]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_send.c
ddt: modernise assertions
[mirror_zfs.git] / module / zfs / dmu_send.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 */
32
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 static int zfs_send_corrupt_data = B_FALSE;
71 /*
72 * This tunable controls the amount of data (measured in bytes) that will be
73 * prefetched by zfs send. If the main thread is blocking on reads that haven't
74 * completed, this variable might need to be increased. If instead the main
75 * thread is issuing new reads because the prefetches have fallen out of the
76 * cache, this may need to be decreased.
77 */
78 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80 * This tunable controls the length of the queues that zfs send worker threads
81 * use to communicate. If the send_main_thread is blocking on these queues,
82 * this variable may need to be increased. If there is a significant slowdown
83 * at the start of a send as these threads consume all the available IO
84 * resources, this variable may need to be decreased.
85 */
86 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88 * These tunables control the fill fraction of the queues by zfs send. The fill
89 * fraction controls the frequency with which threads have to be cv_signaled.
90 * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91 * down. If the queues empty before the signalled thread can catch up, then
92 * these should be tuned up.
93 */
94 static uint_t zfs_send_queue_ff = 20;
95 static uint_t zfs_send_no_prefetch_queue_ff = 20;
96
97 /*
98 * Use this to override the recordsize calculation for fast zfs send estimates.
99 */
100 static uint_t zfs_override_estimate_recordsize = 0;
101
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 static int zfs_send_unmodified_spill_blocks = B_TRUE;
107
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 uint64_t temp = a * b;
112 if (b != 0 && temp / b != a)
113 return (B_FALSE);
114 *c = temp;
115 return (B_TRUE);
116 }
117
118 struct send_thread_arg {
119 bqueue_t q;
120 objset_t *os; /* Objset to traverse */
121 uint64_t fromtxg; /* Traverse from this txg */
122 int flags; /* flags to pass to traverse_dataset */
123 int error_code;
124 boolean_t cancel;
125 zbookmark_phys_t resume;
126 uint64_t *num_blocks_visited;
127 };
128
129 struct redact_list_thread_arg {
130 boolean_t cancel;
131 bqueue_t q;
132 zbookmark_phys_t resume;
133 redaction_list_t *rl;
134 boolean_t mark_redact;
135 int error_code;
136 uint64_t *num_blocks_visited;
137 };
138
139 struct send_merge_thread_arg {
140 bqueue_t q;
141 objset_t *os;
142 struct redact_list_thread_arg *from_arg;
143 struct send_thread_arg *to_arg;
144 struct redact_list_thread_arg *redact_arg;
145 int error;
146 boolean_t cancel;
147 };
148
149 struct send_range {
150 boolean_t eos_marker; /* Marks the end of the stream */
151 uint64_t object;
152 uint64_t start_blkid;
153 uint64_t end_blkid;
154 bqueue_node_t ln;
155 enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 PREVIOUSLY_REDACTED} type;
157 union {
158 struct srd {
159 dmu_object_type_t obj_type;
160 uint32_t datablksz; // logical size
161 uint32_t datasz; // payload size
162 blkptr_t bp;
163 arc_buf_t *abuf;
164 abd_t *abd;
165 kmutex_t lock;
166 kcondvar_t cv;
167 boolean_t io_outstanding;
168 boolean_t io_compressed;
169 int io_err;
170 } data;
171 struct srh {
172 uint32_t datablksz;
173 } hole;
174 struct sro {
175 /*
176 * This is a pointer because embedding it in the
177 * struct causes these structures to be massively larger
178 * for all range types; this makes the code much less
179 * memory efficient.
180 */
181 dnode_phys_t *dnp;
182 blkptr_t bp;
183 } object;
184 struct srr {
185 uint32_t datablksz;
186 } redact;
187 struct sror {
188 blkptr_t bp;
189 } object_range;
190 } sru;
191 };
192
193 /*
194 * The list of data whose inclusion in a send stream can be pending from
195 * one call to backup_cb to another. Multiple calls to dump_free(),
196 * dump_freeobjects(), and dump_redact() can be aggregated into a single
197 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
198 */
199 typedef enum {
200 PENDING_NONE,
201 PENDING_FREE,
202 PENDING_FREEOBJECTS,
203 PENDING_REDACT
204 } dmu_pendop_t;
205
206 typedef struct dmu_send_cookie {
207 dmu_replay_record_t *dsc_drr;
208 dmu_send_outparams_t *dsc_dso;
209 offset_t *dsc_off;
210 objset_t *dsc_os;
211 zio_cksum_t dsc_zc;
212 uint64_t dsc_toguid;
213 uint64_t dsc_fromtxg;
214 int dsc_err;
215 dmu_pendop_t dsc_pending_op;
216 uint64_t dsc_featureflags;
217 uint64_t dsc_last_data_object;
218 uint64_t dsc_last_data_offset;
219 uint64_t dsc_resume_object;
220 uint64_t dsc_resume_offset;
221 boolean_t dsc_sent_begin;
222 boolean_t dsc_sent_end;
223 } dmu_send_cookie_t;
224
225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
226
227 static void
228 range_free(struct send_range *range)
229 {
230 if (range->type == OBJECT) {
231 size_t size = sizeof (dnode_phys_t) *
232 (range->sru.object.dnp->dn_extra_slots + 1);
233 kmem_free(range->sru.object.dnp, size);
234 } else if (range->type == DATA) {
235 mutex_enter(&range->sru.data.lock);
236 while (range->sru.data.io_outstanding)
237 cv_wait(&range->sru.data.cv, &range->sru.data.lock);
238 if (range->sru.data.abd != NULL)
239 abd_free(range->sru.data.abd);
240 if (range->sru.data.abuf != NULL) {
241 arc_buf_destroy(range->sru.data.abuf,
242 &range->sru.data.abuf);
243 }
244 mutex_exit(&range->sru.data.lock);
245
246 cv_destroy(&range->sru.data.cv);
247 mutex_destroy(&range->sru.data.lock);
248 }
249 kmem_free(range, sizeof (*range));
250 }
251
252 /*
253 * For all record types except BEGIN, fill in the checksum (overlaid in
254 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
255 * up to the start of the checksum itself.
256 */
257 static int
258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
259 {
260 dmu_send_outparams_t *dso = dscp->dsc_dso;
261 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
262 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
263 (void) fletcher_4_incremental_native(dscp->dsc_drr,
264 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
265 &dscp->dsc_zc);
266 if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
267 dscp->dsc_sent_begin = B_TRUE;
268 } else {
269 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
270 drr_checksum.drr_checksum));
271 dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
272 }
273 if (dscp->dsc_drr->drr_type == DRR_END) {
274 dscp->dsc_sent_end = B_TRUE;
275 }
276 (void) fletcher_4_incremental_native(&dscp->dsc_drr->
277 drr_u.drr_checksum.drr_checksum,
278 sizeof (zio_cksum_t), &dscp->dsc_zc);
279 *dscp->dsc_off += sizeof (dmu_replay_record_t);
280 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
281 sizeof (dmu_replay_record_t), dso->dso_arg);
282 if (dscp->dsc_err != 0)
283 return (SET_ERROR(EINTR));
284 if (payload_len != 0) {
285 *dscp->dsc_off += payload_len;
286 /*
287 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
288 * doing a send size calculation)
289 */
290 if (payload != NULL) {
291 (void) fletcher_4_incremental_native(
292 payload, payload_len, &dscp->dsc_zc);
293 }
294
295 /*
296 * The code does not rely on this (len being a multiple of 8).
297 * We keep this assertion because of the corresponding assertion
298 * in receive_read(). Keeping this assertion ensures that we do
299 * not inadvertently break backwards compatibility (causing the
300 * assertion in receive_read() to trigger on old software).
301 *
302 * Raw sends cannot be received on old software, and so can
303 * bypass this assertion.
304 */
305
306 ASSERT((payload_len % 8 == 0) ||
307 (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
308
309 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
310 payload_len, dso->dso_arg);
311 if (dscp->dsc_err != 0)
312 return (SET_ERROR(EINTR));
313 }
314 return (0);
315 }
316
317 /*
318 * Fill in the drr_free struct, or perform aggregation if the previous record is
319 * also a free record, and the two are adjacent.
320 *
321 * Note that we send free records even for a full send, because we want to be
322 * able to receive a full send as a clone, which requires a list of all the free
323 * and freeobject records that were generated on the source.
324 */
325 static int
326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
327 uint64_t length)
328 {
329 struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
330
331 /*
332 * When we receive a free record, dbuf_free_range() assumes
333 * that the receiving system doesn't have any dbufs in the range
334 * being freed. This is always true because there is a one-record
335 * constraint: we only send one WRITE record for any given
336 * object,offset. We know that the one-record constraint is
337 * true because we always send data in increasing order by
338 * object,offset.
339 *
340 * If the increasing-order constraint ever changes, we should find
341 * another way to assert that the one-record constraint is still
342 * satisfied.
343 */
344 ASSERT(object > dscp->dsc_last_data_object ||
345 (object == dscp->dsc_last_data_object &&
346 offset > dscp->dsc_last_data_offset));
347
348 /*
349 * If there is a pending op, but it's not PENDING_FREE, push it out,
350 * since free block aggregation can only be done for blocks of the
351 * same type (i.e., DRR_FREE records can only be aggregated with
352 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
353 * aggregated with other DRR_FREEOBJECTS records).
354 */
355 if (dscp->dsc_pending_op != PENDING_NONE &&
356 dscp->dsc_pending_op != PENDING_FREE) {
357 if (dump_record(dscp, NULL, 0) != 0)
358 return (SET_ERROR(EINTR));
359 dscp->dsc_pending_op = PENDING_NONE;
360 }
361
362 if (dscp->dsc_pending_op == PENDING_FREE) {
363 /*
364 * Check to see whether this free block can be aggregated
365 * with pending one.
366 */
367 if (drrf->drr_object == object && drrf->drr_offset +
368 drrf->drr_length == offset) {
369 if (offset + length < offset || length == UINT64_MAX)
370 drrf->drr_length = UINT64_MAX;
371 else
372 drrf->drr_length += length;
373 return (0);
374 } else {
375 /* not a continuation. Push out pending record */
376 if (dump_record(dscp, NULL, 0) != 0)
377 return (SET_ERROR(EINTR));
378 dscp->dsc_pending_op = PENDING_NONE;
379 }
380 }
381 /* create a FREE record and make it pending */
382 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
383 dscp->dsc_drr->drr_type = DRR_FREE;
384 drrf->drr_object = object;
385 drrf->drr_offset = offset;
386 if (offset + length < offset)
387 drrf->drr_length = DMU_OBJECT_END;
388 else
389 drrf->drr_length = length;
390 drrf->drr_toguid = dscp->dsc_toguid;
391 if (length == DMU_OBJECT_END) {
392 if (dump_record(dscp, NULL, 0) != 0)
393 return (SET_ERROR(EINTR));
394 } else {
395 dscp->dsc_pending_op = PENDING_FREE;
396 }
397
398 return (0);
399 }
400
401 /*
402 * Fill in the drr_redact struct, or perform aggregation if the previous record
403 * is also a redaction record, and the two are adjacent.
404 */
405 static int
406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
407 uint64_t length)
408 {
409 struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
410
411 /*
412 * If there is a pending op, but it's not PENDING_REDACT, push it out,
413 * since free block aggregation can only be done for blocks of the
414 * same type (i.e., DRR_REDACT records can only be aggregated with
415 * other DRR_REDACT records).
416 */
417 if (dscp->dsc_pending_op != PENDING_NONE &&
418 dscp->dsc_pending_op != PENDING_REDACT) {
419 if (dump_record(dscp, NULL, 0) != 0)
420 return (SET_ERROR(EINTR));
421 dscp->dsc_pending_op = PENDING_NONE;
422 }
423
424 if (dscp->dsc_pending_op == PENDING_REDACT) {
425 /*
426 * Check to see whether this redacted block can be aggregated
427 * with pending one.
428 */
429 if (drrr->drr_object == object && drrr->drr_offset +
430 drrr->drr_length == offset) {
431 drrr->drr_length += length;
432 return (0);
433 } else {
434 /* not a continuation. Push out pending record */
435 if (dump_record(dscp, NULL, 0) != 0)
436 return (SET_ERROR(EINTR));
437 dscp->dsc_pending_op = PENDING_NONE;
438 }
439 }
440 /* create a REDACT record and make it pending */
441 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
442 dscp->dsc_drr->drr_type = DRR_REDACT;
443 drrr->drr_object = object;
444 drrr->drr_offset = offset;
445 drrr->drr_length = length;
446 drrr->drr_toguid = dscp->dsc_toguid;
447 dscp->dsc_pending_op = PENDING_REDACT;
448
449 return (0);
450 }
451
452 static int
453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
454 uint64_t offset, int lsize, int psize, const blkptr_t *bp,
455 boolean_t io_compressed, void *data)
456 {
457 uint64_t payload_size;
458 boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
459 struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
460
461 /*
462 * We send data in increasing object, offset order.
