]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_send.c
Replace dead opensolaris.org license link
[mirror_zfs.git] / module / zfs / dmu_send.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 */
32
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 static int zfs_send_corrupt_data = B_FALSE;
71 /*
72 * This tunable controls the amount of data (measured in bytes) that will be
73 * prefetched by zfs send. If the main thread is blocking on reads that haven't
74 * completed, this variable might need to be increased. If instead the main
75 * thread is issuing new reads because the prefetches have fallen out of the
76 * cache, this may need to be decreased.
77 */
78 static int zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80 * This tunable controls the length of the queues that zfs send worker threads
81 * use to communicate. If the send_main_thread is blocking on these queues,
82 * this variable may need to be increased. If there is a significant slowdown
83 * at the start of a send as these threads consume all the available IO
84 * resources, this variable may need to be decreased.
85 */
86 static int zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88 * These tunables control the fill fraction of the queues by zfs send. The fill
89 * fraction controls the frequency with which threads have to be cv_signaled.
90 * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91 * down. If the queues empty before the signalled thread can catch up, then
92 * these should be tuned up.
93 */
94 static int zfs_send_queue_ff = 20;
95 static int zfs_send_no_prefetch_queue_ff = 20;
96
97 /*
98 * Use this to override the recordsize calculation for fast zfs send estimates.
99 */
100 static int zfs_override_estimate_recordsize = 0;
101
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 static int zfs_send_unmodified_spill_blocks = B_TRUE;
107
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 uint64_t temp = a * b;
112 if (b != 0 && temp / b != a)
113 return (B_FALSE);
114 *c = temp;
115 return (B_TRUE);
116 }
117
118 struct send_thread_arg {
119 bqueue_t q;
120 objset_t *os; /* Objset to traverse */
121 uint64_t fromtxg; /* Traverse from this txg */
122 int flags; /* flags to pass to traverse_dataset */
123 int error_code;
124 boolean_t cancel;
125 zbookmark_phys_t resume;
126 uint64_t *num_blocks_visited;
127 };
128
129 struct redact_list_thread_arg {
130 boolean_t cancel;
131 bqueue_t q;
132 zbookmark_phys_t resume;
133 redaction_list_t *rl;
134 boolean_t mark_redact;
135 int error_code;
136 uint64_t *num_blocks_visited;
137 };
138
139 struct send_merge_thread_arg {
140 bqueue_t q;
141 objset_t *os;
142 struct redact_list_thread_arg *from_arg;
143 struct send_thread_arg *to_arg;
144 struct redact_list_thread_arg *redact_arg;
145 int error;
146 boolean_t cancel;
147 };
148
149 struct send_range {
150 boolean_t eos_marker; /* Marks the end of the stream */
151 uint64_t object;
152 uint64_t start_blkid;
153 uint64_t end_blkid;
154 bqueue_node_t ln;
155 enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 PREVIOUSLY_REDACTED} type;
157 union {
158 struct srd {
159 dmu_object_type_t obj_type;
160 uint32_t datablksz; // logical size
161 uint32_t datasz; // payload size
162 blkptr_t bp;
163 arc_buf_t *abuf;
164 abd_t *abd;
165 kmutex_t lock;
166 kcondvar_t cv;
167 boolean_t io_outstanding;
168 boolean_t io_compressed;
169 int io_err;
170 } data;
171 struct srh {
172 uint32_t datablksz;
173 } hole;
174 struct sro {
175 /*
176 * This is a pointer because embedding it in the
177 * struct causes these structures to be massively larger
178 * for all range types; this makes the code much less
179 * memory efficient.
180 */
181 dnode_phys_t *dnp;
182 blkptr_t bp;
183 } object;
184 struct srr {
185 uint32_t datablksz;
186 } redact;
187 struct sror {
188 blkptr_t bp;
189 } object_range;
190 } sru;
191 };
192
193 /*
194 * The list of data whose inclusion in a send stream can be pending from
195 * one call to backup_cb to another. Multiple calls to dump_free(),
196 * dump_freeobjects(), and dump_redact() can be aggregated into a single
197 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
198 */
199 typedef enum {
200 PENDING_NONE,
201 PENDING_FREE,
202 PENDING_FREEOBJECTS,
203 PENDING_REDACT
204 } dmu_pendop_t;
205
206 typedef struct dmu_send_cookie {
207 dmu_replay_record_t *dsc_drr;
208 dmu_send_outparams_t *dsc_dso;
209 offset_t *dsc_off;
210 objset_t *dsc_os;
211 zio_cksum_t dsc_zc;
212 uint64_t dsc_toguid;
213 uint64_t dsc_fromtxg;
214 int dsc_err;
215 dmu_pendop_t dsc_pending_op;
216 uint64_t dsc_featureflags;
217 uint64_t dsc_last_data_object;
218 uint64_t dsc_last_data_offset;
219 uint64_t dsc_resume_object;
220 uint64_t dsc_resume_offset;
221 boolean_t dsc_sent_begin;
222 boolean_t dsc_sent_end;
223 } dmu_send_cookie_t;
224
225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
226
227 static void
228 range_free(struct send_range *range)
229 {
230 if (range->type == OBJECT) {
231 size_t size = sizeof (dnode_phys_t) *
232 (range->sru.object.dnp->dn_extra_slots + 1);
233 kmem_free(range->sru.object.dnp, size);
234 } else if (range->type == DATA) {
235 mutex_enter(&range->sru.data.lock);
236 while (range->sru.data.io_outstanding)
237 cv_wait(&range->sru.data.cv, &range->sru.data.lock);
238 if (range->sru.data.abd != NULL)
239 abd_free(range->sru.data.abd);
240 if (range->sru.data.abuf != NULL) {
241 arc_buf_destroy(range->sru.data.abuf,
242 &range->sru.data.abuf);
243 }
244 mutex_exit(&range->sru.data.lock);
245
246 cv_destroy(&range->sru.data.cv);
247 mutex_destroy(&range->sru.data.lock);
248 }
249 kmem_free(range, sizeof (*range));
250 }
251
252 /*
253 * For all record types except BEGIN, fill in the checksum (overlaid in
254 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
255 * up to the start of the checksum itself.
256 */
257 static int
258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
259 {
260 dmu_send_outparams_t *dso = dscp->dsc_dso;
261 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
262 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
263 (void) fletcher_4_incremental_native(dscp->dsc_drr,
264 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
265 &dscp->dsc_zc);
266 if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
267 dscp->dsc_sent_begin = B_TRUE;
268 } else {
269 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
270 drr_checksum.drr_checksum));
271 dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
272 }
273 if (dscp->dsc_drr->drr_type == DRR_END) {
274 dscp->dsc_sent_end = B_TRUE;
275 }
276 (void) fletcher_4_incremental_native(&dscp->dsc_drr->
277 drr_u.drr_checksum.drr_checksum,
278 sizeof (zio_cksum_t), &dscp->dsc_zc);
279 *dscp->dsc_off += sizeof (dmu_replay_record_t);
280 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
281 sizeof (dmu_replay_record_t), dso->dso_arg);
282 if (dscp->dsc_err != 0)
283 return (SET_ERROR(EINTR));
284 if (payload_len != 0) {
285 *dscp->dsc_off += payload_len;
286 /*
287 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
288 * doing a send size calculation)
289 */
290 if (payload != NULL) {
291 (void) fletcher_4_incremental_native(
292 payload, payload_len, &dscp->dsc_zc);
293 }
294
295 /*
296 * The code does not rely on this (len being a multiple of 8).
297 * We keep this assertion because of the corresponding assertion
298 * in receive_read(). Keeping this assertion ensures that we do
299 * not inadvertently break backwards compatibility (causing the
300 * assertion in receive_read() to trigger on old software).
301 *
302 * Raw sends cannot be received on old software, and so can
303 * bypass this assertion.
304 */
305
306 ASSERT((payload_len % 8 == 0) ||
307 (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
308
309 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
310 payload_len, dso->dso_arg);
311 if (dscp->dsc_err != 0)
312 return (SET_ERROR(EINTR));
313 }
314 return (0);
315 }
316
317 /*
318 * Fill in the drr_free struct, or perform aggregation if the previous record is
319 * also a free record, and the two are adjacent.
320 *
321 * Note that we send free records even for a full send, because we want to be
322 * able to receive a full send as a clone, which requires a list of all the free
323 * and freeobject records that were generated on the source.
324 */
325 static int
326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
327 uint64_t length)
328 {
329 struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
330
331 /*
332 * When we receive a free record, dbuf_free_range() assumes
333 * that the receiving system doesn't have any dbufs in the range
334 * being freed. This is always true because there is a one-record
335 * constraint: we only send one WRITE record for any given
336 * object,offset. We know that the one-record constraint is
337 * true because we always send data in increasing order by
338 * object,offset.
339 *
340 * If the increasing-order constraint ever changes, we should find
341 * another way to assert that the one-record constraint is still
342 * satisfied.
343 */
344 ASSERT(object > dscp->dsc_last_data_object ||
345 (object == dscp->dsc_last_data_object &&
346 offset > dscp->dsc_last_data_offset));
347
348 /*
349 * If there is a pending op, but it's not PENDING_FREE, push it out,
350 * since free block aggregation can only be done for blocks of the
351 * same type (i.e., DRR_FREE records can only be aggregated with
352 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
353 * aggregated with other DRR_FREEOBJECTS records).
354 */
355 if (dscp->dsc_pending_op != PENDING_NONE &&
356 dscp->dsc_pending_op != PENDING_FREE) {
357 if (dump_record(dscp, NULL, 0) != 0)
358 return (SET_ERROR(EINTR));
359 dscp->dsc_pending_op = PENDING_NONE;
360 }
361
362 if (dscp->dsc_pending_op == PENDING_FREE) {
363 /*
364 * Check to see whether this free block can be aggregated
365 * with pending one.
366 */
367 if (drrf->drr_object == object && drrf->drr_offset +
368 drrf->drr_length == offset) {
369 if (offset + length < offset || length == UINT64_MAX)
370 drrf->drr_length = UINT64_MAX;
371 else
372 drrf->drr_length += length;
373 return (0);
374 } else {
375 /* not a continuation. Push out pending record */
376 if (dump_record(dscp, NULL, 0) != 0)
377 return (SET_ERROR(EINTR));
378 dscp->dsc_pending_op = PENDING_NONE;
379 }
380 }
381 /* create a FREE record and make it pending */
382 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
383 dscp->dsc_drr->drr_type = DRR_FREE;
384 drrf->drr_object = object;
385 drrf->drr_offset = offset;
386 if (offset + length < offset)
387 drrf->drr_length = DMU_OBJECT_END;
388 else
389 drrf->drr_length = length;
390 drrf->drr_toguid = dscp->dsc_toguid;
391 if (length == DMU_OBJECT_END) {
392 if (dump_record(dscp, NULL, 0) != 0)
393 return (SET_ERROR(EINTR));
394 } else {
395 dscp->dsc_pending_op = PENDING_FREE;
396 }
397
398 return (0);
399 }
400
401 /*
402 * Fill in the drr_redact struct, or perform aggregation if the previous record
403 * is also a redaction record, and the two are adjacent.
404 */
405 static int
406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
407 uint64_t length)
408 {
409 struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
410
411 /*
412 * If there is a pending op, but it's not PENDING_REDACT, push it out,
413 * since free block aggregation can only be done for blocks of the
414 * same type (i.e., DRR_REDACT records can only be aggregated with
415 * other DRR_REDACT records).
416 */
417 if (dscp->dsc_pending_op != PENDING_NONE &&
418 dscp->dsc_pending_op != PENDING_REDACT) {
419 if (dump_record(dscp, NULL, 0) != 0)
420 return (SET_ERROR(EINTR));
421 dscp->dsc_pending_op = PENDING_NONE;
422 }
423
424 if (dscp->dsc_pending_op == PENDING_REDACT) {
425 /*
426 * Check to see whether this redacted block can be aggregated
427 * with pending one.
428 */
429 if (drrr->drr_object == object && drrr->drr_offset +
430 drrr->drr_length == offset) {
431 drrr->drr_length += length;
432 return (0);
433 } else {
434 /* not a continuation. Push out pending record */
435 if (dump_record(dscp, NULL, 0) != 0)
436 return (SET_ERROR(EINTR));
437 dscp->dsc_pending_op = PENDING_NONE;
438 }
439 }
440 /* create a REDACT record and make it pending */
441 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
442 dscp->dsc_drr->drr_type = DRR_REDACT;
443 drrr->drr_object = object;
444 drrr->drr_offset = offset;
445 drrr->drr_length = length;
446 drrr->drr_toguid = dscp->dsc_toguid;
447 dscp->dsc_pending_op = PENDING_REDACT;
448
449 return (0);
450 }
451
452 static int
453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
454 uint64_t offset, int lsize, int psize, const blkptr_t *bp,
455 boolean_t io_compressed, void *data)
456 {
457 uint64_t payload_size;
458 boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
459 struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
460
461 /*
462 * We send data in increasing object, offset order.
