]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Initialize dn_next_type[] in the dnode constructor
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
42
43 dnode_stats_t dnode_stats = {
44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
59 { "dnode_allocate", KSTAT_DATA_UINT64 },
60 { "dnode_reallocate", KSTAT_DATA_UINT64 },
61 { "dnode_buf_evict", KSTAT_DATA_UINT64 },
62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
63 { "dnode_alloc_race", KSTAT_DATA_UINT64 },
64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
65 { "dnode_move_invalid", KSTAT_DATA_UINT64 },
66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 },
67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 },
68 { "dnode_move_special", KSTAT_DATA_UINT64 },
69 { "dnode_move_handle", KSTAT_DATA_UINT64 },
70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 },
71 { "dnode_move_active", KSTAT_DATA_UINT64 },
72 };
73
74 static kstat_t *dnode_ksp;
75 static kmem_cache_t *dnode_cache;
76
77 static dnode_phys_t dnode_phys_zero __maybe_unused;
78
79 int zfs_default_bs = SPA_MINBLOCKSHIFT;
80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
81
82 #ifdef _KERNEL
83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
84 #endif /* _KERNEL */
85
86 static int
87 dbuf_compare(const void *x1, const void *x2)
88 {
89 const dmu_buf_impl_t *d1 = x1;
90 const dmu_buf_impl_t *d2 = x2;
91
92 int cmp = TREE_CMP(d1->db_level, d2->db_level);
93 if (likely(cmp))
94 return (cmp);
95
96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
97 if (likely(cmp))
98 return (cmp);
99
100 if (d1->db_state == DB_SEARCH) {
101 ASSERT3S(d2->db_state, !=, DB_SEARCH);
102 return (-1);
103 } else if (d2->db_state == DB_SEARCH) {
104 ASSERT3S(d1->db_state, !=, DB_SEARCH);
105 return (1);
106 }
107
108 return (TREE_PCMP(d1, d2));
109 }
110
111 /* ARGSUSED */
112 static int
113 dnode_cons(void *arg, void *unused, int kmflag)
114 {
115 dnode_t *dn = arg;
116 int i;
117
118 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
119 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
120 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
121 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
122 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
123
124 /*
125 * Every dbuf has a reference, and dropping a tracked reference is
126 * O(number of references), so don't track dn_holds.
127 */
128 zfs_refcount_create_untracked(&dn->dn_holds);
129 zfs_refcount_create(&dn->dn_tx_holds);
130 list_link_init(&dn->dn_link);
131
132 bzero(&dn->dn_next_type[0], sizeof (dn->dn_next_type));
133 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
134 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
135 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
136 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
137 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
138 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
139 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
140 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
141
142 for (i = 0; i < TXG_SIZE; i++) {
143 multilist_link_init(&dn->dn_dirty_link[i]);
144 dn->dn_free_ranges[i] = NULL;
145 list_create(&dn->dn_dirty_records[i],
146 sizeof (dbuf_dirty_record_t),
147 offsetof(dbuf_dirty_record_t, dr_dirty_node));
148 }
149
150 dn->dn_allocated_txg = 0;
151 dn->dn_free_txg = 0;
152 dn->dn_assigned_txg = 0;
153 dn->dn_dirty_txg = 0;
154 dn->dn_dirtyctx = 0;
155 dn->dn_dirtyctx_firstset = NULL;
156 dn->dn_bonus = NULL;
157 dn->dn_have_spill = B_FALSE;
158 dn->dn_zio = NULL;
159 dn->dn_oldused = 0;
160 dn->dn_oldflags = 0;
161 dn->dn_olduid = 0;
162 dn->dn_oldgid = 0;
163 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
164 dn->dn_newuid = 0;
165 dn->dn_newgid = 0;
166 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
167 dn->dn_id_flags = 0;
168
169 dn->dn_dbufs_count = 0;
170 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
171 offsetof(dmu_buf_impl_t, db_link));
172
173 dn->dn_moved = 0;
174 return (0);
175 }
176
177 /* ARGSUSED */
178 static void
179 dnode_dest(void *arg, void *unused)
180 {
181 int i;
182 dnode_t *dn = arg;
183
184 rw_destroy(&dn->dn_struct_rwlock);
185 mutex_destroy(&dn->dn_mtx);
186 mutex_destroy(&dn->dn_dbufs_mtx);
187 cv_destroy(&dn->dn_notxholds);
188 cv_destroy(&dn->dn_nodnholds);
189 zfs_refcount_destroy(&dn->dn_holds);
190 zfs_refcount_destroy(&dn->dn_tx_holds);
191 ASSERT(!list_link_active(&dn->dn_link));
192
193 for (i = 0; i < TXG_SIZE; i++) {
194 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
195 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
196 list_destroy(&dn->dn_dirty_records[i]);
197 ASSERT0(dn->dn_next_nblkptr[i]);
198 ASSERT0(dn->dn_next_nlevels[i]);
199 ASSERT0(dn->dn_next_indblkshift[i]);
200 ASSERT0(dn->dn_next_bonustype[i]);
201 ASSERT0(dn->dn_rm_spillblk[i]);
202 ASSERT0(dn->dn_next_bonuslen[i]);
203 ASSERT0(dn->dn_next_blksz[i]);
204 ASSERT0(dn->dn_next_maxblkid[i]);
205 }
206
207 ASSERT0(dn->dn_allocated_txg);
208 ASSERT0(dn->dn_free_txg);
209 ASSERT0(dn->dn_assigned_txg);
210 ASSERT0(dn->dn_dirty_txg);
211 ASSERT0(dn->dn_dirtyctx);
212 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
213 ASSERT3P(dn->dn_bonus, ==, NULL);
214 ASSERT(!dn->dn_have_spill);
215 ASSERT3P(dn->dn_zio, ==, NULL);
216 ASSERT0(dn->dn_oldused);
217 ASSERT0(dn->dn_oldflags);
218 ASSERT0(dn->dn_olduid);
219 ASSERT0(dn->dn_oldgid);
220 ASSERT0(dn->dn_oldprojid);
221 ASSERT0(dn->dn_newuid);
222 ASSERT0(dn->dn_newgid);
223 ASSERT0(dn->dn_newprojid);
224 ASSERT0(dn->dn_id_flags);
225
226 ASSERT0(dn->dn_dbufs_count);
227 avl_destroy(&dn->dn_dbufs);
228 }
229
230 void
231 dnode_init(void)
232 {
233 ASSERT(dnode_cache == NULL);
234 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
235 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
236 kmem_cache_set_move(dnode_cache, dnode_move);
237
238 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
239 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
240 KSTAT_FLAG_VIRTUAL);
241 if (dnode_ksp != NULL) {
242 dnode_ksp->ks_data = &dnode_stats;
243 kstat_install(dnode_ksp);
244 }
245 }
246
247 void
248 dnode_fini(void)
249 {
250 if (dnode_ksp != NULL) {
251 kstat_delete(dnode_ksp);
252 dnode_ksp = NULL;
253 }
254
255 kmem_cache_destroy(dnode_cache);
256 dnode_cache = NULL;
257 }
258
259
260 #ifdef ZFS_DEBUG
261 void
262 dnode_verify(dnode_t *dn)
263 {
264 int drop_struct_lock = FALSE;
265
266 ASSERT(dn->dn_phys);
267 ASSERT(dn->dn_objset);
268 ASSERT(dn->dn_handle->dnh_dnode == dn);
269
270 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
271
272 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
273 return;
274
275 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
276 rw_enter(&dn->dn_struct_rwlock, RW_READER);
277 drop_struct_lock = TRUE;
278 }
279 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
280 int i;
281 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
282 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
283 if (dn->dn_datablkshift) {
284 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
285 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
286 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
287 }
288 ASSERT3U(dn->dn_nlevels, <=, 30);
289 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
290 ASSERT3U(dn->dn_nblkptr, >=, 1);
291 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
292 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
293 ASSERT3U(dn->dn_datablksz, ==,
294 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
295 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
296 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
297 dn->dn_bonuslen, <=, max_bonuslen);
298 for (i = 0; i < TXG_SIZE; i++) {
299 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
300 }
301 }
302 if (dn->dn_phys->dn_type != DMU_OT_NONE)
303 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
304 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
305 if (dn->dn_dbuf != NULL) {
306 ASSERT3P(dn->dn_phys, ==,
307 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
308 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
309 }
310 if (drop_struct_lock)
311 rw_exit(&dn->dn_struct_rwlock);
312 }
313 #endif
314
315 void
316 dnode_byteswap(dnode_phys_t *dnp)
317 {
318 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
319 int i;
320
321 if (dnp->dn_type == DMU_OT_NONE) {
322 bzero(dnp, sizeof (dnode_phys_t));
323 return;
324 }
325
326 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
327 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
328 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
329 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
330 dnp->dn_used = BSWAP_64(dnp->dn_used);
331
332 /*
333 * dn_nblkptr is only one byte, so it's OK to read it in either
334 * byte order. We can't read dn_bouslen.
335 */
336 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
337 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
338 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
339 buf64[i] = BSWAP_64(buf64[i]);
340
341 /*
342 * OK to check dn_bonuslen for zero, because it won't matter if
343 * we have the wrong byte order. This is necessary because the
344 * dnode dnode is smaller than a regular dnode.
345 */
346 if (dnp->dn_bonuslen != 0) {
347 /*
348 * Note that the bonus length calculated here may be
349 * longer than the actual bonus buffer. This is because
350 * we always put the bonus buffer after the last block
351 * pointer (instead of packing it against the end of the
352 * dnode buffer).
