]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
OpenZFS 7614, 9064 - zfs device evacuation/removal
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_dnode.h>
41 #include <sys/zfs_project.h>
42
43 dnode_stats_t dnode_stats = {
44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
58 { "dnode_hold_free_txg", KSTAT_DATA_UINT64 },
59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
60 { "dnode_allocate", KSTAT_DATA_UINT64 },
61 { "dnode_reallocate", KSTAT_DATA_UINT64 },
62 { "dnode_buf_evict", KSTAT_DATA_UINT64 },
63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
64 { "dnode_alloc_race", KSTAT_DATA_UINT64 },
65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
66 { "dnode_move_invalid", KSTAT_DATA_UINT64 },
67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 },
68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 },
69 { "dnode_move_special", KSTAT_DATA_UINT64 },
70 { "dnode_move_handle", KSTAT_DATA_UINT64 },
71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 },
72 { "dnode_move_active", KSTAT_DATA_UINT64 },
73 };
74
75 static kstat_t *dnode_ksp;
76 static kmem_cache_t *dnode_cache;
77
78 ASSERTV(static dnode_phys_t dnode_phys_zero);
79
80 int zfs_default_bs = SPA_MINBLOCKSHIFT;
81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
82
83 #ifdef _KERNEL
84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
85 #endif /* _KERNEL */
86
87 static int
88 dbuf_compare(const void *x1, const void *x2)
89 {
90 const dmu_buf_impl_t *d1 = x1;
91 const dmu_buf_impl_t *d2 = x2;
92
93 int cmp = AVL_CMP(d1->db_level, d2->db_level);
94 if (likely(cmp))
95 return (cmp);
96
97 cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
98 if (likely(cmp))
99 return (cmp);
100
101 if (d1->db_state == DB_SEARCH) {
102 ASSERT3S(d2->db_state, !=, DB_SEARCH);
103 return (-1);
104 } else if (d2->db_state == DB_SEARCH) {
105 ASSERT3S(d1->db_state, !=, DB_SEARCH);
106 return (1);
107 }
108
109 return (AVL_PCMP(d1, d2));
110 }
111
112 /* ARGSUSED */
113 static int
114 dnode_cons(void *arg, void *unused, int kmflag)
115 {
116 dnode_t *dn = arg;
117 int i;
118
119 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
123
124 /*
125 * Every dbuf has a reference, and dropping a tracked reference is
126 * O(number of references), so don't track dn_holds.
127 */
128 refcount_create_untracked(&dn->dn_holds);
129 refcount_create(&dn->dn_tx_holds);
130 list_link_init(&dn->dn_link);
131
132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
140
141 for (i = 0; i < TXG_SIZE; i++) {
142 multilist_link_init(&dn->dn_dirty_link[i]);
143 dn->dn_free_ranges[i] = NULL;
144 list_create(&dn->dn_dirty_records[i],
145 sizeof (dbuf_dirty_record_t),
146 offsetof(dbuf_dirty_record_t, dr_dirty_node));
147 }
148
149 dn->dn_allocated_txg = 0;
150 dn->dn_free_txg = 0;
151 dn->dn_assigned_txg = 0;
152 dn->dn_dirty_txg = 0;
153 dn->dn_dirtyctx = 0;
154 dn->dn_dirtyctx_firstset = NULL;
155 dn->dn_bonus = NULL;
156 dn->dn_have_spill = B_FALSE;
157 dn->dn_zio = NULL;
158 dn->dn_oldused = 0;
159 dn->dn_oldflags = 0;
160 dn->dn_olduid = 0;
161 dn->dn_oldgid = 0;
162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
163 dn->dn_newuid = 0;
164 dn->dn_newgid = 0;
165 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
166 dn->dn_id_flags = 0;
167
168 dn->dn_dbufs_count = 0;
169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
170 offsetof(dmu_buf_impl_t, db_link));
171
172 dn->dn_moved = 0;
173 return (0);
174 }
175
176 /* ARGSUSED */
177 static void
178 dnode_dest(void *arg, void *unused)
179 {
180 int i;
181 dnode_t *dn = arg;
182
183 rw_destroy(&dn->dn_struct_rwlock);
184 mutex_destroy(&dn->dn_mtx);
185 mutex_destroy(&dn->dn_dbufs_mtx);
186 cv_destroy(&dn->dn_notxholds);
187 refcount_destroy(&dn->dn_holds);
188 refcount_destroy(&dn->dn_tx_holds);
189 ASSERT(!list_link_active(&dn->dn_link));
190
191 for (i = 0; i < TXG_SIZE; i++) {
192 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
193 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
194 list_destroy(&dn->dn_dirty_records[i]);
195 ASSERT0(dn->dn_next_nblkptr[i]);
196 ASSERT0(dn->dn_next_nlevels[i]);
197 ASSERT0(dn->dn_next_indblkshift[i]);
198 ASSERT0(dn->dn_next_bonustype[i]);
199 ASSERT0(dn->dn_rm_spillblk[i]);
200 ASSERT0(dn->dn_next_bonuslen[i]);
201 ASSERT0(dn->dn_next_blksz[i]);
202 ASSERT0(dn->dn_next_maxblkid[i]);
203 }
204
205 ASSERT0(dn->dn_allocated_txg);
206 ASSERT0(dn->dn_free_txg);
207 ASSERT0(dn->dn_assigned_txg);
208 ASSERT0(dn->dn_dirty_txg);
209 ASSERT0(dn->dn_dirtyctx);
210 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
211 ASSERT3P(dn->dn_bonus, ==, NULL);
212 ASSERT(!dn->dn_have_spill);
213 ASSERT3P(dn->dn_zio, ==, NULL);
214 ASSERT0(dn->dn_oldused);
215 ASSERT0(dn->dn_oldflags);
216 ASSERT0(dn->dn_olduid);
217 ASSERT0(dn->dn_oldgid);
218 ASSERT0(dn->dn_oldprojid);
219 ASSERT0(dn->dn_newuid);
220 ASSERT0(dn->dn_newgid);
221 ASSERT0(dn->dn_newprojid);
222 ASSERT0(dn->dn_id_flags);
223
224 ASSERT0(dn->dn_dbufs_count);
225 avl_destroy(&dn->dn_dbufs);
226 }
227
228 void
229 dnode_init(void)
230 {
231 ASSERT(dnode_cache == NULL);
232 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
233 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
234 kmem_cache_set_move(dnode_cache, dnode_move);
235
236 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
237 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
238 KSTAT_FLAG_VIRTUAL);
239 if (dnode_ksp != NULL) {
240 dnode_ksp->ks_data = &dnode_stats;
241 kstat_install(dnode_ksp);
242 }
243 }
244
245 void
246 dnode_fini(void)
247 {
248 if (dnode_ksp != NULL) {
249 kstat_delete(dnode_ksp);
250 dnode_ksp = NULL;
251 }
252
253 kmem_cache_destroy(dnode_cache);
254 dnode_cache = NULL;
255 }
256
257
258 #ifdef ZFS_DEBUG
259 void
260 dnode_verify(dnode_t *dn)
261 {
262 int drop_struct_lock = FALSE;
263
264 ASSERT(dn->dn_phys);
265 ASSERT(dn->dn_objset);
266 ASSERT(dn->dn_handle->dnh_dnode == dn);
267
268 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
269
270 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
271 return;
272
273 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
274 rw_enter(&dn->dn_struct_rwlock, RW_READER);
275 drop_struct_lock = TRUE;
276 }
277 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
278 int i;
279 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
280 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
281 if (dn->dn_datablkshift) {
282 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
283 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
284 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
285 }
286 ASSERT3U(dn->dn_nlevels, <=, 30);
287 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
288 ASSERT3U(dn->dn_nblkptr, >=, 1);
289 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
290 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
291 ASSERT3U(dn->dn_datablksz, ==,
292 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
293 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
294 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
295 dn->dn_bonuslen, <=, max_bonuslen);
296 for (i = 0; i < TXG_SIZE; i++) {
297 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
298 }
299 }
300 if (dn->dn_phys->dn_type != DMU_OT_NONE)
301 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
302 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
303 if (dn->dn_dbuf != NULL) {
304 ASSERT3P(dn->dn_phys, ==,
305 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
306 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
307 }
308 if (drop_struct_lock)
309 rw_exit(&dn->dn_struct_rwlock);
310 }
311 #endif
312
313 void
314 dnode_byteswap(dnode_phys_t *dnp)
315 {
316 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
317 int i;
318
319 if (dnp->dn_type == DMU_OT_NONE) {
320 bzero(dnp, sizeof (dnode_phys_t));
321 return;
322 }
323
324 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
325 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
326 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
327 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
328 dnp->dn_used = BSWAP_64(dnp->dn_used);
329
330 /*
331 * dn_nblkptr is only one byte, so it's OK to read it in either
332 * byte order. We can't read dn_bouslen.
333 */
334 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
335 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
336 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
337 buf64[i] = BSWAP_64(buf64[i]);
338
339 /*
340 * OK to check dn_bonuslen for zero, because it won't matter if
341 * we have the wrong byte order. This is necessary because the
342 * dnode dnode is smaller than a regular dnode.
