]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/dmu_zfetch.c
New upstream version 0.7.6
[mirror_zfs-debian.git] / module / zfs / dmu_zfetch.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39 * This tunable disables predictive prefetch. Note that it leaves "prescient"
40 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
41 * prescient prefetch never issues i/os that end up not being needed,
42 * so it can't hurt performance.
43 */
44
45 int zfs_prefetch_disable = B_FALSE;
46
47 /* max # of streams per zfetch */
48 unsigned int zfetch_max_streams = 8;
49 /* min time before stream reclaim */
50 unsigned int zfetch_min_sec_reap = 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int zfetch_max_distance = 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long zfetch_array_rd_sz = 1024 * 1024;
57
58 typedef struct zfetch_stats {
59 kstat_named_t zfetchstat_hits;
60 kstat_named_t zfetchstat_misses;
61 kstat_named_t zfetchstat_max_streams;
62 } zfetch_stats_t;
63
64 static zfetch_stats_t zfetch_stats = {
65 { "hits", KSTAT_DATA_UINT64 },
66 { "misses", KSTAT_DATA_UINT64 },
67 { "max_streams", KSTAT_DATA_UINT64 },
68 };
69
70 #define ZFETCHSTAT_BUMP(stat) \
71 atomic_inc_64(&zfetch_stats.stat.value.ui64);
72
73 kstat_t *zfetch_ksp;
74
75 void
76 zfetch_init(void)
77 {
78 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
79 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
80 KSTAT_FLAG_VIRTUAL);
81
82 if (zfetch_ksp != NULL) {
83 zfetch_ksp->ks_data = &zfetch_stats;
84 kstat_install(zfetch_ksp);
85 }
86 }
87
88 void
89 zfetch_fini(void)
90 {
91 if (zfetch_ksp != NULL) {
92 kstat_delete(zfetch_ksp);
93 zfetch_ksp = NULL;
94 }
95 }
96
97 /*
98 * This takes a pointer to a zfetch structure and a dnode. It performs the
99 * necessary setup for the zfetch structure, grokking data from the
100 * associated dnode.
101 */
102 void
103 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
104 {
105 if (zf == NULL)
106 return;
107
108 zf->zf_dnode = dno;
109
110 list_create(&zf->zf_stream, sizeof (zstream_t),
111 offsetof(zstream_t, zs_node));
112
113 rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
114 }
115
116 static void
117 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
118 {
119 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
120 list_remove(&zf->zf_stream, zs);
121 mutex_destroy(&zs->zs_lock);
122 kmem_free(zs, sizeof (*zs));
123 }
124
125 /*
126 * Clean-up state associated with a zfetch structure (e.g. destroy the
127 * streams). This doesn't free the zfetch_t itself, that's left to the caller.
128 */
129 void
130 dmu_zfetch_fini(zfetch_t *zf)
131 {
132 zstream_t *zs;
133
134 ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
135
136 rw_enter(&zf->zf_rwlock, RW_WRITER);
137 while ((zs = list_head(&zf->zf_stream)) != NULL)
138 dmu_zfetch_stream_remove(zf, zs);
139 rw_exit(&zf->zf_rwlock);
140 list_destroy(&zf->zf_stream);
141 rw_destroy(&zf->zf_rwlock);
142
143 zf->zf_dnode = NULL;
144 }
145
146 /*
147 * If there aren't too many streams already, create a new stream.
148 * The "blkid" argument is the next block that we expect this stream to access.
149 * While we're here, clean up old streams (which haven't been
150 * accessed for at least zfetch_min_sec_reap seconds).
151 */
152 static void
153 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
154 {
155 zstream_t *zs;
156 zstream_t *zs_next;
157 int numstreams = 0;
158 uint32_t max_streams;
159
160 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
161
162 /*
163 * Clean up old streams.
164 */
165 for (zs = list_head(&zf->zf_stream);
166 zs != NULL; zs = zs_next) {
167 zs_next = list_next(&zf->zf_stream, zs);
168 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
169 zfetch_min_sec_reap)
170 dmu_zfetch_stream_remove(zf, zs);
171 else
172 numstreams++;
173 }
174
175 /*
176 * The maximum number of streams is normally zfetch_max_streams,
177 * but for small files we lower it such that it's at least possible
178 * for all the streams to be non-overlapping.
179 *
180 * If we are already at the maximum number of streams for this file,
181 * even after removing old streams, then don't create this stream.
182 */
183 max_streams = MAX(1, MIN(zfetch_max_streams,
184 zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
185 zfetch_max_distance));
186 if (numstreams >= max_streams) {
187 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
188 return;
189 }
190
191 zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
192 zs->zs_blkid = blkid;
193 zs->zs_pf_blkid = blkid;
194 zs->zs_ipf_blkid = blkid;
195 zs->zs_atime = gethrtime();
196 mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
197
198 list_insert_head(&zf->zf_stream, zs);
199 }
200
201 /*
202 * This is the predictive prefetch entry point. It associates dnode access
203 * specified with blkid and nblks arguments with prefetch stream, predicts
204 * further accesses based on that stats and initiates speculative prefetch.
205 * fetch_data argument specifies whether actual data blocks should be fetched:
206 * FALSE -- prefetch only indirect blocks for predicted data blocks;
207 * TRUE -- prefetch predicted data blocks plus following indirect blocks.
