]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_tx.c
Undo c89 workarounds to match with upstream
[mirror_zfs.git] / module / zfs / dmu_tx.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/varargs.h>
41 #include <sys/trace_dmu.h>
42
43 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44 uint64_t arg1, uint64_t arg2);
45
46 dmu_tx_stats_t dmu_tx_stats = {
47 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
48 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
49 { "dmu_tx_error", KSTAT_DATA_UINT64 },
50 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
51 { "dmu_tx_group", KSTAT_DATA_UINT64 },
52 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
53 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
54 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
56 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
57 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
58 };
59
60 static kstat_t *dmu_tx_ksp;
61
62 dmu_tx_t *
63 dmu_tx_create_dd(dsl_dir_t *dd)
64 {
65 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
66 tx->tx_dir = dd;
67 if (dd != NULL)
68 tx->tx_pool = dd->dd_pool;
69 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
70 offsetof(dmu_tx_hold_t, txh_node));
71 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
72 offsetof(dmu_tx_callback_t, dcb_node));
73 tx->tx_start = gethrtime();
74 return (tx);
75 }
76
77 dmu_tx_t *
78 dmu_tx_create(objset_t *os)
79 {
80 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
81 tx->tx_objset = os;
82 return (tx);
83 }
84
85 dmu_tx_t *
86 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
87 {
88 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
89
90 txg_verify(dp->dp_spa, txg);
91 tx->tx_pool = dp;
92 tx->tx_txg = txg;
93 tx->tx_anyobj = TRUE;
94
95 return (tx);
96 }
97
98 int
99 dmu_tx_is_syncing(dmu_tx_t *tx)
100 {
101 return (tx->tx_anyobj);
102 }
103
104 int
105 dmu_tx_private_ok(dmu_tx_t *tx)
106 {
107 return (tx->tx_anyobj);
108 }
109
110 static dmu_tx_hold_t *
111 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
112 uint64_t arg1, uint64_t arg2)
113 {
114 dmu_tx_hold_t *txh;
115
116 if (dn != NULL) {
117 (void) refcount_add(&dn->dn_holds, tx);
118 if (tx->tx_txg != 0) {
119 mutex_enter(&dn->dn_mtx);
120 /*
121 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
122 * problem, but there's no way for it to happen (for
123 * now, at least).
124 */
125 ASSERT(dn->dn_assigned_txg == 0);
126 dn->dn_assigned_txg = tx->tx_txg;
127 (void) refcount_add(&dn->dn_tx_holds, tx);
128 mutex_exit(&dn->dn_mtx);
129 }
130 }
131
132 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
133 txh->txh_tx = tx;
134 txh->txh_dnode = dn;
135 refcount_create(&txh->txh_space_towrite);
136 refcount_create(&txh->txh_memory_tohold);
137 txh->txh_type = type;
138 txh->txh_arg1 = arg1;
139 txh->txh_arg2 = arg2;
140 list_insert_tail(&tx->tx_holds, txh);
141
142 return (txh);
143 }
144
145 static dmu_tx_hold_t *
146 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
147 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
148 {
149 dnode_t *dn = NULL;
150 dmu_tx_hold_t *txh;
151 int err;
152
153 if (object != DMU_NEW_OBJECT) {
154 err = dnode_hold(os, object, FTAG, &dn);
155 if (err != 0) {
156 tx->tx_err = err;
157 return (NULL);
158 }
159 }
160 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
161 if (dn != NULL)
162 dnode_rele(dn, FTAG);
163 return (txh);
164 }
165
166 void
167 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
168 {
169 /*
170 * If we're syncing, they can manipulate any object anyhow, and
171 * the hold on the dnode_t can cause problems.
172 */
173 if (!dmu_tx_is_syncing(tx))
174 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
175 }
176
177 /*
178 * This function reads specified data from disk. The specified data will
179 * be needed to perform the transaction -- i.e, it will be read after
180 * we do dmu_tx_assign(). There are two reasons that we read the data now
181 * (before dmu_tx_assign()):
182 *
183 * 1. Reading it now has potentially better performance. The transaction
184 * has not yet been assigned, so the TXG is not held open, and also the
185 * caller typically has less locks held when calling dmu_tx_hold_*() than
186 * after the transaction has been assigned. This reduces the lock (and txg)
187 * hold times, thus reducing lock contention.
188 *
189 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
190 * that are detected before they start making changes to the DMU state
191 * (i.e. now). Once the transaction has been assigned, and some DMU
192 * state has been changed, it can be difficult to recover from an i/o
193 * error (e.g. to undo the changes already made in memory at the DMU
194 * layer). Typically code to do so does not exist in the caller -- it
195 * assumes that the data has already been cached and thus i/o errors are
196 * not possible.
197 *
198 * It has been observed that the i/o initiated here can be a performance
199 * problem, and it appears to be optional, because we don't look at the
200 * data which is read. However, removing this read would only serve to
201 * move the work elsewhere (after the dmu_tx_assign()), where it may
202 * have a greater impact on performance (in addition to the impact on
203 * fault tolerance noted above).
