]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/dmu_zfetch.c
Merge tag 'upstream/0.7.5'
[mirror_zfs-debian.git] / module / zfs / dmu_zfetch.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39 * This tunable disables predictive prefetch. Note that it leaves "prescient"
40 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
41 * prescient prefetch never issues i/os that end up not being needed,
42 * so it can't hurt performance.
43 */
44
45 int zfs_prefetch_disable = B_FALSE;
46
47 /* max # of streams per zfetch */
48 unsigned int zfetch_max_streams = 8;
49 /* min time before stream reclaim */
50 unsigned int zfetch_min_sec_reap = 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int zfetch_max_distance = 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long zfetch_array_rd_sz = 1024 * 1024;
57
58 typedef struct zfetch_stats {
59 kstat_named_t zfetchstat_hits;
60 kstat_named_t zfetchstat_misses;
61 kstat_named_t zfetchstat_max_streams;
62 } zfetch_stats_t;
63
64 static zfetch_stats_t zfetch_stats = {
65 { "hits", KSTAT_DATA_UINT64 },
66 { "misses", KSTAT_DATA_UINT64 },
67 { "max_streams", KSTAT_DATA_UINT64 },
68 };
69
70 #define ZFETCHSTAT_BUMP(stat) \
71 atomic_inc_64(&zfetch_stats.stat.value.ui64);
72
73 kstat_t *zfetch_ksp;
74
75 void
76 zfetch_init(void)
77 {
78 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
79 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
80 KSTAT_FLAG_VIRTUAL);
81
82 if (zfetch_ksp != NULL) {
83 zfetch_ksp->ks_data = &zfetch_stats;
84 kstat_install(zfetch_ksp);
85 }
86 }
87
88 void
89 zfetch_fini(void)
90 {
91 if (zfetch_ksp != NULL) {
92 kstat_delete(zfetch_ksp);
93 zfetch_ksp = NULL;
94 }
95 }
96
97 /*
98 * This takes a pointer to a zfetch structure and a dnode. It performs the
99 * necessary setup for the zfetch structure, grokking data from the
100 * associated dnode.
101 */
102 void
103 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
104 {
105 if (zf == NULL)
106 return;
107
108 zf->zf_dnode = dno;
109
110 list_create(&zf->zf_stream, sizeof (zstream_t),
111 offsetof(zstream_t, zs_node));
112
113 rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
114 }
115
116 static void
117 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
118 {
119 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
120 list_remove(&zf->zf_stream, zs);
121 mutex_destroy(&zs->zs_lock);
122 kmem_free(zs, sizeof (*zs));
123 }
124
125 /*
126 * Clean-up state associated with a zfetch structure (e.g. destroy the
127 * streams). This doesn't free the zfetch_t itself, that's left to the caller.
128 */
129 void
130 dmu_zfetch_fini(zfetch_t *zf)
131 {
132 zstream_t *zs;
133
134 ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
135
136 rw_enter(&zf->zf_rwlock, RW_WRITER);
137 while ((zs = list_head(&zf->zf_stream)) != NULL)
138 dmu_zfetch_stream_remove(zf, zs);
139 rw_exit(&zf->zf_rwlock);
140 list_destroy(&zf->zf_stream);
141 rw_destroy(&zf->zf_rwlock);
142
143 zf->zf_dnode = NULL;
144 }
145
146 /*
147 * If there aren't too many streams already, create a new stream.
148 * The "blkid" argument is the next block that we expect this stream to access.
149 * While we're here, clean up old streams (which haven't been
150 * accessed for at least zfetch_min_sec_reap seconds).
151 */
152 static void
153 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
154 {
155 zstream_t *zs;
156 zstream_t *zs_next;
157 int numstreams = 0;
158 uint32_t max_streams;
159
160 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
161
162 /*
163 * Clean up old streams.
164 */
165 for (zs = list_head(&zf->zf_stream);
166 zs != NULL; zs = zs_next) {
167 zs_next = list_next(&zf->zf_stream, zs);
168 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
169 zfetch_min_sec_reap)
170 dmu_zfetch_stream_remove(zf, zs);
171 else
172 numstreams++;
173 }
174
175 /*
176 * The maximum number of streams is normally zfetch_max_streams,
177 * but for small files we lower it such that it's at least possible
178 * for all the streams to be non-overlapping.
179 *
180 * If we are already at the maximum number of streams for this file,
181 * even after removing old streams, then don't create this stream.
182 */
183 max_streams = MAX(1, MIN(zfetch_max_streams,
184 zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
185 zfetch_max_distance));
186 if (numstreams >= max_streams) {
187 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
188 return;
189 }
190
191 zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
192 zs->zs_blkid = blkid;
193 zs->zs_pf_blkid = blkid;
194 zs->zs_ipf_blkid = blkid;
195 zs->zs_atime = gethrtime();
196 mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
197
198 list_insert_head(&zf->zf_stream, zs);
199 }
200
201 /*
202 * This is the predictive prefetch entry point. It associates dnode access
203 * specified with blkid and nblks arguments with prefetch stream, predicts
204 * further accesses based on that stats and initiates speculative prefetch.