463 * See comment in dump_free() for details.
464 */
465 ASSERT(object > dscp->dsc_last_data_object ||
466 (object == dscp->dsc_last_data_object &&
467 offset > dscp->dsc_last_data_offset));
468 dscp->dsc_last_data_object = object;
469 dscp->dsc_last_data_offset = offset + lsize - 1;
470
471 /*
472 * If there is any kind of pending aggregation (currently either
473 * a grouping of free objects or free blocks), push it out to
474 * the stream, since aggregation can't be done across operations
475 * of different types.
476 */
477 if (dscp->dsc_pending_op != PENDING_NONE) {
478 if (dump_record(dscp, NULL, 0) != 0)
479 return (SET_ERROR(EINTR));
480 dscp->dsc_pending_op = PENDING_NONE;
481 }
482 /* write a WRITE record */
483 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
484 dscp->dsc_drr->drr_type = DRR_WRITE;
485 drrw->drr_object = object;
486 drrw->drr_type = type;
487 drrw->drr_offset = offset;
488 drrw->drr_toguid = dscp->dsc_toguid;
489 drrw->drr_logical_size = lsize;
490
491 /* only set the compression fields if the buf is compressed or raw */
492 boolean_t compressed =
493 (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
494 io_compressed : lsize != psize);
495 if (raw || compressed) {
496 ASSERT(bp != NULL);
497 ASSERT(raw || dscp->dsc_featureflags &
498 DMU_BACKUP_FEATURE_COMPRESSED);
499 ASSERT(!BP_IS_EMBEDDED(bp));
500 ASSERT3S(psize, >, 0);
501
502 if (raw) {
503 ASSERT(BP_IS_PROTECTED(bp));
504
505 /*
506 * This is a raw protected block so we need to pass
507 * along everything the receiving side will need to
508 * interpret this block, including the byteswap, salt,
509 * IV, and MAC.
510 */
511 if (BP_SHOULD_BYTESWAP(bp))
512 drrw->drr_flags |= DRR_RAW_BYTESWAP;
513 zio_crypt_decode_params_bp(bp, drrw->drr_salt,
514 drrw->drr_iv);
515 zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
516 } else {
517 /* this is a compressed block */
518 ASSERT(dscp->dsc_featureflags &
519 DMU_BACKUP_FEATURE_COMPRESSED);
520 ASSERT(!BP_SHOULD_BYTESWAP(bp));
521 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
522 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
523 ASSERT3S(lsize, >=, psize);
524 }
525
526 /* set fields common to compressed and raw sends */
527 drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
528 drrw->drr_compressed_size = psize;
529 payload_size = drrw->drr_compressed_size;
530 } else {
531 payload_size = drrw->drr_logical_size;
532 }
533
534 if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
535 /*
536 * There's no pre-computed checksum for partial-block writes,
537 * embedded BP's, or encrypted BP's that are being sent as
538 * plaintext, so (like fletcher4-checksummed blocks) userland
539 * will have to compute a dedup-capable checksum itself.
540 */
541 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
542 } else {
543 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
544 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
545 ZCHECKSUM_FLAG_DEDUP)
546 drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
547 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
548 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
549 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
550 DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
551 drrw->drr_key.ddk_cksum = bp->blk_cksum;
552 }
553
554 if (dump_record(dscp, data, payload_size) != 0)
555 return (SET_ERROR(EINTR));
556 return (0);
557 }
558
559 static int
560 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
561 int blksz, const blkptr_t *bp)
562 {
563 char buf[BPE_PAYLOAD_SIZE];
564 struct drr_write_embedded *drrw =
565 &(dscp->dsc_drr->drr_u.drr_write_embedded);
566
567 if (dscp->dsc_pending_op != PENDING_NONE) {
568 if (dump_record(dscp, NULL, 0) != 0)
569 return (SET_ERROR(EINTR));
570 dscp->dsc_pending_op = PENDING_NONE;
571 }
572
573 ASSERT(BP_IS_EMBEDDED(bp));
574
575 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
576 dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
577 drrw->drr_object = object;
578 drrw->drr_offset = offset;
579 drrw->drr_length = blksz;
580 drrw->drr_toguid = dscp->dsc_toguid;
581 drrw->drr_compression = BP_GET_COMPRESS(bp);
582 drrw->drr_etype = BPE_GET_ETYPE(bp);
583 drrw->drr_lsize = BPE_GET_LSIZE(bp);
584 drrw->drr_psize = BPE_GET_PSIZE(bp);
585
586 decode_embedded_bp_compressed(bp, buf);
587
588 uint32_t psize = drrw->drr_psize;
589 uint32_t rsize = P2ROUNDUP(psize, 8);
590
591 if (psize != rsize)
592 memset(buf + psize, 0, rsize - psize);
593
594 if (dump_record(dscp, buf, rsize) != 0)
595 return (SET_ERROR(EINTR));
596 return (0);
597 }
598
599 static int
600 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
601 void *data)
602 {
603 struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
604 uint64_t blksz = BP_GET_LSIZE(bp);
605 uint64_t payload_size = blksz;
606
607 if (dscp->dsc_pending_op != PENDING_NONE) {
608 if (dump_record(dscp, NULL, 0) != 0)
609 return (SET_ERROR(EINTR));
610 dscp->dsc_pending_op = PENDING_NONE;
611 }
612
613 /* write a SPILL record */
614 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
615 dscp->dsc_drr->drr_type = DRR_SPILL;
616 drrs->drr_object = object;
617 drrs->drr_length = blksz;
618 drrs->drr_toguid = dscp->dsc_toguid;
619
620 /* See comment in dump_dnode() for full details */
621 if (zfs_send_unmodified_spill_blocks &&
622 (bp->blk_birth <= dscp->dsc_fromtxg)) {
623 drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
624 }
625
626 /* handle raw send fields */
627 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
628 ASSERT(BP_IS_PROTECTED(bp));
629
630 if (BP_SHOULD_BYTESWAP(bp))
631 drrs->drr_flags |= DRR_RAW_BYTESWAP;
632 drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
633 drrs->drr_compressed_size = BP_GET_PSIZE(bp);
634 zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
635 zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
636 payload_size = drrs->drr_compressed_size;
637 }
638
639 if (dump_record(dscp, data, payload_size) != 0)
640 return (SET_ERROR(EINTR));
641 return (0);
642 }
643
644 static int
645 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
646 {
647 struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
648 uint64_t maxobj = DNODES_PER_BLOCK *
649 (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
650
651 /*
652 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
653 * leading to zfs recv never completing. to avoid this issue, don't
654 * send FREEOBJECTS records for object IDs which cannot exist on the
655 * receiving side.
656 */
657 if (maxobj > 0) {
658 if (maxobj <= firstobj)
659 return (0);
660
661 if (maxobj < firstobj + numobjs)
662 numobjs = maxobj - firstobj;
663 }
664
665 /*
666 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
667 * push it out, since free block aggregation can only be done for
668 * blocks of the same type (i.e., DRR_FREE records can only be
669 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
670 * can only be aggregated with other DRR_FREEOBJECTS records).
671 */
672 if (dscp->dsc_pending_op != PENDING_NONE &&
673 dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
674 if (dump_record(dscp, NULL, 0) != 0)
675 return (SET_ERROR(EINTR));
676 dscp->dsc_pending_op = PENDING_NONE;
677 }
678
679 if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
680 /*
681 * See whether this free object array can be aggregated
682 * with pending one
683 */
684 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
685 drrfo->drr_numobjs += numobjs;
686 return (0);
687 } else {
688 /* can't be aggregated. Push out pending record */
689 if (dump_record(dscp, NULL, 0) != 0)
690 return (SET_ERROR(EINTR));
691 dscp->dsc_pending_op = PENDING_NONE;
692 }
693 }
694
695 /* write a FREEOBJECTS record */
696 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
697 dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
698 drrfo->drr_firstobj = firstobj;
699 drrfo->drr_numobjs = numobjs;
700 drrfo->drr_toguid = dscp->dsc_toguid;
701
702 dscp->dsc_pending_op = PENDING_FREEOBJECTS;
703
704 return (0);
705 }
706
707 static int
708 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
709 dnode_phys_t *dnp)
710 {
711 struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
712 int bonuslen;
713
714 if (object < dscp->dsc_resume_object) {
715 /*
716 * Note: when resuming, we will visit all the dnodes in
717 * the block of dnodes that we are resuming from. In
718 * this case it's unnecessary to send the dnodes prior to
719 * the one we are resuming from. We should be at most one
720 * block's worth of dnodes behind the resume point.
721 */
722 ASSERT3U(dscp->dsc_resume_object - object, <,
723 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
724 return (0);
725 }
726
727 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
728 return (dump_freeobjects(dscp, object, 1));
729
730 if (dscp->dsc_pending_op != PENDING_NONE) {
731 if (dump_record(dscp, NULL, 0) != 0)
732 return (SET_ERROR(EINTR));
733 dscp->dsc_pending_op = PENDING_NONE;
734 }
735
736 /* write an OBJECT record */
737 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
738 dscp->dsc_drr->drr_type = DRR_OBJECT;
739 drro->drr_object = object;
740 drro->drr_type = dnp->dn_type;
741 drro->drr_bonustype = dnp->dn_bonustype;
742 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
743 drro->drr_bonuslen = dnp->dn_bonuslen;
744 drro->drr_dn_slots = dnp->dn_extra_slots + 1;
745 drro->drr_checksumtype = dnp->dn_checksum;
746 drro->drr_compress = dnp->dn_compress;
747 drro->drr_toguid = dscp->dsc_toguid;
748
749 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
750 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
751 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
752
753 bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
754
755 if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
756 ASSERT(BP_IS_ENCRYPTED(bp));
757
758 if (BP_SHOULD_BYTESWAP(bp))
759 drro->drr_flags |= DRR_RAW_BYTESWAP;
760
761 /* needed for reconstructing dnp on recv side */
762 drro->drr_maxblkid = dnp->dn_maxblkid;
763 drro->drr_indblkshift = dnp->dn_indblkshift;
764 drro->drr_nlevels = dnp->dn_nlevels;
765 drro->drr_nblkptr = dnp->dn_nblkptr;
766
767 /*
768 * Since we encrypt the entire bonus area, the (raw) part
769 * beyond the bonuslen is actually nonzero, so we need
770 * to send it.
771 */
772 if (bonuslen != 0) {
773 if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
774 return (SET_ERROR(EINVAL));
775 drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
776 bonuslen = drro->drr_raw_bonuslen;
777 }
778 }
779
780 /*
781 * DRR_OBJECT_SPILL is set for every dnode which references a
782 * spill block. This allows the receiving pool to definitively
783 * determine when a spill block should be kept or freed.
784 */
785 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
786 drro->drr_flags |= DRR_OBJECT_SPILL;
787
788 if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
789 return (SET_ERROR(EINTR));
790
791 /* Free anything past the end of the file. */
792 if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
793 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
794 return (SET_ERROR(EINTR));
795
796 /*
797 * Send DRR_SPILL records for unmodified spill blocks. This is useful
798 * because changing certain attributes of the object (e.g. blocksize)
799 * can cause old versions of ZFS to incorrectly remove a spill block.
800 * Including these records in the stream forces an up to date version
801 * to always be written ensuring they're never lost. Current versions
802 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
803 * ignore these unmodified spill blocks.
804 */
805 if (zfs_send_unmodified_spill_blocks &&
806 (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
807 (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
808 struct send_range record;
809 blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
810
811 memset(&record, 0, sizeof (struct send_range));
812 record.type = DATA;
813 record.object = object;
814 record.eos_marker = B_FALSE;
815 record.start_blkid = DMU_SPILL_BLKID;
816 record.end_blkid = record.start_blkid + 1;
817 record.sru.data.bp = *bp;
818 record.sru.data.obj_type = dnp->dn_type;
819 record.sru.data.datablksz = BP_GET_LSIZE(bp);
820
821 if (do_dump(dscp, &record) != 0)
822 return (SET_ERROR(EINTR));
823 }
824
825 if (dscp->dsc_err != 0)
826 return (SET_ERROR(EINTR));
827
828 return (0);
829 }
830
831 static int
832 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
833 uint64_t firstobj, uint64_t numslots)
834 {
835 struct drr_object_range *drror =
836 &(dscp->dsc_drr->drr_u.drr_object_range);
837
838 /* we only use this record type for raw sends */
839 ASSERT(BP_IS_PROTECTED(bp));
840 ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
841 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
842 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
843 ASSERT0(BP_GET_LEVEL(bp));
844
845 if (dscp->dsc_pending_op != PENDING_NONE) {
846 if (dump_record(dscp, NULL, 0) != 0)
847 return (SET_ERROR(EINTR));
848 dscp->dsc_pending_op = PENDING_NONE;
849 }
850
851 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
852 dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
853 drror->drr_firstobj = firstobj;
854 drror->drr_numslots = numslots;
855 drror->drr_toguid = dscp->dsc_toguid;
856 if (BP_SHOULD_BYTESWAP(bp))
857 drror->drr_flags |= DRR_RAW_BYTESWAP;
858 zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
859 zio_crypt_decode_mac_bp(bp, drror->drr_mac);
860
861 if (dump_record(dscp, NULL, 0) != 0)
862 return (SET_ERROR(EINTR));
863 return (0);
864 }
865
866 static boolean_t
867 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
868 {
869 if (!BP_IS_EMBEDDED(bp))
870 return (B_FALSE);
871
872 /*
873 * Compression function must be legacy, or explicitly enabled.