204 */
205 static int
206 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
207 {
208 int err;
209 dmu_buf_impl_t *db;
210
211 rw_enter(&dn->dn_struct_rwlock, RW_READER);
212 db = dbuf_hold_level(dn, level, blkid, FTAG);
213 rw_exit(&dn->dn_struct_rwlock);
214 if (db == NULL)
215 return (SET_ERROR(EIO));
216 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
217 dbuf_rele(db, FTAG);
218 return (err);
219 }
220
221 /* ARGSUSED */
222 static void
223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
224 {
225 dnode_t *dn = txh->txh_dnode;
226 int err = 0;
227
228 if (len == 0)
229 return;
230
231 (void) refcount_add_many(&txh->txh_space_towrite, len, FTAG);
232
233 if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
234 err = SET_ERROR(EFBIG);
235
236 if (dn == NULL)
237 return;
238
239 /*
240 * For i/o error checking, read the blocks that will be needed
241 * to perform the write: the first and last level-0 blocks (if
242 * they are not aligned, i.e. if they are partial-block writes),
243 * and all the level-1 blocks.
244 */
245 if (dn->dn_maxblkid == 0) {
246 if (off < dn->dn_datablksz &&
247 (off > 0 || len < dn->dn_datablksz)) {
248 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
249 if (err != 0) {
250 txh->txh_tx->tx_err = err;
251 }
252 }
253 } else {
254 zio_t *zio = zio_root(dn->dn_objset->os_spa,
255 NULL, NULL, ZIO_FLAG_CANFAIL);
256
257 /* first level-0 block */
258 uint64_t start = off >> dn->dn_datablkshift;
259 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
260 err = dmu_tx_check_ioerr(zio, dn, 0, start);
261 if (err != 0) {
262 txh->txh_tx->tx_err = err;
263 }
264 }
265
266 /* last level-0 block */
267 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
268 if (end != start && end <= dn->dn_maxblkid &&
269 P2PHASE(off + len, dn->dn_datablksz)) {
270 err = dmu_tx_check_ioerr(zio, dn, 0, end);
271 if (err != 0) {
272 txh->txh_tx->tx_err = err;
273 }
274 }
275
276 /* level-1 blocks */
277 if (dn->dn_nlevels > 1) {
278 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
279 for (uint64_t i = (start >> shft) + 1;
280 i < end >> shft; i++) {
281 err = dmu_tx_check_ioerr(zio, dn, 1, i);
282 if (err != 0) {
283 txh->txh_tx->tx_err = err;
284 }
285 }
286 }
287
288 err = zio_wait(zio);
289 if (err != 0) {
290 txh->txh_tx->tx_err = err;
291 }
292 }
293 }
294
295 static void
296 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
297 {
298 (void) refcount_add_many(&txh->txh_space_towrite, DNODE_MIN_SIZE, FTAG);
299 }
300
301 void
302 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
303 {
304 dmu_tx_hold_t *txh;
305
306 ASSERT0(tx->tx_txg);
307 ASSERT3U(len, <=, DMU_MAX_ACCESS);
308 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
309
310 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
311 object, THT_WRITE, off, len);
312 if (txh != NULL) {
313 dmu_tx_count_write(txh, off, len);
314 dmu_tx_count_dnode(txh);
315 }
316 }
317
318 void
319 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
320 {
321 dmu_tx_hold_t *txh;
322
323 ASSERT0(tx->tx_txg);
324 ASSERT3U(len, <=, DMU_MAX_ACCESS);
325 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
326
327 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
328 if (txh != NULL) {
329 dmu_tx_count_write(txh, off, len);
330 dmu_tx_count_dnode(txh);
331 }
332 }
333
334 /*
335 * This function marks the transaction as being a "net free". The end
336 * result is that refquotas will be disabled for this transaction, and
337 * this transaction will be able to use half of the pool space overhead
338 * (see dsl_pool_adjustedsize()). Therefore this function should only
339 * be called for transactions that we expect will not cause a net increase
340 * in the amount of space used (but it's OK if that is occasionally not true).
341 */
342 void
343 dmu_tx_mark_netfree(dmu_tx_t *tx)
344 {
345 tx->tx_netfree = B_TRUE;
346 }
347
348 static void
349 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
350 {
351 dmu_tx_t *tx = txh->txh_tx;
352 dnode_t *dn = txh->txh_dnode;
353 int err;
354
355 ASSERT(tx->tx_txg == 0);
356
357 dmu_tx_count_dnode(txh);
358
359 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
360 return;
361 if (len == DMU_OBJECT_END)
362 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
363
364 dmu_tx_count_dnode(txh);
365
366 /*
367 * For i/o error checking, we read the first and last level-0
368 * blocks if they are not aligned, and all the level-1 blocks.
369 *
370 * Note: dbuf_free_range() assumes that we have not instantiated
371 * any level-0 dbufs that will be completely freed. Therefore we must
372 * exercise care to not read or count the first and last blocks
373 * if they are blocksize-aligned.
