]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_tx.c
Prefix all refcount functions with zfs_
[mirror_zfs.git] / module / zfs / dmu_tx.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_dmu.h>
41
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43 uint64_t arg1, uint64_t arg2);
44
45 dmu_tx_stats_t dmu_tx_stats = {
46 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
47 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
48 { "dmu_tx_error", KSTAT_DATA_UINT64 },
49 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
50 { "dmu_tx_group", KSTAT_DATA_UINT64 },
51 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
52 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
53 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
54 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
56 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 },
57 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
58 };
59
60 static kstat_t *dmu_tx_ksp;
61
62 dmu_tx_t *
63 dmu_tx_create_dd(dsl_dir_t *dd)
64 {
65 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
66 tx->tx_dir = dd;
67 if (dd != NULL)
68 tx->tx_pool = dd->dd_pool;
69 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
70 offsetof(dmu_tx_hold_t, txh_node));
71 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
72 offsetof(dmu_tx_callback_t, dcb_node));
73 tx->tx_start = gethrtime();
74 return (tx);
75 }
76
77 dmu_tx_t *
78 dmu_tx_create(objset_t *os)
79 {
80 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
81 tx->tx_objset = os;
82 return (tx);
83 }
84
85 dmu_tx_t *
86 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
87 {
88 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
89
90 TXG_VERIFY(dp->dp_spa, txg);
91 tx->tx_pool = dp;
92 tx->tx_txg = txg;
93 tx->tx_anyobj = TRUE;
94
95 return (tx);
96 }
97
98 int
99 dmu_tx_is_syncing(dmu_tx_t *tx)
100 {
101 return (tx->tx_anyobj);
102 }
103
104 int
105 dmu_tx_private_ok(dmu_tx_t *tx)
106 {
107 return (tx->tx_anyobj);
108 }
109
110 static dmu_tx_hold_t *
111 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
112 uint64_t arg1, uint64_t arg2)
113 {
114 dmu_tx_hold_t *txh;
115
116 if (dn != NULL) {
117 (void) zfs_refcount_add(&dn->dn_holds, tx);
118 if (tx->tx_txg != 0) {
119 mutex_enter(&dn->dn_mtx);
120 /*
121 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
122 * problem, but there's no way for it to happen (for
123 * now, at least).
124 */
125 ASSERT(dn->dn_assigned_txg == 0);
126 dn->dn_assigned_txg = tx->tx_txg;
127 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
128 mutex_exit(&dn->dn_mtx);
129 }
130 }
131
132 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
133 txh->txh_tx = tx;
134 txh->txh_dnode = dn;
135 zfs_refcount_create(&txh->txh_space_towrite);
136 zfs_refcount_create(&txh->txh_memory_tohold);
137 txh->txh_type = type;
138 txh->txh_arg1 = arg1;
139 txh->txh_arg2 = arg2;
140 list_insert_tail(&tx->tx_holds, txh);
141
142 return (txh);
143 }
144
145 static dmu_tx_hold_t *
146 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
147 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
148 {
149 dnode_t *dn = NULL;
150 dmu_tx_hold_t *txh;
151 int err;
152
153 if (object != DMU_NEW_OBJECT) {
154 err = dnode_hold(os, object, FTAG, &dn);
155 if (err != 0) {
156 tx->tx_err = err;
157 return (NULL);
158 }
159 }
160 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
161 if (dn != NULL)
162 dnode_rele(dn, FTAG);
163 return (txh);
164 }
165
166 void
167 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
168 {
169 /*
170 * If we're syncing, they can manipulate any object anyhow, and
171 * the hold on the dnode_t can cause problems.
172 */
173 if (!dmu_tx_is_syncing(tx))
174 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
175 }
176
177 /*
178 * This function reads specified data from disk. The specified data will
179 * be needed to perform the transaction -- i.e, it will be read after
180 * we do dmu_tx_assign(). There are two reasons that we read the data now
181 * (before dmu_tx_assign()):
182 *
183 * 1. Reading it now has potentially better performance. The transaction
184 * has not yet been assigned, so the TXG is not held open, and also the
185 * caller typically has less locks held when calling dmu_tx_hold_*() than
186 * after the transaction has been assigned. This reduces the lock (and txg)
187 * hold times, thus reducing lock contention.
188 *
189 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
190 * that are detected before they start making changes to the DMU state
191 * (i.e. now). Once the transaction has been assigned, and some DMU
192 * state has been changed, it can be difficult to recover from an i/o
193 * error (e.g. to undo the changes already made in memory at the DMU
194 * layer). Typically code to do so does not exist in the caller -- it
195 * assumes that the data has already been cached and thus i/o errors are
196 * not possible.
197 *
198 * It has been observed that the i/o initiated here can be a performance
199 * problem, and it appears to be optional, because we don't look at the
200 * data which is read. However, removing this read would only serve to
201 * move the work elsewhere (after the dmu_tx_assign()), where it may
202 * have a greater impact on performance (in addition to the impact on
203 * fault tolerance noted above).