353 */
354 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
355 int slots = dnp->dn_extra_slots + 1;
356 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
357 dmu_object_byteswap_t byteswap;
358 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
359 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
360 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
361 }
362
363 /* Swap SPILL block if we have one */
364 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
365 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
366 }
367
368 void
369 dnode_buf_byteswap(void *vbuf, size_t size)
370 {
371 int i = 0;
372
373 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
374 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
375
376 while (i < size) {
377 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
378 dnode_byteswap(dnp);
379
380 i += DNODE_MIN_SIZE;
381 if (dnp->dn_type != DMU_OT_NONE)
382 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
383 }
384 }
385
386 void
387 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
388 {
389 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
390
391 dnode_setdirty(dn, tx);
392 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
393 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
394 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
395
396 if (newsize < dn->dn_bonuslen) {
397 /* clear any data after the end of the new size */
398 size_t diff = dn->dn_bonuslen - newsize;
399 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
400 bzero(data_end, diff);
401 }
402
403 dn->dn_bonuslen = newsize;
404 if (newsize == 0)
405 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
406 else
407 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
408 rw_exit(&dn->dn_struct_rwlock);
409 }
410
411 void
412 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
413 {
414 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
415 dnode_setdirty(dn, tx);
416 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
417 dn->dn_bonustype = newtype;
418 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
419 rw_exit(&dn->dn_struct_rwlock);
420 }
421
422 void
423 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
424 {
425 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
426 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
427 dnode_setdirty(dn, tx);
428 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
429 dn->dn_have_spill = B_FALSE;
430 }
431
432 static void
433 dnode_setdblksz(dnode_t *dn, int size)
434 {
435 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
436 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
437 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
438 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
439 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
440 dn->dn_datablksz = size;
441 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
442 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
443 }
444
445 static dnode_t *
446 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
447 uint64_t object, dnode_handle_t *dnh)
448 {
449 dnode_t *dn;
450
451 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
452 dn->dn_moved = 0;
453
454 /*
455 * Defer setting dn_objset until the dnode is ready to be a candidate
456 * for the dnode_move() callback.
457 */
458 dn->dn_object = object;
459 dn->dn_dbuf = db;
460 dn->dn_handle = dnh;
461 dn->dn_phys = dnp;
462
463 if (dnp->dn_datablkszsec) {
464 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
465 } else {
466 dn->dn_datablksz = 0;
467 dn->dn_datablkszsec = 0;
468 dn->dn_datablkshift = 0;
469 }
470 dn->dn_indblkshift = dnp->dn_indblkshift;
471 dn->dn_nlevels = dnp->dn_nlevels;
472 dn->dn_type = dnp->dn_type;
473 dn->dn_nblkptr = dnp->dn_nblkptr;
474 dn->dn_checksum = dnp->dn_checksum;
475 dn->dn_compress = dnp->dn_compress;
476 dn->dn_bonustype = dnp->dn_bonustype;
477 dn->dn_bonuslen = dnp->dn_bonuslen;
478 dn->dn_num_slots = dnp->dn_extra_slots + 1;
479 dn->dn_maxblkid = dnp->dn_maxblkid;
480 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
481 dn->dn_id_flags = 0;
482
483 dmu_zfetch_init(&dn->dn_zfetch, dn);
484
485 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
486 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
487 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
488
489 mutex_enter(&os->os_lock);
490
491 /*
492 * Exclude special dnodes from os_dnodes so an empty os_dnodes
493 * signifies that the special dnodes have no references from
494 * their children (the entries in os_dnodes). This allows
495 * dnode_destroy() to easily determine if the last child has
496 * been removed and then complete eviction of the objset.
497 */
498 if (!DMU_OBJECT_IS_SPECIAL(object))
499 list_insert_head(&os->os_dnodes, dn);
500 membar_producer();
501
502 /*
503 * Everything else must be valid before assigning dn_objset
504 * makes the dnode eligible for dnode_move().
505 */
506 dn->dn_objset = os;
507
508 dnh->dnh_dnode = dn;
509 mutex_exit(&os->os_lock);
510
511 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
512
513 return (dn);
514 }
515
516 /*
517 * Caller must be holding the dnode handle, which is released upon return.
518 */
519 static void
520 dnode_destroy(dnode_t *dn)
521 {
522 objset_t *os = dn->dn_objset;
523 boolean_t complete_os_eviction = B_FALSE;
524
525 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
526
527 mutex_enter(&os->os_lock);
528 POINTER_INVALIDATE(&dn->dn_objset);
529 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
530 list_remove(&os->os_dnodes, dn);
531 complete_os_eviction =
532 list_is_empty(&os->os_dnodes) &&
533 list_link_active(&os->os_evicting_node);
534 }
535 mutex_exit(&os->os_lock);
536
537 /* the dnode can no longer move, so we can release the handle */
538 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
539 zrl_remove(&dn->dn_handle->dnh_zrlock);
540
541 dn->dn_allocated_txg = 0;
542 dn->dn_free_txg = 0;
543 dn->dn_assigned_txg = 0;
544 dn->dn_dirty_txg = 0;
545
546 dn->dn_dirtyctx = 0;
547 dn->dn_dirtyctx_firstset = NULL;
548 if (dn->dn_bonus != NULL) {
549 mutex_enter(&dn->dn_bonus->db_mtx);
550 dbuf_destroy(dn->dn_bonus);
551 dn->dn_bonus = NULL;
552 }
553 dn->dn_zio = NULL;
554
555 dn->dn_have_spill = B_FALSE;
556 dn->dn_oldused = 0;
557 dn->dn_oldflags = 0;
558 dn->dn_olduid = 0;
559 dn->dn_oldgid = 0;
560 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
561 dn->dn_newuid = 0;
562 dn->dn_newgid = 0;
563 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
564 dn->dn_id_flags = 0;
565
566 dmu_zfetch_fini(&dn->dn_zfetch);
567 kmem_cache_free(dnode_cache, dn);
568 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
569
570 if (complete_os_eviction)
571 dmu_objset_evict_done(os);
572 }
573
574 void
575 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
576 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
577 {
578 int i;
579
580 ASSERT3U(dn_slots, >, 0);
581 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
582 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
583 ASSERT3U(blocksize, <=,
584 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
585 if (blocksize == 0)
586 blocksize = 1 << zfs_default_bs;
587 else
588 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
589
590 if (ibs == 0)
591 ibs = zfs_default_ibs;
592
593 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
594
595 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
596 dn->dn_objset, (u_longlong_t)dn->dn_object,
597 (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots);
598 DNODE_STAT_BUMP(dnode_allocate);
599
600 ASSERT(dn->dn_type == DMU_OT_NONE);
601 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
602 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
603 ASSERT(ot != DMU_OT_NONE);
604 ASSERT(DMU_OT_IS_VALID(ot));
605 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
606 (bonustype == DMU_OT_SA && bonuslen == 0) ||
607 (bonustype != DMU_OT_NONE && bonuslen != 0));
608 ASSERT(DMU_OT_IS_VALID(bonustype));
609 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
610 ASSERT(dn->dn_type == DMU_OT_NONE);
611 ASSERT0(dn->dn_maxblkid);
612 ASSERT0(dn->dn_allocated_txg);
613 ASSERT0(dn->dn_assigned_txg);
614 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
615 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
616 ASSERT(avl_is_empty(&dn->dn_dbufs));
617
618 for (i = 0; i < TXG_SIZE; i++) {
619 ASSERT0(dn->dn_next_nblkptr[i]);
620 ASSERT0(dn->dn_next_nlevels[i]);
621 ASSERT0(dn->dn_next_indblkshift[i]);
622 ASSERT0(dn->dn_next_bonuslen[i]);
623 ASSERT0(dn->dn_next_bonustype[i]);
624 ASSERT0(dn->dn_rm_spillblk[i]);
625 ASSERT0(dn->dn_next_blksz[i]);
626 ASSERT0(dn->dn_next_maxblkid[i]);
627 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
628 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
629 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
630 }
631
632 dn->dn_type = ot;
633 dnode_setdblksz(dn, blocksize);
634 dn->dn_indblkshift = ibs;
635 dn->dn_nlevels = 1;
636 dn->dn_num_slots = dn_slots;
637 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
638 dn->dn_nblkptr = 1;
639 else {
640 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
641 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
642 SPA_BLKPTRSHIFT));
643 }
644
645 dn->dn_bonustype = bonustype;
646 dn->dn_bonuslen = bonuslen;
647 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
648 dn->dn_compress = ZIO_COMPRESS_INHERIT;
649 dn->dn_dirtyctx = 0;
650
651 dn->dn_free_txg = 0;
652 dn->dn_dirtyctx_firstset = NULL;
653 dn->dn_dirty_txg = 0;
654
655 dn->dn_allocated_txg = tx->tx_txg;
656 dn->dn_id_flags = 0;
657
658 dnode_setdirty(dn, tx);
659 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
660 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
661 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
662 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
663 }
664
665 void
666 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
667 dmu_object_type_t bonustype, int bonuslen, int dn_slots,
668 boolean_t keep_spill, dmu_tx_t *tx)
669 {
670 int nblkptr;
671
672 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
673 ASSERT3U(blocksize, <=,
674 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
675 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
676 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
677 ASSERT(tx->tx_txg != 0);
