1686 * handling will need to be added to ensure that dnode block sizes
1687 * match on the sending and receiving side.
1688 */
1689 if (drror->drr_numslots != DNODES_PER_BLOCK ||
1690 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
1691 !rwa->raw)
1692 return (SET_ERROR(EINVAL));
1693
1694 if (drror->drr_firstobj > rwa->max_object)
1695 rwa->max_object = drror->drr_firstobj;
1696
1697 /*
1698 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
1699 * so that the block of dnodes is not written out when it's empty,
1700 * and converted to a HOLE BP.
1701 */
1702 rwa->or_crypt_params_present = B_TRUE;
1703 rwa->or_firstobj = drror->drr_firstobj;
1704 rwa->or_numslots = drror->drr_numslots;
1705 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
1706 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
1707 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
1708 rwa->or_byteorder = byteorder;
1709
1710 return (0);
1711 }
1712
1713 /* used to destroy the drc_ds on error */
1714 static void
1715 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
1716 {
1717 dsl_dataset_t *ds = drc->drc_ds;
1718 ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
1719
1720 /*
1721 * Wait for the txg sync before cleaning up the receive. For
1722 * resumable receives, this ensures that our resume state has
1723 * been written out to disk. For raw receives, this ensures
1724 * that the user accounting code will not attempt to do anything
1725 * after we stopped receiving the dataset.
1726 */
1727 txg_wait_synced(ds->ds_dir->dd_pool, 0);
1728 ds->ds_objset->os_raw_receive = B_FALSE;
1729
1730 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1731 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
1732 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1733 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
1734 } else {
1735 char name[ZFS_MAX_DATASET_NAME_LEN];
1736 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1737 dsl_dataset_name(ds, name);
1738 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
1739 (void) dsl_destroy_head(name);
1740 }
1741 }
1742
1743 static void
1744 receive_cksum(struct receive_arg *ra, int len, void *buf)
1745 {
1746 if (ra->byteswap) {
1747 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
1748 } else {
1749 (void) fletcher_4_incremental_native(buf, len, &ra->cksum);
1750 }
1751 }
1752
1753 /*
1754 * Read the payload into a buffer of size len, and update the current record's
1755 * payload field.
1756 * Allocate ra->next_rrd and read the next record's header into
1757 * ra->next_rrd->header.
1758 * Verify checksum of payload and next record.
1759 */
1760 static int
1761 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
1762 {
1763 int err;
1764 zio_cksum_t cksum_orig;
1765 zio_cksum_t *cksump;
1766
1767 if (len != 0) {
1768 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
1769 err = receive_read(ra, len, buf);
1770 if (err != 0)
1771 return (err);
1772 receive_cksum(ra, len, buf);
1773
1774 /* note: rrd is NULL when reading the begin record's payload */
1775 if (ra->rrd != NULL) {
1776 ra->rrd->payload = buf;
1777 ra->rrd->payload_size = len;
1778 ra->rrd->bytes_read = ra->bytes_read;
1779 }
1780 }
1781
1782 ra->prev_cksum = ra->cksum;
1783
1784 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
1785 err = receive_read(ra, sizeof (ra->next_rrd->header),
1786 &ra->next_rrd->header);
1787 ra->next_rrd->bytes_read = ra->bytes_read;
1788
1789 if (err != 0) {
1790 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1791 ra->next_rrd = NULL;
1792 return (err);
1793 }
1794 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
1795 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1796 ra->next_rrd = NULL;
1797 return (SET_ERROR(EINVAL));
1798 }
1799
1800 /*
1801 * Note: checksum is of everything up to but not including the
1802 * checksum itself.
1803 */
1804 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
1805 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
1806 receive_cksum(ra,
1807 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
1808 &ra->next_rrd->header);
1809
1810 cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
1811 cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
1812
1813 if (ra->byteswap)
1814 byteswap_record(&ra->next_rrd->header);
1815
1816 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
1817 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
1818 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1819 ra->next_rrd = NULL;
1820 return (SET_ERROR(ECKSUM));
1821 }
1822
1823 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
1824
1825 return (0);
1826 }
1827
1828 static void
1829 objlist_create(struct objlist *list)
1830 {
1831 list_create(&list->list, sizeof (struct receive_objnode),
1832 offsetof(struct receive_objnode, node));
1833 list->last_lookup = 0;
1834 }
1835
1836 static void
1837 objlist_destroy(struct objlist *list)
1838 {
1839 for (struct receive_objnode *n = list_remove_head(&list->list);
1840 n != NULL; n = list_remove_head(&list->list)) {
1841 kmem_free(n, sizeof (*n));
1842 }
1843 list_destroy(&list->list);
1844 }
1845
1846 /*
1847 * This function looks through the objlist to see if the specified object number
1848 * is contained in the objlist. In the process, it will remove all object
1849 * numbers in the list that are smaller than the specified object number. Thus,
1850 * any lookup of an object number smaller than a previously looked up object
1851 * number will always return false; therefore, all lookups should be done in
1852 * ascending order.
