]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Illumos 5095 - panic when adding a duplicate dbuf to dn_dbufs
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dbuf.h>
28 #include <sys/dnode.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/zio.h>
37 #include <sys/dmu_zfetch.h>
38 #include <sys/range_tree.h>
39 #include <sys/trace_dnode.h>
40
41 static kmem_cache_t *dnode_cache;
42 /*
43 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
44 * turned on when DEBUG is also defined.
45 */
46 #ifdef DEBUG
47 #define DNODE_STATS
48 #endif /* DEBUG */
49
50 #ifdef DNODE_STATS
51 #define DNODE_STAT_ADD(stat) ((stat)++)
52 #else
53 #define DNODE_STAT_ADD(stat) /* nothing */
54 #endif /* DNODE_STATS */
55
56 ASSERTV(static dnode_phys_t dnode_phys_zero);
57
58 int zfs_default_bs = SPA_MINBLOCKSHIFT;
59 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
60
61 #ifdef _KERNEL
62 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
63 #endif /* _KERNEL */
64
65 static int
66 dbuf_compare(const void *x1, const void *x2)
67 {
68 const dmu_buf_impl_t *d1 = x1;
69 const dmu_buf_impl_t *d2 = x2;
70
71 if (d1->db_level < d2->db_level) {
72 return (-1);
73 }
74 if (d1->db_level > d2->db_level) {
75 return (1);
76 }
77
78 if (d1->db_blkid < d2->db_blkid) {
79 return (-1);
80 }
81 if (d1->db_blkid > d2->db_blkid) {
82 return (1);
83 }
84
85 if (d1->db_state < d2->db_state) {
86 return (-1);
87 }
88 if (d1->db_state > d2->db_state) {
89 return (1);
90 }
91
92 ASSERT3S(d1->db_state, !=, DB_SEARCH);
93 ASSERT3S(d2->db_state, !=, DB_SEARCH);
94
95 if ((uintptr_t)d1 < (uintptr_t)d2) {
96 return (-1);
97 }
98 if ((uintptr_t)d1 > (uintptr_t)d2) {
99 return (1);
100 }
101 return (0);
102 }
103
104 /* ARGSUSED */
105 static int
106 dnode_cons(void *arg, void *unused, int kmflag)
107 {
108 dnode_t *dn = arg;
109 int i;
110
111 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
112 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
113 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
114 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
115
116 /*
117 * Every dbuf has a reference, and dropping a tracked reference is
118 * O(number of references), so don't track dn_holds.
119 */
120 refcount_create_untracked(&dn->dn_holds);
121 refcount_create(&dn->dn_tx_holds);
122 list_link_init(&dn->dn_link);
123
124 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
125 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
126 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
127 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
128 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
129 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
130 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
131
132 for (i = 0; i < TXG_SIZE; i++) {
133 list_link_init(&dn->dn_dirty_link[i]);
134 dn->dn_free_ranges[i] = NULL;
135 list_create(&dn->dn_dirty_records[i],
136 sizeof (dbuf_dirty_record_t),
137 offsetof(dbuf_dirty_record_t, dr_dirty_node));
138 }
139
140 dn->dn_allocated_txg = 0;
141 dn->dn_free_txg = 0;
142 dn->dn_assigned_txg = 0;
143 dn->dn_dirtyctx = 0;
144 dn->dn_dirtyctx_firstset = NULL;
145 dn->dn_bonus = NULL;
146 dn->dn_have_spill = B_FALSE;
147 dn->dn_zio = NULL;
148 dn->dn_oldused = 0;
149 dn->dn_oldflags = 0;
150 dn->dn_olduid = 0;
151 dn->dn_oldgid = 0;
152 dn->dn_newuid = 0;
153 dn->dn_newgid = 0;
154 dn->dn_id_flags = 0;
155
156 dn->dn_dbufs_count = 0;
157 dn->dn_unlisted_l0_blkid = 0;
158 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
159 offsetof(dmu_buf_impl_t, db_link));
160
161 dn->dn_moved = 0;
162 return (0);
163 }
164
165 /* ARGSUSED */
166 static void
167 dnode_dest(void *arg, void *unused)
168 {
169 int i;
170 dnode_t *dn = arg;
171
172 rw_destroy(&dn->dn_struct_rwlock);
173 mutex_destroy(&dn->dn_mtx);
174 mutex_destroy(&dn->dn_dbufs_mtx);
175 cv_destroy(&dn->dn_notxholds);
176 refcount_destroy(&dn->dn_holds);
177 refcount_destroy(&dn->dn_tx_holds);
178 ASSERT(!list_link_active(&dn->dn_link));
179
180 for (i = 0; i < TXG_SIZE; i++) {
181 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
182 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
183 list_destroy(&dn->dn_dirty_records[i]);
184 ASSERT0(dn->dn_next_nblkptr[i]);
185 ASSERT0(dn->dn_next_nlevels[i]);
186 ASSERT0(dn->dn_next_indblkshift[i]);
187 ASSERT0(dn->dn_next_bonustype[i]);
188 ASSERT0(dn->dn_rm_spillblk[i]);
189 ASSERT0(dn->dn_next_bonuslen[i]);
190 ASSERT0(dn->dn_next_blksz[i]);
191 }
192
193 ASSERT0(dn->dn_allocated_txg);
194 ASSERT0(dn->dn_free_txg);
195 ASSERT0(dn->dn_assigned_txg);
196 ASSERT0(dn->dn_dirtyctx);
197 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
198 ASSERT3P(dn->dn_bonus, ==, NULL);
199 ASSERT(!dn->dn_have_spill);
200 ASSERT3P(dn->dn_zio, ==, NULL);
201 ASSERT0(dn->dn_oldused);
202 ASSERT0(dn->dn_oldflags);
203 ASSERT0(dn->dn_olduid);
204 ASSERT0(dn->dn_oldgid);
205 ASSERT0(dn->dn_newuid);
206 ASSERT0(dn->dn_newgid);
207 ASSERT0(dn->dn_id_flags);
208
209 ASSERT0(dn->dn_dbufs_count);
210 ASSERT0(dn->dn_unlisted_l0_blkid);
211 avl_destroy(&dn->dn_dbufs);
212 }
213
214 void
215 dnode_init(void)
216 {
217 ASSERT(dnode_cache == NULL);
218 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
219 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
220 kmem_cache_set_move(dnode_cache, dnode_move);
221 }
222
223 void
224 dnode_fini(void)
225 {
226 kmem_cache_destroy(dnode_cache);
227 dnode_cache = NULL;
228 }
229
230
231 #ifdef ZFS_DEBUG
232 void
233 dnode_verify(dnode_t *dn)
234 {
235 int drop_struct_lock = FALSE;
236
237 ASSERT(dn->dn_phys);
238 ASSERT(dn->dn_objset);
239 ASSERT(dn->dn_handle->dnh_dnode == dn);
240
241 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
242
243 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
244 return;
245
246 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
247 rw_enter(&dn->dn_struct_rwlock, RW_READER);
248 drop_struct_lock = TRUE;
249 }
250 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
251 int i;
252 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
253 if (dn->dn_datablkshift) {
254 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
255 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
256 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
257 }
258 ASSERT3U(dn->dn_nlevels, <=, 30);
259 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
260 ASSERT3U(dn->dn_nblkptr, >=, 1);
261 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
262 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
263 ASSERT3U(dn->dn_datablksz, ==,
264 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
265 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
266 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
267 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
268 for (i = 0; i < TXG_SIZE; i++) {
269 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
270 }
271 }
272 if (dn->dn_phys->dn_type != DMU_OT_NONE)
273 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
274 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
275 if (dn->dn_dbuf != NULL) {
276 ASSERT3P(dn->dn_phys, ==,
277 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
278 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
279 }
280 if (drop_struct_lock)
281 rw_exit(&dn->dn_struct_rwlock);
282 }
283 #endif
284
285 void
286 dnode_byteswap(dnode_phys_t *dnp)
287 {
288 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
289 int i;
290
291 if (dnp->dn_type == DMU_OT_NONE) {
292 bzero(dnp, sizeof (dnode_phys_t));
293 return;
294 }
295
296 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
297 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
298 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
299 dnp->dn_used = BSWAP_64(dnp->dn_used);
300
301 /*
302 * dn_nblkptr is only one byte, so it's OK to read it in either
303 * byte order. We can't read dn_bouslen.