204 */
205 static int
206 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
207 {
208 int err;
209 dmu_buf_impl_t *db;
210
211 rw_enter(&dn->dn_struct_rwlock, RW_READER);
212 db = dbuf_hold_level(dn, level, blkid, FTAG);
213 rw_exit(&dn->dn_struct_rwlock);
214 if (db == NULL)
215 return (SET_ERROR(EIO));
216 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
217 dbuf_rele(db, FTAG);
218 return (err);
219 }
220
221 /* ARGSUSED */
222 static void
223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
224 {
225 dnode_t *dn = txh->txh_dnode;
226 int err = 0;
227
228 if (len == 0)
229 return;
230
231 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
232
233 if (zfs_refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
234 err = SET_ERROR(EFBIG);
235
236 if (dn == NULL)
237 return;
238
239 /*
240 * For i/o error checking, read the blocks that will be needed
241 * to perform the write: the first and last level-0 blocks (if
242 * they are not aligned, i.e. if they are partial-block writes),
243 * and all the level-1 blocks.
244 */
245 if (dn->dn_maxblkid == 0) {
246 if (off < dn->dn_datablksz &&
247 (off > 0 || len < dn->dn_datablksz)) {
248 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
249 if (err != 0) {
250 txh->txh_tx->tx_err = err;
251 }
252 }
253 } else {
254 zio_t *zio = zio_root(dn->dn_objset->os_spa,
255 NULL, NULL, ZIO_FLAG_CANFAIL);
256
257 /* first level-0 block */
258 uint64_t start = off >> dn->dn_datablkshift;
259 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
260 err = dmu_tx_check_ioerr(zio, dn, 0, start);
261 if (err != 0) {
262 txh->txh_tx->tx_err = err;
263 }
264 }
265
266 /* last level-0 block */
267 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
268 if (end != start && end <= dn->dn_maxblkid &&
269 P2PHASE(off + len, dn->dn_datablksz)) {
270 err = dmu_tx_check_ioerr(zio, dn, 0, end);
271 if (err != 0) {
272 txh->txh_tx->tx_err = err;
273 }
274 }
275
276 /* level-1 blocks */
277 if (dn->dn_nlevels > 1) {
278 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
279 for (uint64_t i = (start >> shft) + 1;
280 i < end >> shft; i++) {
281 err = dmu_tx_check_ioerr(zio, dn, 1, i);
282 if (err != 0) {
283 txh->txh_tx->tx_err = err;
284 }
285 }
286 }
287
288 err = zio_wait(zio);
289 if (err != 0) {
290 txh->txh_tx->tx_err = err;
291 }
292 }
293 }
294
295 static void
296 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
297 {
298 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
299 DNODE_MIN_SIZE, FTAG);
300 }
301
302 void
303 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
304 {
305 dmu_tx_hold_t *txh;
306
307 ASSERT0(tx->tx_txg);
308 ASSERT3U(len, <=, DMU_MAX_ACCESS);
309 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
310
311 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
312 object, THT_WRITE, off, len);
313 if (txh != NULL) {
314 dmu_tx_count_write(txh, off, len);
315 dmu_tx_count_dnode(txh);
316 }
317 }
318
319 void
320 dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object)
321 {
322 dmu_tx_hold_t *txh;
323
324 ASSERT(tx->tx_txg == 0);
325 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
326 object, THT_WRITE, 0, 0);
327 if (txh == NULL)
328 return;
329
330 dnode_t *dn = txh->txh_dnode;
331 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
332 1ULL << dn->dn_indblkshift, FTAG);
333 dmu_tx_count_dnode(txh);
334 }
335
336 void
337 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
338 {
339 dmu_tx_hold_t *txh;
340
341 ASSERT0(tx->tx_txg);
342 ASSERT3U(len, <=, DMU_MAX_ACCESS);
343 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
344
345 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
346 if (txh != NULL) {
347 dmu_tx_count_write(txh, off, len);
348 dmu_tx_count_dnode(txh);
349 }
350 }
351
352 /*
353 * This function marks the transaction as being a "net free". The end
354 * result is that refquotas will be disabled for this transaction, and
355 * this transaction will be able to use half of the pool space overhead
356 * (see dsl_pool_adjustedsize()). Therefore this function should only
357 * be called for transactions that we expect will not cause a net increase
358 * in the amount of space used (but it's OK if that is occasionally not true).
359 */
360 void
361 dmu_tx_mark_netfree(dmu_tx_t *tx)
362 {
363 tx->tx_netfree = B_TRUE;
364 }
365
366 static void
367 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
368 {
369 dmu_tx_t *tx = txh->txh_tx;
370 dnode_t *dn = txh->txh_dnode;
371 int err;
372
373 ASSERT(tx->tx_txg == 0);
374
375 dmu_tx_count_dnode(txh);
376
377 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
378 return;
379 if (len == DMU_OBJECT_END)
380 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
381
382 dmu_tx_count_dnode(txh);
383
384 /*
385 * For i/o error checking, we read the first and last level-0
386 * blocks if they are not aligned, and all the level-1 blocks.