374 */
375 if (dn->dn_datablkshift == 0) {
376 if (off != 0 || len < dn->dn_datablksz)
377 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
378 } else {
379 /* first block will be modified if it is not aligned */
380 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
381 dmu_tx_count_write(txh, off, 1);
382 /* last block will be modified if it is not aligned */
383 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
384 dmu_tx_count_write(txh, off + len, 1);
385 }
386
387 /*
388 * Check level-1 blocks.
389 */
390 if (dn->dn_nlevels > 1) {
391 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
392 SPA_BLKPTRSHIFT;
393 uint64_t start = off >> shift;
394 uint64_t end = (off + len) >> shift;
395
396 ASSERT(dn->dn_indblkshift != 0);
397
398 /*
399 * dnode_reallocate() can result in an object with indirect
400 * blocks having an odd data block size. In this case,
401 * just check the single block.
402 */
403 if (dn->dn_datablkshift == 0)
404 start = end = 0;
405
406 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
407 NULL, NULL, ZIO_FLAG_CANFAIL);
408 for (uint64_t i = start; i <= end; i++) {
409 uint64_t ibyte = i << shift;
410 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
411 i = ibyte >> shift;
412 if (err == ESRCH || i > end)
413 break;
414 if (err != 0) {
415 tx->tx_err = err;
416 (void) zio_wait(zio);
417 return;
418 }
419
420 (void) refcount_add_many(&txh->txh_memory_tohold,
421 1 << dn->dn_indblkshift, FTAG);
422
423 err = dmu_tx_check_ioerr(zio, dn, 1, i);
424 if (err != 0) {
425 tx->tx_err = err;
426 (void) zio_wait(zio);
427 return;
428 }
429 }
430 err = zio_wait(zio);
431 if (err != 0) {
432 tx->tx_err = err;
433 return;
434 }
435 }
436 }
437
438 void
439 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
440 {
441 dmu_tx_hold_t *txh;
442
443 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
444 object, THT_FREE, off, len);
445 if (txh != NULL)
446 (void) dmu_tx_hold_free_impl(txh, off, len);
447 }
448
449 void
450 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
451 {
452 dmu_tx_hold_t *txh;
453
454 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
455 if (txh != NULL)
456 (void) dmu_tx_hold_free_impl(txh, off, len);
457 }
458
459 static void
460 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
461 {
462 dmu_tx_t *tx = txh->txh_tx;
463 dnode_t *dn = txh->txh_dnode;
464 int err;
465
466 ASSERT(tx->tx_txg == 0);
467
468 dmu_tx_count_dnode(txh);
469
470 /*
471 * Modifying a almost-full microzap is around the worst case (128KB)
472 *
473 * If it is a fat zap, the worst case would be 7*16KB=112KB:
474 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
475 * - 4 new blocks written if adding:
476 * - 2 blocks for possibly split leaves,
477 * - 2 grown ptrtbl blocks
478 */
479 (void) refcount_add_many(&txh->txh_space_towrite,
480 MZAP_MAX_BLKSZ, FTAG);
481
482 if (dn == NULL)
483 return;
484
485 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
486
487 if (dn->dn_maxblkid == 0 || name == NULL) {
488 /*
489 * This is a microzap (only one block), or we don't know
490 * the name. Check the first block for i/o errors.
491 */
492 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
493 if (err != 0) {
494 tx->tx_err = err;
495 }
496 } else {
497 /*
498 * Access the name so that we'll check for i/o errors to
499 * the leaf blocks, etc. We ignore ENOENT, as this name
500 * may not yet exist.
501 */
502 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
503 if (err == EIO || err == ECKSUM || err == ENXIO) {
504 tx->tx_err = err;
505 }
506 }
507 }
508
509 void
510 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
511 {
512 dmu_tx_hold_t *txh;
513
514 ASSERT0(tx->tx_txg);
515
516 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
517 object, THT_ZAP, add, (uintptr_t)name);
518 if (txh != NULL)
519 dmu_tx_hold_zap_impl(txh, name);
520 }
521
522 void
523 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
524 {
525 dmu_tx_hold_t *txh;
526
527 ASSERT0(tx->tx_txg);
528 ASSERT(dn != NULL);
529
530 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
531 if (txh != NULL)
532 dmu_tx_hold_zap_impl(txh, name);
533 }
534
535 void
536 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
537 {
538 dmu_tx_hold_t *txh;
539
540 ASSERT(tx->tx_txg == 0);
541
542 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
543 object, THT_BONUS, 0, 0);
544 if (txh)
545 dmu_tx_count_dnode(txh);
546 }
547
548 void
549 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
550 {
551 dmu_tx_hold_t *txh;
552
553 ASSERT0(tx->tx_txg);
554
555 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
556 if (txh)
557 dmu_tx_count_dnode(txh);
558 }
559
560 void
561 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
562 {
563 dmu_tx_hold_t *txh;
564
565 ASSERT(tx->tx_txg == 0);
566
567 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
568 DMU_NEW_OBJECT, THT_SPACE, space, 0);
569 if (txh)
570 (void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
571 }
572
573 #ifdef ZFS_DEBUG
574 void
575 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
576 {
577 boolean_t match_object = B_FALSE;
578 boolean_t match_offset = B_FALSE;
579
580 DB_DNODE_ENTER(db);
581 dnode_t *dn = DB_DNODE(db);
582 ASSERT(tx->tx_txg != 0);
583 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
584 ASSERT3U(dn->dn_object, ==, db->db.db_object);
585
586 if (tx->tx_anyobj) {
587 DB_DNODE_EXIT(db);
588 return;
589 }
590
591 /* XXX No checking on the meta dnode for now */
592 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
593 DB_DNODE_EXIT(db);
594 return;
595 }
596
597 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
598 txh = list_next(&tx->tx_holds, txh)) {
599 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
600 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
601 match_object = TRUE;
602 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
603 int datablkshift = dn->dn_datablkshift ?