874 */
875 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
876 !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
877 return (B_FALSE);
878
879 /*
880 * If we have not set the ZSTD feature flag, we can't send ZSTD
881 * compressed embedded blocks, as the receiver may not support them.
882 */
883 if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
884 !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
885 return (B_FALSE);
886
887 /*
888 * Embed type must be explicitly enabled.
889 */
890 switch (BPE_GET_ETYPE(bp)) {
891 case BP_EMBEDDED_TYPE_DATA:
892 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
893 return (B_TRUE);
894 break;
895 default:
896 return (B_FALSE);
897 }
898 return (B_FALSE);
899 }
900
901 /*
902 * This function actually handles figuring out what kind of record needs to be
903 * dumped, and calling the appropriate helper function. In most cases,
904 * the data has already been read by send_reader_thread().
905 */
906 static int
907 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
908 {
909 int err = 0;
910 switch (range->type) {
911 case OBJECT:
912 err = dump_dnode(dscp, &range->sru.object.bp, range->object,
913 range->sru.object.dnp);
914 return (err);
915 case OBJECT_RANGE: {
916 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
917 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
918 return (0);
919 }
920 uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
921 DNODE_SHIFT;
922 uint64_t firstobj = range->start_blkid * epb;
923 err = dump_object_range(dscp, &range->sru.object_range.bp,
924 firstobj, epb);
925 break;
926 }
927 case REDACT: {
928 struct srr *srrp = &range->sru.redact;
929 err = dump_redact(dscp, range->object, range->start_blkid *
930 srrp->datablksz, (range->end_blkid - range->start_blkid) *
931 srrp->datablksz);
932 return (err);
933 }
934 case DATA: {
935 struct srd *srdp = &range->sru.data;
936 blkptr_t *bp = &srdp->bp;
937 spa_t *spa =
938 dmu_objset_spa(dscp->dsc_os);
939
940 ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
941 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
942 if (BP_GET_TYPE(bp) == DMU_OT_SA) {
943 arc_flags_t aflags = ARC_FLAG_WAIT;
944 zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
945
946 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
947 ASSERT(BP_IS_PROTECTED(bp));
948 zioflags |= ZIO_FLAG_RAW;
949 }
950
951 zbookmark_phys_t zb;
952 ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
953 zb.zb_objset = dmu_objset_id(dscp->dsc_os);
954 zb.zb_object = range->object;
955 zb.zb_level = 0;
956 zb.zb_blkid = range->start_blkid;
957
958 arc_buf_t *abuf = NULL;
959 if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
960 bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
961 zioflags, &aflags, &zb) != 0)
962 return (SET_ERROR(EIO));
963
964 err = dump_spill(dscp, bp, zb.zb_object,
965 (abuf == NULL ? NULL : abuf->b_data));
966 if (abuf != NULL)
967 arc_buf_destroy(abuf, &abuf);
968 return (err);
969 }
970 if (send_do_embed(bp, dscp->dsc_featureflags)) {
971 err = dump_write_embedded(dscp, range->object,
972 range->start_blkid * srdp->datablksz,
973 srdp->datablksz, bp);
974 return (err);
975 }
976 ASSERT(range->object > dscp->dsc_resume_object ||
977 (range->object == dscp->dsc_resume_object &&
978 range->start_blkid * srdp->datablksz >=
979 dscp->dsc_resume_offset));
980 /* it's a level-0 block of a regular object */
981
982 mutex_enter(&srdp->lock);
983 while (srdp->io_outstanding)
984 cv_wait(&srdp->cv, &srdp->lock);
985 err = srdp->io_err;
986 mutex_exit(&srdp->lock);
987
988 if (err != 0) {
989 if (zfs_send_corrupt_data &&
990 !dscp->dsc_dso->dso_dryrun) {
991 /*
992 * Send a block filled with 0x"zfs badd bloc"
993 */
994 srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
995 ARC_BUFC_DATA, srdp->datablksz);
996 uint64_t *ptr;
997 for (ptr = srdp->abuf->b_data;
998 (char *)ptr < (char *)srdp->abuf->b_data +
999 srdp->datablksz; ptr++)
1000 *ptr = 0x2f5baddb10cULL;
1001 } else {
1002 return (SET_ERROR(EIO));
1003 }
1004 }
1005
1006 ASSERT(dscp->dsc_dso->dso_dryrun ||
1007 srdp->abuf != NULL || srdp->abd != NULL);
1008
1009 uint64_t offset = range->start_blkid * srdp->datablksz;
1010
1011 char *data = NULL;
1012 if (srdp->abd != NULL) {
1013 data = abd_to_buf(srdp->abd);
1014 ASSERT3P(srdp->abuf, ==, NULL);
1015 } else if (srdp->abuf != NULL) {
1016 data = srdp->abuf->b_data;
1017 }
1018
1019 /*
1020 * If we have large blocks stored on disk but the send flags
1021 * don't allow us to send large blocks, we split the data from
1022 * the arc buf into chunks.
1023 */
1024 if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1025 !(dscp->dsc_featureflags &
1026 DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1027 while (srdp->datablksz > 0 && err == 0) {
1028 int n = MIN(srdp->datablksz,
1029 SPA_OLD_MAXBLOCKSIZE);
1030 err = dmu_dump_write(dscp, srdp->obj_type,
1031 range->object, offset, n, n, NULL, B_FALSE,
1032 data);
1033 offset += n;
1034 /*
1035 * When doing dry run, data==NULL is used as a
1036 * sentinel value by
1037 * dmu_dump_write()->dump_record().
1038 */
1039 if (data != NULL)
1040 data += n;
1041 srdp->datablksz -= n;
1042 }
1043 } else {
1044 err = dmu_dump_write(dscp, srdp->obj_type,
1045 range->object, offset,
1046 srdp->datablksz, srdp->datasz, bp,
1047 srdp->io_compressed, data);
1048 }
1049 return (err);
1050 }
1051 case HOLE: {
1052 struct srh *srhp = &range->sru.hole;
1053 if (range->object == DMU_META_DNODE_OBJECT) {
1054 uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1055 uint64_t first_obj = range->start_blkid * span;
1056 uint64_t numobj = range->end_blkid * span - first_obj;
1057 return (dump_freeobjects(dscp, first_obj, numobj));
1058 }
1059 uint64_t offset = 0;
1060
1061 /*
1062 * If this multiply overflows, we don't need to send this block.
1063 * Even if it has a birth time, it can never not be a hole, so
1064 * we don't need to send records for it.
1065 */
1066 if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1067 &offset)) {
1068 return (0);
1069 }
1070 uint64_t len = 0;
1071
1072 if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1073 len = UINT64_MAX;
1074 len = len - offset;
1075 return (dump_free(dscp, range->object, offset, len));
1076 }
1077 default:
1078 panic("Invalid range type in do_dump: %d", range->type);
1079 }
1080 return (err);
1081 }
1082
1083 static struct send_range *
1084 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1085 uint64_t end_blkid, boolean_t eos)
1086 {
1087 struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1088 range->type = type;
1089 range->object = object;
1090 range->start_blkid = start_blkid;
1091 range->end_blkid = end_blkid;
1092 range->eos_marker = eos;
1093 if (type == DATA) {
1094 range->sru.data.abd = NULL;
1095 range->sru.data.abuf = NULL;
1096 mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1097 cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1098 range->sru.data.io_outstanding = 0;
1099 range->sru.data.io_err = 0;
1100 range->sru.data.io_compressed = B_FALSE;
1101 }
1102 return (range);
1103 }
1104
1105 /*
1106 * This is the callback function to traverse_dataset that acts as a worker
1107 * thread for dmu_send_impl.
1108 */
1109 static int
1110 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1111 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1112 {
1113 (void) zilog;
1114 struct send_thread_arg *sta = arg;
1115 struct send_range *record;
1116
1117 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1118 zb->zb_object >= sta->resume.zb_object);
1119
1120 /*
1121 * All bps of an encrypted os should have the encryption bit set.
1122 * If this is not true it indicates tampering and we report an error.
1123 */
1124 if (sta->os->os_encrypted &&
1125 !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1126 spa_log_error(spa, zb, &bp->blk_birth);
1127 return (SET_ERROR(EIO));
1128 }
1129
1130 if (sta->cancel)
1131 return (SET_ERROR(EINTR));
1132 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1133 DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1134 return (0);
1135 atomic_inc_64(sta->num_blocks_visited);
1136
1137 if (zb->zb_level == ZB_DNODE_LEVEL) {
1138 if (zb->zb_object == DMU_META_DNODE_OBJECT)
1139 return (0);
1140 record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1141 record->sru.object.bp = *bp;
1142 size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1143 record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1144 memcpy(record->sru.object.dnp, dnp, size);
1145 bqueue_enqueue(&sta->q, record, sizeof (*record));
1146 return (0);
1147 }
1148 if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1149 !BP_IS_HOLE(bp)) {
1150 record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1151 zb->zb_blkid + 1, B_FALSE);
1152 record->sru.object_range.bp = *bp;
1153 bqueue_enqueue(&sta->q, record, sizeof (*record));
1154 return (0);
1155 }
1156 if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1157 return (0);
1158 if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1159 return (0);
1160
1161 uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1162 uint64_t start;
1163
1164 /*
1165 * If this multiply overflows, we don't need to send this block.
1166 * Even if it has a birth time, it can never not be a hole, so
1167 * we don't need to send records for it.
1168 */
1169 if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1170 DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1171 span * zb->zb_blkid > dnp->dn_maxblkid)) {
1172 ASSERT(BP_IS_HOLE(bp));
1173 return (0);
1174 }
1175
1176 if (zb->zb_blkid == DMU_SPILL_BLKID)
1177 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1178
1179 enum type record_type = DATA;
1180 if (BP_IS_HOLE(bp))
1181 record_type = HOLE;
1182 else if (BP_IS_REDACTED(bp))
1183 record_type = REDACT;
1184 else
1185 record_type = DATA;
1186
1187 record = range_alloc(record_type, zb->zb_object, start,
1188 (start + span < start ? 0 : start + span), B_FALSE);
1189
1190 uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1191 BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1192
1193 if (BP_IS_HOLE(bp)) {
1194 record->sru.hole.datablksz = datablksz;
1195 } else if (BP_IS_REDACTED(bp)) {
1196 record->sru.redact.datablksz = datablksz;
1197 } else {
1198 record->sru.data.datablksz = datablksz;
1199 record->sru.data.obj_type = dnp->dn_type;
1200 record->sru.data.bp = *bp;
1201 }
1202
1203 bqueue_enqueue(&sta->q, record, sizeof (*record));
1204 return (0);
1205 }
1206
1207 struct redact_list_cb_arg {
1208 uint64_t *num_blocks_visited;
1209 bqueue_t *q;
1210 boolean_t *cancel;
1211 boolean_t mark_redact;
1212 };
1213
1214 static int
1215 redact_list_cb(redact_block_phys_t *rb, void *arg)
1216 {
1217 struct redact_list_cb_arg *rlcap = arg;
1218
1219 atomic_inc_64(rlcap->num_blocks_visited);
1220 if (*rlcap->cancel)
1221 return (-1);
1222
1223 struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1224 rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1225 ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1226 if (rlcap->mark_redact) {
1227 data->type = REDACT;
1228 data->sru.redact.datablksz = redact_block_get_size(rb);
1229 } else {
1230 data->type = PREVIOUSLY_REDACTED;
1231 }
1232 bqueue_enqueue(rlcap->q, data, sizeof (*data));
1233
1234 return (0);
1235 }
1236
1237 /*
1238 * This function kicks off the traverse_dataset. It also handles setting the
1239 * error code of the thread in case something goes wrong, and pushes the End of
1240 * Stream record when the traverse_dataset call has finished.