208 */
209 void
210 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
211 {
212 zstream_t *zs;
213 int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
214 int64_t pf_ahead_blks, max_blks, iblk;
215 int epbs, max_dist_blks, pf_nblks, ipf_nblks, i;
216 uint64_t end_of_access_blkid;
217 end_of_access_blkid = blkid + nblks;
218
219 if (zfs_prefetch_disable)
220 return;
221
222 /*
223 * As a fast path for small (single-block) files, ignore access
224 * to the first block.
225 */
226 if (blkid == 0)
227 return;
228
229 rw_enter(&zf->zf_rwlock, RW_READER);
230
231 /*
232 * Find matching prefetch stream. Depending on whether the accesses
233 * are block-aligned, first block of the new access may either follow
234 * the last block of the previous access, or be equal to it.
235 */
236 for (zs = list_head(&zf->zf_stream); zs != NULL;
237 zs = list_next(&zf->zf_stream, zs)) {
238 if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) {
239 mutex_enter(&zs->zs_lock);
240 /*
241 * zs_blkid could have changed before we
242 * acquired zs_lock; re-check them here.
243 */
244 if (blkid == zs->zs_blkid) {
245 break;
246 } else if (blkid + 1 == zs->zs_blkid) {
247 blkid++;
248 nblks--;
249 if (nblks == 0) {
250 /* Already prefetched this before. */
251 mutex_exit(&zs->zs_lock);
252 rw_exit(&zf->zf_rwlock);
253 return;
254 }
255 break;
256 }
257 mutex_exit(&zs->zs_lock);
258 }
259 }
260
261 if (zs == NULL) {
262 /*
263 * This access is not part of any existing stream. Create
264 * a new stream for it.
265 */
266 ZFETCHSTAT_BUMP(zfetchstat_misses);
267 if (rw_tryupgrade(&zf->zf_rwlock))
268 dmu_zfetch_stream_create(zf, end_of_access_blkid);
269 rw_exit(&zf->zf_rwlock);
270 return;
271 }
272
273 /*
274 * This access was to a block that we issued a prefetch for on
275 * behalf of this stream. Issue further prefetches for this stream.
276 *
277 * Normally, we start prefetching where we stopped
278 * prefetching last (zs_pf_blkid). But when we get our first
279 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
280 * want to prefetch the block we just accessed. In this case,
281 * start just after the block we just accessed.
282 */
283 pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
284
285 /*
286 * Double our amount of prefetched data, but don't let the
287 * prefetch get further ahead than zfetch_max_distance.
288 */
289 if (fetch_data) {
290 max_dist_blks =
291 zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
292 /*
293 * Previously, we were (zs_pf_blkid - blkid) ahead. We
294 * want to now be double that, so read that amount again,
295 * plus the amount we are catching up by (i.e. the amount
296 * read just now).
297 */
298 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
299 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
300 pf_nblks = MIN(pf_ahead_blks, max_blks);
301 } else {
302 pf_nblks = 0;
303 }
304
305 zs->zs_pf_blkid = pf_start + pf_nblks;
306
307 /*
308 * Do the same for indirects, starting from where we stopped last,
309 * or where we will stop reading data blocks (and the indirects
310 * that point to them).
311 */
312 ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
313 max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
314 /*
315 * We want to double our distance ahead of the data prefetch
316 * (or reader, if we are not prefetching data). Previously, we
317 * were (zs_ipf_blkid - blkid) ahead. To double that, we read
318 * that amount again, plus the amount we are catching up by
319 * (i.e. the amount read now + the amount of data prefetched now).
320 */
321 pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
322 max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
323 ipf_nblks = MIN(pf_ahead_blks, max_blks);
324 zs->zs_ipf_blkid = ipf_start + ipf_nblks;
325
326 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
327 ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
328 ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
329
330 zs->zs_atime = gethrtime();
331 zs->zs_blkid = end_of_access_blkid;
332 mutex_exit(&zs->zs_lock);
333 rw_exit(&zf->zf_rwlock);
334
335 /*
336 * dbuf_prefetch() is asynchronous (even when it needs to read
337 * indirect blocks), but we still prefer to drop our locks before
338 * calling it to reduce the time we hold them.
339 */
340
341 for (i = 0; i < pf_nblks; i++) {
342 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
343 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
344 }
345 for (iblk = ipf_istart; iblk < ipf_iend; iblk++) {
346 dbuf_prefetch(zf->zf_dnode, 1, iblk,
347 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
348 }
349 ZFETCHSTAT_BUMP(zfetchstat_hits);
350 }
351
352 #if defined(_KERNEL) && defined(HAVE_SPL)
353 /* BEGIN CSTYLED */
354 module_param(zfs_prefetch_disable, int, 0644);
355 MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");
356
357 module_param(zfetch_max_streams, uint, 0644);
358 MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
359
360 module_param(zfetch_min_sec_reap, uint, 0644);
361 MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
362
363 module_param(zfetch_max_distance, uint, 0644);
364 MODULE_PARM_DESC(zfetch_max_distance,
365 "Max bytes to prefetch per stream (default 8MB)");
366
367 module_param(zfetch_array_rd_sz, ulong, 0644);
368 MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
369 /* END CSTYLED */
370 #endif