604 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
605 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
606 int shift = datablkshift + epbs * db->db_level;
607 uint64_t beginblk = shift >= 64 ? 0 :
608 (txh->txh_arg1 >> shift);
609 uint64_t endblk = shift >= 64 ? 0 :
610 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
611 uint64_t blkid = db->db_blkid;
612
613 /* XXX txh_arg2 better not be zero... */
614
615 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
616 txh->txh_type, beginblk, endblk);
617
618 switch (txh->txh_type) {
619 case THT_WRITE:
620 if (blkid >= beginblk && blkid <= endblk)
621 match_offset = TRUE;
622 /*
623 * We will let this hold work for the bonus
624 * or spill buffer so that we don't need to
625 * hold it when creating a new object.
626 */
627 if (blkid == DMU_BONUS_BLKID ||
628 blkid == DMU_SPILL_BLKID)
629 match_offset = TRUE;
630 /*
631 * They might have to increase nlevels,
632 * thus dirtying the new TLIBs. Or the
633 * might have to change the block size,
634 * thus dirying the new lvl=0 blk=0.
635 */
636 if (blkid == 0)
637 match_offset = TRUE;
638 break;
639 case THT_FREE:
640 /*
641 * We will dirty all the level 1 blocks in
642 * the free range and perhaps the first and
643 * last level 0 block.
644 */
645 if (blkid >= beginblk && (blkid <= endblk ||
646 txh->txh_arg2 == DMU_OBJECT_END))
647 match_offset = TRUE;
648 break;
649 case THT_SPILL:
650 if (blkid == DMU_SPILL_BLKID)
651 match_offset = TRUE;
652 break;
653 case THT_BONUS:
654 if (blkid == DMU_BONUS_BLKID)
655 match_offset = TRUE;
656 break;
657 case THT_ZAP:
658 match_offset = TRUE;
659 break;
660 case THT_NEWOBJECT:
661 match_object = TRUE;
662 break;
663 default:
664 cmn_err(CE_PANIC, "bad txh_type %d",
665 txh->txh_type);
666 }
667 }
668 if (match_object && match_offset) {
669 DB_DNODE_EXIT(db);
670 return;
671 }
672 }
673 DB_DNODE_EXIT(db);
674 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
675 (u_longlong_t)db->db.db_object, db->db_level,
676 (u_longlong_t)db->db_blkid);
677 }
678 #endif
679
680 /*
681 * If we can't do 10 iops, something is wrong. Let us go ahead
682 * and hit zfs_dirty_data_max.
683 */
684 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
685 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
686
687 /*
688 * We delay transactions when we've determined that the backend storage
689 * isn't able to accommodate the rate of incoming writes.
690 *
691 * If there is already a transaction waiting, we delay relative to when
692 * that transaction finishes waiting. This way the calculated min_time
693 * is independent of the number of threads concurrently executing
694 * transactions.
695 *
696 * If we are the only waiter, wait relative to when the transaction
697 * started, rather than the current time. This credits the transaction for
698 * "time already served", e.g. reading indirect blocks.
699 *
700 * The minimum time for a transaction to take is calculated as:
701 * min_time = scale * (dirty - min) / (max - dirty)
702 * min_time is then capped at zfs_delay_max_ns.
703 *
704 * The delay has two degrees of freedom that can be adjusted via tunables.
705 * The percentage of dirty data at which we start to delay is defined by
706 * zfs_delay_min_dirty_percent. This should typically be at or above
707 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
708 * delay after writing at full speed has failed to keep up with the incoming
709 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
710 * speaking, this variable determines the amount of delay at the midpoint of
711 * the curve.