1853 */
1854 static boolean_t
1855 objlist_exists(struct objlist *list, uint64_t object)
1856 {
1857 struct receive_objnode *node = list_head(&list->list);
1858 ASSERT3U(object, >=, list->last_lookup);
1859 list->last_lookup = object;
1860 while (node != NULL && node->object < object) {
1861 VERIFY3P(node, ==, list_remove_head(&list->list));
1862 kmem_free(node, sizeof (*node));
1863 node = list_head(&list->list);
1864 }
1865 return (node != NULL && node->object == object);
1866 }
1867
1868 /*
1869 * The objlist is a list of object numbers stored in ascending order. However,
1870 * the insertion of new object numbers does not seek out the correct location to
1871 * store a new object number; instead, it appends it to the list for simplicity.
1872 * Thus, any users must take care to only insert new object numbers in ascending
1873 * order.
1874 */
1875 static void
1876 objlist_insert(struct objlist *list, uint64_t object)
1877 {
1878 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
1879 node->object = object;
1880 #ifdef ZFS_DEBUG
1881 {
1882 struct receive_objnode *last_object = list_tail(&list->list);
1883 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
1884 ASSERT3U(node->object, >, last_objnum);
1885 }
1886 #endif
1887 list_insert_tail(&list->list, node);
1888 }
1889
1890 /*
1891 * Issue the prefetch reads for any necessary indirect blocks.
1892 *
1893 * We use the object ignore list to tell us whether or not to issue prefetches
1894 * for a given object. We do this for both correctness (in case the blocksize
1895 * of an object has changed) and performance (if the object doesn't exist, don't
1896 * needlessly try to issue prefetches). We also trim the list as we go through
1897 * the stream to prevent it from growing to an unbounded size.
1898 *
1899 * The object numbers within will always be in sorted order, and any write
1900 * records we see will also be in sorted order, but they're not sorted with
1901 * respect to each other (i.e. we can get several object records before
1902 * receiving each object's write records). As a result, once we've reached a
1903 * given object number, we can safely remove any reference to lower object
1904 * numbers in the ignore list. In practice, we receive up to 32 object records
1905 * before receiving write records, so the list can have up to 32 nodes in it.
1906 */
1907 /* ARGSUSED */
1908 static void
1909 receive_read_prefetch(struct receive_arg *ra,
1910 uint64_t object, uint64_t offset, uint64_t length)
1911 {
1912 if (!objlist_exists(&ra->ignore_objlist, object)) {
1913 dmu_prefetch(ra->os, object, 1, offset, length,
1914 ZIO_PRIORITY_SYNC_READ);
1915 }
1916 }
1917
1918 /*
1919 * Read records off the stream, issuing any necessary prefetches.
1920 */
1921 static int
1922 receive_read_record(struct receive_arg *ra)
1923 {
1924 int err;
1925
1926 switch (ra->rrd->header.drr_type) {
1927 case DRR_OBJECT:
1928 {
1929 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
1930 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
1931 void *buf = kmem_zalloc(size, KM_SLEEP);
1932 dmu_object_info_t doi;
1933
1934 err = receive_read_payload_and_next_header(ra, size, buf);
1935 if (err != 0) {
1936 kmem_free(buf, size);
1937 return (err);
1938 }
1939 err = dmu_object_info(ra->os, drro->drr_object, &doi);
1940 /*
1941 * See receive_read_prefetch for an explanation why we're
1942 * storing this object in the ignore_obj_list.
