]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_send.c
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R
[mirror_zfs.git] / module / zfs / dmu_send.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 */
30
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/spa_impl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/zap.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/zfs_znode.h>
49 #include <zfs_fletcher.h>
50 #include <sys/avl.h>
51 #include <sys/ddt.h>
52 #include <sys/zfs_onexit.h>
53 #include <sys/dmu_send.h>
54 #include <sys/dsl_destroy.h>
55 #include <sys/blkptr.h>
56 #include <sys/dsl_bookmark.h>
57 #include <sys/zfeature.h>
58 #include <sys/bqueue.h>
59 #include <sys/zvol.h>
60 #include <sys/policy.h>
61
62 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
63 int zfs_send_corrupt_data = B_FALSE;
64 int zfs_send_queue_length = 16 * 1024 * 1024;
65 int zfs_recv_queue_length = 16 * 1024 * 1024;
66 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
67 int zfs_send_set_freerecords_bit = B_TRUE;
68
69 static char *dmu_recv_tag = "dmu_recv_tag";
70 const char *recv_clone_name = "%recv";
71
72 #define BP_SPAN(datablkszsec, indblkshift, level) \
73 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
74 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
75
76 static void byteswap_record(dmu_replay_record_t *drr);
77
78 struct send_thread_arg {
79 bqueue_t q;
80 dsl_dataset_t *ds; /* Dataset to traverse */
81 uint64_t fromtxg; /* Traverse from this txg */
82 int flags; /* flags to pass to traverse_dataset */
83 int error_code;
84 boolean_t cancel;
85 zbookmark_phys_t resume;
86 };
87
88 struct send_block_record {
89 boolean_t eos_marker; /* Marks the end of the stream */
90 blkptr_t bp;
91 zbookmark_phys_t zb;
92 uint8_t indblkshift;
93 uint16_t datablkszsec;
94 bqueue_node_t ln;
95 };
96
97 typedef struct dump_bytes_io {
98 dmu_sendarg_t *dbi_dsp;
99 void *dbi_buf;
100 int dbi_len;
101 } dump_bytes_io_t;
102
103 static void
104 dump_bytes_cb(void *arg)
105 {
106 dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg;
107 dmu_sendarg_t *dsp = dbi->dbi_dsp;
108 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
109 ssize_t resid; /* have to get resid to get detailed errno */
110
111 /*
112 * The code does not rely on this (len being a multiple of 8). We keep
113 * this assertion because of the corresponding assertion in
114 * receive_read(). Keeping this assertion ensures that we do not
115 * inadvertently break backwards compatibility (causing the assertion
116 * in receive_read() to trigger on old software).
117 *
118 * Removing the assertions could be rolled into a new feature that uses
119 * data that isn't 8-byte aligned; if the assertions were removed, a
120 * feature flag would have to be added.
121 */
122
123 ASSERT0(dbi->dbi_len % 8);
124
125 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
126 (caddr_t)dbi->dbi_buf, dbi->dbi_len,
127 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
128
129 mutex_enter(&ds->ds_sendstream_lock);
130 *dsp->dsa_off += dbi->dbi_len;
131 mutex_exit(&ds->ds_sendstream_lock);
132 }
133
134 static int
135 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
136 {
137 dump_bytes_io_t dbi;
138
139 dbi.dbi_dsp = dsp;
140 dbi.dbi_buf = buf;
141 dbi.dbi_len = len;
142
143 #if defined(HAVE_LARGE_STACKS)
144 dump_bytes_cb(&dbi);
145 #else
146 /*
147 * The vn_rdwr() call is performed in a taskq to ensure that there is
148 * always enough stack space to write safely to the target filesystem.
149 * The ZIO_TYPE_FREE threads are used because there can be a lot of
150 * them and they are used in vdev_file.c for a similar purpose.
151 */
152 spa_taskq_dispatch_sync(dmu_objset_spa(dsp->dsa_os), ZIO_TYPE_FREE,
153 ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP);
154 #endif /* HAVE_LARGE_STACKS */
155
156 return (dsp->dsa_err);
157 }
158
159 /*
160 * For all record types except BEGIN, fill in the checksum (overlaid in
161 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
162 * up to the start of the checksum itself.
163 */
164 static int
165 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
166 {
167 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
168 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
169 fletcher_4_incremental_native(dsp->dsa_drr,
170 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
171 &dsp->dsa_zc);
172 if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
173 dsp->dsa_sent_begin = B_TRUE;
174 } else {
175 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
176 drr_checksum.drr_checksum));
177 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
178 }
179 if (dsp->dsa_drr->drr_type == DRR_END) {
180 dsp->dsa_sent_end = B_TRUE;
181 }
182 fletcher_4_incremental_native(&dsp->dsa_drr->
183 drr_u.drr_checksum.drr_checksum,
184 sizeof (zio_cksum_t), &dsp->dsa_zc);
185 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
186 return (SET_ERROR(EINTR));
187 if (payload_len != 0) {
188 fletcher_4_incremental_native(payload, payload_len,
189 &dsp->dsa_zc);
190 if (dump_bytes(dsp, payload, payload_len) != 0)
191 return (SET_ERROR(EINTR));
192 }
193 return (0);
194 }
195
196 /*
197 * Fill in the drr_free struct, or perform aggregation if the previous record is
198 * also a free record, and the two are adjacent.
199 *
200 * Note that we send free records even for a full send, because we want to be
201 * able to receive a full send as a clone, which requires a list of all the free
202 * and freeobject records that were generated on the source.
203 */
204 static int
205 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
206 uint64_t length)
207 {
208 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
209
210 /*
211 * When we receive a free record, dbuf_free_range() assumes
212 * that the receiving system doesn't have any dbufs in the range
213 * being freed. This is always true because there is a one-record
214 * constraint: we only send one WRITE record for any given
215 * object,offset. We know that the one-record constraint is
216 * true because we always send data in increasing order by
217 * object,offset.
218 *
219 * If the increasing-order constraint ever changes, we should find
220 * another way to assert that the one-record constraint is still
221 * satisfied.
222 */
223 ASSERT(object > dsp->dsa_last_data_object ||
224 (object == dsp->dsa_last_data_object &&
225 offset > dsp->dsa_last_data_offset));
226
227 if (length != -1ULL && offset + length < offset)
228 length = -1ULL;
229
230 /*
231 * If there is a pending op, but it's not PENDING_FREE, push it out,
232 * since free block aggregation can only be done for blocks of the
233 * same type (i.e., DRR_FREE records can only be aggregated with
234 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
235 * aggregated with other DRR_FREEOBJECTS records.
236 */
237 if (dsp->dsa_pending_op != PENDING_NONE &&
238 dsp->dsa_pending_op != PENDING_FREE) {
239 if (dump_record(dsp, NULL, 0) != 0)
240 return (SET_ERROR(EINTR));
241 dsp->dsa_pending_op = PENDING_NONE;
242 }
243
244 if (dsp->dsa_pending_op == PENDING_FREE) {
245 /*
246 * There should never be a PENDING_FREE if length is -1
247 * (because dump_dnode is the only place where this
248 * function is called with a -1, and only after flushing
249 * any pending record).
250 */
251 ASSERT(length != -1ULL);
252 /*
253 * Check to see whether this free block can be aggregated
254 * with pending one.
255 */
256 if (drrf->drr_object == object && drrf->drr_offset +
257 drrf->drr_length == offset) {
258 drrf->drr_length += length;
259 return (0);
260 } else {
261 /* not a continuation. Push out pending record */
262 if (dump_record(dsp, NULL, 0) != 0)
263 return (SET_ERROR(EINTR));
264 dsp->dsa_pending_op = PENDING_NONE;
265 }
266 }
267 /* create a FREE record and make it pending */
268 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
269 dsp->dsa_drr->drr_type = DRR_FREE;
270 drrf->drr_object = object;
271 drrf->drr_offset = offset;
272 drrf->drr_length = length;
273 drrf->drr_toguid = dsp->dsa_toguid;
274 if (length == -1ULL) {
275 if (dump_record(dsp, NULL, 0) != 0)
276 return (SET_ERROR(EINTR));
277 } else {
278 dsp->dsa_pending_op = PENDING_FREE;
279 }
280
281 return (0);
282 }
283
284 static int
285 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
286 uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp,
287 void *data)
288 {
289 uint64_t payload_size;
290 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
291
292 /*
293 * We send data in increasing object, offset order.
294 * See comment in dump_free() for details.
295 */
296 ASSERT(object > dsp->dsa_last_data_object ||
297 (object == dsp->dsa_last_data_object &&
298 offset > dsp->dsa_last_data_offset));
299 dsp->dsa_last_data_object = object;
300 dsp->dsa_last_data_offset = offset + lsize - 1;
301
302 /*
303 * If there is any kind of pending aggregation (currently either
304 * a grouping of free objects or free blocks), push it out to
305 * the stream, since aggregation can't be done across operations
306 * of different types.
307 */
308 if (dsp->dsa_pending_op != PENDING_NONE) {
309 if (dump_record(dsp, NULL, 0) != 0)
310 return (SET_ERROR(EINTR));
311 dsp->dsa_pending_op = PENDING_NONE;
312 }
313 /* write a WRITE record */
314 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
315 dsp->dsa_drr->drr_type = DRR_WRITE;
316 drrw->drr_object = object;
317 drrw->drr_type = type;
318 drrw->drr_offset = offset;
319 drrw->drr_toguid = dsp->dsa_toguid;
320 drrw->drr_logical_size = lsize;
321
322 /* only set the compression fields if the buf is compressed */
323 if (lsize != psize) {
324 ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED);
325 ASSERT(!BP_IS_EMBEDDED(bp));
326 ASSERT(!BP_SHOULD_BYTESWAP(bp));
327 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
328 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
329 ASSERT3S(psize, >, 0);
330 ASSERT3S(lsize, >=, psize);
331
332 drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
333 drrw->drr_compressed_size = psize;
334 payload_size = drrw->drr_compressed_size;
335 } else {
336 payload_size = drrw->drr_logical_size;
337 }
338
339 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
340 /*
341 * There's no pre-computed checksum for partial-block
342 * writes or embedded BP's, so (like
343 * fletcher4-checkummed blocks) userland will have to
344 * compute a dedup-capable checksum itself.
345 */
346 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
347 } else {
348 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
349 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
350 ZCHECKSUM_FLAG_DEDUP)
351 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
352 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
353 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
354 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
355 drrw->drr_key.ddk_cksum = bp->blk_cksum;
356 }
357
358 if (dump_record(dsp, data, payload_size) != 0)
359 return (SET_ERROR(EINTR));
360 return (0);
361 }
362
363 static int
364 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
365 int blksz, const blkptr_t *bp)
366 {
367 char buf[BPE_PAYLOAD_SIZE];
368 struct drr_write_embedded *drrw =
369 &(dsp->dsa_drr->drr_u.drr_write_embedded);
370
371 if (dsp->dsa_pending_op != PENDING_NONE) {
372 if (dump_record(dsp, NULL, 0) != 0)
373 return (EINTR);
374 dsp->dsa_pending_op = PENDING_NONE;
375 }
376
377 ASSERT(BP_IS_EMBEDDED(bp));
378
379 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
380 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
381 drrw->drr_object = object;
382 drrw->drr_offset = offset;
383 drrw->drr_length = blksz;
384 drrw->drr_toguid = dsp->dsa_toguid;
385 drrw->drr_compression = BP_GET_COMPRESS(bp);
386 drrw->drr_etype = BPE_GET_ETYPE(bp);
387 drrw->drr_lsize = BPE_GET_LSIZE(bp);
388 drrw->drr_psize = BPE_GET_PSIZE(bp);
389
390 decode_embedded_bp_compressed(bp, buf);
391
392 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
393 return (EINTR);
394 return (0);
395 }
396
397 static int
398 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
399 {
400 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
401
402 if (dsp->dsa_pending_op != PENDING_NONE) {
403 if (dump_record(dsp, NULL, 0) != 0)
404 return (SET_ERROR(EINTR));
405 dsp->dsa_pending_op = PENDING_NONE;
406 }
407
408 /* write a SPILL record */
409 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
410 dsp->dsa_drr->drr_type = DRR_SPILL;
411 drrs->drr_object = object;
412 drrs->drr_length = blksz;
413 drrs->drr_toguid = dsp->dsa_toguid;
414
415 if (dump_record(dsp, data, blksz) != 0)
416 return (SET_ERROR(EINTR));
417 return (0);
418 }
419
420 static int
421 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
422 {
423 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
424
425 /*
426 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
427 * push it out, since free block aggregation can only be done for
428 * blocks of the same type (i.e., DRR_FREE records can only be
429 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
430 * can only be aggregated with other DRR_FREEOBJECTS records.