712 *
713 * delay
714 * 10ms +-------------------------------------------------------------*+
715 * | *|
716 * 9ms + *+
717 * | *|
718 * 8ms + *+
719 * | * |
720 * 7ms + * +
721 * | * |
722 * 6ms + * +
723 * | * |
724 * 5ms + * +
725 * | * |
726 * 4ms + * +
727 * | * |
728 * 3ms + * +
729 * | * |
730 * 2ms + (midpoint) * +
731 * | | ** |
732 * 1ms + v *** +
733 * | zfs_delay_scale ----------> ******** |
734 * 0 +-------------------------------------*********----------------+
735 * 0% <- zfs_dirty_data_max -> 100%
736 *
737 * Note that since the delay is added to the outstanding time remaining on the
738 * most recent transaction, the delay is effectively the inverse of IOPS.
739 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
740 * was chosen such that small changes in the amount of accumulated dirty data
741 * in the first 3/4 of the curve yield relatively small differences in the
742 * amount of delay.
743 *
744 * The effects can be easier to understand when the amount of delay is
745 * represented on a log scale:
746 *
747 * delay
748 * 100ms +-------------------------------------------------------------++
749 * + +
750 * | |
751 * + *+
752 * 10ms + *+
753 * + ** +
754 * | (midpoint) ** |
755 * + | ** +
756 * 1ms + v **** +
757 * + zfs_delay_scale ----------> ***** +
758 * | **** |
759 * + **** +
760 * 100us + ** +
761 * + * +
762 * | * |
763 * + * +
764 * 10us + * +
765 * + +
766 * | |
767 * + +
768 * +--------------------------------------------------------------+
769 * 0% <- zfs_dirty_data_max -> 100%
770 *
771 * Note here that only as the amount of dirty data approaches its limit does
772 * the delay start to increase rapidly. The goal of a properly tuned system
773 * should be to keep the amount of dirty data out of that range by first
774 * ensuring that the appropriate limits are set for the I/O scheduler to reach
775 * optimal throughput on the backend storage, and then by changing the value
776 * of zfs_delay_scale to increase the steepness of the curve.
777 */
778 static void
779 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
780 {
781 dsl_pool_t *dp = tx->tx_pool;
782 uint64_t delay_min_bytes =
783 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
784 hrtime_t wakeup, min_tx_time, now;
785
786 if (dirty <= delay_min_bytes)
787 return;
788
789 /*
790 * The caller has already waited until we are under the max.
791 * We make them pass us the amount of dirty data so we don't
792 * have to handle the case of it being >= the max, which could
793 * cause a divide-by-zero if it's == the max.
794 */
795 ASSERT3U(dirty, <, zfs_dirty_data_max);
796
797 now = gethrtime();
798 min_tx_time = zfs_delay_scale *
799 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
800 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
801 if (now > tx->tx_start + min_tx_time)
802 return;
803
804 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
805 uint64_t, min_tx_time);
806
807 mutex_enter(&dp->dp_lock);
808 wakeup = MAX(tx->tx_start + min_tx_time,
809 dp->dp_last_wakeup + min_tx_time);
810 dp->dp_last_wakeup = wakeup;
811 mutex_exit(&dp->dp_lock);
812
813 zfs_sleep_until(wakeup);
814 }
815
816 /*
817 * This routine attempts to assign the transaction to a transaction group.
818 * To do so, we must determine if there is sufficient free space on disk.
819 *
820 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
821 * on it), then it is assumed that there is sufficient free space,
822 * unless there's insufficient slop space in the pool (see the comment
823 * above spa_slop_shift in spa_misc.c).
824 *
825 * If it is not a "netfree" transaction, then if the data already on disk
826 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
827 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
828 * plus the rough estimate of this transaction's changes, may exceed the
829 * allowed usage, then this will fail with ERESTART, which will cause the
830 * caller to wait for the pending changes to be written to disk (by waiting
831 * for the next TXG to open), and then check the space usage again.
832 *
833 * The rough estimate of pending changes is comprised of the sum of:
834 *
835 * - this transaction's holds' txh_space_towrite
836 *
837 * - dd_tempreserved[], which is the sum of in-flight transactions'
838 * holds' txh_space_towrite (i.e. those transactions that have called
839 * dmu_tx_assign() but not yet called dmu_tx_commit()).
840 *
841 * - dd_space_towrite[], which is the amount of dirtied dbufs.
842 *
843 * Note that all of these values are inflated by spa_get_worst_case_asize(),
844 * which means that we may get ERESTART well before we are actually in danger
845 * of running out of space, but this also mitigates any small inaccuracies
846 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
847 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
848 * to the MOS).
849 *
850 * Note that due to this algorithm, it is possible to exceed the allowed
851 * usage by one transaction. Also, as we approach the allowed usage,
852 * we will allow a very limited amount of changes into each TXG, thus
853 * decreasing performance.
854 */
855 static int
856 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
857 {
858 spa_t *spa = tx->tx_pool->dp_spa;
859
860 ASSERT0(tx->tx_txg);
861
862 if (tx->tx_err) {
863 DMU_TX_STAT_BUMP(dmu_tx_error);
864 return (tx->tx_err);
865 }
866
867 if (spa_suspended(spa)) {
868 DMU_TX_STAT_BUMP(dmu_tx_suspended);
869
870 /*
871 * If the user has indicated a blocking failure mode
872 * then return ERESTART which will block in dmu_tx_wait().