463 * See comment in dump_free() for details.
464 */
465 ASSERT(object > dscp->dsc_last_data_object ||
466 (object == dscp->dsc_last_data_object &&
467 offset > dscp->dsc_last_data_offset));
468 dscp->dsc_last_data_object = object;
469 dscp->dsc_last_data_offset = offset + lsize - 1;
470
471 /*
472 * If there is any kind of pending aggregation (currently either
473 * a grouping of free objects or free blocks), push it out to
474 * the stream, since aggregation can't be done across operations
475 * of different types.
476 */
477 if (dscp->dsc_pending_op != PENDING_NONE) {
478 if (dump_record(dscp, NULL, 0) != 0)
479 return (SET_ERROR(EINTR));
480 dscp->dsc_pending_op = PENDING_NONE;
481 }
482 /* write a WRITE record */
483 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
484 dscp->dsc_drr->drr_type = DRR_WRITE;
485 drrw->drr_object = object;
486 drrw->drr_type = type;
487 drrw->drr_offset = offset;
488 drrw->drr_toguid = dscp->dsc_toguid;
489 drrw->drr_logical_size = lsize;
490
491 /* only set the compression fields if the buf is compressed or raw */
492 boolean_t compressed =
493 (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
494 io_compressed : lsize != psize);
495 if (raw || compressed) {
496 ASSERT(bp != NULL);
497 ASSERT(raw || dscp->dsc_featureflags &
498 DMU_BACKUP_FEATURE_COMPRESSED);
499 ASSERT(!BP_IS_EMBEDDED(bp));
500 ASSERT3S(psize, >, 0);
501
502 if (raw) {
503 ASSERT(BP_IS_PROTECTED(bp));
504
505 /*
506 * This is a raw protected block so we need to pass
507 * along everything the receiving side will need to
508 * interpret this block, including the byteswap, salt,
509 * IV, and MAC.
510 */
511 if (BP_SHOULD_BYTESWAP(bp))
512 drrw->drr_flags |= DRR_RAW_BYTESWAP;
513 zio_crypt_decode_params_bp(bp, drrw->drr_salt,
514 drrw->drr_iv);
515 zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
516 } else {
517 /* this is a compressed block */
518 ASSERT(dscp->dsc_featureflags &
519 DMU_BACKUP_FEATURE_COMPRESSED);
520 ASSERT(!BP_SHOULD_BYTESWAP(bp));
521 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
522 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
523 ASSERT3S(lsize, >=, psize);
524 }
525
526 /* set fields common to compressed and raw sends */
527 drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
528 drrw->drr_compressed_size = psize;
529 payload_size = drrw->drr_compressed_size;
530 } else {
531 payload_size = drrw->drr_logical_size;
532 }
533
534 if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
535 /*
536 * There's no pre-computed checksum for partial-block writes,
537 * embedded BP's, or encrypted BP's that are being sent as
538 * plaintext, so (like fletcher4-checksummed blocks) userland
539 * will have to compute a dedup-capable checksum itself.
540 */
541 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
542 } else {
543 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
544 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
545 ZCHECKSUM_FLAG_DEDUP)
546 drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
547 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
548 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
549 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
550 DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
551 drrw->drr_key.ddk_cksum = bp->blk_cksum;
552 }
553
554 if (dump_record(dscp, data, payload_size) != 0)
555 return (SET_ERROR(EINTR));
556 return (0);
557 }
558
559 static int
560 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
561 int blksz, const blkptr_t *bp)
562 {
563 char buf[BPE_PAYLOAD_SIZE];
564 struct drr_write_embedded *drrw =
565 &(dscp->dsc_drr->drr_u.drr_write_embedded);
566
567 if (dscp->dsc_pending_op != PENDING_NONE) {
568 if (dump_record(dscp, NULL, 0) != 0)
569 return (SET_ERROR(EINTR));
570 dscp->dsc_pending_op = PENDING_NONE;
571 }
572
573 ASSERT(BP_IS_EMBEDDED(bp));
574
575 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
576 dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
577 drrw->drr_object = object;
578 drrw->drr_offset = offset;
579 drrw->drr_length = blksz;
580 drrw->drr_toguid = dscp->dsc_toguid;
581 drrw->drr_compression = BP_GET_COMPRESS(bp);
582 drrw->drr_etype = BPE_GET_ETYPE(bp);
583 drrw->drr_lsize = BPE_GET_LSIZE(bp);
584 drrw->drr_psize = BPE_GET_PSIZE(bp);
585
586 decode_embedded_bp_compressed(bp, buf);
587
588 if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
589 return (SET_ERROR(EINTR));
590 return (0);
591 }
592
593 static int
594 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
595 void *data)
596 {
597 struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
598 uint64_t blksz = BP_GET_LSIZE(bp);
599 uint64_t payload_size = blksz;
600
601 if (dscp->dsc_pending_op != PENDING_NONE) {
602 if (dump_record(dscp, NULL, 0) != 0)
603 return (SET_ERROR(EINTR));
604 dscp->dsc_pending_op = PENDING_NONE;
605 }
606
607 /* write a SPILL record */
608 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
609 dscp->dsc_drr->drr_type = DRR_SPILL;
610 drrs->drr_object = object;
611 drrs->drr_length = blksz;
612 drrs->drr_toguid = dscp->dsc_toguid;
613
614 /* See comment in dump_dnode() for full details */
615 if (zfs_send_unmodified_spill_blocks &&
616 (bp->blk_birth <= dscp->dsc_fromtxg)) {
617 drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
618 }
619
620 /* handle raw send fields */
621 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
622 ASSERT(BP_IS_PROTECTED(bp));
623
624 if (BP_SHOULD_BYTESWAP(bp))
625 drrs->drr_flags |= DRR_RAW_BYTESWAP;
626 drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
627 drrs->drr_compressed_size = BP_GET_PSIZE(bp);
628 zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
629 zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
630 payload_size = drrs->drr_compressed_size;
631 }
632
633 if (dump_record(dscp, data, payload_size) != 0)
634 return (SET_ERROR(EINTR));
635 return (0);
636 }
637
638 static int
639 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
640 {
641 struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
642 uint64_t maxobj = DNODES_PER_BLOCK *
643 (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
644
645 /*
646 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
647 * leading to zfs recv never completing. to avoid this issue, don't
648 * send FREEOBJECTS records for object IDs which cannot exist on the
649 * receiving side.
650 */
651 if (maxobj > 0) {
652 if (maxobj <= firstobj)
653 return (0);
654
655 if (maxobj < firstobj + numobjs)
656 numobjs = maxobj - firstobj;
657 }
658
659 /*
660 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
661 * push it out, since free block aggregation can only be done for
662 * blocks of the same type (i.e., DRR_FREE records can only be
663 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
664 * can only be aggregated with other DRR_FREEOBJECTS records).
665 */
666 if (dscp->dsc_pending_op != PENDING_NONE &&
667 dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
668 if (dump_record(dscp, NULL, 0) != 0)
669 return (SET_ERROR(EINTR));
670 dscp->dsc_pending_op = PENDING_NONE;
671 }
672
673 if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
674 /*
675 * See whether this free object array can be aggregated
676 * with pending one
677 */
678 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
679 drrfo->drr_numobjs += numobjs;
680 return (0);
681 } else {
682 /* can't be aggregated. Push out pending record */
683 if (dump_record(dscp, NULL, 0) != 0)
684 return (SET_ERROR(EINTR));
685 dscp->dsc_pending_op = PENDING_NONE;
686 }
687 }
688
689 /* write a FREEOBJECTS record */
690 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
691 dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
692 drrfo->drr_firstobj = firstobj;
693 drrfo->drr_numobjs = numobjs;
694 drrfo->drr_toguid = dscp->dsc_toguid;
695
696 dscp->dsc_pending_op = PENDING_FREEOBJECTS;
697
698 return (0);
699 }
700
701 static int
702 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
703 dnode_phys_t *dnp)
704 {
705 struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
706 int bonuslen;
707
708 if (object < dscp->dsc_resume_object) {
709 /*
710 * Note: when resuming, we will visit all the dnodes in
711 * the block of dnodes that we are resuming from. In
712 * this case it's unnecessary to send the dnodes prior to
713 * the one we are resuming from. We should be at most one
714 * block's worth of dnodes behind the resume point.
715 */
716 ASSERT3U(dscp->dsc_resume_object - object, <,
717 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
718 return (0);
719 }
720
721 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
722 return (dump_freeobjects(dscp, object, 1));
723
724 if (dscp->dsc_pending_op != PENDING_NONE) {
725 if (dump_record(dscp, NULL, 0) != 0)
726 return (SET_ERROR(EINTR));
727 dscp->dsc_pending_op = PENDING_NONE;
728 }
729
730 /* write an OBJECT record */
731 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
732 dscp->dsc_drr->drr_type = DRR_OBJECT;
733 drro->drr_object = object;
734 drro->drr_type = dnp->dn_type;
735 drro->drr_bonustype = dnp->dn_bonustype;
736 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
737 drro->drr_bonuslen = dnp->dn_bonuslen;
738 drro->drr_dn_slots = dnp->dn_extra_slots + 1;
739 drro->drr_checksumtype = dnp->dn_checksum;
740 drro->drr_compress = dnp->dn_compress;
741 drro->drr_toguid = dscp->dsc_toguid;
742
743 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
744 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
745 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
746
747 bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
748
749 if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
750 ASSERT(BP_IS_ENCRYPTED(bp));
751
752 if (BP_SHOULD_BYTESWAP(bp))
753 drro->drr_flags |= DRR_RAW_BYTESWAP;
754
755 /* needed for reconstructing dnp on recv side */
756 drro->drr_maxblkid = dnp->dn_maxblkid;
757 drro->drr_indblkshift = dnp->dn_indblkshift;
758 drro->drr_nlevels = dnp->dn_nlevels;
759 drro->drr_nblkptr = dnp->dn_nblkptr;
760
761 /*
762 * Since we encrypt the entire bonus area, the (raw) part
763 * beyond the bonuslen is actually nonzero, so we need
764 * to send it.
765 */
766 if (bonuslen != 0) {
767 if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
768 return (SET_ERROR(EINVAL));
769 drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
770 bonuslen = drro->drr_raw_bonuslen;
771 }
772 }
773
774 /*
775 * DRR_OBJECT_SPILL is set for every dnode which references a
776 * spill block. This allows the receiving pool to definitively
777 * determine when a spill block should be kept or freed.
778 */
779 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
780 drro->drr_flags |= DRR_OBJECT_SPILL;
781
782 if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
783 return (SET_ERROR(EINTR));
784
785 /* Free anything past the end of the file. */
786 if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
787 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
788 return (SET_ERROR(EINTR));
789
790 /*
791 * Send DRR_SPILL records for unmodified spill blocks. This is useful
792 * because changing certain attributes of the object (e.g. blocksize)
793 * can cause old versions of ZFS to incorrectly remove a spill block.
794 * Including these records in the stream forces an up to date version
795 * to always be written ensuring they're never lost. Current versions
796 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
797 * ignore these unmodified spill blocks.
798 */
799 if (zfs_send_unmodified_spill_blocks &&
800 (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
801 (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
802 struct send_range record;
803 blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
804
805 memset(&record, 0, sizeof (struct send_range));
806 record.type = DATA;
807 record.object = object;
808 record.eos_marker = B_FALSE;
809 record.start_blkid = DMU_SPILL_BLKID;
810 record.end_blkid = record.start_blkid + 1;
811 record.sru.data.bp = *bp;
812 record.sru.data.obj_type = dnp->dn_type;
813 record.sru.data.datablksz = BP_GET_LSIZE(bp);
814
815 if (do_dump(dscp, &record) != 0)
816 return (SET_ERROR(EINTR));
817 }
818
819 if (dscp->dsc_err != 0)
820 return (SET_ERROR(EINTR));
821
822 return (0);
823 }
824
825 static int
826 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
827 uint64_t firstobj, uint64_t numslots)
828 {
829 struct drr_object_range *drror =
830 &(dscp->dsc_drr->drr_u.drr_object_range);
831
832 /* we only use this record type for raw sends */
833 ASSERT(BP_IS_PROTECTED(bp));
834 ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
835 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
836 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
837 ASSERT0(BP_GET_LEVEL(bp));
838
839 if (dscp->dsc_pending_op != PENDING_NONE) {
840 if (dump_record(dscp, NULL, 0) != 0)
841 return (SET_ERROR(EINTR));
842 dscp->dsc_pending_op = PENDING_NONE;
843 }
844
845 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
846 dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
847 drror->drr_firstobj = firstobj;
848 drror->drr_numslots = numslots;
849 drror->drr_toguid = dscp->dsc_toguid;
850 if (BP_SHOULD_BYTESWAP(bp))
851 drror->drr_flags |= DRR_RAW_BYTESWAP;
852 zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
853 zio_crypt_decode_mac_bp(bp, drror->drr_mac);
854
855 if (dump_record(dscp, NULL, 0) != 0)
856 return (SET_ERROR(EINTR));
857 return (0);
858 }
859
860 static boolean_t
861 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
862 {
863 if (!BP_IS_EMBEDDED(bp))
864 return (B_FALSE);
865
866 /*
867 * Compression function must be legacy, or explicitly enabled.