1943 */
1944 if (err == ENOENT || err == EEXIST ||
1945 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
1946 objlist_insert(&ra->ignore_objlist, drro->drr_object);
1947 err = 0;
1948 }
1949 return (err);
1950 }
1951 case DRR_FREEOBJECTS:
1952 {
1953 err = receive_read_payload_and_next_header(ra, 0, NULL);
1954 return (err);
1955 }
1956 case DRR_WRITE:
1957 {
1958 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
1959 arc_buf_t *abuf;
1960 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
1961
1962 if (ra->raw) {
1963 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
1964 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1965 ra->byteswap;
1966
1967 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
1968 drrw->drr_object, byteorder, drrw->drr_salt,
1969 drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
1970 drrw->drr_compressed_size, drrw->drr_logical_size,
1971 drrw->drr_compressiontype);
1972 } else if (DRR_WRITE_COMPRESSED(drrw)) {
1973 ASSERT3U(drrw->drr_compressed_size, >, 0);
1974 ASSERT3U(drrw->drr_logical_size, >=,
1975 drrw->drr_compressed_size);
1976 ASSERT(!is_meta);
1977 abuf = arc_loan_compressed_buf(
1978 dmu_objset_spa(ra->os),
1979 drrw->drr_compressed_size, drrw->drr_logical_size,
1980 drrw->drr_compressiontype);
1981 } else {
1982 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
1983 is_meta, drrw->drr_logical_size);
1984 }
1985
1986 err = receive_read_payload_and_next_header(ra,
1987 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
1988 if (err != 0) {
1989 dmu_return_arcbuf(abuf);
1990 return (err);
1991 }
1992 ra->rrd->arc_buf = abuf;
1993 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
1994 drrw->drr_logical_size);
1995 return (err);
1996 }
1997 case DRR_WRITE_BYREF:
1998 {
1999 struct drr_write_byref *drrwb =
2000 &ra->rrd->header.drr_u.drr_write_byref;
2001 err = receive_read_payload_and_next_header(ra, 0, NULL);
2002 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2003 drrwb->drr_length);
2004 return (err);
2005 }
2006 case DRR_WRITE_EMBEDDED:
2007 {
2008 struct drr_write_embedded *drrwe =
2009 &ra->rrd->header.drr_u.drr_write_embedded;
2010 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2011 void *buf = kmem_zalloc(size, KM_SLEEP);
2012
2013 err = receive_read_payload_and_next_header(ra, size, buf);
2014 if (err != 0) {
2015 kmem_free(buf, size);
2016 return (err);
2017 }
2018
2019 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2020 drrwe->drr_length);
2021 return (err);
2022 }
2023 case DRR_FREE:
2024 {
2025 /*
2026 * It might be beneficial to prefetch indirect blocks here, but
2027 * we don't really have the data to decide for sure.
2028 */
2029 err = receive_read_payload_and_next_header(ra, 0, NULL);
2030 return (err);
2031 }
2032 case DRR_END:
2033 {
2034 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2035 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2036 return (SET_ERROR(ECKSUM));
2037 return (0);
2038 }
2039 case DRR_SPILL:
2040 {
2041 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2042 arc_buf_t *abuf;
2043 int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
2044
2045 /* DRR_SPILL records are either raw or uncompressed */
2046 if (ra->raw) {
2047 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2048 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2049 ra->byteswap;
2050
2051 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
2052 dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
2053 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2054 drrs->drr_compressed_size, drrs->drr_length,
2055 drrs->drr_compressiontype);
2056 } else {
2057 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2058 DMU_OT_IS_METADATA(drrs->drr_type),
2059 drrs->drr_length);
2060 }
2061
2062 err = receive_read_payload_and_next_header(ra, len,
2063 abuf->b_data);
2064 if (err != 0) {
2065 dmu_return_arcbuf(abuf);
2066 return (err);
2067 }
2068 ra->rrd->arc_buf = abuf;
2069 return (err);
2070 }
2071 case DRR_OBJECT_RANGE:
2072 {
2073 err = receive_read_payload_and_next_header(ra, 0, NULL);
2074 return (err);
2075 }
2076 default:
2077 return (SET_ERROR(EINVAL));
2078 }
2079 }
2080
2081 static void
2082 dprintf_drr(struct receive_record_arg *rrd, int err)
2083 {
2084 #ifdef ZFS_DEBUG
2085 switch (rrd->header.drr_type) {
2086 case DRR_OBJECT:
2087 {
2088 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2089 dprintf("drr_type = OBJECT obj = %llu type = %u "
2090 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2091 "compress = %u dn_slots = %u err = %d\n",
2092 drro->drr_object, drro->drr_type, drro->drr_bonustype,
2093 drro->drr_blksz, drro->drr_bonuslen,
2094 drro->drr_checksumtype, drro->drr_compress,
2095 drro->drr_dn_slots, err);
2096 break;
2097 }
2098 case DRR_FREEOBJECTS:
2099 {
2100 struct drr_freeobjects *drrfo =
2101 &rrd->header.drr_u.drr_freeobjects;
2102 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2103 "numobjs = %llu err = %d\n",
2104 drrfo->drr_firstobj, drrfo->drr_numobjs, err);
2105 break;
2106 }
2107 case DRR_WRITE:
2108 {
2109 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2110 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2111 "lsize = %llu cksumtype = %u cksumflags = %u "
2112 "compress = %u psize = %llu err = %d\n",
2113 drrw->drr_object, drrw->drr_type, drrw->drr_offset,
2114 drrw->drr_logical_size, drrw->drr_checksumtype,
2115 drrw->drr_flags, drrw->drr_compressiontype,
2116 drrw->drr_compressed_size, err);
2117 break;
2118 }
2119 case DRR_WRITE_BYREF:
2120 {
2121 struct drr_write_byref *drrwbr =
2122 &rrd->header.drr_u.drr_write_byref;
2123 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2124 "length = %llu toguid = %llx refguid = %llx "
2125 "refobject = %llu refoffset = %llu cksumtype = %u "
2126 "cksumflags = %u err = %d\n",
2127 drrwbr->drr_object, drrwbr->drr_offset,
2128 drrwbr->drr_length, drrwbr->drr_toguid,
2129 drrwbr->drr_refguid, drrwbr->drr_refobject,
2130 drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
2131 drrwbr->drr_flags, err);
2132 break;
2133 }
2134 case DRR_WRITE_EMBEDDED:
2135 {
2136 struct drr_write_embedded *drrwe =
2137 &rrd->header.drr_u.drr_write_embedded;
2138 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2139 "length = %llu compress = %u etype = %u lsize = %u "
2140 "psize = %u err = %d\n",
2141 drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
2142 drrwe->drr_compression, drrwe->drr_etype,
2143 drrwe->drr_lsize, drrwe->drr_psize, err);
2144 break;
2145 }
2146 case DRR_FREE:
2147 {
2148 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2149 dprintf("drr_type = FREE obj = %llu offset = %llu "
2150 "length = %lld err = %d\n",
2151 drrf->drr_object, drrf->drr_offset, drrf->drr_length,
2152 err);
2153 break;
2154 }
2155 case DRR_SPILL:
2156 {
2157 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2158 dprintf("drr_type = SPILL obj = %llu length = %llu "
2159 "err = %d\n", drrs->drr_object, drrs->drr_length, err);
2160 break;
2161 }
2162 default:
2163 return;
2164 }
2165 #endif
2166 }
2167
2168 /*
2169 * Commit the records to the pool.