431 */
432 if (dsp->dsa_pending_op != PENDING_NONE &&
433 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
434 if (dump_record(dsp, NULL, 0) != 0)
435 return (SET_ERROR(EINTR));
436 dsp->dsa_pending_op = PENDING_NONE;
437 }
438 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
439 /*
440 * See whether this free object array can be aggregated
441 * with pending one
442 */
443 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
444 drrfo->drr_numobjs += numobjs;
445 return (0);
446 } else {
447 /* can't be aggregated. Push out pending record */
448 if (dump_record(dsp, NULL, 0) != 0)
449 return (SET_ERROR(EINTR));
450 dsp->dsa_pending_op = PENDING_NONE;
451 }
452 }
453
454 /* write a FREEOBJECTS record */
455 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
456 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
457 drrfo->drr_firstobj = firstobj;
458 drrfo->drr_numobjs = numobjs;
459 drrfo->drr_toguid = dsp->dsa_toguid;
460
461 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
462
463 return (0);
464 }
465
466 static int
467 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
468 {
469 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
470
471 if (object < dsp->dsa_resume_object) {
472 /*
473 * Note: when resuming, we will visit all the dnodes in
474 * the block of dnodes that we are resuming from. In
475 * this case it's unnecessary to send the dnodes prior to
476 * the one we are resuming from. We should be at most one
477 * block's worth of dnodes behind the resume point.
478 */
479 ASSERT3U(dsp->dsa_resume_object - object, <,
480 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
481 return (0);
482 }
483
484 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
485 return (dump_freeobjects(dsp, object, 1));
486
487 if (dsp->dsa_pending_op != PENDING_NONE) {
488 if (dump_record(dsp, NULL, 0) != 0)
489 return (SET_ERROR(EINTR));
490 dsp->dsa_pending_op = PENDING_NONE;
491 }
492
493 /* write an OBJECT record */
494 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
495 dsp->dsa_drr->drr_type = DRR_OBJECT;
496 drro->drr_object = object;
497 drro->drr_type = dnp->dn_type;
498 drro->drr_bonustype = dnp->dn_bonustype;
499 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
500 drro->drr_bonuslen = dnp->dn_bonuslen;
501 drro->drr_dn_slots = dnp->dn_extra_slots + 1;
502 drro->drr_checksumtype = dnp->dn_checksum;
503 drro->drr_compress = dnp->dn_compress;
504 drro->drr_toguid = dsp->dsa_toguid;
505
506 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
507 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
508 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
509
510 if (dump_record(dsp, DN_BONUS(dnp),
511 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
512 return (SET_ERROR(EINTR));
513 }
514
515 /* Free anything past the end of the file. */
516 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
517 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
518 return (SET_ERROR(EINTR));
519 if (dsp->dsa_err != 0)
520 return (SET_ERROR(EINTR));
521 return (0);
522 }
523
524 static boolean_t
525 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
526 {
527 if (!BP_IS_EMBEDDED(bp))
528 return (B_FALSE);
529
530 /*
531 * Compression function must be legacy, or explicitly enabled.
532 */
533 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
534 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4)))
535 return (B_FALSE);
536
537 /*
538 * Embed type must be explicitly enabled.
539 */
540 switch (BPE_GET_ETYPE(bp)) {
541 case BP_EMBEDDED_TYPE_DATA:
542 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
543 return (B_TRUE);
544 break;
545 default:
546 return (B_FALSE);
547 }
548 return (B_FALSE);
549 }
550
551 /*
552 * This is the callback function to traverse_dataset that acts as the worker
553 * thread for dmu_send_impl.
554 */
555 /*ARGSUSED*/
556 static int
557 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
558 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
559 {
560 struct send_thread_arg *sta = arg;
561 struct send_block_record *record;
562 uint64_t record_size;
563 int err = 0;
564
565 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
566 zb->zb_object >= sta->resume.zb_object);
567
568 if (sta->cancel)
569 return (SET_ERROR(EINTR));
570
571 if (bp == NULL) {
572 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
573 return (0);
574 } else if (zb->zb_level < 0) {
575 return (0);
576 }
577
578 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
579 record->eos_marker = B_FALSE;
580 record->bp = *bp;
581 record->zb = *zb;
582 record->indblkshift = dnp->dn_indblkshift;
583 record->datablkszsec = dnp->dn_datablkszsec;
584 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
585 bqueue_enqueue(&sta->q, record, record_size);
586
587 return (err);
588 }
589
590 /*
591 * This function kicks off the traverse_dataset. It also handles setting the
592 * error code of the thread in case something goes wrong, and pushes the End of
593 * Stream record when the traverse_dataset call has finished. If there is no
594 * dataset to traverse, the thread immediately pushes End of Stream marker.
595 */
596 static void
597 send_traverse_thread(void *arg)
598 {
599 struct send_thread_arg *st_arg = arg;
600 int err;
601 struct send_block_record *data;
602 fstrans_cookie_t cookie = spl_fstrans_mark();
603
604 if (st_arg->ds != NULL) {
605 err = traverse_dataset_resume(st_arg->ds,
606 st_arg->fromtxg, &st_arg->resume,
607 st_arg->flags, send_cb, st_arg);
608
609 if (err != EINTR)
610 st_arg->error_code = err;
611 }
612 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
613 data->eos_marker = B_TRUE;
614 bqueue_enqueue(&st_arg->q, data, 1);
615 spl_fstrans_unmark(cookie);
616 }
617
618 /*
619 * This function actually handles figuring out what kind of record needs to be
620 * dumped, reading the data (which has hopefully been prefetched), and calling
621 * the appropriate helper function.
622 */
623 static int
624 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
625 {
626 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
627 const blkptr_t *bp = &data->bp;
628 const zbookmark_phys_t *zb = &data->zb;
629 uint8_t indblkshift = data->indblkshift;
630 uint16_t dblkszsec = data->datablkszsec;
631 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
632 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
633 int err = 0;
634 uint64_t dnobj;
635
636 ASSERT3U(zb->zb_level, >=, 0);
637
638 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
639 zb->zb_object >= dsa->dsa_resume_object);
640
641 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
642 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
643 return (0);
644 } else if (BP_IS_HOLE(bp) &&
645 zb->zb_object == DMU_META_DNODE_OBJECT) {
646 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
647 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
648 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
649 } else if (BP_IS_HOLE(bp)) {
650 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
651 uint64_t offset = zb->zb_blkid * span;
652 err = dump_free(dsa, zb->zb_object, offset, span);
653 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
654 return (0);
655 } else if (type == DMU_OT_DNODE) {
656 dnode_phys_t *blk;
657 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
658 arc_flags_t aflags = ARC_FLAG_WAIT;
659 arc_buf_t *abuf;
660 int i;
661
662 ASSERT0(zb->zb_level);
663
664 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
665 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
666 &aflags, zb) != 0)
667 return (SET_ERROR(EIO));
668
669 blk = abuf->b_data;
670 dnobj = zb->zb_blkid * epb;
671 for (i = 0; i < epb; i += blk[i].dn_extra_slots + 1) {
672 err = dump_dnode(dsa, dnobj + i, blk + i);
673 if (err != 0)
674 break;
675 }
676 arc_buf_destroy(abuf, &abuf);
677 } else if (type == DMU_OT_SA) {
678 arc_flags_t aflags = ARC_FLAG_WAIT;
679 arc_buf_t *abuf;
680 int blksz = BP_GET_LSIZE(bp);
681
682 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
683 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
684 &aflags, zb) != 0)
685 return (SET_ERROR(EIO));
686
687 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
688 arc_buf_destroy(abuf, &abuf);
689 } else if (backup_do_embed(dsa, bp)) {
690 /* it's an embedded level-0 block of a regular object */
691 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
692 ASSERT0(zb->zb_level);
693 err = dump_write_embedded(dsa, zb->zb_object,
694 zb->zb_blkid * blksz, blksz, bp);
695 } else {
696 /* it's a level-0 block of a regular object */
697 arc_flags_t aflags = ARC_FLAG_WAIT;
698 arc_buf_t *abuf;
699 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
700 uint64_t offset;
701 enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
702
703 /*
704 * If we have large blocks stored on disk but the send flags
705 * don't allow us to send large blocks, we split the data from
706 * the arc buf into chunks.
707 */
708 boolean_t split_large_blocks =
709 data->datablkszsec > SPA_OLD_MAXBLOCKSIZE &&
710 !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
711 /*
712 * We should only request compressed data from the ARC if all
713 * the following are true:
714 * - stream compression was requested
715 * - we aren't splitting large blocks into smaller chunks
716 * - the data won't need to be byteswapped before sending
717 * - this isn't an embedded block
718 * - this isn't metadata (if receiving on a different endian
719 * system it can be byteswapped more easily)
720 */
721 boolean_t request_compressed =
722 (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
723 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
724 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
725
726 ASSERT0(zb->zb_level);
727 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
728 (zb->zb_object == dsa->dsa_resume_object &&
729 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
730
731 if (request_compressed)
732 zioflags |= ZIO_FLAG_RAW;
733
734 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
735 ZIO_PRIORITY_ASYNC_READ, zioflags,
736 &aflags, zb) != 0) {
737 if (zfs_send_corrupt_data) {
738 uint64_t *ptr;
739 /* Send a block filled with 0x"zfs badd bloc" */
740 abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA,
741 blksz);
742 for (ptr = abuf->b_data;
743 (char *)ptr < (char *)abuf->b_data + blksz;
744 ptr++)
745 *ptr = 0x2f5baddb10cULL;
746 } else {
747 return (SET_ERROR(EIO));
748 }
749 }
750
751 offset = zb->zb_blkid * blksz;
752
753 if (split_large_blocks) {
754 char *buf = abuf->b_data;
755 ASSERT3U(arc_get_compression(abuf), ==,
756 ZIO_COMPRESS_OFF);
757 while (blksz > 0 && err == 0) {
758 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
759 err = dump_write(dsa, type, zb->zb_object,
760 offset, n, n, NULL, buf);
761 offset += n;
762 buf += n;
763 blksz -= n;
764 }
765 } else {
766 err = dump_write(dsa, type, zb->zb_object, offset,
767 blksz, arc_buf_size(abuf), bp,
768 abuf->b_data);
769 }
770 arc_buf_destroy(abuf, &abuf);
771 }
772
773 ASSERT(err == 0 || err == EINTR);
774 return (err);
775 }
776
777 /*
778 * Pop the new data off the queue, and free the old data.
779 */
780 static struct send_block_record *
781 get_next_record(bqueue_t *bq, struct send_block_record *data)
782 {
783 struct send_block_record *tmp = bqueue_dequeue(bq);
784 kmem_free(data, sizeof (*data));
785 return (tmp);
786 }
787
788 /*
789 * Actually do the bulk of the work in a zfs send.
790 *
791 * Note: Releases dp using the specified tag.