387 *
388 * Note: dbuf_free_range() assumes that we have not instantiated
389 * any level-0 dbufs that will be completely freed. Therefore we must
390 * exercise care to not read or count the first and last blocks
391 * if they are blocksize-aligned.
392 */
393 if (dn->dn_datablkshift == 0) {
394 if (off != 0 || len < dn->dn_datablksz)
395 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
396 } else {
397 /* first block will be modified if it is not aligned */
398 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
399 dmu_tx_count_write(txh, off, 1);
400 /* last block will be modified if it is not aligned */
401 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
402 dmu_tx_count_write(txh, off + len, 1);
403 }
404
405 /*
406 * Check level-1 blocks.
407 */
408 if (dn->dn_nlevels > 1) {
409 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
410 SPA_BLKPTRSHIFT;
411 uint64_t start = off >> shift;
412 uint64_t end = (off + len) >> shift;
413
414 ASSERT(dn->dn_indblkshift != 0);
415
416 /*
417 * dnode_reallocate() can result in an object with indirect
418 * blocks having an odd data block size. In this case,
419 * just check the single block.
420 */
421 if (dn->dn_datablkshift == 0)
422 start = end = 0;
423
424 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
425 NULL, NULL, ZIO_FLAG_CANFAIL);
426 for (uint64_t i = start; i <= end; i++) {
427 uint64_t ibyte = i << shift;
428 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
429 i = ibyte >> shift;
430 if (err == ESRCH || i > end)
431 break;
432 if (err != 0) {
433 tx->tx_err = err;
434 (void) zio_wait(zio);
435 return;
436 }
437
438 (void) zfs_refcount_add_many(&txh->txh_memory_tohold,
439 1 << dn->dn_indblkshift, FTAG);
440
441 err = dmu_tx_check_ioerr(zio, dn, 1, i);
442 if (err != 0) {
443 tx->tx_err = err;
444 (void) zio_wait(zio);
445 return;
446 }
447 }
448 err = zio_wait(zio);
449 if (err != 0) {
450 tx->tx_err = err;
451 return;
452 }
453 }
454 }
455
456 void
457 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
458 {
459 dmu_tx_hold_t *txh;
460
461 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
462 object, THT_FREE, off, len);
463 if (txh != NULL)
464 (void) dmu_tx_hold_free_impl(txh, off, len);
465 }
466
467 void
468 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
469 {
470 dmu_tx_hold_t *txh;
471
472 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
473 if (txh != NULL)
474 (void) dmu_tx_hold_free_impl(txh, off, len);
475 }
476
477 static void
478 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
479 {
480 dmu_tx_t *tx = txh->txh_tx;
481 dnode_t *dn = txh->txh_dnode;
482 int err;
483
484 ASSERT(tx->tx_txg == 0);
485
486 dmu_tx_count_dnode(txh);
487
488 /*
489 * Modifying a almost-full microzap is around the worst case (128KB)
490 *
491 * If it is a fat zap, the worst case would be 7*16KB=112KB:
492 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
493 * - 4 new blocks written if adding:
494 * - 2 blocks for possibly split leaves,
495 * - 2 grown ptrtbl blocks
496 */
497 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
498 MZAP_MAX_BLKSZ, FTAG);
499
500 if (dn == NULL)
501 return;
502
503 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
504
505 if (dn->dn_maxblkid == 0 || name == NULL) {
506 /*
507 * This is a microzap (only one block), or we don't know
508 * the name. Check the first block for i/o errors.
509 */
510 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
511 if (err != 0) {
512 tx->tx_err = err;
513 }
514 } else {
515 /*
516 * Access the name so that we'll check for i/o errors to
517 * the leaf blocks, etc. We ignore ENOENT, as this name
518 * may not yet exist.
519 */
520 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
521 if (err == EIO || err == ECKSUM || err == ENXIO) {
522 tx->tx_err = err;
523 }
524 }
525 }
526
527 void
528 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
529 {
530 dmu_tx_hold_t *txh;
531
532 ASSERT0(tx->tx_txg);
533
534 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
535 object, THT_ZAP, add, (uintptr_t)name);
536 if (txh != NULL)
537 dmu_tx_hold_zap_impl(txh, name);
538 }
539
540 void
541 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
542 {
543 dmu_tx_hold_t *txh;
544
545 ASSERT0(tx->tx_txg);
546 ASSERT(dn != NULL);
547
548 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
549 if (txh != NULL)
550 dmu_tx_hold_zap_impl(txh, name);
551 }
552
553 void
554 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
555 {
556 dmu_tx_hold_t *txh;
557
558 ASSERT(tx->tx_txg == 0);
559
560 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
561 object, THT_BONUS, 0, 0);
562 if (txh)
563 dmu_tx_count_dnode(txh);
564 }
565
566 void
567 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
568 {
569 dmu_tx_hold_t *txh;
570
571 ASSERT0(tx->tx_txg);
572
573 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
574 if (txh)
575 dmu_tx_count_dnode(txh);
576 }
577
578 void
579 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
580 {
581 dmu_tx_hold_t *txh;
582
583 ASSERT(tx->tx_txg == 0);
584
585 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
586 DMU_NEW_OBJECT, THT_SPACE, space, 0);
587 if (txh) {
588 (void) zfs_refcount_add_many(
589 &txh->txh_space_towrite, space, FTAG);
590 }
591 }
592
593 #ifdef ZFS_DEBUG
594 void
595 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
596 {
597 boolean_t match_object = B_FALSE;
598 boolean_t match_offset = B_FALSE;
599
600 DB_DNODE_ENTER(db);
601 dnode_t *dn = DB_DNODE(db);
602 ASSERT(tx->tx_txg != 0);
603 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
604 ASSERT3U(dn->dn_object, ==, db->db.db_object);
605
606 if (tx->tx_anyobj) {
607 DB_DNODE_EXIT(db);
608 return;
609 }
610
611 /* XXX No checking on the meta dnode for now */
612 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
613 DB_DNODE_EXIT(db);
614 return;
615 }
616
617 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
618 txh = list_next(&tx->tx_holds, txh)) {
619 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
620 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
621 match_object = TRUE;
622 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
623 int datablkshift = dn->dn_datablkshift ?