2170 */
2171 static int
2172 receive_process_record(struct receive_writer_arg *rwa,
2173 struct receive_record_arg *rrd)
2174 {
2175 int err;
2176
2177 /* Processing in order, therefore bytes_read should be increasing. */
2178 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2179 rwa->bytes_read = rrd->bytes_read;
2180
2181 switch (rrd->header.drr_type) {
2182 case DRR_OBJECT:
2183 {
2184 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2185 err = receive_object(rwa, drro, rrd->payload);
2186 kmem_free(rrd->payload, rrd->payload_size);
2187 rrd->payload = NULL;
2188 break;
2189 }
2190 case DRR_FREEOBJECTS:
2191 {
2192 struct drr_freeobjects *drrfo =
2193 &rrd->header.drr_u.drr_freeobjects;
2194 err = receive_freeobjects(rwa, drrfo);
2195 break;
2196 }
2197 case DRR_WRITE:
2198 {
2199 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2200 err = receive_write(rwa, drrw, rrd->arc_buf);
2201 /* if receive_write() is successful, it consumes the arc_buf */
2202 if (err != 0)
2203 dmu_return_arcbuf(rrd->arc_buf);
2204 rrd->arc_buf = NULL;
2205 rrd->payload = NULL;
2206 break;
2207 }
2208 case DRR_WRITE_BYREF:
2209 {
2210 struct drr_write_byref *drrwbr =
2211 &rrd->header.drr_u.drr_write_byref;
2212 err = receive_write_byref(rwa, drrwbr);
2213 break;
2214 }
2215 case DRR_WRITE_EMBEDDED:
2216 {
2217 struct drr_write_embedded *drrwe =
2218 &rrd->header.drr_u.drr_write_embedded;
2219 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2220 kmem_free(rrd->payload, rrd->payload_size);
2221 rrd->payload = NULL;
2222 break;
2223 }
2224 case DRR_FREE:
2225 {
2226 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2227 err = receive_free(rwa, drrf);
2228 break;
2229 }
2230 case DRR_SPILL:
2231 {
2232 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2233 err = receive_spill(rwa, drrs, rrd->arc_buf);
2234 /* if receive_spill() is successful, it consumes the arc_buf */
2235 if (err != 0)
2236 dmu_return_arcbuf(rrd->arc_buf);
2237 rrd->arc_buf = NULL;
2238 rrd->payload = NULL;
2239 break;
2240 }
2241 case DRR_OBJECT_RANGE:
2242 {
2243 struct drr_object_range *drror =
2244 &rrd->header.drr_u.drr_object_range;
2245 return (receive_object_range(rwa, drror));
2246 }
2247 default:
2248 return (SET_ERROR(EINVAL));
2249 }
2250
2251 if (err != 0)
2252 dprintf_drr(rrd, err);
2253
2254 return (err);
2255 }
2256
2257 /*
2258 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2259 * receive_process_record When we're done, signal the main thread and exit.
2260 */
2261 static void
2262 receive_writer_thread(void *arg)
2263 {
2264 struct receive_writer_arg *rwa = arg;
2265 struct receive_record_arg *rrd;
2266 fstrans_cookie_t cookie = spl_fstrans_mark();
2267
2268 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2269 rrd = bqueue_dequeue(&rwa->q)) {
2270 /*
2271 * If there's an error, the main thread will stop putting things
2272 * on the queue, but we need to clear everything in it before we
2273 * can exit.