678 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
679 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
680 (bonustype == DMU_OT_SA && bonuslen == 0));
681 ASSERT(DMU_OT_IS_VALID(bonustype));
682 ASSERT3U(bonuslen, <=,
683 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
684 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
685
686 dnode_free_interior_slots(dn);
687 DNODE_STAT_BUMP(dnode_reallocate);
688
689 /* clean up any unreferenced dbufs */
690 dnode_evict_dbufs(dn);
691
692 dn->dn_id_flags = 0;
693
694 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
695 dnode_setdirty(dn, tx);
696 if (dn->dn_datablksz != blocksize) {
697 /* change blocksize */
698 ASSERT0(dn->dn_maxblkid);
699 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
700 dnode_block_freed(dn, 0));
701
702 dnode_setdblksz(dn, blocksize);
703 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
704 }
705 if (dn->dn_bonuslen != bonuslen)
706 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
707
708 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
709 nblkptr = 1;
710 else
711 nblkptr = MIN(DN_MAX_NBLKPTR,
712 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
713 SPA_BLKPTRSHIFT));
714 if (dn->dn_bonustype != bonustype)
715 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
716 if (dn->dn_nblkptr != nblkptr)
717 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
718 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
719 dbuf_rm_spill(dn, tx);
720 dnode_rm_spill(dn, tx);
721 }
722
723 rw_exit(&dn->dn_struct_rwlock);
724
725 /* change type */
726 dn->dn_type = ot;
727
728 /* change bonus size and type */
729 mutex_enter(&dn->dn_mtx);
730 dn->dn_bonustype = bonustype;
731 dn->dn_bonuslen = bonuslen;
732 dn->dn_num_slots = dn_slots;
733 dn->dn_nblkptr = nblkptr;
734 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
735 dn->dn_compress = ZIO_COMPRESS_INHERIT;
736 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
737
738 /* fix up the bonus db_size */
739 if (dn->dn_bonus) {
740 dn->dn_bonus->db.db_size =
741 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
742 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
743 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
744 }
745
746 dn->dn_allocated_txg = tx->tx_txg;
747 mutex_exit(&dn->dn_mtx);
748 }
749
750 #ifdef _KERNEL
751 static void
752 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
753 {
754 int i;
755
756 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
757 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
758 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
759
760 /* Copy fields. */
761 ndn->dn_objset = odn->dn_objset;
762 ndn->dn_object = odn->dn_object;
763 ndn->dn_dbuf = odn->dn_dbuf;
764 ndn->dn_handle = odn->dn_handle;
765 ndn->dn_phys = odn->dn_phys;
766 ndn->dn_type = odn->dn_type;
767 ndn->dn_bonuslen = odn->dn_bonuslen;
768 ndn->dn_bonustype = odn->dn_bonustype;
769 ndn->dn_nblkptr = odn->dn_nblkptr;
770 ndn->dn_checksum = odn->dn_checksum;
771 ndn->dn_compress = odn->dn_compress;
772 ndn->dn_nlevels = odn->dn_nlevels;
773 ndn->dn_indblkshift = odn->dn_indblkshift;
774 ndn->dn_datablkshift = odn->dn_datablkshift;
775 ndn->dn_datablkszsec = odn->dn_datablkszsec;
776 ndn->dn_datablksz = odn->dn_datablksz;
777 ndn->dn_maxblkid = odn->dn_maxblkid;
778 ndn->dn_num_slots = odn->dn_num_slots;
779 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
780 sizeof (odn->dn_next_type));
781 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
782 sizeof (odn->dn_next_nblkptr));
783 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
784 sizeof (odn->dn_next_nlevels));
785 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
786 sizeof (odn->dn_next_indblkshift));
787 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
788 sizeof (odn->dn_next_bonustype));
789 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
790 sizeof (odn->dn_rm_spillblk));
791 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
792 sizeof (odn->dn_next_bonuslen));
793 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
794 sizeof (odn->dn_next_blksz));
795 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
796 sizeof (odn->dn_next_maxblkid));
797 for (i = 0; i < TXG_SIZE; i++) {
798 list_move_tail(&ndn->dn_dirty_records[i],
799 &odn->dn_dirty_records[i]);
800 }
801 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
802 sizeof (odn->dn_free_ranges));
803 ndn->dn_allocated_txg = odn->dn_allocated_txg;
804 ndn->dn_free_txg = odn->dn_free_txg;
805 ndn->dn_assigned_txg = odn->dn_assigned_txg;
806 ndn->dn_dirty_txg = odn->dn_dirty_txg;
807 ndn->dn_dirtyctx = odn->dn_dirtyctx;
808 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
809 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
810 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
811 ASSERT(avl_is_empty(&ndn->dn_dbufs));
812 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
813 ndn->dn_dbufs_count = odn->dn_dbufs_count;
814 ndn->dn_bonus = odn->dn_bonus;
815 ndn->dn_have_spill = odn->dn_have_spill;
816 ndn->dn_zio = odn->dn_zio;
817 ndn->dn_oldused = odn->dn_oldused;
818 ndn->dn_oldflags = odn->dn_oldflags;
819 ndn->dn_olduid = odn->dn_olduid;
820 ndn->dn_oldgid = odn->dn_oldgid;
821 ndn->dn_oldprojid = odn->dn_oldprojid;
822 ndn->dn_newuid = odn->dn_newuid;
823 ndn->dn_newgid = odn->dn_newgid;
824 ndn->dn_newprojid = odn->dn_newprojid;
825 ndn->dn_id_flags = odn->dn_id_flags;
826 dmu_zfetch_init(&ndn->dn_zfetch, ndn);
827
828 /*
829 * Update back pointers. Updating the handle fixes the back pointer of
830 * every descendant dbuf as well as the bonus dbuf.
831 */
832 ASSERT(ndn->dn_handle->dnh_dnode == odn);
833 ndn->dn_handle->dnh_dnode = ndn;
834
835 /*
836 * Invalidate the original dnode by clearing all of its back pointers.
837 */
838 odn->dn_dbuf = NULL;
839 odn->dn_handle = NULL;
840 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
841 offsetof(dmu_buf_impl_t, db_link));
842 odn->dn_dbufs_count = 0;
843 odn->dn_bonus = NULL;
844 dmu_zfetch_fini(&odn->dn_zfetch);
845
846 /*
847 * Set the low bit of the objset pointer to ensure that dnode_move()
848 * recognizes the dnode as invalid in any subsequent callback.
849 */
850 POINTER_INVALIDATE(&odn->dn_objset);
851
852 /*
853 * Satisfy the destructor.
854 */
855 for (i = 0; i < TXG_SIZE; i++) {
856 list_create(&odn->dn_dirty_records[i],
857 sizeof (dbuf_dirty_record_t),
858 offsetof(dbuf_dirty_record_t, dr_dirty_node));
859 odn->dn_free_ranges[i] = NULL;
860 odn->dn_next_nlevels[i] = 0;
861 odn->dn_next_indblkshift[i] = 0;
862 odn->dn_next_bonustype[i] = 0;
863 odn->dn_rm_spillblk[i] = 0;
864 odn->dn_next_bonuslen[i] = 0;
865 odn->dn_next_blksz[i] = 0;
866 }
867 odn->dn_allocated_txg = 0;
868 odn->dn_free_txg = 0;
869 odn->dn_assigned_txg = 0;
870 odn->dn_dirty_txg = 0;
871 odn->dn_dirtyctx = 0;
872 odn->dn_dirtyctx_firstset = NULL;
873 odn->dn_have_spill = B_FALSE;
874 odn->dn_zio = NULL;
875 odn->dn_oldused = 0;
876 odn->dn_oldflags = 0;
877 odn->dn_olduid = 0;
878 odn->dn_oldgid = 0;
879 odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
880 odn->dn_newuid = 0;
881 odn->dn_newgid = 0;
882 odn->dn_newprojid = ZFS_DEFAULT_PROJID;
883 odn->dn_id_flags = 0;
884
885 /*
886 * Mark the dnode.
887 */
888 ndn->dn_moved = 1;
889 odn->dn_moved = (uint8_t)-1;
890 }
891
892 /*ARGSUSED*/
893 static kmem_cbrc_t
894 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
895 {
896 dnode_t *odn = buf, *ndn = newbuf;
897 objset_t *os;
898 int64_t refcount;
899 uint32_t dbufs;
900
901 /*
902 * The dnode is on the objset's list of known dnodes if the objset
903 * pointer is valid. We set the low bit of the objset pointer when
904 * freeing the dnode to invalidate it, and the memory patterns written
905 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
906 * A newly created dnode sets the objset pointer last of all to indicate
907 * that the dnode is known and in a valid state to be moved by this
908 * function.
909 */
910 os = odn->dn_objset;
911 if (!POINTER_IS_VALID(os)) {
912 DNODE_STAT_BUMP(dnode_move_invalid);
913 return (KMEM_CBRC_DONT_KNOW);
914 }
915
916 /*
917 * Ensure that the objset does not go away during the move.
918 */
919 rw_enter(&os_lock, RW_WRITER);
920 if (os != odn->dn_objset) {
921 rw_exit(&os_lock);
922 DNODE_STAT_BUMP(dnode_move_recheck1);
923 return (KMEM_CBRC_DONT_KNOW);
924 }
925
926 /*
927 * If the dnode is still valid, then so is the objset. We know that no
928 * valid objset can be freed while we hold os_lock, so we can safely
929 * ensure that the objset remains in use.
930 */
931 mutex_enter(&os->os_lock);
932
933 /*
934 * Recheck the objset pointer in case the dnode was removed just before
935 * acquiring the lock.
936 */
937 if (os != odn->dn_objset) {
938 mutex_exit(&os->os_lock);
939 rw_exit(&os_lock);
940 DNODE_STAT_BUMP(dnode_move_recheck2);
941 return (KMEM_CBRC_DONT_KNOW);
942 }
943
944 /*
945 * At this point we know that as long as we hold os->os_lock, the dnode
946 * cannot be freed and fields within the dnode can be safely accessed.
947 * The objset listing this dnode cannot go away as long as this dnode is
948 * on its list.
949 */
950 rw_exit(&os_lock);
951 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
952 mutex_exit(&os->os_lock);
953 DNODE_STAT_BUMP(dnode_move_special);
954 return (KMEM_CBRC_NO);
955 }
956 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
957
958 /*
959 * Lock the dnode handle to prevent the dnode from obtaining any new
960 * holds. This also prevents the descendant dbufs and the bonus dbuf
961 * from accessing the dnode, so that we can discount their holds. The
962 * handle is safe to access because we know that while the dnode cannot
963 * go away, neither can its handle. Once we hold dnh_zrlock, we can
964 * safely move any dnode referenced only by dbufs.
965 */
966 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
967 mutex_exit(&os->os_lock);
968 DNODE_STAT_BUMP(dnode_move_handle);
969 return (KMEM_CBRC_LATER);
970 }
971
972 /*
973 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
974 * We need to guarantee that there is a hold for every dbuf in order to
975 * determine whether the dnode is actively referenced. Falsely matching
976 * a dbuf to an active hold would lead to an unsafe move. It's possible
977 * that a thread already having an active dnode hold is about to add a
978 * dbuf, and we can't compare hold and dbuf counts while the add is in
979 * progress.