304 */
305 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
306 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
307 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
308 buf64[i] = BSWAP_64(buf64[i]);
309
310 /*
311 * OK to check dn_bonuslen for zero, because it won't matter if
312 * we have the wrong byte order. This is necessary because the
313 * dnode dnode is smaller than a regular dnode.
314 */
315 if (dnp->dn_bonuslen != 0) {
316 /*
317 * Note that the bonus length calculated here may be
318 * longer than the actual bonus buffer. This is because
319 * we always put the bonus buffer after the last block
320 * pointer (instead of packing it against the end of the
321 * dnode buffer).
322 */
323 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
324 size_t len = DN_MAX_BONUSLEN - off;
325 dmu_object_byteswap_t byteswap;
326 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
327 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
328 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
329 }
330
331 /* Swap SPILL block if we have one */
332 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
333 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
334
335 }
336
337 void
338 dnode_buf_byteswap(void *vbuf, size_t size)
339 {
340 dnode_phys_t *buf = vbuf;
341 int i;
342
343 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
344 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
345
346 size >>= DNODE_SHIFT;
347 for (i = 0; i < size; i++) {
348 dnode_byteswap(buf);
349 buf++;
350 }
351 }
352
353 void
354 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
355 {
356 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
357
358 dnode_setdirty(dn, tx);
359 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
360 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
361 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
362 dn->dn_bonuslen = newsize;
363 if (newsize == 0)
364 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
365 else
366 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
367 rw_exit(&dn->dn_struct_rwlock);
368 }
369
370 void
371 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
372 {
373 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
374 dnode_setdirty(dn, tx);
375 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
376 dn->dn_bonustype = newtype;
377 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
378 rw_exit(&dn->dn_struct_rwlock);
379 }
380
381 void
382 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
383 {
384 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
385 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
386 dnode_setdirty(dn, tx);
387 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
388 dn->dn_have_spill = B_FALSE;
389 }
390
391 static void
392 dnode_setdblksz(dnode_t *dn, int size)
393 {
394 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
395 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
396 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
397 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
398 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
399 dn->dn_datablksz = size;
400 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
401 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
402 }
403
404 static dnode_t *
405 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
406 uint64_t object, dnode_handle_t *dnh)
407 {
408 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
409
410 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
411 dn->dn_moved = 0;
412
413 /*
414 * Defer setting dn_objset until the dnode is ready to be a candidate
415 * for the dnode_move() callback.
416 */
417 dn->dn_object = object;
418 dn->dn_dbuf = db;
419 dn->dn_handle = dnh;
420 dn->dn_phys = dnp;
421
422 if (dnp->dn_datablkszsec) {
423 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
424 } else {
425 dn->dn_datablksz = 0;
426 dn->dn_datablkszsec = 0;
427 dn->dn_datablkshift = 0;
428 }
429 dn->dn_indblkshift = dnp->dn_indblkshift;
430 dn->dn_nlevels = dnp->dn_nlevels;
431 dn->dn_type = dnp->dn_type;
432 dn->dn_nblkptr = dnp->dn_nblkptr;
433 dn->dn_checksum = dnp->dn_checksum;
434 dn->dn_compress = dnp->dn_compress;
435 dn->dn_bonustype = dnp->dn_bonustype;
436 dn->dn_bonuslen = dnp->dn_bonuslen;
437 dn->dn_maxblkid = dnp->dn_maxblkid;
438 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
439 dn->dn_id_flags = 0;
440
441 dmu_zfetch_init(&dn->dn_zfetch, dn);
442
443 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
444
445 mutex_enter(&os->os_lock);
446 list_insert_head(&os->os_dnodes, dn);
447 membar_producer();
448 /*
449 * Everything else must be valid before assigning dn_objset makes the
450 * dnode eligible for dnode_move().
451 */
452 dn->dn_objset = os;
453 mutex_exit(&os->os_lock);
454
455 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
456 return (dn);
457 }
458
459 /*
460 * Caller must be holding the dnode handle, which is released upon return.
461 */
462 static void
463 dnode_destroy(dnode_t *dn)
464 {
465 objset_t *os = dn->dn_objset;
466
467 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
468
469 mutex_enter(&os->os_lock);
470 POINTER_INVALIDATE(&dn->dn_objset);
471 list_remove(&os->os_dnodes, dn);
472 mutex_exit(&os->os_lock);
473
474 /* the dnode can no longer move, so we can release the handle */
475 zrl_remove(&dn->dn_handle->dnh_zrlock);
476
477 dn->dn_allocated_txg = 0;
478 dn->dn_free_txg = 0;
479 dn->dn_assigned_txg = 0;
480
481 dn->dn_dirtyctx = 0;
482 if (dn->dn_dirtyctx_firstset != NULL) {
483 kmem_free(dn->dn_dirtyctx_firstset, 1);
484 dn->dn_dirtyctx_firstset = NULL;
485 }
486 if (dn->dn_bonus != NULL) {
487 mutex_enter(&dn->dn_bonus->db_mtx);
488 dbuf_evict(dn->dn_bonus);
489 dn->dn_bonus = NULL;
490 }
491 dn->dn_zio = NULL;
492
493 dn->dn_have_spill = B_FALSE;
494 dn->dn_oldused = 0;
495 dn->dn_oldflags = 0;
496 dn->dn_olduid = 0;
497 dn->dn_oldgid = 0;
498 dn->dn_newuid = 0;
499 dn->dn_newgid = 0;
500 dn->dn_id_flags = 0;
501 dn->dn_unlisted_l0_blkid = 0;
502
503 dmu_zfetch_rele(&dn->dn_zfetch);
504 kmem_cache_free(dnode_cache, dn);
505 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
506 }
507
508 void
509 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
510 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
511 {
512 int i;
513
514 if (blocksize == 0)
515 blocksize = 1 << zfs_default_bs;
516 else if (blocksize > SPA_MAXBLOCKSIZE)
517 blocksize = SPA_MAXBLOCKSIZE;
518 else
519 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
520
521 if (ibs == 0)
522 ibs = zfs_default_ibs;
523
524 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
525
526 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
527 dn->dn_object, tx->tx_txg, blocksize, ibs);
528
529 ASSERT(dn->dn_type == DMU_OT_NONE);
530 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
531 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
532 ASSERT(ot != DMU_OT_NONE);
533 ASSERT(DMU_OT_IS_VALID(ot));
534 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
535 (bonustype == DMU_OT_SA && bonuslen == 0) ||
536 (bonustype != DMU_OT_NONE && bonuslen != 0));
537 ASSERT(DMU_OT_IS_VALID(bonustype));
538 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
539 ASSERT(dn->dn_type == DMU_OT_NONE);
540 ASSERT0(dn->dn_maxblkid);
541 ASSERT0(dn->dn_allocated_txg);
542 ASSERT0(dn->dn_assigned_txg);
543 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
544 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
545 ASSERT(avl_is_empty(&dn->dn_dbufs));
546
547 for (i = 0; i < TXG_SIZE; i++) {
548 ASSERT0(dn->dn_next_nblkptr[i]);
549 ASSERT0(dn->dn_next_nlevels[i]);