873 * Otherwise, return EIO so that an error can get
874 * propagated back to the VOP calls.
875 *
876 * Note that we always honor the txg_how flag regardless
877 * of the failuremode setting.
878 */
879 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
880 txg_how != TXG_WAIT)
881 return (SET_ERROR(EIO));
882
883 return (SET_ERROR(ERESTART));
884 }
885
886 if (!tx->tx_waited &&
887 dsl_pool_need_dirty_delay(tx->tx_pool)) {
888 tx->tx_wait_dirty = B_TRUE;
889 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
890 return (SET_ERROR(ERESTART));
891 }
892
893 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
894 tx->tx_needassign_txh = NULL;
895
896 /*
897 * NB: No error returns are allowed after txg_hold_open, but
898 * before processing the dnode holds, due to the
899 * dmu_tx_unassign() logic.
900 */
901
902 uint64_t towrite = 0;
903 uint64_t tohold = 0;
904 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
905 txh = list_next(&tx->tx_holds, txh)) {
906 dnode_t *dn = txh->txh_dnode;
907 if (dn != NULL) {
908 mutex_enter(&dn->dn_mtx);
909 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
910 mutex_exit(&dn->dn_mtx);
911 tx->tx_needassign_txh = txh;
912 DMU_TX_STAT_BUMP(dmu_tx_group);
913 return (SET_ERROR(ERESTART));
914 }
915 if (dn->dn_assigned_txg == 0)
916 dn->dn_assigned_txg = tx->tx_txg;
917 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
918 (void) refcount_add(&dn->dn_tx_holds, tx);
919 mutex_exit(&dn->dn_mtx);
920 }
921 towrite += refcount_count(&txh->txh_space_towrite);
922 tohold += refcount_count(&txh->txh_memory_tohold);
923 }
924
925 /* needed allocation: worst-case estimate of write space */
926 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
927 /* calculate memory footprint estimate */
928 uint64_t memory = towrite + tohold;
929
930 if (tx->tx_dir != NULL && asize != 0) {
931 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
932 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
933 if (err != 0)
934 return (err);
935 }
936
937 DMU_TX_STAT_BUMP(dmu_tx_assigned);
938
939 return (0);
940 }
941
942 static void
943 dmu_tx_unassign(dmu_tx_t *tx)
944 {
945 if (tx->tx_txg == 0)
946 return;
947
948 txg_rele_to_quiesce(&tx->tx_txgh);
949
950 /*
951 * Walk the transaction's hold list, removing the hold on the
952 * associated dnode, and notifying waiters if the refcount drops to 0.
953 */
954 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
955 txh && txh != tx->tx_needassign_txh;
956 txh = list_next(&tx->tx_holds, txh)) {
957 dnode_t *dn = txh->txh_dnode;
958
959 if (dn == NULL)
960 continue;
961 mutex_enter(&dn->dn_mtx);
962 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
963
964 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
965 dn->dn_assigned_txg = 0;
966 cv_broadcast(&dn->dn_notxholds);
967 }
968 mutex_exit(&dn->dn_mtx);
969 }
970
971 txg_rele_to_sync(&tx->tx_txgh);
972
973 tx->tx_lasttried_txg = tx->tx_txg;
974 tx->tx_txg = 0;
975 }
976
977 /*
978 * Assign tx to a transaction group. txg_how can be one of:
979 *
980 * (1) TXG_WAIT. If the current open txg is full, waits until there's
981 * a new one. This should be used when you're not holding locks.
982 * It will only fail if we're truly out of space (or over quota).
983 *
984 * (2) TXG_NOWAIT. If we can't assign into the current open txg without
985 * blocking, returns immediately with ERESTART. This should be used
986 * whenever you're holding locks. On an ERESTART error, the caller
987 * should drop locks, do a dmu_tx_wait(tx), and try again.
988 *
989 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait()
990 * has already been called on behalf of this operation (though
991 * most likely on a different tx).
992 */
993 int
994 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
995 {
996 int err;
997
998 ASSERT(tx->tx_txg == 0);
999 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1000 txg_how == TXG_WAITED);
1001 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1002
1003 if (txg_how == TXG_WAITED)
1004 tx->tx_waited = B_TRUE;
1005
1006 /* If we might wait, we must not hold the config lock. */
1007 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1008
1009 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1010 dmu_tx_unassign(tx);
1011
1012 if (err != ERESTART || txg_how != TXG_WAIT)
1013 return (err);
1014
1015 dmu_tx_wait(tx);
1016 }
1017
1018 txg_rele_to_quiesce(&tx->tx_txgh);
1019
1020 return (0);
1021 }
1022
1023 void
1024 dmu_tx_wait(dmu_tx_t *tx)
1025 {
1026 spa_t *spa = tx->tx_pool->dp_spa;
1027 dsl_pool_t *dp = tx->tx_pool;
1028 hrtime_t before;
1029
1030 ASSERT(tx->tx_txg == 0);
1031 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1032
1033 before = gethrtime();
1034
1035 if (tx->tx_wait_dirty) {
1036 uint64_t dirty;
1037
1038 /*
1039 * dmu_tx_try_assign() has determined that we need to wait
1040 * because we've consumed much or all of the dirty buffer
1041 * space.