980 */
981 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
982 zrl_exit(&odn->dn_handle->dnh_zrlock);
983 mutex_exit(&os->os_lock);
984 DNODE_STAT_BUMP(dnode_move_rwlock);
985 return (KMEM_CBRC_LATER);
986 }
987
988 /*
989 * A dbuf may be removed (evicted) without an active dnode hold. In that
990 * case, the dbuf count is decremented under the handle lock before the
991 * dbuf's hold is released. This order ensures that if we count the hold
992 * after the dbuf is removed but before its hold is released, we will
993 * treat the unmatched hold as active and exit safely. If we count the
994 * hold before the dbuf is removed, the hold is discounted, and the
995 * removal is blocked until the move completes.
996 */
997 refcount = zfs_refcount_count(&odn->dn_holds);
998 ASSERT(refcount >= 0);
999 dbufs = DN_DBUFS_COUNT(odn);
1000
1001 /* We can't have more dbufs than dnode holds. */
1002 ASSERT3U(dbufs, <=, refcount);
1003 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1004 uint32_t, dbufs);
1005
1006 if (refcount > dbufs) {
1007 rw_exit(&odn->dn_struct_rwlock);
1008 zrl_exit(&odn->dn_handle->dnh_zrlock);
1009 mutex_exit(&os->os_lock);
1010 DNODE_STAT_BUMP(dnode_move_active);
1011 return (KMEM_CBRC_LATER);
1012 }
1013
1014 rw_exit(&odn->dn_struct_rwlock);
1015
1016 /*
1017 * At this point we know that anyone with a hold on the dnode is not
1018 * actively referencing it. The dnode is known and in a valid state to
1019 * move. We're holding the locks needed to execute the critical section.
1020 */
1021 dnode_move_impl(odn, ndn);
1022
1023 list_link_replace(&odn->dn_link, &ndn->dn_link);
1024 /* If the dnode was safe to move, the refcount cannot have changed. */
1025 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1026 ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1027 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1028 mutex_exit(&os->os_lock);
1029
1030 return (KMEM_CBRC_YES);
1031 }
1032 #endif /* _KERNEL */
1033
1034 static void
1035 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1036 {
1037 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1038
1039 for (int i = idx; i < idx + slots; i++) {
1040 dnode_handle_t *dnh = &children->dnc_children[i];
1041 zrl_add(&dnh->dnh_zrlock);
1042 }
1043 }
1044
1045 static void
1046 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1047 {
1048 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1049
1050 for (int i = idx; i < idx + slots; i++) {
1051 dnode_handle_t *dnh = &children->dnc_children[i];
1052
1053 if (zrl_is_locked(&dnh->dnh_zrlock))
1054 zrl_exit(&dnh->dnh_zrlock);
1055 else
1056 zrl_remove(&dnh->dnh_zrlock);
1057 }
1058 }
1059
1060 static int
1061 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1062 {
1063 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1064
1065 for (int i = idx; i < idx + slots; i++) {
1066 dnode_handle_t *dnh = &children->dnc_children[i];
1067
1068 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1069 for (int j = idx; j < i; j++) {
1070 dnh = &children->dnc_children[j];
1071 zrl_exit(&dnh->dnh_zrlock);
1072 }
1073
1074 return (0);
1075 }
1076 }
1077
1078 return (1);
1079 }
1080
1081 static void
1082 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1083 {
1084 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1085
1086 for (int i = idx; i < idx + slots; i++) {
1087 dnode_handle_t *dnh = &children->dnc_children[i];
1088 dnh->dnh_dnode = ptr;
1089 }
1090 }
1091
1092 static boolean_t
1093 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1094 {
1095 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1096
1097 /*
1098 * If all dnode slots are either already free or
1099 * evictable return B_TRUE.
1100 */
1101 for (int i = idx; i < idx + slots; i++) {
1102 dnode_handle_t *dnh = &children->dnc_children[i];
1103 dnode_t *dn = dnh->dnh_dnode;
1104
1105 if (dn == DN_SLOT_FREE) {
1106 continue;
1107 } else if (DN_SLOT_IS_PTR(dn)) {
1108 mutex_enter(&dn->dn_mtx);
1109 boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1110 zfs_refcount_is_zero(&dn->dn_holds) &&
1111 !DNODE_IS_DIRTY(dn));
1112 mutex_exit(&dn->dn_mtx);
1113
1114 if (!can_free)
1115 return (B_FALSE);
1116 else
1117 continue;
1118 } else {
1119 return (B_FALSE);
1120 }
1121 }
1122
1123 return (B_TRUE);
1124 }
1125
1126 static void
1127 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1128 {
1129 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1130
1131 for (int i = idx; i < idx + slots; i++) {
1132 dnode_handle_t *dnh = &children->dnc_children[i];
1133
1134 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1135
1136 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1137 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1138 dnode_destroy(dnh->dnh_dnode);
1139 dnh->dnh_dnode = DN_SLOT_FREE;
1140 }
1141 }
1142 }
1143
1144 void
1145 dnode_free_interior_slots(dnode_t *dn)
1146 {
1147 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1148 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1149 int idx = (dn->dn_object & (epb - 1)) + 1;
1150 int slots = dn->dn_num_slots - 1;
1151
1152 if (slots == 0)
1153 return;
1154
1155 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1156
1157 while (!dnode_slots_tryenter(children, idx, slots)) {
1158 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1159 cond_resched();
1160 }
1161
1162 dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1163 dnode_slots_rele(children, idx, slots);
1164 }
1165
1166 void
1167 dnode_special_close(dnode_handle_t *dnh)
1168 {
1169 dnode_t *dn = dnh->dnh_dnode;
1170
1171 /*
1172 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1173 * zfs_refcount_remove()
1174 */
1175 mutex_enter(&dn->dn_mtx);
1176 if (zfs_refcount_count(&dn->dn_holds) > 0)
1177 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1178 mutex_exit(&dn->dn_mtx);
1179 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1180
1181 ASSERT(dn->dn_dbuf == NULL ||
1182 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1183 zrl_add(&dnh->dnh_zrlock);
1184 dnode_destroy(dn); /* implicit zrl_remove() */
1185 zrl_destroy(&dnh->dnh_zrlock);
1186 dnh->dnh_dnode = NULL;
1187 }
1188
1189 void
1190 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1191 dnode_handle_t *dnh)
1192 {
1193 dnode_t *dn;
1194
1195 zrl_init(&dnh->dnh_zrlock);
1196 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
1197
1198 dn = dnode_create(os, dnp, NULL, object, dnh);
1199 DNODE_VERIFY(dn);
1200
1201 zrl_exit(&dnh->dnh_zrlock);
1202 }
1203
1204 static void
1205 dnode_buf_evict_async(void *dbu)
1206 {
1207 dnode_children_t *dnc = dbu;
1208
1209 DNODE_STAT_BUMP(dnode_buf_evict);
1210
1211 for (int i = 0; i < dnc->dnc_count; i++) {
1212 dnode_handle_t *dnh = &dnc->dnc_children[i];
1213 dnode_t *dn;
1214
1215 /*
1216 * The dnode handle lock guards against the dnode moving to
1217 * another valid address, so there is no need here to guard
1218 * against changes to or from NULL.
1219 */
1220 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1221 zrl_destroy(&dnh->dnh_zrlock);
1222 dnh->dnh_dnode = DN_SLOT_UNINIT;
1223 continue;
1224 }
1225
1226 zrl_add(&dnh->dnh_zrlock);
1227 dn = dnh->dnh_dnode;
1228 /*
1229 * If there are holds on this dnode, then there should
1230 * be holds on the dnode's containing dbuf as well; thus
1231 * it wouldn't be eligible for eviction and this function
1232 * would not have been called.
1233 */
1234 ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1235 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1236
1237 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1238 zrl_destroy(&dnh->dnh_zrlock);
1239 dnh->dnh_dnode = DN_SLOT_UNINIT;
1240 }
1241 kmem_free(dnc, sizeof (dnode_children_t) +
1242 dnc->dnc_count * sizeof (dnode_handle_t));
1243 }
1244
1245 /*
1246 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1247 * to ensure the hole at the specified object offset is large enough to
1248 * hold the dnode being created. The slots parameter is also used to ensure
1249 * a dnode does not span multiple dnode blocks. In both of these cases, if
1250 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1251 * are only possible when using DNODE_MUST_BE_FREE.
1252 *
1253 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1254 * dnode_hold_impl() will check if the requested dnode is already consumed
1255 * as an extra dnode slot by an large dnode, in which case it returns
1256 * ENOENT.
1257 *
1258 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1259 * return whether the hold would succeed or not. tag and dnp should set to
1260 * NULL in this case.
1261 *
1262 * errors:
1263 * EINVAL - Invalid object number or flags.
1264 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1265 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1266 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1267 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1268 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1269 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1270 * EIO - I/O error when reading the meta dnode dbuf.
1271 *
1272 * succeeds even for free dnodes.
1273 */
1274 int
1275 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1276 void *tag, dnode_t **dnp)
1277 {
1278 int epb, idx, err;
1279 int drop_struct_lock = FALSE;
1280 int type;
1281 uint64_t blk;
1282 dnode_t *mdn, *dn;
1283 dmu_buf_impl_t *db;
1284 dnode_children_t *dnc;
1285 dnode_phys_t *dn_block;
1286 dnode_handle_t *dnh;
1287
1288 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1289 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1290 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1291
1292 /*
1293 * If you are holding the spa config lock as writer, you shouldn't
1294 * be asking the DMU to do *anything* unless it's the root pool
1295 * which may require us to read from the root filesystem while
1296 * holding some (not all) of the locks as writer.
