]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Fix indentation in dnode_free_range()
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
42
43 dnode_stats_t dnode_stats = {
44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
59 { "dnode_allocate", KSTAT_DATA_UINT64 },
60 { "dnode_reallocate", KSTAT_DATA_UINT64 },
61 { "dnode_buf_evict", KSTAT_DATA_UINT64 },
62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
63 { "dnode_alloc_race", KSTAT_DATA_UINT64 },
64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
65 { "dnode_move_invalid", KSTAT_DATA_UINT64 },
66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 },
67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 },
68 { "dnode_move_special", KSTAT_DATA_UINT64 },
69 { "dnode_move_handle", KSTAT_DATA_UINT64 },
70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 },
71 { "dnode_move_active", KSTAT_DATA_UINT64 },
72 };
73
74 static kstat_t *dnode_ksp;
75 static kmem_cache_t *dnode_cache;
76
77 static dnode_phys_t dnode_phys_zero __maybe_unused;
78
79 int zfs_default_bs = SPA_MINBLOCKSHIFT;
80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
81
82 #ifdef _KERNEL
83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
84 #endif /* _KERNEL */
85
86 static int
87 dbuf_compare(const void *x1, const void *x2)
88 {
89 const dmu_buf_impl_t *d1 = x1;
90 const dmu_buf_impl_t *d2 = x2;
91
92 int cmp = TREE_CMP(d1->db_level, d2->db_level);
93 if (likely(cmp))
94 return (cmp);
95
96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
97 if (likely(cmp))
98 return (cmp);
99
100 if (d1->db_state == DB_SEARCH) {
101 ASSERT3S(d2->db_state, !=, DB_SEARCH);
102 return (-1);
103 } else if (d2->db_state == DB_SEARCH) {
104 ASSERT3S(d1->db_state, !=, DB_SEARCH);
105 return (1);
106 }
107
108 return (TREE_PCMP(d1, d2));
109 }
110
111 /* ARGSUSED */
112 static int
113 dnode_cons(void *arg, void *unused, int kmflag)
114 {
115 dnode_t *dn = arg;
116 int i;
117
118 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
119 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
120 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
121 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
122 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
123
124 /*
125 * Every dbuf has a reference, and dropping a tracked reference is
126 * O(number of references), so don't track dn_holds.
127 */
128 zfs_refcount_create_untracked(&dn->dn_holds);
129 zfs_refcount_create(&dn->dn_tx_holds);
130 list_link_init(&dn->dn_link);
131
132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
140
141 for (i = 0; i < TXG_SIZE; i++) {
142 multilist_link_init(&dn->dn_dirty_link[i]);
143 dn->dn_free_ranges[i] = NULL;
144 list_create(&dn->dn_dirty_records[i],
145 sizeof (dbuf_dirty_record_t),
146 offsetof(dbuf_dirty_record_t, dr_dirty_node));
147 }
148
149 dn->dn_allocated_txg = 0;
150 dn->dn_free_txg = 0;
151 dn->dn_assigned_txg = 0;
152 dn->dn_dirty_txg = 0;
153 dn->dn_dirtyctx = 0;
154 dn->dn_dirtyctx_firstset = NULL;
155 dn->dn_bonus = NULL;
156 dn->dn_have_spill = B_FALSE;
157 dn->dn_zio = NULL;
158 dn->dn_oldused = 0;
159 dn->dn_oldflags = 0;
160 dn->dn_olduid = 0;
161 dn->dn_oldgid = 0;
162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
163 dn->dn_newuid = 0;
164 dn->dn_newgid = 0;
165 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
166 dn->dn_id_flags = 0;
167
168 dn->dn_dbufs_count = 0;
169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
170 offsetof(dmu_buf_impl_t, db_link));
171
172 dn->dn_moved = 0;
173 return (0);
174 }
175
176 /* ARGSUSED */
177 static void
178 dnode_dest(void *arg, void *unused)
179 {
180 int i;
181 dnode_t *dn = arg;
182
183 rw_destroy(&dn->dn_struct_rwlock);
184 mutex_destroy(&dn->dn_mtx);
185 mutex_destroy(&dn->dn_dbufs_mtx);
186 cv_destroy(&dn->dn_notxholds);
187 cv_destroy(&dn->dn_nodnholds);
188 zfs_refcount_destroy(&dn->dn_holds);
189 zfs_refcount_destroy(&dn->dn_tx_holds);
190 ASSERT(!list_link_active(&dn->dn_link));
191
192 for (i = 0; i < TXG_SIZE; i++) {
193 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
194 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
195 list_destroy(&dn->dn_dirty_records[i]);
196 ASSERT0(dn->dn_next_nblkptr[i]);