792 */
793 static int
794 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
795 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone,
796 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
797 int outfd, uint64_t resumeobj, uint64_t resumeoff,
798 vnode_t *vp, offset_t *off)
799 {
800 objset_t *os;
801 dmu_replay_record_t *drr;
802 dmu_sendarg_t *dsp;
803 int err;
804 uint64_t fromtxg = 0;
805 uint64_t featureflags = 0;
806 struct send_thread_arg to_arg;
807 void *payload = NULL;
808 size_t payload_len = 0;
809 struct send_block_record *to_data;
810
811 err = dmu_objset_from_ds(to_ds, &os);
812 if (err != 0) {
813 dsl_pool_rele(dp, tag);
814 return (err);
815 }
816
817 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
818 drr->drr_type = DRR_BEGIN;
819 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
820 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
821 DMU_SUBSTREAM);
822
823 bzero(&to_arg, sizeof (to_arg));
824
825 #ifdef _KERNEL
826 if (dmu_objset_type(os) == DMU_OST_ZFS) {
827 uint64_t version;
828 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
829 kmem_free(drr, sizeof (dmu_replay_record_t));
830 dsl_pool_rele(dp, tag);
831 return (SET_ERROR(EINVAL));
832 }
833 if (version >= ZPL_VERSION_SA) {
834 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
835 }
836 }
837 #endif
838
839 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
840 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
841 if (to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE])
842 featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
843 if (embedok &&
844 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
845 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
846 }
847 if (compressok) {
848 featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
849 }
850 if ((featureflags &
851 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) !=
852 0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
853 featureflags |= DMU_BACKUP_FEATURE_LZ4;
854 }
855
856 if (resumeobj != 0 || resumeoff != 0) {
857 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
858 }
859
860 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
861 featureflags);
862
863 drr->drr_u.drr_begin.drr_creation_time =
864 dsl_dataset_phys(to_ds)->ds_creation_time;
865 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
866 if (is_clone)
867 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
868 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
869 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
870 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
871 if (zfs_send_set_freerecords_bit)
872 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
873
874 if (ancestor_zb != NULL) {
875 drr->drr_u.drr_begin.drr_fromguid =
876 ancestor_zb->zbm_guid;
877 fromtxg = ancestor_zb->zbm_creation_txg;
878 }
879 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
880 if (!to_ds->ds_is_snapshot) {
881 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
882 sizeof (drr->drr_u.drr_begin.drr_toname));
883 }
884
885 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
886
887 dsp->dsa_drr = drr;
888 dsp->dsa_vp = vp;
889 dsp->dsa_outfd = outfd;
890 dsp->dsa_proc = curproc;
891 dsp->dsa_os = os;
892 dsp->dsa_off = off;
893 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
894 dsp->dsa_pending_op = PENDING_NONE;
895 dsp->dsa_featureflags = featureflags;
896 dsp->dsa_resume_object = resumeobj;
897 dsp->dsa_resume_offset = resumeoff;
898
899 mutex_enter(&to_ds->ds_sendstream_lock);
900 list_insert_head(&to_ds->ds_sendstreams, dsp);
901 mutex_exit(&to_ds->ds_sendstream_lock);
902
903 dsl_dataset_long_hold(to_ds, FTAG);
904 dsl_pool_rele(dp, tag);
905
906 if (resumeobj != 0 || resumeoff != 0) {
907 dmu_object_info_t to_doi;
908 nvlist_t *nvl;
909 err = dmu_object_info(os, resumeobj, &to_doi);
910 if (err != 0)
911 goto out;
912 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
913 resumeoff / to_doi.doi_data_block_size);
914
915 nvl = fnvlist_alloc();
916 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
917 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
918 payload = fnvlist_pack(nvl, &payload_len);
919 drr->drr_payloadlen = payload_len;
920 fnvlist_free(nvl);
921 }
922
923 err = dump_record(dsp, payload, payload_len);
924 fnvlist_pack_free(payload, payload_len);
925 if (err != 0) {
926 err = dsp->dsa_err;
927 goto out;
928 }
929
930 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
931 offsetof(struct send_block_record, ln));
932 to_arg.error_code = 0;
933 to_arg.cancel = B_FALSE;
934 to_arg.ds = to_ds;
935 to_arg.fromtxg = fromtxg;
936 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
937 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
938 TS_RUN, minclsyspri);
939
940 to_data = bqueue_dequeue(&to_arg.q);
941
942 while (!to_data->eos_marker && err == 0) {
943 err = do_dump(dsp, to_data);
944 to_data = get_next_record(&to_arg.q, to_data);
945 if (issig(JUSTLOOKING) && issig(FORREAL))
946 err = EINTR;
947 }
948
949 if (err != 0) {
950 to_arg.cancel = B_TRUE;
951 while (!to_data->eos_marker) {
952 to_data = get_next_record(&to_arg.q, to_data);
953 }
954 }
955 kmem_free(to_data, sizeof (*to_data));
956
957 bqueue_destroy(&to_arg.q);
958
959 if (err == 0 && to_arg.error_code != 0)
960 err = to_arg.error_code;
961
962 if (err != 0)
963 goto out;
964
965 if (dsp->dsa_pending_op != PENDING_NONE)
966 if (dump_record(dsp, NULL, 0) != 0)
967 err = SET_ERROR(EINTR);
968
969 if (err != 0) {
970 if (err == EINTR && dsp->dsa_err != 0)
971 err = dsp->dsa_err;
972 goto out;
973 }
974
975 bzero(drr, sizeof (dmu_replay_record_t));
976 drr->drr_type = DRR_END;
977 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
978 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
979
980 if (dump_record(dsp, NULL, 0) != 0)
981 err = dsp->dsa_err;
982
983 out:
984 mutex_enter(&to_ds->ds_sendstream_lock);
985 list_remove(&to_ds->ds_sendstreams, dsp);
986 mutex_exit(&to_ds->ds_sendstream_lock);
987
988 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
989
990 kmem_free(drr, sizeof (dmu_replay_record_t));
991 kmem_free(dsp, sizeof (dmu_sendarg_t));
992
993 dsl_dataset_long_rele(to_ds, FTAG);
994
995 return (err);
996 }
997
998 int
999 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
1000 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
1001 int outfd, vnode_t *vp, offset_t *off)
1002 {
1003 dsl_pool_t *dp;
1004 dsl_dataset_t *ds;
1005 dsl_dataset_t *fromds = NULL;
1006 int err;
1007
1008 err = dsl_pool_hold(pool, FTAG, &dp);
1009 if (err != 0)
1010 return (err);
1011
1012 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
1013 if (err != 0) {
1014 dsl_pool_rele(dp, FTAG);
1015 return (err);
1016 }
1017
1018 if (fromsnap != 0) {
1019 zfs_bookmark_phys_t zb;
1020 boolean_t is_clone;
1021
1022 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
1023 if (err != 0) {
1024 dsl_dataset_rele(ds, FTAG);
1025 dsl_pool_rele(dp, FTAG);
1026 return (err);
1027 }
1028 if (!dsl_dataset_is_before(ds, fromds, 0))
1029 err = SET_ERROR(EXDEV);
1030 zb.zbm_creation_time =
1031 dsl_dataset_phys(fromds)->ds_creation_time;
1032 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
1033 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1034 is_clone = (fromds->ds_dir != ds->ds_dir);
1035 dsl_dataset_rele(fromds, FTAG);
1036 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1037 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
1038 } else {
1039 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1040 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
1041 }
1042 dsl_dataset_rele(ds, FTAG);
1043 return (err);
1044 }
1045
1046 int
1047 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
1048 boolean_t large_block_ok, boolean_t compressok, int outfd,
1049 uint64_t resumeobj, uint64_t resumeoff,
1050 vnode_t *vp, offset_t *off)
1051 {
1052 dsl_pool_t *dp;
1053 dsl_dataset_t *ds;
1054 int err;
1055 boolean_t owned = B_FALSE;
1056
1057 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
1058 return (SET_ERROR(EINVAL));
1059
1060 err = dsl_pool_hold(tosnap, FTAG, &dp);
1061 if (err != 0)
1062 return (err);
1063
1064 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
1065 /*
1066 * We are sending a filesystem or volume. Ensure
1067 * that it doesn't change by owning the dataset.
1068 */
1069 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
1070 owned = B_TRUE;
1071 } else {
1072 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
1073 }
1074 if (err != 0) {
1075 dsl_pool_rele(dp, FTAG);
1076 return (err);
1077 }
1078
1079 if (fromsnap != NULL) {
1080 zfs_bookmark_phys_t zb;
1081 boolean_t is_clone = B_FALSE;
1082 int fsnamelen = strchr(tosnap, '@') - tosnap;
1083
1084 /*
1085 * If the fromsnap is in a different filesystem, then
1086 * mark the send stream as a clone.
1087 */
1088 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1089 (fromsnap[fsnamelen] != '@' &&
1090 fromsnap[fsnamelen] != '#')) {
1091 is_clone = B_TRUE;
1092 }
1093
1094 if (strchr(fromsnap, '@')) {
1095 dsl_dataset_t *fromds;
1096 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1097 if (err == 0) {
1098 if (!dsl_dataset_is_before(ds, fromds, 0))
1099 err = SET_ERROR(EXDEV);
1100 zb.zbm_creation_time =
1101 dsl_dataset_phys(fromds)->ds_creation_time;
1102 zb.zbm_creation_txg =
1103 dsl_dataset_phys(fromds)->ds_creation_txg;
1104 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1105 is_clone = (ds->ds_dir != fromds->ds_dir);
1106 dsl_dataset_rele(fromds, FTAG);
1107 }
1108 } else {
1109 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1110 }
1111 if (err != 0) {
1112 dsl_dataset_rele(ds, FTAG);
1113 dsl_pool_rele(dp, FTAG);
1114 return (err);
1115 }
1116 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1117 embedok, large_block_ok, compressok,
1118 outfd, resumeobj, resumeoff, vp, off);
1119 } else {
1120 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1121 embedok, large_block_ok, compressok,
1122 outfd, resumeobj, resumeoff, vp, off);
1123 }
1124 if (owned)
1125 dsl_dataset_disown(ds, FTAG);
1126 else
1127 dsl_dataset_rele(ds, FTAG);
1128 return (err);
1129 }
1130
1131 static int
1132 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
1133 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
1134 {
1135 int err;
1136 uint64_t size;
1137 /*
1138 * Assume that space (both on-disk and in-stream) is dominated by
1139 * data. We will adjust for indirect blocks and the copies property,
1140 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1141 */
1142
1143 uint64_t recordsize;
1144 uint64_t record_count;
1145
1146 /* Assume all (uncompressed) blocks are recordsize. */
1147 err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
1148 &recordsize);
1149 if (err != 0)
1150 return (err);
1151 record_count = uncompressed / recordsize;
1152
1153 /*
1154 * If we're estimating a send size for a compressed stream, use the
1155 * compressed data size to estimate the stream size. Otherwise, use the
1156 * uncompressed data size.
1157 */
1158 size = stream_compressed ? compressed : uncompressed;
1159
1160 /*
1161 * Subtract out approximate space used by indirect blocks.
1162 * Assume most space is used by data blocks (non-indirect, non-dnode).
1163 * Assume no ditto blocks or internal fragmentation.
1164 *
1165 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1166 * block.
1167 */
1168 size -= record_count * sizeof (blkptr_t);
1169
1170 /* Add in the space for the record associated with each block. */
1171 size += record_count * sizeof (dmu_replay_record_t);
1172
1173 *sizep = size;
1174
1175 return (0);
1176 }
1177
1178 int
1179 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1180 boolean_t stream_compressed, uint64_t *sizep)
1181 {
1182 int err;
1183 uint64_t uncomp, comp;
1184
1185 ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
1186
1187 /* tosnap must be a snapshot */
1188 if (!ds->ds_is_snapshot)
1189 return (SET_ERROR(EINVAL));
1190
1191 /* fromsnap, if provided, must be a snapshot */
1192 if (fromds != NULL && !fromds->ds_is_snapshot)
1193 return (SET_ERROR(EINVAL));
1194
1195 /*
1196 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1197 * or the origin's fs.
1198 */
1199 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1200 return (SET_ERROR(EXDEV));
1201
1202 /* Get compressed and uncompressed size estimates of changed data. */
1203 if (fromds == NULL) {
1204 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1205 comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
1206 } else {
1207 uint64_t used;
1208 err = dsl_dataset_space_written(fromds, ds,
1209 &used, &comp, &uncomp);
1210 if (err != 0)
1211 return (err);
1212 }
1213
1214 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
1215 stream_compressed, sizep);
1216 return (err);
1217 }
1218
1219 struct calculate_send_arg {
1220 uint64_t uncompressed;
1221 uint64_t compressed;
1222 };
1223
1224 /*
1225 * Simple callback used to traverse the blocks of a snapshot and sum their
1226 * uncompressed and compressed sizes.
1227 */
1228 /* ARGSUSED */
1229 static int
1230 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1231 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1232 {
1233 struct calculate_send_arg *space = arg;
1234 if (bp != NULL && !BP_IS_HOLE(bp)) {
1235 space->uncompressed += BP_GET_UCSIZE(bp);
1236 space->compressed += BP_GET_PSIZE(bp);
1237 }
1238 return (0);
1239 }
1240
1241 /*
1242 * Given a desination snapshot and a TXG, calculate the approximate size of a
1243 * send stream sent from that TXG. from_txg may be zero, indicating that the
1244 * whole snapshot will be sent.
1245 */
1246 int
1247 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1248 boolean_t stream_compressed, uint64_t *sizep)
1249 {
1250 int err;
1251 struct calculate_send_arg size = { 0 };
1252
1253 ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
1254
1255 /* tosnap must be a snapshot */
1256 if (!dsl_dataset_is_snapshot(ds))
1257 return (SET_ERROR(EINVAL));
1258
1259 /* verify that from_txg is before the provided snapshot was taken */
1260 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1261 return (SET_ERROR(EXDEV));
1262 }
1263 /*
1264 * traverse the blocks of the snapshot with birth times after
1265 * from_txg, summing their uncompressed size
1266 */
1267 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1268 dmu_calculate_send_traversal, &size);
1269
1270 if (err)
1271 return (err);
1272
1273 err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed,
1274 size.compressed, stream_compressed, sizep);
1275 return (err);
1276 }
1277
1278 typedef struct dmu_recv_begin_arg {
1279 const char *drba_origin;
1280 dmu_recv_cookie_t *drba_cookie;
1281 cred_t *drba_cred;
1282 uint64_t drba_snapobj;
1283 } dmu_recv_begin_arg_t;
1284
1285 static int
1286 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1287 uint64_t fromguid)
1288 {
1289 uint64_t val;
1290 int error;
1291 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1292
1293 /* temporary clone name must not exist */
1294 error = zap_lookup(dp->dp_meta_objset,
1295 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1296 8, 1, &val);
1297 if (error != ENOENT)
1298 return (error == 0 ? EBUSY : error);
1299
1300 /* new snapshot name must not exist */
1301 error = zap_lookup(dp->dp_meta_objset,
1302 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1303 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1304 if (error != ENOENT)
1305 return (error == 0 ? EEXIST : error);
1306
1307 /*
1308 * Check snapshot limit before receiving. We'll recheck again at the
1309 * end, but might as well abort before receiving if we're already over
1310 * the limit.