1297 */
1298 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1299 (spa_is_root(os->os_spa) &&
1300 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1301
1302 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1303
1304 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1305 object == DMU_PROJECTUSED_OBJECT) {
1306 if (object == DMU_USERUSED_OBJECT)
1307 dn = DMU_USERUSED_DNODE(os);
1308 else if (object == DMU_GROUPUSED_OBJECT)
1309 dn = DMU_GROUPUSED_DNODE(os);
1310 else
1311 dn = DMU_PROJECTUSED_DNODE(os);
1312 if (dn == NULL)
1313 return (SET_ERROR(ENOENT));
1314 type = dn->dn_type;
1315 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1316 return (SET_ERROR(ENOENT));
1317 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1318 return (SET_ERROR(EEXIST));
1319 DNODE_VERIFY(dn);
1320 /* Don't actually hold if dry run, just return 0 */
1321 if (!(flag & DNODE_DRY_RUN)) {
1322 (void) zfs_refcount_add(&dn->dn_holds, tag);
1323 *dnp = dn;
1324 }
1325 return (0);
1326 }
1327
1328 if (object == 0 || object >= DN_MAX_OBJECT)
1329 return (SET_ERROR(EINVAL));
1330
1331 mdn = DMU_META_DNODE(os);
1332 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1333
1334 DNODE_VERIFY(mdn);
1335
1336 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1337 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1338 drop_struct_lock = TRUE;
1339 }
1340
1341 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1342 db = dbuf_hold(mdn, blk, FTAG);
1343 if (drop_struct_lock)
1344 rw_exit(&mdn->dn_struct_rwlock);
1345 if (db == NULL) {
1346 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1347 return (SET_ERROR(EIO));
1348 }
1349
1350 /*
1351 * We do not need to decrypt to read the dnode so it doesn't matter
1352 * if we get the encrypted or decrypted version.
1353 */
1354 err = dbuf_read(db, NULL, DB_RF_CANFAIL |
1355 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
1356 if (err) {
1357 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1358 dbuf_rele(db, FTAG);
1359 return (err);
1360 }
1361
1362 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1363 epb = db->db.db_size >> DNODE_SHIFT;
1364
1365 idx = object & (epb - 1);
1366 dn_block = (dnode_phys_t *)db->db.db_data;
1367
1368 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1369 dnc = dmu_buf_get_user(&db->db);
1370 dnh = NULL;
1371 if (dnc == NULL) {
1372 dnode_children_t *winner;
1373 int skip = 0;
1374
1375 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1376 epb * sizeof (dnode_handle_t), KM_SLEEP);
1377 dnc->dnc_count = epb;
1378 dnh = &dnc->dnc_children[0];
1379
1380 /* Initialize dnode slot status from dnode_phys_t */
1381 for (int i = 0; i < epb; i++) {
1382 zrl_init(&dnh[i].dnh_zrlock);
1383
1384 if (skip) {
1385 skip--;
1386 continue;
1387 }
1388
1389 if (dn_block[i].dn_type != DMU_OT_NONE) {
1390 int interior = dn_block[i].dn_extra_slots;
1391
1392 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1393 dnode_set_slots(dnc, i + 1, interior,
1394 DN_SLOT_INTERIOR);
1395 skip = interior;
1396 } else {
1397 dnh[i].dnh_dnode = DN_SLOT_FREE;
1398 skip = 0;
1399 }
1400 }
1401
1402 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1403 dnode_buf_evict_async, NULL);
1404 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1405 if (winner != NULL) {
1406
1407 for (int i = 0; i < epb; i++)
1408 zrl_destroy(&dnh[i].dnh_zrlock);
1409
1410 kmem_free(dnc, sizeof (dnode_children_t) +
1411 epb * sizeof (dnode_handle_t));
1412 dnc = winner;
1413 }
1414 }
1415
1416 ASSERT(dnc->dnc_count == epb);
1417
1418 if (flag & DNODE_MUST_BE_ALLOCATED) {
1419 slots = 1;
1420
1421 dnode_slots_hold(dnc, idx, slots);
1422 dnh = &dnc->dnc_children[idx];
1423
1424 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1425 dn = dnh->dnh_dnode;
1426 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1427 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1428 dnode_slots_rele(dnc, idx, slots);
1429 dbuf_rele(db, FTAG);
1430 return (SET_ERROR(EEXIST));
1431 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1432 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1433 dnode_slots_rele(dnc, idx, slots);
1434 dbuf_rele(db, FTAG);
1435 return (SET_ERROR(ENOENT));
1436 } else {
1437 dnode_slots_rele(dnc, idx, slots);
1438 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1439 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1440 cond_resched();
1441 }
1442
1443 /*
1444 * Someone else won the race and called dnode_create()
1445 * after we checked DN_SLOT_IS_PTR() above but before
1446 * we acquired the lock.
1447 */
1448 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1449 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1450 dn = dnh->dnh_dnode;
1451 } else {
1452 dn = dnode_create(os, dn_block + idx, db,
1453 object, dnh);
1454 }
1455 }
1456
1457 mutex_enter(&dn->dn_mtx);
1458 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1459 DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1460 mutex_exit(&dn->dn_mtx);
1461 dnode_slots_rele(dnc, idx, slots);
1462 dbuf_rele(db, FTAG);
1463 return (SET_ERROR(ENOENT));
1464 }
1465
1466 /* Don't actually hold if dry run, just return 0 */
1467 if (flag & DNODE_DRY_RUN) {
1468 mutex_exit(&dn->dn_mtx);
1469 dnode_slots_rele(dnc, idx, slots);
1470 dbuf_rele(db, FTAG);
1471 return (0);
1472 }
1473
1474 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1475 } else if (flag & DNODE_MUST_BE_FREE) {
1476
1477 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1478 DNODE_STAT_BUMP(dnode_hold_free_overflow);
1479 dbuf_rele(db, FTAG);
1480 return (SET_ERROR(ENOSPC));
1481 }
1482
1483 dnode_slots_hold(dnc, idx, slots);
1484
1485 if (!dnode_check_slots_free(dnc, idx, slots)) {
1486 DNODE_STAT_BUMP(dnode_hold_free_misses);
1487 dnode_slots_rele(dnc, idx, slots);
1488 dbuf_rele(db, FTAG);
1489 return (SET_ERROR(ENOSPC));
1490 }
1491
1492 dnode_slots_rele(dnc, idx, slots);
1493 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1494 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1495 cond_resched();
1496 }
1497
1498 if (!dnode_check_slots_free(dnc, idx, slots)) {
1499 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1500 dnode_slots_rele(dnc, idx, slots);
1501 dbuf_rele(db, FTAG);
1502 return (SET_ERROR(ENOSPC));
1503 }
1504
1505 /*
1506 * Allocated but otherwise free dnodes which would
1507 * be in the interior of a multi-slot dnodes need
1508 * to be freed. Single slot dnodes can be safely
1509 * re-purposed as a performance optimization.
1510 */
1511 if (slots > 1)
1512 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1513
1514 dnh = &dnc->dnc_children[idx];
1515 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1516 dn = dnh->dnh_dnode;
1517 } else {
1518 dn = dnode_create(os, dn_block + idx, db,
1519 object, dnh);
1520 }
1521
1522 mutex_enter(&dn->dn_mtx);
1523 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1524 DNODE_STAT_BUMP(dnode_hold_free_refcount);
1525 mutex_exit(&dn->dn_mtx);
1526 dnode_slots_rele(dnc, idx, slots);
1527 dbuf_rele(db, FTAG);
1528 return (SET_ERROR(EEXIST));
1529 }
1530
1531 /* Don't actually hold if dry run, just return 0 */
1532 if (flag & DNODE_DRY_RUN) {
1533 mutex_exit(&dn->dn_mtx);
1534 dnode_slots_rele(dnc, idx, slots);
1535 dbuf_rele(db, FTAG);
1536 return (0);
1537 }
1538
1539 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1540 DNODE_STAT_BUMP(dnode_hold_free_hits);
1541 } else {
1542 dbuf_rele(db, FTAG);
1543 return (SET_ERROR(EINVAL));
1544 }
1545
1546 ASSERT0(dn->dn_free_txg);
1547
1548 if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1549 dbuf_add_ref(db, dnh);
1550
1551 mutex_exit(&dn->dn_mtx);
1552
1553 /* Now we can rely on the hold to prevent the dnode from moving. */
1554 dnode_slots_rele(dnc, idx, slots);
1555
1556 DNODE_VERIFY(dn);
1557 ASSERT3P(dnp, !=, NULL);
1558 ASSERT3P(dn->dn_dbuf, ==, db);
1559 ASSERT3U(dn->dn_object, ==, object);
1560 dbuf_rele(db, FTAG);
1561
1562 *dnp = dn;
1563 return (0);
1564 }
1565
1566 /*
1567 * Return held dnode if the object is allocated, NULL if not.
1568 */
1569 int
1570 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1571 {
1572 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1573 dnp));
1574 }
1575
1576 /*
1577 * Can only add a reference if there is already at least one
1578 * reference on the dnode. Returns FALSE if unable to add a
1579 * new reference.
1580 */
1581 boolean_t
1582 dnode_add_ref(dnode_t *dn, void *tag)
1583 {
1584 mutex_enter(&dn->dn_mtx);
1585 if (zfs_refcount_is_zero(&dn->dn_holds)) {
1586 mutex_exit(&dn->dn_mtx);
1587 return (FALSE);
1588 }
1589 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1590 mutex_exit(&dn->dn_mtx);
1591 return (TRUE);
1592 }
1593
1594 void
1595 dnode_rele(dnode_t *dn, void *tag)
1596 {
1597 mutex_enter(&dn->dn_mtx);
1598 dnode_rele_and_unlock(dn, tag, B_FALSE);
1599 }
1600
1601 void
1602 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1603 {
1604 uint64_t refs;
1605 /* Get while the hold prevents the dnode from moving. */
1606 dmu_buf_impl_t *db = dn->dn_dbuf;
1607 dnode_handle_t *dnh = dn->dn_handle;
1608
1609 refs = zfs_refcount_remove(&dn->dn_holds, tag);
1610 if (refs == 0)
1611 cv_broadcast(&dn->dn_nodnholds);
1612 mutex_exit(&dn->dn_mtx);
1613 /* dnode could get destroyed at this point, so don't use it anymore */
1614
1615 /*
1616 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1617 * indirectly by dbuf_rele() while relying on the dnode handle to
1618 * prevent the dnode from moving, since releasing the last hold could
1619 * result in the dnode's parent dbuf evicting its dnode handles. For
1620 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1621 * other direct or indirect hold on the dnode must first drop the dnode
1622 * handle.