550 ASSERT0(dn->dn_next_indblkshift[i]);
551 ASSERT0(dn->dn_next_bonuslen[i]);
552 ASSERT0(dn->dn_next_bonustype[i]);
553 ASSERT0(dn->dn_rm_spillblk[i]);
554 ASSERT0(dn->dn_next_blksz[i]);
555 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
556 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
557 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
558 }
559
560 dn->dn_type = ot;
561 dnode_setdblksz(dn, blocksize);
562 dn->dn_indblkshift = ibs;
563 dn->dn_nlevels = 1;
564 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
565 dn->dn_nblkptr = 1;
566 else
567 dn->dn_nblkptr = 1 +
568 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
569 dn->dn_bonustype = bonustype;
570 dn->dn_bonuslen = bonuslen;
571 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
572 dn->dn_compress = ZIO_COMPRESS_INHERIT;
573 dn->dn_dirtyctx = 0;
574
575 dn->dn_free_txg = 0;
576 if (dn->dn_dirtyctx_firstset) {
577 kmem_free(dn->dn_dirtyctx_firstset, 1);
578 dn->dn_dirtyctx_firstset = NULL;
579 }
580
581 dn->dn_allocated_txg = tx->tx_txg;
582 dn->dn_id_flags = 0;
583
584 dnode_setdirty(dn, tx);
585 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
586 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
587 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
588 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
589 }
590
591 void
592 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
593 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
594 {
595 int nblkptr;
596
597 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
598 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
599 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
600 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
601 ASSERT(tx->tx_txg != 0);
602 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
603 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
604 (bonustype == DMU_OT_SA && bonuslen == 0));
605 ASSERT(DMU_OT_IS_VALID(bonustype));
606 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
607
608 /* clean up any unreferenced dbufs */
609 dnode_evict_dbufs(dn);
610
611 dn->dn_id_flags = 0;
612
613 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
614 dnode_setdirty(dn, tx);
615 if (dn->dn_datablksz != blocksize) {
616 /* change blocksize */
617 ASSERT(dn->dn_maxblkid == 0 &&
618 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
619 dnode_block_freed(dn, 0)));
620 dnode_setdblksz(dn, blocksize);
621 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
622 }
623 if (dn->dn_bonuslen != bonuslen)
624 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
625
626 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
627 nblkptr = 1;
628 else
629 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
630 if (dn->dn_bonustype != bonustype)
631 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
632 if (dn->dn_nblkptr != nblkptr)
633 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
634 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
635 dbuf_rm_spill(dn, tx);
636 dnode_rm_spill(dn, tx);
637 }
638 rw_exit(&dn->dn_struct_rwlock);
639
640 /* change type */
641 dn->dn_type = ot;
642
643 /* change bonus size and type */
644 mutex_enter(&dn->dn_mtx);
645 dn->dn_bonustype = bonustype;
646 dn->dn_bonuslen = bonuslen;
647 dn->dn_nblkptr = nblkptr;
648 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
649 dn->dn_compress = ZIO_COMPRESS_INHERIT;
650 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
651
652 /* fix up the bonus db_size */
653 if (dn->dn_bonus) {
654 dn->dn_bonus->db.db_size =
655 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
656 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
657 }
658
659 dn->dn_allocated_txg = tx->tx_txg;
660 mutex_exit(&dn->dn_mtx);
661 }
662
663 #ifdef _KERNEL
664 #ifdef DNODE_STATS
665 static struct {
666 uint64_t dms_dnode_invalid;
667 uint64_t dms_dnode_recheck1;
668 uint64_t dms_dnode_recheck2;
669 uint64_t dms_dnode_special;
670 uint64_t dms_dnode_handle;
671 uint64_t dms_dnode_rwlock;
672 uint64_t dms_dnode_active;
673 } dnode_move_stats;
674 #endif /* DNODE_STATS */
675
676 static void
677 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
678 {
679 int i;
680
681 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
682 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
683 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
684 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
685
686 /* Copy fields. */
687 ndn->dn_objset = odn->dn_objset;
688 ndn->dn_object = odn->dn_object;
689 ndn->dn_dbuf = odn->dn_dbuf;
690 ndn->dn_handle = odn->dn_handle;
691 ndn->dn_phys = odn->dn_phys;
692 ndn->dn_type = odn->dn_type;
693 ndn->dn_bonuslen = odn->dn_bonuslen;
694 ndn->dn_bonustype = odn->dn_bonustype;
695 ndn->dn_nblkptr = odn->dn_nblkptr;
696 ndn->dn_checksum = odn->dn_checksum;
697 ndn->dn_compress = odn->dn_compress;
698 ndn->dn_nlevels = odn->dn_nlevels;
699 ndn->dn_indblkshift = odn->dn_indblkshift;
700 ndn->dn_datablkshift = odn->dn_datablkshift;
701 ndn->dn_datablkszsec = odn->dn_datablkszsec;
702 ndn->dn_datablksz = odn->dn_datablksz;
703 ndn->dn_maxblkid = odn->dn_maxblkid;
704 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
705 sizeof (odn->dn_next_nblkptr));
706 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
707 sizeof (odn->dn_next_nlevels));
708 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
709 sizeof (odn->dn_next_indblkshift));
710 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
711 sizeof (odn->dn_next_bonustype));
712 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
713 sizeof (odn->dn_rm_spillblk));
714 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
715 sizeof (odn->dn_next_bonuslen));
716 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
717 sizeof (odn->dn_next_blksz));
718 for (i = 0; i < TXG_SIZE; i++) {
719 list_move_tail(&ndn->dn_dirty_records[i],
720 &odn->dn_dirty_records[i]);
721 }
722 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
723 sizeof (odn->dn_free_ranges));
724 ndn->dn_allocated_txg = odn->dn_allocated_txg;
725 ndn->dn_free_txg = odn->dn_free_txg;
726 ndn->dn_assigned_txg = odn->dn_assigned_txg;
727 ndn->dn_dirtyctx = odn->dn_dirtyctx;
728 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
729 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
730 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
731 ASSERT(avl_is_empty(&ndn->dn_dbufs));
732 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
733 ndn->dn_dbufs_count = odn->dn_dbufs_count;
734 ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
735 ndn->dn_bonus = odn->dn_bonus;
736 ndn->dn_have_spill = odn->dn_have_spill;
737 ndn->dn_zio = odn->dn_zio;
738 ndn->dn_oldused = odn->dn_oldused;
739 ndn->dn_oldflags = odn->dn_oldflags;
740 ndn->dn_olduid = odn->dn_olduid;
741 ndn->dn_oldgid = odn->dn_oldgid;
742 ndn->dn_newuid = odn->dn_newuid;
743 ndn->dn_newgid = odn->dn_newgid;
744 ndn->dn_id_flags = odn->dn_id_flags;
745 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
746 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
747 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
748 ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
749 ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
750
751 /*
752 * Update back pointers. Updating the handle fixes the back pointer of
753 * every descendant dbuf as well as the bonus dbuf.
754 */
755 ASSERT(ndn->dn_handle->dnh_dnode == odn);
756 ndn->dn_handle->dnh_dnode = ndn;
757 if (ndn->dn_zfetch.zf_dnode == odn) {
758 ndn->dn_zfetch.zf_dnode = ndn;
759 }
760
761 /*
762 * Invalidate the original dnode by clearing all of its back pointers.
