]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Fix gcc unused variable warnings
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/dbuf.h>
27 #include <sys/dnode.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/spa.h>
35 #include <sys/zio.h>
36 #include <sys/dmu_zfetch.h>
37
38 static int free_range_compar(const void *node1, const void *node2);
39
40 static kmem_cache_t *dnode_cache;
41 /*
42 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
43 * turned on when DEBUG is also defined.
44 */
45 #ifdef DEBUG
46 #define DNODE_STATS
47 #endif /* DEBUG */
48
49 #ifdef DNODE_STATS
50 #define DNODE_STAT_ADD(stat) ((stat)++)
51 #else
52 #define DNODE_STAT_ADD(stat) /* nothing */
53 #endif /* DNODE_STATS */
54
55 ASSERTV(static dnode_phys_t dnode_phys_zero);
56
57 int zfs_default_bs = SPA_MINBLOCKSHIFT;
58 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
59
60 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
61
62 /* ARGSUSED */
63 static int
64 dnode_cons(void *arg, void *unused, int kmflag)
65 {
66 dnode_t *dn = arg;
67 int i;
68
69 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
70 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
71 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
72 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
73
74 refcount_create(&dn->dn_holds);
75 refcount_create(&dn->dn_tx_holds);
76 list_link_init(&dn->dn_link);
77
78 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
79 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
80 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
81 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
82 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
83 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
84 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
85
86 for (i = 0; i < TXG_SIZE; i++) {
87 list_link_init(&dn->dn_dirty_link[i]);
88 avl_create(&dn->dn_ranges[i], free_range_compar,
89 sizeof (free_range_t),
90 offsetof(struct free_range, fr_node));
91 list_create(&dn->dn_dirty_records[i],
92 sizeof (dbuf_dirty_record_t),
93 offsetof(dbuf_dirty_record_t, dr_dirty_node));
94 }
95
96 dn->dn_allocated_txg = 0;
97 dn->dn_free_txg = 0;
98 dn->dn_assigned_txg = 0;
99 dn->dn_dirtyctx = 0;
100 dn->dn_dirtyctx_firstset = NULL;
101 dn->dn_bonus = NULL;
102 dn->dn_have_spill = B_FALSE;
103 dn->dn_zio = NULL;
104 dn->dn_oldused = 0;
105 dn->dn_oldflags = 0;
106 dn->dn_olduid = 0;
107 dn->dn_oldgid = 0;
108 dn->dn_newuid = 0;
109 dn->dn_newgid = 0;
110 dn->dn_id_flags = 0;
111
112 dn->dn_dbufs_count = 0;
113 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
114 offsetof(dmu_buf_impl_t, db_link));
115
116 dn->dn_moved = 0;
117 return (0);
118 }
119
120 /* ARGSUSED */
121 static void
122 dnode_dest(void *arg, void *unused)
123 {
124 int i;
125 dnode_t *dn = arg;
126
127 rw_destroy(&dn->dn_struct_rwlock);
128 mutex_destroy(&dn->dn_mtx);
129 mutex_destroy(&dn->dn_dbufs_mtx);
130 cv_destroy(&dn->dn_notxholds);
131 refcount_destroy(&dn->dn_holds);
132 refcount_destroy(&dn->dn_tx_holds);
133 ASSERT(!list_link_active(&dn->dn_link));
134
135 for (i = 0; i < TXG_SIZE; i++) {
136 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
137 avl_destroy(&dn->dn_ranges[i]);
138 list_destroy(&dn->dn_dirty_records[i]);
139 ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
140 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
141 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
142 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
143 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
144 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
145 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
146 }
147
148 ASSERT3U(dn->dn_allocated_txg, ==, 0);
149 ASSERT3U(dn->dn_free_txg, ==, 0);
150 ASSERT3U(dn->dn_assigned_txg, ==, 0);
151 ASSERT3U(dn->dn_dirtyctx, ==, 0);
152 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
153 ASSERT3P(dn->dn_bonus, ==, NULL);
154 ASSERT(!dn->dn_have_spill);
155 ASSERT3P(dn->dn_zio, ==, NULL);
156 ASSERT3U(dn->dn_oldused, ==, 0);
157 ASSERT3U(dn->dn_oldflags, ==, 0);
158 ASSERT3U(dn->dn_olduid, ==, 0);
159 ASSERT3U(dn->dn_oldgid, ==, 0);
160 ASSERT3U(dn->dn_newuid, ==, 0);
161 ASSERT3U(dn->dn_newgid, ==, 0);
162 ASSERT3U(dn->dn_id_flags, ==, 0);
163
164 ASSERT3U(dn->dn_dbufs_count, ==, 0);
165 list_destroy(&dn->dn_dbufs);
166 }
167
168 void
169 dnode_init(void)
170 {
171 ASSERT(dnode_cache == NULL);
172 dnode_cache = kmem_cache_create("dnode_t",
173 sizeof (dnode_t),
174 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
175 kmem_cache_set_move(dnode_cache, dnode_move);
176 }
177
178 void
179 dnode_fini(void)
180 {
181 kmem_cache_destroy(dnode_cache);
182 dnode_cache = NULL;
183 }
184
185
186 #ifdef ZFS_DEBUG
187 void
188 dnode_verify(dnode_t *dn)
189 {
190 int drop_struct_lock = FALSE;
191
192 ASSERT(dn->dn_phys);
193 ASSERT(dn->dn_objset);
194 ASSERT(dn->dn_handle->dnh_dnode == dn);
195
196 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
197
198 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
199 return;
200
201 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
202 rw_enter(&dn->dn_struct_rwlock, RW_READER);
203 drop_struct_lock = TRUE;
204 }
205 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
206 int i;
207 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
208 if (dn->dn_datablkshift) {
209 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
210 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
211 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
212 }
213 ASSERT3U(dn->dn_nlevels, <=, 30);
214 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES);
215 ASSERT3U(dn->dn_nblkptr, >=, 1);
216 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
217 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
218 ASSERT3U(dn->dn_datablksz, ==,
219 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
220 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
221 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
222 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
223 for (i = 0; i < TXG_SIZE; i++) {
224 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
225 }
226 }
227 if (dn->dn_phys->dn_type != DMU_OT_NONE)
228 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
229 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
230 if (dn->dn_dbuf != NULL) {
231 ASSERT3P(dn->dn_phys, ==,
232 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
233 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
234 }
235 if (drop_struct_lock)
236 rw_exit(&dn->dn_struct_rwlock);
237 }
238 #endif
239
240 void
241 dnode_byteswap(dnode_phys_t *dnp)
242 {
243 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
244 int i;
245
246 if (dnp->dn_type == DMU_OT_NONE) {
247 bzero(dnp, sizeof (dnode_phys_t));
248 return;
249 }
250
251 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
252 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
253 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
254 dnp->dn_used = BSWAP_64(dnp->dn_used);
255
256 /*
257 * dn_nblkptr is only one byte, so it's OK to read it in either
258 * byte order. We can't read dn_bouslen.
259 */
260 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
261 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
262 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
263 buf64[i] = BSWAP_64(buf64[i]);
264
265 /*
266 * OK to check dn_bonuslen for zero, because it won't matter if
267 * we have the wrong byte order. This is necessary because the
268 * dnode dnode is smaller than a regular dnode.
269 */
270 if (dnp->dn_bonuslen != 0) {
271 /*
272 * Note that the bonus length calculated here may be
273 * longer than the actual bonus buffer. This is because
274 * we always put the bonus buffer after the last block
275 * pointer (instead of packing it against the end of the
276 * dnode buffer).