1241 */
1242 static __attribute__((noreturn)) void
1243 send_traverse_thread(void *arg)
1244 {
1245 struct send_thread_arg *st_arg = arg;
1246 int err = 0;
1247 struct send_range *data;
1248 fstrans_cookie_t cookie = spl_fstrans_mark();
1249
1250 err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1251 st_arg->fromtxg, &st_arg->resume,
1252 st_arg->flags, send_cb, st_arg);
1253
1254 if (err != EINTR)
1255 st_arg->error_code = err;
1256 data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1257 bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1258 spl_fstrans_unmark(cookie);
1259 thread_exit();
1260 }
1261
1262 /*
1263 * Utility function that causes End of Stream records to compare after of all
1264 * others, so that other threads' comparison logic can stay simple.
1265 */
1266 static int __attribute__((unused))
1267 send_range_after(const struct send_range *from, const struct send_range *to)
1268 {
1269 if (from->eos_marker == B_TRUE)
1270 return (1);
1271 if (to->eos_marker == B_TRUE)
1272 return (-1);
1273
1274 uint64_t from_obj = from->object;
1275 uint64_t from_end_obj = from->object + 1;
1276 uint64_t to_obj = to->object;
1277 uint64_t to_end_obj = to->object + 1;
1278 if (from_obj == 0) {
1279 ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1280 from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1281 from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1282 }
1283 if (to_obj == 0) {
1284 ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1285 to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1286 to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1287 }
1288
1289 if (from_end_obj <= to_obj)
1290 return (-1);
1291 if (from_obj >= to_end_obj)
1292 return (1);
1293 int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1294 OBJECT_RANGE);
1295 if (unlikely(cmp))
1296 return (cmp);
1297 cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1298 if (unlikely(cmp))
1299 return (cmp);
1300 if (from->end_blkid <= to->start_blkid)
1301 return (-1);
1302 if (from->start_blkid >= to->end_blkid)
1303 return (1);
1304 return (0);
1305 }
1306
1307 /*
1308 * Pop the new data off the queue, check that the records we receive are in
1309 * the right order, but do not free the old data. This is used so that the
1310 * records can be sent on to the main thread without copying the data.
1311 */
1312 static struct send_range *
1313 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1314 {
1315 struct send_range *next = bqueue_dequeue(bq);
1316 ASSERT3S(send_range_after(prev, next), ==, -1);
1317 return (next);
1318 }
1319
1320 /*
1321 * Pop the new data off the queue, check that the records we receive are in
1322 * the right order, and free the old data.
1323 */
1324 static struct send_range *
1325 get_next_range(bqueue_t *bq, struct send_range *prev)
1326 {
1327 struct send_range *next = get_next_range_nofree(bq, prev);
1328 range_free(prev);
1329 return (next);
1330 }
1331
1332 static __attribute__((noreturn)) void
1333 redact_list_thread(void *arg)
1334 {
1335 struct redact_list_thread_arg *rlt_arg = arg;
1336 struct send_range *record;
1337 fstrans_cookie_t cookie = spl_fstrans_mark();
1338 if (rlt_arg->rl != NULL) {
1339 struct redact_list_cb_arg rlcba = {0};
1340 rlcba.cancel = &rlt_arg->cancel;
1341 rlcba.q = &rlt_arg->q;
1342 rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1343 rlcba.mark_redact = rlt_arg->mark_redact;
1344 int err = dsl_redaction_list_traverse(rlt_arg->rl,
1345 &rlt_arg->resume, redact_list_cb, &rlcba);
1346 if (err != EINTR)
1347 rlt_arg->error_code = err;
1348 }
1349 record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1350 bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1351 spl_fstrans_unmark(cookie);
1352
1353 thread_exit();
1354 }
1355
1356 /*
1357 * Compare the start point of the two provided ranges. End of stream ranges
1358 * compare last, objects compare before any data or hole inside that object and
1359 * multi-object holes that start at the same object.
1360 */
1361 static int
1362 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1363 {
1364 uint64_t r1_objequiv = r1->object;
1365 uint64_t r1_l0equiv = r1->start_blkid;
1366 uint64_t r2_objequiv = r2->object;
1367 uint64_t r2_l0equiv = r2->start_blkid;
1368 int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1369 if (unlikely(cmp))
1370 return (cmp);
1371 if (r1->object == 0) {
1372 r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1373 r1_l0equiv = 0;
1374 }
1375 if (r2->object == 0) {
1376 r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1377 r2_l0equiv = 0;
1378 }
1379
1380 cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1381 if (likely(cmp))
1382 return (cmp);
1383 cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1384 if (unlikely(cmp))
1385 return (cmp);
1386 cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1387 if (unlikely(cmp))
1388 return (cmp);
1389
1390 return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1391 }
1392
1393 enum q_idx {
1394 REDACT_IDX = 0,
1395 TO_IDX,
1396 FROM_IDX,
1397 NUM_THREADS
1398 };
1399
1400 /*
1401 * This function returns the next range the send_merge_thread should operate on.
1402 * The inputs are two arrays; the first one stores the range at the front of the
1403 * queues stored in the second one. The ranges are sorted in descending
1404 * priority order; the metadata from earlier ranges overrules metadata from
1405 * later ranges. out_mask is used to return which threads the ranges came from;
1406 * bit i is set if ranges[i] started at the same place as the returned range.
1407 *
1408 * This code is not hardcoded to compare a specific number of threads; it could
1409 * be used with any number, just by changing the q_idx enum.
1410 *
1411 * The "next range" is the one with the earliest start; if two starts are equal,
1412 * the highest-priority range is the next to operate on. If a higher-priority
1413 * range starts in the middle of the first range, then the first range will be
1414 * truncated to end where the higher-priority range starts, and we will operate
1415 * on that one next time. In this way, we make sure that each block covered by
1416 * some range gets covered by a returned range, and each block covered is
1417 * returned using the metadata of the highest-priority range it appears in.
1418 *
1419 * For example, if the three ranges at the front of the queues were [2,4),
1420 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1421 * from the third range, [2,4) with the metadata from the first range, and then
1422 * [4,5) with the metadata from the second.
1423 */
1424 static struct send_range *
1425 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1426 {
1427 int idx = 0; // index of the range with the earliest start
1428 int i;
1429 uint64_t bmask = 0;
1430 for (i = 1; i < NUM_THREADS; i++) {
1431 if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1432 idx = i;
1433 }
1434 if (ranges[idx]->eos_marker) {
1435 struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1436 *out_mask = 0;
1437 return (ret);
1438 }
1439 /*
1440 * Find all the ranges that start at that same point.
1441 */
1442 for (i = 0; i < NUM_THREADS; i++) {
1443 if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1444 bmask |= 1 << i;
1445 }
1446 *out_mask = bmask;
1447 /*
1448 * OBJECT_RANGE records only come from the TO thread, and should always
1449 * be treated as overlapping with nothing and sent on immediately. They
1450 * are only used in raw sends, and are never redacted.
1451 */
1452 if (ranges[idx]->type == OBJECT_RANGE) {
1453 ASSERT3U(idx, ==, TO_IDX);
1454 ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1455 struct send_range *ret = ranges[idx];
1456 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1457 return (ret);
1458 }
1459 /*
1460 * Find the first start or end point after the start of the first range.
1461 */
1462 uint64_t first_change = ranges[idx]->end_blkid;
1463 for (i = 0; i < NUM_THREADS; i++) {
1464 if (i == idx || ranges[i]->eos_marker ||
1465 ranges[i]->object > ranges[idx]->object ||
1466 ranges[i]->object == DMU_META_DNODE_OBJECT)
1467 continue;
1468 ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1469 if (first_change > ranges[i]->start_blkid &&
1470 (bmask & (1 << i)) == 0)
1471 first_change = ranges[i]->start_blkid;
1472 else if (first_change > ranges[i]->end_blkid)
1473 first_change = ranges[i]->end_blkid;
1474 }
1475 /*
1476 * Update all ranges to no longer overlap with the range we're
1477 * returning. All such ranges must start at the same place as the range
1478 * being returned, and end at or after first_change. Thus we update
1479 * their start to first_change. If that makes them size 0, then free
1480 * them and pull a new range from that thread.
1481 */
1482 for (i = 0; i < NUM_THREADS; i++) {
1483 if (i == idx || (bmask & (1 << i)) == 0)
1484 continue;
1485 ASSERT3U(first_change, >, ranges[i]->start_blkid);
1486 ranges[i]->start_blkid = first_change;
1487 ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1488 if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1489 ranges[i] = get_next_range(qs[i], ranges[i]);
1490 }
1491 /*
1492 * Short-circuit the simple case; if the range doesn't overlap with
1493 * anything else, or it only overlaps with things that start at the same
1494 * place and are longer, send it on.
1495 */
1496 if (first_change == ranges[idx]->end_blkid) {
1497 struct send_range *ret = ranges[idx];
1498 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1499 return (ret);
1500 }
1501
1502 /*
1503 * Otherwise, return a truncated copy of ranges[idx] and move the start
1504 * of ranges[idx] back to first_change.
1505 */
1506 struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1507 *ret = *ranges[idx];
1508 ret->end_blkid = first_change;
1509 ranges[idx]->start_blkid = first_change;
1510 return (ret);
1511 }
1512
1513 #define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1514
1515 /*
1516 * Merge the results from the from thread and the to thread, and then hand the
1517 * records off to send_prefetch_thread to prefetch them. If this is not a
1518 * send from a redaction bookmark, the from thread will push an end of stream
1519 * record and stop, and we'll just send everything that was changed in the
1520 * to_ds since the ancestor's creation txg. If it is, then since
1521 * traverse_dataset has a canonical order, we can compare each change as
1522 * they're pulled off the queues. That will give us a stream that is
1523 * appropriately sorted, and covers all records. In addition, we pull the
1524 * data from the redact_list_thread and use that to determine which blocks
1525 * should be redacted.
1526 */
1527 static __attribute__((noreturn)) void
1528 send_merge_thread(void *arg)
1529 {
1530 struct send_merge_thread_arg *smt_arg = arg;
1531 struct send_range *front_ranges[NUM_THREADS];
1532 bqueue_t *queues[NUM_THREADS];
1533 int err = 0;
1534 fstrans_cookie_t cookie = spl_fstrans_mark();
1535
1536 if (smt_arg->redact_arg == NULL) {
1537 front_ranges[REDACT_IDX] =
1538 kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1539 front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1540 front_ranges[REDACT_IDX]->type = REDACT;
1541 queues[REDACT_IDX] = NULL;
1542 } else {
1543 front_ranges[REDACT_IDX] =
1544 bqueue_dequeue(&smt_arg->redact_arg->q);
1545 queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1546 }
1547 front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1548 queues[TO_IDX] = &smt_arg->to_arg->q;
1549 front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1550 queues[FROM_IDX] = &smt_arg->from_arg->q;
1551 uint64_t mask = 0;
1552 struct send_range *range;
1553 for (range = find_next_range(front_ranges, queues, &mask);
1554 !range->eos_marker && err == 0 && !smt_arg->cancel;
1555 range = find_next_range(front_ranges, queues, &mask)) {
1556 /*
1557 * If the range in question was in both the from redact bookmark
1558 * and the bookmark we're using to redact, then don't send it.
1559 * It's already redacted on the receiving system, so a redaction
1560 * record would be redundant.