763 */
764 odn->dn_dbuf = NULL;
765 odn->dn_handle = NULL;
766 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
767 offsetof(dmu_buf_impl_t, db_link));
768 odn->dn_dbufs_count = 0;
769 odn->dn_unlisted_l0_blkid = 0;
770 odn->dn_bonus = NULL;
771 odn->dn_zfetch.zf_dnode = NULL;
772
773 /*
774 * Set the low bit of the objset pointer to ensure that dnode_move()
775 * recognizes the dnode as invalid in any subsequent callback.
776 */
777 POINTER_INVALIDATE(&odn->dn_objset);
778
779 /*
780 * Satisfy the destructor.
781 */
782 for (i = 0; i < TXG_SIZE; i++) {
783 list_create(&odn->dn_dirty_records[i],
784 sizeof (dbuf_dirty_record_t),
785 offsetof(dbuf_dirty_record_t, dr_dirty_node));
786 odn->dn_free_ranges[i] = NULL;
787 odn->dn_next_nlevels[i] = 0;
788 odn->dn_next_indblkshift[i] = 0;
789 odn->dn_next_bonustype[i] = 0;
790 odn->dn_rm_spillblk[i] = 0;
791 odn->dn_next_bonuslen[i] = 0;
792 odn->dn_next_blksz[i] = 0;
793 }
794 odn->dn_allocated_txg = 0;
795 odn->dn_free_txg = 0;
796 odn->dn_assigned_txg = 0;
797 odn->dn_dirtyctx = 0;
798 odn->dn_dirtyctx_firstset = NULL;
799 odn->dn_have_spill = B_FALSE;
800 odn->dn_zio = NULL;
801 odn->dn_oldused = 0;
802 odn->dn_oldflags = 0;
803 odn->dn_olduid = 0;
804 odn->dn_oldgid = 0;
805 odn->dn_newuid = 0;
806 odn->dn_newgid = 0;
807 odn->dn_id_flags = 0;
808
809 /*
810 * Mark the dnode.
811 */
812 ndn->dn_moved = 1;
813 odn->dn_moved = (uint8_t)-1;
814 }
815
816 /*ARGSUSED*/
817 static kmem_cbrc_t
818 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
819 {
820 dnode_t *odn = buf, *ndn = newbuf;
821 objset_t *os;
822 int64_t refcount;
823 uint32_t dbufs;
824
825 /*
826 * The dnode is on the objset's list of known dnodes if the objset
827 * pointer is valid. We set the low bit of the objset pointer when
828 * freeing the dnode to invalidate it, and the memory patterns written
829 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
830 * A newly created dnode sets the objset pointer last of all to indicate
831 * that the dnode is known and in a valid state to be moved by this
832 * function.
833 */
834 os = odn->dn_objset;
835 if (!POINTER_IS_VALID(os)) {
836 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
837 return (KMEM_CBRC_DONT_KNOW);
838 }
839
840 /*
841 * Ensure that the objset does not go away during the move.
842 */
843 rw_enter(&os_lock, RW_WRITER);
844 if (os != odn->dn_objset) {
845 rw_exit(&os_lock);
846 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
847 return (KMEM_CBRC_DONT_KNOW);
848 }
849
850 /*
851 * If the dnode is still valid, then so is the objset. We know that no
852 * valid objset can be freed while we hold os_lock, so we can safely
853 * ensure that the objset remains in use.
854 */
855 mutex_enter(&os->os_lock);
856
857 /*
858 * Recheck the objset pointer in case the dnode was removed just before
859 * acquiring the lock.
860 */
861 if (os != odn->dn_objset) {
862 mutex_exit(&os->os_lock);
863 rw_exit(&os_lock);
864 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
865 return (KMEM_CBRC_DONT_KNOW);
866 }
867
868 /*
869 * At this point we know that as long as we hold os->os_lock, the dnode
870 * cannot be freed and fields within the dnode can be safely accessed.
871 * The objset listing this dnode cannot go away as long as this dnode is
872 * on its list.
873 */
874 rw_exit(&os_lock);
875 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
876 mutex_exit(&os->os_lock);
877 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
878 return (KMEM_CBRC_NO);
879 }
880 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
881
882 /*
883 * Lock the dnode handle to prevent the dnode from obtaining any new
884 * holds. This also prevents the descendant dbufs and the bonus dbuf
885 * from accessing the dnode, so that we can discount their holds. The
886 * handle is safe to access because we know that while the dnode cannot
887 * go away, neither can its handle. Once we hold dnh_zrlock, we can
888 * safely move any dnode referenced only by dbufs.
889 */
890 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
891 mutex_exit(&os->os_lock);
892 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
893 return (KMEM_CBRC_LATER);
894 }
895
896 /*
897 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
898 * We need to guarantee that there is a hold for every dbuf in order to
899 * determine whether the dnode is actively referenced. Falsely matching
900 * a dbuf to an active hold would lead to an unsafe move. It's possible
901 * that a thread already having an active dnode hold is about to add a
902 * dbuf, and we can't compare hold and dbuf counts while the add is in
903 * progress.
904 */
905 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
906 zrl_exit(&odn->dn_handle->dnh_zrlock);
907 mutex_exit(&os->os_lock);
908 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
909 return (KMEM_CBRC_LATER);
910 }
911
912 /*
913 * A dbuf may be removed (evicted) without an active dnode hold. In that
914 * case, the dbuf count is decremented under the handle lock before the
915 * dbuf's hold is released. This order ensures that if we count the hold
916 * after the dbuf is removed but before its hold is released, we will
917 * treat the unmatched hold as active and exit safely. If we count the
918 * hold before the dbuf is removed, the hold is discounted, and the
919 * removal is blocked until the move completes.
920 */
921 refcount = refcount_count(&odn->dn_holds);
922 ASSERT(refcount >= 0);
923 dbufs = odn->dn_dbufs_count;
924
925 /* We can't have more dbufs than dnode holds. */
926 ASSERT3U(dbufs, <=, refcount);
927 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
928 uint32_t, dbufs);
929
930 if (refcount > dbufs) {
931 rw_exit(&odn->dn_struct_rwlock);
932 zrl_exit(&odn->dn_handle->dnh_zrlock);
933 mutex_exit(&os->os_lock);
934 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
935 return (KMEM_CBRC_LATER);
936 }
937
938 rw_exit(&odn->dn_struct_rwlock);
939
940 /*
941 * At this point we know that anyone with a hold on the dnode is not
942 * actively referencing it. The dnode is known and in a valid state to
943 * move. We're holding the locks needed to execute the critical section.
944 */
945 dnode_move_impl(odn, ndn);
946
947 list_link_replace(&odn->dn_link, &ndn->dn_link);
948 /* If the dnode was safe to move, the refcount cannot have changed. */
949 ASSERT(refcount == refcount_count(&ndn->dn_holds));
950 ASSERT(dbufs == ndn->dn_dbufs_count);
951 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
952 mutex_exit(&os->os_lock);
953
954 return (KMEM_CBRC_YES);
955 }
956 #endif /* _KERNEL */
957
958 void
959 dnode_special_close(dnode_handle_t *dnh)
960 {
961 dnode_t *dn = dnh->dnh_dnode;
962
963 /*
964 * Wait for final references to the dnode to clear. This can
965 * only happen if the arc is asyncronously evicting state that
966 * has a hold on this dnode while we are trying to evict this
967 * dnode.