277 */
278 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
279 size_t len = DN_MAX_BONUSLEN - off;
280 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES);
281 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len);
282 }
283
284 /* Swap SPILL block if we have one */
285 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
286 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
287
288 }
289
290 void
291 dnode_buf_byteswap(void *vbuf, size_t size)
292 {
293 dnode_phys_t *buf = vbuf;
294 int i;
295
296 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
297 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
298
299 size >>= DNODE_SHIFT;
300 for (i = 0; i < size; i++) {
301 dnode_byteswap(buf);
302 buf++;
303 }
304 }
305
306 static int
307 free_range_compar(const void *node1, const void *node2)
308 {
309 const free_range_t *rp1 = node1;
310 const free_range_t *rp2 = node2;
311
312 if (rp1->fr_blkid < rp2->fr_blkid)
313 return (-1);
314 else if (rp1->fr_blkid > rp2->fr_blkid)
315 return (1);
316 else return (0);
317 }
318
319 void
320 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
321 {
322 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
323
324 dnode_setdirty(dn, tx);
325 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
326 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
327 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
328 dn->dn_bonuslen = newsize;
329 if (newsize == 0)
330 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
331 else
332 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
333 rw_exit(&dn->dn_struct_rwlock);
334 }
335
336 void
337 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
338 {
339 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
340 dnode_setdirty(dn, tx);
341 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
342 dn->dn_bonustype = newtype;
343 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
344 rw_exit(&dn->dn_struct_rwlock);
345 }
346
347 void
348 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
349 {
350 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
351 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
352 dnode_setdirty(dn, tx);
353 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
354 dn->dn_have_spill = B_FALSE;
355 }
356
357 static void
358 dnode_setdblksz(dnode_t *dn, int size)
359 {
360 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
361 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
362 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
363 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
364 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
365 dn->dn_datablksz = size;
366 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
367 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
368 }
369
370 static dnode_t *
371 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
372 uint64_t object, dnode_handle_t *dnh)
373 {
374 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
375
376 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
377 dn->dn_moved = 0;
378
379 /*
380 * Defer setting dn_objset until the dnode is ready to be a candidate
381 * for the dnode_move() callback.
382 */
383 dn->dn_object = object;
384 dn->dn_dbuf = db;
385 dn->dn_handle = dnh;
386 dn->dn_phys = dnp;
387
388 if (dnp->dn_datablkszsec) {
389 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
390 } else {
391 dn->dn_datablksz = 0;
392 dn->dn_datablkszsec = 0;
393 dn->dn_datablkshift = 0;
394 }
395 dn->dn_indblkshift = dnp->dn_indblkshift;
396 dn->dn_nlevels = dnp->dn_nlevels;
397 dn->dn_type = dnp->dn_type;
398 dn->dn_nblkptr = dnp->dn_nblkptr;
399 dn->dn_checksum = dnp->dn_checksum;
400 dn->dn_compress = dnp->dn_compress;
401 dn->dn_bonustype = dnp->dn_bonustype;
402 dn->dn_bonuslen = dnp->dn_bonuslen;
403 dn->dn_maxblkid = dnp->dn_maxblkid;
404 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
405 dn->dn_id_flags = 0;
406
407 dmu_zfetch_init(&dn->dn_zfetch, dn);
408
409 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
410
411 mutex_enter(&os->os_lock);
412 list_insert_head(&os->os_dnodes, dn);
413 membar_producer();
414 /*
415 * Everything else must be valid before assigning dn_objset makes the
416 * dnode eligible for dnode_move().
417 */
418 dn->dn_objset = os;
419 mutex_exit(&os->os_lock);
420
421 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
422 return (dn);
423 }
424
425 /*
426 * Caller must be holding the dnode handle, which is released upon return.
427 */
428 static void
429 dnode_destroy(dnode_t *dn)
430 {
431 objset_t *os = dn->dn_objset;
432
433 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
434
435 mutex_enter(&os->os_lock);
436 POINTER_INVALIDATE(&dn->dn_objset);
437 list_remove(&os->os_dnodes, dn);
438 mutex_exit(&os->os_lock);
439
440 /* the dnode can no longer move, so we can release the handle */
441 zrl_remove(&dn->dn_handle->dnh_zrlock);
442
443 dn->dn_allocated_txg = 0;
444 dn->dn_free_txg = 0;
445 dn->dn_assigned_txg = 0;
446
447 dn->dn_dirtyctx = 0;
448 if (dn->dn_dirtyctx_firstset != NULL) {
449 kmem_free(dn->dn_dirtyctx_firstset, 1);
450 dn->dn_dirtyctx_firstset = NULL;
451 }
452 if (dn->dn_bonus != NULL) {
453 mutex_enter(&dn->dn_bonus->db_mtx);
454 dbuf_evict(dn->dn_bonus);
455 dn->dn_bonus = NULL;
456 }
457 dn->dn_zio = NULL;
458
459 dn->dn_have_spill = B_FALSE;
460 dn->dn_oldused = 0;
461 dn->dn_oldflags = 0;
462 dn->dn_olduid = 0;
463 dn->dn_oldgid = 0;
464 dn->dn_newuid = 0;
465 dn->dn_newgid = 0;
466 dn->dn_id_flags = 0;
467
468 dmu_zfetch_rele(&dn->dn_zfetch);
469 kmem_cache_free(dnode_cache, dn);
470 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
471 }
472
473 void
474 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
475 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
476 {
477 int i;
478
479 if (blocksize == 0)
480 blocksize = 1 << zfs_default_bs;
481 else if (blocksize > SPA_MAXBLOCKSIZE)
482 blocksize = SPA_MAXBLOCKSIZE;
483 else
484 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
485
486 if (ibs == 0)
487 ibs = zfs_default_ibs;
488
489 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
490
491 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
492 dn->dn_object, tx->tx_txg, blocksize, ibs);
493
494 ASSERT(dn->dn_type == DMU_OT_NONE);
495 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
496 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
497 ASSERT(ot != DMU_OT_NONE);
498 ASSERT3U(ot, <, DMU_OT_NUMTYPES);
499 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
500 (bonustype == DMU_OT_SA && bonuslen == 0) ||
501 (bonustype != DMU_OT_NONE && bonuslen != 0));
502 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
503 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
504 ASSERT(dn->dn_type == DMU_OT_NONE);
505 ASSERT3U(dn->dn_maxblkid, ==, 0);
506 ASSERT3U(dn->dn_allocated_txg, ==, 0);
507 ASSERT3U(dn->dn_assigned_txg, ==, 0);
508 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
509 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
510 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
511
512 for (i = 0; i < TXG_SIZE; i++) {
513 ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
514 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
515 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
516 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
517 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
518 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
519 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
520 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
521 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
522 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
523 }
524
525 dn->dn_type = ot;
526 dnode_setdblksz(dn, blocksize);
527 dn->dn_indblkshift = ibs;
528 dn->dn_nlevels = 1;
529 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
530 dn->dn_nblkptr = 1;
531 else
532 dn->dn_nblkptr = 1 +
533 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
534 dn->dn_bonustype = bonustype;
535 dn->dn_bonuslen = bonuslen;
536 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
537 dn->dn_compress = ZIO_COMPRESS_INHERIT;