1561 */
1562 if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1563 ASSERT3U(range->type, ==, REDACT);
1564 range_free(range);
1565 continue;
1566 }
1567 bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1568
1569 if (smt_arg->to_arg->error_code != 0) {
1570 err = smt_arg->to_arg->error_code;
1571 } else if (smt_arg->from_arg->error_code != 0) {
1572 err = smt_arg->from_arg->error_code;
1573 } else if (smt_arg->redact_arg != NULL &&
1574 smt_arg->redact_arg->error_code != 0) {
1575 err = smt_arg->redact_arg->error_code;
1576 }
1577 }
1578 if (smt_arg->cancel && err == 0)
1579 err = SET_ERROR(EINTR);
1580 smt_arg->error = err;
1581 if (smt_arg->error != 0) {
1582 smt_arg->to_arg->cancel = B_TRUE;
1583 smt_arg->from_arg->cancel = B_TRUE;
1584 if (smt_arg->redact_arg != NULL)
1585 smt_arg->redact_arg->cancel = B_TRUE;
1586 }
1587 for (int i = 0; i < NUM_THREADS; i++) {
1588 while (!front_ranges[i]->eos_marker) {
1589 front_ranges[i] = get_next_range(queues[i],
1590 front_ranges[i]);
1591 }
1592 range_free(front_ranges[i]);
1593 }
1594 range->eos_marker = B_TRUE;
1595 bqueue_enqueue_flush(&smt_arg->q, range, 1);
1596 spl_fstrans_unmark(cookie);
1597 thread_exit();
1598 }
1599
1600 struct send_reader_thread_arg {
1601 struct send_merge_thread_arg *smta;
1602 bqueue_t q;
1603 boolean_t cancel;
1604 boolean_t issue_reads;
1605 uint64_t featureflags;
1606 int error;
1607 };
1608
1609 static void
1610 dmu_send_read_done(zio_t *zio)
1611 {
1612 struct send_range *range = zio->io_private;
1613
1614 mutex_enter(&range->sru.data.lock);
1615 if (zio->io_error != 0) {
1616 abd_free(range->sru.data.abd);
1617 range->sru.data.abd = NULL;
1618 range->sru.data.io_err = zio->io_error;
1619 }
1620
1621 ASSERT(range->sru.data.io_outstanding);
1622 range->sru.data.io_outstanding = B_FALSE;
1623 cv_broadcast(&range->sru.data.cv);
1624 mutex_exit(&range->sru.data.lock);
1625 }
1626
1627 static void
1628 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1629 {
1630 struct srd *srdp = &range->sru.data;
1631 blkptr_t *bp = &srdp->bp;
1632 objset_t *os = srta->smta->os;
1633
1634 ASSERT3U(range->type, ==, DATA);
1635 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1636 /*
1637 * If we have large blocks stored on disk but
1638 * the send flags don't allow us to send large
1639 * blocks, we split the data from the arc buf
1640 * into chunks.
1641 */
1642 boolean_t split_large_blocks =
1643 srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1644 !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1645 /*
1646 * We should only request compressed data from the ARC if all
1647 * the following are true:
1648 * - stream compression was requested
1649 * - we aren't splitting large blocks into smaller chunks
1650 * - the data won't need to be byteswapped before sending
1651 * - this isn't an embedded block
1652 * - this isn't metadata (if receiving on a different endian
1653 * system it can be byteswapped more easily)
1654 */
1655 boolean_t request_compressed =
1656 (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1657 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1658 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1659
1660 zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1661
1662 if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1663 zioflags |= ZIO_FLAG_RAW;
1664 srdp->io_compressed = B_TRUE;
1665 } else if (request_compressed) {
1666 zioflags |= ZIO_FLAG_RAW_COMPRESS;
1667 srdp->io_compressed = B_TRUE;
1668 }
1669
1670 srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1671 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1672
1673 if (!srta->issue_reads)
1674 return;
1675 if (BP_IS_REDACTED(bp))
1676 return;
1677 if (send_do_embed(bp, srta->featureflags))
1678 return;
1679
1680 zbookmark_phys_t zb = {
1681 .zb_objset = dmu_objset_id(os),
1682 .zb_object = range->object,
1683 .zb_level = 0,
1684 .zb_blkid = range->start_blkid,
1685 };
1686
1687 arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1688
1689 int arc_err = arc_read(NULL, os->os_spa, bp,
1690 arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1691 zioflags, &aflags, &zb);
1692 /*
1693 * If the data is not already cached in the ARC, we read directly
1694 * from zio. This avoids the performance overhead of adding a new
1695 * entry to the ARC, and we also avoid polluting the ARC cache with
1696 * data that is not likely to be used in the future.
1697 */
1698 if (arc_err != 0) {
1699 srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1700 srdp->io_outstanding = B_TRUE;
1701 zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1702 srdp->datasz, dmu_send_read_done, range,
1703 ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1704 }
1705 }
1706
1707 /*
1708 * Create a new record with the given values.
1709 */
1710 static void
1711 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1712 uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1713 {
1714 enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1715 (BP_IS_REDACTED(bp) ? REDACT : DATA));
1716
1717 struct send_range *range = range_alloc(range_type, dn->dn_object,
1718 blkid, blkid + count, B_FALSE);
1719
1720 if (blkid == DMU_SPILL_BLKID) {
1721 ASSERT3P(bp, !=, NULL);
1722 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1723 }
1724
1725 switch (range_type) {
1726 case HOLE:
1727 range->sru.hole.datablksz = datablksz;
1728 break;
1729 case DATA:
1730 ASSERT3U(count, ==, 1);
1731 range->sru.data.datablksz = datablksz;
1732 range->sru.data.obj_type = dn->dn_type;
1733 range->sru.data.bp = *bp;
1734 issue_data_read(srta, range);
1735 break;
1736 case REDACT:
1737 range->sru.redact.datablksz = datablksz;
1738 break;
1739 default:
1740 break;
1741 }
1742 bqueue_enqueue(q, range, datablksz);
1743 }
1744
1745 /*
1746 * This thread is responsible for two things: First, it retrieves the correct
1747 * blkptr in the to ds if we need to send the data because of something from
1748 * the from thread. As a result of this, we're the first ones to discover that
1749 * some indirect blocks can be discarded because they're not holes. Second,
1750 * it issues prefetches for the data we need to send.
1751 */
1752 static __attribute__((noreturn)) void
1753 send_reader_thread(void *arg)
1754 {
1755 struct send_reader_thread_arg *srta = arg;
1756 struct send_merge_thread_arg *smta = srta->smta;
1757 bqueue_t *inq = &smta->q;
1758 bqueue_t *outq = &srta->q;
1759 objset_t *os = smta->os;
1760 fstrans_cookie_t cookie = spl_fstrans_mark();
1761 struct send_range *range = bqueue_dequeue(inq);
1762 int err = 0;
1763
1764 /*
1765 * If the record we're analyzing is from a redaction bookmark from the
1766 * fromds, then we need to know whether or not it exists in the tods so
1767 * we know whether to create records for it or not. If it does, we need
1768 * the datablksz so we can generate an appropriate record for it.
1769 * Finally, if it isn't redacted, we need the blkptr so that we can send
1770 * a WRITE record containing the actual data.
1771 */
1772 uint64_t last_obj = UINT64_MAX;
1773 uint64_t last_obj_exists = B_TRUE;
1774 while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1775 err == 0) {
1776 switch (range->type) {
1777 case DATA:
1778 issue_data_read(srta, range);
1779 bqueue_enqueue(outq, range, range->sru.data.datablksz);
1780 range = get_next_range_nofree(inq, range);
1781 break;
1782 case HOLE:
1783 case OBJECT:
1784 case OBJECT_RANGE:
1785 case REDACT: // Redacted blocks must exist
1786 bqueue_enqueue(outq, range, sizeof (*range));
1787 range = get_next_range_nofree(inq, range);
1788 break;
1789 case PREVIOUSLY_REDACTED: {
1790 /*
1791 * This entry came from the "from bookmark" when
1792 * sending from a bookmark that has a redaction
1793 * list. We need to check if this object/blkid
1794 * exists in the target ("to") dataset, and if
1795 * not then we drop this entry. We also need
1796 * to fill in the block pointer so that we know
1797 * what to prefetch.
1798 *
1799 * To accomplish the above, we first cache whether or
1800 * not the last object we examined exists. If it
1801 * doesn't, we can drop this record. If it does, we hold
1802 * the dnode and use it to call dbuf_dnode_findbp. We do
1803 * this instead of dbuf_bookmark_findbp because we will
1804 * often operate on large ranges, and holding the dnode
1805 * once is more efficient.
1806 */
1807 boolean_t object_exists = B_TRUE;
1808 /*
1809 * If the data is redacted, we only care if it exists,
1810 * so that we don't send records for objects that have
1811 * been deleted.
1812 */
1813 dnode_t *dn;
1814 if (range->object == last_obj && !last_obj_exists) {
1815 /*
1816 * If we're still examining the same object as
1817 * previously, and it doesn't exist, we don't
1818 * need to call dbuf_bookmark_findbp.
1819 */
1820 object_exists = B_FALSE;
1821 } else {
1822 err = dnode_hold(os, range->object, FTAG, &dn);
1823 if (err == ENOENT) {
1824 object_exists = B_FALSE;
1825 err = 0;
1826 }
1827 last_obj = range->object;
1828 last_obj_exists = object_exists;
1829 }
1830
1831 if (err != 0) {
1832 break;
1833 } else if (!object_exists) {
1834 /*
1835 * The block was modified, but doesn't
1836 * exist in the to dataset; if it was
1837 * deleted in the to dataset, then we'll
1838 * visit the hole bp for it at some point.
1839 */
1840 range = get_next_range(inq, range);
1841 continue;
1842 }
1843 uint64_t file_max =
1844 MIN(dn->dn_maxblkid, range->end_blkid);
1845 /*
1846 * The object exists, so we need to try to find the
1847 * blkptr for each block in the range we're processing.
1848 */
1849 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1850 for (uint64_t blkid = range->start_blkid;
1851 blkid < file_max; blkid++) {
1852 blkptr_t bp;
1853 uint32_t datablksz =
1854 dn->dn_phys->dn_datablkszsec <<
1855 SPA_MINBLOCKSHIFT;
1856 uint64_t offset = blkid * datablksz;
1857 /*
1858 * This call finds the next non-hole block in
1859 * the object. This is to prevent a
1860 * performance problem where we're unredacting
1861 * a large hole. Using dnode_next_offset to
1862 * skip over the large hole avoids iterating
1863 * over every block in it.
1864 */
1865 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1866 &offset, 1, 1, 0);
1867 if (err == ESRCH) {
1868 offset = UINT64_MAX;
1869 err = 0;
1870 } else if (err != 0) {
1871 break;
1872 }
1873 if (offset != blkid * datablksz) {
1874 /*
1875 * if there is a hole from here
1876 * (blkid) to offset
1877 */
1878 offset = MIN(offset, file_max *
1879 datablksz);
1880 uint64_t nblks = (offset / datablksz) -
1881 blkid;
1882 enqueue_range(srta, outq, dn, blkid,
1883 nblks, NULL, datablksz);
1884 blkid += nblks;
1885 }
1886 if (blkid >= file_max)
1887 break;
1888 err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1889 NULL, NULL);
1890 if (err != 0)
1891 break;
1892 ASSERT(!BP_IS_HOLE(&bp));
1893 enqueue_range(srta, outq, dn, blkid, 1, &bp,
1894 datablksz);
1895 }
1896 rw_exit(&dn->dn_struct_rwlock);
1897 dnode_rele(dn, FTAG);
1898 range = get_next_range(inq, range);
1899 }
1900 }
1901 }
1902 if (srta->cancel || err != 0) {
1903 smta->cancel = B_TRUE;
1904 srta->error = err;
1905 } else if (smta->error != 0) {
1906 srta->error = smta->error;
1907 }
1908 while (!range->eos_marker)
1909 range = get_next_range(inq, range);
1910
1911 bqueue_enqueue_flush(outq, range, 1);
1912 spl_fstrans_unmark(cookie);
1913 thread_exit();
1914 }
1915
1916 #define NUM_SNAPS_NOT_REDACTED UINT64_MAX
1917
1918 struct dmu_send_params {
1919 /* Pool args */
1920 const void *tag; // Tag dp was held with, will be used to release dp.