624 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
625 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
626 int shift = datablkshift + epbs * db->db_level;
627 uint64_t beginblk = shift >= 64 ? 0 :
628 (txh->txh_arg1 >> shift);
629 uint64_t endblk = shift >= 64 ? 0 :
630 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
631 uint64_t blkid = db->db_blkid;
632
633 /* XXX txh_arg2 better not be zero... */
634
635 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
636 txh->txh_type, beginblk, endblk);
637
638 switch (txh->txh_type) {
639 case THT_WRITE:
640 if (blkid >= beginblk && blkid <= endblk)
641 match_offset = TRUE;
642 /*
643 * We will let this hold work for the bonus
644 * or spill buffer so that we don't need to
645 * hold it when creating a new object.
646 */
647 if (blkid == DMU_BONUS_BLKID ||
648 blkid == DMU_SPILL_BLKID)
649 match_offset = TRUE;
650 /*
651 * They might have to increase nlevels,
652 * thus dirtying the new TLIBs. Or the
653 * might have to change the block size,
654 * thus dirying the new lvl=0 blk=0.
655 */
656 if (blkid == 0)
657 match_offset = TRUE;
658 break;
659 case THT_FREE:
660 /*
661 * We will dirty all the level 1 blocks in
662 * the free range and perhaps the first and
663 * last level 0 block.
664 */
665 if (blkid >= beginblk && (blkid <= endblk ||
666 txh->txh_arg2 == DMU_OBJECT_END))
667 match_offset = TRUE;
668 break;
669 case THT_SPILL:
670 if (blkid == DMU_SPILL_BLKID)
671 match_offset = TRUE;
672 break;
673 case THT_BONUS:
674 if (blkid == DMU_BONUS_BLKID)
675 match_offset = TRUE;
676 break;
677 case THT_ZAP:
678 match_offset = TRUE;
679 break;
680 case THT_NEWOBJECT:
681 match_object = TRUE;
682 break;
683 default:
684 cmn_err(CE_PANIC, "bad txh_type %d",
685 txh->txh_type);
686 }
687 }
688 if (match_object && match_offset) {
689 DB_DNODE_EXIT(db);
690 return;
691 }
692 }
693 DB_DNODE_EXIT(db);
694 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
695 (u_longlong_t)db->db.db_object, db->db_level,
696 (u_longlong_t)db->db_blkid);
697 }
698 #endif
699
700 /*
701 * If we can't do 10 iops, something is wrong. Let us go ahead
702 * and hit zfs_dirty_data_max.
703 */
704 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
705 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
706
707 /*
708 * We delay transactions when we've determined that the backend storage
709 * isn't able to accommodate the rate of incoming writes.
710 *
711 * If there is already a transaction waiting, we delay relative to when
712 * that transaction finishes waiting. This way the calculated min_time
713 * is independent of the number of threads concurrently executing
714 * transactions.
715 *
716 * If we are the only waiter, wait relative to when the transaction
717 * started, rather than the current time. This credits the transaction for
718 * "time already served", e.g. reading indirect blocks.
719 *
720 * The minimum time for a transaction to take is calculated as:
721 * min_time = scale * (dirty - min) / (max - dirty)
722 * min_time is then capped at zfs_delay_max_ns.
723 *
724 * The delay has two degrees of freedom that can be adjusted via tunables.
725 * The percentage of dirty data at which we start to delay is defined by
726 * zfs_delay_min_dirty_percent. This should typically be at or above
727 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
728 * delay after writing at full speed has failed to keep up with the incoming
729 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
730 * speaking, this variable determines the amount of delay at the midpoint of
731 * the curve.