343 */
344 if (dnp->dn_bonuslen != 0) {
345 /*
346 * Note that the bonus length calculated here may be
347 * longer than the actual bonus buffer. This is because
348 * we always put the bonus buffer after the last block
349 * pointer (instead of packing it against the end of the
350 * dnode buffer).
351 */
352 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
353 int slots = dnp->dn_extra_slots + 1;
354 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
355 dmu_object_byteswap_t byteswap;
356 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
357 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
358 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
359 }
360
361 /* Swap SPILL block if we have one */
362 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
363 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
364 }
365
366 void
367 dnode_buf_byteswap(void *vbuf, size_t size)
368 {
369 int i = 0;
370
371 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
372 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
373
374 while (i < size) {
375 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
376 dnode_byteswap(dnp);
377
378 i += DNODE_MIN_SIZE;
379 if (dnp->dn_type != DMU_OT_NONE)
380 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
381 }
382 }
383
384 void
385 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
386 {
387 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
388
389 dnode_setdirty(dn, tx);
390 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
391 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
392 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
393 dn->dn_bonuslen = newsize;
394 if (newsize == 0)
395 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
396 else
397 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
398 rw_exit(&dn->dn_struct_rwlock);
399 }
400
401 void
402 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
403 {
404 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
405 dnode_setdirty(dn, tx);
406 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
407 dn->dn_bonustype = newtype;
408 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
409 rw_exit(&dn->dn_struct_rwlock);
410 }
411
412 void
413 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
414 {
415 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
416 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
417 dnode_setdirty(dn, tx);
418 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
419 dn->dn_have_spill = B_FALSE;
420 }
421
422 static void
423 dnode_setdblksz(dnode_t *dn, int size)
424 {
425 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
426 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
427 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
428 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
429 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
430 dn->dn_datablksz = size;
431 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
432 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
433 }
434
435 static dnode_t *
436 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
437 uint64_t object, dnode_handle_t *dnh)
438 {
439 dnode_t *dn;
440
441 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
442 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
443 dn->dn_moved = 0;
444
445 /*
446 * Defer setting dn_objset until the dnode is ready to be a candidate
447 * for the dnode_move() callback.
448 */
449 dn->dn_object = object;
450 dn->dn_dbuf = db;
451 dn->dn_handle = dnh;
452 dn->dn_phys = dnp;
453
454 if (dnp->dn_datablkszsec) {
455 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
456 } else {
457 dn->dn_datablksz = 0;
458 dn->dn_datablkszsec = 0;
459 dn->dn_datablkshift = 0;
460 }
461 dn->dn_indblkshift = dnp->dn_indblkshift;
462 dn->dn_nlevels = dnp->dn_nlevels;
463 dn->dn_type = dnp->dn_type;
464 dn->dn_nblkptr = dnp->dn_nblkptr;
465 dn->dn_checksum = dnp->dn_checksum;
466 dn->dn_compress = dnp->dn_compress;
467 dn->dn_bonustype = dnp->dn_bonustype;
468 dn->dn_bonuslen = dnp->dn_bonuslen;
469 dn->dn_num_slots = dnp->dn_extra_slots + 1;
470 dn->dn_maxblkid = dnp->dn_maxblkid;
471 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
472 dn->dn_id_flags = 0;
473
474 dmu_zfetch_init(&dn->dn_zfetch, dn);
475
476 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
477 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
478 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
479
480 mutex_enter(&os->os_lock);
481
482 /*
483 * Exclude special dnodes from os_dnodes so an empty os_dnodes
484 * signifies that the special dnodes have no references from
485 * their children (the entries in os_dnodes). This allows
486 * dnode_destroy() to easily determine if the last child has
487 * been removed and then complete eviction of the objset.
488 */
489 if (!DMU_OBJECT_IS_SPECIAL(object))
490 list_insert_head(&os->os_dnodes, dn);
491 membar_producer();
492
493 /*
494 * Everything else must be valid before assigning dn_objset
495 * makes the dnode eligible for dnode_move().
496 */
497 dn->dn_objset = os;
498
499 dnh->dnh_dnode = dn;
500 mutex_exit(&os->os_lock);
501
502 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
503
504 return (dn);
505 }
506
507 /*
508 * Caller must be holding the dnode handle, which is released upon return.
509 */
510 static void
511 dnode_destroy(dnode_t *dn)
512 {
513 objset_t *os = dn->dn_objset;
514 boolean_t complete_os_eviction = B_FALSE;
515
516 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
517
518 mutex_enter(&os->os_lock);
519 POINTER_INVALIDATE(&dn->dn_objset);
520 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
521 list_remove(&os->os_dnodes, dn);
522 complete_os_eviction =
523 list_is_empty(&os->os_dnodes) &&
524 list_link_active(&os->os_evicting_node);
525 }
526 mutex_exit(&os->os_lock);
527
528 /* the dnode can no longer move, so we can release the handle */
529 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
530 zrl_remove(&dn->dn_handle->dnh_zrlock);
531
532 dn->dn_allocated_txg = 0;
533 dn->dn_free_txg = 0;
534 dn->dn_assigned_txg = 0;
535 dn->dn_dirty_txg = 0;
536
537 dn->dn_dirtyctx = 0;
538 if (dn->dn_dirtyctx_firstset != NULL) {
539 kmem_free(dn->dn_dirtyctx_firstset, 1);
540 dn->dn_dirtyctx_firstset = NULL;
541 }
542 if (dn->dn_bonus != NULL) {
543 mutex_enter(&dn->dn_bonus->db_mtx);
544 dbuf_destroy(dn->dn_bonus);
545 dn->dn_bonus = NULL;
546 }
547 dn->dn_zio = NULL;
548
549 dn->dn_have_spill = B_FALSE;
550 dn->dn_oldused = 0;
551 dn->dn_oldflags = 0;
552 dn->dn_olduid = 0;
553 dn->dn_oldgid = 0;
554 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
555 dn->dn_newuid = 0;
556 dn->dn_newgid = 0;
557 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
558 dn->dn_id_flags = 0;
559
560 dmu_zfetch_fini(&dn->dn_zfetch);
561 kmem_cache_free(dnode_cache, dn);
562 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
563
564 if (complete_os_eviction)
565 dmu_objset_evict_done(os);
566 }
567
568 void
569 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
570 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
571 {
572 int i;
573
574 ASSERT3U(dn_slots, >, 0);
575 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
576 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
577 ASSERT3U(blocksize, <=,
578 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
579 if (blocksize == 0)
580 blocksize = 1 << zfs_default_bs;
581 else
582 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
583
584 if (ibs == 0)
585 ibs = zfs_default_ibs;
586
587 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
588
589 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
590 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
591 DNODE_STAT_BUMP(dnode_allocate);
592
593 ASSERT(dn->dn_type == DMU_OT_NONE);
594 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
595 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
596 ASSERT(ot != DMU_OT_NONE);
597 ASSERT(DMU_OT_IS_VALID(ot));
598 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
599 (bonustype == DMU_OT_SA && bonuslen == 0) ||
600 (bonustype != DMU_OT_NONE && bonuslen != 0));
601 ASSERT(DMU_OT_IS_VALID(bonustype));
602 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
603 ASSERT(dn->dn_type == DMU_OT_NONE);
604 ASSERT0(dn->dn_maxblkid);
605 ASSERT0(dn->dn_allocated_txg);
606 ASSERT0(dn->dn_assigned_txg);
607 ASSERT0(dn->dn_dirty_txg);
608 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
609 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
610 ASSERT(avl_is_empty(&dn->dn_dbufs));
611
612 for (i = 0; i < TXG_SIZE; i++) {
613 ASSERT0(dn->dn_next_nblkptr[i]);
614 ASSERT0(dn->dn_next_nlevels[i]);
615 ASSERT0(dn->dn_next_indblkshift[i]);
616 ASSERT0(dn->dn_next_bonuslen[i]);
617 ASSERT0(dn->dn_next_bonustype[i]);
618 ASSERT0(dn->dn_rm_spillblk[i]);
619 ASSERT0(dn->dn_next_blksz[i]);
620 ASSERT0(dn->dn_next_maxblkid[i]);
621 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
622 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
623 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
624 }
625
626 dn->dn_type = ot;
627 dnode_setdblksz(dn, blocksize);
628 dn->dn_indblkshift = ibs;
629 dn->dn_nlevels = 1;
630 dn->dn_num_slots = dn_slots;
631 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
632 dn->dn_nblkptr = 1;
633 else {
634 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
635 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
636 SPA_BLKPTRSHIFT));
637 }
638
