]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_send.c
Fix unsafe string operations
[mirror_zfs.git] / module / zfs / dmu_send.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 */
32
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 static int zfs_send_corrupt_data = B_FALSE;
71 /*
72 * This tunable controls the amount of data (measured in bytes) that will be
73 * prefetched by zfs send. If the main thread is blocking on reads that haven't
74 * completed, this variable might need to be increased. If instead the main
75 * thread is issuing new reads because the prefetches have fallen out of the
76 * cache, this may need to be decreased.
77 */
78 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80 * This tunable controls the length of the queues that zfs send worker threads
81 * use to communicate. If the send_main_thread is blocking on these queues,
82 * this variable may need to be increased. If there is a significant slowdown
83 * at the start of a send as these threads consume all the available IO
84 * resources, this variable may need to be decreased.
85 */
86 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88 * These tunables control the fill fraction of the queues by zfs send. The fill
89 * fraction controls the frequency with which threads have to be cv_signaled.
90 * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91 * down. If the queues empty before the signalled thread can catch up, then
92 * these should be tuned up.
93 */
94 static uint_t zfs_send_queue_ff = 20;
95 static uint_t zfs_send_no_prefetch_queue_ff = 20;
96
97 /*
98 * Use this to override the recordsize calculation for fast zfs send estimates.
99 */
100 static uint_t zfs_override_estimate_recordsize = 0;
101
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 static int zfs_send_unmodified_spill_blocks = B_TRUE;
107
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 uint64_t temp = a * b;
112 if (b != 0 && temp / b != a)
113 return (B_FALSE);
114 *c = temp;
115 return (B_TRUE);
116 }
117
118 struct send_thread_arg {
119 bqueue_t q;
120 objset_t *os; /* Objset to traverse */
121 uint64_t fromtxg; /* Traverse from this txg */
122 int flags; /* flags to pass to traverse_dataset */
123 int error_code;
124 boolean_t cancel;
125 zbookmark_phys_t resume;
126 uint64_t *num_blocks_visited;
127 };
128
129 struct redact_list_thread_arg {
130 boolean_t cancel;
131 bqueue_t q;
132 zbookmark_phys_t resume;
133 redaction_list_t *rl;
134 boolean_t mark_redact;
135 int error_code;
136 uint64_t *num_blocks_visited;
137 };
138
139 struct send_merge_thread_arg {
140 bqueue_t q;
141 objset_t *os;
142 struct redact_list_thread_arg *from_arg;
143 struct send_thread_arg *to_arg;
144 struct redact_list_thread_arg *redact_arg;
145 int error;
146 boolean_t cancel;
147 };
148
149 struct send_range {
150 boolean_t eos_marker; /* Marks the end of the stream */
151 uint64_t object;
152 uint64_t start_blkid;
153 uint64_t end_blkid;
154 bqueue_node_t ln;
155 enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 PREVIOUSLY_REDACTED} type;
157 union {
158 struct srd {
159 dmu_object_type_t obj_type;
160 uint32_t datablksz; // logical size
161 uint32_t datasz; // payload size
162 blkptr_t bp;
163 arc_buf_t *abuf;
164 abd_t *abd;
165 kmutex_t lock;
166 kcondvar_t cv;
167 boolean_t io_outstanding;
168 boolean_t io_compressed;
169 int io_err;
170 } data;
171 struct srh {
172 uint32_t datablksz;
173 } hole;
174 struct sro {
175 /*
176 * This is a pointer because embedding it in the
177 * struct causes these structures to be massively larger
178 * for all range types; this makes the code much less
179 * memory efficient.
180 */
181 dnode_phys_t *dnp;
182 blkptr_t bp;
183 } object;
184 struct srr {
185 uint32_t datablksz;
186 } redact;
187 struct sror {
188 blkptr_t bp;
189 } object_range;
190 } sru;
191 };
192
193 /*
194 * The list of data whose inclusion in a send stream can be pending from
195 * one call to backup_cb to another. Multiple calls to dump_free(),
196 * dump_freeobjects(), and dump_redact() can be aggregated into a single
197 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
198 */
199 typedef enum {
200 PENDING_NONE,
201 PENDING_FREE,
202 PENDING_FREEOBJECTS,
203 PENDING_REDACT
204 } dmu_pendop_t;
205
206 typedef struct dmu_send_cookie {
207 dmu_replay_record_t *dsc_drr;
208 dmu_send_outparams_t *dsc_dso;
209 offset_t *dsc_off;
210 objset_t *dsc_os;
211 zio_cksum_t dsc_zc;
212 uint64_t dsc_toguid;
213 uint64_t dsc_fromtxg;
214 int dsc_err;
215 dmu_pendop_t dsc_pending_op;
216 uint64_t dsc_featureflags;
217 uint64_t dsc_last_data_object;
218 uint64_t dsc_last_data_offset;
219 uint64_t dsc_resume_object;
220 uint64_t dsc_resume_offset;
221 boolean_t dsc_sent_begin;
222 boolean_t dsc_sent_end;
223 } dmu_send_cookie_t;
224
225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
226
227 static void
228 range_free(struct send_range *range)
229 {
230 if (range->type == OBJECT) {
231 size_t size = sizeof (dnode_phys_t) *
232 (range->sru.object.dnp->dn_extra_slots + 1);
233 kmem_free(range->sru.object.dnp, size);
234 } else if (range->type == DATA) {
235 mutex_enter(&range->sru.data.lock);
236 while (range->sru.data.io_outstanding)
237 cv_wait(&range->sru.data.cv, &range->sru.data.lock);
238 if (range->sru.data.abd != NULL)
239 abd_free(range->sru.data.abd);
240 if (range->sru.data.abuf != NULL) {
241 arc_buf_destroy(range->sru.data.abuf,
242 &range->sru.data.abuf);
243 }
244 mutex_exit(&range->sru.data.lock);
245
246 cv_destroy(&range->sru.data.cv);
247 mutex_destroy(&range->sru.data.lock);
248 }
249 kmem_free(range, sizeof (*range));
250 }
251
252 /*
253 * For all record types except BEGIN, fill in the checksum (overlaid in
254 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
255 * up to the start of the checksum itself.
256 */
257 static int
258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
259 {
260 dmu_send_outparams_t *dso = dscp->dsc_dso;
261 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
262 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
263 (void) fletcher_4_incremental_native(dscp->dsc_drr,
264 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
265 &dscp->dsc_zc);
266 if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
267 dscp->dsc_sent_begin = B_TRUE;
268 } else {
269 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
270 drr_checksum.drr_checksum));
271 dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
272 }
273 if (dscp->dsc_drr->drr_type == DRR_END) {
274 dscp->dsc_sent_end = B_TRUE;
275 }
276 (void) fletcher_4_incremental_native(&dscp->dsc_drr->
277 drr_u.drr_checksum.drr_checksum,
278 sizeof (zio_cksum_t), &dscp->dsc_zc);
279 *dscp->dsc_off += sizeof (dmu_replay_record_t);
280 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
281 sizeof (dmu_replay_record_t), dso->dso_arg);
282 if (dscp->dsc_err != 0)
283 return (SET_ERROR(EINTR));
284 if (payload_len != 0) {
285 *dscp->dsc_off += payload_len;
286 /*
287 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
288 * doing a send size calculation)
289 */
290 if (payload != NULL) {
291 (void) fletcher_4_incremental_native(
292 payload, payload_len, &dscp->dsc_zc);
293 }
294
295 /*
296 * The code does not rely on this (len being a multiple of 8).
297 * We keep this assertion because of the corresponding assertion
298 * in receive_read(). Keeping this assertion ensures that we do
299 * not inadvertently break backwards compatibility (causing the
300 * assertion in receive_read() to trigger on old software).
301 *
302 * Raw sends cannot be received on old software, and so can
303 * bypass this assertion.
304 */
305
306 ASSERT((payload_len % 8 == 0) ||
307 (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
308
309 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
310 payload_len, dso->dso_arg);
311 if (dscp->dsc_err != 0)
312 return (SET_ERROR(EINTR));
313 }
314 return (0);
315 }
316
317 /*
318 * Fill in the drr_free struct, or perform aggregation if the previous record is
319 * also a free record, and the two are adjacent.
320 *
321 * Note that we send free records even for a full send, because we want to be
322 * able to receive a full send as a clone, which requires a list of all the free
323 * and freeobject records that were generated on the source.
324 */
325 static int
326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
327 uint64_t length)
328 {
329 struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
330
331 /*
332 * When we receive a free record, dbuf_free_range() assumes
333 * that the receiving system doesn't have any dbufs in the range
334 * being freed. This is always true because there is a one-record
335 * constraint: we only send one WRITE record for any given
336 * object,offset. We know that the one-record constraint is
337 * true because we always send data in increasing order by
338 * object,offset.
339 *
340 * If the increasing-order constraint ever changes, we should find
341 * another way to assert that the one-record constraint is still
342 * satisfied.
343 */
344 ASSERT(object > dscp->dsc_last_data_object ||
345 (object == dscp->dsc_last_data_object &&
346 offset > dscp->dsc_last_data_offset));
347
348 /*
349 * If there is a pending op, but it's not PENDING_FREE, push it out,
350 * since free block aggregation can only be done for blocks of the
351 * same type (i.e., DRR_FREE records can only be aggregated with
352 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
353 * aggregated with other DRR_FREEOBJECTS records).
354 */
355 if (dscp->dsc_pending_op != PENDING_NONE &&
356 dscp->dsc_pending_op != PENDING_FREE) {
357 if (dump_record(dscp, NULL, 0) != 0)
358 return (SET_ERROR(EINTR));
359 dscp->dsc_pending_op = PENDING_NONE;
360 }
361
362 if (dscp->dsc_pending_op == PENDING_FREE) {
363 /*
364 * Check to see whether this free block can be aggregated
365 * with pending one.
366 */
367 if (drrf->drr_object == object && drrf->drr_offset +
368 drrf->drr_length == offset) {
369 if (offset + length < offset || length == UINT64_MAX)
370 drrf->drr_length = UINT64_MAX;
371 else
372 drrf->drr_length += length;
373 return (0);
374 } else {
375 /* not a continuation. Push out pending record */
376 if (dump_record(dscp, NULL, 0) != 0)
377 return (SET_ERROR(EINTR));
378 dscp->dsc_pending_op = PENDING_NONE;
379 }
380 }
381 /* create a FREE record and make it pending */
382 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
383 dscp->dsc_drr->drr_type = DRR_FREE;
384 drrf->drr_object = object;
385 drrf->drr_offset = offset;
386 if (offset + length < offset)
387 drrf->drr_length = DMU_OBJECT_END;
388 else
389 drrf->drr_length = length;
390 drrf->drr_toguid = dscp->dsc_toguid;
391 if (length == DMU_OBJECT_END) {
392 if (dump_record(dscp, NULL, 0) != 0)
393 return (SET_ERROR(EINTR));
394 } else {
395 dscp->dsc_pending_op = PENDING_FREE;
396 }
397
398 return (0);
399 }
400
401 /*
402 * Fill in the drr_redact struct, or perform aggregation if the previous record
403 * is also a redaction record, and the two are adjacent.
404 */
405 static int
406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
407 uint64_t length)
408 {
409 struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
410
411 /*
412 * If there is a pending op, but it's not PENDING_REDACT, push it out,
413 * since free block aggregation can only be done for blocks of the
414 * same type (i.e., DRR_REDACT records can only be aggregated with
415 * other DRR_REDACT records).
416 */
417 if (dscp->dsc_pending_op != PENDING_NONE &&
418 dscp->dsc_pending_op != PENDING_REDACT) {
419 if (dump_record(dscp, NULL, 0) != 0)
420 return (SET_ERROR(EINTR));
421 dscp->dsc_pending_op = PENDING_NONE;
422 }
423
424 if (dscp->dsc_pending_op == PENDING_REDACT) {
425 /*
426 * Check to see whether this redacted block can be aggregated
427 * with pending one.
428 */
429 if (drrr->drr_object == object && drrr->drr_offset +
430 drrr->drr_length == offset) {
431 drrr->drr_length += length;
432 return (0);
433 } else {
434 /* not a continuation. Push out pending record */
435 if (dump_record(dscp, NULL, 0) != 0)
436 return (SET_ERROR(EINTR));
437 dscp->dsc_pending_op = PENDING_NONE;
438 }
439 }
440 /* create a REDACT record and make it pending */
441 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
442 dscp->dsc_drr->drr_type = DRR_REDACT;
443 drrr->drr_object = object;
444 drrr->drr_offset = offset;
445 drrr->drr_length = length;
446 drrr->drr_toguid = dscp->dsc_toguid;
447 dscp->dsc_pending_op = PENDING_REDACT;
448
449 return (0);
450 }
451
452 static int
453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
454 uint64_t offset, int lsize, int psize, const blkptr_t *bp,
455 boolean_t io_compressed, void *data)
456 {
457 uint64_t payload_size;
458 boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
459 struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
460
461 /*
462 * We send data in increasing object, offset order.