1311 *
1312 * Note that we do not check the file system limit with
1313 * dsl_dir_fscount_check because the temporary %clones don't count
1314 * against that limit.
1315 */
1316 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1317 NULL, drba->drba_cred);
1318 if (error != 0)
1319 return (error);
1320
1321 if (fromguid != 0) {
1322 dsl_dataset_t *snap;
1323 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1324
1325 /* Find snapshot in this dir that matches fromguid. */
1326 while (obj != 0) {
1327 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1328 &snap);
1329 if (error != 0)
1330 return (SET_ERROR(ENODEV));
1331 if (snap->ds_dir != ds->ds_dir) {
1332 dsl_dataset_rele(snap, FTAG);
1333 return (SET_ERROR(ENODEV));
1334 }
1335 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1336 break;
1337 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1338 dsl_dataset_rele(snap, FTAG);
1339 }
1340 if (obj == 0)
1341 return (SET_ERROR(ENODEV));
1342
1343 if (drba->drba_cookie->drc_force) {
1344 drba->drba_snapobj = obj;
1345 } else {
1346 /*
1347 * If we are not forcing, there must be no
1348 * changes since fromsnap.
1349 */
1350 if (dsl_dataset_modified_since_snap(ds, snap)) {
1351 dsl_dataset_rele(snap, FTAG);
1352 return (SET_ERROR(ETXTBSY));
1353 }
1354 drba->drba_snapobj = ds->ds_prev->ds_object;
1355 }
1356
1357 dsl_dataset_rele(snap, FTAG);
1358 } else {
1359 /* if full, then must be forced */
1360 if (!drba->drba_cookie->drc_force)
1361 return (SET_ERROR(EEXIST));
1362 /* start from $ORIGIN@$ORIGIN, if supported */
1363 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1364 dp->dp_origin_snap->ds_object : 0;
1365 }
1366
1367 return (0);
1368
1369 }
1370
1371 static int
1372 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1373 {
1374 dmu_recv_begin_arg_t *drba = arg;
1375 dsl_pool_t *dp = dmu_tx_pool(tx);
1376 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1377 uint64_t fromguid = drrb->drr_fromguid;
1378 int flags = drrb->drr_flags;
1379 int error;
1380 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1381 dsl_dataset_t *ds;
1382 const char *tofs = drba->drba_cookie->drc_tofs;
1383
1384 /* already checked */
1385 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1386 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1387
1388 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1389 DMU_COMPOUNDSTREAM ||
1390 drrb->drr_type >= DMU_OST_NUMTYPES ||
1391 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1392 return (SET_ERROR(EINVAL));
1393
1394 /* Verify pool version supports SA if SA_SPILL feature set */
1395 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1396 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1397 return (SET_ERROR(ENOTSUP));
1398
1399 if (drba->drba_cookie->drc_resumable &&
1400 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1401 return (SET_ERROR(ENOTSUP));
1402
1403 /*
1404 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1405 * record to a plain WRITE record, so the pool must have the
1406 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1407 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1408 */
1409 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1410 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1411 return (SET_ERROR(ENOTSUP));
1412 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1413 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1414 return (SET_ERROR(ENOTSUP));
1415
1416 /*
1417 * The receiving code doesn't know how to translate large blocks
1418 * to smaller ones, so the pool must have the LARGE_BLOCKS
1419 * feature enabled if the stream has LARGE_BLOCKS.
1420 */
1421 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1422 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1423 return (SET_ERROR(ENOTSUP));
1424
1425 /*
1426 * The receiving code doesn't know how to translate large dnodes
1427 * to smaller ones, so the pool must have the LARGE_DNODE
1428 * feature enabled if the stream has LARGE_DNODE.
1429 */
1430 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
1431 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
1432 return (SET_ERROR(ENOTSUP));
1433
1434 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1435 if (error == 0) {
1436 /* target fs already exists; recv into temp clone */
1437
1438 /* Can't recv a clone into an existing fs */
1439 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1440 dsl_dataset_rele(ds, FTAG);
1441 return (SET_ERROR(EINVAL));
1442 }
1443
1444 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1445 dsl_dataset_rele(ds, FTAG);
1446 } else if (error == ENOENT) {
1447 /* target fs does not exist; must be a full backup or clone */
1448 char buf[ZFS_MAX_DATASET_NAME_LEN];
1449
1450 /*
1451 * If it's a non-clone incremental, we are missing the
1452 * target fs, so fail the recv.
1453 */
1454 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1455 drba->drba_origin))
1456 return (SET_ERROR(ENOENT));
1457
1458 /*
1459 * If we're receiving a full send as a clone, and it doesn't
1460 * contain all the necessary free records and freeobject
1461 * records, reject it.
1462 */
1463 if (fromguid == 0 && drba->drba_origin &&
1464 !(flags & DRR_FLAG_FREERECORDS))
1465 return (SET_ERROR(EINVAL));
1466
1467 /* Open the parent of tofs */
1468 ASSERT3U(strlen(tofs), <, sizeof (buf));
1469 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1470 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1471 if (error != 0)
1472 return (error);
1473
1474 /*
1475 * Check filesystem and snapshot limits before receiving. We'll
1476 * recheck snapshot limits again at the end (we create the
1477 * filesystems and increment those counts during begin_sync).
1478 */
1479 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1480 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1481 if (error != 0) {
1482 dsl_dataset_rele(ds, FTAG);
1483 return (error);
1484 }
1485
1486 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1487 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1488 if (error != 0) {
1489 dsl_dataset_rele(ds, FTAG);
1490 return (error);
1491 }
1492
1493 if (drba->drba_origin != NULL) {
1494 dsl_dataset_t *origin;
1495 error = dsl_dataset_hold(dp, drba->drba_origin,
1496 FTAG, &origin);
1497 if (error != 0) {
1498 dsl_dataset_rele(ds, FTAG);
1499 return (error);
1500 }
1501 if (!origin->ds_is_snapshot) {
1502 dsl_dataset_rele(origin, FTAG);
1503 dsl_dataset_rele(ds, FTAG);
1504 return (SET_ERROR(EINVAL));
1505 }
1506 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1507 fromguid != 0) {
1508 dsl_dataset_rele(origin, FTAG);
1509 dsl_dataset_rele(ds, FTAG);
1510 return (SET_ERROR(ENODEV));
1511 }
1512 dsl_dataset_rele(origin, FTAG);
1513 }
1514 dsl_dataset_rele(ds, FTAG);
1515 error = 0;
1516 }
1517 return (error);
1518 }
1519
1520 static void
1521 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1522 {
1523 dmu_recv_begin_arg_t *drba = arg;
1524 dsl_pool_t *dp = dmu_tx_pool(tx);
1525 objset_t *mos = dp->dp_meta_objset;
1526 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1527 const char *tofs = drba->drba_cookie->drc_tofs;
1528 dsl_dataset_t *ds, *newds;
1529 uint64_t dsobj;
1530 int error;
1531 uint64_t crflags = 0;
1532
1533 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1534 crflags |= DS_FLAG_CI_DATASET;
1535
1536 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1537 if (error == 0) {
1538 /* create temporary clone */
1539 dsl_dataset_t *snap = NULL;
1540 if (drba->drba_snapobj != 0) {
1541 VERIFY0(dsl_dataset_hold_obj(dp,
1542 drba->drba_snapobj, FTAG, &snap));
1543 }
1544 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1545 snap, crflags, drba->drba_cred, tx);
1546 if (drba->drba_snapobj != 0)
1547 dsl_dataset_rele(snap, FTAG);
1548 dsl_dataset_rele(ds, FTAG);
1549 } else {
1550 dsl_dir_t *dd;
1551 const char *tail;
1552 dsl_dataset_t *origin = NULL;
1553
1554 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1555
1556 if (drba->drba_origin != NULL) {
1557 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1558 FTAG, &origin));
1559 }
1560
1561 /* Create new dataset. */
1562 dsobj = dsl_dataset_create_sync(dd,
1563 strrchr(tofs, '/') + 1,
1564 origin, crflags, drba->drba_cred, tx);
1565 if (origin != NULL)
1566 dsl_dataset_rele(origin, FTAG);
1567 dsl_dir_rele(dd, FTAG);
1568 drba->drba_cookie->drc_newfs = B_TRUE;
1569 }
1570 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1571
1572 if (drba->drba_cookie->drc_resumable) {
1573 uint64_t one = 1;
1574 uint64_t zero = 0;
1575
1576 dsl_dataset_zapify(newds, tx);
1577 if (drrb->drr_fromguid != 0) {
1578 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1579 8, 1, &drrb->drr_fromguid, tx));
1580 }
1581 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1582 8, 1, &drrb->drr_toguid, tx));
1583 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1584 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1585 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1586 8, 1, &one, tx));
1587 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1588 8, 1, &zero, tx));
1589 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1590 8, 1, &zero, tx));
1591 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1592 DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
1593 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
1594 8, 1, &one, tx));
1595 }
1596 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1597 DMU_BACKUP_FEATURE_EMBED_DATA) {
1598 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1599 8, 1, &one, tx));
1600 }
1601 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1602 DMU_BACKUP_FEATURE_COMPRESSED) {
1603 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
1604 8, 1, &one, tx));
1605 }
1606 }
1607
1608 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1609 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1610
1611 /*
1612 * If we actually created a non-clone, we need to create the
1613 * objset in our new dataset.
1614 */
1615 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1616 (void) dmu_objset_create_impl(dp->dp_spa,
1617 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1618 }
1619
1620 drba->drba_cookie->drc_ds = newds;
1621
1622 spa_history_log_internal_ds(newds, "receive", tx, "");
1623 }
1624
1625 static int
1626 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1627 {
1628 dmu_recv_begin_arg_t *drba = arg;
1629 dsl_pool_t *dp = dmu_tx_pool(tx);
1630 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1631 int error;
1632 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1633 dsl_dataset_t *ds;
1634 const char *tofs = drba->drba_cookie->drc_tofs;
1635 uint64_t val;
1636
1637 /* 6 extra bytes for /%recv */
1638 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1639
1640 /* already checked */
1641 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1642 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1643
1644 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1645 DMU_COMPOUNDSTREAM ||
1646 drrb->drr_type >= DMU_OST_NUMTYPES)
1647 return (SET_ERROR(EINVAL));
1648
1649 /* Verify pool version supports SA if SA_SPILL feature set */
1650 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1651 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1652 return (SET_ERROR(ENOTSUP));
1653
1654 /*
1655 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1656 * record to a plain WRITE record, so the pool must have the
1657 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1658 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1659 */
1660 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1661 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1662 return (SET_ERROR(ENOTSUP));
1663 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1664 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1665 return (SET_ERROR(ENOTSUP));
1666
1667 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1668 tofs, recv_clone_name);
1669
1670 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1671 /* %recv does not exist; continue in tofs */
1672 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1673 if (error != 0)
1674 return (error);
1675 }
1676
1677 /* check that ds is marked inconsistent */
1678 if (!DS_IS_INCONSISTENT(ds)) {
1679 dsl_dataset_rele(ds, FTAG);
1680 return (SET_ERROR(EINVAL));
1681 }
1682
1683 /* check that there is resuming data, and that the toguid matches */
1684 if (!dsl_dataset_is_zapified(ds)) {
1685 dsl_dataset_rele(ds, FTAG);
1686 return (SET_ERROR(EINVAL));
1687 }
1688 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1689 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1690 if (error != 0 || drrb->drr_toguid != val) {
1691 dsl_dataset_rele(ds, FTAG);
1692 return (SET_ERROR(EINVAL));
1693 }
1694
1695 /*
1696 * Check if the receive is still running. If so, it will be owned.
1697 * Note that nothing else can own the dataset (e.g. after the receive
1698 * fails) because it will be marked inconsistent.
1699 */
1700 if (dsl_dataset_has_owner(ds)) {
1701 dsl_dataset_rele(ds, FTAG);
1702 return (SET_ERROR(EBUSY));
1703 }
1704
1705 /* There should not be any snapshots of this fs yet. */
1706 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1707 dsl_dataset_rele(ds, FTAG);
1708 return (SET_ERROR(EINVAL));
1709 }
1710
1711 /*
1712 * Note: resume point will be checked when we process the first WRITE
1713 * record.