538 dn->dn_dirtyctx = 0;
539
540 dn->dn_free_txg = 0;
541 if (dn->dn_dirtyctx_firstset) {
542 kmem_free(dn->dn_dirtyctx_firstset, 1);
543 dn->dn_dirtyctx_firstset = NULL;
544 }
545
546 dn->dn_allocated_txg = tx->tx_txg;
547 dn->dn_id_flags = 0;
548
549 dnode_setdirty(dn, tx);
550 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
551 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
552 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
553 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
554 }
555
556 void
557 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
558 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
559 {
560 int nblkptr;
561
562 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
563 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
564 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
565 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
566 ASSERT(tx->tx_txg != 0);
567 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
568 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
569 (bonustype == DMU_OT_SA && bonuslen == 0));
570 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
571 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
572
573 /* clean up any unreferenced dbufs */
574 dnode_evict_dbufs(dn);
575
576 dn->dn_id_flags = 0;
577
578 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
579 dnode_setdirty(dn, tx);
580 if (dn->dn_datablksz != blocksize) {
581 /* change blocksize */
582 ASSERT(dn->dn_maxblkid == 0 &&
583 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
584 dnode_block_freed(dn, 0)));
585 dnode_setdblksz(dn, blocksize);
586 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
587 }
588 if (dn->dn_bonuslen != bonuslen)
589 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
590
591 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
592 nblkptr = 1;
593 else
594 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
595 if (dn->dn_bonustype != bonustype)
596 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
597 if (dn->dn_nblkptr != nblkptr)
598 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
599 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
600 dbuf_rm_spill(dn, tx);
601 dnode_rm_spill(dn, tx);
602 }
603 rw_exit(&dn->dn_struct_rwlock);
604
605 /* change type */
606 dn->dn_type = ot;
607
608 /* change bonus size and type */
609 mutex_enter(&dn->dn_mtx);
610 dn->dn_bonustype = bonustype;
611 dn->dn_bonuslen = bonuslen;
612 dn->dn_nblkptr = nblkptr;
613 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
614 dn->dn_compress = ZIO_COMPRESS_INHERIT;
615 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
616
617 /* fix up the bonus db_size */
618 if (dn->dn_bonus) {
619 dn->dn_bonus->db.db_size =
620 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
621 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
622 }
623
624 dn->dn_allocated_txg = tx->tx_txg;
625 mutex_exit(&dn->dn_mtx);
626 }
627
628 #ifdef DNODE_STATS
629 static struct {
630 uint64_t dms_dnode_invalid;
631 uint64_t dms_dnode_recheck1;
632 uint64_t dms_dnode_recheck2;
633 uint64_t dms_dnode_special;
634 uint64_t dms_dnode_handle;
635 uint64_t dms_dnode_rwlock;
636 uint64_t dms_dnode_active;
637 } dnode_move_stats;
638 #endif /* DNODE_STATS */
639
640 static void
641 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
642 {
643 int i;
644
645 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
646 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
647 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
648 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
649
650 /* Copy fields. */
651 ndn->dn_objset = odn->dn_objset;
652 ndn->dn_object = odn->dn_object;
653 ndn->dn_dbuf = odn->dn_dbuf;
654 ndn->dn_handle = odn->dn_handle;
655 ndn->dn_phys = odn->dn_phys;
656 ndn->dn_type = odn->dn_type;
657 ndn->dn_bonuslen = odn->dn_bonuslen;
658 ndn->dn_bonustype = odn->dn_bonustype;
659 ndn->dn_nblkptr = odn->dn_nblkptr;
660 ndn->dn_checksum = odn->dn_checksum;
661 ndn->dn_compress = odn->dn_compress;
662 ndn->dn_nlevels = odn->dn_nlevels;
663 ndn->dn_indblkshift = odn->dn_indblkshift;
664 ndn->dn_datablkshift = odn->dn_datablkshift;
665 ndn->dn_datablkszsec = odn->dn_datablkszsec;
666 ndn->dn_datablksz = odn->dn_datablksz;
667 ndn->dn_maxblkid = odn->dn_maxblkid;
668 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
669 sizeof (odn->dn_next_nblkptr));
670 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
671 sizeof (odn->dn_next_nlevels));
672 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
673 sizeof (odn->dn_next_indblkshift));
674 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
675 sizeof (odn->dn_next_bonustype));
676 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
677 sizeof (odn->dn_rm_spillblk));
678 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
679 sizeof (odn->dn_next_bonuslen));
680 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
681 sizeof (odn->dn_next_blksz));
682 for (i = 0; i < TXG_SIZE; i++) {
683 list_move_tail(&ndn->dn_dirty_records[i],
684 &odn->dn_dirty_records[i]);
685 }
686 bcopy(&odn->dn_ranges[0], &ndn->dn_ranges[0], sizeof (odn->dn_ranges));
687 ndn->dn_allocated_txg = odn->dn_allocated_txg;
688 ndn->dn_free_txg = odn->dn_free_txg;
689 ndn->dn_assigned_txg = odn->dn_assigned_txg;
690 ndn->dn_dirtyctx = odn->dn_dirtyctx;
691 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
692 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
693 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
694 ASSERT(list_is_empty(&ndn->dn_dbufs));
695 list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs);
696 ndn->dn_dbufs_count = odn->dn_dbufs_count;
697 ndn->dn_bonus = odn->dn_bonus;
698 ndn->dn_have_spill = odn->dn_have_spill;
699 ndn->dn_zio = odn->dn_zio;
700 ndn->dn_oldused = odn->dn_oldused;
701 ndn->dn_oldflags = odn->dn_oldflags;
702 ndn->dn_olduid = odn->dn_olduid;
703 ndn->dn_oldgid = odn->dn_oldgid;
704 ndn->dn_newuid = odn->dn_newuid;
705 ndn->dn_newgid = odn->dn_newgid;
706 ndn->dn_id_flags = odn->dn_id_flags;
707 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
708 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
709 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
710 ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
711 ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
712
713 /*
714 * Update back pointers. Updating the handle fixes the back pointer of
715 * every descendant dbuf as well as the bonus dbuf.
716 */
717 ASSERT(ndn->dn_handle->dnh_dnode == odn);
718 ndn->dn_handle->dnh_dnode = ndn;
719 if (ndn->dn_zfetch.zf_dnode == odn) {
720 ndn->dn_zfetch.zf_dnode = ndn;
721 }
722
723 /*
724 * Invalidate the original dnode by clearing all of its back pointers.
725 */
726 odn->dn_dbuf = NULL;
727 odn->dn_handle = NULL;
728 list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t),
729 offsetof(dmu_buf_impl_t, db_link));
730 odn->dn_dbufs_count = 0;
731 odn->dn_bonus = NULL;
732 odn->dn_zfetch.zf_dnode = NULL;
733
734 /*
735 * Set the low bit of the objset pointer to ensure that dnode_move()
736 * recognizes the dnode as invalid in any subsequent callback.
737 */
738 POINTER_INVALIDATE(&odn->dn_objset);
739
740 /*
741 * Satisfy the destructor.
742 */
743 for (i = 0; i < TXG_SIZE; i++) {
744 list_create(&odn->dn_dirty_records[i],
745 sizeof (dbuf_dirty_record_t),
746 offsetof(dbuf_dirty_record_t, dr_dirty_node));
747 odn->dn_ranges[i].avl_root = NULL;
748 odn->dn_ranges[i].avl_numnodes = 0;
749 odn->dn_next_nlevels[i] = 0;
750 odn->dn_next_indblkshift[i] = 0;
751 odn->dn_next_bonustype[i] = 0;
752 odn->dn_rm_spillblk[i] = 0;
753 odn->dn_next_bonuslen[i] = 0;
754 odn->dn_next_blksz[i] = 0;
755 }
756 odn->dn_allocated_txg = 0;
757 odn->dn_free_txg = 0;
758 odn->dn_assigned_txg = 0;
759 odn->dn_dirtyctx = 0;
760 odn->dn_dirtyctx_firstset = NULL;
761 odn->dn_have_spill = B_FALSE;
762 odn->dn_zio = NULL;
763 odn->dn_oldused = 0;
764 odn->dn_oldflags = 0;
765 odn->dn_olduid = 0;
766 odn->dn_oldgid = 0;
767 odn->dn_newuid = 0;
768 odn->dn_newgid = 0;
769 odn->dn_id_flags = 0;
770
771 /*
772 * Mark the dnode.