463 * See comment in dump_free() for details.
464 */
465 ASSERT(object > dscp->dsc_last_data_object ||
466 (object == dscp->dsc_last_data_object &&
467 offset > dscp->dsc_last_data_offset));
468 dscp->dsc_last_data_object = object;
469 dscp->dsc_last_data_offset = offset + lsize - 1;
470
471 /*
472 * If there is any kind of pending aggregation (currently either
473 * a grouping of free objects or free blocks), push it out to
474 * the stream, since aggregation can't be done across operations
475 * of different types.
476 */
477 if (dscp->dsc_pending_op != PENDING_NONE) {
478 if (dump_record(dscp, NULL, 0) != 0)
479 return (SET_ERROR(EINTR));
480 dscp->dsc_pending_op = PENDING_NONE;
481 }
482 /* write a WRITE record */
483 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
484 dscp->dsc_drr->drr_type = DRR_WRITE;
485 drrw->drr_object = object;
486 drrw->drr_type = type;
487 drrw->drr_offset = offset;
488 drrw->drr_toguid = dscp->dsc_toguid;
489 drrw->drr_logical_size = lsize;
490
491 /* only set the compression fields if the buf is compressed or raw */
492 boolean_t compressed =
493 (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
494 io_compressed : lsize != psize);
495 if (raw || compressed) {
496 ASSERT(raw || dscp->dsc_featureflags &
497 DMU_BACKUP_FEATURE_COMPRESSED);
498 ASSERT(!BP_IS_EMBEDDED(bp));
499 ASSERT3S(psize, >, 0);
500
501 if (raw) {
502 ASSERT(BP_IS_PROTECTED(bp));
503
504 /*
505 * This is a raw protected block so we need to pass
506 * along everything the receiving side will need to
507 * interpret this block, including the byteswap, salt,
508 * IV, and MAC.
509 */
510 if (BP_SHOULD_BYTESWAP(bp))
511 drrw->drr_flags |= DRR_RAW_BYTESWAP;
512 zio_crypt_decode_params_bp(bp, drrw->drr_salt,
513 drrw->drr_iv);
514 zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
515 } else {
516 /* this is a compressed block */
517 ASSERT(dscp->dsc_featureflags &
518 DMU_BACKUP_FEATURE_COMPRESSED);
519 ASSERT(!BP_SHOULD_BYTESWAP(bp));
520 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
521 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
522 ASSERT3S(lsize, >=, psize);
523 }
524
525 /* set fields common to compressed and raw sends */
526 drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
527 drrw->drr_compressed_size = psize;
528 payload_size = drrw->drr_compressed_size;
529 } else {
530 payload_size = drrw->drr_logical_size;
531 }
532
533 if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
534 /*
535 * There's no pre-computed checksum for partial-block writes,
536 * embedded BP's, or encrypted BP's that are being sent as
537 * plaintext, so (like fletcher4-checksummed blocks) userland
538 * will have to compute a dedup-capable checksum itself.
539 */
540 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
541 } else {
542 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
543 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
544 ZCHECKSUM_FLAG_DEDUP)
545 drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
546 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
547 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
548 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
549 DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
550 drrw->drr_key.ddk_cksum = bp->blk_cksum;
551 }
552
553 if (dump_record(dscp, data, payload_size) != 0)
554 return (SET_ERROR(EINTR));
555 return (0);
556 }
557
558 static int
559 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
560 int blksz, const blkptr_t *bp)
561 {
562 char buf[BPE_PAYLOAD_SIZE];
563 struct drr_write_embedded *drrw =
564 &(dscp->dsc_drr->drr_u.drr_write_embedded);
565
566 if (dscp->dsc_pending_op != PENDING_NONE) {
567 if (dump_record(dscp, NULL, 0) != 0)
568 return (SET_ERROR(EINTR));
569 dscp->dsc_pending_op = PENDING_NONE;
570 }
571
572 ASSERT(BP_IS_EMBEDDED(bp));
573
574 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
575 dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
576 drrw->drr_object = object;
577 drrw->drr_offset = offset;
578 drrw->drr_length = blksz;
579 drrw->drr_toguid = dscp->dsc_toguid;
580 drrw->drr_compression = BP_GET_COMPRESS(bp);
581 drrw->drr_etype = BPE_GET_ETYPE(bp);
582 drrw->drr_lsize = BPE_GET_LSIZE(bp);
583 drrw->drr_psize = BPE_GET_PSIZE(bp);
584
585 decode_embedded_bp_compressed(bp, buf);
586
587 if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
588 return (SET_ERROR(EINTR));
589 return (0);
590 }
591
592 static int
593 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
594 void *data)
595 {
596 struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
597 uint64_t blksz = BP_GET_LSIZE(bp);
598 uint64_t payload_size = blksz;
599
600 if (dscp->dsc_pending_op != PENDING_NONE) {
601 if (dump_record(dscp, NULL, 0) != 0)
602 return (SET_ERROR(EINTR));
603 dscp->dsc_pending_op = PENDING_NONE;
604 }
605
606 /* write a SPILL record */
607 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
608 dscp->dsc_drr->drr_type = DRR_SPILL;
609 drrs->drr_object = object;
610 drrs->drr_length = blksz;
611 drrs->drr_toguid = dscp->dsc_toguid;
612
613 /* See comment in dump_dnode() for full details */
614 if (zfs_send_unmodified_spill_blocks &&
615 (bp->blk_birth <= dscp->dsc_fromtxg)) {
616 drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
617 }
618
619 /* handle raw send fields */
620 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
621 ASSERT(BP_IS_PROTECTED(bp));
622
623 if (BP_SHOULD_BYTESWAP(bp))
624 drrs->drr_flags |= DRR_RAW_BYTESWAP;
625 drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
626 drrs->drr_compressed_size = BP_GET_PSIZE(bp);
627 zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
628 zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
629 payload_size = drrs->drr_compressed_size;
630 }
631
632 if (dump_record(dscp, data, payload_size) != 0)
633 return (SET_ERROR(EINTR));
634 return (0);
635 }
636
637 static int
638 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
639 {
640 struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
641 uint64_t maxobj = DNODES_PER_BLOCK *
642 (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
643
644 /*
645 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
646 * leading to zfs recv never completing. to avoid this issue, don't
647 * send FREEOBJECTS records for object IDs which cannot exist on the
648 * receiving side.
649 */
650 if (maxobj > 0) {
651 if (maxobj <= firstobj)
652 return (0);
653
654 if (maxobj < firstobj + numobjs)
655 numobjs = maxobj - firstobj;
656 }
657
658 /*
659 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
660 * push it out, since free block aggregation can only be done for
661 * blocks of the same type (i.e., DRR_FREE records can only be
662 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
663 * can only be aggregated with other DRR_FREEOBJECTS records).
664 */
665 if (dscp->dsc_pending_op != PENDING_NONE &&
666 dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
667 if (dump_record(dscp, NULL, 0) != 0)
668 return (SET_ERROR(EINTR));
669 dscp->dsc_pending_op = PENDING_NONE;
670 }
671
672 if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
673 /*
674 * See whether this free object array can be aggregated
675 * with pending one
676 */
677 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
678 drrfo->drr_numobjs += numobjs;
679 return (0);
680 } else {
681 /* can't be aggregated. Push out pending record */
682 if (dump_record(dscp, NULL, 0) != 0)
683 return (SET_ERROR(EINTR));
684 dscp->dsc_pending_op = PENDING_NONE;
685 }
686 }
687
688 /* write a FREEOBJECTS record */
689 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
690 dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
691 drrfo->drr_firstobj = firstobj;
692 drrfo->drr_numobjs = numobjs;
693 drrfo->drr_toguid = dscp->dsc_toguid;
694
695 dscp->dsc_pending_op = PENDING_FREEOBJECTS;
696
697 return (0);
698 }
699
700 static int
701 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
702 dnode_phys_t *dnp)
703 {
704 struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
705 int bonuslen;
706
707 if (object < dscp->dsc_resume_object) {
708 /*
709 * Note: when resuming, we will visit all the dnodes in
710 * the block of dnodes that we are resuming from. In
711 * this case it's unnecessary to send the dnodes prior to
712 * the one we are resuming from. We should be at most one
713 * block's worth of dnodes behind the resume point.
714 */
715 ASSERT3U(dscp->dsc_resume_object - object, <,
716 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
717 return (0);
718 }
719
720 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
721 return (dump_freeobjects(dscp, object, 1));
722
723 if (dscp->dsc_pending_op != PENDING_NONE) {
724 if (dump_record(dscp, NULL, 0) != 0)
725 return (SET_ERROR(EINTR));
726 dscp->dsc_pending_op = PENDING_NONE;
727 }
728
729 /* write an OBJECT record */
730 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
731 dscp->dsc_drr->drr_type = DRR_OBJECT;
732 drro->drr_object = object;
733 drro->drr_type = dnp->dn_type;
734 drro->drr_bonustype = dnp->dn_bonustype;
735 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
736 drro->drr_bonuslen = dnp->dn_bonuslen;
737 drro->drr_dn_slots = dnp->dn_extra_slots + 1;
738 drro->drr_checksumtype = dnp->dn_checksum;
739 drro->drr_compress = dnp->dn_compress;
740 drro->drr_toguid = dscp->dsc_toguid;
741
742 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
743 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
744 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
745
746 bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
747
748 if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
749 ASSERT(BP_IS_ENCRYPTED(bp));
750
751 if (BP_SHOULD_BYTESWAP(bp))
752 drro->drr_flags |= DRR_RAW_BYTESWAP;
753
754 /* needed for reconstructing dnp on recv side */
755 drro->drr_maxblkid = dnp->dn_maxblkid;
756 drro->drr_indblkshift = dnp->dn_indblkshift;
757 drro->drr_nlevels = dnp->dn_nlevels;
758 drro->drr_nblkptr = dnp->dn_nblkptr;
759
760 /*
761 * Since we encrypt the entire bonus area, the (raw) part
762 * beyond the bonuslen is actually nonzero, so we need
763 * to send it.
764 */
765 if (bonuslen != 0) {
766 if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
767 return (SET_ERROR(EINVAL));
768 drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
769 bonuslen = drro->drr_raw_bonuslen;
770 }
771 }
772
773 /*
774 * DRR_OBJECT_SPILL is set for every dnode which references a
775 * spill block. This allows the receiving pool to definitively
776 * determine when a spill block should be kept or freed.
777 */
778 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
779 drro->drr_flags |= DRR_OBJECT_SPILL;
780
781 if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
782 return (SET_ERROR(EINTR));
783
784 /* Free anything past the end of the file. */
785 if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
786 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
787 return (SET_ERROR(EINTR));
788
789 /*
790 * Send DRR_SPILL records for unmodified spill blocks. This is useful
791 * because changing certain attributes of the object (e.g. blocksize)
792 * can cause old versions of ZFS to incorrectly remove a spill block.
793 * Including these records in the stream forces an up to date version
794 * to always be written ensuring they're never lost. Current versions
795 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
796 * ignore these unmodified spill blocks.
797 */
798 if (zfs_send_unmodified_spill_blocks &&
799 (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
800 (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
801 struct send_range record;
802 blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
803
804 memset(&record, 0, sizeof (struct send_range));
805 record.type = DATA;
806 record.object = object;
807 record.eos_marker = B_FALSE;
808 record.start_blkid = DMU_SPILL_BLKID;
809 record.end_blkid = record.start_blkid + 1;
810 record.sru.data.bp = *bp;
811 record.sru.data.obj_type = dnp->dn_type;
812 record.sru.data.datablksz = BP_GET_LSIZE(bp);
813
814 if (do_dump(dscp, &record) != 0)
815 return (SET_ERROR(EINTR));
816 }
817
818 if (dscp->dsc_err != 0)
819 return (SET_ERROR(EINTR));
820
821 return (0);
822 }
823
824 static int
825 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
826 uint64_t firstobj, uint64_t numslots)
827 {
828 struct drr_object_range *drror =
829 &(dscp->dsc_drr->drr_u.drr_object_range);
830
831 /* we only use this record type for raw sends */
832 ASSERT(BP_IS_PROTECTED(bp));
833 ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
834 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
835 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
836 ASSERT0(BP_GET_LEVEL(bp));
837
838 if (dscp->dsc_pending_op != PENDING_NONE) {
839 if (dump_record(dscp, NULL, 0) != 0)
840 return (SET_ERROR(EINTR));
841 dscp->dsc_pending_op = PENDING_NONE;
842 }
843
844 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
845 dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
846 drror->drr_firstobj = firstobj;
847 drror->drr_numslots = numslots;
848 drror->drr_toguid = dscp->dsc_toguid;
849 if (BP_SHOULD_BYTESWAP(bp))
850 drror->drr_flags |= DRR_RAW_BYTESWAP;
851 zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
852 zio_crypt_decode_mac_bp(bp, drror->drr_mac);
853
854 if (dump_record(dscp, NULL, 0) != 0)
855 return (SET_ERROR(EINTR));
856 return (0);
857 }
858
859 static boolean_t
860 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
861 {
862 if (!BP_IS_EMBEDDED(bp))
863 return (B_FALSE);
864
865 /*
866 * Compression function must be legacy, or explicitly enabled.