1921 dsl_pool_t *dp;
1922 /* To snapshot args */
1923 const char *tosnap;
1924 dsl_dataset_t *to_ds;
1925 /* From snapshot args */
1926 zfs_bookmark_phys_t ancestor_zb;
1927 uint64_t *fromredactsnaps;
1928 /* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1929 uint64_t numfromredactsnaps;
1930 /* Stream params */
1931 boolean_t is_clone;
1932 boolean_t embedok;
1933 boolean_t large_block_ok;
1934 boolean_t compressok;
1935 boolean_t rawok;
1936 boolean_t savedok;
1937 uint64_t resumeobj;
1938 uint64_t resumeoff;
1939 uint64_t saved_guid;
1940 zfs_bookmark_phys_t *redactbook;
1941 /* Stream output params */
1942 dmu_send_outparams_t *dso;
1943
1944 /* Stream progress params */
1945 offset_t *off;
1946 int outfd;
1947 char saved_toname[MAXNAMELEN];
1948 };
1949
1950 static int
1951 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1952 uint64_t *featureflags)
1953 {
1954 dsl_dataset_t *to_ds = dspp->to_ds;
1955 dsl_pool_t *dp = dspp->dp;
1956
1957 if (dmu_objset_type(os) == DMU_OST_ZFS) {
1958 uint64_t version;
1959 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1960 return (SET_ERROR(EINVAL));
1961
1962 if (version >= ZPL_VERSION_SA)
1963 *featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1964 }
1965
1966 /* raw sends imply large_block_ok */
1967 if ((dspp->rawok || dspp->large_block_ok) &&
1968 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1969 *featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1970 }
1971
1972 /* encrypted datasets will not have embedded blocks */
1973 if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1974 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1975 *featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1976 }
1977
1978 /* raw send implies compressok */
1979 if (dspp->compressok || dspp->rawok)
1980 *featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1981
1982 if (dspp->rawok && os->os_encrypted)
1983 *featureflags |= DMU_BACKUP_FEATURE_RAW;
1984
1985 if ((*featureflags &
1986 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1987 DMU_BACKUP_FEATURE_RAW)) != 0 &&
1988 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1989 *featureflags |= DMU_BACKUP_FEATURE_LZ4;
1990 }
1991
1992 /*
1993 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1994 * allow sending ZSTD compressed datasets to a receiver that does not
1995 * support ZSTD
1996 */
1997 if ((*featureflags &
1998 (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
1999 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2000 *featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2001 }
2002
2003 if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2004 *featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2005 }
2006
2007 if (dspp->redactbook != NULL) {
2008 *featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2009 }
2010
2011 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2012 *featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2013 }
2014 return (0);
2015 }
2016
2017 static dmu_replay_record_t *
2018 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2019 uint64_t featureflags)
2020 {
2021 dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2022 KM_SLEEP);
2023 drr->drr_type = DRR_BEGIN;
2024
2025 struct drr_begin *drrb = &drr->drr_u.drr_begin;
2026 dsl_dataset_t *to_ds = dspp->to_ds;
2027
2028 drrb->drr_magic = DMU_BACKUP_MAGIC;
2029 drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2030 drrb->drr_type = dmu_objset_type(os);
2031 drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2032 drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2033
2034 DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2035 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2036
2037 if (dspp->is_clone)
2038 drrb->drr_flags |= DRR_FLAG_CLONE;
2039 if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2040 drrb->drr_flags |= DRR_FLAG_CI_DATA;
2041 if (zfs_send_set_freerecords_bit)
2042 drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2043 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2044
2045 if (dspp->savedok) {
2046 drrb->drr_toguid = dspp->saved_guid;
2047 strlcpy(drrb->drr_toname, dspp->saved_toname,
2048 sizeof (drrb->drr_toname));
2049 } else {
2050 dsl_dataset_name(to_ds, drrb->drr_toname);
2051 if (!to_ds->ds_is_snapshot) {
2052 (void) strlcat(drrb->drr_toname, "@--head--",
2053 sizeof (drrb->drr_toname));
2054 }
2055 }
2056 return (drr);
2057 }
2058
2059 static void
2060 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2061 dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2062 {
2063 VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2064 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2065 offsetof(struct send_range, ln)));
2066 to_arg->error_code = 0;
2067 to_arg->cancel = B_FALSE;
2068 to_arg->os = to_os;
2069 to_arg->fromtxg = fromtxg;
2070 to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2071 if (rawok)
2072 to_arg->flags |= TRAVERSE_NO_DECRYPT;
2073 if (zfs_send_corrupt_data)
2074 to_arg->flags |= TRAVERSE_HARD;
2075 to_arg->num_blocks_visited = &dssp->dss_blocks;
2076 (void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2077 curproc, TS_RUN, minclsyspri);
2078 }
2079
2080 static void
2081 setup_from_thread(struct redact_list_thread_arg *from_arg,
2082 redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2083 {
2084 VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2085 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2086 offsetof(struct send_range, ln)));
2087 from_arg->error_code = 0;
2088 from_arg->cancel = B_FALSE;
2089 from_arg->rl = from_rl;
2090 from_arg->mark_redact = B_FALSE;
2091 from_arg->num_blocks_visited = &dssp->dss_blocks;
2092 /*
2093 * If from_ds is null, send_traverse_thread just returns success and
2094 * enqueues an eos marker.
2095 */
2096 (void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2097 curproc, TS_RUN, minclsyspri);
2098 }
2099
2100 static void
2101 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2102 struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2103 {
2104 if (dspp->redactbook == NULL)
2105 return;
2106
2107 rlt_arg->cancel = B_FALSE;
2108 VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2109 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2110 offsetof(struct send_range, ln)));
2111 rlt_arg->error_code = 0;
2112 rlt_arg->mark_redact = B_TRUE;
2113 rlt_arg->rl = rl;
2114 rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2115
2116 (void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2117 curproc, TS_RUN, minclsyspri);
2118 }
2119
2120 static void
2121 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2122 struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2123 struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2124 objset_t *os)
2125 {
2126 VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2127 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2128 offsetof(struct send_range, ln)));
2129 smt_arg->cancel = B_FALSE;
2130 smt_arg->error = 0;
2131 smt_arg->from_arg = from_arg;
2132 smt_arg->to_arg = to_arg;
2133 if (dspp->redactbook != NULL)
2134 smt_arg->redact_arg = rlt_arg;
2135
2136 smt_arg->os = os;
2137 (void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2138 TS_RUN, minclsyspri);
2139 }
2140
2141 static void
2142 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2143 struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2144 uint64_t featureflags)
2145 {
2146 VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2147 MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2148 offsetof(struct send_range, ln)));
2149 srt_arg->smta = smt_arg;
2150 srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2151 srt_arg->featureflags = featureflags;
2152 (void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2153 curproc, TS_RUN, minclsyspri);
2154 }
2155
2156 static int
2157 setup_resume_points(struct dmu_send_params *dspp,
2158 struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2159 struct redact_list_thread_arg *rlt_arg,
2160 struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2161 redaction_list_t *redact_rl, nvlist_t *nvl)
2162 {
2163 (void) smt_arg;
2164 dsl_dataset_t *to_ds = dspp->to_ds;
2165 int err = 0;
2166
2167 uint64_t obj = 0;
2168 uint64_t blkid = 0;
2169 if (resuming) {
2170 obj = dspp->resumeobj;
2171 dmu_object_info_t to_doi;
2172 err = dmu_object_info(os, obj, &to_doi);
2173 if (err != 0)
2174 return (err);
2175
2176 blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2177 }
2178 /*
2179 * If we're resuming a redacted send, we can skip to the appropriate
2180 * point in the redaction bookmark by binary searching through it.
2181 */
2182 if (redact_rl != NULL) {
2183 SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2184 }
2185
2186 SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2187 if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2188 uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2189 /*
2190 * Note: If the resume point is in an object whose
2191 * blocksize is different in the from vs to snapshots,
2192 * we will have divided by the "wrong" blocksize.
2193 * However, in this case fromsnap's send_cb() will
2194 * detect that the blocksize has changed and therefore
2195 * ignore this object.
2196 *
2197 * If we're resuming a send from a redaction bookmark,
2198 * we still cannot accidentally suggest blocks behind
2199 * the to_ds. In addition, we know that any blocks in
2200 * the object in the to_ds will have to be sent, since
2201 * the size changed. Therefore, we can't cause any harm
2202 * this way either.
2203 */
2204 SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2205 }
2206 if (resuming) {
2207 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2208 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2209 }
2210 return (0);
2211 }
2212
2213 static dmu_sendstatus_t *
2214 setup_send_progress(struct dmu_send_params *dspp)
2215 {
2216 dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2217 dssp->dss_outfd = dspp->outfd;
2218 dssp->dss_off = dspp->off;
2219 dssp->dss_proc = curproc;
2220 mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2221 list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2222 mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2223 return (dssp);
2224 }
2225
2226 /*
2227 * Actually do the bulk of the work in a zfs send.
2228 *
2229 * The idea is that we want to do a send from ancestor_zb to to_ds. We also
2230 * want to not send any data that has been modified by all the datasets in
2231 * redactsnaparr, and store the list of blocks that are redacted in this way in
2232 * a bookmark named redactbook, created on the to_ds. We do this by creating
2233 * several worker threads, whose function is described below.
2234 *
2235 * There are three cases.
2236 * The first case is a redacted zfs send. In this case there are 5 threads.
2237 * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2238 * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2239 * it's a full send, that's all blocks in the dataset). It then sends those
2240 * blocks on to the send merge thread. The redact list thread takes the data
2241 * from the redaction bookmark and sends those blocks on to the send merge
2242 * thread. The send merge thread takes the data from the to_ds traversal
2243 * thread, and combines it with the redaction records from the redact list
2244 * thread. If a block appears in both the to_ds's data and the redaction data,
2245 * the send merge thread will mark it as redacted and send it on to the prefetch
2246 * thread. Otherwise, the send merge thread will send the block on to the
2247 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2248 * any data that isn't redacted, and then send the data on to the main thread.
2249 * The main thread behaves the same as in a normal send case, issuing demand
2250 * reads for data blocks and sending out records over the network
2251 *
2252 * The graphic below diagrams the flow of data in the case of a redacted zfs
2253 * send. Each box represents a thread, and each line represents the flow of
2254 * data.
2255 *
2256 * Records from the |
2257 * redaction bookmark |
2258 * +--------------------+ | +---------------------------+
2259 * | | v | Send Merge Thread |
2260 * | Redact List Thread +----------> Apply redaction marks to |
2261 * | | | records as specified by |
2262 * +--------------------+ | redaction ranges |
2263 * +----^---------------+------+
2264 * | | Merged data
2265 * | |
2266 * | +------------v--------+
2267 * | | Prefetch Thread |
2268 * +--------------------+ | | Issues prefetch |
2269 * | to_ds Traversal | | | reads of data blocks|
2270 * | Thread (finds +---------------+ +------------+--------+
2271 * | candidate blocks) | Blocks modified | Prefetched data
2272 * +--------------------+ by to_ds since |
2273 * ancestor_zb +------------v----+
2274 * | Main Thread | File Descriptor
2275 * | Sends data over +->(to zfs receive)
2276 * | wire |
2277 * +-----------------+
2278 *
2279 * The second case is an incremental send from a redaction bookmark. The to_ds
2280 * traversal thread and the main thread behave the same as in the redacted
2281 * send case. The new thread is the from bookmark traversal thread. It
2282 * iterates over the redaction list in the redaction bookmark, and enqueues
2283 * records for each block that was redacted in the original send. The send
2284 * merge thread now has to merge the data from the two threads. For details
2285 * about that process, see the header comment of send_merge_thread(). Any data
2286 * it decides to send on will be prefetched by the prefetch thread. Note that
2287 * you can perform a redacted send from a redaction bookmark; in that case,
2288 * the data flow behaves very similarly to the flow in the redacted send case,
2289 * except with the addition of the bookmark traversal thread iterating over the
2290 * redaction bookmark. The send_merge_thread also has to take on the
2291 * responsibility of merging the redact list thread's records, the bookmark
2292 * traversal thread's records, and the to_ds records.
2293 *
2294 * +---------------------+
2295 * | |
2296 * | Redact List Thread +--------------+
2297 * | | |
2298 * +---------------------+ |
2299 * Blocks in redaction list | Ranges modified by every secure snap
2300 * of from bookmark | (or EOS if not readcted)
2301 * |
2302 * +---------------------+ | +----v----------------------+
2303 * | bookmark Traversal | v | Send Merge Thread |
2304 * | Thread (finds +---------> Merges bookmark, rlt, and |
2305 * | candidate blocks) | | to_ds send records |
2306 * +---------------------+ +----^---------------+------+
2307 * | | Merged data
2308 * | +------------v--------+
2309 * | | Prefetch Thread |
2310 * +--------------------+ | | Issues prefetch |
2311 * | to_ds Traversal | | | reads of data blocks|
2312 * | Thread (finds +---------------+ +------------+--------+
2313 * | candidate blocks) | Blocks modified | Prefetched data
2314 * +--------------------+ by to_ds since +------------v----+
2315 * ancestor_zb | Main Thread | File Descriptor
2316 * | Sends data over +->(to zfs receive)
2317 * | wire |
2318 * +-----------------+
2319 *
2320 * The final case is a simple zfs full or incremental send. The to_ds traversal
2321 * thread behaves the same as always. The redact list thread is never started.
2322 * The send merge thread takes all the blocks that the to_ds traversal thread
2323 * sends it, prefetches the data, and sends the blocks on to the main thread.
2324 * The main thread sends the data over the wire.
2325 *
2326 * To keep performance acceptable, we want to prefetch the data in the worker
2327 * threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH
2328 * feature built into traverse_dataset, the combining and deletion of records
2329 * due to redaction and sends from redaction bookmarks mean that we could
2330 * issue many unnecessary prefetches. As a result, we only prefetch data
2331 * after we've determined that the record is not going to be redacted. To
2332 * prevent the prefetching from getting too far ahead of the main thread, the
2333 * blocking queues that are used for communication are capped not by the
2334 * number of entries in the queue, but by the sum of the size of the
2335 * prefetches associated with them. The limit on the amount of data that the
2336 * thread can prefetch beyond what the main thread has reached is controlled
2337 * by the global variable zfs_send_queue_length. In addition, to prevent poor
2338 * performance in the beginning of a send, we also limit the distance ahead
2339 * that the traversal threads can be. That distance is controlled by the
2340 * zfs_send_no_prefetch_queue_length tunable.