1042 */
1043 mutex_enter(&dp->dp_lock);
1044 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1045 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1046 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1047 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1048 dirty = dp->dp_dirty_total;
1049 mutex_exit(&dp->dp_lock);
1050
1051 dmu_tx_delay(tx, dirty);
1052
1053 tx->tx_wait_dirty = B_FALSE;
1054
1055 /*
1056 * Note: setting tx_waited only has effect if the caller
1057 * used TX_WAIT. Otherwise they are going to destroy
1058 * this tx and try again. The common case, zfs_write(),
1059 * uses TX_WAIT.
1060 */
1061 tx->tx_waited = B_TRUE;
1062 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1063 /*
1064 * If the pool is suspended we need to wait until it
1065 * is resumed. Note that it's possible that the pool
1066 * has become active after this thread has tried to
1067 * obtain a tx. If that's the case then tx_lasttried_txg
1068 * would not have been set.
1069 */
1070 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1071 } else if (tx->tx_needassign_txh) {
1072 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1073
1074 mutex_enter(&dn->dn_mtx);
1075 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1076 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1077 mutex_exit(&dn->dn_mtx);
1078 tx->tx_needassign_txh = NULL;
1079 } else {
1080 /*
1081 * A dnode is assigned to the quiescing txg. Wait for its
1082 * transaction to complete.
1083 */
1084 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1085 }
1086
1087 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1088 }
1089
1090 static void
1091 dmu_tx_destroy(dmu_tx_t *tx)
1092 {
1093 dmu_tx_hold_t *txh;
1094
1095 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1096 dnode_t *dn = txh->txh_dnode;
1097
1098 list_remove(&tx->tx_holds, txh);
1099 refcount_destroy_many(&txh->txh_space_towrite,
1100 refcount_count(&txh->txh_space_towrite));
1101 refcount_destroy_many(&txh->txh_memory_tohold,
1102 refcount_count(&txh->txh_memory_tohold));
1103 kmem_free(txh, sizeof (dmu_tx_hold_t));
1104 if (dn != NULL)
1105 dnode_rele(dn, tx);
1106 }
1107
1108 list_destroy(&tx->tx_callbacks);
1109 list_destroy(&tx->tx_holds);
1110 kmem_free(tx, sizeof (dmu_tx_t));
1111 }
1112
1113 void
1114 dmu_tx_commit(dmu_tx_t *tx)
1115 {
1116 ASSERT(tx->tx_txg != 0);
1117
1118 /*
1119 * Go through the transaction's hold list and remove holds on
1120 * associated dnodes, notifying waiters if no holds remain.
1121 */
1122 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1123 txh = list_next(&tx->tx_holds, txh)) {
1124 dnode_t *dn = txh->txh_dnode;
1125
1126 if (dn == NULL)
1127 continue;
1128
1129 mutex_enter(&dn->dn_mtx);
1130 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1131
1132 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1133 dn->dn_assigned_txg = 0;
1134 cv_broadcast(&dn->dn_notxholds);
1135 }
1136 mutex_exit(&dn->dn_mtx);
1137 }
1138
1139 if (tx->tx_tempreserve_cookie)
1140 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1141
1142 if (!list_is_empty(&tx->tx_callbacks))
1143 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1144
1145 if (tx->tx_anyobj == FALSE)
1146 txg_rele_to_sync(&tx->tx_txgh);
1147
1148 dmu_tx_destroy(tx);
1149 }
1150
1151 void
1152 dmu_tx_abort(dmu_tx_t *tx)
1153 {
1154 ASSERT(tx->tx_txg == 0);
1155
1156 /*
1157 * Call any registered callbacks with an error code.
1158 */
1159 if (!list_is_empty(&tx->tx_callbacks))
1160 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1161
1162 dmu_tx_destroy(tx);
1163 }
1164
1165 uint64_t
1166 dmu_tx_get_txg(dmu_tx_t *tx)
1167 {
1168 ASSERT(tx->tx_txg != 0);
1169 return (tx->tx_txg);
1170 }
1171
1172 dsl_pool_t *
1173 dmu_tx_pool(dmu_tx_t *tx)
1174 {
1175 ASSERT(tx->tx_pool != NULL);
1176 return (tx->tx_pool);
1177 }
1178
1179 void
1180 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1181 {
1182 dmu_tx_callback_t *dcb;
1183
1184 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1185
1186 dcb->dcb_func = func;
1187 dcb->dcb_data = data;
1188
1189 list_insert_tail(&tx->tx_callbacks, dcb);
1190 }
1191
1192 /*
1193 * Call all the commit callbacks on a list, with a given error code.