867 */
868 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
869 !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
870 return (B_FALSE);
871
872 /*
873 * If we have not set the ZSTD feature flag, we can't send ZSTD
874 * compressed embedded blocks, as the receiver may not support them.
875 */
876 if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
877 !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
878 return (B_FALSE);
879
880 /*
881 * Embed type must be explicitly enabled.
882 */
883 switch (BPE_GET_ETYPE(bp)) {
884 case BP_EMBEDDED_TYPE_DATA:
885 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
886 return (B_TRUE);
887 break;
888 default:
889 return (B_FALSE);
890 }
891 return (B_FALSE);
892 }
893
894 /*
895 * This function actually handles figuring out what kind of record needs to be
896 * dumped, and calling the appropriate helper function. In most cases,
897 * the data has already been read by send_reader_thread().
898 */
899 static int
900 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
901 {
902 int err = 0;
903 switch (range->type) {
904 case OBJECT:
905 err = dump_dnode(dscp, &range->sru.object.bp, range->object,
906 range->sru.object.dnp);
907 return (err);
908 case OBJECT_RANGE: {
909 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
910 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
911 return (0);
912 }
913 uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
914 DNODE_SHIFT;
915 uint64_t firstobj = range->start_blkid * epb;
916 err = dump_object_range(dscp, &range->sru.object_range.bp,
917 firstobj, epb);
918 break;
919 }
920 case REDACT: {
921 struct srr *srrp = &range->sru.redact;
922 err = dump_redact(dscp, range->object, range->start_blkid *
923 srrp->datablksz, (range->end_blkid - range->start_blkid) *
924 srrp->datablksz);
925 return (err);
926 }
927 case DATA: {
928 struct srd *srdp = &range->sru.data;
929 blkptr_t *bp = &srdp->bp;
930 spa_t *spa =
931 dmu_objset_spa(dscp->dsc_os);
932
933 ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
934 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
935 if (BP_GET_TYPE(bp) == DMU_OT_SA) {
936 arc_flags_t aflags = ARC_FLAG_WAIT;
937 enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
938
939 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
940 ASSERT(BP_IS_PROTECTED(bp));
941 zioflags |= ZIO_FLAG_RAW;
942 }
943
944 zbookmark_phys_t zb;
945 ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
946 zb.zb_objset = dmu_objset_id(dscp->dsc_os);
947 zb.zb_object = range->object;
948 zb.zb_level = 0;
949 zb.zb_blkid = range->start_blkid;
950
951 arc_buf_t *abuf = NULL;
952 if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
953 bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
954 zioflags, &aflags, &zb) != 0)
955 return (SET_ERROR(EIO));
956
957 err = dump_spill(dscp, bp, zb.zb_object,
958 (abuf == NULL ? NULL : abuf->b_data));
959 if (abuf != NULL)
960 arc_buf_destroy(abuf, &abuf);
961 return (err);
962 }
963 if (send_do_embed(bp, dscp->dsc_featureflags)) {
964 err = dump_write_embedded(dscp, range->object,
965 range->start_blkid * srdp->datablksz,
966 srdp->datablksz, bp);
967 return (err);
968 }
969 ASSERT(range->object > dscp->dsc_resume_object ||
970 (range->object == dscp->dsc_resume_object &&
971 range->start_blkid * srdp->datablksz >=
972 dscp->dsc_resume_offset));
973 /* it's a level-0 block of a regular object */
974
975 mutex_enter(&srdp->lock);
976 while (srdp->io_outstanding)
977 cv_wait(&srdp->cv, &srdp->lock);
978 err = srdp->io_err;
979 mutex_exit(&srdp->lock);
980
981 if (err != 0) {
982 if (zfs_send_corrupt_data &&
983 !dscp->dsc_dso->dso_dryrun) {
984 /*
985 * Send a block filled with 0x"zfs badd bloc"
986 */
987 srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
988 ARC_BUFC_DATA, srdp->datablksz);
989 uint64_t *ptr;
990 for (ptr = srdp->abuf->b_data;
991 (char *)ptr < (char *)srdp->abuf->b_data +
992 srdp->datablksz; ptr++)
993 *ptr = 0x2f5baddb10cULL;
994 } else {
995 return (SET_ERROR(EIO));
996 }
997 }
998
999 ASSERT(dscp->dsc_dso->dso_dryrun ||
1000 srdp->abuf != NULL || srdp->abd != NULL);
1001
1002 uint64_t offset = range->start_blkid * srdp->datablksz;
1003
1004 char *data = NULL;
1005 if (srdp->abd != NULL) {
1006 data = abd_to_buf(srdp->abd);
1007 ASSERT3P(srdp->abuf, ==, NULL);
1008 } else if (srdp->abuf != NULL) {
1009 data = srdp->abuf->b_data;
1010 }
1011
1012 /*
1013 * If we have large blocks stored on disk but the send flags
1014 * don't allow us to send large blocks, we split the data from
1015 * the arc buf into chunks.
1016 */
1017 if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1018 !(dscp->dsc_featureflags &
1019 DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1020 while (srdp->datablksz > 0 && err == 0) {
1021 int n = MIN(srdp->datablksz,
1022 SPA_OLD_MAXBLOCKSIZE);
1023 err = dmu_dump_write(dscp, srdp->obj_type,
1024 range->object, offset, n, n, NULL, B_FALSE,
1025 data);
1026 offset += n;
1027 /*
1028 * When doing dry run, data==NULL is used as a
1029 * sentinel value by
1030 * dmu_dump_write()->dump_record().
1031 */
1032 if (data != NULL)
1033 data += n;
1034 srdp->datablksz -= n;
1035 }
1036 } else {
1037 err = dmu_dump_write(dscp, srdp->obj_type,
1038 range->object, offset,
1039 srdp->datablksz, srdp->datasz, bp,
1040 srdp->io_compressed, data);
1041 }
1042 return (err);
1043 }
1044 case HOLE: {
1045 struct srh *srhp = &range->sru.hole;
1046 if (range->object == DMU_META_DNODE_OBJECT) {
1047 uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1048 uint64_t first_obj = range->start_blkid * span;
1049 uint64_t numobj = range->end_blkid * span - first_obj;
1050 return (dump_freeobjects(dscp, first_obj, numobj));
1051 }
1052 uint64_t offset = 0;
1053
1054 /*
1055 * If this multiply overflows, we don't need to send this block.
1056 * Even if it has a birth time, it can never not be a hole, so
1057 * we don't need to send records for it.
1058 */
1059 if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1060 &offset)) {
1061 return (0);
1062 }
1063 uint64_t len = 0;
1064
1065 if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1066 len = UINT64_MAX;
1067 len = len - offset;
1068 return (dump_free(dscp, range->object, offset, len));
1069 }
1070 default:
1071 panic("Invalid range type in do_dump: %d", range->type);
1072 }
1073 return (err);
1074 }
1075
1076 static struct send_range *
1077 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1078 uint64_t end_blkid, boolean_t eos)
1079 {
1080 struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1081 range->type = type;
1082 range->object = object;
1083 range->start_blkid = start_blkid;
1084 range->end_blkid = end_blkid;
1085 range->eos_marker = eos;
1086 if (type == DATA) {
1087 range->sru.data.abd = NULL;
1088 range->sru.data.abuf = NULL;
1089 mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1090 cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1091 range->sru.data.io_outstanding = 0;
1092 range->sru.data.io_err = 0;
1093 range->sru.data.io_compressed = B_FALSE;
1094 }
1095 return (range);
1096 }
1097
1098 /*
1099 * This is the callback function to traverse_dataset that acts as a worker
1100 * thread for dmu_send_impl.
1101 */
1102 static int
1103 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1104 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1105 {
1106 (void) zilog;
1107 struct send_thread_arg *sta = arg;
1108 struct send_range *record;
1109
1110 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1111 zb->zb_object >= sta->resume.zb_object);
1112
1113 /*
1114 * All bps of an encrypted os should have the encryption bit set.
1115 * If this is not true it indicates tampering and we report an error.
1116 */
1117 if (sta->os->os_encrypted &&
1118 !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1119 spa_log_error(spa, zb);
1120 zfs_panic_recover("unencrypted block in encrypted "
1121 "object set %llu", dmu_objset_id(sta->os));
1122 return (SET_ERROR(EIO));
1123 }
1124
1125 if (sta->cancel)
1126 return (SET_ERROR(EINTR));
1127 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1128 DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1129 return (0);
1130 atomic_inc_64(sta->num_blocks_visited);
1131
1132 if (zb->zb_level == ZB_DNODE_LEVEL) {
1133 if (zb->zb_object == DMU_META_DNODE_OBJECT)
1134 return (0);
1135 record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1136 record->sru.object.bp = *bp;
1137 size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1138 record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1139 memcpy(record->sru.object.dnp, dnp, size);
1140 bqueue_enqueue(&sta->q, record, sizeof (*record));
1141 return (0);
1142 }
1143 if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1144 !BP_IS_HOLE(bp)) {
1145 record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1146 zb->zb_blkid + 1, B_FALSE);
1147 record->sru.object_range.bp = *bp;
1148 bqueue_enqueue(&sta->q, record, sizeof (*record));
1149 return (0);
1150 }
1151 if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1152 return (0);
1153 if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1154 return (0);
1155
1156 uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1157 uint64_t start;
1158
1159 /*
1160 * If this multiply overflows, we don't need to send this block.
1161 * Even if it has a birth time, it can never not be a hole, so
1162 * we don't need to send records for it.
1163 */
1164 if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1165 DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1166 span * zb->zb_blkid > dnp->dn_maxblkid)) {
1167 ASSERT(BP_IS_HOLE(bp));
1168 return (0);
1169 }
1170
1171 if (zb->zb_blkid == DMU_SPILL_BLKID)
1172 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1173
1174 enum type record_type = DATA;
1175 if (BP_IS_HOLE(bp))
1176 record_type = HOLE;
1177 else if (BP_IS_REDACTED(bp))
1178 record_type = REDACT;
1179 else
1180 record_type = DATA;
1181
1182 record = range_alloc(record_type, zb->zb_object, start,
1183 (start + span < start ? 0 : start + span), B_FALSE);
1184
1185 uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1186 BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1187
1188 if (BP_IS_HOLE(bp)) {
1189 record->sru.hole.datablksz = datablksz;
1190 } else if (BP_IS_REDACTED(bp)) {
1191 record->sru.redact.datablksz = datablksz;
1192 } else {
1193 record->sru.data.datablksz = datablksz;
1194 record->sru.data.obj_type = dnp->dn_type;
1195 record->sru.data.bp = *bp;
1196 }
1197
1198 bqueue_enqueue(&sta->q, record, sizeof (*record));
1199 return (0);
1200 }
1201
1202 struct redact_list_cb_arg {
1203 uint64_t *num_blocks_visited;
1204 bqueue_t *q;
1205 boolean_t *cancel;
1206 boolean_t mark_redact;
1207 };
1208
1209 static int
1210 redact_list_cb(redact_block_phys_t *rb, void *arg)
1211 {
1212 struct redact_list_cb_arg *rlcap = arg;
1213
1214 atomic_inc_64(rlcap->num_blocks_visited);
1215 if (*rlcap->cancel)
1216 return (-1);
1217
1218 struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1219 rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1220 ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1221 if (rlcap->mark_redact) {
1222 data->type = REDACT;
1223 data->sru.redact.datablksz = redact_block_get_size(rb);
1224 } else {
1225 data->type = PREVIOUSLY_REDACTED;
1226 }
1227 bqueue_enqueue(rlcap->q, data, sizeof (*data));
1228
1229 return (0);
1230 }
1231
1232 /*
1233 * This function kicks off the traverse_dataset. It also handles setting the
1234 * error code of the thread in case something goes wrong, and pushes the End of
1235 * Stream record when the traverse_dataset call has finished.