773 */
774 ndn->dn_moved = 1;
775 odn->dn_moved = (uint8_t)-1;
776 }
777
778 #ifdef _KERNEL
779 /*ARGSUSED*/
780 static kmem_cbrc_t
781 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
782 {
783 dnode_t *odn = buf, *ndn = newbuf;
784 objset_t *os;
785 int64_t refcount;
786 uint32_t dbufs;
787
788 /*
789 * The dnode is on the objset's list of known dnodes if the objset
790 * pointer is valid. We set the low bit of the objset pointer when
791 * freeing the dnode to invalidate it, and the memory patterns written
792 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
793 * A newly created dnode sets the objset pointer last of all to indicate
794 * that the dnode is known and in a valid state to be moved by this
795 * function.
796 */
797 os = odn->dn_objset;
798 if (!POINTER_IS_VALID(os)) {
799 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
800 return (KMEM_CBRC_DONT_KNOW);
801 }
802
803 /*
804 * Ensure that the objset does not go away during the move.
805 */
806 rw_enter(&os_lock, RW_WRITER);
807 if (os != odn->dn_objset) {
808 rw_exit(&os_lock);
809 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
810 return (KMEM_CBRC_DONT_KNOW);
811 }
812
813 /*
814 * If the dnode is still valid, then so is the objset. We know that no
815 * valid objset can be freed while we hold os_lock, so we can safely
816 * ensure that the objset remains in use.
817 */
818 mutex_enter(&os->os_lock);
819
820 /*
821 * Recheck the objset pointer in case the dnode was removed just before
822 * acquiring the lock.
823 */
824 if (os != odn->dn_objset) {
825 mutex_exit(&os->os_lock);
826 rw_exit(&os_lock);
827 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
828 return (KMEM_CBRC_DONT_KNOW);
829 }
830
831 /*
832 * At this point we know that as long as we hold os->os_lock, the dnode
833 * cannot be freed and fields within the dnode can be safely accessed.
834 * The objset listing this dnode cannot go away as long as this dnode is
835 * on its list.
836 */
837 rw_exit(&os_lock);
838 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
839 mutex_exit(&os->os_lock);
840 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
841 return (KMEM_CBRC_NO);
842 }
843 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
844
845 /*
846 * Lock the dnode handle to prevent the dnode from obtaining any new
847 * holds. This also prevents the descendant dbufs and the bonus dbuf
848 * from accessing the dnode, so that we can discount their holds. The
849 * handle is safe to access because we know that while the dnode cannot
850 * go away, neither can its handle. Once we hold dnh_zrlock, we can
851 * safely move any dnode referenced only by dbufs.
852 */
853 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
854 mutex_exit(&os->os_lock);
855 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
856 return (KMEM_CBRC_LATER);
857 }
858
859 /*
860 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
861 * We need to guarantee that there is a hold for every dbuf in order to
862 * determine whether the dnode is actively referenced. Falsely matching
863 * a dbuf to an active hold would lead to an unsafe move. It's possible
864 * that a thread already having an active dnode hold is about to add a
865 * dbuf, and we can't compare hold and dbuf counts while the add is in
866 * progress.
867 */
868 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
869 zrl_exit(&odn->dn_handle->dnh_zrlock);
870 mutex_exit(&os->os_lock);
871 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
872 return (KMEM_CBRC_LATER);
873 }
874
875 /*
876 * A dbuf may be removed (evicted) without an active dnode hold. In that
877 * case, the dbuf count is decremented under the handle lock before the
878 * dbuf's hold is released. This order ensures that if we count the hold
879 * after the dbuf is removed but before its hold is released, we will
880 * treat the unmatched hold as active and exit safely. If we count the
881 * hold before the dbuf is removed, the hold is discounted, and the
882 * removal is blocked until the move completes.
883 */
884 refcount = refcount_count(&odn->dn_holds);
885 ASSERT(refcount >= 0);
886 dbufs = odn->dn_dbufs_count;
887
888 /* We can't have more dbufs than dnode holds. */
889 ASSERT3U(dbufs, <=, refcount);
890 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
891 uint32_t, dbufs);
892
893 if (refcount > dbufs) {
894 rw_exit(&odn->dn_struct_rwlock);
895 zrl_exit(&odn->dn_handle->dnh_zrlock);
896 mutex_exit(&os->os_lock);
897 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
898 return (KMEM_CBRC_LATER);
899 }
900
901 rw_exit(&odn->dn_struct_rwlock);
902
903 /*
904 * At this point we know that anyone with a hold on the dnode is not
905 * actively referencing it. The dnode is known and in a valid state to
906 * move. We're holding the locks needed to execute the critical section.
907 */
908 dnode_move_impl(odn, ndn);
909
910 list_link_replace(&odn->dn_link, &ndn->dn_link);
911 /* If the dnode was safe to move, the refcount cannot have changed. */
912 ASSERT(refcount == refcount_count(&ndn->dn_holds));
913 ASSERT(dbufs == ndn->dn_dbufs_count);
914 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
915 mutex_exit(&os->os_lock);
916
917 return (KMEM_CBRC_YES);
918 }
919 #endif /* _KERNEL */
920
921 void
922 dnode_special_close(dnode_handle_t *dnh)
923 {
924 dnode_t *dn = dnh->dnh_dnode;
925
926 /*
927 * Wait for final references to the dnode to clear. This can
928 * only happen if the arc is asyncronously evicting state that
929 * has a hold on this dnode while we are trying to evict this
930 * dnode.
931 */
932 while (refcount_count(&dn->dn_holds) > 0)
933 delay(1);
934 zrl_add(&dnh->dnh_zrlock);
935 dnode_destroy(dn); /* implicit zrl_remove() */
936 zrl_destroy(&dnh->dnh_zrlock);
937 dnh->dnh_dnode = NULL;
938 }
939
940 dnode_t *
941 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
942 dnode_handle_t *dnh)
943 {
944 dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
945 dnh->dnh_dnode = dn;
946 zrl_init(&dnh->dnh_zrlock);
947 DNODE_VERIFY(dn);
948 return (dn);
949 }
950
951 static void
952 dnode_buf_pageout(dmu_buf_t *db, void *arg)
953 {
954 dnode_children_t *children_dnodes = arg;
955 int i;
956 int epb = db->db_size >> DNODE_SHIFT;
957
958 ASSERT(epb == children_dnodes->dnc_count);
959
960 for (i = 0; i < epb; i++) {
961 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
962 dnode_t *dn;
963
964 /*
965 * The dnode handle lock guards against the dnode moving to
966 * another valid address, so there is no need here to guard
967 * against changes to or from NULL.
968 */
969 if (dnh->dnh_dnode == NULL) {
970 zrl_destroy(&dnh->dnh_zrlock);
971 continue;
972 }
973
974 zrl_add(&dnh->dnh_zrlock);
975 dn = dnh->dnh_dnode;
976 /*
977 * If there are holds on this dnode, then there should
978 * be holds on the dnode's containing dbuf as well; thus
979 * it wouldn't be eligible for eviction and this function
980 * would not have been called.
981 */
982 ASSERT(refcount_is_zero(&dn->dn_holds));
983 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
984
985 dnode_destroy(dn); /* implicit zrl_remove() */
986 zrl_destroy(&dnh->dnh_zrlock);
987 dnh->dnh_dnode = NULL;
988 }
989 kmem_free(children_dnodes, sizeof (dnode_children_t) +
990 (epb - 1) * sizeof (dnode_handle_t));
991 }
992
993 /*
994 * errors:
995 * EINVAL - invalid object number.
996 * EIO - i/o error.
997 * succeeds even for free dnodes.