732 *
733 * delay
734 * 10ms +-------------------------------------------------------------*+
735 * | *|
736 * 9ms + *+
737 * | *|
738 * 8ms + *+
739 * | * |
740 * 7ms + * +
741 * | * |
742 * 6ms + * +
743 * | * |
744 * 5ms + * +
745 * | * |
746 * 4ms + * +
747 * | * |
748 * 3ms + * +
749 * | * |
750 * 2ms + (midpoint) * +
751 * | | ** |
752 * 1ms + v *** +
753 * | zfs_delay_scale ----------> ******** |
754 * 0 +-------------------------------------*********----------------+
755 * 0% <- zfs_dirty_data_max -> 100%
756 *
757 * Note that since the delay is added to the outstanding time remaining on the
758 * most recent transaction, the delay is effectively the inverse of IOPS.
759 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
760 * was chosen such that small changes in the amount of accumulated dirty data
761 * in the first 3/4 of the curve yield relatively small differences in the
762 * amount of delay.
763 *
764 * The effects can be easier to understand when the amount of delay is
765 * represented on a log scale:
766 *
767 * delay
768 * 100ms +-------------------------------------------------------------++
769 * + +
770 * | |
771 * + *+
772 * 10ms + *+
773 * + ** +
774 * | (midpoint) ** |
775 * + | ** +
776 * 1ms + v **** +
777 * + zfs_delay_scale ----------> ***** +
778 * | **** |
779 * + **** +
780 * 100us + ** +
781 * + * +
782 * | * |
783 * + * +
784 * 10us + * +
785 * + +
786 * | |
787 * + +
788 * +--------------------------------------------------------------+
789 * 0% <- zfs_dirty_data_max -> 100%
790 *
791 * Note here that only as the amount of dirty data approaches its limit does
792 * the delay start to increase rapidly. The goal of a properly tuned system
793 * should be to keep the amount of dirty data out of that range by first
794 * ensuring that the appropriate limits are set for the I/O scheduler to reach
795 * optimal throughput on the backend storage, and then by changing the value
796 * of zfs_delay_scale to increase the steepness of the curve.
797 */
798 static void
799 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
800 {
801 dsl_pool_t *dp = tx->tx_pool;
802 uint64_t delay_min_bytes =
803 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
804 hrtime_t wakeup, min_tx_time, now;
805
806 if (dirty <= delay_min_bytes)
807 return;
808
809 /*
810 * The caller has already waited until we are under the max.
811 * We make them pass us the amount of dirty data so we don't
812 * have to handle the case of it being >= the max, which could
813 * cause a divide-by-zero if it's == the max.
814 */
815 ASSERT3U(dirty, <, zfs_dirty_data_max);
816
817 now = gethrtime();
818 min_tx_time = zfs_delay_scale *
819 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
820 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
821 if (now > tx->tx_start + min_tx_time)
822 return;
823
824 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
825 uint64_t, min_tx_time);
826
827 mutex_enter(&dp->dp_lock);
828 wakeup = MAX(tx->tx_start + min_tx_time,
829 dp->dp_last_wakeup + min_tx_time);
830 dp->dp_last_wakeup = wakeup;
831 mutex_exit(&dp->dp_lock);
832
833 zfs_sleep_until(wakeup);
834 }
835
836 /*
837 * This routine attempts to assign the transaction to a transaction group.
838 * To do so, we must determine if there is sufficient free space on disk.
839 *
840 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
841 * on it), then it is assumed that there is sufficient free space,
842 * unless there's insufficient slop space in the pool (see the comment
843 * above spa_slop_shift in spa_misc.c).
844 *
845 * If it is not a "netfree" transaction, then if the data already on disk
846 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
847 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
848 * plus the rough estimate of this transaction's changes, may exceed the
849 * allowed usage, then this will fail with ERESTART, which will cause the
850 * caller to wait for the pending changes to be written to disk (by waiting
851 * for the next TXG to open), and then check the space usage again.
852 *
853 * The rough estimate of pending changes is comprised of the sum of:
854 *
855 * - this transaction's holds' txh_space_towrite
856 *
857 * - dd_tempreserved[], which is the sum of in-flight transactions'
858 * holds' txh_space_towrite (i.e. those transactions that have called
859 * dmu_tx_assign() but not yet called dmu_tx_commit()).
860 *
861 * - dd_space_towrite[], which is the amount of dirtied dbufs.
862 *
863 * Note that all of these values are inflated by spa_get_worst_case_asize(),
864 * which means that we may get ERESTART well before we are actually in danger
865 * of running out of space, but this also mitigates any small inaccuracies
866 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
867 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
868 * to the MOS).
869 *
870 * Note that due to this algorithm, it is possible to exceed the allowed
871 * usage by one transaction. Also, as we approach the allowed usage,
872 * we will allow a very limited amount of changes into each TXG, thus
873 * decreasing performance.
874 */
875 static int
876 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
877 {
878 spa_t *spa = tx->tx_pool->dp_spa;
879
880 ASSERT0(tx->tx_txg);
881
882 if (tx->tx_err) {
883 DMU_TX_STAT_BUMP(dmu_tx_error);
884 return (tx->tx_err);
885 }
886
887 if (spa_suspended(spa)) {
888 DMU_TX_STAT_BUMP(dmu_tx_suspended);
889
890 /*
891 * If the user has indicated a blocking failure mode
892 * then return ERESTART which will block in dmu_tx_wait().