868 */
869 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
870 !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
871 return (B_FALSE);
872
873 /*
874 * If we have not set the ZSTD feature flag, we can't send ZSTD
875 * compressed embedded blocks, as the receiver may not support them.
876 */
877 if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
878 !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
879 return (B_FALSE);
880
881 /*
882 * Embed type must be explicitly enabled.
883 */
884 switch (BPE_GET_ETYPE(bp)) {
885 case BP_EMBEDDED_TYPE_DATA:
886 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
887 return (B_TRUE);
888 break;
889 default:
890 return (B_FALSE);
891 }
892 return (B_FALSE);
893 }
894
895 /*
896 * This function actually handles figuring out what kind of record needs to be
897 * dumped, and calling the appropriate helper function. In most cases,
898 * the data has already been read by send_reader_thread().
899 */
900 static int
901 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
902 {
903 int err = 0;
904 switch (range->type) {
905 case OBJECT:
906 err = dump_dnode(dscp, &range->sru.object.bp, range->object,
907 range->sru.object.dnp);
908 return (err);
909 case OBJECT_RANGE: {
910 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
911 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
912 return (0);
913 }
914 uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
915 DNODE_SHIFT;
916 uint64_t firstobj = range->start_blkid * epb;
917 err = dump_object_range(dscp, &range->sru.object_range.bp,
918 firstobj, epb);
919 break;
920 }
921 case REDACT: {
922 struct srr *srrp = &range->sru.redact;
923 err = dump_redact(dscp, range->object, range->start_blkid *
924 srrp->datablksz, (range->end_blkid - range->start_blkid) *
925 srrp->datablksz);
926 return (err);
927 }
928 case DATA: {
929 struct srd *srdp = &range->sru.data;
930 blkptr_t *bp = &srdp->bp;
931 spa_t *spa =
932 dmu_objset_spa(dscp->dsc_os);
933
934 ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
935 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
936 if (BP_GET_TYPE(bp) == DMU_OT_SA) {
937 arc_flags_t aflags = ARC_FLAG_WAIT;
938 enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
939
940 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
941 ASSERT(BP_IS_PROTECTED(bp));
942 zioflags |= ZIO_FLAG_RAW;
943 }
944
945 zbookmark_phys_t zb;
946 ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
947 zb.zb_objset = dmu_objset_id(dscp->dsc_os);
948 zb.zb_object = range->object;
949 zb.zb_level = 0;
950 zb.zb_blkid = range->start_blkid;
951
952 arc_buf_t *abuf = NULL;
953 if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
954 bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
955 zioflags, &aflags, &zb) != 0)
956 return (SET_ERROR(EIO));
957
958 err = dump_spill(dscp, bp, zb.zb_object,
959 (abuf == NULL ? NULL : abuf->b_data));
960 if (abuf != NULL)
961 arc_buf_destroy(abuf, &abuf);
962 return (err);
963 }
964 if (send_do_embed(bp, dscp->dsc_featureflags)) {
965 err = dump_write_embedded(dscp, range->object,
966 range->start_blkid * srdp->datablksz,
967 srdp->datablksz, bp);
968 return (err);
969 }
970 ASSERT(range->object > dscp->dsc_resume_object ||
971 (range->object == dscp->dsc_resume_object &&
972 range->start_blkid * srdp->datablksz >=
973 dscp->dsc_resume_offset));
974 /* it's a level-0 block of a regular object */
975
976 mutex_enter(&srdp->lock);
977 while (srdp->io_outstanding)
978 cv_wait(&srdp->cv, &srdp->lock);
979 err = srdp->io_err;
980 mutex_exit(&srdp->lock);
981
982 if (err != 0) {
983 if (zfs_send_corrupt_data &&
984 !dscp->dsc_dso->dso_dryrun) {
985 /*
986 * Send a block filled with 0x"zfs badd bloc"
987 */
988 srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
989 ARC_BUFC_DATA, srdp->datablksz);
990 uint64_t *ptr;
991 for (ptr = srdp->abuf->b_data;
992 (char *)ptr < (char *)srdp->abuf->b_data +
993 srdp->datablksz; ptr++)
994 *ptr = 0x2f5baddb10cULL;
995 } else {
996 return (SET_ERROR(EIO));
997 }
998 }
999
1000 ASSERT(dscp->dsc_dso->dso_dryrun ||
1001 srdp->abuf != NULL || srdp->abd != NULL);
1002
1003 uint64_t offset = range->start_blkid * srdp->datablksz;
1004
1005 char *data = NULL;
1006 if (srdp->abd != NULL) {
1007 data = abd_to_buf(srdp->abd);
1008 ASSERT3P(srdp->abuf, ==, NULL);
1009 } else if (srdp->abuf != NULL) {
1010 data = srdp->abuf->b_data;
1011 }
1012
1013 /*
1014 * If we have large blocks stored on disk but the send flags
1015 * don't allow us to send large blocks, we split the data from
1016 * the arc buf into chunks.
1017 */
1018 if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1019 !(dscp->dsc_featureflags &
1020 DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1021 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)
1022 return (SET_ERROR(ENOTSUP));
1023
1024 while (srdp->datablksz > 0 && err == 0) {
1025 int n = MIN(srdp->datablksz,
1026 SPA_OLD_MAXBLOCKSIZE);
1027 err = dmu_dump_write(dscp, srdp->obj_type,
1028 range->object, offset, n, n, NULL, B_FALSE,
1029 data);
1030 offset += n;
1031 /*
1032 * When doing dry run, data==NULL is used as a
1033 * sentinel value by
1034 * dmu_dump_write()->dump_record().
1035 */
1036 if (data != NULL)
1037 data += n;
1038 srdp->datablksz -= n;
1039 }
1040 } else {
1041 err = dmu_dump_write(dscp, srdp->obj_type,
1042 range->object, offset,
1043 srdp->datablksz, srdp->datasz, bp,
1044 srdp->io_compressed, data);
1045 }
1046 return (err);
1047 }
1048 case HOLE: {
1049 struct srh *srhp = &range->sru.hole;
1050 if (range->object == DMU_META_DNODE_OBJECT) {
1051 uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1052 uint64_t first_obj = range->start_blkid * span;
1053 uint64_t numobj = range->end_blkid * span - first_obj;
1054 return (dump_freeobjects(dscp, first_obj, numobj));
1055 }
1056 uint64_t offset = 0;
1057
1058 /*
1059 * If this multiply overflows, we don't need to send this block.
1060 * Even if it has a birth time, it can never not be a hole, so
1061 * we don't need to send records for it.
1062 */
1063 if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1064 &offset)) {
1065 return (0);
1066 }
1067 uint64_t len = 0;
1068
1069 if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1070 len = UINT64_MAX;
1071 len = len - offset;
1072 return (dump_free(dscp, range->object, offset, len));
1073 }
1074 default:
1075 panic("Invalid range type in do_dump: %d", range->type);
1076 }
1077 return (err);
1078 }
1079
1080 static struct send_range *
1081 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1082 uint64_t end_blkid, boolean_t eos)
1083 {
1084 struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1085 range->type = type;
1086 range->object = object;
1087 range->start_blkid = start_blkid;
1088 range->end_blkid = end_blkid;
1089 range->eos_marker = eos;
1090 if (type == DATA) {
1091 range->sru.data.abd = NULL;
1092 range->sru.data.abuf = NULL;
1093 mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1094 cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1095 range->sru.data.io_outstanding = 0;
1096 range->sru.data.io_err = 0;
1097 range->sru.data.io_compressed = B_FALSE;
1098 }
1099 return (range);
1100 }
1101
1102 /*
1103 * This is the callback function to traverse_dataset that acts as a worker
1104 * thread for dmu_send_impl.
1105 */
1106 static int
1107 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1108 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1109 {
1110 (void) zilog;
1111 struct send_thread_arg *sta = arg;
1112 struct send_range *record;
1113
1114 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1115 zb->zb_object >= sta->resume.zb_object);
1116
1117 /*
1118 * All bps of an encrypted os should have the encryption bit set.
1119 * If this is not true it indicates tampering and we report an error.
1120 */
1121 if (sta->os->os_encrypted &&
1122 !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1123 spa_log_error(spa, zb);
1124 zfs_panic_recover("unencrypted block in encrypted "
1125 "object set %llu", dmu_objset_id(sta->os));
1126 return (SET_ERROR(EIO));
1127 }
1128
1129 if (sta->cancel)
1130 return (SET_ERROR(EINTR));
1131 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1132 DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1133 return (0);
1134 atomic_inc_64(sta->num_blocks_visited);
1135
1136 if (zb->zb_level == ZB_DNODE_LEVEL) {
1137 if (zb->zb_object == DMU_META_DNODE_OBJECT)
1138 return (0);
1139 record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1140 record->sru.object.bp = *bp;
1141 size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1142 record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1143 memcpy(record->sru.object.dnp, dnp, size);
1144 bqueue_enqueue(&sta->q, record, sizeof (*record));
1145 return (0);
1146 }
1147 if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1148 !BP_IS_HOLE(bp)) {
1149 record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1150 zb->zb_blkid + 1, B_FALSE);
1151 record->sru.object_range.bp = *bp;
1152 bqueue_enqueue(&sta->q, record, sizeof (*record));
1153 return (0);
1154 }
1155 if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1156 return (0);
1157 if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1158 return (0);
1159
1160 uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1161 uint64_t start;
1162
1163 /*
1164 * If this multiply overflows, we don't need to send this block.
1165 * Even if it has a birth time, it can never not be a hole, so
1166 * we don't need to send records for it.
1167 */
1168 if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1169 DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1170 span * zb->zb_blkid > dnp->dn_maxblkid)) {
1171 ASSERT(BP_IS_HOLE(bp));
1172 return (0);
1173 }
1174
1175 if (zb->zb_blkid == DMU_SPILL_BLKID)
1176 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1177
1178 enum type record_type = DATA;
1179 if (BP_IS_HOLE(bp))
1180 record_type = HOLE;
1181 else if (BP_IS_REDACTED(bp))
1182 record_type = REDACT;
1183 else
1184 record_type = DATA;
1185
1186 record = range_alloc(record_type, zb->zb_object, start,
1187 (start + span < start ? 0 : start + span), B_FALSE);
1188
1189 uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1190 BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1191
1192 if (BP_IS_HOLE(bp)) {
1193 record->sru.hole.datablksz = datablksz;
1194 } else if (BP_IS_REDACTED(bp)) {
1195 record->sru.redact.datablksz = datablksz;
1196 } else {
1197 record->sru.data.datablksz = datablksz;
1198 record->sru.data.obj_type = dnp->dn_type;
1199 record->sru.data.bp = *bp;
1200 }
1201
1202 bqueue_enqueue(&sta->q, record, sizeof (*record));
1203 return (0);
1204 }
1205
1206 struct redact_list_cb_arg {
1207 uint64_t *num_blocks_visited;
1208 bqueue_t *q;
1209 boolean_t *cancel;
1210 boolean_t mark_redact;
1211 };
1212
1213 static int
1214 redact_list_cb(redact_block_phys_t *rb, void *arg)
1215 {
1216 struct redact_list_cb_arg *rlcap = arg;
1217
1218 atomic_inc_64(rlcap->num_blocks_visited);
1219 if (*rlcap->cancel)
1220 return (-1);
1221
1222 struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1223 rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1224 ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1225 if (rlcap->mark_redact) {
1226 data->type = REDACT;
1227 data->sru.redact.datablksz = redact_block_get_size(rb);
1228 } else {
1229 data->type = PREVIOUSLY_REDACTED;
1230 }
1231 bqueue_enqueue(rlcap->q, data, sizeof (*data));
1232
1233 return (0);
1234 }
1235
1236 /*
1237 * This function kicks off the traverse_dataset. It also handles setting the
1238 * error code of the thread in case something goes wrong, and pushes the End of
1239 * Stream record when the traverse_dataset call has finished.