639 dn->dn_bonustype = bonustype;
640 dn->dn_bonuslen = bonuslen;
641 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
642 dn->dn_compress = ZIO_COMPRESS_INHERIT;
643 dn->dn_dirtyctx = 0;
644
645 dn->dn_free_txg = 0;
646 if (dn->dn_dirtyctx_firstset) {
647 kmem_free(dn->dn_dirtyctx_firstset, 1);
648 dn->dn_dirtyctx_firstset = NULL;
649 }
650
651 dn->dn_allocated_txg = tx->tx_txg;
652 dn->dn_id_flags = 0;
653
654 dnode_setdirty(dn, tx);
655 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
656 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
657 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
658 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
659 }
660
661 void
662 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
663 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
664 {
665 int nblkptr;
666
667 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
668 ASSERT3U(blocksize, <=,
669 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
670 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
671 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
672 ASSERT(tx->tx_txg != 0);
673 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
674 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
675 (bonustype == DMU_OT_SA && bonuslen == 0));
676 ASSERT(DMU_OT_IS_VALID(bonustype));
677 ASSERT3U(bonuslen, <=,
678 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
679
680 dn_slots = dn_slots > 0 ? dn_slots : DNODE_MIN_SLOTS;
681
682 dnode_free_interior_slots(dn);
683 DNODE_STAT_BUMP(dnode_reallocate);
684
685 /* clean up any unreferenced dbufs */
686 dnode_evict_dbufs(dn);
687
688 dn->dn_id_flags = 0;
689
690 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
691 dnode_setdirty(dn, tx);
692 if (dn->dn_datablksz != blocksize) {
693 /* change blocksize */
694 ASSERT(dn->dn_maxblkid == 0 &&
695 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
696 dnode_block_freed(dn, 0)));
697 dnode_setdblksz(dn, blocksize);
698 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
699 }
700 if (dn->dn_bonuslen != bonuslen)
701 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
702
703 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
704 nblkptr = 1;
705 else
706 nblkptr = MIN(DN_MAX_NBLKPTR,
707 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
708 SPA_BLKPTRSHIFT));
709 if (dn->dn_bonustype != bonustype)
710 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
711 if (dn->dn_nblkptr != nblkptr)
712 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
713 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
714 dbuf_rm_spill(dn, tx);
715 dnode_rm_spill(dn, tx);
716 }
717 rw_exit(&dn->dn_struct_rwlock);
718
719 /* change type */
720 dn->dn_type = ot;
721
722 /* change bonus size and type */
723 mutex_enter(&dn->dn_mtx);
724 dn->dn_bonustype = bonustype;
725 dn->dn_bonuslen = bonuslen;
726 dn->dn_num_slots = dn_slots;
727 dn->dn_nblkptr = nblkptr;
728 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
729 dn->dn_compress = ZIO_COMPRESS_INHERIT;
730 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
731
732 /* fix up the bonus db_size */
733 if (dn->dn_bonus) {
734 dn->dn_bonus->db.db_size =
735 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
736 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
737 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
738 }
739
740 dn->dn_allocated_txg = tx->tx_txg;
741 mutex_exit(&dn->dn_mtx);
742 }
743
744 #ifdef _KERNEL
745 static void
746 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
747 {
748 int i;
749
750 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
751 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
752 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
753 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
754
755 /* Copy fields. */
756 ndn->dn_objset = odn->dn_objset;
757 ndn->dn_object = odn->dn_object;
758 ndn->dn_dbuf = odn->dn_dbuf;
759 ndn->dn_handle = odn->dn_handle;
760 ndn->dn_phys = odn->dn_phys;
761 ndn->dn_type = odn->dn_type;
762 ndn->dn_bonuslen = odn->dn_bonuslen;
763 ndn->dn_bonustype = odn->dn_bonustype;
764 ndn->dn_nblkptr = odn->dn_nblkptr;
765 ndn->dn_checksum = odn->dn_checksum;
766 ndn->dn_compress = odn->dn_compress;
767 ndn->dn_nlevels = odn->dn_nlevels;
768 ndn->dn_indblkshift = odn->dn_indblkshift;
769 ndn->dn_datablkshift = odn->dn_datablkshift;
770 ndn->dn_datablkszsec = odn->dn_datablkszsec;
771 ndn->dn_datablksz = odn->dn_datablksz;
772 ndn->dn_maxblkid = odn->dn_maxblkid;
773 ndn->dn_num_slots = odn->dn_num_slots;
774 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
775 sizeof (odn->dn_next_nblkptr));
776 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
777 sizeof (odn->dn_next_nlevels));
778 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
779 sizeof (odn->dn_next_indblkshift));
780 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
781 sizeof (odn->dn_next_bonustype));
782 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
783 sizeof (odn->dn_rm_spillblk));
784 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
785 sizeof (odn->dn_next_bonuslen));
786 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
787 sizeof (odn->dn_next_blksz));
788 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
789 sizeof (odn->dn_next_maxblkid));
790 for (i = 0; i < TXG_SIZE; i++) {
791 list_move_tail(&ndn->dn_dirty_records[i],
792 &odn->dn_dirty_records[i]);
793 }
794 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
795 sizeof (odn->dn_free_ranges));
796 ndn->dn_allocated_txg = odn->dn_allocated_txg;
797 ndn->dn_free_txg = odn->dn_free_txg;
798 ndn->dn_assigned_txg = odn->dn_assigned_txg;
799 ndn->dn_dirty_txg = odn->dn_dirty_txg;
800 ndn->dn_dirtyctx = odn->dn_dirtyctx;
801 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
802 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
803 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
804 ASSERT(avl_is_empty(&ndn->dn_dbufs));
805 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
806 ndn->dn_dbufs_count = odn->dn_dbufs_count;
807 ndn->dn_bonus = odn->dn_bonus;
808 ndn->dn_have_spill = odn->dn_have_spill;
809 ndn->dn_zio = odn->dn_zio;
810 ndn->dn_oldused = odn->dn_oldused;
811 ndn->dn_oldflags = odn->dn_oldflags;
812 ndn->dn_olduid = odn->dn_olduid;
813 ndn->dn_oldgid = odn->dn_oldgid;
814 ndn->dn_oldprojid = odn->dn_oldprojid;
815 ndn->dn_newuid = odn->dn_newuid;
816 ndn->dn_newgid = odn->dn_newgid;
817 ndn->dn_newprojid = odn->dn_newprojid;
818 ndn->dn_id_flags = odn->dn_id_flags;
819 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
820 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
821 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
822
823 /*
824 * Update back pointers. Updating the handle fixes the back pointer of
825 * every descendant dbuf as well as the bonus dbuf.
826 */
827 ASSERT(ndn->dn_handle->dnh_dnode == odn);
828 ndn->dn_handle->dnh_dnode = ndn;
829 if (ndn->dn_zfetch.zf_dnode == odn) {
830 ndn->dn_zfetch.zf_dnode = ndn;
831 }
832
833 /*
834 * Invalidate the original dnode by clearing all of its back pointers.
835 */
836 odn->dn_dbuf = NULL;
837 odn->dn_handle = NULL;
838 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
839 offsetof(dmu_buf_impl_t, db_link));
840 odn->dn_dbufs_count = 0;
841 odn->dn_bonus = NULL;
842 odn->dn_zfetch.zf_dnode = NULL;
843
844 /*
845 * Set the low bit of the objset pointer to ensure that dnode_move()
846 * recognizes the dnode as invalid in any subsequent callback.
847 */
848 POINTER_INVALIDATE(&odn->dn_objset);
849
850 /*
851 * Satisfy the destructor.
852 */
853 for (i = 0; i < TXG_SIZE; i++) {
854 list_create(&odn->dn_dirty_records[i],
855 sizeof (dbuf_dirty_record_t),
856 offsetof(dbuf_dirty_record_t, dr_dirty_node));
857 odn->dn_free_ranges[i] = NULL;
858 odn->dn_next_nlevels[i] = 0;
859 odn->dn_next_indblkshift[i] = 0;
860 odn->dn_next_bonustype[i] = 0;
861 odn->dn_rm_spillblk[i] = 0;
862 odn->dn_next_bonuslen[i] = 0;
863 odn->dn_next_blksz[i] = 0;
864 }
865 odn->dn_allocated_txg = 0;
866 odn->dn_free_txg = 0;
867 odn->dn_assigned_txg = 0;
868 odn->dn_dirty_txg = 0;
869 odn->dn_dirtyctx = 0;
870 odn->dn_dirtyctx_firstset = NULL;
871 odn->dn_have_spill = B_FALSE;
872 odn->dn_zio = NULL;
873 odn->dn_oldused = 0;
874 odn->dn_oldflags = 0;
875 odn->dn_olduid = 0;
876 odn->dn_oldgid = 0;
877 odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
878 odn->dn_newuid = 0;
879 odn->dn_newgid = 0;
880 odn->dn_newprojid = ZFS_DEFAULT_PROJID;
881 odn->dn_id_flags = 0;
882
883 /*
884 * Mark the dnode.
885 */
886 ndn->dn_moved = 1;
887 odn->dn_moved = (uint8_t)-1;
888 }
889
890 /*ARGSUSED*/
891 static kmem_cbrc_t
892 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
893 {
894 dnode_t *odn = buf, *ndn = newbuf;
895 objset_t *os;
896 int64_t refcount;
897 uint32_t dbufs;
898
899 /*
900 * The dnode is on the objset's list of known dnodes if the objset
901 * pointer is valid. We set the low bit of the objset pointer when
902 * freeing the dnode to invalidate it, and the memory patterns written
903 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
904 * A newly created dnode sets the objset pointer last of all to indicate
905 * that the dnode is known and in a valid state to be moved by this
906 * function.
907 */
908 os = odn->dn_objset;
909 if (!POINTER_IS_VALID(os)) {
910 DNODE_STAT_BUMP(dnode_move_invalid);
911 return (KMEM_CBRC_DONT_KNOW);
912 }
913
914 /*
915 * Ensure that the objset does not go away during the move.