998 */
999 int
1000 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1001 void *tag, dnode_t **dnp)
1002 {
1003 int epb, idx, err;
1004 int drop_struct_lock = FALSE;
1005 int type;
1006 uint64_t blk;
1007 dnode_t *mdn, *dn;
1008 dmu_buf_impl_t *db;
1009 dnode_children_t *children_dnodes;
1010 dnode_handle_t *dnh;
1011
1012 /*
1013 * If you are holding the spa config lock as writer, you shouldn't
1014 * be asking the DMU to do *anything* unless it's the root pool
1015 * which may require us to read from the root filesystem while
1016 * holding some (not all) of the locks as writer.
1017 */
1018 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1019 (spa_is_root(os->os_spa) &&
1020 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1021
1022 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1023 dn = (object == DMU_USERUSED_OBJECT) ?
1024 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1025 if (dn == NULL)
1026 return (ENOENT);
1027 type = dn->dn_type;
1028 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1029 return (ENOENT);
1030 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1031 return (EEXIST);
1032 DNODE_VERIFY(dn);
1033 (void) refcount_add(&dn->dn_holds, tag);
1034 *dnp = dn;
1035 return (0);
1036 }
1037
1038 if (object == 0 || object >= DN_MAX_OBJECT)
1039 return (EINVAL);
1040
1041 mdn = DMU_META_DNODE(os);
1042 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1043
1044 DNODE_VERIFY(mdn);
1045
1046 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1047 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1048 drop_struct_lock = TRUE;
1049 }
1050
1051 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1052
1053 db = dbuf_hold(mdn, blk, FTAG);
1054 if (drop_struct_lock)
1055 rw_exit(&mdn->dn_struct_rwlock);
1056 if (db == NULL)
1057 return (EIO);
1058 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1059 if (err) {
1060 dbuf_rele(db, FTAG);
1061 return (err);
1062 }
1063
1064 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1065 epb = db->db.db_size >> DNODE_SHIFT;
1066
1067 idx = object & (epb-1);
1068
1069 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1070 children_dnodes = dmu_buf_get_user(&db->db);
1071 if (children_dnodes == NULL) {
1072 int i;
1073 dnode_children_t *winner;
1074 children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1075 (epb - 1) * sizeof (dnode_handle_t), KM_SLEEP);
1076 children_dnodes->dnc_count = epb;
1077 dnh = &children_dnodes->dnc_children[0];
1078 for (i = 0; i < epb; i++) {
1079 zrl_init(&dnh[i].dnh_zrlock);
1080 dnh[i].dnh_dnode = NULL;
1081 }
1082 if ((winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1083 dnode_buf_pageout))) {
1084 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1085 (epb - 1) * sizeof (dnode_handle_t));
1086 children_dnodes = winner;
1087 }
1088 }
1089 ASSERT(children_dnodes->dnc_count == epb);
1090
1091 dnh = &children_dnodes->dnc_children[idx];
1092 zrl_add(&dnh->dnh_zrlock);
1093 if ((dn = dnh->dnh_dnode) == NULL) {
1094 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1095 dnode_t *winner;
1096
1097 dn = dnode_create(os, phys, db, object, dnh);
1098 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1099 if (winner != NULL) {
1100 zrl_add(&dnh->dnh_zrlock);
1101 dnode_destroy(dn); /* implicit zrl_remove() */
1102 dn = winner;
1103 }
1104 }
1105
1106 mutex_enter(&dn->dn_mtx);
1107 type = dn->dn_type;
1108 if (dn->dn_free_txg ||
1109 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1110 ((flag & DNODE_MUST_BE_FREE) &&
1111 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1112 mutex_exit(&dn->dn_mtx);
1113 zrl_remove(&dnh->dnh_zrlock);
1114 dbuf_rele(db, FTAG);
1115 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1116 }
1117 mutex_exit(&dn->dn_mtx);
1118
1119 if (refcount_add(&dn->dn_holds, tag) == 1)
1120 dbuf_add_ref(db, dnh);
1121 /* Now we can rely on the hold to prevent the dnode from moving. */
1122 zrl_remove(&dnh->dnh_zrlock);
1123
1124 DNODE_VERIFY(dn);
1125 ASSERT3P(dn->dn_dbuf, ==, db);
1126 ASSERT3U(dn->dn_object, ==, object);
1127 dbuf_rele(db, FTAG);
1128
1129 *dnp = dn;
1130 return (0);
1131 }
1132
1133 /*
1134 * Return held dnode if the object is allocated, NULL if not.
1135 */
1136 int
1137 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1138 {
1139 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1140 }
1141
1142 /*
1143 * Can only add a reference if there is already at least one
1144 * reference on the dnode. Returns FALSE if unable to add a
1145 * new reference.
1146 */
1147 boolean_t
1148 dnode_add_ref(dnode_t *dn, void *tag)
1149 {
1150 mutex_enter(&dn->dn_mtx);
1151 if (refcount_is_zero(&dn->dn_holds)) {
1152 mutex_exit(&dn->dn_mtx);
1153 return (FALSE);
1154 }
1155 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1156 mutex_exit(&dn->dn_mtx);
1157 return (TRUE);
1158 }
1159
1160 void
1161 dnode_rele(dnode_t *dn, void *tag)
1162 {
1163 uint64_t refs;
1164 /* Get while the hold prevents the dnode from moving. */
1165 dmu_buf_impl_t *db = dn->dn_dbuf;
1166 dnode_handle_t *dnh = dn->dn_handle;
1167
1168 mutex_enter(&dn->dn_mtx);
1169 refs = refcount_remove(&dn->dn_holds, tag);
1170 mutex_exit(&dn->dn_mtx);
1171
1172 /*
1173 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1174 * indirectly by dbuf_rele() while relying on the dnode handle to
1175 * prevent the dnode from moving, since releasing the last hold could
1176 * result in the dnode's parent dbuf evicting its dnode handles. For
1177 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1178 * other direct or indirect hold on the dnode must first drop the dnode
1179 * handle.
1180 */
1181 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1182
1183 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1184 if (refs == 0 && db != NULL) {
1185 /*
1186 * Another thread could add a hold to the dnode handle in
1187 * dnode_hold_impl() while holding the parent dbuf. Since the
1188 * hold on the parent dbuf prevents the handle from being
1189 * destroyed, the hold on the handle is OK. We can't yet assert
1190 * that the handle has zero references, but that will be
1191 * asserted anyway when the handle gets destroyed.
1192 */
1193 dbuf_rele(db, dnh);
1194 }
1195 }
1196
1197 void
1198 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1199 {
1200 objset_t *os = dn->dn_objset;
1201 uint64_t txg = tx->tx_txg;
1202
1203 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1204 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1205 return;
1206 }
1207
1208 DNODE_VERIFY(dn);
1209
1210 #ifdef ZFS_DEBUG
1211 mutex_enter(&dn->dn_mtx);
1212 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1213 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1214 mutex_exit(&dn->dn_mtx);
1215 #endif
1216
1217 /*
1218 * Determine old uid/gid when necessary
1219 */
1220 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1221
1222 mutex_enter(&os->os_lock);
1223
1224 /*
1225 * If we are already marked dirty, we're done.
1226 */
1227 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1228 mutex_exit(&os->os_lock);
1229 return;
1230 }
1231
1232 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
1233 ASSERT(dn->dn_datablksz != 0);
1234 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
1235 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
1236 ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);
1237
1238 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1239 dn->dn_object, txg);
1240
1241 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1242 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1243 } else {
1244 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1245 }
1246
1247 mutex_exit(&os->os_lock);
1248
1249 /*
1250 * The dnode maintains a hold on its containing dbuf as
1251 * long as there are holds on it. Each instantiated child
1252 * dbuf maintains a hold on the dnode. When the last child
1253 * drops its hold, the dnode will drop its hold on the
1254 * containing dbuf. We add a "dirty hold" here so that the
1255 * dnode will hang around after we finish processing its
1256 * children.