197 ASSERT0(dn->dn_next_nlevels[i]);
198 ASSERT0(dn->dn_next_indblkshift[i]);
199 ASSERT0(dn->dn_next_bonustype[i]);
200 ASSERT0(dn->dn_rm_spillblk[i]);
201 ASSERT0(dn->dn_next_bonuslen[i]);
202 ASSERT0(dn->dn_next_blksz[i]);
203 ASSERT0(dn->dn_next_maxblkid[i]);
204 }
205
206 ASSERT0(dn->dn_allocated_txg);
207 ASSERT0(dn->dn_free_txg);
208 ASSERT0(dn->dn_assigned_txg);
209 ASSERT0(dn->dn_dirty_txg);
210 ASSERT0(dn->dn_dirtyctx);
211 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
212 ASSERT3P(dn->dn_bonus, ==, NULL);
213 ASSERT(!dn->dn_have_spill);
214 ASSERT3P(dn->dn_zio, ==, NULL);
215 ASSERT0(dn->dn_oldused);
216 ASSERT0(dn->dn_oldflags);
217 ASSERT0(dn->dn_olduid);
218 ASSERT0(dn->dn_oldgid);
219 ASSERT0(dn->dn_oldprojid);
220 ASSERT0(dn->dn_newuid);
221 ASSERT0(dn->dn_newgid);
222 ASSERT0(dn->dn_newprojid);
223 ASSERT0(dn->dn_id_flags);
224
225 ASSERT0(dn->dn_dbufs_count);
226 avl_destroy(&dn->dn_dbufs);
227 }
228
229 void
230 dnode_init(void)
231 {
232 ASSERT(dnode_cache == NULL);
233 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
234 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
235 kmem_cache_set_move(dnode_cache, dnode_move);
236
237 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
238 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
239 KSTAT_FLAG_VIRTUAL);
240 if (dnode_ksp != NULL) {
241 dnode_ksp->ks_data = &dnode_stats;
242 kstat_install(dnode_ksp);
243 }
244 }
245
246 void
247 dnode_fini(void)
248 {
249 if (dnode_ksp != NULL) {
250 kstat_delete(dnode_ksp);
251 dnode_ksp = NULL;
252 }
253
254 kmem_cache_destroy(dnode_cache);
255 dnode_cache = NULL;
256 }
257
258
259 #ifdef ZFS_DEBUG
260 void
261 dnode_verify(dnode_t *dn)
262 {
263 int drop_struct_lock = FALSE;
264
265 ASSERT(dn->dn_phys);
266 ASSERT(dn->dn_objset);
267 ASSERT(dn->dn_handle->dnh_dnode == dn);
268
269 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
270
271 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
272 return;
273
274 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
275 rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 drop_struct_lock = TRUE;
277 }
278 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
279 int i;
280 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
281 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
282 if (dn->dn_datablkshift) {
283 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
284 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
285 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
286 }
287 ASSERT3U(dn->dn_nlevels, <=, 30);
288 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
289 ASSERT3U(dn->dn_nblkptr, >=, 1);
290 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
291 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
292 ASSERT3U(dn->dn_datablksz, ==,
293 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
294 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
295 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
296 dn->dn_bonuslen, <=, max_bonuslen);
297 for (i = 0; i < TXG_SIZE; i++) {
298 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
299 }
300 }
301 if (dn->dn_phys->dn_type != DMU_OT_NONE)
302 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
303 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
304 if (dn->dn_dbuf != NULL) {
305 ASSERT3P(dn->dn_phys, ==,
306 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
307 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
308 }
309 if (drop_struct_lock)
310 rw_exit(&dn->dn_struct_rwlock);
311 }
312 #endif
313
314 void
315 dnode_byteswap(dnode_phys_t *dnp)
316 {
317 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
318 int i;
319
320 if (dnp->dn_type == DMU_OT_NONE) {
321 bzero(dnp, sizeof (dnode_phys_t));
322 return;
323 }
324
325 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
326 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
327 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
328 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
329 dnp->dn_used = BSWAP_64(dnp->dn_used);
330
331 /*
332 * dn_nblkptr is only one byte, so it's OK to read it in either
333 * byte order. We can't read dn_bouslen.