1240 */
1241 static __attribute__((noreturn)) void
1242 send_traverse_thread(void *arg)
1243 {
1244 struct send_thread_arg *st_arg = arg;
1245 int err = 0;
1246 struct send_range *data;
1247 fstrans_cookie_t cookie = spl_fstrans_mark();
1248
1249 err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1250 st_arg->fromtxg, &st_arg->resume,
1251 st_arg->flags, send_cb, st_arg);
1252
1253 if (err != EINTR)
1254 st_arg->error_code = err;
1255 data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1256 bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1257 spl_fstrans_unmark(cookie);
1258 thread_exit();
1259 }
1260
1261 /*
1262 * Utility function that causes End of Stream records to compare after of all
1263 * others, so that other threads' comparison logic can stay simple.
1264 */
1265 static int __attribute__((unused))
1266 send_range_after(const struct send_range *from, const struct send_range *to)
1267 {
1268 if (from->eos_marker == B_TRUE)
1269 return (1);
1270 if (to->eos_marker == B_TRUE)
1271 return (-1);
1272
1273 uint64_t from_obj = from->object;
1274 uint64_t from_end_obj = from->object + 1;
1275 uint64_t to_obj = to->object;
1276 uint64_t to_end_obj = to->object + 1;
1277 if (from_obj == 0) {
1278 ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1279 from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1280 from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1281 }
1282 if (to_obj == 0) {
1283 ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1284 to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1285 to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1286 }
1287
1288 if (from_end_obj <= to_obj)
1289 return (-1);
1290 if (from_obj >= to_end_obj)
1291 return (1);
1292 int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1293 OBJECT_RANGE);
1294 if (unlikely(cmp))
1295 return (cmp);
1296 cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1297 if (unlikely(cmp))
1298 return (cmp);
1299 if (from->end_blkid <= to->start_blkid)
1300 return (-1);
1301 if (from->start_blkid >= to->end_blkid)
1302 return (1);
1303 return (0);
1304 }
1305
1306 /*
1307 * Pop the new data off the queue, check that the records we receive are in
1308 * the right order, but do not free the old data. This is used so that the
1309 * records can be sent on to the main thread without copying the data.
1310 */
1311 static struct send_range *
1312 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1313 {
1314 struct send_range *next = bqueue_dequeue(bq);
1315 ASSERT3S(send_range_after(prev, next), ==, -1);
1316 return (next);
1317 }
1318
1319 /*
1320 * Pop the new data off the queue, check that the records we receive are in
1321 * the right order, and free the old data.
1322 */
1323 static struct send_range *
1324 get_next_range(bqueue_t *bq, struct send_range *prev)
1325 {
1326 struct send_range *next = get_next_range_nofree(bq, prev);
1327 range_free(prev);
1328 return (next);
1329 }
1330
1331 static __attribute__((noreturn)) void
1332 redact_list_thread(void *arg)
1333 {
1334 struct redact_list_thread_arg *rlt_arg = arg;
1335 struct send_range *record;
1336 fstrans_cookie_t cookie = spl_fstrans_mark();
1337 if (rlt_arg->rl != NULL) {
1338 struct redact_list_cb_arg rlcba = {0};
1339 rlcba.cancel = &rlt_arg->cancel;
1340 rlcba.q = &rlt_arg->q;
1341 rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1342 rlcba.mark_redact = rlt_arg->mark_redact;
1343 int err = dsl_redaction_list_traverse(rlt_arg->rl,
1344 &rlt_arg->resume, redact_list_cb, &rlcba);
1345 if (err != EINTR)
1346 rlt_arg->error_code = err;
1347 }
1348 record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1349 bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1350 spl_fstrans_unmark(cookie);
1351
1352 thread_exit();
1353 }
1354
1355 /*
1356 * Compare the start point of the two provided ranges. End of stream ranges
1357 * compare last, objects compare before any data or hole inside that object and
1358 * multi-object holes that start at the same object.
1359 */
1360 static int
1361 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1362 {
1363 uint64_t r1_objequiv = r1->object;
1364 uint64_t r1_l0equiv = r1->start_blkid;
1365 uint64_t r2_objequiv = r2->object;
1366 uint64_t r2_l0equiv = r2->start_blkid;
1367 int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1368 if (unlikely(cmp))
1369 return (cmp);
1370 if (r1->object == 0) {
1371 r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1372 r1_l0equiv = 0;
1373 }
1374 if (r2->object == 0) {
1375 r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1376 r2_l0equiv = 0;
1377 }
1378
1379 cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1380 if (likely(cmp))
1381 return (cmp);
1382 cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1383 if (unlikely(cmp))
1384 return (cmp);
1385 cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1386 if (unlikely(cmp))
1387 return (cmp);
1388
1389 return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1390 }
1391
1392 enum q_idx {
1393 REDACT_IDX = 0,
1394 TO_IDX,
1395 FROM_IDX,
1396 NUM_THREADS
1397 };
1398
1399 /*
1400 * This function returns the next range the send_merge_thread should operate on.
1401 * The inputs are two arrays; the first one stores the range at the front of the
1402 * queues stored in the second one. The ranges are sorted in descending
1403 * priority order; the metadata from earlier ranges overrules metadata from
1404 * later ranges. out_mask is used to return which threads the ranges came from;
1405 * bit i is set if ranges[i] started at the same place as the returned range.
1406 *
1407 * This code is not hardcoded to compare a specific number of threads; it could
1408 * be used with any number, just by changing the q_idx enum.
1409 *
1410 * The "next range" is the one with the earliest start; if two starts are equal,
1411 * the highest-priority range is the next to operate on. If a higher-priority
1412 * range starts in the middle of the first range, then the first range will be
1413 * truncated to end where the higher-priority range starts, and we will operate
1414 * on that one next time. In this way, we make sure that each block covered by
1415 * some range gets covered by a returned range, and each block covered is
1416 * returned using the metadata of the highest-priority range it appears in.
1417 *
1418 * For example, if the three ranges at the front of the queues were [2,4),
1419 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1420 * from the third range, [2,4) with the metadata from the first range, and then
1421 * [4,5) with the metadata from the second.
1422 */
1423 static struct send_range *
1424 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1425 {
1426 int idx = 0; // index of the range with the earliest start
1427 int i;
1428 uint64_t bmask = 0;
1429 for (i = 1; i < NUM_THREADS; i++) {
1430 if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1431 idx = i;
1432 }
1433 if (ranges[idx]->eos_marker) {
1434 struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1435 *out_mask = 0;
1436 return (ret);
1437 }
1438 /*
1439 * Find all the ranges that start at that same point.
1440 */
1441 for (i = 0; i < NUM_THREADS; i++) {
1442 if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1443 bmask |= 1 << i;
1444 }
1445 *out_mask = bmask;
1446 /*
1447 * OBJECT_RANGE records only come from the TO thread, and should always
1448 * be treated as overlapping with nothing and sent on immediately. They
1449 * are only used in raw sends, and are never redacted.
1450 */
1451 if (ranges[idx]->type == OBJECT_RANGE) {
1452 ASSERT3U(idx, ==, TO_IDX);
1453 ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1454 struct send_range *ret = ranges[idx];
1455 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1456 return (ret);
1457 }
1458 /*
1459 * Find the first start or end point after the start of the first range.
1460 */
1461 uint64_t first_change = ranges[idx]->end_blkid;
1462 for (i = 0; i < NUM_THREADS; i++) {
1463 if (i == idx || ranges[i]->eos_marker ||
1464 ranges[i]->object > ranges[idx]->object ||
1465 ranges[i]->object == DMU_META_DNODE_OBJECT)
1466 continue;
1467 ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1468 if (first_change > ranges[i]->start_blkid &&
1469 (bmask & (1 << i)) == 0)
1470 first_change = ranges[i]->start_blkid;
1471 else if (first_change > ranges[i]->end_blkid)
1472 first_change = ranges[i]->end_blkid;
1473 }
1474 /*
1475 * Update all ranges to no longer overlap with the range we're
1476 * returning. All such ranges must start at the same place as the range
1477 * being returned, and end at or after first_change. Thus we update
1478 * their start to first_change. If that makes them size 0, then free
1479 * them and pull a new range from that thread.
1480 */
1481 for (i = 0; i < NUM_THREADS; i++) {
1482 if (i == idx || (bmask & (1 << i)) == 0)
1483 continue;
1484 ASSERT3U(first_change, >, ranges[i]->start_blkid);
1485 ranges[i]->start_blkid = first_change;
1486 ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1487 if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1488 ranges[i] = get_next_range(qs[i], ranges[i]);
1489 }
1490 /*
1491 * Short-circuit the simple case; if the range doesn't overlap with
1492 * anything else, or it only overlaps with things that start at the same
1493 * place and are longer, send it on.
1494 */
1495 if (first_change == ranges[idx]->end_blkid) {
1496 struct send_range *ret = ranges[idx];
1497 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1498 return (ret);
1499 }
1500
1501 /*
1502 * Otherwise, return a truncated copy of ranges[idx] and move the start
1503 * of ranges[idx] back to first_change.
1504 */
1505 struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1506 *ret = *ranges[idx];
1507 ret->end_blkid = first_change;
1508 ranges[idx]->start_blkid = first_change;
1509 return (ret);
1510 }
1511
1512 #define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1513
1514 /*
1515 * Merge the results from the from thread and the to thread, and then hand the
1516 * records off to send_prefetch_thread to prefetch them. If this is not a
1517 * send from a redaction bookmark, the from thread will push an end of stream
1518 * record and stop, and we'll just send everything that was changed in the
1519 * to_ds since the ancestor's creation txg. If it is, then since
1520 * traverse_dataset has a canonical order, we can compare each change as
1521 * they're pulled off the queues. That will give us a stream that is
1522 * appropriately sorted, and covers all records. In addition, we pull the
1523 * data from the redact_list_thread and use that to determine which blocks
1524 * should be redacted.
1525 */
1526 static __attribute__((noreturn)) void
1527 send_merge_thread(void *arg)
1528 {
1529 struct send_merge_thread_arg *smt_arg = arg;
1530 struct send_range *front_ranges[NUM_THREADS];
1531 bqueue_t *queues[NUM_THREADS];
1532 int err = 0;
1533 fstrans_cookie_t cookie = spl_fstrans_mark();
1534
1535 if (smt_arg->redact_arg == NULL) {
1536 front_ranges[REDACT_IDX] =
1537 kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1538 front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1539 front_ranges[REDACT_IDX]->type = REDACT;
1540 queues[REDACT_IDX] = NULL;
1541 } else {
1542 front_ranges[REDACT_IDX] =
1543 bqueue_dequeue(&smt_arg->redact_arg->q);
1544 queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1545 }
1546 front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1547 queues[TO_IDX] = &smt_arg->to_arg->q;
1548 front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1549 queues[FROM_IDX] = &smt_arg->from_arg->q;
1550 uint64_t mask = 0;
1551 struct send_range *range;
1552 for (range = find_next_range(front_ranges, queues, &mask);
1553 !range->eos_marker && err == 0 && !smt_arg->cancel;
1554 range = find_next_range(front_ranges, queues, &mask)) {
1555 /*
1556 * If the range in question was in both the from redact bookmark
1557 * and the bookmark we're using to redact, then don't send it.
1558 * It's already redacted on the receiving system, so a redaction
1559 * record would be redundant.