1623 */
1624 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1625
1626 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1627 if (refs == 0 && db != NULL) {
1628 /*
1629 * Another thread could add a hold to the dnode handle in
1630 * dnode_hold_impl() while holding the parent dbuf. Since the
1631 * hold on the parent dbuf prevents the handle from being
1632 * destroyed, the hold on the handle is OK. We can't yet assert
1633 * that the handle has zero references, but that will be
1634 * asserted anyway when the handle gets destroyed.
1635 */
1636 mutex_enter(&db->db_mtx);
1637 dbuf_rele_and_unlock(db, dnh, evicting);
1638 }
1639 }
1640
1641 /*
1642 * Test whether we can create a dnode at the specified location.
1643 */
1644 int
1645 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1646 {
1647 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1648 slots, NULL, NULL));
1649 }
1650
1651 void
1652 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1653 {
1654 objset_t *os = dn->dn_objset;
1655 uint64_t txg = tx->tx_txg;
1656
1657 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1658 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1659 return;
1660 }
1661
1662 DNODE_VERIFY(dn);
1663
1664 #ifdef ZFS_DEBUG
1665 mutex_enter(&dn->dn_mtx);
1666 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1667 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1668 mutex_exit(&dn->dn_mtx);
1669 #endif
1670
1671 /*
1672 * Determine old uid/gid when necessary
1673 */
1674 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1675
1676 multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK];
1677 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1678
1679 /*
1680 * If we are already marked dirty, we're done.
1681 */
1682 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1683 multilist_sublist_unlock(mls);
1684 return;
1685 }
1686
1687 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1688 !avl_is_empty(&dn->dn_dbufs));
1689 ASSERT(dn->dn_datablksz != 0);
1690 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1691 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1692 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1693
1694 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1695 (u_longlong_t)dn->dn_object, (u_longlong_t)txg);
1696
1697 multilist_sublist_insert_head(mls, dn);
1698
1699 multilist_sublist_unlock(mls);
1700
1701 /*
1702 * The dnode maintains a hold on its containing dbuf as
1703 * long as there are holds on it. Each instantiated child
1704 * dbuf maintains a hold on the dnode. When the last child
1705 * drops its hold, the dnode will drop its hold on the
1706 * containing dbuf. We add a "dirty hold" here so that the
1707 * dnode will hang around after we finish processing its
1708 * children.
1709 */
1710 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1711
1712 (void) dbuf_dirty(dn->dn_dbuf, tx);
1713
1714 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1715 }
1716
1717 void
1718 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1719 {
1720 mutex_enter(&dn->dn_mtx);
1721 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1722 mutex_exit(&dn->dn_mtx);
1723 return;
1724 }
1725 dn->dn_free_txg = tx->tx_txg;
1726 mutex_exit(&dn->dn_mtx);
1727
1728 dnode_setdirty(dn, tx);
1729 }
1730
1731 /*
1732 * Try to change the block size for the indicated dnode. This can only
1733 * succeed if there are no blocks allocated or dirty beyond first block
1734 */
1735 int
1736 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1737 {
1738 dmu_buf_impl_t *db;
1739 int err;
1740
1741 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1742 if (size == 0)
1743 size = SPA_MINBLOCKSIZE;
1744 else
1745 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1746
1747 if (ibs == dn->dn_indblkshift)
1748 ibs = 0;
1749
1750 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1751 return (0);
1752
1753 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1754
1755 /* Check for any allocated blocks beyond the first */
1756 if (dn->dn_maxblkid != 0)
1757 goto fail;
1758
1759 mutex_enter(&dn->dn_dbufs_mtx);
1760 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1761 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1762 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1763 db->db_blkid != DMU_SPILL_BLKID) {
1764 mutex_exit(&dn->dn_dbufs_mtx);
1765 goto fail;
1766 }
1767 }
1768 mutex_exit(&dn->dn_dbufs_mtx);
1769
1770 if (ibs && dn->dn_nlevels != 1)
1771 goto fail;
1772
1773 /* resize the old block */
1774 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1775 if (err == 0) {
1776 dbuf_new_size(db, size, tx);
1777 } else if (err != ENOENT) {
1778 goto fail;
1779 }
1780
1781 dnode_setdblksz(dn, size);
1782 dnode_setdirty(dn, tx);
1783 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1784 if (ibs) {
1785 dn->dn_indblkshift = ibs;
1786 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1787 }
1788 /* release after we have fixed the blocksize in the dnode */
1789 if (db)
1790 dbuf_rele(db, FTAG);
1791
1792 rw_exit(&dn->dn_struct_rwlock);
1793 return (0);
1794
1795 fail:
1796 rw_exit(&dn->dn_struct_rwlock);
1797 return (SET_ERROR(ENOTSUP));
1798 }
1799
1800 static void
1801 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1802 {
1803 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1804 int old_nlevels = dn->dn_nlevels;
1805 dmu_buf_impl_t *db;
1806 list_t *list;
1807 dbuf_dirty_record_t *new, *dr, *dr_next;
1808
1809 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1810
1811 ASSERT3U(new_nlevels, >, dn->dn_nlevels);
1812 dn->dn_nlevels = new_nlevels;
1813
1814 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1815 dn->dn_next_nlevels[txgoff] = new_nlevels;
1816
1817 /* dirty the left indirects */
1818 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1819 ASSERT(db != NULL);
1820 new = dbuf_dirty(db, tx);
1821 dbuf_rele(db, FTAG);
1822
1823 /* transfer the dirty records to the new indirect */
1824 mutex_enter(&dn->dn_mtx);
1825 mutex_enter(&new->dt.di.dr_mtx);
1826 list = &dn->dn_dirty_records[txgoff];
1827 for (dr = list_head(list); dr; dr = dr_next) {
1828 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1829
1830 IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1);
1831 if (dr->dr_dbuf == NULL ||
1832 (dr->dr_dbuf->db_level == old_nlevels - 1 &&
1833 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1834 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) {
1835 list_remove(&dn->dn_dirty_records[txgoff], dr);
1836 list_insert_tail(&new->dt.di.dr_children, dr);
1837 dr->dr_parent = new;
1838 }
1839 }
1840 mutex_exit(&new->dt.di.dr_mtx);
1841 mutex_exit(&dn->dn_mtx);
1842 }
1843
1844 int
1845 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1846 {
1847 int ret = 0;
1848
1849 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1850
1851 if (dn->dn_nlevels == nlevels) {
1852 ret = 0;
1853 goto out;
1854 } else if (nlevels < dn->dn_nlevels) {
1855 ret = SET_ERROR(EINVAL);
1856 goto out;
1857 }
1858
1859 dnode_set_nlevels_impl(dn, nlevels, tx);
1860
1861 out:
1862 rw_exit(&dn->dn_struct_rwlock);
1863 return (ret);
1864 }
1865
1866 /* read-holding callers must not rely on the lock being continuously held */
1867 void
1868 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1869 boolean_t force)
1870 {
1871 int epbs, new_nlevels;
1872 uint64_t sz;
1873
1874 ASSERT(blkid != DMU_BONUS_BLKID);
1875
1876 ASSERT(have_read ?
1877 RW_READ_HELD(&dn->dn_struct_rwlock) :
1878 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1879
1880 /*
1881 * if we have a read-lock, check to see if we need to do any work
1882 * before upgrading to a write-lock.
1883 */
1884 if (have_read) {
1885 if (blkid <= dn->dn_maxblkid)
1886 return;
1887
1888 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1889 rw_exit(&dn->dn_struct_rwlock);
1890 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1891 }
1892 }
1893
1894 /*
1895 * Raw sends (indicated by the force flag) require that we take the
1896 * given blkid even if the value is lower than the current value.
1897 */
1898 if (!force && blkid <= dn->dn_maxblkid)
1899 goto out;
1900
1901 /*
1902 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1903 * to indicate that this field is set. This allows us to set the
1904 * maxblkid to 0 on an existing object in dnode_sync().
1905 */
1906 dn->dn_maxblkid = blkid;
1907 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1908 blkid | DMU_NEXT_MAXBLKID_SET;
1909
1910 /*
1911 * Compute the number of levels necessary to support the new maxblkid.
1912 * Raw sends will ensure nlevels is set correctly for us.
1913 */
1914 new_nlevels = 1;
1915 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1916 for (sz = dn->dn_nblkptr;
1917 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1918 new_nlevels++;
1919
1920 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1921
1922 if (!force) {
1923 if (new_nlevels > dn->dn_nlevels)
1924 dnode_set_nlevels_impl(dn, new_nlevels, tx);
1925 } else {
1926 ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1927 }
1928
1929 out:
1930 if (have_read)
1931 rw_downgrade(&dn->dn_struct_rwlock);
1932 }
1933
1934 static void
1935 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1936 {
1937 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1938 if (db != NULL) {
1939 dmu_buf_will_dirty(&db->db, tx);
1940 dbuf_rele(db, FTAG);
1941 }
1942 }
1943
1944 /*
1945 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1946 * and end_blkid.