2274 */
2275 if (rwa->err == 0) {
2276 rwa->err = receive_process_record(rwa, rrd);
2277 } else if (rrd->arc_buf != NULL) {
2278 dmu_return_arcbuf(rrd->arc_buf);
2279 rrd->arc_buf = NULL;
2280 rrd->payload = NULL;
2281 } else if (rrd->payload != NULL) {
2282 kmem_free(rrd->payload, rrd->payload_size);
2283 rrd->payload = NULL;
2284 }
2285 kmem_free(rrd, sizeof (*rrd));
2286 }
2287 kmem_free(rrd, sizeof (*rrd));
2288 mutex_enter(&rwa->mutex);
2289 rwa->done = B_TRUE;
2290 cv_signal(&rwa->cv);
2291 mutex_exit(&rwa->mutex);
2292 spl_fstrans_unmark(cookie);
2293 thread_exit();
2294 }
2295
2296 static int
2297 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2298 {
2299 uint64_t val;
2300 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2301 uint64_t dsobj = dmu_objset_id(ra->os);
2302 uint64_t resume_obj, resume_off;
2303
2304 if (nvlist_lookup_uint64(begin_nvl,
2305 "resume_object", &resume_obj) != 0 ||
2306 nvlist_lookup_uint64(begin_nvl,
2307 "resume_offset", &resume_off) != 0) {
2308 return (SET_ERROR(EINVAL));
2309 }
2310 VERIFY0(zap_lookup(mos, dsobj,
2311 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2312 if (resume_obj != val)
2313 return (SET_ERROR(EINVAL));
2314 VERIFY0(zap_lookup(mos, dsobj,
2315 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2316 if (resume_off != val)
2317 return (SET_ERROR(EINVAL));
2318
2319 return (0);
2320 }
2321
2322 /*
2323 * Read in the stream's records, one by one, and apply them to the pool. There
2324 * are two threads involved; the thread that calls this function will spin up a
2325 * worker thread, read the records off the stream one by one, and issue
2326 * prefetches for any necessary indirect blocks. It will then push the records
2327 * onto an internal blocking queue. The worker thread will pull the records off
2328 * the queue, and actually write the data into the DMU. This way, the worker
2329 * thread doesn't have to wait for reads to complete, since everything it needs
2330 * (the indirect blocks) will be prefetched.
2331 *
2332 * NB: callers *must* call dmu_recv_end() if this succeeds.
2333 */
2334 int
2335 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2336 int cleanup_fd, uint64_t *action_handlep)
2337 {
2338 int err = 0;
2339 struct receive_arg *ra;
2340 struct receive_writer_arg *rwa;
2341 int featureflags;
2342 uint32_t payloadlen;
2343 void *payload;
2344 nvlist_t *begin_nvl = NULL;
2345
2346 ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
2347 rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2348
2349 ra->byteswap = drc->drc_byteswap;
2350 ra->raw = drc->drc_raw;
2351 ra->cksum = drc->drc_cksum;
2352 ra->vp = vp;
2353 ra->voff = *voffp;
2354
2355 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2356 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2357 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2358 sizeof (ra->bytes_read), 1, &ra->bytes_read);
2359 }
2360
2361 objlist_create(&ra->ignore_objlist);
2362
2363 /* these were verified in dmu_recv_begin */
2364 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2365 DMU_SUBSTREAM);
2366 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2367
2368 /*
2369 * Open the objset we are modifying.
2370 */
2371 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
2372
2373 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2374
2375 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2376 ra->featureflags = featureflags;
2377
2378 ASSERT0(ra->os->os_encrypted &&
2379 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2380
2381 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2382 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2383 minor_t minor;
2384
2385 if (cleanup_fd == -1) {
2386 err = SET_ERROR(EBADF);
2387 goto out;
2388 }
2389 err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2390 if (err != 0) {
2391 cleanup_fd = -1;
2392 goto out;
2393 }
2394
2395 if (*action_handlep == 0) {
2396 rwa->guid_to_ds_map =
2397 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2398 avl_create(rwa->guid_to_ds_map, guid_compare,
2399 sizeof (guid_map_entry_t),
2400 offsetof(guid_map_entry_t, avlnode));
2401 err = zfs_onexit_add_cb(minor,
2402 free_guid_map_onexit, rwa->guid_to_ds_map,
2403 action_handlep);
2404 if (err != 0)
2405 goto out;
2406 } else {
2407 err = zfs_onexit_cb_data(minor, *action_handlep,
2408 (void **)&rwa->guid_to_ds_map);
2409 if (err != 0)
2410 goto out;
2411 }
2412
2413 drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
2414 }
2415
2416 payloadlen = drc->drc_drr_begin->drr_payloadlen;
2417 payload = NULL;
2418 if (payloadlen != 0)
2419 payload = kmem_alloc(payloadlen, KM_SLEEP);
2420
2421 err = receive_read_payload_and_next_header(ra, payloadlen, payload);
2422 if (err != 0) {
2423 if (payloadlen != 0)
2424 kmem_free(payload, payloadlen);
2425 goto out;
2426 }
2427 if (payloadlen != 0) {
2428 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2429 kmem_free(payload, payloadlen);
2430 if (err != 0)
2431 goto out;
2432 }
2433
2434 /* handle DSL encryption key payload */
2435 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2436 nvlist_t *keynvl = NULL;
2437
2438 ASSERT(ra->os->os_encrypted);
2439 ASSERT(drc->drc_raw);
2440
2441 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
2442 if (err != 0)
2443 goto out;
2444
2445 /*
2446 * If this is a new dataset we set the key immediately.