916 */
917 rw_enter(&os_lock, RW_WRITER);
918 if (os != odn->dn_objset) {
919 rw_exit(&os_lock);
920 DNODE_STAT_BUMP(dnode_move_recheck1);
921 return (KMEM_CBRC_DONT_KNOW);
922 }
923
924 /*
925 * If the dnode is still valid, then so is the objset. We know that no
926 * valid objset can be freed while we hold os_lock, so we can safely
927 * ensure that the objset remains in use.
928 */
929 mutex_enter(&os->os_lock);
930
931 /*
932 * Recheck the objset pointer in case the dnode was removed just before
933 * acquiring the lock.
934 */
935 if (os != odn->dn_objset) {
936 mutex_exit(&os->os_lock);
937 rw_exit(&os_lock);
938 DNODE_STAT_BUMP(dnode_move_recheck2);
939 return (KMEM_CBRC_DONT_KNOW);
940 }
941
942 /*
943 * At this point we know that as long as we hold os->os_lock, the dnode
944 * cannot be freed and fields within the dnode can be safely accessed.
945 * The objset listing this dnode cannot go away as long as this dnode is
946 * on its list.
947 */
948 rw_exit(&os_lock);
949 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
950 mutex_exit(&os->os_lock);
951 DNODE_STAT_BUMP(dnode_move_special);
952 return (KMEM_CBRC_NO);
953 }
954 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
955
956 /*
957 * Lock the dnode handle to prevent the dnode from obtaining any new
958 * holds. This also prevents the descendant dbufs and the bonus dbuf
959 * from accessing the dnode, so that we can discount their holds. The
960 * handle is safe to access because we know that while the dnode cannot
961 * go away, neither can its handle. Once we hold dnh_zrlock, we can
962 * safely move any dnode referenced only by dbufs.
963 */
964 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
965 mutex_exit(&os->os_lock);
966 DNODE_STAT_BUMP(dnode_move_handle);
967 return (KMEM_CBRC_LATER);
968 }
969
970 /*
971 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
972 * We need to guarantee that there is a hold for every dbuf in order to
973 * determine whether the dnode is actively referenced. Falsely matching
974 * a dbuf to an active hold would lead to an unsafe move. It's possible
975 * that a thread already having an active dnode hold is about to add a
976 * dbuf, and we can't compare hold and dbuf counts while the add is in
977 * progress.
978 */
979 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
980 zrl_exit(&odn->dn_handle->dnh_zrlock);
981 mutex_exit(&os->os_lock);
982 DNODE_STAT_BUMP(dnode_move_rwlock);
983 return (KMEM_CBRC_LATER);
984 }
985
986 /*
987 * A dbuf may be removed (evicted) without an active dnode hold. In that
988 * case, the dbuf count is decremented under the handle lock before the
989 * dbuf's hold is released. This order ensures that if we count the hold
990 * after the dbuf is removed but before its hold is released, we will
991 * treat the unmatched hold as active and exit safely. If we count the
992 * hold before the dbuf is removed, the hold is discounted, and the
993 * removal is blocked until the move completes.
994 */
995 refcount = refcount_count(&odn->dn_holds);
996 ASSERT(refcount >= 0);
997 dbufs = odn->dn_dbufs_count;
998
999 /* We can't have more dbufs than dnode holds. */
1000 ASSERT3U(dbufs, <=, refcount);
1001 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1002 uint32_t, dbufs);
1003
1004 if (refcount > dbufs) {
1005 rw_exit(&odn->dn_struct_rwlock);
1006 zrl_exit(&odn->dn_handle->dnh_zrlock);
1007 mutex_exit(&os->os_lock);
1008 DNODE_STAT_BUMP(dnode_move_active);
1009 return (KMEM_CBRC_LATER);
1010 }
1011
1012 rw_exit(&odn->dn_struct_rwlock);
1013
1014 /*
1015 * At this point we know that anyone with a hold on the dnode is not
1016 * actively referencing it. The dnode is known and in a valid state to
1017 * move. We're holding the locks needed to execute the critical section.
1018 */
1019 dnode_move_impl(odn, ndn);
1020
1021 list_link_replace(&odn->dn_link, &ndn->dn_link);
1022 /* If the dnode was safe to move, the refcount cannot have changed. */
1023 ASSERT(refcount == refcount_count(&ndn->dn_holds));
1024 ASSERT(dbufs == ndn->dn_dbufs_count);
1025 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1026 mutex_exit(&os->os_lock);
1027
1028 return (KMEM_CBRC_YES);
1029 }
1030 #endif /* _KERNEL */
1031
1032 static void
1033 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1034 {
1035 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1036
1037 for (int i = idx; i < idx + slots; i++) {
1038 dnode_handle_t *dnh = &children->dnc_children[i];
1039 zrl_add(&dnh->dnh_zrlock);
1040 }
1041 }
1042
1043 static void
1044 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1045 {
1046 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1047
1048 for (int i = idx; i < idx + slots; i++) {
1049 dnode_handle_t *dnh = &children->dnc_children[i];
1050
1051 if (zrl_is_locked(&dnh->dnh_zrlock))
1052 zrl_exit(&dnh->dnh_zrlock);
1053 else
1054 zrl_remove(&dnh->dnh_zrlock);
1055 }
1056 }
1057
1058 static int
1059 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1060 {
1061 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1062
1063 for (int i = idx; i < idx + slots; i++) {
1064 dnode_handle_t *dnh = &children->dnc_children[i];
1065
1066 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1067 for (int j = idx; j < i; j++) {
1068 dnh = &children->dnc_children[j];
1069 zrl_exit(&dnh->dnh_zrlock);
1070 }
1071
1072 return (0);
1073 }
1074 }
1075
1076 return (1);
1077 }
1078
1079 static void
1080 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1081 {
1082 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1083
1084 for (int i = idx; i < idx + slots; i++) {
1085 dnode_handle_t *dnh = &children->dnc_children[i];
1086 dnh->dnh_dnode = ptr;
1087 }
1088 }
1089
1090 static boolean_t
1091 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1092 {
1093 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1094
1095 /*
1096 * If all dnode slots are either already free or
1097 * evictable return B_TRUE.
1098 */
1099 for (int i = idx; i < idx + slots; i++) {
1100 dnode_handle_t *dnh = &children->dnc_children[i];
1101 dnode_t *dn = dnh->dnh_dnode;
1102
1103 if (dn == DN_SLOT_FREE) {
1104 continue;
1105 } else if (DN_SLOT_IS_PTR(dn)) {
1106 mutex_enter(&dn->dn_mtx);
1107 boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1108 !DNODE_IS_DIRTY(dn));
1109 mutex_exit(&dn->dn_mtx);
1110
1111 if (!can_free)
1112 return (B_FALSE);
1113 else
1114 continue;
1115 } else {
1116 return (B_FALSE);
1117 }
1118 }
1119
1120 return (B_TRUE);
1121 }
1122
1123 static void
1124 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1125 {
1126 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1127
1128 for (int i = idx; i < idx + slots; i++) {
1129 dnode_handle_t *dnh = &children->dnc_children[i];
1130
1131 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1132
1133 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1134 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1135 dnode_destroy(dnh->dnh_dnode);
1136 dnh->dnh_dnode = DN_SLOT_FREE;
1137 }
1138 }
1139 }
1140
1141 void
1142 dnode_free_interior_slots(dnode_t *dn)
1143 {
1144 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1145 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1146 int idx = (dn->dn_object & (epb - 1)) + 1;
1147 int slots = dn->dn_num_slots - 1;
1148
1149 if (slots == 0)
1150 return;
1151
1152 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1153
1154 while (!dnode_slots_tryenter(children, idx, slots))
1155 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1156
1157 dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1158 dnode_slots_rele(children, idx, slots);
1159 }
1160
1161 void
1162 dnode_special_close(dnode_handle_t *dnh)
1163 {
1164 dnode_t *dn = dnh->dnh_dnode;
1165
1166 /*
1167 * Wait for final references to the dnode to clear. This can
1168 * only happen if the arc is asynchronously evicting state that
1169 * has a hold on this dnode while we are trying to evict this
1170 * dnode.
1171 */
1172 while (refcount_count(&dn->dn_holds) > 0)
1173 delay(1);
1174 ASSERT(dn->dn_dbuf == NULL ||
1175 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1176 zrl_add(&dnh->dnh_zrlock);
1177 dnode_destroy(dn); /* implicit zrl_remove() */
1178 zrl_destroy(&dnh->dnh_zrlock);
1179 dnh->dnh_dnode = NULL;
1180 }
1181
1182 void
1183 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1184 dnode_handle_t *dnh)
1185 {
1186 dnode_t *dn;
1187
1188 zrl_init(&dnh->dnh_zrlock);
1189 zrl_tryenter(&dnh->dnh_zrlock);
1190
1191 dn = dnode_create(os, dnp, NULL, object, dnh);
1192 DNODE_VERIFY(dn);
1193
1194 zrl_exit(&dnh->dnh_zrlock);
1195 }
1196
1197 static void
1198 dnode_buf_evict_async(void *dbu)
1199 {
1200 dnode_children_t *dnc = dbu;
1201
1202 DNODE_STAT_BUMP(dnode_buf_evict);
1203
1204 for (int i = 0; i < dnc->dnc_count; i++) {
1205 dnode_handle_t *dnh = &dnc->dnc_children[i];
1206 dnode_t *dn;
1207
1208 /*
1209 * The dnode handle lock guards against the dnode moving to
1210 * another valid address, so there is no need here to guard
1211 * against changes to or from NULL.