968 */
969 while (refcount_count(&dn->dn_holds) > 0)
970 delay(1);
971 zrl_add(&dnh->dnh_zrlock);
972 dnode_destroy(dn); /* implicit zrl_remove() */
973 zrl_destroy(&dnh->dnh_zrlock);
974 dnh->dnh_dnode = NULL;
975 }
976
977 dnode_t *
978 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
979 dnode_handle_t *dnh)
980 {
981 dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
982 dnh->dnh_dnode = dn;
983 zrl_init(&dnh->dnh_zrlock);
984 DNODE_VERIFY(dn);
985 return (dn);
986 }
987
988 static void
989 dnode_buf_pageout(dmu_buf_t *db, void *arg)
990 {
991 dnode_children_t *children_dnodes = arg;
992 int i;
993 int epb = db->db_size >> DNODE_SHIFT;
994
995 ASSERT(epb == children_dnodes->dnc_count);
996
997 for (i = 0; i < epb; i++) {
998 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
999 dnode_t *dn;
1000
1001 /*
1002 * The dnode handle lock guards against the dnode moving to
1003 * another valid address, so there is no need here to guard
1004 * against changes to or from NULL.
1005 */
1006 if (dnh->dnh_dnode == NULL) {
1007 zrl_destroy(&dnh->dnh_zrlock);
1008 continue;
1009 }
1010
1011 zrl_add(&dnh->dnh_zrlock);
1012 dn = dnh->dnh_dnode;
1013 /*
1014 * If there are holds on this dnode, then there should
1015 * be holds on the dnode's containing dbuf as well; thus
1016 * it wouldn't be eligible for eviction and this function
1017 * would not have been called.
1018 */
1019 ASSERT(refcount_is_zero(&dn->dn_holds));
1020 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1021
1022 dnode_destroy(dn); /* implicit zrl_remove() */
1023 zrl_destroy(&dnh->dnh_zrlock);
1024 dnh->dnh_dnode = NULL;
1025 }
1026 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1027 epb * sizeof (dnode_handle_t));
1028 }
1029
1030 /*
1031 * errors:
1032 * EINVAL - invalid object number.
1033 * EIO - i/o error.
1034 * succeeds even for free dnodes.
1035 */
1036 int
1037 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1038 void *tag, dnode_t **dnp)
1039 {
1040 int epb, idx, err;
1041 int drop_struct_lock = FALSE;
1042 int type;
1043 uint64_t blk;
1044 dnode_t *mdn, *dn;
1045 dmu_buf_impl_t *db;
1046 dnode_children_t *children_dnodes;
1047 dnode_handle_t *dnh;
1048
1049 /*
1050 * If you are holding the spa config lock as writer, you shouldn't
1051 * be asking the DMU to do *anything* unless it's the root pool
1052 * which may require us to read from the root filesystem while
1053 * holding some (not all) of the locks as writer.
1054 */
1055 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1056 (spa_is_root(os->os_spa) &&
1057 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1058
1059 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1060 dn = (object == DMU_USERUSED_OBJECT) ?
1061 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1062 if (dn == NULL)
1063 return (SET_ERROR(ENOENT));
1064 type = dn->dn_type;
1065 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1066 return (SET_ERROR(ENOENT));
1067 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1068 return (SET_ERROR(EEXIST));
1069 DNODE_VERIFY(dn);
1070 (void) refcount_add(&dn->dn_holds, tag);
1071 *dnp = dn;
1072 return (0);
1073 }
1074
1075 if (object == 0 || object >= DN_MAX_OBJECT)
1076 return (SET_ERROR(EINVAL));
1077
1078 mdn = DMU_META_DNODE(os);
1079 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1080
1081 DNODE_VERIFY(mdn);
1082
1083 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1084 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1085 drop_struct_lock = TRUE;
1086 }
1087
1088 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1089
1090 db = dbuf_hold(mdn, blk, FTAG);
1091 if (drop_struct_lock)
1092 rw_exit(&mdn->dn_struct_rwlock);
1093 if (db == NULL)
1094 return (SET_ERROR(EIO));
1095 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1096 if (err) {
1097 dbuf_rele(db, FTAG);
1098 return (err);
1099 }
1100
1101 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1102 epb = db->db.db_size >> DNODE_SHIFT;
1103
1104 idx = object & (epb-1);
1105
1106 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1107 children_dnodes = dmu_buf_get_user(&db->db);
1108 if (children_dnodes == NULL) {
1109 int i;
1110 dnode_children_t *winner;
1111 children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1112 epb * sizeof (dnode_handle_t), KM_SLEEP);
1113 children_dnodes->dnc_count = epb;
1114 dnh = &children_dnodes->dnc_children[0];
1115 for (i = 0; i < epb; i++) {
1116 zrl_init(&dnh[i].dnh_zrlock);
1117 dnh[i].dnh_dnode = NULL;
1118 }
1119 if ((winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1120 dnode_buf_pageout))) {
1121
1122 for (i = 0; i < epb; i++) {
1123 zrl_destroy(&dnh[i].dnh_zrlock);
1124 }
1125
1126 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1127 epb * sizeof (dnode_handle_t));
1128 children_dnodes = winner;
1129 }
1130 }
1131 ASSERT(children_dnodes->dnc_count == epb);
1132
1133 dnh = &children_dnodes->dnc_children[idx];
1134 zrl_add(&dnh->dnh_zrlock);
1135 if ((dn = dnh->dnh_dnode) == NULL) {
1136 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1137 dnode_t *winner;
1138
1139 dn = dnode_create(os, phys, db, object, dnh);
1140 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1141 if (winner != NULL) {
1142 zrl_add(&dnh->dnh_zrlock);
1143 dnode_destroy(dn); /* implicit zrl_remove() */
1144 dn = winner;
1145 }
1146 }
1147
1148 mutex_enter(&dn->dn_mtx);
1149 type = dn->dn_type;
1150 if (dn->dn_free_txg ||
1151 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1152 ((flag & DNODE_MUST_BE_FREE) &&
1153 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1154 mutex_exit(&dn->dn_mtx);
1155 zrl_remove(&dnh->dnh_zrlock);
1156 dbuf_rele(db, FTAG);
1157 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1158 }
1159 mutex_exit(&dn->dn_mtx);
1160
1161 if (refcount_add(&dn->dn_holds, tag) == 1)
1162 dbuf_add_ref(db, dnh);
1163 /* Now we can rely on the hold to prevent the dnode from moving. */
1164 zrl_remove(&dnh->dnh_zrlock);
1165
1166 DNODE_VERIFY(dn);
1167 ASSERT3P(dn->dn_dbuf, ==, db);
1168 ASSERT3U(dn->dn_object, ==, object);
1169 dbuf_rele(db, FTAG);
1170
1171 *dnp = dn;
1172 return (0);
1173 }
1174
1175 /*
1176 * Return held dnode if the object is allocated, NULL if not.
1177 */
1178 int
1179 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1180 {
1181 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1182 }
1183
1184 /*
1185 * Can only add a reference if there is already at least one
1186 * reference on the dnode. Returns FALSE if unable to add a
1187 * new reference.
1188 */
1189 boolean_t
1190 dnode_add_ref(dnode_t *dn, void *tag)
1191 {
1192 mutex_enter(&dn->dn_mtx);
1193 if (refcount_is_zero(&dn->dn_holds)) {
1194 mutex_exit(&dn->dn_mtx);
1195 return (FALSE);
1196 }
1197 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1198 mutex_exit(&dn->dn_mtx);
1199 return (TRUE);
1200 }
1201
1202 void
1203 dnode_rele(dnode_t *dn, void *tag)
1204 {
1205 mutex_enter(&dn->dn_mtx);
1206 dnode_rele_and_unlock(dn, tag);
1207 }
1208
1209 void
1210 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1211 {
1212 uint64_t refs;
1213 /* Get while the hold prevents the dnode from moving. */
1214 dmu_buf_impl_t *db = dn->dn_dbuf;
1215 dnode_handle_t *dnh = dn->dn_handle;
1216
1217 refs = refcount_remove(&dn->dn_holds, tag);
1218 mutex_exit(&dn->dn_mtx);
1219
1220 /*
1221 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1222 * indirectly by dbuf_rele() while relying on the dnode handle to
1223 * prevent the dnode from moving, since releasing the last hold could
1224 * result in the dnode's parent dbuf evicting its dnode handles. For
1225 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1226 * other direct or indirect hold on the dnode must first drop the dnode
1227 * handle.