2341 *
2342 * Note: Releases dp using the specified tag.
2343 */
2344 static int
2345 dmu_send_impl(struct dmu_send_params *dspp)
2346 {
2347 objset_t *os;
2348 dmu_replay_record_t *drr;
2349 dmu_sendstatus_t *dssp;
2350 dmu_send_cookie_t dsc = {0};
2351 int err;
2352 uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2353 uint64_t featureflags = 0;
2354 struct redact_list_thread_arg *from_arg;
2355 struct send_thread_arg *to_arg;
2356 struct redact_list_thread_arg *rlt_arg;
2357 struct send_merge_thread_arg *smt_arg;
2358 struct send_reader_thread_arg *srt_arg;
2359 struct send_range *range;
2360 redaction_list_t *from_rl = NULL;
2361 redaction_list_t *redact_rl = NULL;
2362 boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2363 boolean_t book_resuming = resuming;
2364
2365 dsl_dataset_t *to_ds = dspp->to_ds;
2366 zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2367 dsl_pool_t *dp = dspp->dp;
2368 const void *tag = dspp->tag;
2369
2370 err = dmu_objset_from_ds(to_ds, &os);
2371 if (err != 0) {
2372 dsl_pool_rele(dp, tag);
2373 return (err);
2374 }
2375
2376 /*
2377 * If this is a non-raw send of an encrypted ds, we can ensure that
2378 * the objset_phys_t is authenticated. This is safe because this is
2379 * either a snapshot or we have owned the dataset, ensuring that
2380 * it can't be modified.
2381 */
2382 if (!dspp->rawok && os->os_encrypted &&
2383 arc_is_unauthenticated(os->os_phys_buf)) {
2384 zbookmark_phys_t zb;
2385
2386 SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2387 ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2388 err = arc_untransform(os->os_phys_buf, os->os_spa,
2389 &zb, B_FALSE);
2390 if (err != 0) {
2391 dsl_pool_rele(dp, tag);
2392 return (err);
2393 }
2394
2395 ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2396 }
2397
2398 if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2399 dsl_pool_rele(dp, tag);
2400 return (err);
2401 }
2402
2403 /*
2404 * If we're doing a redacted send, hold the bookmark's redaction list.
2405 */
2406 if (dspp->redactbook != NULL) {
2407 err = dsl_redaction_list_hold_obj(dp,
2408 dspp->redactbook->zbm_redaction_obj, FTAG,
2409 &redact_rl);
2410 if (err != 0) {
2411 dsl_pool_rele(dp, tag);
2412 return (SET_ERROR(EINVAL));
2413 }
2414 dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2415 }
2416
2417 /*
2418 * If we're sending from a redaction bookmark, hold the redaction list
2419 * so that we can consider sending the redacted blocks.
2420 */
2421 if (ancestor_zb->zbm_redaction_obj != 0) {
2422 err = dsl_redaction_list_hold_obj(dp,
2423 ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2424 if (err != 0) {
2425 if (redact_rl != NULL) {
2426 dsl_redaction_list_long_rele(redact_rl, FTAG);
2427 dsl_redaction_list_rele(redact_rl, FTAG);
2428 }
2429 dsl_pool_rele(dp, tag);
2430 return (SET_ERROR(EINVAL));
2431 }
2432 dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2433 }
2434
2435 dsl_dataset_long_hold(to_ds, FTAG);
2436
2437 from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2438 to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2439 rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2440 smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2441 srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2442
2443 drr = create_begin_record(dspp, os, featureflags);
2444 dssp = setup_send_progress(dspp);
2445
2446 dsc.dsc_drr = drr;
2447 dsc.dsc_dso = dspp->dso;
2448 dsc.dsc_os = os;
2449 dsc.dsc_off = dspp->off;
2450 dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2451 dsc.dsc_fromtxg = fromtxg;
2452 dsc.dsc_pending_op = PENDING_NONE;
2453 dsc.dsc_featureflags = featureflags;
2454 dsc.dsc_resume_object = dspp->resumeobj;
2455 dsc.dsc_resume_offset = dspp->resumeoff;
2456
2457 dsl_pool_rele(dp, tag);
2458
2459 void *payload = NULL;
2460 size_t payload_len = 0;
2461 nvlist_t *nvl = fnvlist_alloc();
2462
2463 /*
2464 * If we're doing a redacted send, we include the snapshots we're
2465 * redacted with respect to so that the target system knows what send
2466 * streams can be correctly received on top of this dataset. If we're
2467 * instead sending a redacted dataset, we include the snapshots that the
2468 * dataset was created with respect to.
2469 */
2470 if (dspp->redactbook != NULL) {
2471 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2472 redact_rl->rl_phys->rlp_snaps,
2473 redact_rl->rl_phys->rlp_num_snaps);
2474 } else if (dsl_dataset_feature_is_active(to_ds,
2475 SPA_FEATURE_REDACTED_DATASETS)) {
2476 uint64_t *tods_guids;
2477 uint64_t length;
2478 VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2479 SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2480 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2481 length);
2482 }
2483
2484 /*
2485 * If we're sending from a redaction bookmark, then we should retrieve
2486 * the guids of that bookmark so we can send them over the wire.
2487 */
2488 if (from_rl != NULL) {
2489 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2490 from_rl->rl_phys->rlp_snaps,
2491 from_rl->rl_phys->rlp_num_snaps);
2492 }
2493
2494 /*
2495 * If the snapshot we're sending from is redacted, include the redaction
2496 * list in the stream.
2497 */
2498 if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2499 ASSERT3P(from_rl, ==, NULL);
2500 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2501 dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2502 if (dspp->numfromredactsnaps > 0) {
2503 kmem_free(dspp->fromredactsnaps,
2504 dspp->numfromredactsnaps * sizeof (uint64_t));
2505 dspp->fromredactsnaps = NULL;
2506 }
2507 }
2508
2509 if (resuming || book_resuming) {
2510 err = setup_resume_points(dspp, to_arg, from_arg,
2511 rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2512 if (err != 0)
2513 goto out;
2514 }
2515
2516 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2517 uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2518 nvlist_t *keynvl = NULL;
2519 ASSERT(os->os_encrypted);
2520
2521 err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2522 &keynvl);
2523 if (err != 0) {
2524 fnvlist_free(nvl);
2525 goto out;
2526 }
2527
2528 fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2529 fnvlist_free(keynvl);
2530 }
2531
2532 if (!nvlist_empty(nvl)) {
2533 payload = fnvlist_pack(nvl, &payload_len);
2534 drr->drr_payloadlen = payload_len;
2535 }
2536
2537 fnvlist_free(nvl);
2538 err = dump_record(&dsc, payload, payload_len);
2539 fnvlist_pack_free(payload, payload_len);
2540 if (err != 0) {
2541 err = dsc.dsc_err;
2542 goto out;
2543 }
2544
2545 setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2546 setup_from_thread(from_arg, from_rl, dssp);
2547 setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2548 setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2549 setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2550
2551 range = bqueue_dequeue(&srt_arg->q);
2552 while (err == 0 && !range->eos_marker) {
2553 err = do_dump(&dsc, range);
2554 range = get_next_range(&srt_arg->q, range);
2555 if (issig(JUSTLOOKING) && issig(FORREAL))
2556 err = SET_ERROR(EINTR);
2557 }
2558
2559 /*
2560 * If we hit an error or are interrupted, cancel our worker threads and
2561 * clear the queue of any pending records. The threads will pass the
2562 * cancel up the tree of worker threads, and each one will clean up any
2563 * pending records before exiting.
2564 */
2565 if (err != 0) {
2566 srt_arg->cancel = B_TRUE;
2567 while (!range->eos_marker) {
2568 range = get_next_range(&srt_arg->q, range);
2569 }
2570 }
2571 range_free(range);
2572
2573 bqueue_destroy(&srt_arg->q);
2574 bqueue_destroy(&smt_arg->q);
2575 if (dspp->redactbook != NULL)
2576 bqueue_destroy(&rlt_arg->q);
2577 bqueue_destroy(&to_arg->q);
2578 bqueue_destroy(&from_arg->q);
2579
2580 if (err == 0 && srt_arg->error != 0)
2581 err = srt_arg->error;
2582
2583 if (err != 0)
2584 goto out;
2585
2586 if (dsc.dsc_pending_op != PENDING_NONE)
2587 if (dump_record(&dsc, NULL, 0) != 0)
2588 err = SET_ERROR(EINTR);
2589
2590 if (err != 0) {
2591 if (err == EINTR && dsc.dsc_err != 0)
2592 err = dsc.dsc_err;
2593 goto out;
2594 }
2595
2596 /*
2597 * Send the DRR_END record if this is not a saved stream.
2598 * Otherwise, the omitted DRR_END record will signal to
2599 * the receive side that the stream is incomplete.
2600 */
2601 if (!dspp->savedok) {
2602 memset(drr, 0, sizeof (dmu_replay_record_t));
2603 drr->drr_type = DRR_END;
2604 drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2605 drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2606
2607 if (dump_record(&dsc, NULL, 0) != 0)
2608 err = dsc.dsc_err;
2609 }
2610 out:
2611 mutex_enter(&to_ds->ds_sendstream_lock);
2612 list_remove(&to_ds->ds_sendstreams, dssp);
2613 mutex_exit(&to_ds->ds_sendstream_lock);
2614
2615 VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2616 (dsc.dsc_sent_end || dspp->savedok)));
2617
2618 kmem_free(drr, sizeof (dmu_replay_record_t));
2619 kmem_free(dssp, sizeof (dmu_sendstatus_t));
2620 kmem_free(from_arg, sizeof (*from_arg));
2621 kmem_free(to_arg, sizeof (*to_arg));
2622 kmem_free(rlt_arg, sizeof (*rlt_arg));
2623 kmem_free(smt_arg, sizeof (*smt_arg));
2624 kmem_free(srt_arg, sizeof (*srt_arg));
2625
2626 dsl_dataset_long_rele(to_ds, FTAG);
2627 if (from_rl != NULL) {
2628 dsl_redaction_list_long_rele(from_rl, FTAG);
2629 dsl_redaction_list_rele(from_rl, FTAG);
2630 }
2631 if (redact_rl != NULL) {
2632 dsl_redaction_list_long_rele(redact_rl, FTAG);
2633 dsl_redaction_list_rele(redact_rl, FTAG);
2634 }
2635
2636 return (err);
2637 }
2638
2639 int
2640 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2641 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2642 boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2643 dmu_send_outparams_t *dsop)
2644 {
2645 int err;
2646 dsl_dataset_t *fromds;
2647 ds_hold_flags_t dsflags;
2648 struct dmu_send_params dspp = {0};
2649 dspp.embedok = embedok;
2650 dspp.large_block_ok = large_block_ok;
2651 dspp.compressok = compressok;
2652 dspp.outfd = outfd;
2653 dspp.off = off;
2654 dspp.dso = dsop;
2655 dspp.tag = FTAG;
2656 dspp.rawok = rawok;
2657 dspp.savedok = savedok;
2658
2659 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2660 err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2661 if (err != 0)
2662 return (err);
2663
2664 err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2665 &dspp.to_ds);
2666 if (err != 0) {
2667 dsl_pool_rele(dspp.dp, FTAG);
2668 return (err);
2669 }
2670
2671 if (fromsnap != 0) {
2672 err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2673 FTAG, &fromds);
2674 if (err != 0) {
2675 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2676 dsl_pool_rele(dspp.dp, FTAG);
2677 return (err);
2678 }
2679 dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2680 dspp.ancestor_zb.zbm_creation_txg =
2681 dsl_dataset_phys(fromds)->ds_creation_txg;
2682 dspp.ancestor_zb.zbm_creation_time =
2683 dsl_dataset_phys(fromds)->ds_creation_time;
2684
2685 if (dsl_dataset_is_zapified(fromds)) {
2686 (void) zap_lookup(dspp.dp->dp_meta_objset,
2687 fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2688 &dspp.ancestor_zb.zbm_ivset_guid);
2689 }
2690
2691 /* See dmu_send for the reasons behind this. */
2692 uint64_t *fromredact;
2693
2694 if (!dsl_dataset_get_uint64_array_feature(fromds,
2695 SPA_FEATURE_REDACTED_DATASETS,
2696 &dspp.numfromredactsnaps,
2697 &fromredact)) {
2698 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2699 } else if (dspp.numfromredactsnaps > 0) {
2700 uint64_t size = dspp.numfromredactsnaps *
2701 sizeof (uint64_t);
2702 dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2703 memcpy(dspp.fromredactsnaps, fromredact, size);
2704 }
2705
2706 boolean_t is_before =
2707 dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2708 dspp.is_clone = (dspp.to_ds->ds_dir !=
2709 fromds->ds_dir);
2710 dsl_dataset_rele(fromds, FTAG);
2711 if (!is_before) {
2712 dsl_pool_rele(dspp.dp, FTAG);
2713 err = SET_ERROR(EXDEV);
2714 } else {
2715 err = dmu_send_impl(&dspp);
2716 }
2717 } else {
2718 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2719 err = dmu_send_impl(&dspp);
2720 }
2721 if (dspp.fromredactsnaps)
2722 kmem_free(dspp.fromredactsnaps,
2723 dspp.numfromredactsnaps * sizeof (uint64_t));
2724
2725 dsl_dataset_rele(dspp.to_ds, FTAG);
2726 return (err);
2727 }
2728
2729 int
2730 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2731 boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2732 boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2733 const char *redactbook, int outfd, offset_t *off,
2734 dmu_send_outparams_t *dsop)
2735 {
2736 int err = 0;
2737 ds_hold_flags_t dsflags;
2738 boolean_t owned = B_FALSE;
2739 dsl_dataset_t *fromds = NULL;
2740 zfs_bookmark_phys_t book = {0};
2741 struct dmu_send_params dspp = {0};
2742
2743 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2744 dspp.tosnap = tosnap;
2745 dspp.embedok = embedok;
2746 dspp.large_block_ok = large_block_ok;
2747 dspp.compressok = compressok;
2748 dspp.outfd = outfd;
2749 dspp.off = off;
2750 dspp.dso = dsop;
2751 dspp.tag = FTAG;
2752 dspp.resumeobj = resumeobj;
2753 dspp.resumeoff = resumeoff;
2754 dspp.rawok = rawok;
2755 dspp.savedok = savedok;
2756
2757 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2758 return (SET_ERROR(EINVAL));
2759
2760 err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2761 if (err != 0)
2762 return (err);
2763
2764 if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2765 /*
2766 * We are sending a filesystem or volume. Ensure
2767 * that it doesn't change by owning the dataset.