1236 */
1237 static __attribute__((noreturn)) void
1238 send_traverse_thread(void *arg)
1239 {
1240 struct send_thread_arg *st_arg = arg;
1241 int err = 0;
1242 struct send_range *data;
1243 fstrans_cookie_t cookie = spl_fstrans_mark();
1244
1245 err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1246 st_arg->fromtxg, &st_arg->resume,
1247 st_arg->flags, send_cb, st_arg);
1248
1249 if (err != EINTR)
1250 st_arg->error_code = err;
1251 data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1252 bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1253 spl_fstrans_unmark(cookie);
1254 thread_exit();
1255 }
1256
1257 /*
1258 * Utility function that causes End of Stream records to compare after of all
1259 * others, so that other threads' comparison logic can stay simple.
1260 */
1261 static int __attribute__((unused))
1262 send_range_after(const struct send_range *from, const struct send_range *to)
1263 {
1264 if (from->eos_marker == B_TRUE)
1265 return (1);
1266 if (to->eos_marker == B_TRUE)
1267 return (-1);
1268
1269 uint64_t from_obj = from->object;
1270 uint64_t from_end_obj = from->object + 1;
1271 uint64_t to_obj = to->object;
1272 uint64_t to_end_obj = to->object + 1;
1273 if (from_obj == 0) {
1274 ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1275 from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1276 from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1277 }
1278 if (to_obj == 0) {
1279 ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1280 to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1281 to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1282 }
1283
1284 if (from_end_obj <= to_obj)
1285 return (-1);
1286 if (from_obj >= to_end_obj)
1287 return (1);
1288 int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1289 OBJECT_RANGE);
1290 if (unlikely(cmp))
1291 return (cmp);
1292 cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1293 if (unlikely(cmp))
1294 return (cmp);
1295 if (from->end_blkid <= to->start_blkid)
1296 return (-1);
1297 if (from->start_blkid >= to->end_blkid)
1298 return (1);
1299 return (0);
1300 }
1301
1302 /*
1303 * Pop the new data off the queue, check that the records we receive are in
1304 * the right order, but do not free the old data. This is used so that the
1305 * records can be sent on to the main thread without copying the data.
1306 */
1307 static struct send_range *
1308 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1309 {
1310 struct send_range *next = bqueue_dequeue(bq);
1311 ASSERT3S(send_range_after(prev, next), ==, -1);
1312 return (next);
1313 }
1314
1315 /*
1316 * Pop the new data off the queue, check that the records we receive are in
1317 * the right order, and free the old data.
1318 */
1319 static struct send_range *
1320 get_next_range(bqueue_t *bq, struct send_range *prev)
1321 {
1322 struct send_range *next = get_next_range_nofree(bq, prev);
1323 range_free(prev);
1324 return (next);
1325 }
1326
1327 static __attribute__((noreturn)) void
1328 redact_list_thread(void *arg)
1329 {
1330 struct redact_list_thread_arg *rlt_arg = arg;
1331 struct send_range *record;
1332 fstrans_cookie_t cookie = spl_fstrans_mark();
1333 if (rlt_arg->rl != NULL) {
1334 struct redact_list_cb_arg rlcba = {0};
1335 rlcba.cancel = &rlt_arg->cancel;
1336 rlcba.q = &rlt_arg->q;
1337 rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1338 rlcba.mark_redact = rlt_arg->mark_redact;
1339 int err = dsl_redaction_list_traverse(rlt_arg->rl,
1340 &rlt_arg->resume, redact_list_cb, &rlcba);
1341 if (err != EINTR)
1342 rlt_arg->error_code = err;
1343 }
1344 record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1345 bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1346 spl_fstrans_unmark(cookie);
1347
1348 thread_exit();
1349 }
1350
1351 /*
1352 * Compare the start point of the two provided ranges. End of stream ranges
1353 * compare last, objects compare before any data or hole inside that object and
1354 * multi-object holes that start at the same object.
1355 */
1356 static int
1357 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1358 {
1359 uint64_t r1_objequiv = r1->object;
1360 uint64_t r1_l0equiv = r1->start_blkid;
1361 uint64_t r2_objequiv = r2->object;
1362 uint64_t r2_l0equiv = r2->start_blkid;
1363 int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1364 if (unlikely(cmp))
1365 return (cmp);
1366 if (r1->object == 0) {
1367 r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1368 r1_l0equiv = 0;
1369 }
1370 if (r2->object == 0) {
1371 r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1372 r2_l0equiv = 0;
1373 }
1374
1375 cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1376 if (likely(cmp))
1377 return (cmp);
1378 cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1379 if (unlikely(cmp))
1380 return (cmp);
1381 cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1382 if (unlikely(cmp))
1383 return (cmp);
1384
1385 return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1386 }
1387
1388 enum q_idx {
1389 REDACT_IDX = 0,
1390 TO_IDX,
1391 FROM_IDX,
1392 NUM_THREADS
1393 };
1394
1395 /*
1396 * This function returns the next range the send_merge_thread should operate on.
1397 * The inputs are two arrays; the first one stores the range at the front of the
1398 * queues stored in the second one. The ranges are sorted in descending
1399 * priority order; the metadata from earlier ranges overrules metadata from
1400 * later ranges. out_mask is used to return which threads the ranges came from;
1401 * bit i is set if ranges[i] started at the same place as the returned range.
1402 *
1403 * This code is not hardcoded to compare a specific number of threads; it could
1404 * be used with any number, just by changing the q_idx enum.
1405 *
1406 * The "next range" is the one with the earliest start; if two starts are equal,
1407 * the highest-priority range is the next to operate on. If a higher-priority
1408 * range starts in the middle of the first range, then the first range will be
1409 * truncated to end where the higher-priority range starts, and we will operate
1410 * on that one next time. In this way, we make sure that each block covered by
1411 * some range gets covered by a returned range, and each block covered is
1412 * returned using the metadata of the highest-priority range it appears in.
1413 *
1414 * For example, if the three ranges at the front of the queues were [2,4),
1415 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1416 * from the third range, [2,4) with the metadata from the first range, and then
1417 * [4,5) with the metadata from the second.
1418 */
1419 static struct send_range *
1420 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1421 {
1422 int idx = 0; // index of the range with the earliest start
1423 int i;
1424 uint64_t bmask = 0;
1425 for (i = 1; i < NUM_THREADS; i++) {
1426 if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1427 idx = i;
1428 }
1429 if (ranges[idx]->eos_marker) {
1430 struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1431 *out_mask = 0;
1432 return (ret);
1433 }
1434 /*
1435 * Find all the ranges that start at that same point.
1436 */
1437 for (i = 0; i < NUM_THREADS; i++) {
1438 if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1439 bmask |= 1 << i;
1440 }
1441 *out_mask = bmask;
1442 /*
1443 * OBJECT_RANGE records only come from the TO thread, and should always
1444 * be treated as overlapping with nothing and sent on immediately. They
1445 * are only used in raw sends, and are never redacted.
1446 */
1447 if (ranges[idx]->type == OBJECT_RANGE) {
1448 ASSERT3U(idx, ==, TO_IDX);
1449 ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1450 struct send_range *ret = ranges[idx];
1451 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1452 return (ret);
1453 }
1454 /*
1455 * Find the first start or end point after the start of the first range.
1456 */
1457 uint64_t first_change = ranges[idx]->end_blkid;
1458 for (i = 0; i < NUM_THREADS; i++) {
1459 if (i == idx || ranges[i]->eos_marker ||
1460 ranges[i]->object > ranges[idx]->object ||
1461 ranges[i]->object == DMU_META_DNODE_OBJECT)
1462 continue;
1463 ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1464 if (first_change > ranges[i]->start_blkid &&
1465 (bmask & (1 << i)) == 0)
1466 first_change = ranges[i]->start_blkid;
1467 else if (first_change > ranges[i]->end_blkid)
1468 first_change = ranges[i]->end_blkid;
1469 }
1470 /*
1471 * Update all ranges to no longer overlap with the range we're
1472 * returning. All such ranges must start at the same place as the range
1473 * being returned, and end at or after first_change. Thus we update
1474 * their start to first_change. If that makes them size 0, then free
1475 * them and pull a new range from that thread.
1476 */
1477 for (i = 0; i < NUM_THREADS; i++) {
1478 if (i == idx || (bmask & (1 << i)) == 0)
1479 continue;
1480 ASSERT3U(first_change, >, ranges[i]->start_blkid);
1481 ranges[i]->start_blkid = first_change;
1482 ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1483 if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1484 ranges[i] = get_next_range(qs[i], ranges[i]);
1485 }
1486 /*
1487 * Short-circuit the simple case; if the range doesn't overlap with
1488 * anything else, or it only overlaps with things that start at the same
1489 * place and are longer, send it on.
1490 */
1491 if (first_change == ranges[idx]->end_blkid) {
1492 struct send_range *ret = ranges[idx];
1493 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1494 return (ret);
1495 }
1496
1497 /*
1498 * Otherwise, return a truncated copy of ranges[idx] and move the start
1499 * of ranges[idx] back to first_change.
1500 */
1501 struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1502 *ret = *ranges[idx];
1503 ret->end_blkid = first_change;
1504 ranges[idx]->start_blkid = first_change;
1505 return (ret);
1506 }
1507
1508 #define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1509
1510 /*
1511 * Merge the results from the from thread and the to thread, and then hand the
1512 * records off to send_prefetch_thread to prefetch them. If this is not a
1513 * send from a redaction bookmark, the from thread will push an end of stream
1514 * record and stop, and we'll just send everything that was changed in the
1515 * to_ds since the ancestor's creation txg. If it is, then since
1516 * traverse_dataset has a canonical order, we can compare each change as
1517 * they're pulled off the queues. That will give us a stream that is
1518 * appropriately sorted, and covers all records. In addition, we pull the
1519 * data from the redact_list_thread and use that to determine which blocks
1520 * should be redacted.
1521 */
1522 static __attribute__((noreturn)) void
1523 send_merge_thread(void *arg)
1524 {
1525 struct send_merge_thread_arg *smt_arg = arg;
1526 struct send_range *front_ranges[NUM_THREADS];
1527 bqueue_t *queues[NUM_THREADS];
1528 int err = 0;
1529 fstrans_cookie_t cookie = spl_fstrans_mark();
1530
1531 if (smt_arg->redact_arg == NULL) {
1532 front_ranges[REDACT_IDX] =
1533 kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1534 front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1535 front_ranges[REDACT_IDX]->type = REDACT;
1536 queues[REDACT_IDX] = NULL;
1537 } else {
1538 front_ranges[REDACT_IDX] =
1539 bqueue_dequeue(&smt_arg->redact_arg->q);
1540 queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1541 }
1542 front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1543 queues[TO_IDX] = &smt_arg->to_arg->q;
1544 front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1545 queues[FROM_IDX] = &smt_arg->from_arg->q;
1546 uint64_t mask = 0;
1547 struct send_range *range;
1548 for (range = find_next_range(front_ranges, queues, &mask);
1549 !range->eos_marker && err == 0 && !smt_arg->cancel;
1550 range = find_next_range(front_ranges, queues, &mask)) {
1551 /*
1552 * If the range in question was in both the from redact bookmark
1553 * and the bookmark we're using to redact, then don't send it.
1554 * It's already redacted on the receiving system, so a redaction
1555 * record would be redundant.