1228 */
1229 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1230
1231 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1232 if (refs == 0 && db != NULL) {
1233 /*
1234 * Another thread could add a hold to the dnode handle in
1235 * dnode_hold_impl() while holding the parent dbuf. Since the
1236 * hold on the parent dbuf prevents the handle from being
1237 * destroyed, the hold on the handle is OK. We can't yet assert
1238 * that the handle has zero references, but that will be
1239 * asserted anyway when the handle gets destroyed.
1240 */
1241 dbuf_rele(db, dnh);
1242 }
1243 }
1244
1245 void
1246 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1247 {
1248 objset_t *os = dn->dn_objset;
1249 uint64_t txg = tx->tx_txg;
1250
1251 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1252 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1253 return;
1254 }
1255
1256 DNODE_VERIFY(dn);
1257
1258 #ifdef ZFS_DEBUG
1259 mutex_enter(&dn->dn_mtx);
1260 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1261 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1262 mutex_exit(&dn->dn_mtx);
1263 #endif
1264
1265 /*
1266 * Determine old uid/gid when necessary
1267 */
1268 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1269
1270 mutex_enter(&os->os_lock);
1271
1272 /*
1273 * If we are already marked dirty, we're done.
1274 */
1275 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1276 mutex_exit(&os->os_lock);
1277 return;
1278 }
1279
1280 ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1281 !avl_is_empty(&dn->dn_dbufs));
1282 ASSERT(dn->dn_datablksz != 0);
1283 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1284 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1285 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1286
1287 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1288 dn->dn_object, txg);
1289
1290 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1291 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1292 } else {
1293 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1294 }
1295
1296 mutex_exit(&os->os_lock);
1297
1298 /*
1299 * The dnode maintains a hold on its containing dbuf as
1300 * long as there are holds on it. Each instantiated child
1301 * dbuf maintains a hold on the dnode. When the last child
1302 * drops its hold, the dnode will drop its hold on the
1303 * containing dbuf. We add a "dirty hold" here so that the
1304 * dnode will hang around after we finish processing its
1305 * children.
1306 */
1307 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1308
1309 (void) dbuf_dirty(dn->dn_dbuf, tx);
1310
1311 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1312 }
1313
1314 void
1315 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1316 {
1317 int txgoff = tx->tx_txg & TXG_MASK;
1318
1319 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1320
1321 /* we should be the only holder... hopefully */
1322 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1323
1324 mutex_enter(&dn->dn_mtx);
1325 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1326 mutex_exit(&dn->dn_mtx);
1327 return;
1328 }
1329 dn->dn_free_txg = tx->tx_txg;
1330 mutex_exit(&dn->dn_mtx);
1331
1332 /*
1333 * If the dnode is already dirty, it needs to be moved from
1334 * the dirty list to the free list.
1335 */
1336 mutex_enter(&dn->dn_objset->os_lock);
1337 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1338 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1339 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1340 mutex_exit(&dn->dn_objset->os_lock);
1341 } else {
1342 mutex_exit(&dn->dn_objset->os_lock);
1343 dnode_setdirty(dn, tx);
1344 }
1345 }
1346
1347 /*
1348 * Try to change the block size for the indicated dnode. This can only
1349 * succeed if there are no blocks allocated or dirty beyond first block
1350 */
1351 int
1352 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1353 {
1354 dmu_buf_impl_t *db;
1355 int err;
1356
1357 if (size == 0)
1358 size = SPA_MINBLOCKSIZE;
1359 if (size > SPA_MAXBLOCKSIZE)
1360 size = SPA_MAXBLOCKSIZE;
1361 else
1362 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1363
1364 if (ibs == dn->dn_indblkshift)
1365 ibs = 0;
1366
1367 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1368 return (0);
1369
1370 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1371
1372 /* Check for any allocated blocks beyond the first */
1373 if (dn->dn_maxblkid != 0)
1374 goto fail;
1375
1376 mutex_enter(&dn->dn_dbufs_mtx);
1377 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1378 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1379 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1380 db->db_blkid != DMU_SPILL_BLKID) {
1381 mutex_exit(&dn->dn_dbufs_mtx);
1382 goto fail;
1383 }
1384 }
1385 mutex_exit(&dn->dn_dbufs_mtx);
1386
1387 if (ibs && dn->dn_nlevels != 1)
1388 goto fail;
1389
1390 /* resize the old block */
1391 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1392 if (err == 0)
1393 dbuf_new_size(db, size, tx);
1394 else if (err != ENOENT)
1395 goto fail;
1396
1397 dnode_setdblksz(dn, size);
1398 dnode_setdirty(dn, tx);
1399 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1400 if (ibs) {
1401 dn->dn_indblkshift = ibs;
1402 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1403 }
1404 /* rele after we have fixed the blocksize in the dnode */
1405 if (db)
1406 dbuf_rele(db, FTAG);
1407
1408 rw_exit(&dn->dn_struct_rwlock);
1409 return (0);
1410
1411 fail:
1412 rw_exit(&dn->dn_struct_rwlock);
1413 return (SET_ERROR(ENOTSUP));
1414 }
1415
1416 /* read-holding callers must not rely on the lock being continuously held */
1417 void
1418 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1419 {
1420 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1421 int epbs, new_nlevels;
1422 uint64_t sz;
1423
1424 ASSERT(blkid != DMU_BONUS_BLKID);
1425
1426 ASSERT(have_read ?
1427 RW_READ_HELD(&dn->dn_struct_rwlock) :
1428 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1429
1430 /*
1431 * if we have a read-lock, check to see if we need to do any work
1432 * before upgrading to a write-lock.
1433 */
1434 if (have_read) {
1435 if (blkid <= dn->dn_maxblkid)
1436 return;
1437
1438 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1439 rw_exit(&dn->dn_struct_rwlock);
1440 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1441 }
1442 }
1443
1444 if (blkid <= dn->dn_maxblkid)
1445 goto out;
1446
1447 dn->dn_maxblkid = blkid;
1448
1449 /*
1450 * Compute the number of levels necessary to support the new maxblkid.
1451 */
1452 new_nlevels = 1;
1453 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1454 for (sz = dn->dn_nblkptr;
1455 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1456 new_nlevels++;
1457
1458 if (new_nlevels > dn->dn_nlevels) {
1459 int old_nlevels = dn->dn_nlevels;
1460 dmu_buf_impl_t *db;
1461 list_t *list;
1462 dbuf_dirty_record_t *new, *dr, *dr_next;
1463
1464 dn->dn_nlevels = new_nlevels;
1465
1466 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1467 dn->dn_next_nlevels[txgoff] = new_nlevels;
1468
1469 /* dirty the left indirects */
1470 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1471 ASSERT(db != NULL);
1472 new = dbuf_dirty(db, tx);
1473 dbuf_rele(db, FTAG);
1474
1475 /* transfer the dirty records to the new indirect */
1476 mutex_enter(&dn->dn_mtx);
1477 mutex_enter(&new->dt.di.dr_mtx);
1478 list = &dn->dn_dirty_records[txgoff];
1479 for (dr = list_head(list); dr; dr = dr_next) {
1480 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1481 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1482 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1483 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1484 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1485 list_remove(&dn->dn_dirty_records[txgoff], dr);
1486 list_insert_tail(&new->dt.di.dr_children, dr);
1487 dr->dr_parent = new;
1488 }
1489 }
1490 mutex_exit(&new->dt.di.dr_mtx);
1491 mutex_exit(&dn->dn_mtx);
1492 }
1493
1494 out:
1495 if (have_read)
1496 rw_downgrade(&dn->dn_struct_rwlock);
1497 }
1498
1499 void
1500 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1501 {
1502 dmu_buf_impl_t *db;
1503 uint64_t blkoff, blkid, nblks;
1504 int blksz, blkshift, head, tail;
1505 int trunc = FALSE;
1506 int epbs;
1507
1508 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1509 blksz = dn->dn_datablksz;
1510 blkshift = dn->dn_datablkshift;
1511 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1512
1513 if (len == DMU_OBJECT_END) {
1514 len = UINT64_MAX - off;
1515 trunc = TRUE;
1516 }
1517
1518 /*
1519 * First, block align the region to free:
1520 */
1521 if (ISP2(blksz)) {
1522 head = P2NPHASE(off, blksz);
1523 blkoff = P2PHASE(off, blksz);
1524 if ((off >> blkshift) > dn->dn_maxblkid)
1525 goto out;
1526 } else {
1527 ASSERT(dn->dn_maxblkid == 0);
1528 if (off == 0 && len >= blksz) {
1529 /*
1530 * Freeing the whole block; fast-track this request.