1714 */
1715
1716 /* check that the origin matches */
1717 val = 0;
1718 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1719 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1720 if (drrb->drr_fromguid != val) {
1721 dsl_dataset_rele(ds, FTAG);
1722 return (SET_ERROR(EINVAL));
1723 }
1724
1725 dsl_dataset_rele(ds, FTAG);
1726 return (0);
1727 }
1728
1729 static void
1730 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1731 {
1732 dmu_recv_begin_arg_t *drba = arg;
1733 dsl_pool_t *dp = dmu_tx_pool(tx);
1734 const char *tofs = drba->drba_cookie->drc_tofs;
1735 dsl_dataset_t *ds;
1736 uint64_t dsobj;
1737 /* 6 extra bytes for /%recv */
1738 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1739
1740 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1741 tofs, recv_clone_name);
1742
1743 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1744 /* %recv does not exist; continue in tofs */
1745 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1746 drba->drba_cookie->drc_newfs = B_TRUE;
1747 }
1748
1749 /* clear the inconsistent flag so that we can own it */
1750 ASSERT(DS_IS_INCONSISTENT(ds));
1751 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1752 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1753 dsobj = ds->ds_object;
1754 dsl_dataset_rele(ds, FTAG);
1755
1756 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1757
1758 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1759 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1760
1761 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1762
1763 drba->drba_cookie->drc_ds = ds;
1764
1765 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1766 }
1767
1768 /*
1769 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1770 * succeeds; otherwise we will leak the holds on the datasets.
1771 */
1772 int
1773 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1774 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1775 {
1776 dmu_recv_begin_arg_t drba = { 0 };
1777
1778 bzero(drc, sizeof (dmu_recv_cookie_t));
1779 drc->drc_drr_begin = drr_begin;
1780 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1781 drc->drc_tosnap = tosnap;
1782 drc->drc_tofs = tofs;
1783 drc->drc_force = force;
1784 drc->drc_resumable = resumable;
1785 drc->drc_cred = CRED();
1786
1787 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1788 drc->drc_byteswap = B_TRUE;
1789 fletcher_4_incremental_byteswap(drr_begin,
1790 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1791 byteswap_record(drr_begin);
1792 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1793 fletcher_4_incremental_native(drr_begin,
1794 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1795 } else {
1796 return (SET_ERROR(EINVAL));
1797 }
1798
1799 drba.drba_origin = origin;
1800 drba.drba_cookie = drc;
1801 drba.drba_cred = CRED();
1802
1803 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1804 DMU_BACKUP_FEATURE_RESUMING) {
1805 return (dsl_sync_task(tofs,
1806 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1807 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1808 } else {
1809 return (dsl_sync_task(tofs,
1810 dmu_recv_begin_check, dmu_recv_begin_sync,
1811 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1812 }
1813 }
1814
1815 struct receive_record_arg {
1816 dmu_replay_record_t header;
1817 void *payload; /* Pointer to a buffer containing the payload */
1818 /*
1819 * If the record is a write, pointer to the arc_buf_t containing the
1820 * payload.
1821 */
1822 arc_buf_t *write_buf;
1823 int payload_size;
1824 uint64_t bytes_read; /* bytes read from stream when record created */
1825 boolean_t eos_marker; /* Marks the end of the stream */
1826 bqueue_node_t node;
1827 };
1828
1829 struct receive_writer_arg {
1830 objset_t *os;
1831 boolean_t byteswap;
1832 bqueue_t q;
1833
1834 /*
1835 * These three args are used to signal to the main thread that we're
1836 * done.
1837 */
1838 kmutex_t mutex;
1839 kcondvar_t cv;
1840 boolean_t done;
1841
1842 int err;
1843 /* A map from guid to dataset to help handle dedup'd streams. */
1844 avl_tree_t *guid_to_ds_map;
1845 boolean_t resumable;
1846 uint64_t last_object, last_offset;
1847 uint64_t bytes_read; /* bytes read when current record created */
1848 };
1849
1850 struct objlist {
1851 list_t list; /* List of struct receive_objnode. */
1852 /*
1853 * Last object looked up. Used to assert that objects are being looked
1854 * up in ascending order.
1855 */
1856 uint64_t last_lookup;
1857 };
1858
1859 struct receive_objnode {
1860 list_node_t node;
1861 uint64_t object;
1862 };
1863
1864 struct receive_arg {
1865 objset_t *os;
1866 vnode_t *vp; /* The vnode to read the stream from */
1867 uint64_t voff; /* The current offset in the stream */
1868 uint64_t bytes_read;
1869 /*
1870 * A record that has had its payload read in, but hasn't yet been handed
1871 * off to the worker thread.
1872 */
1873 struct receive_record_arg *rrd;
1874 /* A record that has had its header read in, but not its payload. */
1875 struct receive_record_arg *next_rrd;
1876 zio_cksum_t cksum;
1877 zio_cksum_t prev_cksum;
1878 int err;
1879 boolean_t byteswap;
1880 /* Sorted list of objects not to issue prefetches for. */
1881 struct objlist ignore_objlist;
1882 };
1883
1884 typedef struct guid_map_entry {
1885 uint64_t guid;
1886 dsl_dataset_t *gme_ds;
1887 avl_node_t avlnode;
1888 } guid_map_entry_t;
1889
1890 static int
1891 guid_compare(const void *arg1, const void *arg2)
1892 {
1893 const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
1894 const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
1895
1896 return (AVL_CMP(gmep1->guid, gmep2->guid));
1897 }
1898
1899 static void
1900 free_guid_map_onexit(void *arg)
1901 {
1902 avl_tree_t *ca = arg;
1903 void *cookie = NULL;
1904 guid_map_entry_t *gmep;
1905
1906 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1907 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1908 dsl_dataset_rele(gmep->gme_ds, gmep);
1909 kmem_free(gmep, sizeof (guid_map_entry_t));
1910 }
1911 avl_destroy(ca);
1912 kmem_free(ca, sizeof (avl_tree_t));
1913 }
1914
1915 static int
1916 receive_read(struct receive_arg *ra, int len, void *buf)
1917 {
1918 int done = 0;
1919
1920 /*
1921 * The code doesn't rely on this (lengths being multiples of 8). See
1922 * comment in dump_bytes.
1923 */
1924 ASSERT0(len % 8);
1925
1926 while (done < len) {
1927 ssize_t resid;
1928
1929 ra->err = vn_rdwr(UIO_READ, ra->vp,
1930 (char *)buf + done, len - done,
1931 ra->voff, UIO_SYSSPACE, FAPPEND,
1932 RLIM64_INFINITY, CRED(), &resid);
1933
1934 if (resid == len - done) {
1935 /*
1936 * Note: ECKSUM indicates that the receive
1937 * was interrupted and can potentially be resumed.
1938 */
1939 ra->err = SET_ERROR(ECKSUM);
1940 }
1941 ra->voff += len - done - resid;
1942 done = len - resid;
1943 if (ra->err != 0)
1944 return (ra->err);
1945 }
1946
1947 ra->bytes_read += len;
1948
1949 ASSERT3U(done, ==, len);
1950 return (0);
1951 }
1952
1953 noinline static void
1954 byteswap_record(dmu_replay_record_t *drr)
1955 {
1956 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1957 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1958 drr->drr_type = BSWAP_32(drr->drr_type);
1959 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1960
1961 switch (drr->drr_type) {
1962 case DRR_BEGIN:
1963 DO64(drr_begin.drr_magic);
1964 DO64(drr_begin.drr_versioninfo);
1965 DO64(drr_begin.drr_creation_time);
1966 DO32(drr_begin.drr_type);
1967 DO32(drr_begin.drr_flags);
1968 DO64(drr_begin.drr_toguid);
1969 DO64(drr_begin.drr_fromguid);
1970 break;
1971 case DRR_OBJECT:
1972 DO64(drr_object.drr_object);
1973 DO32(drr_object.drr_type);
1974 DO32(drr_object.drr_bonustype);
1975 DO32(drr_object.drr_blksz);
1976 DO32(drr_object.drr_bonuslen);
1977 DO64(drr_object.drr_toguid);
1978 break;
1979 case DRR_FREEOBJECTS:
1980 DO64(drr_freeobjects.drr_firstobj);
1981 DO64(drr_freeobjects.drr_numobjs);
1982 DO64(drr_freeobjects.drr_toguid);
1983 break;
1984 case DRR_WRITE:
1985 DO64(drr_write.drr_object);
1986 DO32(drr_write.drr_type);
1987 DO64(drr_write.drr_offset);
1988 DO64(drr_write.drr_logical_size);
1989 DO64(drr_write.drr_toguid);
1990 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1991 DO64(drr_write.drr_key.ddk_prop);
1992 DO64(drr_write.drr_compressed_size);
1993 break;
1994 case DRR_WRITE_BYREF:
1995 DO64(drr_write_byref.drr_object);
1996 DO64(drr_write_byref.drr_offset);
1997 DO64(drr_write_byref.drr_length);
1998 DO64(drr_write_byref.drr_toguid);
1999 DO64(drr_write_byref.drr_refguid);
2000 DO64(drr_write_byref.drr_refobject);
2001 DO64(drr_write_byref.drr_refoffset);
2002 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
2003 drr_key.ddk_cksum);
2004 DO64(drr_write_byref.drr_key.ddk_prop);
2005 break;
2006 case DRR_WRITE_EMBEDDED:
2007 DO64(drr_write_embedded.drr_object);
2008 DO64(drr_write_embedded.drr_offset);
2009 DO64(drr_write_embedded.drr_length);
2010 DO64(drr_write_embedded.drr_toguid);
2011 DO32(drr_write_embedded.drr_lsize);
2012 DO32(drr_write_embedded.drr_psize);
2013 break;
2014 case DRR_FREE:
2015 DO64(drr_free.drr_object);
2016 DO64(drr_free.drr_offset);
2017 DO64(drr_free.drr_length);
2018 DO64(drr_free.drr_toguid);
2019 break;
2020 case DRR_SPILL:
2021 DO64(drr_spill.drr_object);
2022 DO64(drr_spill.drr_length);
2023 DO64(drr_spill.drr_toguid);
2024 break;
2025 case DRR_END:
2026 DO64(drr_end.drr_toguid);
2027 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
2028 break;
2029 default:
2030 break;
2031 }
2032
2033 if (drr->drr_type != DRR_BEGIN) {
2034 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
2035 }
2036
2037 #undef DO64
2038 #undef DO32
2039 }
2040
2041 static inline uint8_t
2042 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
2043 {
2044 if (bonus_type == DMU_OT_SA) {
2045 return (1);
2046 } else {
2047 return (1 +
2048 ((DN_OLD_MAX_BONUSLEN -
2049 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
2050 }
2051 }
2052
2053 static void
2054 save_resume_state(struct receive_writer_arg *rwa,
2055 uint64_t object, uint64_t offset, dmu_tx_t *tx)
2056 {
2057 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2058
2059 if (!rwa->resumable)
2060 return;
2061
2062 /*
2063 * We use ds_resume_bytes[] != 0 to indicate that we need to
2064 * update this on disk, so it must not be 0.
2065 */
2066 ASSERT(rwa->bytes_read != 0);
2067
2068 /*
2069 * We only resume from write records, which have a valid
2070 * (non-meta-dnode) object number.
2071 */
2072 ASSERT(object != 0);
2073
2074 /*
2075 * For resuming to work correctly, we must receive records in order,
2076 * sorted by object,offset. This is checked by the callers, but
2077 * assert it here for good measure.
2078 */
2079 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
2080 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
2081 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
2082 ASSERT3U(rwa->bytes_read, >=,
2083 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
2084
2085 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
2086 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
2087 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
2088 }
2089
2090 noinline static int
2091 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
2092 void *data)
2093 {
2094 dmu_object_info_t doi;
2095 dmu_tx_t *tx;
2096 uint64_t object;
2097 int err;
2098
2099 if (drro->drr_type == DMU_OT_NONE ||
2100 !DMU_OT_IS_VALID(drro->drr_type) ||
2101 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
2102 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2103 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2104 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2105 drro->drr_blksz < SPA_MINBLOCKSIZE ||
2106 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2107 drro->drr_bonuslen >
2108 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os)))) {
2109 return (SET_ERROR(EINVAL));
2110 }
2111
2112 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2113
2114 if (err != 0 && err != ENOENT)
2115 return (SET_ERROR(EINVAL));
2116 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2117
2118 /*
2119 * If we are losing blkptrs or changing the block size this must
2120 * be a new file instance. We must clear out the previous file
2121 * contents before we can change this type of metadata in the dnode.