1212 */
1213 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1214 zrl_destroy(&dnh->dnh_zrlock);
1215 dnh->dnh_dnode = DN_SLOT_UNINIT;
1216 continue;
1217 }
1218
1219 zrl_add(&dnh->dnh_zrlock);
1220 dn = dnh->dnh_dnode;
1221 /*
1222 * If there are holds on this dnode, then there should
1223 * be holds on the dnode's containing dbuf as well; thus
1224 * it wouldn't be eligible for eviction and this function
1225 * would not have been called.
1226 */
1227 ASSERT(refcount_is_zero(&dn->dn_holds));
1228 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1229
1230 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1231 zrl_destroy(&dnh->dnh_zrlock);
1232 dnh->dnh_dnode = DN_SLOT_UNINIT;
1233 }
1234 kmem_free(dnc, sizeof (dnode_children_t) +
1235 dnc->dnc_count * sizeof (dnode_handle_t));
1236 }
1237
1238 /*
1239 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1240 * to ensure the hole at the specified object offset is large enough to
1241 * hold the dnode being created. The slots parameter is also used to ensure
1242 * a dnode does not span multiple dnode blocks. In both of these cases, if
1243 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1244 * are only possible when using DNODE_MUST_BE_FREE.
1245 *
1246 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1247 * dnode_hold_impl() will check if the requested dnode is already consumed
1248 * as an extra dnode slot by an large dnode, in which case it returns
1249 * ENOENT.
1250 *
1251 * errors:
1252 * EINVAL - Invalid object number or flags.
1253 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1254 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1255 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1256 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1257 * EIO - I/O error when reading the meta dnode dbuf.
1258 *
1259 * succeeds even for free dnodes.
1260 */
1261 int
1262 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1263 void *tag, dnode_t **dnp)
1264 {
1265 int epb, idx, err;
1266 int drop_struct_lock = FALSE;
1267 int type;
1268 uint64_t blk;
1269 dnode_t *mdn, *dn;
1270 dmu_buf_impl_t *db;
1271 dnode_children_t *dnc;
1272 dnode_phys_t *dn_block;
1273 dnode_handle_t *dnh;
1274
1275 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1276 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1277
1278 /*
1279 * If you are holding the spa config lock as writer, you shouldn't
1280 * be asking the DMU to do *anything* unless it's the root pool
1281 * which may require us to read from the root filesystem while
1282 * holding some (not all) of the locks as writer.
1283 */
1284 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1285 (spa_is_root(os->os_spa) &&
1286 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1287
1288 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1289 object == DMU_PROJECTUSED_OBJECT) {
1290 if (object == DMU_USERUSED_OBJECT)
1291 dn = DMU_USERUSED_DNODE(os);
1292 else if (object == DMU_GROUPUSED_OBJECT)
1293 dn = DMU_GROUPUSED_DNODE(os);
1294 else
1295 dn = DMU_PROJECTUSED_DNODE(os);
1296 if (dn == NULL)
1297 return (SET_ERROR(ENOENT));
1298 type = dn->dn_type;
1299 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1300 return (SET_ERROR(ENOENT));
1301 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1302 return (SET_ERROR(EEXIST));
1303 DNODE_VERIFY(dn);
1304 (void) refcount_add(&dn->dn_holds, tag);
1305 *dnp = dn;
1306 return (0);
1307 }
1308
1309 if (object == 0 || object >= DN_MAX_OBJECT)
1310 return (SET_ERROR(EINVAL));
1311
1312 mdn = DMU_META_DNODE(os);
1313 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1314
1315 DNODE_VERIFY(mdn);
1316
1317 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1318 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1319 drop_struct_lock = TRUE;
1320 }
1321
1322 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1323
1324 db = dbuf_hold(mdn, blk, FTAG);
1325 if (drop_struct_lock)
1326 rw_exit(&mdn->dn_struct_rwlock);
1327 if (db == NULL) {
1328 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1329 return (SET_ERROR(EIO));
1330 }
1331
1332 /*
1333 * We do not need to decrypt to read the dnode so it doesn't matter
1334 * if we get the encrypted or decrypted version.
1335 */
1336 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1337 if (err) {
1338 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1339 dbuf_rele(db, FTAG);
1340 return (err);
1341 }
1342
1343 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1344 epb = db->db.db_size >> DNODE_SHIFT;
1345
1346 idx = object & (epb - 1);
1347 dn_block = (dnode_phys_t *)db->db.db_data;
1348
1349 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1350 dnc = dmu_buf_get_user(&db->db);
1351 dnh = NULL;
1352 if (dnc == NULL) {
1353 dnode_children_t *winner;
1354 int skip = 0;
1355
1356 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1357 epb * sizeof (dnode_handle_t), KM_SLEEP);
1358 dnc->dnc_count = epb;
1359 dnh = &dnc->dnc_children[0];
1360
1361 /* Initialize dnode slot status from dnode_phys_t */
1362 for (int i = 0; i < epb; i++) {
1363 zrl_init(&dnh[i].dnh_zrlock);
1364
1365 if (skip) {
1366 skip--;
1367 continue;
1368 }
1369
1370 if (dn_block[i].dn_type != DMU_OT_NONE) {
1371 int interior = dn_block[i].dn_extra_slots;
1372
1373 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1374 dnode_set_slots(dnc, i + 1, interior,
1375 DN_SLOT_INTERIOR);
1376 skip = interior;
1377 } else {
1378 dnh[i].dnh_dnode = DN_SLOT_FREE;
1379 skip = 0;
1380 }
1381 }
1382
1383 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1384 dnode_buf_evict_async, NULL);
1385 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1386 if (winner != NULL) {
1387
1388 for (int i = 0; i < epb; i++)
1389 zrl_destroy(&dnh[i].dnh_zrlock);
1390
1391 kmem_free(dnc, sizeof (dnode_children_t) +
1392 epb * sizeof (dnode_handle_t));
1393 dnc = winner;
1394 }
1395 }
1396
1397 ASSERT(dnc->dnc_count == epb);
1398 dn = DN_SLOT_UNINIT;
1399
1400 if (flag & DNODE_MUST_BE_ALLOCATED) {
1401 slots = 1;
1402
1403 while (dn == DN_SLOT_UNINIT) {
1404 dnode_slots_hold(dnc, idx, slots);
1405 dnh = &dnc->dnc_children[idx];
1406
1407 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1408 dn = dnh->dnh_dnode;
1409 break;
1410 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1411 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1412 dnode_slots_rele(dnc, idx, slots);
1413 dbuf_rele(db, FTAG);
1414 return (SET_ERROR(EEXIST));
1415 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1416 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1417 dnode_slots_rele(dnc, idx, slots);
1418 dbuf_rele(db, FTAG);
1419 return (SET_ERROR(ENOENT));
1420 }
1421
1422 dnode_slots_rele(dnc, idx, slots);
1423 if (!dnode_slots_tryenter(dnc, idx, slots)) {
1424 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1425 continue;
1426 }
1427
1428 /*
1429 * Someone else won the race and called dnode_create()
1430 * after we checked DN_SLOT_IS_PTR() above but before
1431 * we acquired the lock.
1432 */
1433 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1434 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1435 dn = dnh->dnh_dnode;
1436 } else {
1437 dn = dnode_create(os, dn_block + idx, db,
1438 object, dnh);
1439 }
1440 }
1441
1442 mutex_enter(&dn->dn_mtx);
1443 if (dn->dn_type == DMU_OT_NONE) {
1444 DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1445 mutex_exit(&dn->dn_mtx);
1446 dnode_slots_rele(dnc, idx, slots);
1447 dbuf_rele(db, FTAG);
1448 return (SET_ERROR(ENOENT));
1449 }
1450
1451 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1452 } else if (flag & DNODE_MUST_BE_FREE) {
1453
1454 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1455 DNODE_STAT_BUMP(dnode_hold_free_overflow);
1456 dbuf_rele(db, FTAG);
1457 return (SET_ERROR(ENOSPC));
1458 }
1459
1460 while (dn == DN_SLOT_UNINIT) {
1461 dnode_slots_hold(dnc, idx, slots);
1462
1463 if (!dnode_check_slots_free(dnc, idx, slots)) {
1464 DNODE_STAT_BUMP(dnode_hold_free_misses);
1465 dnode_slots_rele(dnc, idx, slots);
1466 dbuf_rele(db, FTAG);
1467 return (SET_ERROR(ENOSPC));
1468 }
1469
1470 dnode_slots_rele(dnc, idx, slots);
1471 if (!dnode_slots_tryenter(dnc, idx, slots)) {
1472 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1473 continue;
1474 }
1475
1476 if (!dnode_check_slots_free(dnc, idx, slots)) {
1477 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1478 dnode_slots_rele(dnc, idx, slots);
1479 dbuf_rele(db, FTAG);
1480 return (SET_ERROR(ENOSPC));
1481 }
1482
1483 /*
1484 * Allocated but otherwise free dnodes which would
1485 * be in the interior of a multi-slot dnodes need
1486 * to be freed. Single slot dnodes can be safely
1487 * re-purposed as a performance optimization.