1531 * Note that we won't dirty any indirect blocks,
1532 * which is fine because we will be freeing the entire
1533 * file and thus all indirect blocks will be freed
1534 * by free_children().
1535 */
1536 blkid = 0;
1537 nblks = 1;
1538 goto done;
1539 } else if (off >= blksz) {
1540 /* Freeing past end-of-data */
1541 goto out;
1542 } else {
1543 /* Freeing part of the block. */
1544 head = blksz - off;
1545 ASSERT3U(head, >, 0);
1546 }
1547 blkoff = off;
1548 }
1549 /* zero out any partial block data at the start of the range */
1550 if (head) {
1551 ASSERT3U(blkoff + head, ==, blksz);
1552 if (len < head)
1553 head = len;
1554 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1555 FTAG, &db) == 0) {
1556 caddr_t data;
1557
1558 /* don't dirty if it isn't on disk and isn't dirty */
1559 if (db->db_last_dirty ||
1560 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1561 rw_exit(&dn->dn_struct_rwlock);
1562 dmu_buf_will_dirty(&db->db, tx);
1563 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1564 data = db->db.db_data;
1565 bzero(data + blkoff, head);
1566 }
1567 dbuf_rele(db, FTAG);
1568 }
1569 off += head;
1570 len -= head;
1571 }
1572
1573 /* If the range was less than one block, we're done */
1574 if (len == 0)
1575 goto out;
1576
1577 /* If the remaining range is past end of file, we're done */
1578 if ((off >> blkshift) > dn->dn_maxblkid)
1579 goto out;
1580
1581 ASSERT(ISP2(blksz));
1582 if (trunc)
1583 tail = 0;
1584 else
1585 tail = P2PHASE(len, blksz);
1586
1587 ASSERT0(P2PHASE(off, blksz));
1588 /* zero out any partial block data at the end of the range */
1589 if (tail) {
1590 if (len < tail)
1591 tail = len;
1592 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1593 TRUE, FTAG, &db) == 0) {
1594 /* don't dirty if not on disk and not dirty */
1595 if (db->db_last_dirty ||
1596 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1597 rw_exit(&dn->dn_struct_rwlock);
1598 dmu_buf_will_dirty(&db->db, tx);
1599 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1600 bzero(db->db.db_data, tail);
1601 }
1602 dbuf_rele(db, FTAG);
1603 }
1604 len -= tail;
1605 }
1606
1607 /* If the range did not include a full block, we are done */
1608 if (len == 0)
1609 goto out;
1610
1611 ASSERT(IS_P2ALIGNED(off, blksz));
1612 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1613 blkid = off >> blkshift;
1614 nblks = len >> blkshift;
1615 if (trunc)
1616 nblks += 1;
1617
1618 /*
1619 * Dirty the first and last indirect blocks, as they (and/or their
1620 * parents) will need to be written out if they were only
1621 * partially freed. Interior indirect blocks will be themselves freed,
1622 * by free_children(), so they need not be dirtied. Note that these
1623 * interior blocks have already been prefetched by dmu_tx_hold_free().
1624 */
1625 if (dn->dn_nlevels > 1) {
1626 uint64_t first, last;
1627
1628 first = blkid >> epbs;
1629 if ((db = dbuf_hold_level(dn, 1, first, FTAG))) {
1630 dmu_buf_will_dirty(&db->db, tx);
1631 dbuf_rele(db, FTAG);
1632 }
1633 if (trunc)
1634 last = dn->dn_maxblkid >> epbs;
1635 else
1636 last = (blkid + nblks - 1) >> epbs;
1637 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1638 dmu_buf_will_dirty(&db->db, tx);
1639 dbuf_rele(db, FTAG);
1640 }
1641 }
1642
1643 done:
1644 /*
1645 * Add this range to the dnode range list.
1646 * We will finish up this free operation in the syncing phase.
1647 */
1648 mutex_enter(&dn->dn_mtx);
1649 {
1650 int txgoff = tx->tx_txg & TXG_MASK;
1651 if (dn->dn_free_ranges[txgoff] == NULL) {
1652 dn->dn_free_ranges[txgoff] =
1653 range_tree_create(NULL, NULL, &dn->dn_mtx);
1654 }
1655 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1656 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1657 }
1658 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1659 blkid, nblks, tx->tx_txg);
1660 mutex_exit(&dn->dn_mtx);
1661
1662 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1663 dnode_setdirty(dn, tx);
1664 out:
1665
1666 rw_exit(&dn->dn_struct_rwlock);
1667 }
1668
1669 static boolean_t
1670 dnode_spill_freed(dnode_t *dn)
1671 {
1672 int i;
1673
1674 mutex_enter(&dn->dn_mtx);
1675 for (i = 0; i < TXG_SIZE; i++) {
1676 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1677 break;
1678 }
1679 mutex_exit(&dn->dn_mtx);
1680 return (i < TXG_SIZE);
1681 }
1682
1683 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1684 uint64_t
1685 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1686 {
1687 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1688 int i;
1689
1690 if (blkid == DMU_BONUS_BLKID)
1691 return (FALSE);
1692
1693 /*
1694 * If we're in the process of opening the pool, dp will not be
1695 * set yet, but there shouldn't be anything dirty.
1696 */
1697 if (dp == NULL)
1698 return (FALSE);
1699
1700 if (dn->dn_free_txg)
1701 return (TRUE);
1702
1703 if (blkid == DMU_SPILL_BLKID)
1704 return (dnode_spill_freed(dn));
1705
1706 mutex_enter(&dn->dn_mtx);
1707 for (i = 0; i < TXG_SIZE; i++) {
1708 if (dn->dn_free_ranges[i] != NULL &&
1709 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1710 break;
1711 }
1712 mutex_exit(&dn->dn_mtx);
1713 return (i < TXG_SIZE);
1714 }
1715
1716 /* call from syncing context when we actually write/free space for this dnode */
1717 void
1718 dnode_diduse_space(dnode_t *dn, int64_t delta)
1719 {
1720 uint64_t space;
1721 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1722 dn, dn->dn_phys,
1723 (u_longlong_t)dn->dn_phys->dn_used,
1724 (longlong_t)delta);
1725
1726 mutex_enter(&dn->dn_mtx);
1727 space = DN_USED_BYTES(dn->dn_phys);
1728 if (delta > 0) {
1729 ASSERT3U(space + delta, >=, space); /* no overflow */
1730 } else {
1731 ASSERT3U(space, >=, -delta); /* no underflow */
1732 }
1733 space += delta;
1734 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1735 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1736 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1737 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1738 } else {
1739 dn->dn_phys->dn_used = space;
1740 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1741 }
1742 mutex_exit(&dn->dn_mtx);
1743 }
1744
1745 /*
1746 * Call when we think we're going to write/free space in open context to track
1747 * the amount of memory in use by the currently open txg.