1560 */
1561 if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1562 ASSERT3U(range->type, ==, REDACT);
1563 range_free(range);
1564 continue;
1565 }
1566 bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1567
1568 if (smt_arg->to_arg->error_code != 0) {
1569 err = smt_arg->to_arg->error_code;
1570 } else if (smt_arg->from_arg->error_code != 0) {
1571 err = smt_arg->from_arg->error_code;
1572 } else if (smt_arg->redact_arg != NULL &&
1573 smt_arg->redact_arg->error_code != 0) {
1574 err = smt_arg->redact_arg->error_code;
1575 }
1576 }
1577 if (smt_arg->cancel && err == 0)
1578 err = SET_ERROR(EINTR);
1579 smt_arg->error = err;
1580 if (smt_arg->error != 0) {
1581 smt_arg->to_arg->cancel = B_TRUE;
1582 smt_arg->from_arg->cancel = B_TRUE;
1583 if (smt_arg->redact_arg != NULL)
1584 smt_arg->redact_arg->cancel = B_TRUE;
1585 }
1586 for (int i = 0; i < NUM_THREADS; i++) {
1587 while (!front_ranges[i]->eos_marker) {
1588 front_ranges[i] = get_next_range(queues[i],
1589 front_ranges[i]);
1590 }
1591 range_free(front_ranges[i]);
1592 }
1593 if (range == NULL)
1594 range = kmem_zalloc(sizeof (*range), KM_SLEEP);
1595 range->eos_marker = B_TRUE;
1596 bqueue_enqueue_flush(&smt_arg->q, range, 1);
1597 spl_fstrans_unmark(cookie);
1598 thread_exit();
1599 }
1600
1601 struct send_reader_thread_arg {
1602 struct send_merge_thread_arg *smta;
1603 bqueue_t q;
1604 boolean_t cancel;
1605 boolean_t issue_reads;
1606 uint64_t featureflags;
1607 int error;
1608 };
1609
1610 static void
1611 dmu_send_read_done(zio_t *zio)
1612 {
1613 struct send_range *range = zio->io_private;
1614
1615 mutex_enter(&range->sru.data.lock);
1616 if (zio->io_error != 0) {
1617 abd_free(range->sru.data.abd);
1618 range->sru.data.abd = NULL;
1619 range->sru.data.io_err = zio->io_error;
1620 }
1621
1622 ASSERT(range->sru.data.io_outstanding);
1623 range->sru.data.io_outstanding = B_FALSE;
1624 cv_broadcast(&range->sru.data.cv);
1625 mutex_exit(&range->sru.data.lock);
1626 }
1627
1628 static void
1629 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1630 {
1631 struct srd *srdp = &range->sru.data;
1632 blkptr_t *bp = &srdp->bp;
1633 objset_t *os = srta->smta->os;
1634
1635 ASSERT3U(range->type, ==, DATA);
1636 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1637 /*
1638 * If we have large blocks stored on disk but
1639 * the send flags don't allow us to send large
1640 * blocks, we split the data from the arc buf
1641 * into chunks.
1642 */
1643 boolean_t split_large_blocks =
1644 srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1645 !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1646 /*
1647 * We should only request compressed data from the ARC if all
1648 * the following are true:
1649 * - stream compression was requested
1650 * - we aren't splitting large blocks into smaller chunks
1651 * - the data won't need to be byteswapped before sending
1652 * - this isn't an embedded block
1653 * - this isn't metadata (if receiving on a different endian
1654 * system it can be byteswapped more easily)
1655 */
1656 boolean_t request_compressed =
1657 (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1658 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1659 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1660
1661 enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
1662
1663 if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1664 zioflags |= ZIO_FLAG_RAW;
1665 srdp->io_compressed = B_TRUE;
1666 } else if (request_compressed) {
1667 zioflags |= ZIO_FLAG_RAW_COMPRESS;
1668 srdp->io_compressed = B_TRUE;
1669 }
1670
1671 srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1672 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1673
1674 if (!srta->issue_reads)
1675 return;
1676 if (BP_IS_REDACTED(bp))
1677 return;
1678 if (send_do_embed(bp, srta->featureflags))
1679 return;
1680
1681 zbookmark_phys_t zb = {
1682 .zb_objset = dmu_objset_id(os),
1683 .zb_object = range->object,
1684 .zb_level = 0,
1685 .zb_blkid = range->start_blkid,
1686 };
1687
1688 arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1689
1690 int arc_err = arc_read(NULL, os->os_spa, bp,
1691 arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1692 zioflags, &aflags, &zb);
1693 /*
1694 * If the data is not already cached in the ARC, we read directly
1695 * from zio. This avoids the performance overhead of adding a new
1696 * entry to the ARC, and we also avoid polluting the ARC cache with
1697 * data that is not likely to be used in the future.
1698 */
1699 if (arc_err != 0) {
1700 srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1701 srdp->io_outstanding = B_TRUE;
1702 zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1703 srdp->datasz, dmu_send_read_done, range,
1704 ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1705 }
1706 }
1707
1708 /*
1709 * Create a new record with the given values.
1710 */
1711 static void
1712 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1713 uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1714 {
1715 enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1716 (BP_IS_REDACTED(bp) ? REDACT : DATA));
1717
1718 struct send_range *range = range_alloc(range_type, dn->dn_object,
1719 blkid, blkid + count, B_FALSE);
1720
1721 if (blkid == DMU_SPILL_BLKID)
1722 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1723
1724 switch (range_type) {
1725 case HOLE:
1726 range->sru.hole.datablksz = datablksz;
1727 break;
1728 case DATA:
1729 ASSERT3U(count, ==, 1);
1730 range->sru.data.datablksz = datablksz;
1731 range->sru.data.obj_type = dn->dn_type;
1732 range->sru.data.bp = *bp;
1733 issue_data_read(srta, range);
1734 break;
1735 case REDACT:
1736 range->sru.redact.datablksz = datablksz;
1737 break;
1738 default:
1739 break;
1740 }
1741 bqueue_enqueue(q, range, datablksz);
1742 }
1743
1744 /*
1745 * This thread is responsible for two things: First, it retrieves the correct
1746 * blkptr in the to ds if we need to send the data because of something from
1747 * the from thread. As a result of this, we're the first ones to discover that
1748 * some indirect blocks can be discarded because they're not holes. Second,
1749 * it issues prefetches for the data we need to send.
1750 */
1751 static __attribute__((noreturn)) void
1752 send_reader_thread(void *arg)
1753 {
1754 struct send_reader_thread_arg *srta = arg;
1755 struct send_merge_thread_arg *smta = srta->smta;
1756 bqueue_t *inq = &smta->q;
1757 bqueue_t *outq = &srta->q;
1758 objset_t *os = smta->os;
1759 fstrans_cookie_t cookie = spl_fstrans_mark();
1760 struct send_range *range = bqueue_dequeue(inq);
1761 int err = 0;
1762
1763 /*
1764 * If the record we're analyzing is from a redaction bookmark from the
1765 * fromds, then we need to know whether or not it exists in the tods so
1766 * we know whether to create records for it or not. If it does, we need
1767 * the datablksz so we can generate an appropriate record for it.
1768 * Finally, if it isn't redacted, we need the blkptr so that we can send
1769 * a WRITE record containing the actual data.
1770 */
1771 uint64_t last_obj = UINT64_MAX;
1772 uint64_t last_obj_exists = B_TRUE;
1773 while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1774 err == 0) {
1775 switch (range->type) {
1776 case DATA:
1777 issue_data_read(srta, range);
1778 bqueue_enqueue(outq, range, range->sru.data.datablksz);
1779 range = get_next_range_nofree(inq, range);
1780 break;
1781 case HOLE:
1782 case OBJECT:
1783 case OBJECT_RANGE:
1784 case REDACT: // Redacted blocks must exist
1785 bqueue_enqueue(outq, range, sizeof (*range));
1786 range = get_next_range_nofree(inq, range);
1787 break;
1788 case PREVIOUSLY_REDACTED: {
1789 /*
1790 * This entry came from the "from bookmark" when
1791 * sending from a bookmark that has a redaction
1792 * list. We need to check if this object/blkid
1793 * exists in the target ("to") dataset, and if
1794 * not then we drop this entry. We also need
1795 * to fill in the block pointer so that we know
1796 * what to prefetch.
1797 *
1798 * To accomplish the above, we first cache whether or
1799 * not the last object we examined exists. If it
1800 * doesn't, we can drop this record. If it does, we hold
1801 * the dnode and use it to call dbuf_dnode_findbp. We do
1802 * this instead of dbuf_bookmark_findbp because we will
1803 * often operate on large ranges, and holding the dnode
1804 * once is more efficient.
1805 */
1806 boolean_t object_exists = B_TRUE;
1807 /*
1808 * If the data is redacted, we only care if it exists,
1809 * so that we don't send records for objects that have
1810 * been deleted.
1811 */
1812 dnode_t *dn;
1813 if (range->object == last_obj && !last_obj_exists) {
1814 /*
1815 * If we're still examining the same object as
1816 * previously, and it doesn't exist, we don't
1817 * need to call dbuf_bookmark_findbp.
1818 */
1819 object_exists = B_FALSE;
1820 } else {
1821 err = dnode_hold(os, range->object, FTAG, &dn);
1822 if (err == ENOENT) {
1823 object_exists = B_FALSE;
1824 err = 0;
1825 }
1826 last_obj = range->object;
1827 last_obj_exists = object_exists;
1828 }
1829
1830 if (err != 0) {
1831 break;
1832 } else if (!object_exists) {
1833 /*
1834 * The block was modified, but doesn't
1835 * exist in the to dataset; if it was
1836 * deleted in the to dataset, then we'll
1837 * visit the hole bp for it at some point.
1838 */
1839 range = get_next_range(inq, range);
1840 continue;
1841 }
1842 uint64_t file_max =
1843 (dn->dn_maxblkid < range->end_blkid ?
1844 dn->dn_maxblkid : range->end_blkid);
1845 /*
1846 * The object exists, so we need to try to find the
1847 * blkptr for each block in the range we're processing.
1848 */
1849 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1850 for (uint64_t blkid = range->start_blkid;
1851 blkid < file_max; blkid++) {
1852 blkptr_t bp;
1853 uint32_t datablksz =
1854 dn->dn_phys->dn_datablkszsec <<
1855 SPA_MINBLOCKSHIFT;
1856 uint64_t offset = blkid * datablksz;
1857 /*
1858 * This call finds the next non-hole block in
1859 * the object. This is to prevent a
1860 * performance problem where we're unredacting
1861 * a large hole. Using dnode_next_offset to
1862 * skip over the large hole avoids iterating
1863 * over every block in it.
1864 */
1865 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1866 &offset, 1, 1, 0);
1867 if (err == ESRCH) {
1868 offset = UINT64_MAX;
1869 err = 0;
1870 } else if (err != 0) {
1871 break;
1872 }
1873 if (offset != blkid * datablksz) {
1874 /*
1875 * if there is a hole from here
1876 * (blkid) to offset
1877 */
1878 offset = MIN(offset, file_max *
1879 datablksz);
1880 uint64_t nblks = (offset / datablksz) -
1881 blkid;
1882 enqueue_range(srta, outq, dn, blkid,
1883 nblks, NULL, datablksz);
1884 blkid += nblks;
1885 }
1886 if (blkid >= file_max)
1887 break;
1888 err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1889 NULL, NULL);
1890 if (err != 0)
1891 break;
1892 ASSERT(!BP_IS_HOLE(&bp));
1893 enqueue_range(srta, outq, dn, blkid, 1, &bp,
1894 datablksz);
1895 }
1896 rw_exit(&dn->dn_struct_rwlock);
1897 dnode_rele(dn, FTAG);
1898 range = get_next_range(inq, range);
1899 }
1900 }
1901 }
1902 if (srta->cancel || err != 0) {
1903 smta->cancel = B_TRUE;
1904 srta->error = err;
1905 } else if (smta->error != 0) {
1906 srta->error = smta->error;
1907 }
1908 while (!range->eos_marker)
1909 range = get_next_range(inq, range);
1910
1911 bqueue_enqueue_flush(outq, range, 1);
1912 spl_fstrans_unmark(cookie);
1913 thread_exit();
1914 }
1915
1916 #define NUM_SNAPS_NOT_REDACTED UINT64_MAX
1917
1918 struct dmu_send_params {
1919 /* Pool args */
1920 const void *tag; // Tag dp was held with, will be used to release dp.