1556 */
1557 if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1558 ASSERT3U(range->type, ==, REDACT);
1559 range_free(range);
1560 continue;
1561 }
1562 bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1563
1564 if (smt_arg->to_arg->error_code != 0) {
1565 err = smt_arg->to_arg->error_code;
1566 } else if (smt_arg->from_arg->error_code != 0) {
1567 err = smt_arg->from_arg->error_code;
1568 } else if (smt_arg->redact_arg != NULL &&
1569 smt_arg->redact_arg->error_code != 0) {
1570 err = smt_arg->redact_arg->error_code;
1571 }
1572 }
1573 if (smt_arg->cancel && err == 0)
1574 err = SET_ERROR(EINTR);
1575 smt_arg->error = err;
1576 if (smt_arg->error != 0) {
1577 smt_arg->to_arg->cancel = B_TRUE;
1578 smt_arg->from_arg->cancel = B_TRUE;
1579 if (smt_arg->redact_arg != NULL)
1580 smt_arg->redact_arg->cancel = B_TRUE;
1581 }
1582 for (int i = 0; i < NUM_THREADS; i++) {
1583 while (!front_ranges[i]->eos_marker) {
1584 front_ranges[i] = get_next_range(queues[i],
1585 front_ranges[i]);
1586 }
1587 range_free(front_ranges[i]);
1588 }
1589 if (range == NULL)
1590 range = kmem_zalloc(sizeof (*range), KM_SLEEP);
1591 range->eos_marker = B_TRUE;
1592 bqueue_enqueue_flush(&smt_arg->q, range, 1);
1593 spl_fstrans_unmark(cookie);
1594 thread_exit();
1595 }
1596
1597 struct send_reader_thread_arg {
1598 struct send_merge_thread_arg *smta;
1599 bqueue_t q;
1600 boolean_t cancel;
1601 boolean_t issue_reads;
1602 uint64_t featureflags;
1603 int error;
1604 };
1605
1606 static void
1607 dmu_send_read_done(zio_t *zio)
1608 {
1609 struct send_range *range = zio->io_private;
1610
1611 mutex_enter(&range->sru.data.lock);
1612 if (zio->io_error != 0) {
1613 abd_free(range->sru.data.abd);
1614 range->sru.data.abd = NULL;
1615 range->sru.data.io_err = zio->io_error;
1616 }
1617
1618 ASSERT(range->sru.data.io_outstanding);
1619 range->sru.data.io_outstanding = B_FALSE;
1620 cv_broadcast(&range->sru.data.cv);
1621 mutex_exit(&range->sru.data.lock);
1622 }
1623
1624 static void
1625 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1626 {
1627 struct srd *srdp = &range->sru.data;
1628 blkptr_t *bp = &srdp->bp;
1629 objset_t *os = srta->smta->os;
1630
1631 ASSERT3U(range->type, ==, DATA);
1632 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1633 /*
1634 * If we have large blocks stored on disk but
1635 * the send flags don't allow us to send large
1636 * blocks, we split the data from the arc buf
1637 * into chunks.
1638 */
1639 boolean_t split_large_blocks =
1640 srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1641 !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1642 /*
1643 * We should only request compressed data from the ARC if all
1644 * the following are true:
1645 * - stream compression was requested
1646 * - we aren't splitting large blocks into smaller chunks
1647 * - the data won't need to be byteswapped before sending
1648 * - this isn't an embedded block
1649 * - this isn't metadata (if receiving on a different endian
1650 * system it can be byteswapped more easily)
1651 */
1652 boolean_t request_compressed =
1653 (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1654 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1655 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1656
1657 enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
1658
1659 if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1660 zioflags |= ZIO_FLAG_RAW;
1661 srdp->io_compressed = B_TRUE;
1662 } else if (request_compressed) {
1663 zioflags |= ZIO_FLAG_RAW_COMPRESS;
1664 srdp->io_compressed = B_TRUE;
1665 }
1666
1667 srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1668 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1669
1670 if (!srta->issue_reads)
1671 return;
1672 if (BP_IS_REDACTED(bp))
1673 return;
1674 if (send_do_embed(bp, srta->featureflags))
1675 return;
1676
1677 zbookmark_phys_t zb = {
1678 .zb_objset = dmu_objset_id(os),
1679 .zb_object = range->object,
1680 .zb_level = 0,
1681 .zb_blkid = range->start_blkid,
1682 };
1683
1684 arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1685
1686 int arc_err = arc_read(NULL, os->os_spa, bp,
1687 arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1688 zioflags, &aflags, &zb);
1689 /*
1690 * If the data is not already cached in the ARC, we read directly
1691 * from zio. This avoids the performance overhead of adding a new
1692 * entry to the ARC, and we also avoid polluting the ARC cache with
1693 * data that is not likely to be used in the future.
1694 */
1695 if (arc_err != 0) {
1696 srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1697 srdp->io_outstanding = B_TRUE;
1698 zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1699 srdp->datasz, dmu_send_read_done, range,
1700 ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1701 }
1702 }
1703
1704 /*
1705 * Create a new record with the given values.
1706 */
1707 static void
1708 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1709 uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1710 {
1711 enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1712 (BP_IS_REDACTED(bp) ? REDACT : DATA));
1713
1714 struct send_range *range = range_alloc(range_type, dn->dn_object,
1715 blkid, blkid + count, B_FALSE);
1716
1717 if (blkid == DMU_SPILL_BLKID)
1718 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1719
1720 switch (range_type) {
1721 case HOLE:
1722 range->sru.hole.datablksz = datablksz;
1723 break;
1724 case DATA:
1725 ASSERT3U(count, ==, 1);
1726 range->sru.data.datablksz = datablksz;
1727 range->sru.data.obj_type = dn->dn_type;
1728 range->sru.data.bp = *bp;
1729 issue_data_read(srta, range);
1730 break;
1731 case REDACT:
1732 range->sru.redact.datablksz = datablksz;
1733 break;
1734 default:
1735 break;
1736 }
1737 bqueue_enqueue(q, range, datablksz);
1738 }
1739
1740 /*
1741 * This thread is responsible for two things: First, it retrieves the correct
1742 * blkptr in the to ds if we need to send the data because of something from
1743 * the from thread. As a result of this, we're the first ones to discover that
1744 * some indirect blocks can be discarded because they're not holes. Second,
1745 * it issues prefetches for the data we need to send.
1746 */
1747 static __attribute__((noreturn)) void
1748 send_reader_thread(void *arg)
1749 {
1750 struct send_reader_thread_arg *srta = arg;
1751 struct send_merge_thread_arg *smta = srta->smta;
1752 bqueue_t *inq = &smta->q;
1753 bqueue_t *outq = &srta->q;
1754 objset_t *os = smta->os;
1755 fstrans_cookie_t cookie = spl_fstrans_mark();
1756 struct send_range *range = bqueue_dequeue(inq);
1757 int err = 0;
1758
1759 /*
1760 * If the record we're analyzing is from a redaction bookmark from the
1761 * fromds, then we need to know whether or not it exists in the tods so
1762 * we know whether to create records for it or not. If it does, we need
1763 * the datablksz so we can generate an appropriate record for it.
1764 * Finally, if it isn't redacted, we need the blkptr so that we can send
1765 * a WRITE record containing the actual data.
1766 */
1767 uint64_t last_obj = UINT64_MAX;
1768 uint64_t last_obj_exists = B_TRUE;
1769 while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1770 err == 0) {
1771 switch (range->type) {
1772 case DATA:
1773 issue_data_read(srta, range);
1774 bqueue_enqueue(outq, range, range->sru.data.datablksz);
1775 range = get_next_range_nofree(inq, range);
1776 break;
1777 case HOLE:
1778 case OBJECT:
1779 case OBJECT_RANGE:
1780 case REDACT: // Redacted blocks must exist
1781 bqueue_enqueue(outq, range, sizeof (*range));
1782 range = get_next_range_nofree(inq, range);
1783 break;
1784 case PREVIOUSLY_REDACTED: {
1785 /*
1786 * This entry came from the "from bookmark" when
1787 * sending from a bookmark that has a redaction
1788 * list. We need to check if this object/blkid
1789 * exists in the target ("to") dataset, and if
1790 * not then we drop this entry. We also need
1791 * to fill in the block pointer so that we know
1792 * what to prefetch.
1793 *
1794 * To accomplish the above, we first cache whether or
1795 * not the last object we examined exists. If it
1796 * doesn't, we can drop this record. If it does, we hold
1797 * the dnode and use it to call dbuf_dnode_findbp. We do
1798 * this instead of dbuf_bookmark_findbp because we will
1799 * often operate on large ranges, and holding the dnode
1800 * once is more efficient.
1801 */
1802 boolean_t object_exists = B_TRUE;
1803 /*
1804 * If the data is redacted, we only care if it exists,
1805 * so that we don't send records for objects that have
1806 * been deleted.
1807 */
1808 dnode_t *dn;
1809 if (range->object == last_obj && !last_obj_exists) {
1810 /*
1811 * If we're still examining the same object as
1812 * previously, and it doesn't exist, we don't
1813 * need to call dbuf_bookmark_findbp.
1814 */
1815 object_exists = B_FALSE;
1816 } else {
1817 err = dnode_hold(os, range->object, FTAG, &dn);
1818 if (err == ENOENT) {
1819 object_exists = B_FALSE;
1820 err = 0;
1821 }
1822 last_obj = range->object;
1823 last_obj_exists = object_exists;
1824 }
1825
1826 if (err != 0) {
1827 break;
1828 } else if (!object_exists) {
1829 /*
1830 * The block was modified, but doesn't
1831 * exist in the to dataset; if it was
1832 * deleted in the to dataset, then we'll
1833 * visit the hole bp for it at some point.
1834 */
1835 range = get_next_range(inq, range);
1836 continue;
1837 }
1838 uint64_t file_max =
1839 (dn->dn_maxblkid < range->end_blkid ?
1840 dn->dn_maxblkid : range->end_blkid);
1841 /*
1842 * The object exists, so we need to try to find the
1843 * blkptr for each block in the range we're processing.
1844 */
1845 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1846 for (uint64_t blkid = range->start_blkid;
1847 blkid < file_max; blkid++) {
1848 blkptr_t bp;
1849 uint32_t datablksz =
1850 dn->dn_phys->dn_datablkszsec <<
1851 SPA_MINBLOCKSHIFT;
1852 uint64_t offset = blkid * datablksz;
1853 /*
1854 * This call finds the next non-hole block in
1855 * the object. This is to prevent a
1856 * performance problem where we're unredacting
1857 * a large hole. Using dnode_next_offset to
1858 * skip over the large hole avoids iterating
1859 * over every block in it.
1860 */
1861 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1862 &offset, 1, 1, 0);
1863 if (err == ESRCH) {
1864 offset = UINT64_MAX;
1865 err = 0;
1866 } else if (err != 0) {
1867 break;
1868 }
1869 if (offset != blkid * datablksz) {
1870 /*
1871 * if there is a hole from here
1872 * (blkid) to offset
1873 */
1874 offset = MIN(offset, file_max *
1875 datablksz);
1876 uint64_t nblks = (offset / datablksz) -
1877 blkid;
1878 enqueue_range(srta, outq, dn, blkid,
1879 nblks, NULL, datablksz);
1880 blkid += nblks;
1881 }
1882 if (blkid >= file_max)
1883 break;
1884 err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1885 NULL, NULL);
1886 if (err != 0)
1887 break;
1888 ASSERT(!BP_IS_HOLE(&bp));
1889 enqueue_range(srta, outq, dn, blkid, 1, &bp,
1890 datablksz);
1891 }
1892 rw_exit(&dn->dn_struct_rwlock);
1893 dnode_rele(dn, FTAG);
1894 range = get_next_range(inq, range);
1895 }
1896 }
1897 }
1898 if (srta->cancel || err != 0) {
1899 smta->cancel = B_TRUE;
1900 srta->error = err;
1901 } else if (smta->error != 0) {
1902 srta->error = smta->error;
1903 }
1904 while (!range->eos_marker)
1905 range = get_next_range(inq, range);
1906
1907 bqueue_enqueue_flush(outq, range, 1);
1908 spl_fstrans_unmark(cookie);
1909 thread_exit();
1910 }
1911
1912 #define NUM_SNAPS_NOT_REDACTED UINT64_MAX
1913
1914 struct dmu_send_params {
1915 /* Pool args */
1916 const void *tag; // Tag dp was held with, will be used to release dp.