2447 * Otherwise we don't want to change the key until we
2448 * are sure the rest of the receive succeeded so we stash
2449 * the keynvl away until then.
2450 */
2451 err = dsl_crypto_recv_raw(spa_name(ra->os->os_spa),
2452 drc->drc_ds->ds_object, drc->drc_drrb->drr_type,
2453 keynvl, drc->drc_newfs);
2454 if (err != 0)
2455 goto out;
2456
2457 if (!drc->drc_newfs)
2458 drc->drc_keynvl = fnvlist_dup(keynvl);
2459 }
2460
2461 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2462 err = resume_check(ra, begin_nvl);
2463 if (err != 0)
2464 goto out;
2465 }
2466
2467 (void) bqueue_init(&rwa->q,
2468 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2469 offsetof(struct receive_record_arg, node));
2470 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2471 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2472 rwa->os = ra->os;
2473 rwa->byteswap = drc->drc_byteswap;
2474 rwa->resumable = drc->drc_resumable;
2475 rwa->raw = drc->drc_raw;
2476 rwa->os->os_raw_receive = drc->drc_raw;
2477
2478 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2479 TS_RUN, minclsyspri);
2480 /*
2481 * We're reading rwa->err without locks, which is safe since we are the
2482 * only reader, and the worker thread is the only writer. It's ok if we
2483 * miss a write for an iteration or two of the loop, since the writer
2484 * thread will keep freeing records we send it until we send it an eos
2485 * marker.
2486 *
2487 * We can leave this loop in 3 ways: First, if rwa->err is
2488 * non-zero. In that case, the writer thread will free the rrd we just
2489 * pushed. Second, if we're interrupted; in that case, either it's the
2490 * first loop and ra->rrd was never allocated, or it's later and ra->rrd
2491 * has been handed off to the writer thread who will free it. Finally,
2492 * if receive_read_record fails or we're at the end of the stream, then
2493 * we free ra->rrd and exit.
2494 */
2495 while (rwa->err == 0) {
2496 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2497 err = SET_ERROR(EINTR);
2498 break;
2499 }
2500
2501 ASSERT3P(ra->rrd, ==, NULL);
2502 ra->rrd = ra->next_rrd;
2503 ra->next_rrd = NULL;
2504 /* Allocates and loads header into ra->next_rrd */
2505 err = receive_read_record(ra);
2506
2507 if (ra->rrd->header.drr_type == DRR_END || err != 0) {
2508 kmem_free(ra->rrd, sizeof (*ra->rrd));
2509 ra->rrd = NULL;
2510 break;
2511 }
2512
2513 bqueue_enqueue(&rwa->q, ra->rrd,
2514 sizeof (struct receive_record_arg) + ra->rrd->payload_size);
2515 ra->rrd = NULL;
2516 }
2517 if (ra->next_rrd == NULL)
2518 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2519 ra->next_rrd->eos_marker = B_TRUE;
2520 bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
2521
2522 mutex_enter(&rwa->mutex);
2523 while (!rwa->done) {
2524 cv_wait(&rwa->cv, &rwa->mutex);
2525 }
2526 mutex_exit(&rwa->mutex);
2527
2528 /*
2529 * If we are receiving a full stream as a clone, all object IDs which
2530 * are greater than the maximum ID referenced in the stream are
2531 * by definition unused and must be freed.
2532 */
2533 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
2534 uint64_t obj = rwa->max_object + 1;
2535 int free_err = 0;
2536 int next_err = 0;
2537
2538 while (next_err == 0) {
2539 free_err = dmu_free_long_object(rwa->os, obj);
2540 if (free_err != 0 && free_err != ENOENT)
2541 break;
2542
2543 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
2544 }
2545
2546 if (err == 0) {
2547 if (free_err != 0 && free_err != ENOENT)
2548 err = free_err;
2549 else if (next_err != ESRCH)
2550 err = next_err;
2551 }
2552 }
2553
2554 cv_destroy(&rwa->cv);
2555 mutex_destroy(&rwa->mutex);
2556 bqueue_destroy(&rwa->q);
2557 if (err == 0)
2558 err = rwa->err;
2559
2560 out:
2561 nvlist_free(begin_nvl);
2562 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2563 zfs_onexit_fd_rele(cleanup_fd);
2564
2565 if (err != 0) {
2566 /*
2567 * Clean up references. If receive is not resumable,
2568 * destroy what we created, so we don't leave it in
2569 * the inconsistent state.