1921 dsl_pool_t *dp;
1922 /* To snapshot args */
1923 const char *tosnap;
1924 dsl_dataset_t *to_ds;
1925 /* From snapshot args */
1926 zfs_bookmark_phys_t ancestor_zb;
1927 uint64_t *fromredactsnaps;
1928 /* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1929 uint64_t numfromredactsnaps;
1930 /* Stream params */
1931 boolean_t is_clone;
1932 boolean_t embedok;
1933 boolean_t large_block_ok;
1934 boolean_t compressok;
1935 boolean_t rawok;
1936 boolean_t savedok;
1937 uint64_t resumeobj;
1938 uint64_t resumeoff;
1939 uint64_t saved_guid;
1940 zfs_bookmark_phys_t *redactbook;
1941 /* Stream output params */
1942 dmu_send_outparams_t *dso;
1943
1944 /* Stream progress params */
1945 offset_t *off;
1946 int outfd;
1947 char saved_toname[MAXNAMELEN];
1948 };
1949
1950 static int
1951 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1952 uint64_t *featureflags)
1953 {
1954 dsl_dataset_t *to_ds = dspp->to_ds;
1955 dsl_pool_t *dp = dspp->dp;
1956 #ifdef _KERNEL
1957 if (dmu_objset_type(os) == DMU_OST_ZFS) {
1958 uint64_t version;
1959 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1960 return (SET_ERROR(EINVAL));
1961
1962 if (version >= ZPL_VERSION_SA)
1963 *featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1964 }
1965 #endif
1966
1967 /* raw sends imply large_block_ok */
1968 if ((dspp->rawok || dspp->large_block_ok) &&
1969 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1970 *featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1971 }
1972
1973 /* encrypted datasets will not have embedded blocks */
1974 if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1975 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1976 *featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1977 }
1978
1979 /* raw send implies compressok */
1980 if (dspp->compressok || dspp->rawok)
1981 *featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1982
1983 if (dspp->rawok && os->os_encrypted)
1984 *featureflags |= DMU_BACKUP_FEATURE_RAW;
1985
1986 if ((*featureflags &
1987 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1988 DMU_BACKUP_FEATURE_RAW)) != 0 &&
1989 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1990 *featureflags |= DMU_BACKUP_FEATURE_LZ4;
1991 }
1992
1993 /*
1994 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1995 * allow sending ZSTD compressed datasets to a receiver that does not
1996 * support ZSTD
1997 */
1998 if ((*featureflags &
1999 (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
2000 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2001 *featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2002 }
2003
2004 if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2005 *featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2006 }
2007
2008 if (dspp->redactbook != NULL) {
2009 *featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2010 }
2011
2012 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2013 *featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2014 }
2015 return (0);
2016 }
2017
2018 static dmu_replay_record_t *
2019 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2020 uint64_t featureflags)
2021 {
2022 dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2023 KM_SLEEP);
2024 drr->drr_type = DRR_BEGIN;
2025
2026 struct drr_begin *drrb = &drr->drr_u.drr_begin;
2027 dsl_dataset_t *to_ds = dspp->to_ds;
2028
2029 drrb->drr_magic = DMU_BACKUP_MAGIC;
2030 drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2031 drrb->drr_type = dmu_objset_type(os);
2032 drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2033 drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2034
2035 DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2036 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2037
2038 if (dspp->is_clone)
2039 drrb->drr_flags |= DRR_FLAG_CLONE;
2040 if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2041 drrb->drr_flags |= DRR_FLAG_CI_DATA;
2042 if (zfs_send_set_freerecords_bit)
2043 drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2044 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2045
2046 if (dspp->savedok) {
2047 drrb->drr_toguid = dspp->saved_guid;
2048 strlcpy(drrb->drr_toname, dspp->saved_toname,
2049 sizeof (drrb->drr_toname));
2050 } else {
2051 dsl_dataset_name(to_ds, drrb->drr_toname);
2052 if (!to_ds->ds_is_snapshot) {
2053 (void) strlcat(drrb->drr_toname, "@--head--",
2054 sizeof (drrb->drr_toname));
2055 }
2056 }
2057 return (drr);
2058 }
2059
2060 static void
2061 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2062 dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2063 {
2064 VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2065 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2066 offsetof(struct send_range, ln)));
2067 to_arg->error_code = 0;
2068 to_arg->cancel = B_FALSE;
2069 to_arg->os = to_os;
2070 to_arg->fromtxg = fromtxg;
2071 to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2072 if (rawok)
2073 to_arg->flags |= TRAVERSE_NO_DECRYPT;
2074 if (zfs_send_corrupt_data)
2075 to_arg->flags |= TRAVERSE_HARD;
2076 to_arg->num_blocks_visited = &dssp->dss_blocks;
2077 (void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2078 curproc, TS_RUN, minclsyspri);
2079 }
2080
2081 static void
2082 setup_from_thread(struct redact_list_thread_arg *from_arg,
2083 redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2084 {
2085 VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2086 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2087 offsetof(struct send_range, ln)));
2088 from_arg->error_code = 0;
2089 from_arg->cancel = B_FALSE;
2090 from_arg->rl = from_rl;
2091 from_arg->mark_redact = B_FALSE;
2092 from_arg->num_blocks_visited = &dssp->dss_blocks;
2093 /*
2094 * If from_ds is null, send_traverse_thread just returns success and
2095 * enqueues an eos marker.
2096 */
2097 (void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2098 curproc, TS_RUN, minclsyspri);
2099 }
2100
2101 static void
2102 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2103 struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2104 {
2105 if (dspp->redactbook == NULL)
2106 return;
2107
2108 rlt_arg->cancel = B_FALSE;
2109 VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2110 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2111 offsetof(struct send_range, ln)));
2112 rlt_arg->error_code = 0;
2113 rlt_arg->mark_redact = B_TRUE;
2114 rlt_arg->rl = rl;
2115 rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2116
2117 (void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2118 curproc, TS_RUN, minclsyspri);
2119 }
2120
2121 static void
2122 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2123 struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2124 struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2125 objset_t *os)
2126 {
2127 VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2128 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2129 offsetof(struct send_range, ln)));
2130 smt_arg->cancel = B_FALSE;
2131 smt_arg->error = 0;
2132 smt_arg->from_arg = from_arg;
2133 smt_arg->to_arg = to_arg;
2134 if (dspp->redactbook != NULL)
2135 smt_arg->redact_arg = rlt_arg;
2136
2137 smt_arg->os = os;
2138 (void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2139 TS_RUN, minclsyspri);
2140 }
2141
2142 static void
2143 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2144 struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2145 uint64_t featureflags)
2146 {
2147 VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2148 MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2149 offsetof(struct send_range, ln)));
2150 srt_arg->smta = smt_arg;
2151 srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2152 srt_arg->featureflags = featureflags;
2153 (void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2154 curproc, TS_RUN, minclsyspri);
2155 }
2156
2157 static int
2158 setup_resume_points(struct dmu_send_params *dspp,
2159 struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2160 struct redact_list_thread_arg *rlt_arg,
2161 struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2162 redaction_list_t *redact_rl, nvlist_t *nvl)
2163 {
2164 (void) smt_arg;
2165 dsl_dataset_t *to_ds = dspp->to_ds;
2166 int err = 0;
2167
2168 uint64_t obj = 0;
2169 uint64_t blkid = 0;
2170 if (resuming) {
2171 obj = dspp->resumeobj;
2172 dmu_object_info_t to_doi;
2173 err = dmu_object_info(os, obj, &to_doi);
2174 if (err != 0)
2175 return (err);
2176
2177 blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2178 }
2179 /*
2180 * If we're resuming a redacted send, we can skip to the appropriate
2181 * point in the redaction bookmark by binary searching through it.
2182 */
2183 if (redact_rl != NULL) {
2184 SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2185 }
2186
2187 SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2188 if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2189 uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2190 /*
2191 * Note: If the resume point is in an object whose
2192 * blocksize is different in the from vs to snapshots,
2193 * we will have divided by the "wrong" blocksize.
2194 * However, in this case fromsnap's send_cb() will
2195 * detect that the blocksize has changed and therefore
2196 * ignore this object.
2197 *
2198 * If we're resuming a send from a redaction bookmark,
2199 * we still cannot accidentally suggest blocks behind
2200 * the to_ds. In addition, we know that any blocks in
2201 * the object in the to_ds will have to be sent, since
2202 * the size changed. Therefore, we can't cause any harm
2203 * this way either.
2204 */
2205 SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2206 }
2207 if (resuming) {
2208 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2209 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2210 }
2211 return (0);
2212 }
2213
2214 static dmu_sendstatus_t *
2215 setup_send_progress(struct dmu_send_params *dspp)
2216 {
2217 dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2218 dssp->dss_outfd = dspp->outfd;
2219 dssp->dss_off = dspp->off;
2220 dssp->dss_proc = curproc;
2221 mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2222 list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2223 mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2224 return (dssp);
2225 }
2226
2227 /*
2228 * Actually do the bulk of the work in a zfs send.
2229 *
2230 * The idea is that we want to do a send from ancestor_zb to to_ds. We also
2231 * want to not send any data that has been modified by all the datasets in
2232 * redactsnaparr, and store the list of blocks that are redacted in this way in
2233 * a bookmark named redactbook, created on the to_ds. We do this by creating
2234 * several worker threads, whose function is described below.
2235 *
2236 * There are three cases.
2237 * The first case is a redacted zfs send. In this case there are 5 threads.
2238 * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2239 * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2240 * it's a full send, that's all blocks in the dataset). It then sends those
2241 * blocks on to the send merge thread. The redact list thread takes the data
2242 * from the redaction bookmark and sends those blocks on to the send merge
2243 * thread. The send merge thread takes the data from the to_ds traversal
2244 * thread, and combines it with the redaction records from the redact list
2245 * thread. If a block appears in both the to_ds's data and the redaction data,
2246 * the send merge thread will mark it as redacted and send it on to the prefetch
2247 * thread. Otherwise, the send merge thread will send the block on to the
2248 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2249 * any data that isn't redacted, and then send the data on to the main thread.
2250 * The main thread behaves the same as in a normal send case, issuing demand
2251 * reads for data blocks and sending out records over the network
2252 *
2253 * The graphic below diagrams the flow of data in the case of a redacted zfs
2254 * send. Each box represents a thread, and each line represents the flow of
2255 * data.
2256 *
2257 * Records from the |
2258 * redaction bookmark |
2259 * +--------------------+ | +---------------------------+
2260 * | | v | Send Merge Thread |
2261 * | Redact List Thread +----------> Apply redaction marks to |
2262 * | | | records as specified by |
2263 * +--------------------+ | redaction ranges |
2264 * +----^---------------+------+
2265 * | | Merged data
2266 * | |
2267 * | +------------v--------+
2268 * | | Prefetch Thread |
2269 * +--------------------+ | | Issues prefetch |
2270 * | to_ds Traversal | | | reads of data blocks|
2271 * | Thread (finds +---------------+ +------------+--------+
2272 * | candidate blocks) | Blocks modified | Prefetched data
2273 * +--------------------+ by to_ds since |
2274 * ancestor_zb +------------v----+
2275 * | Main Thread | File Descriptor
2276 * | Sends data over +->(to zfs receive)
2277 * | wire |
2278 * +-----------------+
2279 *
2280 * The second case is an incremental send from a redaction bookmark. The to_ds
2281 * traversal thread and the main thread behave the same as in the redacted
2282 * send case. The new thread is the from bookmark traversal thread. It
2283 * iterates over the redaction list in the redaction bookmark, and enqueues
2284 * records for each block that was redacted in the original send. The send
2285 * merge thread now has to merge the data from the two threads. For details
2286 * about that process, see the header comment of send_merge_thread(). Any data
2287 * it decides to send on will be prefetched by the prefetch thread. Note that
2288 * you can perform a redacted send from a redaction bookmark; in that case,
2289 * the data flow behaves very similarly to the flow in the redacted send case,
2290 * except with the addition of the bookmark traversal thread iterating over the
2291 * redaction bookmark. The send_merge_thread also has to take on the
2292 * responsibility of merging the redact list thread's records, the bookmark
2293 * traversal thread's records, and the to_ds records.
2294 *
2295 * +---------------------+
2296 * | |
2297 * | Redact List Thread +--------------+
2298 * | | |
2299 * +---------------------+ |
2300 * Blocks in redaction list | Ranges modified by every secure snap
2301 * of from bookmark | (or EOS if not readcted)
2302 * |
2303 * +---------------------+ | +----v----------------------+
2304 * | bookmark Traversal | v | Send Merge Thread |
2305 * | Thread (finds +---------> Merges bookmark, rlt, and |
2306 * | candidate blocks) | | to_ds send records |
2307 * +---------------------+ +----^---------------+------+
2308 * | | Merged data
2309 * | +------------v--------+
2310 * | | Prefetch Thread |
2311 * +--------------------+ | | Issues prefetch |
2312 * | to_ds Traversal | | | reads of data blocks|
2313 * | Thread (finds +---------------+ +------------+--------+
2314 * | candidate blocks) | Blocks modified | Prefetched data
2315 * +--------------------+ by to_ds since +------------v----+
2316 * ancestor_zb | Main Thread | File Descriptor
2317 * | Sends data over +->(to zfs receive)
2318 * | wire |
2319 * +-----------------+
2320 *
2321 * The final case is a simple zfs full or incremental send. The to_ds traversal
2322 * thread behaves the same as always. The redact list thread is never started.
2323 * The send merge thread takes all the blocks that the to_ds traversal thread
2324 * sends it, prefetches the data, and sends the blocks on to the main thread.
2325 * The main thread sends the data over the wire.
2326 *
2327 * To keep performance acceptable, we want to prefetch the data in the worker
2328 * threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH
2329 * feature built into traverse_dataset, the combining and deletion of records
2330 * due to redaction and sends from redaction bookmarks mean that we could
2331 * issue many unnecessary prefetches. As a result, we only prefetch data
2332 * after we've determined that the record is not going to be redacted. To
2333 * prevent the prefetching from getting too far ahead of the main thread, the
2334 * blocking queues that are used for communication are capped not by the
2335 * number of entries in the queue, but by the sum of the size of the
2336 * prefetches associated with them. The limit on the amount of data that the
2337 * thread can prefetch beyond what the main thread has reached is controlled
2338 * by the global variable zfs_send_queue_length. In addition, to prevent poor
2339 * performance in the beginning of a send, we also limit the distance ahead
2340 * that the traversal threads can be. That distance is controlled by the
2341 * zfs_send_no_prefetch_queue_length tunable.