893 * Otherwise, return EIO so that an error can get
894 * propagated back to the VOP calls.
895 *
896 * Note that we always honor the txg_how flag regardless
897 * of the failuremode setting.
898 */
899 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
900 !(txg_how & TXG_WAIT))
901 return (SET_ERROR(EIO));
902
903 return (SET_ERROR(ERESTART));
904 }
905
906 if (!tx->tx_dirty_delayed &&
907 dsl_pool_need_dirty_delay(tx->tx_pool)) {
908 tx->tx_wait_dirty = B_TRUE;
909 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
910 return (SET_ERROR(ERESTART));
911 }
912
913 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
914 tx->tx_needassign_txh = NULL;
915
916 /*
917 * NB: No error returns are allowed after txg_hold_open, but
918 * before processing the dnode holds, due to the
919 * dmu_tx_unassign() logic.
920 */
921
922 uint64_t towrite = 0;
923 uint64_t tohold = 0;
924 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
925 txh = list_next(&tx->tx_holds, txh)) {
926 dnode_t *dn = txh->txh_dnode;
927 if (dn != NULL) {
928 mutex_enter(&dn->dn_mtx);
929 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
930 mutex_exit(&dn->dn_mtx);
931 tx->tx_needassign_txh = txh;
932 DMU_TX_STAT_BUMP(dmu_tx_group);
933 return (SET_ERROR(ERESTART));
934 }
935 if (dn->dn_assigned_txg == 0)
936 dn->dn_assigned_txg = tx->tx_txg;
937 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
938 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
939 mutex_exit(&dn->dn_mtx);
940 }
941 towrite += zfs_refcount_count(&txh->txh_space_towrite);
942 tohold += zfs_refcount_count(&txh->txh_memory_tohold);
943 }
944
945 /* needed allocation: worst-case estimate of write space */
946 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
947 /* calculate memory footprint estimate */
948 uint64_t memory = towrite + tohold;
949
950 if (tx->tx_dir != NULL && asize != 0) {
951 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
952 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
953 if (err != 0)
954 return (err);
955 }
956
957 DMU_TX_STAT_BUMP(dmu_tx_assigned);
958
959 return (0);
960 }
961
962 static void
963 dmu_tx_unassign(dmu_tx_t *tx)
964 {
965 if (tx->tx_txg == 0)
966 return;
967
968 txg_rele_to_quiesce(&tx->tx_txgh);
969
970 /*
971 * Walk the transaction's hold list, removing the hold on the
972 * associated dnode, and notifying waiters if the refcount drops to 0.
973 */
974 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
975 txh && txh != tx->tx_needassign_txh;
976 txh = list_next(&tx->tx_holds, txh)) {
977 dnode_t *dn = txh->txh_dnode;
978
979 if (dn == NULL)
980 continue;
981 mutex_enter(&dn->dn_mtx);
982 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
983
984 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
985 dn->dn_assigned_txg = 0;
986 cv_broadcast(&dn->dn_notxholds);
987 }
988 mutex_exit(&dn->dn_mtx);
989 }
990
991 txg_rele_to_sync(&tx->tx_txgh);
992
993 tx->tx_lasttried_txg = tx->tx_txg;
994 tx->tx_txg = 0;
995 }
996
997 /*
998 * Assign tx to a transaction group; txg_how is a bitmask:
999 *
1000 * If TXG_WAIT is set and the currently open txg is full, this function
1001 * will wait until there's a new txg. This should be used when no locks
1002 * are being held. With this bit set, this function will only fail if
1003 * we're truly out of space (or over quota).
1004 *
1005 * If TXG_WAIT is *not* set and we can't assign into the currently open
1006 * txg without blocking, this function will return immediately with
1007 * ERESTART. This should be used whenever locks are being held. On an
1008 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1009 * and try again.
1010 *
1011 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1012 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1013 * details on the throttle). This is used by the VFS operations, after
1014 * they have already called dmu_tx_wait() (though most likely on a
1015 * different tx).
1016 */
1017 int
1018 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1019 {
1020 int err;
1021
1022 ASSERT(tx->tx_txg == 0);
1023 ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1024 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1025
1026 /* If we might wait, we must not hold the config lock. */
1027 IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1028
1029 if ((txg_how & TXG_NOTHROTTLE))
1030 tx->tx_dirty_delayed = B_TRUE;
1031
1032 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1033 dmu_tx_unassign(tx);
1034
1035 if (err != ERESTART || !(txg_how & TXG_WAIT))
1036 return (err);
1037
1038 dmu_tx_wait(tx);
1039 }
1040
1041 txg_rele_to_quiesce(&tx->tx_txgh);
1042
1043 return (0);
1044 }
1045
1046 void
1047 dmu_tx_wait(dmu_tx_t *tx)
1048 {
1049 spa_t *spa = tx->tx_pool->dp_spa;
1050 dsl_pool_t *dp = tx->tx_pool;
1051 hrtime_t before;
1052
1053 ASSERT(tx->tx_txg == 0);
1054 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1055
1056 before = gethrtime();
1057
1058 if (tx->tx_wait_dirty) {
1059 uint64_t dirty;
1060
1061 /*
1062 * dmu_tx_try_assign() has determined that we need to wait
1063 * because we've consumed much or all of the dirty buffer
1064 * space.