1257 */
1258 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1259
1260 (void) dbuf_dirty(dn->dn_dbuf, tx);
1261
1262 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1263 }
1264
1265 void
1266 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1267 {
1268 int txgoff = tx->tx_txg & TXG_MASK;
1269
1270 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1271
1272 /* we should be the only holder... hopefully */
1273 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1274
1275 mutex_enter(&dn->dn_mtx);
1276 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1277 mutex_exit(&dn->dn_mtx);
1278 return;
1279 }
1280 dn->dn_free_txg = tx->tx_txg;
1281 mutex_exit(&dn->dn_mtx);
1282
1283 /*
1284 * If the dnode is already dirty, it needs to be moved from
1285 * the dirty list to the free list.
1286 */
1287 mutex_enter(&dn->dn_objset->os_lock);
1288 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1289 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1290 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1291 mutex_exit(&dn->dn_objset->os_lock);
1292 } else {
1293 mutex_exit(&dn->dn_objset->os_lock);
1294 dnode_setdirty(dn, tx);
1295 }
1296 }
1297
1298 /*
1299 * Try to change the block size for the indicated dnode. This can only
1300 * succeed if there are no blocks allocated or dirty beyond first block
1301 */
1302 int
1303 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1304 {
1305 dmu_buf_impl_t *db, *db_next;
1306 int err;
1307
1308 if (size == 0)
1309 size = SPA_MINBLOCKSIZE;
1310 if (size > SPA_MAXBLOCKSIZE)
1311 size = SPA_MAXBLOCKSIZE;
1312 else
1313 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1314
1315 if (ibs == dn->dn_indblkshift)
1316 ibs = 0;
1317
1318 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1319 return (0);
1320
1321 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1322
1323 /* Check for any allocated blocks beyond the first */
1324 if (dn->dn_phys->dn_maxblkid != 0)
1325 goto fail;
1326
1327 mutex_enter(&dn->dn_dbufs_mtx);
1328 for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
1329 db_next = list_next(&dn->dn_dbufs, db);
1330
1331 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1332 db->db_blkid != DMU_SPILL_BLKID) {
1333 mutex_exit(&dn->dn_dbufs_mtx);
1334 goto fail;
1335 }
1336 }
1337 mutex_exit(&dn->dn_dbufs_mtx);
1338
1339 if (ibs && dn->dn_nlevels != 1)
1340 goto fail;
1341
1342 /* resize the old block */
1343 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1344 if (err == 0)
1345 dbuf_new_size(db, size, tx);
1346 else if (err != ENOENT)
1347 goto fail;
1348
1349 dnode_setdblksz(dn, size);
1350 dnode_setdirty(dn, tx);
1351 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1352 if (ibs) {
1353 dn->dn_indblkshift = ibs;
1354 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1355 }
1356 /* rele after we have fixed the blocksize in the dnode */
1357 if (db)
1358 dbuf_rele(db, FTAG);
1359
1360 rw_exit(&dn->dn_struct_rwlock);
1361 return (0);
1362
1363 fail:
1364 rw_exit(&dn->dn_struct_rwlock);
1365 return (ENOTSUP);
1366 }
1367
1368 /* read-holding callers must not rely on the lock being continuously held */
1369 void
1370 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1371 {
1372 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1373 int epbs, new_nlevels;
1374 uint64_t sz;
1375
1376 ASSERT(blkid != DMU_BONUS_BLKID);
1377
1378 ASSERT(have_read ?
1379 RW_READ_HELD(&dn->dn_struct_rwlock) :
1380 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1381
1382 /*
1383 * if we have a read-lock, check to see if we need to do any work
1384 * before upgrading to a write-lock.
1385 */
1386 if (have_read) {
1387 if (blkid <= dn->dn_maxblkid)
1388 return;
1389
1390 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1391 rw_exit(&dn->dn_struct_rwlock);
1392 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1393 }
1394 }
1395
1396 if (blkid <= dn->dn_maxblkid)
1397 goto out;
1398
1399 dn->dn_maxblkid = blkid;
1400
1401 /*
1402 * Compute the number of levels necessary to support the new maxblkid.
1403 */
1404 new_nlevels = 1;
1405 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1406 for (sz = dn->dn_nblkptr;
1407 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1408 new_nlevels++;
1409
1410 if (new_nlevels > dn->dn_nlevels) {
1411 int old_nlevels = dn->dn_nlevels;
1412 dmu_buf_impl_t *db;
1413 list_t *list;
1414 dbuf_dirty_record_t *new, *dr, *dr_next;
1415
1416 dn->dn_nlevels = new_nlevels;
1417
1418 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1419 dn->dn_next_nlevels[txgoff] = new_nlevels;
1420
1421 /* dirty the left indirects */
1422 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1423 ASSERT(db != NULL);
1424 new = dbuf_dirty(db, tx);
1425 dbuf_rele(db, FTAG);
1426
1427 /* transfer the dirty records to the new indirect */
1428 mutex_enter(&dn->dn_mtx);
1429 mutex_enter(&new->dt.di.dr_mtx);
1430 list = &dn->dn_dirty_records[txgoff];
1431 for (dr = list_head(list); dr; dr = dr_next) {
1432 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1433 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1434 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1435 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1436 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1437 list_remove(&dn->dn_dirty_records[txgoff], dr);
1438 list_insert_tail(&new->dt.di.dr_children, dr);
1439 dr->dr_parent = new;
1440 }
1441 }
1442 mutex_exit(&new->dt.di.dr_mtx);
1443 mutex_exit(&dn->dn_mtx);
1444 }
1445
1446 out:
1447 if (have_read)
1448 rw_downgrade(&dn->dn_struct_rwlock);
1449 }
1450
1451 void
1452 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
1453 {
1454 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1455 avl_index_t where;
1456 free_range_t *rp;
1457 free_range_t rp_tofind;
1458 uint64_t endblk = blkid + nblks;
1459
1460 ASSERT(MUTEX_HELD(&dn->dn_mtx));
1461 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
1462
1463 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1464 blkid, nblks, tx->tx_txg);
1465 rp_tofind.fr_blkid = blkid;
1466 rp = avl_find(tree, &rp_tofind, &where);
1467 if (rp == NULL)
1468 rp = avl_nearest(tree, where, AVL_BEFORE);
1469 if (rp == NULL)
1470 rp = avl_nearest(tree, where, AVL_AFTER);
1471
1472 while (rp && (rp->fr_blkid <= blkid + nblks)) {
1473 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
1474 free_range_t *nrp = AVL_NEXT(tree, rp);
1475
1476 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
1477 /* clear this entire range */
1478 avl_remove(tree, rp);
1479 kmem_free(rp, sizeof (free_range_t));
1480 } else if (blkid <= rp->fr_blkid &&
1481 endblk > rp->fr_blkid && endblk < fr_endblk) {
1482 /* clear the beginning of this range */
1483 rp->fr_blkid = endblk;
1484 rp->fr_nblks = fr_endblk - endblk;
1485 } else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
1486 endblk >= fr_endblk) {
1487 /* clear the end of this range */
1488 rp->fr_nblks = blkid - rp->fr_blkid;
1489 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
1490 /* clear a chunk out of this range */
1491 free_range_t *new_rp =
1492 kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1493
1494 new_rp->fr_blkid = endblk;
1495 new_rp->fr_nblks = fr_endblk - endblk;
1496 avl_insert_here(tree, new_rp, rp, AVL_AFTER);
1497 rp->fr_nblks = blkid - rp->fr_blkid;
1498 }
1499 /* there may be no overlap */
1500 rp = nrp;
1501 }
1502 }
1503
1504 void
1505 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1506 {
1507 dmu_buf_impl_t *db;
1508 uint64_t blkoff, blkid, nblks;
1509 int blksz, blkshift, head, tail;