2122 */
2123 if (err == 0) {
2124 int nblkptr;
2125
2126 nblkptr = deduce_nblkptr(drro->drr_bonustype,
2127 drro->drr_bonuslen);
2128
2129 if (drro->drr_blksz != doi.doi_data_block_size ||
2130 nblkptr < doi.doi_nblkptr) {
2131 err = dmu_free_long_range(rwa->os, drro->drr_object,
2132 0, DMU_OBJECT_END);
2133 if (err != 0)
2134 return (SET_ERROR(EINVAL));
2135 }
2136 }
2137
2138 tx = dmu_tx_create(rwa->os);
2139 dmu_tx_hold_bonus(tx, object);
2140 err = dmu_tx_assign(tx, TXG_WAIT);
2141 if (err != 0) {
2142 dmu_tx_abort(tx);
2143 return (err);
2144 }
2145
2146 if (object == DMU_NEW_OBJECT) {
2147 /* currently free, want to be allocated */
2148 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
2149 drro->drr_type, drro->drr_blksz,
2150 drro->drr_bonustype, drro->drr_bonuslen,
2151 drro->drr_dn_slots << DNODE_SHIFT, tx);
2152 } else if (drro->drr_type != doi.doi_type ||
2153 drro->drr_blksz != doi.doi_data_block_size ||
2154 drro->drr_bonustype != doi.doi_bonus_type ||
2155 drro->drr_bonuslen != doi.doi_bonus_size) {
2156 /* currently allocated, but with different properties */
2157 err = dmu_object_reclaim(rwa->os, drro->drr_object,
2158 drro->drr_type, drro->drr_blksz,
2159 drro->drr_bonustype, drro->drr_bonuslen, tx);
2160 }
2161 if (err != 0) {
2162 dmu_tx_commit(tx);
2163 return (SET_ERROR(EINVAL));
2164 }
2165
2166 dmu_object_set_checksum(rwa->os, drro->drr_object,
2167 drro->drr_checksumtype, tx);
2168 dmu_object_set_compress(rwa->os, drro->drr_object,
2169 drro->drr_compress, tx);
2170
2171 if (data != NULL) {
2172 dmu_buf_t *db;
2173
2174 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2175 dmu_buf_will_dirty(db, tx);
2176
2177 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2178 bcopy(data, db->db_data, drro->drr_bonuslen);
2179 if (rwa->byteswap) {
2180 dmu_object_byteswap_t byteswap =
2181 DMU_OT_BYTESWAP(drro->drr_bonustype);
2182 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2183 drro->drr_bonuslen);
2184 }
2185 dmu_buf_rele(db, FTAG);
2186 }
2187 dmu_tx_commit(tx);
2188
2189 return (0);
2190 }
2191
2192 /* ARGSUSED */
2193 noinline static int
2194 receive_freeobjects(struct receive_writer_arg *rwa,
2195 struct drr_freeobjects *drrfo)
2196 {
2197 uint64_t obj;
2198 int next_err = 0;
2199
2200 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2201 return (SET_ERROR(EINVAL));
2202
2203 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2204 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2205 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2206 dmu_object_info_t doi;
2207 int err;
2208
2209 err = dmu_object_info(rwa->os, obj, &doi);
2210 if (err == ENOENT) {
2211 obj++;
2212 continue;
2213 } else if (err != 0) {
2214 return (err);
2215 }
2216
2217 err = dmu_free_long_object(rwa->os, obj);
2218 if (err != 0)
2219 return (err);
2220 }
2221 if (next_err != ESRCH)
2222 return (next_err);
2223 return (0);
2224 }
2225
2226 noinline static int
2227 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2228 arc_buf_t *abuf)
2229 {
2230 dmu_tx_t *tx;
2231 dmu_buf_t *bonus;
2232 int err;
2233
2234 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2235 !DMU_OT_IS_VALID(drrw->drr_type))
2236 return (SET_ERROR(EINVAL));
2237
2238 /*
2239 * For resuming to work, records must be in increasing order
2240 * by (object, offset).
2241 */
2242 if (drrw->drr_object < rwa->last_object ||
2243 (drrw->drr_object == rwa->last_object &&
2244 drrw->drr_offset < rwa->last_offset)) {
2245 return (SET_ERROR(EINVAL));
2246 }
2247 rwa->last_object = drrw->drr_object;
2248 rwa->last_offset = drrw->drr_offset;
2249
2250 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2251 return (SET_ERROR(EINVAL));
2252
2253 tx = dmu_tx_create(rwa->os);
2254
2255 dmu_tx_hold_write(tx, drrw->drr_object,
2256 drrw->drr_offset, drrw->drr_logical_size);
2257 err = dmu_tx_assign(tx, TXG_WAIT);
2258 if (err != 0) {
2259 dmu_tx_abort(tx);
2260 return (err);
2261 }
2262 if (rwa->byteswap) {
2263 dmu_object_byteswap_t byteswap =
2264 DMU_OT_BYTESWAP(drrw->drr_type);
2265 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2266 DRR_WRITE_PAYLOAD_SIZE(drrw));
2267 }
2268
2269 /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
2270 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2271 return (SET_ERROR(EINVAL));
2272 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2273
2274 /*
2275 * Note: If the receive fails, we want the resume stream to start
2276 * with the same record that we last successfully received (as opposed
2277 * to the next record), so that we can verify that we are
2278 * resuming from the correct location.
2279 */
2280 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2281 dmu_tx_commit(tx);
2282 dmu_buf_rele(bonus, FTAG);
2283
2284 return (0);
2285 }
2286
2287 /*
2288 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2289 * streams to refer to a copy of the data that is already on the
2290 * system because it came in earlier in the stream. This function
2291 * finds the earlier copy of the data, and uses that copy instead of
2292 * data from the stream to fulfill this write.
2293 */
2294 static int
2295 receive_write_byref(struct receive_writer_arg *rwa,
2296 struct drr_write_byref *drrwbr)
2297 {
2298 dmu_tx_t *tx;
2299 int err;
2300 guid_map_entry_t gmesrch;
2301 guid_map_entry_t *gmep;
2302 avl_index_t where;
2303 objset_t *ref_os = NULL;
2304 dmu_buf_t *dbp;
2305
2306 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2307 return (SET_ERROR(EINVAL));
2308
2309 /*
2310 * If the GUID of the referenced dataset is different from the
2311 * GUID of the target dataset, find the referenced dataset.
2312 */
2313 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2314 gmesrch.guid = drrwbr->drr_refguid;
2315 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2316 &where)) == NULL) {
2317 return (SET_ERROR(EINVAL));
2318 }
2319 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2320 return (SET_ERROR(EINVAL));
2321 } else {
2322 ref_os = rwa->os;
2323 }
2324
2325 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2326 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2327 if (err != 0)
2328 return (err);
2329
2330 tx = dmu_tx_create(rwa->os);
2331
2332 dmu_tx_hold_write(tx, drrwbr->drr_object,
2333 drrwbr->drr_offset, drrwbr->drr_length);
2334 err = dmu_tx_assign(tx, TXG_WAIT);
2335 if (err != 0) {
2336 dmu_tx_abort(tx);
2337 return (err);
2338 }
2339 dmu_write(rwa->os, drrwbr->drr_object,
2340 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2341 dmu_buf_rele(dbp, FTAG);
2342
2343 /* See comment in restore_write. */
2344 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2345 dmu_tx_commit(tx);
2346 return (0);
2347 }
2348
2349 static int
2350 receive_write_embedded(struct receive_writer_arg *rwa,
2351 struct drr_write_embedded *drrwe, void *data)
2352 {
2353 dmu_tx_t *tx;
2354 int err;
2355
2356 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2357 return (EINVAL);
2358
2359 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2360 return (EINVAL);
2361
2362 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2363 return (EINVAL);
2364 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2365 return (EINVAL);
2366
2367 tx = dmu_tx_create(rwa->os);
2368
2369 dmu_tx_hold_write(tx, drrwe->drr_object,
2370 drrwe->drr_offset, drrwe->drr_length);
2371 err = dmu_tx_assign(tx, TXG_WAIT);
2372 if (err != 0) {
2373 dmu_tx_abort(tx);
2374 return (err);
2375 }
2376
2377 dmu_write_embedded(rwa->os, drrwe->drr_object,
2378 drrwe->drr_offset, data, drrwe->drr_etype,
2379 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2380 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2381
2382 /* See comment in restore_write. */
2383 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2384 dmu_tx_commit(tx);
2385 return (0);
2386 }
2387
2388 static int
2389 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2390 void *data)
2391 {
2392 dmu_tx_t *tx;
2393 dmu_buf_t *db, *db_spill;
2394 int err;
2395
2396 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2397 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2398 return (SET_ERROR(EINVAL));
2399
2400 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2401 return (SET_ERROR(EINVAL));
2402
2403 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2404 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2405 dmu_buf_rele(db, FTAG);
2406 return (err);
2407 }
2408
2409 tx = dmu_tx_create(rwa->os);
2410
2411 dmu_tx_hold_spill(tx, db->db_object);
2412
2413 err = dmu_tx_assign(tx, TXG_WAIT);
2414 if (err != 0) {
2415 dmu_buf_rele(db, FTAG);
2416 dmu_buf_rele(db_spill, FTAG);
2417 dmu_tx_abort(tx);
2418 return (err);
2419 }
2420 dmu_buf_will_dirty(db_spill, tx);
2421
2422 if (db_spill->db_size < drrs->drr_length)
2423 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2424 drrs->drr_length, tx));
2425 bcopy(data, db_spill->db_data, drrs->drr_length);
2426
2427 dmu_buf_rele(db, FTAG);
2428 dmu_buf_rele(db_spill, FTAG);
2429
2430 dmu_tx_commit(tx);
2431 return (0);
2432 }
2433
2434 /* ARGSUSED */
2435 noinline static int
2436 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2437 {
2438 int err;
2439
2440 if (drrf->drr_length != -1ULL &&
2441 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2442 return (SET_ERROR(EINVAL));
2443
2444 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2445 return (SET_ERROR(EINVAL));
2446
2447 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2448 drrf->drr_offset, drrf->drr_length);
2449
2450 return (err);
2451 }
2452
2453 /* used to destroy the drc_ds on error */
2454 static void
2455 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2456 {
2457 if (drc->drc_resumable) {
2458 /* wait for our resume state to be written to disk */
2459 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2460 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2461 } else {
2462 char name[ZFS_MAX_DATASET_NAME_LEN];
2463 dsl_dataset_name(drc->drc_ds, name);
2464 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2465 (void) dsl_destroy_head(name);
2466 }
2467 }
2468
2469 static void
2470 receive_cksum(struct receive_arg *ra, int len, void *buf)
2471 {
2472 if (ra->byteswap) {
2473 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2474 } else {
2475 fletcher_4_incremental_native(buf, len, &ra->cksum);
2476 }
2477 }
2478
2479 /*
2480 * Read the payload into a buffer of size len, and update the current record's
2481 * payload field.
2482 * Allocate ra->next_rrd and read the next record's header into
2483 * ra->next_rrd->header.
2484 * Verify checksum of payload and next record.
2485 */
2486 static int
2487 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2488 {
2489 int err;
2490 zio_cksum_t cksum_orig;
2491 zio_cksum_t *cksump;
2492
2493 if (len != 0) {
2494 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2495 err = receive_read(ra, len, buf);
2496 if (err != 0)
2497 return (err);
2498 receive_cksum(ra, len, buf);
2499
2500 /* note: rrd is NULL when reading the begin record's payload */
2501 if (ra->rrd != NULL) {
2502 ra->rrd->payload = buf;
2503 ra->rrd->payload_size = len;
2504 ra->rrd->bytes_read = ra->bytes_read;
2505 }
2506 }
2507
2508 ra->prev_cksum = ra->cksum;
2509
2510 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2511 err = receive_read(ra, sizeof (ra->next_rrd->header),
2512 &ra->next_rrd->header);
2513 ra->next_rrd->bytes_read = ra->bytes_read;
2514 if (err != 0) {
2515 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2516 ra->next_rrd = NULL;
2517 return (err);
2518 }
2519 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2520 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2521 ra->next_rrd = NULL;
2522 return (SET_ERROR(EINVAL));
2523 }
2524
2525 /*
2526 * Note: checksum is of everything up to but not including the
2527 * checksum itself.
2528 */
2529 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2530 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2531 receive_cksum(ra,
2532 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2533 &ra->next_rrd->header);
2534
2535 cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2536 cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2537
2538 if (ra->byteswap)
2539 byteswap_record(&ra->next_rrd->header);
2540
2541 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2542 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2543 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2544 ra->next_rrd = NULL;
2545 return (SET_ERROR(ECKSUM));
2546 }
2547
2548 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2549
2550 return (0);
2551 }
2552
2553 static void
2554 objlist_create(struct objlist *list)
2555 {
2556 list_create(&list->list, sizeof (struct receive_objnode),
2557 offsetof(struct receive_objnode, node));
2558 list->last_lookup = 0;
2559 }
2560
2561 static void
2562 objlist_destroy(struct objlist *list)
2563 {
2564 struct receive_objnode *n;
2565
2566 for (n = list_remove_head(&list->list);
2567 n != NULL; n = list_remove_head(&list->list)) {
2568 kmem_free(n, sizeof (*n));
2569 }
2570 list_destroy(&list->list);
2571 }
2572
2573 /*
2574 * This function looks through the objlist to see if the specified object number
2575 * is contained in the objlist. In the process, it will remove all object
2576 * numbers in the list that are smaller than the specified object number. Thus,
2577 * any lookup of an object number smaller than a previously looked up object
2578 * number will always return false; therefore, all lookups should be done in
2579 * ascending order.