2570 */
2571 dmu_recv_cleanup_ds(drc);
2572 nvlist_free(drc->drc_keynvl);
2573 }
2574
2575 *voffp = ra->voff;
2576 objlist_destroy(&ra->ignore_objlist);
2577 kmem_free(ra, sizeof (*ra));
2578 kmem_free(rwa, sizeof (*rwa));
2579 return (err);
2580 }
2581
2582 static int
2583 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2584 {
2585 dmu_recv_cookie_t *drc = arg;
2586 dsl_pool_t *dp = dmu_tx_pool(tx);
2587 int error;
2588
2589 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2590
2591 if (!drc->drc_newfs) {
2592 dsl_dataset_t *origin_head;
2593
2594 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2595 if (error != 0)
2596 return (error);
2597 if (drc->drc_force) {
2598 /*
2599 * We will destroy any snapshots in tofs (i.e. before
2600 * origin_head) that are after the origin (which is
2601 * the snap before drc_ds, because drc_ds can not
2602 * have any snaps of its own).
2603 */
2604 uint64_t obj;
2605
2606 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2607 while (obj !=
2608 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2609 dsl_dataset_t *snap;
2610 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2611 &snap);
2612 if (error != 0)
2613 break;
2614 if (snap->ds_dir != origin_head->ds_dir)
2615 error = SET_ERROR(EINVAL);
2616 if (error == 0) {
2617 error = dsl_destroy_snapshot_check_impl(
2618 snap, B_FALSE);
2619 }
2620 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2621 dsl_dataset_rele(snap, FTAG);
2622 if (error != 0)
2623 break;
2624 }
2625 if (error != 0) {
2626 dsl_dataset_rele(origin_head, FTAG);
2627 return (error);
2628 }
2629 }
2630 if (drc->drc_keynvl != NULL) {
2631 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
2632 drc->drc_keynvl, tx);
2633 if (error != 0) {
2634 dsl_dataset_rele(origin_head, FTAG);
2635 return (error);
2636 }
2637 }
2638
2639 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2640 origin_head, drc->drc_force, drc->drc_owner, tx);
2641 if (error != 0) {
2642 dsl_dataset_rele(origin_head, FTAG);
2643 return (error);
2644 }
2645 error = dsl_dataset_snapshot_check_impl(origin_head,
2646 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2647 dsl_dataset_rele(origin_head, FTAG);
2648 if (error != 0)
2649 return (error);
2650
2651 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2652 } else {
2653 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2654 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2655 }
2656 return (error);
2657 }
2658
2659 static void
2660 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2661 {
2662 dmu_recv_cookie_t *drc = arg;
2663 dsl_pool_t *dp = dmu_tx_pool(tx);
2664 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
2665
2666 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2667 tx, "snap=%s", drc->drc_tosnap);
2668 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
2669
2670 if (!drc->drc_newfs) {
2671 dsl_dataset_t *origin_head;
2672
2673 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2674 &origin_head));
2675
2676 if (drc->drc_force) {
2677 /*
2678 * Destroy any snapshots of drc_tofs (origin_head)
2679 * after the origin (the snap before drc_ds).
2680 */
2681 uint64_t obj;
2682
2683 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2684 while (obj !=
2685 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2686 dsl_dataset_t *snap;
2687 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2688 &snap));
2689 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
2690 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2691 dsl_destroy_snapshot_sync_impl(snap,
2692 B_FALSE, tx);
2693 dsl_dataset_rele(snap, FTAG);
2694 }
2695 }
2696 if (drc->drc_keynvl != NULL) {
2697 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
2698 drc->drc_keynvl, tx);
2699 nvlist_free(drc->drc_keynvl);
2700 drc->drc_keynvl = NULL;
2701 }
2702
2703 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
2704
2705 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
2706 origin_head, tx);
2707 dsl_dataset_snapshot_sync_impl(origin_head,
2708 drc->drc_tosnap, tx);
2709
2710 /* set snapshot's creation time and guid */
2711 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
2712 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
2713 drc->drc_drrb->drr_creation_time;
2714 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
2715 drc->drc_drrb->drr_toguid;
2716 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
2717 ~DS_FLAG_INCONSISTENT;
2718
2719 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
2720 dsl_dataset_phys(origin_head)->ds_flags &=
2721 ~DS_FLAG_INCONSISTENT;
2722
2723 drc->drc_newsnapobj =
2724 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2725
2726 dsl_dataset_rele(origin_head, FTAG);
2727 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
2728
2729 if (drc->drc_owner != NULL)
2730 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
2731 } else {
2732 dsl_dataset_t *ds = drc->drc_ds;
2733
2734 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
2735
2736 /* set snapshot's creation time and guid */
2737 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
2738 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
2739 drc->drc_drrb->drr_creation_time;
2740 dsl_dataset_phys(ds->ds_prev)->ds_guid =
2741 drc->drc_drrb->drr_toguid;
2742 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
2743 ~DS_FLAG_INCONSISTENT;
2744
2745 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2746 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
2747 if (dsl_dataset_has_resume_receive_state(ds)) {
2748 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2749 DS_FIELD_RESUME_FROMGUID, tx);
2750 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2751 DS_FIELD_RESUME_OBJECT, tx);
2752 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2753 DS_FIELD_RESUME_OFFSET, tx);
2754 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2755 DS_FIELD_RESUME_BYTES, tx);
2756 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2757 DS_FIELD_RESUME_TOGUID, tx);
2758 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2759 DS_FIELD_RESUME_TONAME, tx);
2760 }
2761 drc->drc_newsnapobj =
2762 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
2763 }
2764 zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
2765
2766 /*
2767 * Release the hold from dmu_recv_begin. This must be done before
2768 * we return to open context, so that when we free the dataset's dnode
2769 * we can evict its bonus buffer. Since the dataset may be destroyed
2770 * at this point (and therefore won't have a valid pointer to the spa)
2771 * we release the key mapping manually here while we do have a valid
2772 * pointer, if it exists.