205 * fetch_data argument specifies whether actual data blocks should be fetched:
206 * FALSE -- prefetch only indirect blocks for predicted data blocks;
207 * TRUE -- prefetch predicted data blocks plus following indirect blocks.
208 */
209 void
210 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
211 {
212 zstream_t *zs;
213 int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
214 int64_t pf_ahead_blks, max_blks, iblk;
215 int epbs, max_dist_blks, pf_nblks, ipf_nblks, i;
216 uint64_t end_of_access_blkid;
217 end_of_access_blkid = blkid + nblks;
218
219 if (zfs_prefetch_disable)
220 return;
221
222 /*
223 * As a fast path for small (single-block) files, ignore access
224 * to the first block.
225 */
226 if (blkid == 0)
227 return;
228
229 rw_enter(&zf->zf_rwlock, RW_READER);
230
231 for (zs = list_head(&zf->zf_stream); zs != NULL;
232 zs = list_next(&zf->zf_stream, zs)) {
233 if (blkid == zs->zs_blkid) {
234 mutex_enter(&zs->zs_lock);
235 /*
236 * zs_blkid could have changed before we
237 * acquired zs_lock; re-check them here.
238 */
239 if (blkid != zs->zs_blkid) {
240 mutex_exit(&zs->zs_lock);
241 continue;
242 }
243 break;
244 }
245 }
246
247 if (zs == NULL) {
248 /*
249 * This access is not part of any existing stream. Create
250 * a new stream for it.
251 */
252 ZFETCHSTAT_BUMP(zfetchstat_misses);
253 if (rw_tryupgrade(&zf->zf_rwlock))
254 dmu_zfetch_stream_create(zf, end_of_access_blkid);
255 rw_exit(&zf->zf_rwlock);
256 return;
257 }
258
259 /*
260 * This access was to a block that we issued a prefetch for on
261 * behalf of this stream. Issue further prefetches for this stream.
262 *
263 * Normally, we start prefetching where we stopped
264 * prefetching last (zs_pf_blkid). But when we get our first
265 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
266 * want to prefetch the block we just accessed. In this case,
267 * start just after the block we just accessed.
268 */
269 pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
270
271 /*
272 * Double our amount of prefetched data, but don't let the
273 * prefetch get further ahead than zfetch_max_distance.
274 */
275 if (fetch_data) {
276 max_dist_blks =
277 zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
278 /*
279 * Previously, we were (zs_pf_blkid - blkid) ahead. We
280 * want to now be double that, so read that amount again,
281 * plus the amount we are catching up by (i.e. the amount
282 * read just now).
283 */
284 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
285 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
286 pf_nblks = MIN(pf_ahead_blks, max_blks);
287 } else {
288 pf_nblks = 0;
289 }
290
291 zs->zs_pf_blkid = pf_start + pf_nblks;
292
293 /*
294 * Do the same for indirects, starting from where we stopped last,
295 * or where we will stop reading data blocks (and the indirects
296 * that point to them).
297 */
298 ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
299 max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
300 /*
301 * We want to double our distance ahead of the data prefetch
302 * (or reader, if we are not prefetching data). Previously, we
303 * were (zs_ipf_blkid - blkid) ahead. To double that, we read
304 * that amount again, plus the amount we are catching up by
305 * (i.e. the amount read now + the amount of data prefetched now).
306 */
307 pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
308 max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
309 ipf_nblks = MIN(pf_ahead_blks, max_blks);
310 zs->zs_ipf_blkid = ipf_start + ipf_nblks;
311
312 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
313 ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
314 ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
315
316 zs->zs_atime = gethrtime();
317 zs->zs_blkid = end_of_access_blkid;
318 mutex_exit(&zs->zs_lock);
319 rw_exit(&zf->zf_rwlock);
320
321 /*
322 * dbuf_prefetch() is asynchronous (even when it needs to read
323 * indirect blocks), but we still prefer to drop our locks before
324 * calling it to reduce the time we hold them.
325 */
326
327 for (i = 0; i < pf_nblks; i++) {
328 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
329 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
330 }
331 for (iblk = ipf_istart; iblk < ipf_iend; iblk++) {
332 dbuf_prefetch(zf->zf_dnode, 1, iblk,
333 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
334 }
335 ZFETCHSTAT_BUMP(zfetchstat_hits);
336 }
337
338 #if defined(_KERNEL) && defined(HAVE_SPL)
339 /* BEGIN CSTYLED */
340 module_param(zfs_prefetch_disable, int, 0644);
341 MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");
342
343 module_param(zfetch_max_streams, uint, 0644);
344 MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
345
346 module_param(zfetch_min_sec_reap, uint, 0644);
347 MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
348
349 module_param(zfetch_max_distance, uint, 0644);
350 MODULE_PARM_DESC(zfetch_max_distance,
351 "Max bytes to prefetch per stream (default 8MB)");
352
353 module_param(zfetch_array_rd_sz, ulong, 0644);
354 MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
355 /* END CSTYLED */
356 #endif