1510 int trunc = FALSE;
1511 int epbs;
1512
1513 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1514 blksz = dn->dn_datablksz;
1515 blkshift = dn->dn_datablkshift;
1516 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1517
1518 if (len == -1ULL) {
1519 len = UINT64_MAX - off;
1520 trunc = TRUE;
1521 }
1522
1523 /*
1524 * First, block align the region to free:
1525 */
1526 if (ISP2(blksz)) {
1527 head = P2NPHASE(off, blksz);
1528 blkoff = P2PHASE(off, blksz);
1529 if ((off >> blkshift) > dn->dn_maxblkid)
1530 goto out;
1531 } else {
1532 ASSERT(dn->dn_maxblkid == 0);
1533 if (off == 0 && len >= blksz) {
1534 /* Freeing the whole block; fast-track this request */
1535 blkid = 0;
1536 nblks = 1;
1537 goto done;
1538 } else if (off >= blksz) {
1539 /* Freeing past end-of-data */
1540 goto out;
1541 } else {
1542 /* Freeing part of the block. */
1543 head = blksz - off;
1544 ASSERT3U(head, >, 0);
1545 }
1546 blkoff = off;
1547 }
1548 /* zero out any partial block data at the start of the range */
1549 if (head) {
1550 ASSERT3U(blkoff + head, ==, blksz);
1551 if (len < head)
1552 head = len;
1553 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1554 FTAG, &db) == 0) {
1555 caddr_t data;
1556
1557 /* don't dirty if it isn't on disk and isn't dirty */
1558 if (db->db_last_dirty ||
1559 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1560 rw_exit(&dn->dn_struct_rwlock);
1561 dbuf_will_dirty(db, tx);
1562 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1563 data = db->db.db_data;
1564 bzero(data + blkoff, head);
1565 }
1566 dbuf_rele(db, FTAG);
1567 }
1568 off += head;
1569 len -= head;
1570 }
1571
1572 /* If the range was less than one block, we're done */
1573 if (len == 0)
1574 goto out;
1575
1576 /* If the remaining range is past end of file, we're done */
1577 if ((off >> blkshift) > dn->dn_maxblkid)
1578 goto out;
1579
1580 ASSERT(ISP2(blksz));
1581 if (trunc)
1582 tail = 0;
1583 else
1584 tail = P2PHASE(len, blksz);
1585
1586 ASSERT3U(P2PHASE(off, blksz), ==, 0);
1587 /* zero out any partial block data at the end of the range */
1588 if (tail) {
1589 if (len < tail)
1590 tail = len;
1591 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1592 TRUE, FTAG, &db) == 0) {
1593 /* don't dirty if not on disk and not dirty */
1594 if (db->db_last_dirty ||
1595 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1596 rw_exit(&dn->dn_struct_rwlock);
1597 dbuf_will_dirty(db, tx);
1598 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1599 bzero(db->db.db_data, tail);
1600 }
1601 dbuf_rele(db, FTAG);
1602 }
1603 len -= tail;
1604 }
1605
1606 /* If the range did not include a full block, we are done */
1607 if (len == 0)
1608 goto out;
1609
1610 ASSERT(IS_P2ALIGNED(off, blksz));
1611 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1612 blkid = off >> blkshift;
1613 nblks = len >> blkshift;
1614 if (trunc)
1615 nblks += 1;
1616
1617 /*
1618 * Read in and mark all the level-1 indirects dirty,
1619 * so that they will stay in memory until syncing phase.
1620 * Always dirty the first and last indirect to make sure
1621 * we dirty all the partial indirects.
1622 */
1623 if (dn->dn_nlevels > 1) {
1624 uint64_t i, first, last;
1625 int shift = epbs + dn->dn_datablkshift;
1626
1627 first = blkid >> epbs;
1628 if ((db = dbuf_hold_level(dn, 1, first, FTAG))) {
1629 dbuf_will_dirty(db, tx);
1630 dbuf_rele(db, FTAG);
1631 }
1632 if (trunc)
1633 last = dn->dn_maxblkid >> epbs;
1634 else
1635 last = (blkid + nblks - 1) >> epbs;
1636 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1637 dbuf_will_dirty(db, tx);
1638 dbuf_rele(db, FTAG);
1639 }
1640 for (i = first + 1; i < last; i++) {
1641 uint64_t ibyte = i << shift;
1642 int err;
1643
1644 err = dnode_next_offset(dn,
1645 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1646 i = ibyte >> shift;
1647 if (err == ESRCH || i >= last)
1648 break;
1649 ASSERT(err == 0);
1650 db = dbuf_hold_level(dn, 1, i, FTAG);
1651 if (db) {
1652 dbuf_will_dirty(db, tx);
1653 dbuf_rele(db, FTAG);
1654 }
1655 }
1656 }
1657 done:
1658 /*
1659 * Add this range to the dnode range list.
1660 * We will finish up this free operation in the syncing phase.
1661 */
1662 mutex_enter(&dn->dn_mtx);
1663 dnode_clear_range(dn, blkid, nblks, tx);
1664 {
1665 free_range_t *rp, *found;
1666 avl_index_t where;
1667 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1668
1669 /* Add new range to dn_ranges */
1670 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1671 rp->fr_blkid = blkid;
1672 rp->fr_nblks = nblks;
1673 found = avl_find(tree, rp, &where);
1674 ASSERT(found == NULL);
1675 avl_insert(tree, rp, where);
1676 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1677 blkid, nblks, tx->tx_txg);
1678 }
1679 mutex_exit(&dn->dn_mtx);
1680
1681 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1682 dnode_setdirty(dn, tx);
1683 out:
1684 if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1685 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1686
1687 rw_exit(&dn->dn_struct_rwlock);
1688 }
1689
1690 static boolean_t
1691 dnode_spill_freed(dnode_t *dn)
1692 {
1693 int i;
1694
1695 mutex_enter(&dn->dn_mtx);
1696 for (i = 0; i < TXG_SIZE; i++) {
1697 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1698 break;
1699 }
1700 mutex_exit(&dn->dn_mtx);
1701 return (i < TXG_SIZE);
1702 }
1703
1704 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1705 uint64_t
1706 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1707 {
1708 free_range_t range_tofind;
1709 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1710 int i;
1711
1712 if (blkid == DMU_BONUS_BLKID)
1713 return (FALSE);
1714
1715 /*
1716 * If we're in the process of opening the pool, dp will not be
1717 * set yet, but there shouldn't be anything dirty.
1718 */
1719 if (dp == NULL)
1720 return (FALSE);
1721
1722 if (dn->dn_free_txg)
1723 return (TRUE);
1724
1725 if (blkid == DMU_SPILL_BLKID)
1726 return (dnode_spill_freed(dn));
1727
1728 range_tofind.fr_blkid = blkid;
1729 mutex_enter(&dn->dn_mtx);
1730 for (i = 0; i < TXG_SIZE; i++) {
1731 free_range_t *range_found;
1732 avl_index_t idx;
1733
1734 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1735 if (range_found) {
1736 ASSERT(range_found->fr_nblks > 0);
1737 break;
1738 }
1739 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1740 if (range_found &&
1741 range_found->fr_blkid + range_found->fr_nblks > blkid)
1742 break;
1743 }
1744 mutex_exit(&dn->dn_mtx);
1745 return (i < TXG_SIZE);
1746 }
1747
1748 /* call from syncing context when we actually write/free space for this dnode */
1749 void
1750 dnode_diduse_space(dnode_t *dn, int64_t delta)
1751 {
1752 uint64_t space;
1753 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1754 dn, dn->dn_phys,
1755 (u_longlong_t)dn->dn_phys->dn_used,
1756 (longlong_t)delta);
1757
1758 mutex_enter(&dn->dn_mtx);
1759 space = DN_USED_BYTES(dn->dn_phys);
1760 if (delta > 0) {
1761 ASSERT3U(space + delta, >=, space); /* no overflow */
1762 } else {
1763 ASSERT3U(space, >=, -delta); /* no underflow */
1764 }
1765 space += delta;
1766 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1767 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1768 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1769 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1770 } else {
1771 dn->dn_phys->dn_used = space;
1772 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1773 }
1774 mutex_exit(&dn->dn_mtx);
1775 }
1776
1777 /*
1778 * Call when we think we're going to write/free space in open context.