2768 */
2769
2770 if (savedok) {
2771 /*
2772 * We are looking for the dataset that represents the
2773 * partially received send stream. If this stream was
2774 * received as a new snapshot of an existing dataset,
2775 * this will be saved in a hidden clone named
2776 * "<pool>/<dataset>/%recv". Otherwise, the stream
2777 * will be saved in the live dataset itself. In
2778 * either case we need to use dsl_dataset_own_force()
2779 * because the stream is marked as inconsistent,
2780 * which would normally make it unavailable to be
2781 * owned.
2782 */
2783 char *name = kmem_asprintf("%s/%s", tosnap,
2784 recv_clone_name);
2785 err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2786 FTAG, &dspp.to_ds);
2787 if (err == ENOENT) {
2788 err = dsl_dataset_own_force(dspp.dp, tosnap,
2789 dsflags, FTAG, &dspp.to_ds);
2790 }
2791
2792 if (err == 0) {
2793 owned = B_TRUE;
2794 err = zap_lookup(dspp.dp->dp_meta_objset,
2795 dspp.to_ds->ds_object,
2796 DS_FIELD_RESUME_TOGUID, 8, 1,
2797 &dspp.saved_guid);
2798 }
2799
2800 if (err == 0) {
2801 err = zap_lookup(dspp.dp->dp_meta_objset,
2802 dspp.to_ds->ds_object,
2803 DS_FIELD_RESUME_TONAME, 1,
2804 sizeof (dspp.saved_toname),
2805 dspp.saved_toname);
2806 }
2807 /* Only disown if there was an error in the lookups */
2808 if (owned && (err != 0))
2809 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2810
2811 kmem_strfree(name);
2812 } else {
2813 err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2814 FTAG, &dspp.to_ds);
2815 if (err == 0)
2816 owned = B_TRUE;
2817 }
2818 } else {
2819 err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2820 &dspp.to_ds);
2821 }
2822
2823 if (err != 0) {
2824 /* Note: dsl dataset is not owned at this point */
2825 dsl_pool_rele(dspp.dp, FTAG);
2826 return (err);
2827 }
2828
2829 if (redactbook != NULL) {
2830 char path[ZFS_MAX_DATASET_NAME_LEN];
2831 (void) strlcpy(path, tosnap, sizeof (path));
2832 char *at = strchr(path, '@');
2833 if (at == NULL) {
2834 err = EINVAL;
2835 } else {
2836 (void) snprintf(at, sizeof (path) - (at - path), "#%s",
2837 redactbook);
2838 err = dsl_bookmark_lookup(dspp.dp, path,
2839 NULL, &book);
2840 dspp.redactbook = &book;
2841 }
2842 }
2843
2844 if (err != 0) {
2845 dsl_pool_rele(dspp.dp, FTAG);
2846 if (owned)
2847 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2848 else
2849 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2850 return (err);
2851 }
2852
2853 if (fromsnap != NULL) {
2854 zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2855 int fsnamelen;
2856 if (strpbrk(tosnap, "@#") != NULL)
2857 fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2858 else
2859 fsnamelen = strlen(tosnap);
2860
2861 /*
2862 * If the fromsnap is in a different filesystem, then
2863 * mark the send stream as a clone.
2864 */
2865 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2866 (fromsnap[fsnamelen] != '@' &&
2867 fromsnap[fsnamelen] != '#')) {
2868 dspp.is_clone = B_TRUE;
2869 }
2870
2871 if (strchr(fromsnap, '@') != NULL) {
2872 err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2873 &fromds);
2874
2875 if (err != 0) {
2876 ASSERT3P(fromds, ==, NULL);
2877 } else {
2878 /*
2879 * We need to make a deep copy of the redact
2880 * snapshots of the from snapshot, because the
2881 * array will be freed when we evict from_ds.
2882 */
2883 uint64_t *fromredact;
2884 if (!dsl_dataset_get_uint64_array_feature(
2885 fromds, SPA_FEATURE_REDACTED_DATASETS,
2886 &dspp.numfromredactsnaps,
2887 &fromredact)) {
2888 dspp.numfromredactsnaps =
2889 NUM_SNAPS_NOT_REDACTED;
2890 } else if (dspp.numfromredactsnaps > 0) {
2891 uint64_t size =
2892 dspp.numfromredactsnaps *
2893 sizeof (uint64_t);
2894 dspp.fromredactsnaps = kmem_zalloc(size,
2895 KM_SLEEP);
2896 memcpy(dspp.fromredactsnaps, fromredact,
2897 size);
2898 }
2899 if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2900 0)) {
2901 err = SET_ERROR(EXDEV);
2902 } else {
2903 zb->zbm_creation_txg =
2904 dsl_dataset_phys(fromds)->
2905 ds_creation_txg;
2906 zb->zbm_creation_time =
2907 dsl_dataset_phys(fromds)->
2908 ds_creation_time;
2909 zb->zbm_guid =
2910 dsl_dataset_phys(fromds)->ds_guid;
2911 zb->zbm_redaction_obj = 0;
2912
2913 if (dsl_dataset_is_zapified(fromds)) {
2914 (void) zap_lookup(
2915 dspp.dp->dp_meta_objset,
2916 fromds->ds_object,
2917 DS_FIELD_IVSET_GUID, 8, 1,
2918 &zb->zbm_ivset_guid);
2919 }
2920 }
2921 dsl_dataset_rele(fromds, FTAG);
2922 }
2923 } else {
2924 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2925 err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2926 zb);
2927 if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2928 zb->zbm_guid ==
2929 dsl_dataset_phys(dspp.to_ds)->ds_guid)
2930 err = 0;
2931 }
2932
2933 if (err == 0) {
2934 /* dmu_send_impl will call dsl_pool_rele for us. */
2935 err = dmu_send_impl(&dspp);
2936 } else {
2937 if (dspp.fromredactsnaps)
2938 kmem_free(dspp.fromredactsnaps,
2939 dspp.numfromredactsnaps *
2940 sizeof (uint64_t));
2941 dsl_pool_rele(dspp.dp, FTAG);
2942 }
2943 } else {
2944 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2945 err = dmu_send_impl(&dspp);
2946 }
2947 if (owned)
2948 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2949 else
2950 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2951 return (err);
2952 }
2953
2954 static int
2955 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2956 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2957 {
2958 int err = 0;
2959 uint64_t size;
2960 /*
2961 * Assume that space (both on-disk and in-stream) is dominated by
2962 * data. We will adjust for indirect blocks and the copies property,
2963 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2964 */
2965
2966 uint64_t recordsize;
2967 uint64_t record_count;
2968 objset_t *os;
2969 VERIFY0(dmu_objset_from_ds(ds, &os));
2970
2971 /* Assume all (uncompressed) blocks are recordsize. */
2972 if (zfs_override_estimate_recordsize != 0) {
2973 recordsize = zfs_override_estimate_recordsize;
2974 } else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2975 err = dsl_prop_get_int_ds(ds,
2976 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2977 } else {
2978 err = dsl_prop_get_int_ds(ds,
2979 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2980 }
2981 if (err != 0)
2982 return (err);
2983 record_count = uncompressed / recordsize;
2984
2985 /*
2986 * If we're estimating a send size for a compressed stream, use the
2987 * compressed data size to estimate the stream size. Otherwise, use the
2988 * uncompressed data size.
2989 */
2990 size = stream_compressed ? compressed : uncompressed;
2991
2992 /*
2993 * Subtract out approximate space used by indirect blocks.
2994 * Assume most space is used by data blocks (non-indirect, non-dnode).
2995 * Assume no ditto blocks or internal fragmentation.
2996 *
2997 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
2998 * block.
2999 */
3000 size -= record_count * sizeof (blkptr_t);
3001
3002 /* Add in the space for the record associated with each block. */
3003 size += record_count * sizeof (dmu_replay_record_t);
3004
3005 *sizep = size;
3006
3007 return (0);
3008 }
3009
3010 int
3011 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3012 zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3013 boolean_t saved, uint64_t *sizep)
3014 {
3015 int err;
3016 dsl_dataset_t *ds = origds;
3017 uint64_t uncomp, comp;
3018
3019 ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3020 ASSERT(fromds == NULL || frombook == NULL);
3021
3022 /*
3023 * If this is a saved send we may actually be sending
3024 * from the %recv clone used for resuming.
3025 */
3026 if (saved) {
3027 objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3028 uint64_t guid;
3029 char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3030
3031 dsl_dataset_name(origds, dsname);
3032 (void) strcat(dsname, "/");
3033 (void) strlcat(dsname, recv_clone_name, sizeof (dsname));
3034
3035 err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3036 dsname, FTAG, &ds);
3037 if (err != ENOENT && err != 0) {
3038 return (err);
3039 } else if (err == ENOENT) {
3040 ds = origds;
3041 }
3042
3043 /* check that this dataset has partially received data */
3044 err = zap_lookup(mos, ds->ds_object,
3045 DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3046 if (err != 0) {
3047 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3048 goto out;
3049 }
3050
3051 err = zap_lookup(mos, ds->ds_object,
3052 DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3053 if (err != 0) {
3054 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3055 goto out;
3056 }
3057 }
3058
3059 /* tosnap must be a snapshot or the target of a saved send */
3060 if (!ds->ds_is_snapshot && ds == origds)
3061 return (SET_ERROR(EINVAL));
3062
3063 if (fromds != NULL) {
3064 uint64_t used;
3065 if (!fromds->ds_is_snapshot) {
3066 err = SET_ERROR(EINVAL);
3067 goto out;
3068 }
3069
3070 if (!dsl_dataset_is_before(ds, fromds, 0)) {
3071 err = SET_ERROR(EXDEV);
3072 goto out;
3073 }
3074
3075 err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3076 &uncomp);
3077 if (err != 0)
3078 goto out;
3079 } else if (frombook != NULL) {
3080 uint64_t used;
3081 err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3082 &comp, &uncomp);
3083 if (err != 0)
3084 goto out;
3085 } else {
3086 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3087 comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3088 }
3089
3090 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3091 stream_compressed, sizep);
3092 /*
3093 * Add the size of the BEGIN and END records to the estimate.
3094 */
3095 *sizep += 2 * sizeof (dmu_replay_record_t);
3096
3097 out:
3098 if (ds != origds)
3099 dsl_dataset_rele(ds, FTAG);
3100 return (err);
3101 }
3102
3103 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3104 "Allow sending corrupt data");
3105
3106 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3107 "Maximum send queue length");
3108
3109 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3110 "Send unmodified spill blocks");
3111
3112 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3113 "Maximum send queue length for non-prefetch queues");
3114
3115 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3116 "Send queue fill fraction");
3117
3118 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3119 "Send queue fill fraction for non-prefetch queues");
3120
3121 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3122 "Override block size estimate with fixed size");