1488 */
1489 if (slots > 1)
1490 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1491
1492 dnh = &dnc->dnc_children[idx];
1493 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1494 dn = dnh->dnh_dnode;
1495 } else {
1496 dn = dnode_create(os, dn_block + idx, db,
1497 object, dnh);
1498 }
1499 }
1500
1501 mutex_enter(&dn->dn_mtx);
1502 if (!refcount_is_zero(&dn->dn_holds)) {
1503 DNODE_STAT_BUMP(dnode_hold_free_refcount);
1504 mutex_exit(&dn->dn_mtx);
1505 dnode_slots_rele(dnc, idx, slots);
1506 dbuf_rele(db, FTAG);
1507 return (SET_ERROR(EEXIST));
1508 }
1509
1510 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1511 DNODE_STAT_BUMP(dnode_hold_free_hits);
1512 } else {
1513 dbuf_rele(db, FTAG);
1514 return (SET_ERROR(EINVAL));
1515 }
1516
1517 if (dn->dn_free_txg) {
1518 DNODE_STAT_BUMP(dnode_hold_free_txg);
1519 type = dn->dn_type;
1520 mutex_exit(&dn->dn_mtx);
1521 dnode_slots_rele(dnc, idx, slots);
1522 dbuf_rele(db, FTAG);
1523 return (SET_ERROR(type == DMU_OT_NONE ? ENOENT : EEXIST));
1524 }
1525
1526 if (refcount_add(&dn->dn_holds, tag) == 1)
1527 dbuf_add_ref(db, dnh);
1528
1529 mutex_exit(&dn->dn_mtx);
1530
1531 /* Now we can rely on the hold to prevent the dnode from moving. */
1532 dnode_slots_rele(dnc, idx, slots);
1533
1534 DNODE_VERIFY(dn);
1535 ASSERT3P(dn->dn_dbuf, ==, db);
1536 ASSERT3U(dn->dn_object, ==, object);
1537 dbuf_rele(db, FTAG);
1538
1539 *dnp = dn;
1540 return (0);
1541 }
1542
1543 /*
1544 * Return held dnode if the object is allocated, NULL if not.
1545 */
1546 int
1547 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1548 {
1549 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1550 dnp));
1551 }
1552
1553 /*
1554 * Can only add a reference if there is already at least one
1555 * reference on the dnode. Returns FALSE if unable to add a
1556 * new reference.
1557 */
1558 boolean_t
1559 dnode_add_ref(dnode_t *dn, void *tag)
1560 {
1561 mutex_enter(&dn->dn_mtx);
1562 if (refcount_is_zero(&dn->dn_holds)) {
1563 mutex_exit(&dn->dn_mtx);
1564 return (FALSE);
1565 }
1566 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1567 mutex_exit(&dn->dn_mtx);
1568 return (TRUE);
1569 }
1570
1571 void
1572 dnode_rele(dnode_t *dn, void *tag)
1573 {
1574 mutex_enter(&dn->dn_mtx);
1575 dnode_rele_and_unlock(dn, tag);
1576 }
1577
1578 void
1579 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1580 {
1581 uint64_t refs;
1582 /* Get while the hold prevents the dnode from moving. */
1583 dmu_buf_impl_t *db = dn->dn_dbuf;
1584 dnode_handle_t *dnh = dn->dn_handle;
1585
1586 refs = refcount_remove(&dn->dn_holds, tag);
1587 mutex_exit(&dn->dn_mtx);
1588
1589 /*
1590 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1591 * indirectly by dbuf_rele() while relying on the dnode handle to
1592 * prevent the dnode from moving, since releasing the last hold could
1593 * result in the dnode's parent dbuf evicting its dnode handles. For
1594 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1595 * other direct or indirect hold on the dnode must first drop the dnode
1596 * handle.
1597 */
1598 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1599
1600 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1601 if (refs == 0 && db != NULL) {
1602 /*
1603 * Another thread could add a hold to the dnode handle in
1604 * dnode_hold_impl() while holding the parent dbuf. Since the
1605 * hold on the parent dbuf prevents the handle from being
1606 * destroyed, the hold on the handle is OK. We can't yet assert
1607 * that the handle has zero references, but that will be
1608 * asserted anyway when the handle gets destroyed.
1609 */
1610 dbuf_rele(db, dnh);
1611 }
1612 }
1613
1614 void
1615 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1616 {
1617 objset_t *os = dn->dn_objset;
1618 uint64_t txg = tx->tx_txg;
1619
1620 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1621 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1622 return;
1623 }
1624
1625 DNODE_VERIFY(dn);
1626
1627 #ifdef ZFS_DEBUG
1628 mutex_enter(&dn->dn_mtx);
1629 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1630 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1631 mutex_exit(&dn->dn_mtx);
1632 #endif
1633
1634 /*
1635 * Determine old uid/gid when necessary
1636 */
1637 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1638
1639 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1640 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1641
1642 /*
1643 * If we are already marked dirty, we're done.
1644 */
1645 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1646 multilist_sublist_unlock(mls);
1647 return;
1648 }
1649
1650 ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1651 !avl_is_empty(&dn->dn_dbufs));
1652 ASSERT(dn->dn_datablksz != 0);
1653 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1654 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1655 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1656
1657 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1658 dn->dn_object, txg);
1659
1660 multilist_sublist_insert_head(mls, dn);
1661
1662 multilist_sublist_unlock(mls);
1663
1664 /*
1665 * The dnode maintains a hold on its containing dbuf as
1666 * long as there are holds on it. Each instantiated child
1667 * dbuf maintains a hold on the dnode. When the last child
1668 * drops its hold, the dnode will drop its hold on the
1669 * containing dbuf. We add a "dirty hold" here so that the
1670 * dnode will hang around after we finish processing its
1671 * children.
1672 */
1673 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1674
1675 (void) dbuf_dirty(dn->dn_dbuf, tx);
1676
1677 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1678 }
1679
1680 void
1681 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1682 {
1683 mutex_enter(&dn->dn_mtx);
1684 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1685 mutex_exit(&dn->dn_mtx);
1686 return;
1687 }
1688 dn->dn_free_txg = tx->tx_txg;
1689 mutex_exit(&dn->dn_mtx);
1690
1691 dnode_setdirty(dn, tx);
1692 }
1693
1694 /*
1695 * Try to change the block size for the indicated dnode. This can only
1696 * succeed if there are no blocks allocated or dirty beyond first block
1697 */
1698 int
1699 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1700 {
1701 dmu_buf_impl_t *db;
1702 int err;
1703
1704 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1705 if (size == 0)
1706 size = SPA_MINBLOCKSIZE;
1707 else
1708 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1709
1710 if (ibs == dn->dn_indblkshift)
1711 ibs = 0;
1712
1713 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1714 return (0);
1715
1716 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1717
1718 /* Check for any allocated blocks beyond the first */
1719 if (dn->dn_maxblkid != 0)
1720 goto fail;
1721
1722 mutex_enter(&dn->dn_dbufs_mtx);
1723 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1724 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1725 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1726 db->db_blkid != DMU_SPILL_BLKID) {
1727 mutex_exit(&dn->dn_dbufs_mtx);
1728 goto fail;
1729 }
1730 }
1731 mutex_exit(&dn->dn_dbufs_mtx);
1732
1733 if (ibs && dn->dn_nlevels != 1)
1734 goto fail;
1735
1736 /* resize the old block */
1737 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1738 if (err == 0)
1739 dbuf_new_size(db, size, tx);
1740 else if (err != ENOENT)
1741 goto fail;
1742
1743 dnode_setdblksz(dn, size);
1744 dnode_setdirty(dn, tx);
1745 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1746 if (ibs) {
1747 dn->dn_indblkshift = ibs;
1748 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1749 }
1750 /* rele after we have fixed the blocksize in the dnode */
1751 if (db)
1752 dbuf_rele(db, FTAG);
1753
1754 rw_exit(&dn->dn_struct_rwlock);
1755 return (0);
1756
1757 fail:
1758 rw_exit(&dn->dn_struct_rwlock);
1759 return (SET_ERROR(ENOTSUP));
1760 }
1761
1762 static void
1763 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1764 {
1765 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1766 int old_nlevels = dn->dn_nlevels;
1767 dmu_buf_impl_t *db;
1768 list_t *list;
1769 dbuf_dirty_record_t *new, *dr, *dr_next;
1770
1771 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1772
1773 dn->dn_nlevels = new_nlevels;
1774
1775 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1776 dn->dn_next_nlevels[txgoff] = new_nlevels;
1777
1778 /* dirty the left indirects */
1779 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1780 ASSERT(db != NULL);
1781 new = dbuf_dirty(db, tx);
1782 dbuf_rele(db, FTAG);
1783
1784 /* transfer the dirty records to the new indirect */
1785 mutex_enter(&dn->dn_mtx);
1786 mutex_enter(&new->dt.di.dr_mtx);
1787 list = &dn->dn_dirty_records[txgoff];
1788 for (dr = list_head(list); dr; dr = dr_next) {
1789 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1790 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1791 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1792 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1793 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1794 list_remove(&dn->dn_dirty_records[txgoff], dr);
1795 list_insert_tail(&new->dt.di.dr_children, dr);
1796 dr->dr_parent = new;
1797 }
1798 }
1799 mutex_exit(&new->dt.di.dr_mtx);
1800 mutex_exit(&dn->dn_mtx);
1801 }
1802
1803 int
1804 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1805 {
1806 int ret = 0;
1807
1808 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1809
1810 if (dn->dn_nlevels == nlevels) {
1811 ret = 0;
1812 goto out;
1813 } else if (nlevels < dn->dn_nlevels) {
1814 ret = SET_ERROR(EINVAL);
1815 goto out;
1816 }
1817
1818 dnode_set_nlevels_impl(dn, nlevels, tx);
1819
1820 out:
1821 rw_exit(&dn->dn_struct_rwlock);
1822 return (ret);
1823 }
1824
1825 /* read-holding callers must not rely on the lock being continuously held */
1826 void
1827 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1828 {
1829 int epbs, new_nlevels;
1830 uint64_t sz;
1831
1832 ASSERT(blkid != DMU_BONUS_BLKID);
1833
1834 ASSERT(have_read ?
1835 RW_READ_HELD(&dn->dn_struct_rwlock) :
1836 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1837
1838 /*
1839 * if we have a read-lock, check to see if we need to do any work
1840 * before upgrading to a write-lock.