1748 */
1749 void
1750 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1751 {
1752 objset_t *os = dn->dn_objset;
1753 dsl_dataset_t *ds = os->os_dsl_dataset;
1754 int64_t aspace = spa_get_asize(os->os_spa, space);
1755
1756 if (ds != NULL) {
1757 dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1758 dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1759 }
1760
1761 dmu_tx_willuse_space(tx, aspace);
1762 }
1763
1764 /*
1765 * Scans a block at the indicated "level" looking for a hole or data,
1766 * depending on 'flags'.
1767 *
1768 * If level > 0, then we are scanning an indirect block looking at its
1769 * pointers. If level == 0, then we are looking at a block of dnodes.
1770 *
1771 * If we don't find what we are looking for in the block, we return ESRCH.
1772 * Otherwise, return with *offset pointing to the beginning (if searching
1773 * forwards) or end (if searching backwards) of the range covered by the
1774 * block pointer we matched on (or dnode).
1775 *
1776 * The basic search algorithm used below by dnode_next_offset() is to
1777 * use this function to search up the block tree (widen the search) until
1778 * we find something (i.e., we don't return ESRCH) and then search back
1779 * down the tree (narrow the search) until we reach our original search
1780 * level.
1781 */
1782 static int
1783 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1784 int lvl, uint64_t blkfill, uint64_t txg)
1785 {
1786 dmu_buf_impl_t *db = NULL;
1787 void *data = NULL;
1788 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1789 uint64_t epb = 1ULL << epbs;
1790 uint64_t minfill, maxfill;
1791 boolean_t hole;
1792 int i, inc, error, span;
1793
1794 dprintf("probing object %llu offset %llx level %d of %u\n",
1795 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1796
1797 hole = ((flags & DNODE_FIND_HOLE) != 0);
1798 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1799 ASSERT(txg == 0 || !hole);
1800
1801 if (lvl == dn->dn_phys->dn_nlevels) {
1802 error = 0;
1803 epb = dn->dn_phys->dn_nblkptr;
1804 data = dn->dn_phys->dn_blkptr;
1805 } else {
1806 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1807 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1808 if (error) {
1809 if (error != ENOENT)
1810 return (error);
1811 if (hole)
1812 return (0);
1813 /*
1814 * This can only happen when we are searching up
1815 * the block tree for data. We don't really need to
1816 * adjust the offset, as we will just end up looking
1817 * at the pointer to this block in its parent, and its
1818 * going to be unallocated, so we will skip over it.
1819 */
1820 return (SET_ERROR(ESRCH));
1821 }
1822 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1823 if (error) {
1824 dbuf_rele(db, FTAG);
1825 return (error);
1826 }
1827 data = db->db.db_data;
1828 }
1829
1830
1831 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1832 db->db_blkptr->blk_birth <= txg ||
1833 BP_IS_HOLE(db->db_blkptr))) {
1834 /*
1835 * This can only happen when we are searching up the tree
1836 * and these conditions mean that we need to keep climbing.
1837 */
1838 error = SET_ERROR(ESRCH);
1839 } else if (lvl == 0) {
1840 dnode_phys_t *dnp = data;
1841 span = DNODE_SHIFT;
1842 ASSERT(dn->dn_type == DMU_OT_DNODE);
1843
1844 for (i = (*offset >> span) & (blkfill - 1);
1845 i >= 0 && i < blkfill; i += inc) {
1846 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1847 break;
1848 *offset += (1ULL << span) * inc;
1849 }
1850 if (i < 0 || i == blkfill)
1851 error = SET_ERROR(ESRCH);
1852 } else {
1853 blkptr_t *bp = data;
1854 uint64_t start = *offset;
1855 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1856 minfill = 0;
1857 maxfill = blkfill << ((lvl - 1) * epbs);
1858
1859 if (hole)
1860 maxfill--;
1861 else
1862 minfill++;
1863
1864 *offset = *offset >> span;
1865 for (i = BF64_GET(*offset, 0, epbs);
1866 i >= 0 && i < epb; i += inc) {
1867 if (BP_GET_FILL(&bp[i]) >= minfill &&
1868 BP_GET_FILL(&bp[i]) <= maxfill &&
1869 (hole || bp[i].blk_birth > txg))
1870 break;
1871 if (inc > 0 || *offset > 0)
1872 *offset += inc;
1873 }
1874 *offset = *offset << span;
1875 if (inc < 0) {
1876 /* traversing backwards; position offset at the end */
1877 ASSERT3U(*offset, <=, start);
1878 *offset = MIN(*offset + (1ULL << span) - 1, start);
1879 } else if (*offset < start) {
1880 *offset = start;
1881 }
1882 if (i < 0 || i >= epb)
1883 error = SET_ERROR(ESRCH);
1884 }
1885
1886 if (db)
1887 dbuf_rele(db, FTAG);
1888
1889 return (error);
1890 }
1891
1892 /*
1893 * Find the next hole, data, or sparse region at or after *offset.
1894 * The value 'blkfill' tells us how many items we expect to find
1895 * in an L0 data block; this value is 1 for normal objects,
1896 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1897 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1898 *
1899 * Examples:
1900 *
1901 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1902 * Finds the next/previous hole/data in a file.
1903 * Used in dmu_offset_next().
1904 *
1905 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1906 * Finds the next free/allocated dnode an objset's meta-dnode.
1907 * Only finds objects that have new contents since txg (ie.
1908 * bonus buffer changes and content removal are ignored).
1909 * Used in dmu_object_next().
1910 *
1911 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1912 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
1913 * Used in dmu_object_alloc().
1914 */
1915 int
1916 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1917 int minlvl, uint64_t blkfill, uint64_t txg)
1918 {
1919 uint64_t initial_offset = *offset;
1920 int lvl, maxlvl;
1921 int error = 0;
1922
1923 if (!(flags & DNODE_FIND_HAVELOCK))
1924 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1925
1926 if (dn->dn_phys->dn_nlevels == 0) {
1927 error = SET_ERROR(ESRCH);
1928 goto out;
1929 }
1930
1931 if (dn->dn_datablkshift == 0) {
1932 if (*offset < dn->dn_datablksz) {
1933 if (flags & DNODE_FIND_HOLE)
1934 *offset = dn->dn_datablksz;
1935 } else {
1936 error = SET_ERROR(ESRCH);
1937 }
1938 goto out;
1939 }
1940
1941 maxlvl = dn->dn_phys->dn_nlevels;
1942
1943 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1944 error = dnode_next_offset_level(dn,
1945 flags, offset, lvl, blkfill, txg);
1946 if (error != ESRCH)
1947 break;
1948 }
1949
1950 while (error == 0 && --lvl >= minlvl) {
1951 error = dnode_next_offset_level(dn,
1952 flags, offset, lvl, blkfill, txg);
1953 }
1954
1955 /*
1956 * There's always a "virtual hole" at the end of the object, even
1957 * if all BP's which physically exist are non-holes.
1958 */
1959 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
1960 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
1961 error = 0;
1962 }
1963
1964 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1965 initial_offset < *offset : initial_offset > *offset))
1966 error = SET_ERROR(ESRCH);
1967 out:
1968 if (!(flags & DNODE_FIND_HAVELOCK))
1969 rw_exit(&dn->dn_struct_rwlock);
1970
1971 return (error);
1972 }