]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_zfetch.c
OpenZFS 8607 - variable set but not used
[mirror_zfs.git] / module / zfs / dmu_zfetch.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39 * This tunable disables predictive prefetch. Note that it leaves "prescient"
40 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
41 * prescient prefetch never issues i/os that end up not being needed,
42 * so it can't hurt performance.
43 */
44
45 int zfs_prefetch_disable = B_FALSE;
46
47 /* max # of streams per zfetch */
48 unsigned int zfetch_max_streams = 8;
49 /* min time before stream reclaim */
50 unsigned int zfetch_min_sec_reap = 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int zfetch_max_distance = 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long zfetch_array_rd_sz = 1024 * 1024;
57
58 typedef struct zfetch_stats {
59 kstat_named_t zfetchstat_hits;
60 kstat_named_t zfetchstat_misses;
61 kstat_named_t zfetchstat_max_streams;
62 } zfetch_stats_t;
63
64 static zfetch_stats_t zfetch_stats = {
65 { "hits", KSTAT_DATA_UINT64 },
66 { "misses", KSTAT_DATA_UINT64 },
67 { "max_streams", KSTAT_DATA_UINT64 },
68 };
69
70 #define ZFETCHSTAT_BUMP(stat) \
71 atomic_inc_64(&zfetch_stats.stat.value.ui64);
72
73 kstat_t *zfetch_ksp;
74
75 void
76 zfetch_init(void)
77 {
78 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
79 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
80 KSTAT_FLAG_VIRTUAL);
81
82 if (zfetch_ksp != NULL) {
83 zfetch_ksp->ks_data = &zfetch_stats;
84 kstat_install(zfetch_ksp);
85 }
86 }
87
88 void
89 zfetch_fini(void)
90 {
91 if (zfetch_ksp != NULL) {
92 kstat_delete(zfetch_ksp);
93 zfetch_ksp = NULL;
94 }
95 }
96
97 /*
98 * This takes a pointer to a zfetch structure and a dnode. It performs the
99 * necessary setup for the zfetch structure, grokking data from the
100 * associated dnode.
101 */
102 void
103 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
104 {
105 if (zf == NULL)
106 return;
107
108 zf->zf_dnode = dno;
109
110 list_create(&zf->zf_stream, sizeof (zstream_t),
111 offsetof(zstream_t, zs_node));
112
113 rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
114 }
115
116 static void
117 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
118 {
119 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
120 list_remove(&zf->zf_stream, zs);
121 mutex_destroy(&zs->zs_lock);
122 kmem_free(zs, sizeof (*zs));
123 }
124
125 /*
126 * Clean-up state associated with a zfetch structure (e.g. destroy the
127 * streams). This doesn't free the zfetch_t itself, that's left to the caller.
128 */
129 void
130 dmu_zfetch_fini(zfetch_t *zf)
131 {
132 zstream_t *zs;
133
134 ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
135
136 rw_enter(&zf->zf_rwlock, RW_WRITER);
137 while ((zs = list_head(&zf->zf_stream)) != NULL)
138 dmu_zfetch_stream_remove(zf, zs);
139 rw_exit(&zf->zf_rwlock);
140 list_destroy(&zf->zf_stream);
141 rw_destroy(&zf->zf_rwlock);
142
143 zf->zf_dnode = NULL;
144 }
145
146 /*
147 * If there aren't too many streams already, create a new stream.
148 * The "blkid" argument is the next block that we expect this stream to access.
149 * While we're here, clean up old streams (which haven't been
150 * accessed for at least zfetch_min_sec_reap seconds).
151 */
152 static void
153 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
154 {
155 zstream_t *zs_next;
156 int numstreams = 0;
157
158 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
159
160 /*
161 * Clean up old streams.
162 */
163 for (zstream_t *zs = list_head(&zf->zf_stream);
164 zs != NULL; zs = zs_next) {
165 zs_next = list_next(&zf->zf_stream, zs);
166 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
167 zfetch_min_sec_reap)
168 dmu_zfetch_stream_remove(zf, zs);
169 else
170 numstreams++;
171 }
172
173 /*
174 * The maximum number of streams is normally zfetch_max_streams,
175 * but for small files we lower it such that it's at least possible
176 * for all the streams to be non-overlapping.
177 *
178 * If we are already at the maximum number of streams for this file,
179 * even after removing old streams, then don't create this stream.
180 */
181 uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
182 zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
183 zfetch_max_distance));
184 if (numstreams >= max_streams) {
185 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
186 return;
187 }
188
189 zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
190 zs->zs_blkid = blkid;
191 zs->zs_pf_blkid = blkid;
192 zs->zs_ipf_blkid = blkid;
193 zs->zs_atime = gethrtime();
194 mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
195
196 list_insert_head(&zf->zf_stream, zs);
197 }
198
199 /*
200 * This is the predictive prefetch entry point. It associates dnode access
201 * specified with blkid and nblks arguments with prefetch stream, predicts
202 * further accesses based on that stats and initiates speculative prefetch.