334 */
335 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
336 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
337 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
338 buf64[i] = BSWAP_64(buf64[i]);
339
340 /*
341 * OK to check dn_bonuslen for zero, because it won't matter if
342 * we have the wrong byte order. This is necessary because the
343 * dnode dnode is smaller than a regular dnode.
344 */
345 if (dnp->dn_bonuslen != 0) {
346 /*
347 * Note that the bonus length calculated here may be
348 * longer than the actual bonus buffer. This is because
349 * we always put the bonus buffer after the last block
350 * pointer (instead of packing it against the end of the
351 * dnode buffer).
352 */
353 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
354 int slots = dnp->dn_extra_slots + 1;
355 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
356 dmu_object_byteswap_t byteswap;
357 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
358 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
359 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
360 }
361
362 /* Swap SPILL block if we have one */
363 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
364 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
365 }
366
367 void
368 dnode_buf_byteswap(void *vbuf, size_t size)
369 {
370 int i = 0;
371
372 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
373 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
374
375 while (i < size) {
376 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
377 dnode_byteswap(dnp);
378
379 i += DNODE_MIN_SIZE;
380 if (dnp->dn_type != DMU_OT_NONE)
381 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
382 }
383 }
384
385 void
386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
387 {
388 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
389
390 dnode_setdirty(dn, tx);
391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
392 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
393 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
394
395 if (newsize < dn->dn_bonuslen) {
396 /* clear any data after the end of the new size */
397 size_t diff = dn->dn_bonuslen - newsize;
398 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
399 bzero(data_end, diff);
400 }
401
402 dn->dn_bonuslen = newsize;
403 if (newsize == 0)
404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
405 else
406 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
407 rw_exit(&dn->dn_struct_rwlock);
408 }
409
410 void
411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
412 {
413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
414 dnode_setdirty(dn, tx);
415 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
416 dn->dn_bonustype = newtype;
417 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
418 rw_exit(&dn->dn_struct_rwlock);
419 }
420
421 void
422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
423 {
424 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
426 dnode_setdirty(dn, tx);
427 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
428 dn->dn_have_spill = B_FALSE;
429 }
430
431 static void
432 dnode_setdblksz(dnode_t *dn, int size)
433 {
434 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
435 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
436 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
437 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
438 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
439 dn->dn_datablksz = size;
440 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
441 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
442 }
443
444 static dnode_t *
445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
446 uint64_t object, dnode_handle_t *dnh)
447 {
448 dnode_t *dn;
449
450 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
451 dn->dn_moved = 0;
452
453 /*
454 * Defer setting dn_objset until the dnode is ready to be a candidate
455 * for the dnode_move() callback.
456 */
457 dn->dn_object = object;
458 dn->dn_dbuf = db;
459 dn->dn_handle = dnh;
460 dn->dn_phys = dnp;
461
462 if (dnp->dn_datablkszsec) {
463 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
464 } else {
465 dn->dn_datablksz = 0;
466 dn->dn_datablkszsec = 0;
467 dn->dn_datablkshift = 0;
468 }
469 dn->dn_indblkshift = dnp->dn_indblkshift;
470 dn->dn_nlevels = dnp->dn_nlevels;
471 dn->dn_type = dnp->dn_type;
472 dn->dn_nblkptr = dnp->dn_nblkptr;
473 dn->dn_checksum = dnp->dn_checksum;
474 dn->dn_compress = dnp->dn_compress;
475 dn->dn_bonustype = dnp->dn_bonustype;
476 dn->dn_bonuslen = dnp->dn_bonuslen;
477 dn->dn_num_slots = dnp->dn_extra_slots + 1;
478 dn->dn_maxblkid = dnp->dn_maxblkid;
479 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
480 dn->dn_id_flags = 0;
481
482 dmu_zfetch_init(&dn->dn_zfetch, dn);
483
484 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
485 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
486 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
487
488 mutex_enter(&os->os_lock);
489
490 /*
491 * Exclude special dnodes from os_dnodes so an empty os_dnodes
492 * signifies that the special dnodes have no references from
493 * their children (the entries in os_dnodes). This allows
494 * dnode_destroy() to easily determine if the last child has
495 * been removed and then complete eviction of the objset.