1194 */
1195 void
1196 dmu_tx_do_callbacks(list_t *cb_list, int error)
1197 {
1198 dmu_tx_callback_t *dcb;
1199
1200 while ((dcb = list_head(cb_list)) != NULL) {
1201 list_remove(cb_list, dcb);
1202 dcb->dcb_func(dcb->dcb_data, error);
1203 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1204 }
1205 }
1206
1207 /*
1208 * Interface to hold a bunch of attributes.
1209 * used for creating new files.
1210 * attrsize is the total size of all attributes
1211 * to be added during object creation
1212 *
1213 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1214 */
1215
1216 /*
1217 * hold necessary attribute name for attribute registration.
1218 * should be a very rare case where this is needed. If it does
1219 * happen it would only happen on the first write to the file system.
1220 */
1221 static void
1222 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1223 {
1224 if (!sa->sa_need_attr_registration)
1225 return;
1226
1227 for (int i = 0; i != sa->sa_num_attrs; i++) {
1228 if (!sa->sa_attr_table[i].sa_registered) {
1229 if (sa->sa_reg_attr_obj)
1230 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1231 B_TRUE, sa->sa_attr_table[i].sa_name);
1232 else
1233 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1234 B_TRUE, sa->sa_attr_table[i].sa_name);
1235 }
1236 }
1237 }
1238
1239 void
1240 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1241 {
1242 dmu_tx_hold_t *txh;
1243
1244 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1245 THT_SPILL, 0, 0);
1246 if (txh != NULL)
1247 (void) refcount_add_many(&txh->txh_space_towrite,
1248 SPA_OLD_MAXBLOCKSIZE, FTAG);
1249 }
1250
1251 void
1252 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1253 {
1254 sa_os_t *sa = tx->tx_objset->os_sa;
1255
1256 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1257
1258 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1259 return;
1260
1261 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1262 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1263 } else {
1264 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1265 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1266 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1267 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1268 }
1269
1270 dmu_tx_sa_registration_hold(sa, tx);
1271
1272 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1273 return;
1274
1275 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1276 THT_SPILL, 0, 0);
1277 }
1278
1279 /*
1280 * Hold SA attribute
1281 *
1282 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1283 *
1284 * variable_size is the total size of all variable sized attributes
1285 * passed to this function. It is not the total size of all
1286 * variable size attributes that *may* exist on this object.
1287 */
1288 void
1289 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1290 {
1291 uint64_t object;
1292 sa_os_t *sa = tx->tx_objset->os_sa;
1293
1294 ASSERT(hdl != NULL);
1295
1296 object = sa_handle_object(hdl);
1297
1298 dmu_tx_hold_bonus(tx, object);
1299
1300 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1301 return;
1302
1303 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1304 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1305 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1306 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1307 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1308 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1309 }
1310
1311 dmu_tx_sa_registration_hold(sa, tx);
1312
1313 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1314 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1315
1316 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1317 ASSERT(tx->tx_txg == 0);
1318 dmu_tx_hold_spill(tx, object);
1319 } else {
1320 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1321 dnode_t *dn;
1322
1323 DB_DNODE_ENTER(db);
1324 dn = DB_DNODE(db);
1325 if (dn->dn_have_spill) {
1326 ASSERT(tx->tx_txg == 0);
1327 dmu_tx_hold_spill(tx, object);
1328 }
1329 DB_DNODE_EXIT(db);
1330 }
1331 }
1332
1333 void
1334 dmu_tx_init(void)
1335 {
1336 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1337 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1338 KSTAT_FLAG_VIRTUAL);
1339
1340 if (dmu_tx_ksp != NULL) {
1341 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1342 kstat_install(dmu_tx_ksp);
1343 }
1344 }
1345
1346 void
1347 dmu_tx_fini(void)
1348 {
1349 if (dmu_tx_ksp != NULL) {
1350 kstat_delete(dmu_tx_ksp);
1351 dmu_tx_ksp = NULL;
1352 }
1353 }
1354
1355 #if defined(_KERNEL) && defined(HAVE_SPL)
1356 EXPORT_SYMBOL(dmu_tx_create);
1357 EXPORT_SYMBOL(dmu_tx_hold_write);
1358 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1359 EXPORT_SYMBOL(dmu_tx_hold_free);
1360 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1361 EXPORT_SYMBOL(dmu_tx_hold_zap);
1362 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1363 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1364 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1365 EXPORT_SYMBOL(dmu_tx_abort);
1366 EXPORT_SYMBOL(dmu_tx_assign);
1367 EXPORT_SYMBOL(dmu_tx_wait);
1368 EXPORT_SYMBOL(dmu_tx_commit);
1369 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1370 EXPORT_SYMBOL(dmu_tx_get_txg);
1371 EXPORT_SYMBOL(dmu_tx_callback_register);
1372 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1373 EXPORT_SYMBOL(dmu_tx_hold_spill);
1374 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1375 EXPORT_SYMBOL(dmu_tx_hold_sa);
1376 #endif