203 * fetch_data argument specifies whether actual data blocks should be fetched:
204 * FALSE -- prefetch only indirect blocks for predicted data blocks;
205 * TRUE -- prefetch predicted data blocks plus following indirect blocks.
206 */
207 void
208 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
209 {
210 zstream_t *zs;
211 int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
212 int64_t pf_ahead_blks, max_blks;
213 int epbs, max_dist_blks, pf_nblks, ipf_nblks;
214 uint64_t end_of_access_blkid;
215 end_of_access_blkid = blkid + nblks;
216
217 if (zfs_prefetch_disable)
218 return;
219
220 /*
221 * As a fast path for small (single-block) files, ignore access
222 * to the first block.
223 */
224 if (blkid == 0)
225 return;
226
227 rw_enter(&zf->zf_rwlock, RW_READER);
228
229 for (zs = list_head(&zf->zf_stream); zs != NULL;
230 zs = list_next(&zf->zf_stream, zs)) {
231 if (blkid == zs->zs_blkid) {
232 mutex_enter(&zs->zs_lock);
233 /*
234 * zs_blkid could have changed before we
235 * acquired zs_lock; re-check them here.
236 */
237 if (blkid != zs->zs_blkid) {
238 mutex_exit(&zs->zs_lock);
239 continue;
240 }
241 break;
242 }
243 }
244
245 if (zs == NULL) {
246 /*
247 * This access is not part of any existing stream. Create
248 * a new stream for it.
249 */
250 ZFETCHSTAT_BUMP(zfetchstat_misses);
251 if (rw_tryupgrade(&zf->zf_rwlock))
252 dmu_zfetch_stream_create(zf, end_of_access_blkid);
253 rw_exit(&zf->zf_rwlock);
254 return;
255 }
256
257 /*
258 * This access was to a block that we issued a prefetch for on
259 * behalf of this stream. Issue further prefetches for this stream.
260 *
261 * Normally, we start prefetching where we stopped
262 * prefetching last (zs_pf_blkid). But when we get our first
263 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
264 * want to prefetch the block we just accessed. In this case,
265 * start just after the block we just accessed.
266 */
267 pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
268
269 /*
270 * Double our amount of prefetched data, but don't let the
271 * prefetch get further ahead than zfetch_max_distance.
272 */
273 if (fetch_data) {
274 max_dist_blks =
275 zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
276 /*
277 * Previously, we were (zs_pf_blkid - blkid) ahead. We
278 * want to now be double that, so read that amount again,
279 * plus the amount we are catching up by (i.e. the amount
280 * read just now).
281 */
282 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
283 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
284 pf_nblks = MIN(pf_ahead_blks, max_blks);
285 } else {
286 pf_nblks = 0;
287 }
288
289 zs->zs_pf_blkid = pf_start + pf_nblks;
290
291 /*
292 * Do the same for indirects, starting from where we stopped last,
293 * or where we will stop reading data blocks (and the indirects
294 * that point to them).
295 */
296 ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
297 max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
298 /*
299 * We want to double our distance ahead of the data prefetch
300 * (or reader, if we are not prefetching data). Previously, we
301 * were (zs_ipf_blkid - blkid) ahead. To double that, we read
302 * that amount again, plus the amount we are catching up by
303 * (i.e. the amount read now + the amount of data prefetched now).
304 */
305 pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
306 max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
307 ipf_nblks = MIN(pf_ahead_blks, max_blks);
308 zs->zs_ipf_blkid = ipf_start + ipf_nblks;
309
310 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
311 ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
312 ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
313
314 zs->zs_atime = gethrtime();
315 zs->zs_blkid = end_of_access_blkid;
316 mutex_exit(&zs->zs_lock);
317 rw_exit(&zf->zf_rwlock);
318
319 /*
320 * dbuf_prefetch() is asynchronous (even when it needs to read
321 * indirect blocks), but we still prefer to drop our locks before
322 * calling it to reduce the time we hold them.
323 */
324
325 for (int i = 0; i < pf_nblks; i++) {
326 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
327 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
328 }
329 for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
330 dbuf_prefetch(zf->zf_dnode, 1, iblk,
331 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
332 }
333 ZFETCHSTAT_BUMP(zfetchstat_hits);
334 }
335
336 #if defined(_KERNEL) && defined(HAVE_SPL)
337 /* BEGIN CSTYLED */
338 module_param(zfs_prefetch_disable, int, 0644);
339 MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");
340
341 module_param(zfetch_max_streams, uint, 0644);
342 MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
343
344 module_param(zfetch_min_sec_reap, uint, 0644);
345 MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
346
347 module_param(zfetch_max_distance, uint, 0644);
348 MODULE_PARM_DESC(zfetch_max_distance,
349 "Max bytes to prefetch per stream (default 8MB)");
350
351 module_param(zfetch_array_rd_sz, ulong, 0644);
352 MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
353 /* END CSTYLED */
354 #endif