1917 dsl_pool_t *dp;
1918 /* To snapshot args */
1919 const char *tosnap;
1920 dsl_dataset_t *to_ds;
1921 /* From snapshot args */
1922 zfs_bookmark_phys_t ancestor_zb;
1923 uint64_t *fromredactsnaps;
1924 /* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1925 uint64_t numfromredactsnaps;
1926 /* Stream params */
1927 boolean_t is_clone;
1928 boolean_t embedok;
1929 boolean_t large_block_ok;
1930 boolean_t compressok;
1931 boolean_t rawok;
1932 boolean_t savedok;
1933 uint64_t resumeobj;
1934 uint64_t resumeoff;
1935 uint64_t saved_guid;
1936 zfs_bookmark_phys_t *redactbook;
1937 /* Stream output params */
1938 dmu_send_outparams_t *dso;
1939
1940 /* Stream progress params */
1941 offset_t *off;
1942 int outfd;
1943 char saved_toname[MAXNAMELEN];
1944 };
1945
1946 static int
1947 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1948 uint64_t *featureflags)
1949 {
1950 dsl_dataset_t *to_ds = dspp->to_ds;
1951 dsl_pool_t *dp = dspp->dp;
1952 #ifdef _KERNEL
1953 if (dmu_objset_type(os) == DMU_OST_ZFS) {
1954 uint64_t version;
1955 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1956 return (SET_ERROR(EINVAL));
1957
1958 if (version >= ZPL_VERSION_SA)
1959 *featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1960 }
1961 #endif
1962
1963 /* raw sends imply large_block_ok */
1964 if ((dspp->rawok || dspp->large_block_ok) &&
1965 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1966 *featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1967 }
1968
1969 /* encrypted datasets will not have embedded blocks */
1970 if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1971 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1972 *featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1973 }
1974
1975 /* raw send implies compressok */
1976 if (dspp->compressok || dspp->rawok)
1977 *featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1978
1979 if (dspp->rawok && os->os_encrypted)
1980 *featureflags |= DMU_BACKUP_FEATURE_RAW;
1981
1982 if ((*featureflags &
1983 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1984 DMU_BACKUP_FEATURE_RAW)) != 0 &&
1985 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1986 *featureflags |= DMU_BACKUP_FEATURE_LZ4;
1987 }
1988
1989 /*
1990 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1991 * allow sending ZSTD compressed datasets to a receiver that does not
1992 * support ZSTD
1993 */
1994 if ((*featureflags &
1995 (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
1996 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
1997 *featureflags |= DMU_BACKUP_FEATURE_ZSTD;
1998 }
1999
2000 if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2001 *featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2002 }
2003
2004 if (dspp->redactbook != NULL) {
2005 *featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2006 }
2007
2008 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2009 *featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2010 }
2011 return (0);
2012 }
2013
2014 static dmu_replay_record_t *
2015 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2016 uint64_t featureflags)
2017 {
2018 dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2019 KM_SLEEP);
2020 drr->drr_type = DRR_BEGIN;
2021
2022 struct drr_begin *drrb = &drr->drr_u.drr_begin;
2023 dsl_dataset_t *to_ds = dspp->to_ds;
2024
2025 drrb->drr_magic = DMU_BACKUP_MAGIC;
2026 drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2027 drrb->drr_type = dmu_objset_type(os);
2028 drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2029 drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2030
2031 DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2032 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2033
2034 if (dspp->is_clone)
2035 drrb->drr_flags |= DRR_FLAG_CLONE;
2036 if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2037 drrb->drr_flags |= DRR_FLAG_CI_DATA;
2038 if (zfs_send_set_freerecords_bit)
2039 drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2040 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2041
2042 if (dspp->savedok) {
2043 drrb->drr_toguid = dspp->saved_guid;
2044 strlcpy(drrb->drr_toname, dspp->saved_toname,
2045 sizeof (drrb->drr_toname));
2046 } else {
2047 dsl_dataset_name(to_ds, drrb->drr_toname);
2048 if (!to_ds->ds_is_snapshot) {
2049 (void) strlcat(drrb->drr_toname, "@--head--",
2050 sizeof (drrb->drr_toname));
2051 }
2052 }
2053 return (drr);
2054 }
2055
2056 static void
2057 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2058 dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2059 {
2060 VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2061 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2062 offsetof(struct send_range, ln)));
2063 to_arg->error_code = 0;
2064 to_arg->cancel = B_FALSE;
2065 to_arg->os = to_os;
2066 to_arg->fromtxg = fromtxg;
2067 to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2068 if (rawok)
2069 to_arg->flags |= TRAVERSE_NO_DECRYPT;
2070 if (zfs_send_corrupt_data)
2071 to_arg->flags |= TRAVERSE_HARD;
2072 to_arg->num_blocks_visited = &dssp->dss_blocks;
2073 (void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2074 curproc, TS_RUN, minclsyspri);
2075 }
2076
2077 static void
2078 setup_from_thread(struct redact_list_thread_arg *from_arg,
2079 redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2080 {
2081 VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2082 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2083 offsetof(struct send_range, ln)));
2084 from_arg->error_code = 0;
2085 from_arg->cancel = B_FALSE;
2086 from_arg->rl = from_rl;
2087 from_arg->mark_redact = B_FALSE;
2088 from_arg->num_blocks_visited = &dssp->dss_blocks;
2089 /*
2090 * If from_ds is null, send_traverse_thread just returns success and
2091 * enqueues an eos marker.
2092 */
2093 (void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2094 curproc, TS_RUN, minclsyspri);
2095 }
2096
2097 static void
2098 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2099 struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2100 {
2101 if (dspp->redactbook == NULL)
2102 return;
2103
2104 rlt_arg->cancel = B_FALSE;
2105 VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2106 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2107 offsetof(struct send_range, ln)));
2108 rlt_arg->error_code = 0;
2109 rlt_arg->mark_redact = B_TRUE;
2110 rlt_arg->rl = rl;
2111 rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2112
2113 (void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2114 curproc, TS_RUN, minclsyspri);
2115 }
2116
2117 static void
2118 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2119 struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2120 struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2121 objset_t *os)
2122 {
2123 VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2124 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2125 offsetof(struct send_range, ln)));
2126 smt_arg->cancel = B_FALSE;
2127 smt_arg->error = 0;
2128 smt_arg->from_arg = from_arg;
2129 smt_arg->to_arg = to_arg;
2130 if (dspp->redactbook != NULL)
2131 smt_arg->redact_arg = rlt_arg;
2132
2133 smt_arg->os = os;
2134 (void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2135 TS_RUN, minclsyspri);
2136 }
2137
2138 static void
2139 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2140 struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2141 uint64_t featureflags)
2142 {
2143 VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2144 MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2145 offsetof(struct send_range, ln)));
2146 srt_arg->smta = smt_arg;
2147 srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2148 srt_arg->featureflags = featureflags;
2149 (void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2150 curproc, TS_RUN, minclsyspri);
2151 }
2152
2153 static int
2154 setup_resume_points(struct dmu_send_params *dspp,
2155 struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2156 struct redact_list_thread_arg *rlt_arg,
2157 struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2158 redaction_list_t *redact_rl, nvlist_t *nvl)
2159 {
2160 (void) smt_arg;
2161 dsl_dataset_t *to_ds = dspp->to_ds;
2162 int err = 0;
2163
2164 uint64_t obj = 0;
2165 uint64_t blkid = 0;
2166 if (resuming) {
2167 obj = dspp->resumeobj;
2168 dmu_object_info_t to_doi;
2169 err = dmu_object_info(os, obj, &to_doi);
2170 if (err != 0)
2171 return (err);
2172
2173 blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2174 }
2175 /*
2176 * If we're resuming a redacted send, we can skip to the appropriate
2177 * point in the redaction bookmark by binary searching through it.
2178 */
2179 if (redact_rl != NULL) {
2180 SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2181 }
2182
2183 SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2184 if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2185 uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2186 /*
2187 * Note: If the resume point is in an object whose
2188 * blocksize is different in the from vs to snapshots,
2189 * we will have divided by the "wrong" blocksize.
2190 * However, in this case fromsnap's send_cb() will
2191 * detect that the blocksize has changed and therefore
2192 * ignore this object.
2193 *
2194 * If we're resuming a send from a redaction bookmark,
2195 * we still cannot accidentally suggest blocks behind
2196 * the to_ds. In addition, we know that any blocks in
2197 * the object in the to_ds will have to be sent, since
2198 * the size changed. Therefore, we can't cause any harm
2199 * this way either.
2200 */
2201 SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2202 }
2203 if (resuming) {
2204 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2205 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2206 }
2207 return (0);
2208 }
2209
2210 static dmu_sendstatus_t *
2211 setup_send_progress(struct dmu_send_params *dspp)
2212 {
2213 dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2214 dssp->dss_outfd = dspp->outfd;
2215 dssp->dss_off = dspp->off;
2216 dssp->dss_proc = curproc;
2217 mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2218 list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2219 mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2220 return (dssp);
2221 }
2222
2223 /*
2224 * Actually do the bulk of the work in a zfs send.
2225 *
2226 * The idea is that we want to do a send from ancestor_zb to to_ds. We also
2227 * want to not send any data that has been modified by all the datasets in
2228 * redactsnaparr, and store the list of blocks that are redacted in this way in
2229 * a bookmark named redactbook, created on the to_ds. We do this by creating
2230 * several worker threads, whose function is described below.
2231 *
2232 * There are three cases.
2233 * The first case is a redacted zfs send. In this case there are 5 threads.
2234 * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2235 * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2236 * it's a full send, that's all blocks in the dataset). It then sends those
2237 * blocks on to the send merge thread. The redact list thread takes the data
2238 * from the redaction bookmark and sends those blocks on to the send merge
2239 * thread. The send merge thread takes the data from the to_ds traversal
2240 * thread, and combines it with the redaction records from the redact list
2241 * thread. If a block appears in both the to_ds's data and the redaction data,
2242 * the send merge thread will mark it as redacted and send it on to the prefetch
2243 * thread. Otherwise, the send merge thread will send the block on to the
2244 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2245 * any data that isn't redacted, and then send the data on to the main thread.
2246 * The main thread behaves the same as in a normal send case, issuing demand
2247 * reads for data blocks and sending out records over the network
2248 *
2249 * The graphic below diagrams the flow of data in the case of a redacted zfs
2250 * send. Each box represents a thread, and each line represents the flow of
2251 * data.
2252 *
2253 * Records from the |
2254 * redaction bookmark |
2255 * +--------------------+ | +---------------------------+
2256 * | | v | Send Merge Thread |
2257 * | Redact List Thread +----------> Apply redaction marks to |
2258 * | | | records as specified by |
2259 * +--------------------+ | redaction ranges |
2260 * +----^---------------+------+
2261 * | | Merged data
2262 * | |
2263 * | +------------v--------+
2264 * | | Prefetch Thread |
2265 * +--------------------+ | | Issues prefetch |
2266 * | to_ds Traversal | | | reads of data blocks|
2267 * | Thread (finds +---------------+ +------------+--------+
2268 * | candidate blocks) | Blocks modified | Prefetched data
2269 * +--------------------+ by to_ds since |
2270 * ancestor_zb +------------v----+
2271 * | Main Thread | File Descriptor
2272 * | Sends data over +->(to zfs receive)
2273 * | wire |
2274 * +-----------------+
2275 *
2276 * The second case is an incremental send from a redaction bookmark. The to_ds
2277 * traversal thread and the main thread behave the same as in the redacted
2278 * send case. The new thread is the from bookmark traversal thread. It
2279 * iterates over the redaction list in the redaction bookmark, and enqueues
2280 * records for each block that was redacted in the original send. The send
2281 * merge thread now has to merge the data from the two threads. For details
2282 * about that process, see the header comment of send_merge_thread(). Any data
2283 * it decides to send on will be prefetched by the prefetch thread. Note that
2284 * you can perform a redacted send from a redaction bookmark; in that case,
2285 * the data flow behaves very similarly to the flow in the redacted send case,
2286 * except with the addition of the bookmark traversal thread iterating over the
2287 * redaction bookmark. The send_merge_thread also has to take on the
2288 * responsibility of merging the redact list thread's records, the bookmark
2289 * traversal thread's records, and the to_ds records.
2290 *
2291 * +---------------------+
2292 * | |
2293 * | Redact List Thread +--------------+
2294 * | | |
2295 * +---------------------+ |
2296 * Blocks in redaction list | Ranges modified by every secure snap
2297 * of from bookmark | (or EOS if not readcted)
2298 * |
2299 * +---------------------+ | +----v----------------------+
2300 * | bookmark Traversal | v | Send Merge Thread |
2301 * | Thread (finds +---------> Merges bookmark, rlt, and |
2302 * | candidate blocks) | | to_ds send records |
2303 * +---------------------+ +----^---------------+------+
2304 * | | Merged data
2305 * | +------------v--------+
2306 * | | Prefetch Thread |
2307 * +--------------------+ | | Issues prefetch |
2308 * | to_ds Traversal | | | reads of data blocks|
2309 * | Thread (finds +---------------+ +------------+--------+
2310 * | candidate blocks) | Blocks modified | Prefetched data
2311 * +--------------------+ by to_ds since +------------v----+
2312 * ancestor_zb | Main Thread | File Descriptor
2313 * | Sends data over +->(to zfs receive)
2314 * | wire |
2315 * +-----------------+
2316 *
2317 * The final case is a simple zfs full or incremental send. The to_ds traversal
2318 * thread behaves the same as always. The redact list thread is never started.
2319 * The send merge thread takes all the blocks that the to_ds traversal thread
2320 * sends it, prefetches the data, and sends the blocks on to the main thread.
2321 * The main thread sends the data over the wire.
2322 *
2323 * To keep performance acceptable, we want to prefetch the data in the worker
2324 * threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH
2325 * feature built into traverse_dataset, the combining and deletion of records
2326 * due to redaction and sends from redaction bookmarks mean that we could
2327 * issue many unnecessary prefetches. As a result, we only prefetch data
2328 * after we've determined that the record is not going to be redacted. To
2329 * prevent the prefetching from getting too far ahead of the main thread, the
2330 * blocking queues that are used for communication are capped not by the
2331 * number of entries in the queue, but by the sum of the size of the
2332 * prefetches associated with them. The limit on the amount of data that the
2333 * thread can prefetch beyond what the main thread has reached is controlled
2334 * by the global variable zfs_send_queue_length. In addition, to prevent poor
2335 * performance in the beginning of a send, we also limit the distance ahead
2336 * that the traversal threads can be. That distance is controlled by the
2337 * zfs_send_no_prefetch_queue_length tunable.