1065 */
1066 mutex_enter(&dp->dp_lock);
1067 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1068 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1069 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1070 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1071 dirty = dp->dp_dirty_total;
1072 mutex_exit(&dp->dp_lock);
1073
1074 dmu_tx_delay(tx, dirty);
1075
1076 tx->tx_wait_dirty = B_FALSE;
1077
1078 /*
1079 * Note: setting tx_dirty_delayed only has effect if the
1080 * caller used TX_WAIT. Otherwise they are going to
1081 * destroy this tx and try again. The common case,
1082 * zfs_write(), uses TX_WAIT.
1083 */
1084 tx->tx_dirty_delayed = B_TRUE;
1085 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1086 /*
1087 * If the pool is suspended we need to wait until it
1088 * is resumed. Note that it's possible that the pool
1089 * has become active after this thread has tried to
1090 * obtain a tx. If that's the case then tx_lasttried_txg
1091 * would not have been set.
1092 */
1093 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1094 } else if (tx->tx_needassign_txh) {
1095 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1096
1097 mutex_enter(&dn->dn_mtx);
1098 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1099 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1100 mutex_exit(&dn->dn_mtx);
1101 tx->tx_needassign_txh = NULL;
1102 } else {
1103 /*
1104 * If we have a lot of dirty data just wait until we sync
1105 * out a TXG at which point we'll hopefully have synced
1106 * a portion of the changes.
1107 */
1108 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1109 }
1110
1111 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1112 }
1113
1114 static void
1115 dmu_tx_destroy(dmu_tx_t *tx)
1116 {
1117 dmu_tx_hold_t *txh;
1118
1119 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1120 dnode_t *dn = txh->txh_dnode;
1121
1122 list_remove(&tx->tx_holds, txh);
1123 zfs_refcount_destroy_many(&txh->txh_space_towrite,
1124 zfs_refcount_count(&txh->txh_space_towrite));
1125 zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1126 zfs_refcount_count(&txh->txh_memory_tohold));
1127 kmem_free(txh, sizeof (dmu_tx_hold_t));
1128 if (dn != NULL)
1129 dnode_rele(dn, tx);
1130 }
1131
1132 list_destroy(&tx->tx_callbacks);
1133 list_destroy(&tx->tx_holds);
1134 kmem_free(tx, sizeof (dmu_tx_t));
1135 }
1136
1137 void
1138 dmu_tx_commit(dmu_tx_t *tx)
1139 {
1140 ASSERT(tx->tx_txg != 0);
1141
1142 /*
1143 * Go through the transaction's hold list and remove holds on
1144 * associated dnodes, notifying waiters if no holds remain.
1145 */
1146 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1147 txh = list_next(&tx->tx_holds, txh)) {
1148 dnode_t *dn = txh->txh_dnode;
1149
1150 if (dn == NULL)
1151 continue;
1152
1153 mutex_enter(&dn->dn_mtx);
1154 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1155
1156 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1157 dn->dn_assigned_txg = 0;
1158 cv_broadcast(&dn->dn_notxholds);
1159 }
1160 mutex_exit(&dn->dn_mtx);
1161 }
1162
1163 if (tx->tx_tempreserve_cookie)
1164 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1165
1166 if (!list_is_empty(&tx->tx_callbacks))
1167 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1168
1169 if (tx->tx_anyobj == FALSE)
1170 txg_rele_to_sync(&tx->tx_txgh);
1171
1172 dmu_tx_destroy(tx);
1173 }
1174
1175 void
1176 dmu_tx_abort(dmu_tx_t *tx)
1177 {
1178 ASSERT(tx->tx_txg == 0);
1179
1180 /*
1181 * Call any registered callbacks with an error code.
1182 */
1183 if (!list_is_empty(&tx->tx_callbacks))
1184 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1185
1186 dmu_tx_destroy(tx);
1187 }
1188
1189 uint64_t
1190 dmu_tx_get_txg(dmu_tx_t *tx)
1191 {
1192 ASSERT(tx->tx_txg != 0);
1193 return (tx->tx_txg);
1194 }
1195
1196 dsl_pool_t *
1197 dmu_tx_pool(dmu_tx_t *tx)
1198 {
1199 ASSERT(tx->tx_pool != NULL);
1200 return (tx->tx_pool);
1201 }
1202
1203 void
1204 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1205 {
1206 dmu_tx_callback_t *dcb;
1207
1208 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1209
1210 dcb->dcb_func = func;
1211 dcb->dcb_data = data;
1212
1213 list_insert_tail(&tx->tx_callbacks, dcb);
1214 }
1215
1216 /*
1217 * Call all the commit callbacks on a list, with a given error code.