2580 */
2581 static boolean_t
2582 objlist_exists(struct objlist *list, uint64_t object)
2583 {
2584 struct receive_objnode *node = list_head(&list->list);
2585 ASSERT3U(object, >=, list->last_lookup);
2586 list->last_lookup = object;
2587 while (node != NULL && node->object < object) {
2588 VERIFY3P(node, ==, list_remove_head(&list->list));
2589 kmem_free(node, sizeof (*node));
2590 node = list_head(&list->list);
2591 }
2592 return (node != NULL && node->object == object);
2593 }
2594
2595 /*
2596 * The objlist is a list of object numbers stored in ascending order. However,
2597 * the insertion of new object numbers does not seek out the correct location to
2598 * store a new object number; instead, it appends it to the list for simplicity.
2599 * Thus, any users must take care to only insert new object numbers in ascending
2600 * order.
2601 */
2602 static void
2603 objlist_insert(struct objlist *list, uint64_t object)
2604 {
2605 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2606 node->object = object;
2607 #ifdef ZFS_DEBUG
2608 {
2609 struct receive_objnode *last_object = list_tail(&list->list);
2610 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2611 ASSERT3U(node->object, >, last_objnum);
2612 }
2613 #endif
2614 list_insert_tail(&list->list, node);
2615 }
2616
2617 /*
2618 * Issue the prefetch reads for any necessary indirect blocks.
2619 *
2620 * We use the object ignore list to tell us whether or not to issue prefetches
2621 * for a given object. We do this for both correctness (in case the blocksize
2622 * of an object has changed) and performance (if the object doesn't exist, don't
2623 * needlessly try to issue prefetches). We also trim the list as we go through
2624 * the stream to prevent it from growing to an unbounded size.
2625 *
2626 * The object numbers within will always be in sorted order, and any write
2627 * records we see will also be in sorted order, but they're not sorted with
2628 * respect to each other (i.e. we can get several object records before
2629 * receiving each object's write records). As a result, once we've reached a
2630 * given object number, we can safely remove any reference to lower object
2631 * numbers in the ignore list. In practice, we receive up to 32 object records
2632 * before receiving write records, so the list can have up to 32 nodes in it.
2633 */
2634 /* ARGSUSED */
2635 static void
2636 receive_read_prefetch(struct receive_arg *ra,
2637 uint64_t object, uint64_t offset, uint64_t length)
2638 {
2639 if (!objlist_exists(&ra->ignore_objlist, object)) {
2640 dmu_prefetch(ra->os, object, 1, offset, length,
2641 ZIO_PRIORITY_SYNC_READ);
2642 }
2643 }
2644
2645 /*
2646 * Read records off the stream, issuing any necessary prefetches.
2647 */
2648 static int
2649 receive_read_record(struct receive_arg *ra)
2650 {
2651 int err;
2652
2653 switch (ra->rrd->header.drr_type) {
2654 case DRR_OBJECT:
2655 {
2656 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2657 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2658 void *buf = kmem_zalloc(size, KM_SLEEP);
2659 dmu_object_info_t doi;
2660 err = receive_read_payload_and_next_header(ra, size, buf);
2661 if (err != 0) {
2662 kmem_free(buf, size);
2663 return (err);
2664 }
2665 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2666 /*
2667 * See receive_read_prefetch for an explanation why we're
2668 * storing this object in the ignore_obj_list.
2669 */
2670 if (err == ENOENT ||
2671 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2672 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2673 err = 0;
2674 }
2675 return (err);
2676 }
2677 case DRR_FREEOBJECTS:
2678 {
2679 err = receive_read_payload_and_next_header(ra, 0, NULL);
2680 return (err);
2681 }
2682 case DRR_WRITE:
2683 {
2684 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2685 arc_buf_t *abuf;
2686 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2687 if (DRR_WRITE_COMPRESSED(drrw)) {
2688 ASSERT3U(drrw->drr_compressed_size, >, 0);
2689 ASSERT3U(drrw->drr_logical_size, >=,
2690 drrw->drr_compressed_size);
2691 ASSERT(!is_meta);
2692 abuf = arc_loan_compressed_buf(
2693 dmu_objset_spa(ra->os),
2694 drrw->drr_compressed_size, drrw->drr_logical_size,
2695 drrw->drr_compressiontype);
2696 } else {
2697 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2698 is_meta, drrw->drr_logical_size);
2699 }
2700
2701 err = receive_read_payload_and_next_header(ra,
2702 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2703 if (err != 0) {
2704 dmu_return_arcbuf(abuf);
2705 return (err);
2706 }
2707 ra->rrd->write_buf = abuf;
2708 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2709 drrw->drr_logical_size);
2710 return (err);
2711 }
2712 case DRR_WRITE_BYREF:
2713 {
2714 struct drr_write_byref *drrwb =
2715 &ra->rrd->header.drr_u.drr_write_byref;
2716 err = receive_read_payload_and_next_header(ra, 0, NULL);
2717 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2718 drrwb->drr_length);
2719 return (err);
2720 }
2721 case DRR_WRITE_EMBEDDED:
2722 {
2723 struct drr_write_embedded *drrwe =
2724 &ra->rrd->header.drr_u.drr_write_embedded;
2725 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2726 void *buf = kmem_zalloc(size, KM_SLEEP);
2727
2728 err = receive_read_payload_and_next_header(ra, size, buf);
2729 if (err != 0) {
2730 kmem_free(buf, size);
2731 return (err);
2732 }
2733
2734 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2735 drrwe->drr_length);
2736 return (err);
2737 }
2738 case DRR_FREE:
2739 {
2740 /*
2741 * It might be beneficial to prefetch indirect blocks here, but
2742 * we don't really have the data to decide for sure.
2743 */
2744 err = receive_read_payload_and_next_header(ra, 0, NULL);
2745 return (err);
2746 }
2747 case DRR_END:
2748 {
2749 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2750 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2751 return (SET_ERROR(ECKSUM));
2752 return (0);
2753 }
2754 case DRR_SPILL:
2755 {
2756 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2757 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2758 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2759 buf);
2760 if (err != 0)
2761 kmem_free(buf, drrs->drr_length);
2762 return (err);
2763 }
2764 default:
2765 return (SET_ERROR(EINVAL));
2766 }
2767 }
2768
2769 /*
2770 * Commit the records to the pool.
2771 */
2772 static int
2773 receive_process_record(struct receive_writer_arg *rwa,
2774 struct receive_record_arg *rrd)
2775 {
2776 int err;
2777
2778 /* Processing in order, therefore bytes_read should be increasing. */
2779 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2780 rwa->bytes_read = rrd->bytes_read;
2781
2782 switch (rrd->header.drr_type) {
2783 case DRR_OBJECT:
2784 {
2785 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2786 err = receive_object(rwa, drro, rrd->payload);
2787 kmem_free(rrd->payload, rrd->payload_size);
2788 rrd->payload = NULL;
2789 return (err);
2790 }
2791 case DRR_FREEOBJECTS:
2792 {
2793 struct drr_freeobjects *drrfo =
2794 &rrd->header.drr_u.drr_freeobjects;
2795 return (receive_freeobjects(rwa, drrfo));
2796 }
2797 case DRR_WRITE:
2798 {
2799 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2800 err = receive_write(rwa, drrw, rrd->write_buf);
2801 /* if receive_write() is successful, it consumes the arc_buf */
2802 if (err != 0)
2803 dmu_return_arcbuf(rrd->write_buf);
2804 rrd->write_buf = NULL;
2805 rrd->payload = NULL;
2806 return (err);
2807 }
2808 case DRR_WRITE_BYREF:
2809 {
2810 struct drr_write_byref *drrwbr =
2811 &rrd->header.drr_u.drr_write_byref;
2812 return (receive_write_byref(rwa, drrwbr));
2813 }
2814 case DRR_WRITE_EMBEDDED:
2815 {
2816 struct drr_write_embedded *drrwe =
2817 &rrd->header.drr_u.drr_write_embedded;
2818 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2819 kmem_free(rrd->payload, rrd->payload_size);
2820 rrd->payload = NULL;
2821 return (err);
2822 }
2823 case DRR_FREE:
2824 {
2825 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2826 return (receive_free(rwa, drrf));
2827 }
2828 case DRR_SPILL:
2829 {
2830 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2831 err = receive_spill(rwa, drrs, rrd->payload);
2832 kmem_free(rrd->payload, rrd->payload_size);
2833 rrd->payload = NULL;
2834 return (err);
2835 }
2836 default:
2837 return (SET_ERROR(EINVAL));
2838 }
2839 }
2840
2841 /*
2842 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2843 * receive_process_record When we're done, signal the main thread and exit.
2844 */
2845 static void
2846 receive_writer_thread(void *arg)
2847 {
2848 struct receive_writer_arg *rwa = arg;
2849 struct receive_record_arg *rrd;
2850 fstrans_cookie_t cookie = spl_fstrans_mark();
2851
2852 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2853 rrd = bqueue_dequeue(&rwa->q)) {
2854 /*
2855 * If there's an error, the main thread will stop putting things
2856 * on the queue, but we need to clear everything in it before we
2857 * can exit.
2858 */
2859 if (rwa->err == 0) {
2860 rwa->err = receive_process_record(rwa, rrd);
2861 } else if (rrd->write_buf != NULL) {
2862 dmu_return_arcbuf(rrd->write_buf);
2863 rrd->write_buf = NULL;
2864 rrd->payload = NULL;
2865 } else if (rrd->payload != NULL) {
2866 kmem_free(rrd->payload, rrd->payload_size);
2867 rrd->payload = NULL;
2868 }
2869 kmem_free(rrd, sizeof (*rrd));
2870 }
2871 kmem_free(rrd, sizeof (*rrd));
2872 mutex_enter(&rwa->mutex);
2873 rwa->done = B_TRUE;
2874 cv_signal(&rwa->cv);
2875 mutex_exit(&rwa->mutex);
2876 spl_fstrans_unmark(cookie);
2877 }
2878
2879 static int
2880 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2881 {
2882 uint64_t val;
2883 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2884 uint64_t dsobj = dmu_objset_id(ra->os);
2885 uint64_t resume_obj, resume_off;
2886
2887 if (nvlist_lookup_uint64(begin_nvl,
2888 "resume_object", &resume_obj) != 0 ||
2889 nvlist_lookup_uint64(begin_nvl,
2890 "resume_offset", &resume_off) != 0) {
2891 return (SET_ERROR(EINVAL));
2892 }
2893 VERIFY0(zap_lookup(mos, dsobj,
2894 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2895 if (resume_obj != val)
2896 return (SET_ERROR(EINVAL));
2897 VERIFY0(zap_lookup(mos, dsobj,
2898 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2899 if (resume_off != val)
2900 return (SET_ERROR(EINVAL));
2901
2902 return (0);
2903 }
2904
2905 /*
2906 * Read in the stream's records, one by one, and apply them to the pool. There
2907 * are two threads involved; the thread that calls this function will spin up a
2908 * worker thread, read the records off the stream one by one, and issue
2909 * prefetches for any necessary indirect blocks. It will then push the records
2910 * onto an internal blocking queue. The worker thread will pull the records off
2911 * the queue, and actually write the data into the DMU. This way, the worker
2912 * thread doesn't have to wait for reads to complete, since everything it needs
2913 * (the indirect blocks) will be prefetched.
2914 *
2915 * NB: callers *must* call dmu_recv_end() if this succeeds.
2916 */
2917 int
2918 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2919 int cleanup_fd, uint64_t *action_handlep)
2920 {
2921 int err = 0;
2922 struct receive_arg *ra;
2923 struct receive_writer_arg *rwa;
2924 int featureflags;
2925 uint32_t payloadlen;
2926 void *payload;
2927 nvlist_t *begin_nvl = NULL;
2928
2929 ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
2930 rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2931
2932 ra->byteswap = drc->drc_byteswap;
2933 ra->cksum = drc->drc_cksum;
2934 ra->vp = vp;
2935 ra->voff = *voffp;
2936
2937 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2938 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2939 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2940 sizeof (ra->bytes_read), 1, &ra->bytes_read);
2941 }
2942
2943 objlist_create(&ra->ignore_objlist);
2944
2945 /* these were verified in dmu_recv_begin */
2946 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2947 DMU_SUBSTREAM);
2948 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2949
2950 /*
2951 * Open the objset we are modifying.