2338 *
2339 * Note: Releases dp using the specified tag.
2340 */
2341 static int
2342 dmu_send_impl(struct dmu_send_params *dspp)
2343 {
2344 objset_t *os;
2345 dmu_replay_record_t *drr;
2346 dmu_sendstatus_t *dssp;
2347 dmu_send_cookie_t dsc = {0};
2348 int err;
2349 uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2350 uint64_t featureflags = 0;
2351 struct redact_list_thread_arg *from_arg;
2352 struct send_thread_arg *to_arg;
2353 struct redact_list_thread_arg *rlt_arg;
2354 struct send_merge_thread_arg *smt_arg;
2355 struct send_reader_thread_arg *srt_arg;
2356 struct send_range *range;
2357 redaction_list_t *from_rl = NULL;
2358 redaction_list_t *redact_rl = NULL;
2359 boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2360 boolean_t book_resuming = resuming;
2361
2362 dsl_dataset_t *to_ds = dspp->to_ds;
2363 zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2364 dsl_pool_t *dp = dspp->dp;
2365 const void *tag = dspp->tag;
2366
2367 err = dmu_objset_from_ds(to_ds, &os);
2368 if (err != 0) {
2369 dsl_pool_rele(dp, tag);
2370 return (err);
2371 }
2372
2373 /*
2374 * If this is a non-raw send of an encrypted ds, we can ensure that
2375 * the objset_phys_t is authenticated. This is safe because this is
2376 * either a snapshot or we have owned the dataset, ensuring that
2377 * it can't be modified.
2378 */
2379 if (!dspp->rawok && os->os_encrypted &&
2380 arc_is_unauthenticated(os->os_phys_buf)) {
2381 zbookmark_phys_t zb;
2382
2383 SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2384 ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2385 err = arc_untransform(os->os_phys_buf, os->os_spa,
2386 &zb, B_FALSE);
2387 if (err != 0) {
2388 dsl_pool_rele(dp, tag);
2389 return (err);
2390 }
2391
2392 ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2393 }
2394
2395 if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2396 dsl_pool_rele(dp, tag);
2397 return (err);
2398 }
2399
2400 /*
2401 * If we're doing a redacted send, hold the bookmark's redaction list.
2402 */
2403 if (dspp->redactbook != NULL) {
2404 err = dsl_redaction_list_hold_obj(dp,
2405 dspp->redactbook->zbm_redaction_obj, FTAG,
2406 &redact_rl);
2407 if (err != 0) {
2408 dsl_pool_rele(dp, tag);
2409 return (SET_ERROR(EINVAL));
2410 }
2411 dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2412 }
2413
2414 /*
2415 * If we're sending from a redaction bookmark, hold the redaction list
2416 * so that we can consider sending the redacted blocks.
2417 */
2418 if (ancestor_zb->zbm_redaction_obj != 0) {
2419 err = dsl_redaction_list_hold_obj(dp,
2420 ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2421 if (err != 0) {
2422 if (redact_rl != NULL) {
2423 dsl_redaction_list_long_rele(redact_rl, FTAG);
2424 dsl_redaction_list_rele(redact_rl, FTAG);
2425 }
2426 dsl_pool_rele(dp, tag);
2427 return (SET_ERROR(EINVAL));
2428 }
2429 dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2430 }
2431
2432 dsl_dataset_long_hold(to_ds, FTAG);
2433
2434 from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2435 to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2436 rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2437 smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2438 srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2439
2440 drr = create_begin_record(dspp, os, featureflags);
2441 dssp = setup_send_progress(dspp);
2442
2443 dsc.dsc_drr = drr;
2444 dsc.dsc_dso = dspp->dso;
2445 dsc.dsc_os = os;
2446 dsc.dsc_off = dspp->off;
2447 dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2448 dsc.dsc_fromtxg = fromtxg;
2449 dsc.dsc_pending_op = PENDING_NONE;
2450 dsc.dsc_featureflags = featureflags;
2451 dsc.dsc_resume_object = dspp->resumeobj;
2452 dsc.dsc_resume_offset = dspp->resumeoff;
2453
2454 dsl_pool_rele(dp, tag);
2455
2456 void *payload = NULL;
2457 size_t payload_len = 0;
2458 nvlist_t *nvl = fnvlist_alloc();
2459
2460 /*
2461 * If we're doing a redacted send, we include the snapshots we're
2462 * redacted with respect to so that the target system knows what send
2463 * streams can be correctly received on top of this dataset. If we're
2464 * instead sending a redacted dataset, we include the snapshots that the
2465 * dataset was created with respect to.
2466 */
2467 if (dspp->redactbook != NULL) {
2468 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2469 redact_rl->rl_phys->rlp_snaps,
2470 redact_rl->rl_phys->rlp_num_snaps);
2471 } else if (dsl_dataset_feature_is_active(to_ds,
2472 SPA_FEATURE_REDACTED_DATASETS)) {
2473 uint64_t *tods_guids;
2474 uint64_t length;
2475 VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2476 SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2477 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2478 length);
2479 }
2480
2481 /*
2482 * If we're sending from a redaction bookmark, then we should retrieve
2483 * the guids of that bookmark so we can send them over the wire.
2484 */
2485 if (from_rl != NULL) {
2486 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2487 from_rl->rl_phys->rlp_snaps,
2488 from_rl->rl_phys->rlp_num_snaps);
2489 }
2490
2491 /*
2492 * If the snapshot we're sending from is redacted, include the redaction
2493 * list in the stream.
2494 */
2495 if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2496 ASSERT3P(from_rl, ==, NULL);
2497 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2498 dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2499 if (dspp->numfromredactsnaps > 0) {
2500 kmem_free(dspp->fromredactsnaps,
2501 dspp->numfromredactsnaps * sizeof (uint64_t));
2502 dspp->fromredactsnaps = NULL;
2503 }
2504 }
2505
2506 if (resuming || book_resuming) {
2507 err = setup_resume_points(dspp, to_arg, from_arg,
2508 rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2509 if (err != 0)
2510 goto out;
2511 }
2512
2513 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2514 uint64_t ivset_guid = (ancestor_zb != NULL) ?
2515 ancestor_zb->zbm_ivset_guid : 0;
2516 nvlist_t *keynvl = NULL;
2517 ASSERT(os->os_encrypted);
2518
2519 err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2520 &keynvl);
2521 if (err != 0) {
2522 fnvlist_free(nvl);
2523 goto out;
2524 }
2525
2526 fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2527 fnvlist_free(keynvl);
2528 }
2529
2530 if (!nvlist_empty(nvl)) {
2531 payload = fnvlist_pack(nvl, &payload_len);
2532 drr->drr_payloadlen = payload_len;
2533 }
2534
2535 fnvlist_free(nvl);
2536 err = dump_record(&dsc, payload, payload_len);
2537 fnvlist_pack_free(payload, payload_len);
2538 if (err != 0) {
2539 err = dsc.dsc_err;
2540 goto out;
2541 }
2542
2543 setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2544 setup_from_thread(from_arg, from_rl, dssp);
2545 setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2546 setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2547 setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2548
2549 range = bqueue_dequeue(&srt_arg->q);
2550 while (err == 0 && !range->eos_marker) {
2551 err = do_dump(&dsc, range);
2552 range = get_next_range(&srt_arg->q, range);
2553 if (issig(JUSTLOOKING) && issig(FORREAL))
2554 err = SET_ERROR(EINTR);
2555 }
2556
2557 /*
2558 * If we hit an error or are interrupted, cancel our worker threads and
2559 * clear the queue of any pending records. The threads will pass the
2560 * cancel up the tree of worker threads, and each one will clean up any
2561 * pending records before exiting.
2562 */
2563 if (err != 0) {
2564 srt_arg->cancel = B_TRUE;
2565 while (!range->eos_marker) {
2566 range = get_next_range(&srt_arg->q, range);
2567 }
2568 }
2569 range_free(range);
2570
2571 bqueue_destroy(&srt_arg->q);
2572 bqueue_destroy(&smt_arg->q);
2573 if (dspp->redactbook != NULL)
2574 bqueue_destroy(&rlt_arg->q);
2575 bqueue_destroy(&to_arg->q);
2576 bqueue_destroy(&from_arg->q);
2577
2578 if (err == 0 && srt_arg->error != 0)
2579 err = srt_arg->error;
2580
2581 if (err != 0)
2582 goto out;
2583
2584 if (dsc.dsc_pending_op != PENDING_NONE)
2585 if (dump_record(&dsc, NULL, 0) != 0)
2586 err = SET_ERROR(EINTR);
2587
2588 if (err != 0) {
2589 if (err == EINTR && dsc.dsc_err != 0)
2590 err = dsc.dsc_err;
2591 goto out;
2592 }
2593
2594 /*
2595 * Send the DRR_END record if this is not a saved stream.
2596 * Otherwise, the omitted DRR_END record will signal to
2597 * the receive side that the stream is incomplete.
2598 */
2599 if (!dspp->savedok) {
2600 memset(drr, 0, sizeof (dmu_replay_record_t));
2601 drr->drr_type = DRR_END;
2602 drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2603 drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2604
2605 if (dump_record(&dsc, NULL, 0) != 0)
2606 err = dsc.dsc_err;
2607 }
2608 out:
2609 mutex_enter(&to_ds->ds_sendstream_lock);
2610 list_remove(&to_ds->ds_sendstreams, dssp);
2611 mutex_exit(&to_ds->ds_sendstream_lock);
2612
2613 VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2614 (dsc.dsc_sent_end || dspp->savedok)));
2615
2616 kmem_free(drr, sizeof (dmu_replay_record_t));
2617 kmem_free(dssp, sizeof (dmu_sendstatus_t));
2618 kmem_free(from_arg, sizeof (*from_arg));
2619 kmem_free(to_arg, sizeof (*to_arg));
2620 kmem_free(rlt_arg, sizeof (*rlt_arg));
2621 kmem_free(smt_arg, sizeof (*smt_arg));
2622 kmem_free(srt_arg, sizeof (*srt_arg));
2623
2624 dsl_dataset_long_rele(to_ds, FTAG);
2625 if (from_rl != NULL) {
2626 dsl_redaction_list_long_rele(from_rl, FTAG);
2627 dsl_redaction_list_rele(from_rl, FTAG);
2628 }
2629 if (redact_rl != NULL) {
2630 dsl_redaction_list_long_rele(redact_rl, FTAG);
2631 dsl_redaction_list_rele(redact_rl, FTAG);
2632 }
2633
2634 return (err);
2635 }
2636
2637 int
2638 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2639 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2640 boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2641 dmu_send_outparams_t *dsop)
2642 {
2643 int err;
2644 dsl_dataset_t *fromds;
2645 ds_hold_flags_t dsflags;
2646 struct dmu_send_params dspp = {0};
2647 dspp.embedok = embedok;
2648 dspp.large_block_ok = large_block_ok;
2649 dspp.compressok = compressok;
2650 dspp.outfd = outfd;
2651 dspp.off = off;
2652 dspp.dso = dsop;
2653 dspp.tag = FTAG;
2654 dspp.rawok = rawok;
2655 dspp.savedok = savedok;
2656
2657 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2658 err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2659 if (err != 0)
2660 return (err);
2661
2662 err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2663 &dspp.to_ds);
2664 if (err != 0) {
2665 dsl_pool_rele(dspp.dp, FTAG);
2666 return (err);
2667 }
2668
2669 if (fromsnap != 0) {
2670 err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2671 FTAG, &fromds);
2672 if (err != 0) {
2673 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2674 dsl_pool_rele(dspp.dp, FTAG);
2675 return (err);
2676 }
2677 dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2678 dspp.ancestor_zb.zbm_creation_txg =
2679 dsl_dataset_phys(fromds)->ds_creation_txg;
2680 dspp.ancestor_zb.zbm_creation_time =
2681 dsl_dataset_phys(fromds)->ds_creation_time;
2682
2683 if (dsl_dataset_is_zapified(fromds)) {
2684 (void) zap_lookup(dspp.dp->dp_meta_objset,
2685 fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2686 &dspp.ancestor_zb.zbm_ivset_guid);
2687 }
2688
2689 /* See dmu_send for the reasons behind this. */
2690 uint64_t *fromredact;
2691
2692 if (!dsl_dataset_get_uint64_array_feature(fromds,
2693 SPA_FEATURE_REDACTED_DATASETS,
2694 &dspp.numfromredactsnaps,
2695 &fromredact)) {
2696 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2697 } else if (dspp.numfromredactsnaps > 0) {
2698 uint64_t size = dspp.numfromredactsnaps *
2699 sizeof (uint64_t);
2700 dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2701 memcpy(dspp.fromredactsnaps, fromredact, size);
2702 }
2703
2704 boolean_t is_before =
2705 dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2706 dspp.is_clone = (dspp.to_ds->ds_dir !=
2707 fromds->ds_dir);
2708 dsl_dataset_rele(fromds, FTAG);
2709 if (!is_before) {
2710 dsl_pool_rele(dspp.dp, FTAG);
2711 err = SET_ERROR(EXDEV);
2712 } else {
2713 err = dmu_send_impl(&dspp);
2714 }
2715 } else {
2716 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2717 err = dmu_send_impl(&dspp);
2718 }
2719 dsl_dataset_rele(dspp.to_ds, FTAG);
2720 return (err);
2721 }
2722
2723 int
2724 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2725 boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2726 boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2727 const char *redactbook, int outfd, offset_t *off,
2728 dmu_send_outparams_t *dsop)
2729 {
2730 int err = 0;
2731 ds_hold_flags_t dsflags;
2732 boolean_t owned = B_FALSE;
2733 dsl_dataset_t *fromds = NULL;
2734 zfs_bookmark_phys_t book = {0};
2735 struct dmu_send_params dspp = {0};
2736
2737 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2738 dspp.tosnap = tosnap;
2739 dspp.embedok = embedok;
2740 dspp.large_block_ok = large_block_ok;
2741 dspp.compressok = compressok;
2742 dspp.outfd = outfd;
2743 dspp.off = off;
2744 dspp.dso = dsop;
2745 dspp.tag = FTAG;
2746 dspp.resumeobj = resumeobj;
2747 dspp.resumeoff = resumeoff;
2748 dspp.rawok = rawok;
2749 dspp.savedok = savedok;
2750
2751 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2752 return (SET_ERROR(EINVAL));
2753
2754 err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2755 if (err != 0)
2756 return (err);
2757
2758 if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2759 /*
2760 * We are sending a filesystem or volume. Ensure
2761 * that it doesn't change by owning the dataset.