2773 */
2774 if (!drc->drc_raw && encrypted) {
2775 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
2776 drc->drc_ds->ds_object, drc->drc_ds);
2777 }
2778 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
2779 drc->drc_ds = NULL;
2780 }
2781
2782 static int
2783 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
2784 boolean_t raw)
2785 {
2786 dsl_pool_t *dp;
2787 dsl_dataset_t *snapds;
2788 guid_map_entry_t *gmep;
2789 objset_t *os;
2790 ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
2791 int err;
2792
2793 ASSERT(guid_map != NULL);
2794
2795 err = dsl_pool_hold(name, FTAG, &dp);
2796 if (err != 0)
2797 return (err);
2798 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
2799 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
2800 if (err == 0) {
2801 /*
2802 * If this is a deduplicated raw send stream, we need
2803 * to make sure that we can still read raw blocks from
2804 * earlier datasets in the stream, so we set the
2805 * os_raw_receive flag now.
2806 */
2807 if (raw) {
2808 err = dmu_objset_from_ds(snapds, &os);
2809 if (err != 0) {
2810 dsl_dataset_disown(snapds, dsflags, FTAG);
2811 dsl_pool_rele(dp, FTAG);
2812 kmem_free(gmep, sizeof (*gmep));
2813 return (err);
2814 }
2815 os->os_raw_receive = B_TRUE;
2816 }
2817
2818 gmep->raw = raw;
2819 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
2820 gmep->gme_ds = snapds;
2821 avl_add(guid_map, gmep);
2822 } else {
2823 kmem_free(gmep, sizeof (*gmep));
2824 }
2825
2826 dsl_pool_rele(dp, FTAG);
2827 return (err);
2828 }
2829
2830 static int dmu_recv_end_modified_blocks = 3;
2831
2832 static int
2833 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
2834 {
2835 #ifdef _KERNEL
2836 /*
2837 * We will be destroying the ds; make sure its origin is unmounted if
2838 * necessary.
2839 */
2840 char name[ZFS_MAX_DATASET_NAME_LEN];
2841 dsl_dataset_name(drc->drc_ds, name);
2842 zfs_destroy_unmount_origin(name);
2843 #endif
2844
2845 return (dsl_sync_task(drc->drc_tofs,
2846 dmu_recv_end_check, dmu_recv_end_sync, drc,
2847 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
2848 }
2849
2850 static int
2851 dmu_recv_new_end(dmu_recv_cookie_t *drc)
2852 {
2853 return (dsl_sync_task(drc->drc_tofs,
2854 dmu_recv_end_check, dmu_recv_end_sync, drc,
2855 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
2856 }
2857
2858 int
2859 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
2860 {
2861 int error;
2862
2863 drc->drc_owner = owner;
2864
2865 if (drc->drc_newfs)
2866 error = dmu_recv_new_end(drc);
2867 else
2868 error = dmu_recv_existing_end(drc);
2869
2870 if (error != 0) {
2871 dmu_recv_cleanup_ds(drc);
2872 nvlist_free(drc->drc_keynvl);
2873 } else if (drc->drc_guid_to_ds_map != NULL) {
2874 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
2875 drc->drc_newsnapobj, drc->drc_raw);
2876 }
2877 return (error);
2878 }
2879
2880 /*
2881 * Return TRUE if this objset is currently being received into.
2882 */
2883 boolean_t
2884 dmu_objset_is_receiving(objset_t *os)
2885 {
2886 return (os->os_dsl_dataset != NULL &&
2887 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
2888 }
2889
2890 #if defined(_KERNEL)
2891 module_param(zfs_recv_queue_length, int, 0644);
2892 MODULE_PARM_DESC(zfs_recv_queue_length, "Maximum receive queue length");
2893 #endif