2342 *
2343 * Note: Releases dp using the specified tag.
2344 */
2345 static int
2346 dmu_send_impl(struct dmu_send_params *dspp)
2347 {
2348 objset_t *os;
2349 dmu_replay_record_t *drr;
2350 dmu_sendstatus_t *dssp;
2351 dmu_send_cookie_t dsc = {0};
2352 int err;
2353 uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2354 uint64_t featureflags = 0;
2355 struct redact_list_thread_arg *from_arg;
2356 struct send_thread_arg *to_arg;
2357 struct redact_list_thread_arg *rlt_arg;
2358 struct send_merge_thread_arg *smt_arg;
2359 struct send_reader_thread_arg *srt_arg;
2360 struct send_range *range;
2361 redaction_list_t *from_rl = NULL;
2362 redaction_list_t *redact_rl = NULL;
2363 boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2364 boolean_t book_resuming = resuming;
2365
2366 dsl_dataset_t *to_ds = dspp->to_ds;
2367 zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2368 dsl_pool_t *dp = dspp->dp;
2369 const void *tag = dspp->tag;
2370
2371 err = dmu_objset_from_ds(to_ds, &os);
2372 if (err != 0) {
2373 dsl_pool_rele(dp, tag);
2374 return (err);
2375 }
2376
2377 /*
2378 * If this is a non-raw send of an encrypted ds, we can ensure that
2379 * the objset_phys_t is authenticated. This is safe because this is
2380 * either a snapshot or we have owned the dataset, ensuring that
2381 * it can't be modified.
2382 */
2383 if (!dspp->rawok && os->os_encrypted &&
2384 arc_is_unauthenticated(os->os_phys_buf)) {
2385 zbookmark_phys_t zb;
2386
2387 SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2388 ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2389 err = arc_untransform(os->os_phys_buf, os->os_spa,
2390 &zb, B_FALSE);
2391 if (err != 0) {
2392 dsl_pool_rele(dp, tag);
2393 return (err);
2394 }
2395
2396 ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2397 }
2398
2399 if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2400 dsl_pool_rele(dp, tag);
2401 return (err);
2402 }
2403
2404 /*
2405 * If we're doing a redacted send, hold the bookmark's redaction list.
2406 */
2407 if (dspp->redactbook != NULL) {
2408 err = dsl_redaction_list_hold_obj(dp,
2409 dspp->redactbook->zbm_redaction_obj, FTAG,
2410 &redact_rl);
2411 if (err != 0) {
2412 dsl_pool_rele(dp, tag);
2413 return (SET_ERROR(EINVAL));
2414 }
2415 dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2416 }
2417
2418 /*
2419 * If we're sending from a redaction bookmark, hold the redaction list
2420 * so that we can consider sending the redacted blocks.
2421 */
2422 if (ancestor_zb->zbm_redaction_obj != 0) {
2423 err = dsl_redaction_list_hold_obj(dp,
2424 ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2425 if (err != 0) {
2426 if (redact_rl != NULL) {
2427 dsl_redaction_list_long_rele(redact_rl, FTAG);
2428 dsl_redaction_list_rele(redact_rl, FTAG);
2429 }
2430 dsl_pool_rele(dp, tag);
2431 return (SET_ERROR(EINVAL));
2432 }
2433 dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2434 }
2435
2436 dsl_dataset_long_hold(to_ds, FTAG);
2437
2438 from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2439 to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2440 rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2441 smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2442 srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2443
2444 drr = create_begin_record(dspp, os, featureflags);
2445 dssp = setup_send_progress(dspp);
2446
2447 dsc.dsc_drr = drr;
2448 dsc.dsc_dso = dspp->dso;
2449 dsc.dsc_os = os;
2450 dsc.dsc_off = dspp->off;
2451 dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2452 dsc.dsc_fromtxg = fromtxg;
2453 dsc.dsc_pending_op = PENDING_NONE;
2454 dsc.dsc_featureflags = featureflags;
2455 dsc.dsc_resume_object = dspp->resumeobj;
2456 dsc.dsc_resume_offset = dspp->resumeoff;
2457
2458 dsl_pool_rele(dp, tag);
2459
2460 void *payload = NULL;
2461 size_t payload_len = 0;
2462 nvlist_t *nvl = fnvlist_alloc();
2463
2464 /*
2465 * If we're doing a redacted send, we include the snapshots we're
2466 * redacted with respect to so that the target system knows what send
2467 * streams can be correctly received on top of this dataset. If we're
2468 * instead sending a redacted dataset, we include the snapshots that the
2469 * dataset was created with respect to.
2470 */
2471 if (dspp->redactbook != NULL) {
2472 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2473 redact_rl->rl_phys->rlp_snaps,
2474 redact_rl->rl_phys->rlp_num_snaps);
2475 } else if (dsl_dataset_feature_is_active(to_ds,
2476 SPA_FEATURE_REDACTED_DATASETS)) {
2477 uint64_t *tods_guids;
2478 uint64_t length;
2479 VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2480 SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2481 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2482 length);
2483 }
2484
2485 /*
2486 * If we're sending from a redaction bookmark, then we should retrieve
2487 * the guids of that bookmark so we can send them over the wire.
2488 */
2489 if (from_rl != NULL) {
2490 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2491 from_rl->rl_phys->rlp_snaps,
2492 from_rl->rl_phys->rlp_num_snaps);
2493 }
2494
2495 /*
2496 * If the snapshot we're sending from is redacted, include the redaction
2497 * list in the stream.
2498 */
2499 if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2500 ASSERT3P(from_rl, ==, NULL);
2501 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2502 dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2503 if (dspp->numfromredactsnaps > 0) {
2504 kmem_free(dspp->fromredactsnaps,
2505 dspp->numfromredactsnaps * sizeof (uint64_t));
2506 dspp->fromredactsnaps = NULL;
2507 }
2508 }
2509
2510 if (resuming || book_resuming) {
2511 err = setup_resume_points(dspp, to_arg, from_arg,
2512 rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2513 if (err != 0)
2514 goto out;
2515 }
2516
2517 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2518 uint64_t ivset_guid = (ancestor_zb != NULL) ?
2519 ancestor_zb->zbm_ivset_guid : 0;
2520 nvlist_t *keynvl = NULL;
2521 ASSERT(os->os_encrypted);
2522
2523 err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2524 &keynvl);
2525 if (err != 0) {
2526 fnvlist_free(nvl);
2527 goto out;
2528 }
2529
2530 fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2531 fnvlist_free(keynvl);
2532 }
2533
2534 if (!nvlist_empty(nvl)) {
2535 payload = fnvlist_pack(nvl, &payload_len);
2536 drr->drr_payloadlen = payload_len;
2537 }
2538
2539 fnvlist_free(nvl);
2540 err = dump_record(&dsc, payload, payload_len);
2541 fnvlist_pack_free(payload, payload_len);
2542 if (err != 0) {
2543 err = dsc.dsc_err;
2544 goto out;
2545 }
2546
2547 setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2548 setup_from_thread(from_arg, from_rl, dssp);
2549 setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2550 setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2551 setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2552
2553 range = bqueue_dequeue(&srt_arg->q);
2554 while (err == 0 && !range->eos_marker) {
2555 err = do_dump(&dsc, range);
2556 range = get_next_range(&srt_arg->q, range);
2557 if (issig(JUSTLOOKING) && issig(FORREAL))
2558 err = SET_ERROR(EINTR);
2559 }
2560
2561 /*
2562 * If we hit an error or are interrupted, cancel our worker threads and
2563 * clear the queue of any pending records. The threads will pass the
2564 * cancel up the tree of worker threads, and each one will clean up any
2565 * pending records before exiting.
2566 */
2567 if (err != 0) {
2568 srt_arg->cancel = B_TRUE;
2569 while (!range->eos_marker) {
2570 range = get_next_range(&srt_arg->q, range);
2571 }
2572 }
2573 range_free(range);
2574
2575 bqueue_destroy(&srt_arg->q);
2576 bqueue_destroy(&smt_arg->q);
2577 if (dspp->redactbook != NULL)
2578 bqueue_destroy(&rlt_arg->q);
2579 bqueue_destroy(&to_arg->q);
2580 bqueue_destroy(&from_arg->q);
2581
2582 if (err == 0 && srt_arg->error != 0)
2583 err = srt_arg->error;
2584
2585 if (err != 0)
2586 goto out;
2587
2588 if (dsc.dsc_pending_op != PENDING_NONE)
2589 if (dump_record(&dsc, NULL, 0) != 0)
2590 err = SET_ERROR(EINTR);
2591
2592 if (err != 0) {
2593 if (err == EINTR && dsc.dsc_err != 0)
2594 err = dsc.dsc_err;
2595 goto out;
2596 }
2597
2598 /*
2599 * Send the DRR_END record if this is not a saved stream.
2600 * Otherwise, the omitted DRR_END record will signal to
2601 * the receive side that the stream is incomplete.
2602 */
2603 if (!dspp->savedok) {
2604 memset(drr, 0, sizeof (dmu_replay_record_t));
2605 drr->drr_type = DRR_END;
2606 drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2607 drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2608
2609 if (dump_record(&dsc, NULL, 0) != 0)
2610 err = dsc.dsc_err;
2611 }
2612 out:
2613 mutex_enter(&to_ds->ds_sendstream_lock);
2614 list_remove(&to_ds->ds_sendstreams, dssp);
2615 mutex_exit(&to_ds->ds_sendstream_lock);
2616
2617 VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2618 (dsc.dsc_sent_end || dspp->savedok)));
2619
2620 kmem_free(drr, sizeof (dmu_replay_record_t));
2621 kmem_free(dssp, sizeof (dmu_sendstatus_t));
2622 kmem_free(from_arg, sizeof (*from_arg));
2623 kmem_free(to_arg, sizeof (*to_arg));
2624 kmem_free(rlt_arg, sizeof (*rlt_arg));
2625 kmem_free(smt_arg, sizeof (*smt_arg));
2626 kmem_free(srt_arg, sizeof (*srt_arg));
2627
2628 dsl_dataset_long_rele(to_ds, FTAG);
2629 if (from_rl != NULL) {
2630 dsl_redaction_list_long_rele(from_rl, FTAG);
2631 dsl_redaction_list_rele(from_rl, FTAG);
2632 }
2633 if (redact_rl != NULL) {
2634 dsl_redaction_list_long_rele(redact_rl, FTAG);
2635 dsl_redaction_list_rele(redact_rl, FTAG);
2636 }
2637
2638 return (err);
2639 }
2640
2641 int
2642 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2643 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2644 boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2645 dmu_send_outparams_t *dsop)
2646 {
2647 int err;
2648 dsl_dataset_t *fromds;
2649 ds_hold_flags_t dsflags;
2650 struct dmu_send_params dspp = {0};
2651 dspp.embedok = embedok;
2652 dspp.large_block_ok = large_block_ok;
2653 dspp.compressok = compressok;
2654 dspp.outfd = outfd;
2655 dspp.off = off;
2656 dspp.dso = dsop;
2657 dspp.tag = FTAG;
2658 dspp.rawok = rawok;
2659 dspp.savedok = savedok;
2660
2661 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2662 err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2663 if (err != 0)
2664 return (err);
2665
2666 err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2667 &dspp.to_ds);
2668 if (err != 0) {
2669 dsl_pool_rele(dspp.dp, FTAG);
2670 return (err);
2671 }
2672
2673 if (fromsnap != 0) {
2674 err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2675 FTAG, &fromds);
2676 if (err != 0) {
2677 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2678 dsl_pool_rele(dspp.dp, FTAG);
2679 return (err);
2680 }
2681 dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2682 dspp.ancestor_zb.zbm_creation_txg =
2683 dsl_dataset_phys(fromds)->ds_creation_txg;
2684 dspp.ancestor_zb.zbm_creation_time =
2685 dsl_dataset_phys(fromds)->ds_creation_time;
2686
2687 if (dsl_dataset_is_zapified(fromds)) {
2688 (void) zap_lookup(dspp.dp->dp_meta_objset,
2689 fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2690 &dspp.ancestor_zb.zbm_ivset_guid);
2691 }
2692
2693 /* See dmu_send for the reasons behind this. */
2694 uint64_t *fromredact;
2695
2696 if (!dsl_dataset_get_uint64_array_feature(fromds,
2697 SPA_FEATURE_REDACTED_DATASETS,
2698 &dspp.numfromredactsnaps,
2699 &fromredact)) {
2700 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2701 } else if (dspp.numfromredactsnaps > 0) {
2702 uint64_t size = dspp.numfromredactsnaps *
2703 sizeof (uint64_t);
2704 dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2705 memcpy(dspp.fromredactsnaps, fromredact, size);
2706 }
2707
2708 boolean_t is_before =
2709 dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2710 dspp.is_clone = (dspp.to_ds->ds_dir !=
2711 fromds->ds_dir);
2712 dsl_dataset_rele(fromds, FTAG);
2713 if (!is_before) {
2714 dsl_pool_rele(dspp.dp, FTAG);
2715 err = SET_ERROR(EXDEV);
2716 } else {
2717 err = dmu_send_impl(&dspp);
2718 }
2719 } else {
2720 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2721 err = dmu_send_impl(&dspp);
2722 }
2723 dsl_dataset_rele(dspp.to_ds, FTAG);
2724 return (err);
2725 }
2726
2727 int
2728 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2729 boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2730 boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2731 const char *redactbook, int outfd, offset_t *off,
2732 dmu_send_outparams_t *dsop)
2733 {
2734 int err = 0;
2735 ds_hold_flags_t dsflags;
2736 boolean_t owned = B_FALSE;
2737 dsl_dataset_t *fromds = NULL;
2738 zfs_bookmark_phys_t book = {0};
2739 struct dmu_send_params dspp = {0};
2740
2741 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2742 dspp.tosnap = tosnap;
2743 dspp.embedok = embedok;
2744 dspp.large_block_ok = large_block_ok;
2745 dspp.compressok = compressok;
2746 dspp.outfd = outfd;
2747 dspp.off = off;
2748 dspp.dso = dsop;
2749 dspp.tag = FTAG;
2750 dspp.resumeobj = resumeobj;
2751 dspp.resumeoff = resumeoff;
2752 dspp.rawok = rawok;
2753 dspp.savedok = savedok;
2754
2755 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2756 return (SET_ERROR(EINVAL));
2757
2758 err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2759 if (err != 0)
2760 return (err);
2761
2762 if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2763 /*
2764 * We are sending a filesystem or volume. Ensure
2765 * that it doesn't change by owning the dataset.