2952 */
2953 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
2954
2955 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2956
2957 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2958
2959 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2960 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2961 minor_t minor;
2962
2963 if (cleanup_fd == -1) {
2964 ra->err = SET_ERROR(EBADF);
2965 goto out;
2966 }
2967 ra->err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2968 if (ra->err != 0) {
2969 cleanup_fd = -1;
2970 goto out;
2971 }
2972
2973 if (*action_handlep == 0) {
2974 rwa->guid_to_ds_map =
2975 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2976 avl_create(rwa->guid_to_ds_map, guid_compare,
2977 sizeof (guid_map_entry_t),
2978 offsetof(guid_map_entry_t, avlnode));
2979 err = zfs_onexit_add_cb(minor,
2980 free_guid_map_onexit, rwa->guid_to_ds_map,
2981 action_handlep);
2982 if (ra->err != 0)
2983 goto out;
2984 } else {
2985 err = zfs_onexit_cb_data(minor, *action_handlep,
2986 (void **)&rwa->guid_to_ds_map);
2987 if (ra->err != 0)
2988 goto out;
2989 }
2990
2991 drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
2992 }
2993
2994 payloadlen = drc->drc_drr_begin->drr_payloadlen;
2995 payload = NULL;
2996 if (payloadlen != 0)
2997 payload = kmem_alloc(payloadlen, KM_SLEEP);
2998
2999 err = receive_read_payload_and_next_header(ra, payloadlen, payload);
3000 if (err != 0) {
3001 if (payloadlen != 0)
3002 kmem_free(payload, payloadlen);
3003 goto out;
3004 }
3005 if (payloadlen != 0) {
3006 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
3007 kmem_free(payload, payloadlen);
3008 if (err != 0)
3009 goto out;
3010 }
3011
3012 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3013 err = resume_check(ra, begin_nvl);
3014 if (err != 0)
3015 goto out;
3016 }
3017
3018 (void) bqueue_init(&rwa->q, zfs_recv_queue_length,
3019 offsetof(struct receive_record_arg, node));
3020 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3021 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3022 rwa->os = ra->os;
3023 rwa->byteswap = drc->drc_byteswap;
3024 rwa->resumable = drc->drc_resumable;
3025
3026 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3027 TS_RUN, minclsyspri);
3028 /*
3029 * We're reading rwa->err without locks, which is safe since we are the
3030 * only reader, and the worker thread is the only writer. It's ok if we
3031 * miss a write for an iteration or two of the loop, since the writer
3032 * thread will keep freeing records we send it until we send it an eos
3033 * marker.
3034 *
3035 * We can leave this loop in 3 ways: First, if rwa->err is
3036 * non-zero. In that case, the writer thread will free the rrd we just
3037 * pushed. Second, if we're interrupted; in that case, either it's the
3038 * first loop and ra->rrd was never allocated, or it's later and ra->rrd
3039 * has been handed off to the writer thread who will free it. Finally,
3040 * if receive_read_record fails or we're at the end of the stream, then
3041 * we free ra->rrd and exit.
3042 */
3043 while (rwa->err == 0) {
3044 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3045 err = SET_ERROR(EINTR);
3046 break;
3047 }
3048
3049 ASSERT3P(ra->rrd, ==, NULL);
3050 ra->rrd = ra->next_rrd;
3051 ra->next_rrd = NULL;
3052 /* Allocates and loads header into ra->next_rrd */
3053 err = receive_read_record(ra);
3054
3055 if (ra->rrd->header.drr_type == DRR_END || err != 0) {
3056 kmem_free(ra->rrd, sizeof (*ra->rrd));
3057 ra->rrd = NULL;
3058 break;
3059 }
3060
3061 bqueue_enqueue(&rwa->q, ra->rrd,
3062 sizeof (struct receive_record_arg) + ra->rrd->payload_size);
3063 ra->rrd = NULL;
3064 }
3065 if (ra->next_rrd == NULL)
3066 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
3067 ra->next_rrd->eos_marker = B_TRUE;
3068 bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
3069
3070 mutex_enter(&rwa->mutex);
3071 while (!rwa->done) {
3072 cv_wait(&rwa->cv, &rwa->mutex);
3073 }
3074 mutex_exit(&rwa->mutex);
3075
3076 cv_destroy(&rwa->cv);
3077 mutex_destroy(&rwa->mutex);
3078 bqueue_destroy(&rwa->q);
3079 if (err == 0)
3080 err = rwa->err;
3081
3082 out:
3083 nvlist_free(begin_nvl);
3084 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
3085 zfs_onexit_fd_rele(cleanup_fd);
3086
3087 if (err != 0) {
3088 /*
3089 * Clean up references. If receive is not resumable,
3090 * destroy what we created, so we don't leave it in
3091 * the inconsistent state.
3092 */
3093 dmu_recv_cleanup_ds(drc);
3094 }
3095
3096 *voffp = ra->voff;
3097 objlist_destroy(&ra->ignore_objlist);
3098 kmem_free(ra, sizeof (*ra));
3099 kmem_free(rwa, sizeof (*rwa));
3100 return (err);
3101 }
3102
3103 static int
3104 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3105 {
3106 dmu_recv_cookie_t *drc = arg;
3107 dsl_pool_t *dp = dmu_tx_pool(tx);
3108 int error;
3109
3110 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3111
3112 if (!drc->drc_newfs) {
3113 dsl_dataset_t *origin_head;
3114
3115 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3116 if (error != 0)
3117 return (error);
3118 if (drc->drc_force) {
3119 /*
3120 * We will destroy any snapshots in tofs (i.e. before
3121 * origin_head) that are after the origin (which is
3122 * the snap before drc_ds, because drc_ds can not
3123 * have any snaps of its own).
3124 */
3125 uint64_t obj;
3126
3127 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3128 while (obj !=
3129 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3130 dsl_dataset_t *snap;
3131 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3132 &snap);
3133 if (error != 0)
3134 break;
3135 if (snap->ds_dir != origin_head->ds_dir)
3136 error = SET_ERROR(EINVAL);
3137 if (error == 0) {
3138 error = dsl_destroy_snapshot_check_impl(
3139 snap, B_FALSE);
3140 }
3141 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3142 dsl_dataset_rele(snap, FTAG);
3143 if (error != 0)
3144 break;
3145 }
3146 if (error != 0) {
3147 dsl_dataset_rele(origin_head, FTAG);
3148 return (error);
3149 }
3150 }
3151 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3152 origin_head, drc->drc_force, drc->drc_owner, tx);
3153 if (error != 0) {
3154 dsl_dataset_rele(origin_head, FTAG);
3155 return (error);
3156 }
3157 error = dsl_dataset_snapshot_check_impl(origin_head,
3158 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3159 dsl_dataset_rele(origin_head, FTAG);
3160 if (error != 0)
3161 return (error);
3162
3163 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3164 } else {
3165 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3166 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3167 }
3168 return (error);
3169 }
3170
3171 static void
3172 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3173 {
3174 dmu_recv_cookie_t *drc = arg;
3175 dsl_pool_t *dp = dmu_tx_pool(tx);
3176
3177 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3178 tx, "snap=%s", drc->drc_tosnap);
3179
3180 if (!drc->drc_newfs) {
3181 dsl_dataset_t *origin_head;
3182
3183 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3184 &origin_head));
3185
3186 if (drc->drc_force) {
3187 /*
3188 * Destroy any snapshots of drc_tofs (origin_head)
3189 * after the origin (the snap before drc_ds).
3190 */
3191 uint64_t obj;
3192
3193 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3194 while (obj !=
3195 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3196 dsl_dataset_t *snap;
3197 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3198 &snap));
3199 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3200 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3201 dsl_destroy_snapshot_sync_impl(snap,
3202 B_FALSE, tx);
3203 dsl_dataset_rele(snap, FTAG);
3204 }
3205 }
3206 VERIFY3P(drc->drc_ds->ds_prev, ==,
3207 origin_head->ds_prev);
3208
3209 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3210 origin_head, tx);
3211 dsl_dataset_snapshot_sync_impl(origin_head,
3212 drc->drc_tosnap, tx);
3213
3214 /* set snapshot's creation time and guid */
3215 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3216 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3217 drc->drc_drrb->drr_creation_time;
3218 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3219 drc->drc_drrb->drr_toguid;
3220 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3221 ~DS_FLAG_INCONSISTENT;
3222
3223 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3224 dsl_dataset_phys(origin_head)->ds_flags &=
3225 ~DS_FLAG_INCONSISTENT;
3226
3227 dsl_dataset_rele(origin_head, FTAG);
3228 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3229
3230 if (drc->drc_owner != NULL)
3231 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3232 } else {
3233 dsl_dataset_t *ds = drc->drc_ds;
3234
3235 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3236
3237 /* set snapshot's creation time and guid */
3238 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3239 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3240 drc->drc_drrb->drr_creation_time;
3241 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3242 drc->drc_drrb->drr_toguid;
3243 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3244 ~DS_FLAG_INCONSISTENT;
3245
3246 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3247 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3248 if (dsl_dataset_has_resume_receive_state(ds)) {
3249 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3250 DS_FIELD_RESUME_FROMGUID, tx);
3251 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3252 DS_FIELD_RESUME_OBJECT, tx);
3253 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3254 DS_FIELD_RESUME_OFFSET, tx);
3255 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3256 DS_FIELD_RESUME_BYTES, tx);
3257 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3258 DS_FIELD_RESUME_TOGUID, tx);
3259 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3260 DS_FIELD_RESUME_TONAME, tx);
3261 }
3262 }
3263 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3264 zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
3265 /*
3266 * Release the hold from dmu_recv_begin. This must be done before
3267 * we return to open context, so that when we free the dataset's dnode,
3268 * we can evict its bonus buffer.
3269 */
3270 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3271 drc->drc_ds = NULL;
3272 }
3273
3274 static int
3275 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3276 {
3277 dsl_pool_t *dp;
3278 dsl_dataset_t *snapds;
3279 guid_map_entry_t *gmep;
3280 int err;
3281
3282 ASSERT(guid_map != NULL);
3283
3284 err = dsl_pool_hold(name, FTAG, &dp);
3285 if (err != 0)
3286 return (err);
3287 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3288 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3289 if (err == 0) {
3290 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3291 gmep->gme_ds = snapds;
3292 avl_add(guid_map, gmep);
3293 dsl_dataset_long_hold(snapds, gmep);
3294 } else {
3295 kmem_free(gmep, sizeof (*gmep));
3296 }
3297
3298 dsl_pool_rele(dp, FTAG);
3299 return (err);
3300 }
3301
3302 static int dmu_recv_end_modified_blocks = 3;
3303
3304 static int
3305 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3306 {
3307 int error;
3308
3309 #ifdef _KERNEL
3310 /*
3311 * We will be destroying the ds; make sure its origin is unmounted if
3312 * necessary.
3313 */
3314 char name[ZFS_MAX_DATASET_NAME_LEN];
3315 dsl_dataset_name(drc->drc_ds, name);
3316 zfs_destroy_unmount_origin(name);
3317 #endif
3318
3319 error = dsl_sync_task(drc->drc_tofs,
3320 dmu_recv_end_check, dmu_recv_end_sync, drc,
3321 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3322
3323 if (error != 0)
3324 dmu_recv_cleanup_ds(drc);
3325 return (error);
3326 }
3327
3328 static int
3329 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3330 {
3331 int error;
3332
3333 error = dsl_sync_task(drc->drc_tofs,
3334 dmu_recv_end_check, dmu_recv_end_sync, drc,
3335 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3336
3337 if (error != 0) {
3338 dmu_recv_cleanup_ds(drc);
3339 } else if (drc->drc_guid_to_ds_map != NULL) {
3340 (void) add_ds_to_guidmap(drc->drc_tofs,
3341 drc->drc_guid_to_ds_map,
3342 drc->drc_newsnapobj);
3343 }
3344 return (error);
3345 }
3346
3347 int
3348 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3349 {
3350 drc->drc_owner = owner;
3351
3352 if (drc->drc_newfs)
3353 return (dmu_recv_new_end(drc));
3354 else
3355 return (dmu_recv_existing_end(drc));
3356 }
3357
3358 /*
3359 * Return TRUE if this objset is currently being received into.
3360 */
3361 boolean_t
3362 dmu_objset_is_receiving(objset_t *os)
3363 {
3364 return (os->os_dsl_dataset != NULL &&
3365 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3366 }
3367
3368 #if defined(_KERNEL)
3369 module_param(zfs_send_corrupt_data, int, 0644);
3370 MODULE_PARM_DESC(zfs_send_corrupt_data, "Allow sending corrupt data");
3371 #endif