1841 */
1842 if (have_read) {
1843 if (blkid <= dn->dn_maxblkid)
1844 return;
1845
1846 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1847 rw_exit(&dn->dn_struct_rwlock);
1848 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1849 }
1850 }
1851
1852 if (blkid <= dn->dn_maxblkid)
1853 goto out;
1854
1855 dn->dn_maxblkid = blkid;
1856 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = blkid;
1857
1858 /*
1859 * Compute the number of levels necessary to support the new maxblkid.
1860 */
1861 new_nlevels = 1;
1862 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1863 for (sz = dn->dn_nblkptr;
1864 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1865 new_nlevels++;
1866
1867 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1868
1869 if (new_nlevels > dn->dn_nlevels)
1870 dnode_set_nlevels_impl(dn, new_nlevels, tx);
1871
1872 out:
1873 if (have_read)
1874 rw_downgrade(&dn->dn_struct_rwlock);
1875 }
1876
1877 static void
1878 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1879 {
1880 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1881 if (db != NULL) {
1882 dmu_buf_will_dirty(&db->db, tx);
1883 dbuf_rele(db, FTAG);
1884 }
1885 }
1886
1887 void
1888 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1889 {
1890 dmu_buf_impl_t *db;
1891 uint64_t blkoff, blkid, nblks;
1892 int blksz, blkshift, head, tail;
1893 int trunc = FALSE;
1894 int epbs;
1895
1896 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1897 blksz = dn->dn_datablksz;
1898 blkshift = dn->dn_datablkshift;
1899 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1900
1901 if (len == DMU_OBJECT_END) {
1902 len = UINT64_MAX - off;
1903 trunc = TRUE;
1904 }
1905
1906 /*
1907 * First, block align the region to free:
1908 */
1909 if (ISP2(blksz)) {
1910 head = P2NPHASE(off, blksz);
1911 blkoff = P2PHASE(off, blksz);
1912 if ((off >> blkshift) > dn->dn_maxblkid)
1913 goto out;
1914 } else {
1915 ASSERT(dn->dn_maxblkid == 0);
1916 if (off == 0 && len >= blksz) {
1917 /*
1918 * Freeing the whole block; fast-track this request.
1919 * Note that we won't dirty any indirect blocks,
1920 * which is fine because we will be freeing the entire
1921 * file and thus all indirect blocks will be freed
1922 * by free_children().
1923 */
1924 blkid = 0;
1925 nblks = 1;
1926 goto done;
1927 } else if (off >= blksz) {
1928 /* Freeing past end-of-data */
1929 goto out;
1930 } else {
1931 /* Freeing part of the block. */
1932 head = blksz - off;
1933 ASSERT3U(head, >, 0);
1934 }
1935 blkoff = off;
1936 }
1937 /* zero out any partial block data at the start of the range */
1938 if (head) {
1939 ASSERT3U(blkoff + head, ==, blksz);
1940 if (len < head)
1941 head = len;
1942 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1943 TRUE, FALSE, FTAG, &db) == 0) {
1944 caddr_t data;
1945
1946 /* don't dirty if it isn't on disk and isn't dirty */
1947 if (db->db_last_dirty ||
1948 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1949 rw_exit(&dn->dn_struct_rwlock);
1950 dmu_buf_will_dirty(&db->db, tx);
1951 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1952 data = db->db.db_data;
1953 bzero(data + blkoff, head);
1954 }
1955 dbuf_rele(db, FTAG);
1956 }
1957 off += head;
1958 len -= head;
1959 }
1960
1961 /* If the range was less than one block, we're done */
1962 if (len == 0)
1963 goto out;
1964
1965 /* If the remaining range is past end of file, we're done */
1966 if ((off >> blkshift) > dn->dn_maxblkid)
1967 goto out;
1968
1969 ASSERT(ISP2(blksz));
1970 if (trunc)
1971 tail = 0;
1972 else
1973 tail = P2PHASE(len, blksz);
1974
1975 ASSERT0(P2PHASE(off, blksz));
1976 /* zero out any partial block data at the end of the range */
1977 if (tail) {
1978 if (len < tail)
1979 tail = len;
1980 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1981 TRUE, FALSE, FTAG, &db) == 0) {
1982 /* don't dirty if not on disk and not dirty */
1983 if (db->db_last_dirty ||
1984 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1985 rw_exit(&dn->dn_struct_rwlock);
1986 dmu_buf_will_dirty(&db->db, tx);
1987 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1988 bzero(db->db.db_data, tail);
1989 }
1990 dbuf_rele(db, FTAG);
1991 }
1992 len -= tail;
1993 }
1994
1995 /* If the range did not include a full block, we are done */
1996 if (len == 0)
1997 goto out;
1998
1999 ASSERT(IS_P2ALIGNED(off, blksz));
2000 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2001 blkid = off >> blkshift;
2002 nblks = len >> blkshift;
2003 if (trunc)
2004 nblks += 1;
2005
2006 /*
2007 * Dirty all the indirect blocks in this range. Note that only
2008 * the first and last indirect blocks can actually be written
2009 * (if they were partially freed) -- they must be dirtied, even if
2010 * they do not exist on disk yet. The interior blocks will
2011 * be freed by free_children(), so they will not actually be written.
2012 * Even though these interior blocks will not be written, we
2013 * dirty them for two reasons:
2014 *
2015 * - It ensures that the indirect blocks remain in memory until
2016 * syncing context. (They have already been prefetched by
2017 * dmu_tx_hold_free(), so we don't have to worry about reading
2018 * them serially here.)
2019 *
2020 * - The dirty space accounting will put pressure on the txg sync
2021 * mechanism to begin syncing, and to delay transactions if there
2022 * is a large amount of freeing. Even though these indirect
2023 * blocks will not be written, we could need to write the same
2024 * amount of space if we copy the freed BPs into deadlists.
2025 */
2026 if (dn->dn_nlevels > 1) {
2027 uint64_t first, last;
2028
2029 first = blkid >> epbs;
2030 dnode_dirty_l1(dn, first, tx);
2031 if (trunc)
2032 last = dn->dn_maxblkid >> epbs;
2033 else
2034 last = (blkid + nblks - 1) >> epbs;
2035 if (last != first)
2036 dnode_dirty_l1(dn, last, tx);
2037
2038 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2039 SPA_BLKPTRSHIFT;
2040 for (uint64_t i = first + 1; i < last; i++) {
2041 /*
2042 * Set i to the blockid of the next non-hole
2043 * level-1 indirect block at or after i. Note
2044 * that dnode_next_offset() operates in terms of
2045 * level-0-equivalent bytes.
2046 */
2047 uint64_t ibyte = i << shift;
2048 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2049 &ibyte, 2, 1, 0);
2050 i = ibyte >> shift;
2051 if (i >= last)
2052 break;
2053
2054 /*
2055 * Normally we should not see an error, either
2056 * from dnode_next_offset() or dbuf_hold_level()
2057 * (except for ESRCH from dnode_next_offset).
2058 * If there is an i/o error, then when we read
2059 * this block in syncing context, it will use
2060 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2061 * to the "failmode" property. dnode_next_offset()
2062 * doesn't have a flag to indicate MUSTSUCCEED.
2063 */
2064 if (err != 0)
2065 break;
2066
2067 dnode_dirty_l1(dn, i, tx);
2068 }
2069 }
2070
2071 done:
2072 /*
2073 * Add this range to the dnode range list.
2074 * We will finish up this free operation in the syncing phase.