2762 */
2763
2764 if (savedok) {
2765 /*
2766 * We are looking for the dataset that represents the
2767 * partially received send stream. If this stream was
2768 * received as a new snapshot of an existing dataset,
2769 * this will be saved in a hidden clone named
2770 * "<pool>/<dataset>/%recv". Otherwise, the stream
2771 * will be saved in the live dataset itself. In
2772 * either case we need to use dsl_dataset_own_force()
2773 * because the stream is marked as inconsistent,
2774 * which would normally make it unavailable to be
2775 * owned.
2776 */
2777 char *name = kmem_asprintf("%s/%s", tosnap,
2778 recv_clone_name);
2779 err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2780 FTAG, &dspp.to_ds);
2781 if (err == ENOENT) {
2782 err = dsl_dataset_own_force(dspp.dp, tosnap,
2783 dsflags, FTAG, &dspp.to_ds);
2784 }
2785
2786 if (err == 0) {
2787 err = zap_lookup(dspp.dp->dp_meta_objset,
2788 dspp.to_ds->ds_object,
2789 DS_FIELD_RESUME_TOGUID, 8, 1,
2790 &dspp.saved_guid);
2791 }
2792
2793 if (err == 0) {
2794 err = zap_lookup(dspp.dp->dp_meta_objset,
2795 dspp.to_ds->ds_object,
2796 DS_FIELD_RESUME_TONAME, 1,
2797 sizeof (dspp.saved_toname),
2798 dspp.saved_toname);
2799 }
2800 if (err != 0)
2801 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2802
2803 kmem_strfree(name);
2804 } else {
2805 err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2806 FTAG, &dspp.to_ds);
2807 }
2808 owned = B_TRUE;
2809 } else {
2810 err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2811 &dspp.to_ds);
2812 }
2813
2814 if (err != 0) {
2815 dsl_pool_rele(dspp.dp, FTAG);
2816 return (err);
2817 }
2818
2819 if (redactbook != NULL) {
2820 char path[ZFS_MAX_DATASET_NAME_LEN];
2821 (void) strlcpy(path, tosnap, sizeof (path));
2822 char *at = strchr(path, '@');
2823 if (at == NULL) {
2824 err = EINVAL;
2825 } else {
2826 (void) snprintf(at, sizeof (path) - (at - path), "#%s",
2827 redactbook);
2828 err = dsl_bookmark_lookup(dspp.dp, path,
2829 NULL, &book);
2830 dspp.redactbook = &book;
2831 }
2832 }
2833
2834 if (err != 0) {
2835 dsl_pool_rele(dspp.dp, FTAG);
2836 if (owned)
2837 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2838 else
2839 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2840 return (err);
2841 }
2842
2843 if (fromsnap != NULL) {
2844 zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2845 int fsnamelen;
2846 if (strpbrk(tosnap, "@#") != NULL)
2847 fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2848 else
2849 fsnamelen = strlen(tosnap);
2850
2851 /*
2852 * If the fromsnap is in a different filesystem, then
2853 * mark the send stream as a clone.
2854 */
2855 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2856 (fromsnap[fsnamelen] != '@' &&
2857 fromsnap[fsnamelen] != '#')) {
2858 dspp.is_clone = B_TRUE;
2859 }
2860
2861 if (strchr(fromsnap, '@') != NULL) {
2862 err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2863 &fromds);
2864
2865 if (err != 0) {
2866 ASSERT3P(fromds, ==, NULL);
2867 } else {
2868 /*
2869 * We need to make a deep copy of the redact
2870 * snapshots of the from snapshot, because the
2871 * array will be freed when we evict from_ds.
2872 */
2873 uint64_t *fromredact;
2874 if (!dsl_dataset_get_uint64_array_feature(
2875 fromds, SPA_FEATURE_REDACTED_DATASETS,
2876 &dspp.numfromredactsnaps,
2877 &fromredact)) {
2878 dspp.numfromredactsnaps =
2879 NUM_SNAPS_NOT_REDACTED;
2880 } else if (dspp.numfromredactsnaps > 0) {
2881 uint64_t size =
2882 dspp.numfromredactsnaps *
2883 sizeof (uint64_t);
2884 dspp.fromredactsnaps = kmem_zalloc(size,
2885 KM_SLEEP);
2886 memcpy(dspp.fromredactsnaps, fromredact,
2887 size);
2888 }
2889 if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2890 0)) {
2891 err = SET_ERROR(EXDEV);
2892 } else {
2893 zb->zbm_creation_txg =
2894 dsl_dataset_phys(fromds)->
2895 ds_creation_txg;
2896 zb->zbm_creation_time =
2897 dsl_dataset_phys(fromds)->
2898 ds_creation_time;
2899 zb->zbm_guid =
2900 dsl_dataset_phys(fromds)->ds_guid;
2901 zb->zbm_redaction_obj = 0;
2902
2903 if (dsl_dataset_is_zapified(fromds)) {
2904 (void) zap_lookup(
2905 dspp.dp->dp_meta_objset,
2906 fromds->ds_object,
2907 DS_FIELD_IVSET_GUID, 8, 1,
2908 &zb->zbm_ivset_guid);
2909 }
2910 }
2911 dsl_dataset_rele(fromds, FTAG);
2912 }
2913 } else {
2914 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2915 err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2916 zb);
2917 if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2918 zb->zbm_guid ==
2919 dsl_dataset_phys(dspp.to_ds)->ds_guid)
2920 err = 0;
2921 }
2922
2923 if (err == 0) {
2924 /* dmu_send_impl will call dsl_pool_rele for us. */
2925 err = dmu_send_impl(&dspp);
2926 } else {
2927 dsl_pool_rele(dspp.dp, FTAG);
2928 }
2929 } else {
2930 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2931 err = dmu_send_impl(&dspp);
2932 }
2933 if (owned)
2934 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2935 else
2936 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2937 return (err);
2938 }
2939
2940 static int
2941 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2942 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2943 {
2944 int err = 0;
2945 uint64_t size;
2946 /*
2947 * Assume that space (both on-disk and in-stream) is dominated by
2948 * data. We will adjust for indirect blocks and the copies property,
2949 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2950 */
2951
2952 uint64_t recordsize;
2953 uint64_t record_count;
2954 objset_t *os;
2955 VERIFY0(dmu_objset_from_ds(ds, &os));
2956
2957 /* Assume all (uncompressed) blocks are recordsize. */
2958 if (zfs_override_estimate_recordsize != 0) {
2959 recordsize = zfs_override_estimate_recordsize;
2960 } else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2961 err = dsl_prop_get_int_ds(ds,
2962 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2963 } else {
2964 err = dsl_prop_get_int_ds(ds,
2965 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2966 }
2967 if (err != 0)
2968 return (err);
2969 record_count = uncompressed / recordsize;
2970
2971 /*
2972 * If we're estimating a send size for a compressed stream, use the
2973 * compressed data size to estimate the stream size. Otherwise, use the
2974 * uncompressed data size.
2975 */
2976 size = stream_compressed ? compressed : uncompressed;
2977
2978 /*
2979 * Subtract out approximate space used by indirect blocks.
2980 * Assume most space is used by data blocks (non-indirect, non-dnode).
2981 * Assume no ditto blocks or internal fragmentation.
2982 *
2983 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
2984 * block.
2985 */
2986 size -= record_count * sizeof (blkptr_t);
2987
2988 /* Add in the space for the record associated with each block. */
2989 size += record_count * sizeof (dmu_replay_record_t);
2990
2991 *sizep = size;
2992
2993 return (0);
2994 }
2995
2996 int
2997 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
2998 zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
2999 boolean_t saved, uint64_t *sizep)
3000 {
3001 int err;
3002 dsl_dataset_t *ds = origds;
3003 uint64_t uncomp, comp;
3004
3005 ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3006 ASSERT(fromds == NULL || frombook == NULL);
3007
3008 /*
3009 * If this is a saved send we may actually be sending
3010 * from the %recv clone used for resuming.
3011 */
3012 if (saved) {
3013 objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3014 uint64_t guid;
3015 char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3016
3017 dsl_dataset_name(origds, dsname);
3018 (void) strcat(dsname, "/");
3019 (void) strlcat(dsname, recv_clone_name,
3020 sizeof (dsname) - strlen(dsname));
3021
3022 err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3023 dsname, FTAG, &ds);
3024 if (err != ENOENT && err != 0) {
3025 return (err);
3026 } else if (err == ENOENT) {
3027 ds = origds;
3028 }
3029
3030 /* check that this dataset has partially received data */
3031 err = zap_lookup(mos, ds->ds_object,
3032 DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3033 if (err != 0) {
3034 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3035 goto out;
3036 }
3037
3038 err = zap_lookup(mos, ds->ds_object,
3039 DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3040 if (err != 0) {
3041 err = SET_ERROR(err == ENOENT ? EINVAL : err);
3042 goto out;
3043 }
3044 }
3045
3046 /* tosnap must be a snapshot or the target of a saved send */
3047 if (!ds->ds_is_snapshot && ds == origds)
3048 return (SET_ERROR(EINVAL));
3049
3050 if (fromds != NULL) {
3051 uint64_t used;
3052 if (!fromds->ds_is_snapshot) {
3053 err = SET_ERROR(EINVAL);
3054 goto out;
3055 }
3056
3057 if (!dsl_dataset_is_before(ds, fromds, 0)) {
3058 err = SET_ERROR(EXDEV);
3059 goto out;
3060 }
3061
3062 err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3063 &uncomp);
3064 if (err != 0)
3065 goto out;
3066 } else if (frombook != NULL) {
3067 uint64_t used;
3068 err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3069 &comp, &uncomp);
3070 if (err != 0)
3071 goto out;
3072 } else {
3073 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3074 comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3075 }
3076
3077 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3078 stream_compressed, sizep);
3079 /*
3080 * Add the size of the BEGIN and END records to the estimate.
3081 */
3082 *sizep += 2 * sizeof (dmu_replay_record_t);
3083
3084 out:
3085 if (ds != origds)
3086 dsl_dataset_rele(ds, FTAG);
3087 return (err);
3088 }
3089
3090 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3091 "Allow sending corrupt data");
3092
3093 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3094 "Maximum send queue length");
3095
3096 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3097 "Send unmodified spill blocks");
3098
3099 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3100 "Maximum send queue length for non-prefetch queues");
3101
3102 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3103 "Send queue fill fraction");
3104
3105 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3106 "Send queue fill fraction for non-prefetch queues");
3107
3108 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3109 "Override block size estimate with fixed size");