2766 */
2767
2768 if (savedok) {
2769 /*
2770 * We are looking for the dataset that represents the
2771 * partially received send stream. If this stream was
2772 * received as a new snapshot of an existing dataset,
2773 * this will be saved in a hidden clone named
2774 * "<pool>/<dataset>/%recv". Otherwise, the stream
2775 * will be saved in the live dataset itself. In
2776 * either case we need to use dsl_dataset_own_force()
2777 * because the stream is marked as inconsistent,
2778 * which would normally make it unavailable to be
2779 * owned.
2780 */
2781 char *name = kmem_asprintf("%s/%s", tosnap,
2782 recv_clone_name);
2783 err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2784 FTAG, &dspp.to_ds);
2785 if (err == ENOENT) {
2786 err = dsl_dataset_own_force(dspp.dp, tosnap,
2787 dsflags, FTAG, &dspp.to_ds);
2788 }
2789
2790 if (err == 0) {
2791 err = zap_lookup(dspp.dp->dp_meta_objset,
2792 dspp.to_ds->ds_object,
2793 DS_FIELD_RESUME_TOGUID, 8, 1,
2794 &dspp.saved_guid);
2795 }
2796
2797 if (err == 0) {
2798 err = zap_lookup(dspp.dp->dp_meta_objset,
2799 dspp.to_ds->ds_object,
2800 DS_FIELD_RESUME_TONAME, 1,
2801 sizeof (dspp.saved_toname),
2802 dspp.saved_toname);
2803 }
2804 if (err != 0)
2805 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2806
2807 kmem_strfree(name);
2808 } else {
2809 err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2810 FTAG, &dspp.to_ds);
2811 }
2812 owned = B_TRUE;
2813 } else {
2814 err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2815 &dspp.to_ds);
2816 }
2817
2818 if (err != 0) {
2819 dsl_pool_rele(dspp.dp, FTAG);
2820 return (err);
2821 }
2822
2823 if (redactbook != NULL) {
2824 char path[ZFS_MAX_DATASET_NAME_LEN];
2825 (void) strlcpy(path, tosnap, sizeof (path));
2826 char *at = strchr(path, '@');
2827 if (at == NULL) {
2828 err = EINVAL;
2829 } else {
2830 (void) snprintf(at, sizeof (path) - (at - path), "#%s",
2831 redactbook);
2832 err = dsl_bookmark_lookup(dspp.dp, path,
2833 NULL, &book);
2834 dspp.redactbook = &book;
2835 }
2836 }
2837
2838 if (err != 0) {
2839 dsl_pool_rele(dspp.dp, FTAG);
2840 if (owned)
2841 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2842 else
2843 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2844 return (err);
2845 }
2846
2847 if (fromsnap != NULL) {
2848 zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2849 int fsnamelen;
2850 if (strpbrk(tosnap, "@#") != NULL)
2851 fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2852 else
2853 fsnamelen = strlen(tosnap);
2854
2855 /*
2856 * If the fromsnap is in a different filesystem, then
2857 * mark the send stream as a clone.
2858 */
2859 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2860 (fromsnap[fsnamelen] != '@' &&
2861 fromsnap[fsnamelen] != '#')) {
2862 dspp.is_clone = B_TRUE;
2863 }
2864
2865 if (strchr(fromsnap, '@') != NULL) {
2866 err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2867 &fromds);
2868
2869 if (err != 0) {
2870 ASSERT3P(fromds, ==, NULL);
2871 } else {
2872 /*
2873 * We need to make a deep copy of the redact
2874 * snapshots of the from snapshot, because the
2875 * array will be freed when we evict from_ds.
2876 */
2877 uint64_t *fromredact;
2878 if (!dsl_dataset_get_uint64_array_feature(
2879 fromds, SPA_FEATURE_REDACTED_DATASETS,
2880 &dspp.numfromredactsnaps,
2881 &fromredact)) {
2882 dspp.numfromredactsnaps =
2883 NUM_SNAPS_NOT_REDACTED;
2884 } else if (dspp.numfromredactsnaps > 0) {
2885 uint64_t size =
2886 dspp.numfromredactsnaps *
2887 sizeof (uint64_t);
2888 dspp.fromredactsnaps = kmem_zalloc(size,
2889 KM_SLEEP);
2890 memcpy(dspp.fromredactsnaps, fromredact,
2891 size);
2892 }
2893 if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2894 0)) {
2895 err = SET_ERROR(EXDEV);
2896 } else {
2897 zb->zbm_creation_txg =
2898 dsl_dataset_phys(fromds)->
2899 ds_creation_txg;
2900 zb->zbm_creation_time =
2901 dsl_dataset_phys(fromds)->
2902 ds_creation_time;
2903 zb->zbm_guid =
2904 dsl_dataset_phys(fromds)->ds_guid;
2905 zb->zbm_redaction_obj = 0;
2906
2907 if (dsl_dataset_is_zapified(fromds)) {
2908 (void) zap_lookup(
2909 dspp.dp->dp_meta_objset,
2910 fromds->ds_object,
2911 DS_FIELD_IVSET_GUID, 8, 1,
2912 &zb->zbm_ivset_guid);
2913 }
2914 }
2915 dsl_dataset_rele(fromds, FTAG);
2916 }
2917 } else {
2918 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2919 err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2920 zb);
2921 if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2922 zb->zbm_guid ==
2923 dsl_dataset_phys(dspp.to_ds)->ds_guid)
2924 err = 0;
2925 }
2926
2927 if (err == 0) {
2928 /* dmu_send_impl will call dsl_pool_rele for us. */
2929 err = dmu_send_impl(&dspp);
2930 } else {
2931 dsl_pool_rele(dspp.dp, FTAG);
2932 }
2933 } else {
2934 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2935 err = dmu_send_impl(&dspp);
2936 }
2937 if (owned)
2938 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2939 else
2940 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2941 return (err);
2942 }
2943
2944 static int
2945 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2946 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2947 {
2948 int err = 0;
2949 uint64_t size;
2950 /*
2951 * Assume that space (both on-disk and in-stream) is dominated by
2952 * data. We will adjust for indirect blocks and the copies property,
2953 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2954 */
2955
2956 uint64_t recordsize;
2957 uint64_t record_count;
2958 objset_t *os;
2959 VERIFY0(dmu_objset_from_ds(ds, &os));
2960
2961 /* Assume all (uncompressed) blocks are recordsize. */
2962 if (zfs_override_estimate_recordsize != 0) {
2963 recordsize = zfs_override_estimate_recordsize;
2964 } else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2965 err = dsl_prop_get_int_ds(ds,
2966 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2967 } else {
2968 err = dsl_prop_get_int_ds(ds,
2969 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2970 }
2971 if (err != 0)
2972 return (err);
2973 record_count = uncompressed / recordsize;
2974
2975 /*
2976 * If we're estimating a send size for a compressed stream, use the
2977 * compressed data size to estimate the stream size. Otherwise, use the
2978 * uncompressed data size.
2979 */
2980 size = stream_compressed ? compressed : uncompressed;
2981
2982 /*
2983 * Subtract out approximate space used by indirect blocks.
2984 * Assume most space is used by data blocks (non-indirect, non-dnode).
2985 * Assume no ditto blocks or internal fragmentation.
2986 *
2987 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
2988 * block.
2989 */
2990 size -= record_count * sizeof (blkptr_t);
2991
2992 /* Add in the space for the record associated with each block. */
2993 size += record_count * sizeof (dmu_replay_record_t);
2994
2995 *sizep = size;
2996
2997 return (0);
2998 }
2999
3000 int
3001 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3002 zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3003 boolean_t saved, uint64_t *sizep)
3004 {
3005 int err;
3006 dsl_dataset_t *ds = origds;
3007 uint64_t uncomp, comp;
3008
3009 ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3010 ASSERT(fromds == NULL || frombook == NULL);
3011
3012 /*
3013 * If this is a saved send we may actually be sending
3014 * from the %recv clone used for resuming.
3015 */
3016 if (saved) {
3017 objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3018 uint64_t guid;
3019 char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3020
3021 dsl_dataset_name(origds, dsname);
3022 (void) strcat(dsname, "/");
3023 (void) strcat(dsname, recv_clone_name);
3024
3025 err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3026 dsname, FTAG, &ds);
3027 if (err != ENOENT && err != 0) {
3028 return (err);
3029 } else if (err == ENOENT) {
3030 ds = origds;
3031 }
3032
3033 /* check that this dataset has partially received data */
3034 err = zap_lookup(mos, ds->ds_object,
3035 DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3036 if (err != 0) {
3037 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3038 goto out;
3039 }
3040
3041 err = zap_lookup(mos, ds->ds_object,
3042 DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3043 if (err != 0) {
3044 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3045 goto out;
3046 }
3047 }
3048
3049 /* tosnap must be a snapshot or the target of a saved send */
3050 if (!ds->ds_is_snapshot && ds == origds)
3051 return (SET_ERROR(EINVAL));
3052
3053 if (fromds != NULL) {
3054 uint64_t used;
3055 if (!fromds->ds_is_snapshot) {
3056 err = SET_ERROR(EINVAL);
3057 goto out;
3058 }
3059
3060 if (!dsl_dataset_is_before(ds, fromds, 0)) {
3061 err = SET_ERROR(EXDEV);
3062 goto out;
3063 }
3064
3065 err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3066 &uncomp);
3067 if (err != 0)
3068 goto out;
3069 } else if (frombook != NULL) {
3070 uint64_t used;
3071 err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3072 &comp, &uncomp);
3073 if (err != 0)
3074 goto out;
3075 } else {
3076 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3077 comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3078 }
3079
3080 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3081 stream_compressed, sizep);
3082 /*
3083 * Add the size of the BEGIN and END records to the estimate.
3084 */
3085 *sizep += 2 * sizeof (dmu_replay_record_t);
3086
3087 out:
3088 if (ds != origds)
3089 dsl_dataset_rele(ds, FTAG);
3090 return (err);
3091 }
3092
3093 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3094 "Allow sending corrupt data");
3095
3096 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, INT, ZMOD_RW,
3097 "Maximum send queue length");
3098
3099 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3100 "Send unmodified spill blocks");
3101
3102 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, INT, ZMOD_RW,
3103 "Maximum send queue length for non-prefetch queues");
3104
3105 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, INT, ZMOD_RW,
3106 "Send queue fill fraction");
3107
3108 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, INT, ZMOD_RW,
3109 "Send queue fill fraction for non-prefetch queues");
3110
3111 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, INT, ZMOD_RW,
3112 "Override block size estimate with fixed size");