1218 */
1219 void
1220 dmu_tx_do_callbacks(list_t *cb_list, int error)
1221 {
1222 dmu_tx_callback_t *dcb;
1223
1224 while ((dcb = list_tail(cb_list)) != NULL) {
1225 list_remove(cb_list, dcb);
1226 dcb->dcb_func(dcb->dcb_data, error);
1227 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1228 }
1229 }
1230
1231 /*
1232 * Interface to hold a bunch of attributes.
1233 * used for creating new files.
1234 * attrsize is the total size of all attributes
1235 * to be added during object creation
1236 *
1237 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1238 */
1239
1240 /*
1241 * hold necessary attribute name for attribute registration.
1242 * should be a very rare case where this is needed. If it does
1243 * happen it would only happen on the first write to the file system.
1244 */
1245 static void
1246 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1247 {
1248 if (!sa->sa_need_attr_registration)
1249 return;
1250
1251 for (int i = 0; i != sa->sa_num_attrs; i++) {
1252 if (!sa->sa_attr_table[i].sa_registered) {
1253 if (sa->sa_reg_attr_obj)
1254 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1255 B_TRUE, sa->sa_attr_table[i].sa_name);
1256 else
1257 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1258 B_TRUE, sa->sa_attr_table[i].sa_name);
1259 }
1260 }
1261 }
1262
1263 void
1264 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1265 {
1266 dmu_tx_hold_t *txh;
1267
1268 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1269 THT_SPILL, 0, 0);
1270 if (txh != NULL)
1271 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
1272 SPA_OLD_MAXBLOCKSIZE, FTAG);
1273 }
1274
1275 void
1276 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1277 {
1278 sa_os_t *sa = tx->tx_objset->os_sa;
1279
1280 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1281
1282 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1283 return;
1284
1285 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1286 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1287 } else {
1288 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1289 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1290 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1291 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1292 }
1293
1294 dmu_tx_sa_registration_hold(sa, tx);
1295
1296 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1297 return;
1298
1299 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1300 THT_SPILL, 0, 0);
1301 }
1302
1303 /*
1304 * Hold SA attribute
1305 *
1306 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1307 *
1308 * variable_size is the total size of all variable sized attributes
1309 * passed to this function. It is not the total size of all
1310 * variable size attributes that *may* exist on this object.
1311 */
1312 void
1313 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1314 {
1315 uint64_t object;
1316 sa_os_t *sa = tx->tx_objset->os_sa;
1317
1318 ASSERT(hdl != NULL);
1319
1320 object = sa_handle_object(hdl);
1321
1322 dmu_tx_hold_bonus(tx, object);
1323
1324 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1325 return;
1326
1327 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1328 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1329 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1330 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1331 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1332 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1333 }
1334
1335 dmu_tx_sa_registration_hold(sa, tx);
1336
1337 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1338 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1339
1340 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1341 ASSERT(tx->tx_txg == 0);
1342 dmu_tx_hold_spill(tx, object);
1343 } else {
1344 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1345 dnode_t *dn;
1346
1347 DB_DNODE_ENTER(db);
1348 dn = DB_DNODE(db);
1349 if (dn->dn_have_spill) {
1350 ASSERT(tx->tx_txg == 0);
1351 dmu_tx_hold_spill(tx, object);
1352 }
1353 DB_DNODE_EXIT(db);
1354 }
1355 }
1356
1357 void
1358 dmu_tx_init(void)
1359 {
1360 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1361 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1362 KSTAT_FLAG_VIRTUAL);
1363
1364 if (dmu_tx_ksp != NULL) {
1365 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1366 kstat_install(dmu_tx_ksp);
1367 }
1368 }
1369
1370 void
1371 dmu_tx_fini(void)
1372 {
1373 if (dmu_tx_ksp != NULL) {
1374 kstat_delete(dmu_tx_ksp);
1375 dmu_tx_ksp = NULL;
1376 }
1377 }
1378
1379 #if defined(_KERNEL)
1380 EXPORT_SYMBOL(dmu_tx_create);
1381 EXPORT_SYMBOL(dmu_tx_hold_write);
1382 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1383 EXPORT_SYMBOL(dmu_tx_hold_free);
1384 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1385 EXPORT_SYMBOL(dmu_tx_hold_zap);
1386 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1387 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1388 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1389 EXPORT_SYMBOL(dmu_tx_abort);
1390 EXPORT_SYMBOL(dmu_tx_assign);
1391 EXPORT_SYMBOL(dmu_tx_wait);
1392 EXPORT_SYMBOL(dmu_tx_commit);
1393 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1394 EXPORT_SYMBOL(dmu_tx_get_txg);
1395 EXPORT_SYMBOL(dmu_tx_callback_register);
1396 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1397 EXPORT_SYMBOL(dmu_tx_hold_spill);
1398 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1399 EXPORT_SYMBOL(dmu_tx_hold_sa);
1400 #endif