1947 */
1948 static void
1949 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1950 dmu_tx_t *tx)
1951 {
1952 dmu_buf_impl_t *db_search;
1953 dmu_buf_impl_t *db;
1954 avl_index_t where;
1955
1956 db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1957
1958 mutex_enter(&dn->dn_dbufs_mtx);
1959
1960 db_search->db_level = 1;
1961 db_search->db_blkid = start_blkid + 1;
1962 db_search->db_state = DB_SEARCH;
1963 for (;;) {
1964
1965 db = avl_find(&dn->dn_dbufs, db_search, &where);
1966 if (db == NULL)
1967 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1968
1969 if (db == NULL || db->db_level != 1 ||
1970 db->db_blkid >= end_blkid) {
1971 break;
1972 }
1973
1974 /*
1975 * Setup the next blkid we want to search for.
1976 */
1977 db_search->db_blkid = db->db_blkid + 1;
1978 ASSERT3U(db->db_blkid, >=, start_blkid);
1979
1980 /*
1981 * If the dbuf transitions to DB_EVICTING while we're trying
1982 * to dirty it, then we will be unable to discover it in
1983 * the dbuf hash table. This will result in a call to
1984 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1985 * lock. To avoid a deadlock, we drop the lock before
1986 * dirtying the level-1 dbuf.
1987 */
1988 mutex_exit(&dn->dn_dbufs_mtx);
1989 dnode_dirty_l1(dn, db->db_blkid, tx);
1990 mutex_enter(&dn->dn_dbufs_mtx);
1991 }
1992
1993 #ifdef ZFS_DEBUG
1994 /*
1995 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1996 */
1997 db_search->db_level = 1;
1998 db_search->db_blkid = start_blkid + 1;
1999 db_search->db_state = DB_SEARCH;
2000 db = avl_find(&dn->dn_dbufs, db_search, &where);
2001 if (db == NULL)
2002 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2003 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2004 if (db->db_level != 1 || db->db_blkid >= end_blkid)
2005 break;
2006 if (db->db_state != DB_EVICTING)
2007 ASSERT(db->db_dirtycnt > 0);
2008 }
2009 #endif
2010 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2011 mutex_exit(&dn->dn_dbufs_mtx);
2012 }
2013
2014 void
2015 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag)
2016 {
2017 /*
2018 * Don't set dirtyctx to SYNC if we're just modifying this as we
2019 * initialize the objset.
2020 */
2021 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2022 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2023
2024 if (ds != NULL) {
2025 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2026 }
2027 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2028 if (dmu_tx_is_syncing(tx))
2029 dn->dn_dirtyctx = DN_DIRTY_SYNC;
2030 else
2031 dn->dn_dirtyctx = DN_DIRTY_OPEN;
2032 dn->dn_dirtyctx_firstset = tag;
2033 }
2034 if (ds != NULL) {
2035 rrw_exit(&ds->ds_bp_rwlock, tag);
2036 }
2037 }
2038 }
2039
2040 void
2041 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2042 {
2043 dmu_buf_impl_t *db;
2044 uint64_t blkoff, blkid, nblks;
2045 int blksz, blkshift, head, tail;
2046 int trunc = FALSE;
2047 int epbs;
2048
2049 blksz = dn->dn_datablksz;
2050 blkshift = dn->dn_datablkshift;
2051 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2052
2053 if (len == DMU_OBJECT_END) {
2054 len = UINT64_MAX - off;
2055 trunc = TRUE;
2056 }
2057
2058 /*
2059 * First, block align the region to free:
2060 */
2061 if (ISP2(blksz)) {
2062 head = P2NPHASE(off, blksz);
2063 blkoff = P2PHASE(off, blksz);
2064 if ((off >> blkshift) > dn->dn_maxblkid)
2065 return;
2066 } else {
2067 ASSERT(dn->dn_maxblkid == 0);
2068 if (off == 0 && len >= blksz) {
2069 /*
2070 * Freeing the whole block; fast-track this request.
2071 */
2072 blkid = 0;
2073 nblks = 1;
2074 if (dn->dn_nlevels > 1) {
2075 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2076 dnode_dirty_l1(dn, 0, tx);
2077 rw_exit(&dn->dn_struct_rwlock);
2078 }
2079 goto done;
2080 } else if (off >= blksz) {
2081 /* Freeing past end-of-data */
2082 return;
2083 } else {
2084 /* Freeing part of the block. */
2085 head = blksz - off;
2086 ASSERT3U(head, >, 0);
2087 }
2088 blkoff = off;
2089 }
2090 /* zero out any partial block data at the start of the range */
2091 if (head) {
2092 int res;
2093 ASSERT3U(blkoff + head, ==, blksz);
2094 if (len < head)
2095 head = len;
2096 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2097 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2098 TRUE, FALSE, FTAG, &db);
2099 rw_exit(&dn->dn_struct_rwlock);
2100 if (res == 0) {
2101 caddr_t data;
2102 boolean_t dirty;
2103
2104 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER,
2105 FTAG);
2106 /* don't dirty if it isn't on disk and isn't dirty */
2107 dirty = !list_is_empty(&db->db_dirty_records) ||
2108 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2109 dmu_buf_unlock_parent(db, dblt, FTAG);
2110 if (dirty) {
2111 dmu_buf_will_dirty(&db->db, tx);
2112 data = db->db.db_data;
2113 bzero(data + blkoff, head);
2114 }
2115 dbuf_rele(db, FTAG);
2116 }
2117 off += head;
2118 len -= head;
2119 }
2120
2121 /* If the range was less than one block, we're done */
2122 if (len == 0)
2123 return;
2124
2125 /* If the remaining range is past end of file, we're done */
2126 if ((off >> blkshift) > dn->dn_maxblkid)
2127 return;
2128
2129 ASSERT(ISP2(blksz));
2130 if (trunc)
2131 tail = 0;
2132 else
2133 tail = P2PHASE(len, blksz);
2134
2135 ASSERT0(P2PHASE(off, blksz));
2136 /* zero out any partial block data at the end of the range */
2137 if (tail) {
2138 int res;
2139 if (len < tail)
2140 tail = len;
2141 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2142 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2143 TRUE, FALSE, FTAG, &db);
2144 rw_exit(&dn->dn_struct_rwlock);
2145 if (res == 0) {
2146 boolean_t dirty;
2147 /* don't dirty if not on disk and not dirty */
2148 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER,
2149 FTAG);
2150 dirty = !list_is_empty(&db->db_dirty_records) ||
2151 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2152 dmu_buf_unlock_parent(db, type, FTAG);
2153 if (dirty) {
2154 dmu_buf_will_dirty(&db->db, tx);
2155 bzero(db->db.db_data, tail);
2156 }
2157 dbuf_rele(db, FTAG);
2158 }
2159 len -= tail;
2160 }
2161
2162 /* If the range did not include a full block, we are done */
2163 if (len == 0)
2164 return;
2165
2166 ASSERT(IS_P2ALIGNED(off, blksz));
2167 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2168 blkid = off >> blkshift;
2169 nblks = len >> blkshift;
2170 if (trunc)
2171 nblks += 1;
2172
2173 /*
2174 * Dirty all the indirect blocks in this range. Note that only
2175 * the first and last indirect blocks can actually be written
2176 * (if they were partially freed) -- they must be dirtied, even if
2177 * they do not exist on disk yet. The interior blocks will
2178 * be freed by free_children(), so they will not actually be written.
2179 * Even though these interior blocks will not be written, we
2180 * dirty them for two reasons:
2181 *
2182 * - It ensures that the indirect blocks remain in memory until
2183 * syncing context. (They have already been prefetched by
2184 * dmu_tx_hold_free(), so we don't have to worry about reading
2185 * them serially here.)
2186 *
2187 * - The dirty space accounting will put pressure on the txg sync
2188 * mechanism to begin syncing, and to delay transactions if there
2189 * is a large amount of freeing. Even though these indirect
2190 * blocks will not be written, we could need to write the same
2191 * amount of space if we copy the freed BPs into deadlists.
2192 */
2193 if (dn->dn_nlevels > 1) {
2194 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2195 uint64_t first, last;
2196
2197 first = blkid >> epbs;
2198 dnode_dirty_l1(dn, first, tx);
2199 if (trunc)
2200 last = dn->dn_maxblkid >> epbs;
2201 else
2202 last = (blkid + nblks - 1) >> epbs;
2203 if (last != first)
2204 dnode_dirty_l1(dn, last, tx);
2205
2206 dnode_dirty_l1range(dn, first, last, tx);
2207
2208 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2209 SPA_BLKPTRSHIFT;
2210 for (uint64_t i = first + 1; i < last; i++) {
2211 /*
2212 * Set i to the blockid of the next non-hole
2213 * level-1 indirect block at or after i. Note
2214 * that dnode_next_offset() operates in terms of
2215 * level-0-equivalent bytes.
2216 */
2217 uint64_t ibyte = i << shift;
2218 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2219 &ibyte, 2, 1, 0);
2220 i = ibyte >> shift;
2221 if (i >= last)
2222 break;
2223
2224 /*
2225 * Normally we should not see an error, either
2226 * from dnode_next_offset() or dbuf_hold_level()
2227 * (except for ESRCH from dnode_next_offset).
2228 * If there is an i/o error, then when we read
2229 * this block in syncing context, it will use
2230 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2231 * to the "failmode" property. dnode_next_offset()
2232 * doesn't have a flag to indicate MUSTSUCCEED.
2233 */
2234 if (err != 0)
2235 break;
2236
2237 dnode_dirty_l1(dn, i, tx);
2238 }
2239 rw_exit(&dn->dn_struct_rwlock);
2240 }
2241
2242 done:
2243 /*
2244 * Add this range to the dnode range list.
2245 * We will finish up this free operation in the syncing phase.