2075 */
2076 mutex_enter(&dn->dn_mtx);
2077 {
2078 int txgoff = tx->tx_txg & TXG_MASK;
2079 if (dn->dn_free_ranges[txgoff] == NULL) {
2080 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
2081 }
2082 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2083 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2084 }
2085 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2086 blkid, nblks, tx->tx_txg);
2087 mutex_exit(&dn->dn_mtx);
2088
2089 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2090 dnode_setdirty(dn, tx);
2091 out:
2092
2093 rw_exit(&dn->dn_struct_rwlock);
2094 }
2095
2096 static boolean_t
2097 dnode_spill_freed(dnode_t *dn)
2098 {
2099 int i;
2100
2101 mutex_enter(&dn->dn_mtx);
2102 for (i = 0; i < TXG_SIZE; i++) {
2103 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2104 break;
2105 }
2106 mutex_exit(&dn->dn_mtx);
2107 return (i < TXG_SIZE);
2108 }
2109
2110 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2111 uint64_t
2112 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2113 {
2114 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2115 int i;
2116
2117 if (blkid == DMU_BONUS_BLKID)
2118 return (FALSE);
2119
2120 /*
2121 * If we're in the process of opening the pool, dp will not be
2122 * set yet, but there shouldn't be anything dirty.
2123 */
2124 if (dp == NULL)
2125 return (FALSE);
2126
2127 if (dn->dn_free_txg)
2128 return (TRUE);
2129
2130 if (blkid == DMU_SPILL_BLKID)
2131 return (dnode_spill_freed(dn));
2132
2133 mutex_enter(&dn->dn_mtx);
2134 for (i = 0; i < TXG_SIZE; i++) {
2135 if (dn->dn_free_ranges[i] != NULL &&
2136 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2137 break;
2138 }
2139 mutex_exit(&dn->dn_mtx);
2140 return (i < TXG_SIZE);
2141 }
2142
2143 /* call from syncing context when we actually write/free space for this dnode */
2144 void
2145 dnode_diduse_space(dnode_t *dn, int64_t delta)
2146 {
2147 uint64_t space;
2148 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2149 dn, dn->dn_phys,
2150 (u_longlong_t)dn->dn_phys->dn_used,
2151 (longlong_t)delta);
2152
2153 mutex_enter(&dn->dn_mtx);
2154 space = DN_USED_BYTES(dn->dn_phys);
2155 if (delta > 0) {
2156 ASSERT3U(space + delta, >=, space); /* no overflow */
2157 } else {
2158 ASSERT3U(space, >=, -delta); /* no underflow */
2159 }
2160 space += delta;
2161 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2162 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2163 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2164 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2165 } else {
2166 dn->dn_phys->dn_used = space;
2167 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2168 }
2169 mutex_exit(&dn->dn_mtx);
2170 }
2171
2172 /*
2173 * Scans a block at the indicated "level" looking for a hole or data,
2174 * depending on 'flags'.
2175 *
2176 * If level > 0, then we are scanning an indirect block looking at its
2177 * pointers. If level == 0, then we are looking at a block of dnodes.
2178 *
2179 * If we don't find what we are looking for in the block, we return ESRCH.
2180 * Otherwise, return with *offset pointing to the beginning (if searching
2181 * forwards) or end (if searching backwards) of the range covered by the
2182 * block pointer we matched on (or dnode).
2183 *
2184 * The basic search algorithm used below by dnode_next_offset() is to
2185 * use this function to search up the block tree (widen the search) until
2186 * we find something (i.e., we don't return ESRCH) and then search back
2187 * down the tree (narrow the search) until we reach our original search
2188 * level.
2189 */
2190 static int
2191 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2192 int lvl, uint64_t blkfill, uint64_t txg)
2193 {
2194 dmu_buf_impl_t *db = NULL;
2195 void *data = NULL;
2196 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2197 uint64_t epb = 1ULL << epbs;
2198 uint64_t minfill, maxfill;
2199 boolean_t hole;
2200 int i, inc, error, span;
2201
2202 hole = ((flags & DNODE_FIND_HOLE) != 0);
2203 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2204 ASSERT(txg == 0 || !hole);
2205
2206 if (lvl == dn->dn_phys->dn_nlevels) {
2207 error = 0;
2208 epb = dn->dn_phys->dn_nblkptr;
2209 data = dn->dn_phys->dn_blkptr;
2210 } else {
2211 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2212 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2213 if (error) {
2214 if (error != ENOENT)
2215 return (error);
2216 if (hole)
2217 return (0);
2218 /*
2219 * This can only happen when we are searching up
2220 * the block tree for data. We don't really need to
2221 * adjust the offset, as we will just end up looking
2222 * at the pointer to this block in its parent, and its
2223 * going to be unallocated, so we will skip over it.
2224 */
2225 return (SET_ERROR(ESRCH));
2226 }
2227 error = dbuf_read(db, NULL,
2228 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2229 if (error) {
2230 dbuf_rele(db, FTAG);
2231 return (error);
2232 }
2233 data = db->db.db_data;
2234 }
2235
2236
2237 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2238 db->db_blkptr->blk_birth <= txg ||
2239 BP_IS_HOLE(db->db_blkptr))) {
2240 /*
2241 * This can only happen when we are searching up the tree
2242 * and these conditions mean that we need to keep climbing.
2243 */
2244 error = SET_ERROR(ESRCH);
2245 } else if (lvl == 0) {
2246 dnode_phys_t *dnp = data;
2247
2248 ASSERT(dn->dn_type == DMU_OT_DNODE);
2249 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2250
2251 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2252 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2253 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2254 break;
2255 }
2256
2257 if (i == blkfill)
2258 error = SET_ERROR(ESRCH);
2259
2260 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2261 (i << DNODE_SHIFT);
2262 } else {
2263 blkptr_t *bp = data;
2264 uint64_t start = *offset;
2265 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2266 minfill = 0;
2267 maxfill = blkfill << ((lvl - 1) * epbs);
2268
2269 if (hole)
2270 maxfill--;
2271 else
2272 minfill++;
2273
2274 if (span >= 8 * sizeof (*offset)) {
2275 /* This only happens on the highest indirection level */
2276 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2277 *offset = 0;
2278 } else {
2279 *offset = *offset >> span;
2280 }
2281
2282 for (i = BF64_GET(*offset, 0, epbs);
2283 i >= 0 && i < epb; i += inc) {
2284 if (BP_GET_FILL(&bp[i]) >= minfill &&
2285 BP_GET_FILL(&bp[i]) <= maxfill &&
2286 (hole || bp[i].blk_birth > txg))
2287 break;
2288 if (inc > 0 || *offset > 0)
2289 *offset += inc;
2290 }
2291
2292 if (span >= 8 * sizeof (*offset)) {
2293 *offset = start;
2294 } else {
2295 *offset = *offset << span;
2296 }
2297
2298 if (inc < 0) {
2299 /* traversing backwards; position offset at the end */
2300 ASSERT3U(*offset, <=, start);
2301 *offset = MIN(*offset + (1ULL << span) - 1, start);
2302 } else if (*offset < start) {
2303 *offset = start;
2304 }
2305 if (i < 0 || i >= epb)
2306 error = SET_ERROR(ESRCH);
2307 }
2308
2309 if (db)
2310 dbuf_rele(db, FTAG);
2311
2312 return (error);
2313 }
2314
2315 /*
2316 * Find the next hole, data, or sparse region at or after *offset.
2317 * The value 'blkfill' tells us how many items we expect to find
2318 * in an L0 data block; this value is 1 for normal objects,
2319 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2320 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2321 *
2322 * Examples:
2323 *
2324 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2325 * Finds the next/previous hole/data in a file.
2326 * Used in dmu_offset_next().
2327 *
2328 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2329 * Finds the next free/allocated dnode an objset's meta-dnode.
2330 * Only finds objects that have new contents since txg (ie.
2331 * bonus buffer changes and content removal are ignored).
2332 * Used in dmu_object_next().
2333 *
2334 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2335 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2336 * Used in dmu_object_alloc().
2337 */
2338 int
2339 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2340 int minlvl, uint64_t blkfill, uint64_t txg)
2341 {
2342 uint64_t initial_offset = *offset;
2343 int lvl, maxlvl;
2344 int error = 0;
2345
2346 if (!(flags & DNODE_FIND_HAVELOCK))
2347 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2348
2349 if (dn->dn_phys->dn_nlevels == 0) {
2350 error = SET_ERROR(ESRCH);
2351 goto out;
2352 }
2353
2354 if (dn->dn_datablkshift == 0) {
2355 if (*offset < dn->dn_datablksz) {
2356 if (flags & DNODE_FIND_HOLE)
2357 *offset = dn->dn_datablksz;
2358 } else {
2359 error = SET_ERROR(ESRCH);
2360 }
2361 goto out;
2362 }
2363
2364 maxlvl = dn->dn_phys->dn_nlevels;
2365
2366 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2367 error = dnode_next_offset_level(dn,
2368 flags, offset, lvl, blkfill, txg);
2369 if (error != ESRCH)
2370 break;
2371 }
2372
2373 while (error == 0 && --lvl >= minlvl) {
2374 error = dnode_next_offset_level(dn,
2375 flags, offset, lvl, blkfill, txg);
2376 }
2377
2378 /*
2379 * There's always a "virtual hole" at the end of the object, even
2380 * if all BP's which physically exist are non-holes.
2381 */
2382 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2383 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2384 error = 0;
2385 }
2386
2387 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2388 initial_offset < *offset : initial_offset > *offset))
2389 error = SET_ERROR(ESRCH);
2390 out:
2391 if (!(flags & DNODE_FIND_HAVELOCK))
2392 rw_exit(&dn->dn_struct_rwlock);
2393
2394 return (error);
2395 }