1779 * Be conservative (ie. OK to write less than this or free more than
1780 * this, but don't write more or free less).
1781 */
1782 void
1783 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1784 {
1785 objset_t *os = dn->dn_objset;
1786 dsl_dataset_t *ds = os->os_dsl_dataset;
1787
1788 if (space > 0)
1789 space = spa_get_asize(os->os_spa, space);
1790
1791 if (ds)
1792 dsl_dir_willuse_space(ds->ds_dir, space, tx);
1793
1794 dmu_tx_willuse_space(tx, space);
1795 }
1796
1797 /*
1798 * This function scans a block at the indicated "level" looking for
1799 * a hole or data (depending on 'flags'). If level > 0, then we are
1800 * scanning an indirect block looking at its pointers. If level == 0,
1801 * then we are looking at a block of dnodes. If we don't find what we
1802 * are looking for in the block, we return ESRCH. Otherwise, return
1803 * with *offset pointing to the beginning (if searching forwards) or
1804 * end (if searching backwards) of the range covered by the block
1805 * pointer we matched on (or dnode).
1806 *
1807 * The basic search algorithm used below by dnode_next_offset() is to
1808 * use this function to search up the block tree (widen the search) until
1809 * we find something (i.e., we don't return ESRCH) and then search back
1810 * down the tree (narrow the search) until we reach our original search
1811 * level.
1812 */
1813 static int
1814 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1815 int lvl, uint64_t blkfill, uint64_t txg)
1816 {
1817 dmu_buf_impl_t *db = NULL;
1818 void *data = NULL;
1819 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1820 uint64_t epb = 1ULL << epbs;
1821 uint64_t minfill, maxfill;
1822 boolean_t hole;
1823 int i, inc, error, span;
1824
1825 dprintf("probing object %llu offset %llx level %d of %u\n",
1826 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1827
1828 hole = ((flags & DNODE_FIND_HOLE) != 0);
1829 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1830 ASSERT(txg == 0 || !hole);
1831
1832 if (lvl == dn->dn_phys->dn_nlevels) {
1833 error = 0;
1834 epb = dn->dn_phys->dn_nblkptr;
1835 data = dn->dn_phys->dn_blkptr;
1836 } else {
1837 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1838 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1839 if (error) {
1840 if (error != ENOENT)
1841 return (error);
1842 if (hole)
1843 return (0);
1844 /*
1845 * This can only happen when we are searching up
1846 * the block tree for data. We don't really need to
1847 * adjust the offset, as we will just end up looking
1848 * at the pointer to this block in its parent, and its
1849 * going to be unallocated, so we will skip over it.
1850 */
1851 return (ESRCH);
1852 }
1853 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1854 if (error) {
1855 dbuf_rele(db, FTAG);
1856 return (error);
1857 }
1858 data = db->db.db_data;
1859 }
1860
1861 if (db && txg &&
1862 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1863 /*
1864 * This can only happen when we are searching up the tree
1865 * and these conditions mean that we need to keep climbing.
1866 */
1867 error = ESRCH;
1868 } else if (lvl == 0) {
1869 dnode_phys_t *dnp = data;
1870 span = DNODE_SHIFT;
1871 ASSERT(dn->dn_type == DMU_OT_DNODE);
1872
1873 for (i = (*offset >> span) & (blkfill - 1);
1874 i >= 0 && i < blkfill; i += inc) {
1875 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1876 break;
1877 *offset += (1ULL << span) * inc;
1878 }
1879 if (i < 0 || i == blkfill)
1880 error = ESRCH;
1881 } else {
1882 blkptr_t *bp = data;
1883 uint64_t start = *offset;
1884 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1885 minfill = 0;
1886 maxfill = blkfill << ((lvl - 1) * epbs);
1887
1888 if (hole)
1889 maxfill--;
1890 else
1891 minfill++;
1892
1893 *offset = *offset >> span;
1894 for (i = BF64_GET(*offset, 0, epbs);
1895 i >= 0 && i < epb; i += inc) {
1896 if (bp[i].blk_fill >= minfill &&
1897 bp[i].blk_fill <= maxfill &&
1898 (hole || bp[i].blk_birth > txg))
1899 break;
1900 if (inc > 0 || *offset > 0)
1901 *offset += inc;
1902 }
1903 *offset = *offset << span;
1904 if (inc < 0) {
1905 /* traversing backwards; position offset at the end */
1906 ASSERT3U(*offset, <=, start);
1907 *offset = MIN(*offset + (1ULL << span) - 1, start);
1908 } else if (*offset < start) {
1909 *offset = start;
1910 }
1911 if (i < 0 || i >= epb)
1912 error = ESRCH;
1913 }
1914
1915 if (db)
1916 dbuf_rele(db, FTAG);
1917
1918 return (error);
1919 }
1920
1921 /*
1922 * Find the next hole, data, or sparse region at or after *offset.
1923 * The value 'blkfill' tells us how many items we expect to find
1924 * in an L0 data block; this value is 1 for normal objects,
1925 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1926 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1927 *
1928 * Examples:
1929 *
1930 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1931 * Finds the next/previous hole/data in a file.
1932 * Used in dmu_offset_next().
1933 *
1934 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1935 * Finds the next free/allocated dnode an objset's meta-dnode.
1936 * Only finds objects that have new contents since txg (ie.
1937 * bonus buffer changes and content removal are ignored).
1938 * Used in dmu_object_next().
1939 *
1940 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1941 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
1942 * Used in dmu_object_alloc().
1943 */
1944 int
1945 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1946 int minlvl, uint64_t blkfill, uint64_t txg)
1947 {
1948 uint64_t initial_offset = *offset;
1949 int lvl, maxlvl;
1950 int error = 0;
1951
1952 if (!(flags & DNODE_FIND_HAVELOCK))
1953 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1954
1955 if (dn->dn_phys->dn_nlevels == 0) {
1956 error = ESRCH;
1957 goto out;
1958 }
1959
1960 if (dn->dn_datablkshift == 0) {
1961 if (*offset < dn->dn_datablksz) {
1962 if (flags & DNODE_FIND_HOLE)
1963 *offset = dn->dn_datablksz;
1964 } else {
1965 error = ESRCH;
1966 }
1967 goto out;
1968 }
1969
1970 maxlvl = dn->dn_phys->dn_nlevels;
1971
1972 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1973 error = dnode_next_offset_level(dn,
1974 flags, offset, lvl, blkfill, txg);
1975 if (error != ESRCH)
1976 break;
1977 }
1978
1979 while (error == 0 && --lvl >= minlvl) {
1980 error = dnode_next_offset_level(dn,
1981 flags, offset, lvl, blkfill, txg);
1982 }
1983
1984 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1985 initial_offset < *offset : initial_offset > *offset))
1986 error = ESRCH;
1987 out:
1988 if (!(flags & DNODE_FIND_HAVELOCK))
1989 rw_exit(&dn->dn_struct_rwlock);
1990
1991 return (error);
1992 }