2246 */
2247 mutex_enter(&dn->dn_mtx);
2248 {
2249 int txgoff = tx->tx_txg & TXG_MASK;
2250 if (dn->dn_free_ranges[txgoff] == NULL) {
2251 dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2252 RANGE_SEG64, NULL, 0, 0);
2253 }
2254 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2255 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2256 }
2257 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2258 (u_longlong_t)blkid, (u_longlong_t)nblks,
2259 (u_longlong_t)tx->tx_txg);
2260 mutex_exit(&dn->dn_mtx);
2261
2262 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2263 dnode_setdirty(dn, tx);
2264 }
2265
2266 static boolean_t
2267 dnode_spill_freed(dnode_t *dn)
2268 {
2269 int i;
2270
2271 mutex_enter(&dn->dn_mtx);
2272 for (i = 0; i < TXG_SIZE; i++) {
2273 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2274 break;
2275 }
2276 mutex_exit(&dn->dn_mtx);
2277 return (i < TXG_SIZE);
2278 }
2279
2280 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2281 uint64_t
2282 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2283 {
2284 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2285 int i;
2286
2287 if (blkid == DMU_BONUS_BLKID)
2288 return (FALSE);
2289
2290 /*
2291 * If we're in the process of opening the pool, dp will not be
2292 * set yet, but there shouldn't be anything dirty.
2293 */
2294 if (dp == NULL)
2295 return (FALSE);
2296
2297 if (dn->dn_free_txg)
2298 return (TRUE);
2299
2300 if (blkid == DMU_SPILL_BLKID)
2301 return (dnode_spill_freed(dn));
2302
2303 mutex_enter(&dn->dn_mtx);
2304 for (i = 0; i < TXG_SIZE; i++) {
2305 if (dn->dn_free_ranges[i] != NULL &&
2306 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2307 break;
2308 }
2309 mutex_exit(&dn->dn_mtx);
2310 return (i < TXG_SIZE);
2311 }
2312
2313 /* call from syncing context when we actually write/free space for this dnode */
2314 void
2315 dnode_diduse_space(dnode_t *dn, int64_t delta)
2316 {
2317 uint64_t space;
2318 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2319 dn, dn->dn_phys,
2320 (u_longlong_t)dn->dn_phys->dn_used,
2321 (longlong_t)delta);
2322
2323 mutex_enter(&dn->dn_mtx);
2324 space = DN_USED_BYTES(dn->dn_phys);
2325 if (delta > 0) {
2326 ASSERT3U(space + delta, >=, space); /* no overflow */
2327 } else {
2328 ASSERT3U(space, >=, -delta); /* no underflow */
2329 }
2330 space += delta;
2331 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2332 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2333 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2334 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2335 } else {
2336 dn->dn_phys->dn_used = space;
2337 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2338 }
2339 mutex_exit(&dn->dn_mtx);
2340 }
2341
2342 /*
2343 * Scans a block at the indicated "level" looking for a hole or data,
2344 * depending on 'flags'.
2345 *
2346 * If level > 0, then we are scanning an indirect block looking at its
2347 * pointers. If level == 0, then we are looking at a block of dnodes.
2348 *
2349 * If we don't find what we are looking for in the block, we return ESRCH.
2350 * Otherwise, return with *offset pointing to the beginning (if searching
2351 * forwards) or end (if searching backwards) of the range covered by the
2352 * block pointer we matched on (or dnode).
2353 *
2354 * The basic search algorithm used below by dnode_next_offset() is to
2355 * use this function to search up the block tree (widen the search) until
2356 * we find something (i.e., we don't return ESRCH) and then search back
2357 * down the tree (narrow the search) until we reach our original search
2358 * level.
2359 */
2360 static int
2361 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2362 int lvl, uint64_t blkfill, uint64_t txg)
2363 {
2364 dmu_buf_impl_t *db = NULL;
2365 void *data = NULL;
2366 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2367 uint64_t epb = 1ULL << epbs;
2368 uint64_t minfill, maxfill;
2369 boolean_t hole;
2370 int i, inc, error, span;
2371
2372 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2373
2374 hole = ((flags & DNODE_FIND_HOLE) != 0);
2375 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2376 ASSERT(txg == 0 || !hole);
2377
2378 if (lvl == dn->dn_phys->dn_nlevels) {
2379 error = 0;
2380 epb = dn->dn_phys->dn_nblkptr;
2381 data = dn->dn_phys->dn_blkptr;
2382 } else {
2383 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2384 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2385 if (error) {
2386 if (error != ENOENT)
2387 return (error);
2388 if (hole)
2389 return (0);
2390 /*
2391 * This can only happen when we are searching up
2392 * the block tree for data. We don't really need to
2393 * adjust the offset, as we will just end up looking
2394 * at the pointer to this block in its parent, and its
2395 * going to be unallocated, so we will skip over it.
2396 */
2397 return (SET_ERROR(ESRCH));
2398 }
2399 error = dbuf_read(db, NULL,
2400 DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
2401 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
2402 if (error) {
2403 dbuf_rele(db, FTAG);
2404 return (error);
2405 }
2406 data = db->db.db_data;
2407 rw_enter(&db->db_rwlock, RW_READER);
2408 }
2409
2410 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2411 db->db_blkptr->blk_birth <= txg ||
2412 BP_IS_HOLE(db->db_blkptr))) {
2413 /*
2414 * This can only happen when we are searching up the tree
2415 * and these conditions mean that we need to keep climbing.
2416 */
2417 error = SET_ERROR(ESRCH);
2418 } else if (lvl == 0) {
2419 dnode_phys_t *dnp = data;
2420
2421 ASSERT(dn->dn_type == DMU_OT_DNODE);
2422 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2423
2424 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2425 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2426 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2427 break;
2428 }
2429
2430 if (i == blkfill)
2431 error = SET_ERROR(ESRCH);
2432
2433 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2434 (i << DNODE_SHIFT);
2435 } else {
2436 blkptr_t *bp = data;
2437 uint64_t start = *offset;
2438 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2439 minfill = 0;
2440 maxfill = blkfill << ((lvl - 1) * epbs);
2441
2442 if (hole)
2443 maxfill--;
2444 else
2445 minfill++;
2446
2447 if (span >= 8 * sizeof (*offset)) {
2448 /* This only happens on the highest indirection level */
2449 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2450 *offset = 0;
2451 } else {
2452 *offset = *offset >> span;
2453 }
2454
2455 for (i = BF64_GET(*offset, 0, epbs);
2456 i >= 0 && i < epb; i += inc) {
2457 if (BP_GET_FILL(&bp[i]) >= minfill &&
2458 BP_GET_FILL(&bp[i]) <= maxfill &&
2459 (hole || bp[i].blk_birth > txg))
2460 break;
2461 if (inc > 0 || *offset > 0)
2462 *offset += inc;
2463 }
2464
2465 if (span >= 8 * sizeof (*offset)) {
2466 *offset = start;
2467 } else {
2468 *offset = *offset << span;
2469 }
2470
2471 if (inc < 0) {
2472 /* traversing backwards; position offset at the end */
2473 ASSERT3U(*offset, <=, start);
2474 *offset = MIN(*offset + (1ULL << span) - 1, start);
2475 } else if (*offset < start) {
2476 *offset = start;
2477 }
2478 if (i < 0 || i >= epb)
2479 error = SET_ERROR(ESRCH);
2480 }
2481
2482 if (db != NULL) {
2483 rw_exit(&db->db_rwlock);
2484 dbuf_rele(db, FTAG);
2485 }
2486
2487 return (error);
2488 }
2489
2490 /*
2491 * Find the next hole, data, or sparse region at or after *offset.
2492 * The value 'blkfill' tells us how many items we expect to find
2493 * in an L0 data block; this value is 1 for normal objects,
2494 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2495 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2496 *
2497 * Examples:
2498 *
2499 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2500 * Finds the next/previous hole/data in a file.
2501 * Used in dmu_offset_next().
2502 *
2503 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2504 * Finds the next free/allocated dnode an objset's meta-dnode.
2505 * Only finds objects that have new contents since txg (ie.
2506 * bonus buffer changes and content removal are ignored).
2507 * Used in dmu_object_next().
2508 *
2509 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2510 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2511 * Used in dmu_object_alloc().
2512 */
2513 int
2514 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2515 int minlvl, uint64_t blkfill, uint64_t txg)
2516 {
2517 uint64_t initial_offset = *offset;
2518 int lvl, maxlvl;
2519 int error = 0;
2520
2521 if (!(flags & DNODE_FIND_HAVELOCK))
2522 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2523
2524 if (dn->dn_phys->dn_nlevels == 0) {
2525 error = SET_ERROR(ESRCH);
2526 goto out;
2527 }
2528
2529 if (dn->dn_datablkshift == 0) {
2530 if (*offset < dn->dn_datablksz) {
2531 if (flags & DNODE_FIND_HOLE)
2532 *offset = dn->dn_datablksz;
2533 } else {
2534 error = SET_ERROR(ESRCH);
2535 }
2536 goto out;
2537 }
2538
2539 maxlvl = dn->dn_phys->dn_nlevels;
2540
2541 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2542 error = dnode_next_offset_level(dn,
2543 flags, offset, lvl, blkfill, txg);
2544 if (error != ESRCH)
2545 break;
2546 }
2547
2548 while (error == 0 && --lvl >= minlvl) {
2549 error = dnode_next_offset_level(dn,
2550 flags, offset, lvl, blkfill, txg);
2551 }
2552
2553 /*
2554 * There's always a "virtual hole" at the end of the object, even
2555 * if all BP's which physically exist are non-holes.
2556 */
2557 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2558 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2559 error = 0;
2560 }
2561
2562 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2563 initial_offset < *offset : initial_offset > *offset))
2564 error = SET_ERROR(ESRCH);
2565 out:
2566 if (!(flags & DNODE_FIND_HAVELOCK))
2567 rw_exit(&dn->dn_struct_rwlock);
2568
2569 return (error);
2570 }
2571
2572 #if defined(_KERNEL)
2573 EXPORT_SYMBOL(dnode_hold);
2574 EXPORT_SYMBOL(dnode_rele);
2575 EXPORT_SYMBOL(dnode_set_nlevels);
2576 EXPORT_SYMBOL(dnode_set_blksz);
2577 EXPORT_SYMBOL(dnode_free_range);
2578 EXPORT_SYMBOL(dnode_evict_dbufs);
2579 EXPORT_SYMBOL(dnode_evict_bonus);
2580 #endif