496 */
497 if (!DMU_OBJECT_IS_SPECIAL(object))
498 list_insert_head(&os->os_dnodes, dn);
499 membar_producer();
500
501 /*
502 * Everything else must be valid before assigning dn_objset
503 * makes the dnode eligible for dnode_move().
504 */
505 dn->dn_objset = os;
506
507 dnh->dnh_dnode = dn;
508 mutex_exit(&os->os_lock);
509
510 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
511
512 return (dn);
513 }
514
515 /*
516 * Caller must be holding the dnode handle, which is released upon return.
517 */
518 static void
519 dnode_destroy(dnode_t *dn)
520 {
521 objset_t *os = dn->dn_objset;
522 boolean_t complete_os_eviction = B_FALSE;
523
524 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
525
526 mutex_enter(&os->os_lock);
527 POINTER_INVALIDATE(&dn->dn_objset);
528 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
529 list_remove(&os->os_dnodes, dn);
530 complete_os_eviction =
531 list_is_empty(&os->os_dnodes) &&
532 list_link_active(&os->os_evicting_node);
533 }
534 mutex_exit(&os->os_lock);
535
536 /* the dnode can no longer move, so we can release the handle */
537 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
538 zrl_remove(&dn->dn_handle->dnh_zrlock);
539
540 dn->dn_allocated_txg = 0;
541 dn->dn_free_txg = 0;
542 dn->dn_assigned_txg = 0;
543 dn->dn_dirty_txg = 0;
544
545 dn->dn_dirtyctx = 0;
546 dn->dn_dirtyctx_firstset = NULL;
547 if (dn->dn_bonus != NULL) {
548 mutex_enter(&dn->dn_bonus->db_mtx);
549 dbuf_destroy(dn->dn_bonus);
550 dn->dn_bonus = NULL;
551 }
552 dn->dn_zio = NULL;
553
554 dn->dn_have_spill = B_FALSE;
555 dn->dn_oldused = 0;
556 dn->dn_oldflags = 0;
557 dn->dn_olduid = 0;
558 dn->dn_oldgid = 0;
559 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
560 dn->dn_newuid = 0;
561 dn->dn_newgid = 0;
562 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
563 dn->dn_id_flags = 0;
564
565 dmu_zfetch_fini(&dn->dn_zfetch);
566 kmem_cache_free(dnode_cache, dn);
567 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
568
569 if (complete_os_eviction)
570 dmu_objset_evict_done(os);
571 }
572
573 void
574 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
575 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
576 {
577 int i;
578
579 ASSERT3U(dn_slots, >, 0);
580 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
581 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
582 ASSERT3U(blocksize, <=,
583 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
584 if (blocksize == 0)
585 blocksize = 1 << zfs_default_bs;
586 else
587 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
588
589 if (ibs == 0)
590 ibs = zfs_default_ibs;
591
592 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
593
594 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
595 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
596 DNODE_STAT_BUMP(dnode_allocate);
597
598 ASSERT(dn->dn_type == DMU_OT_NONE);
599 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
600 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
601 ASSERT(ot != DMU_OT_NONE);
602 ASSERT(DMU_OT_IS_VALID(ot));
603 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
604 (bonustype == DMU_OT_SA && bonuslen == 0) ||
605 (bonustype != DMU_OT_NONE && bonuslen != 0));
606 ASSERT(DMU_OT_IS_VALID(bonustype));
607 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
608 ASSERT(dn->dn_type == DMU_OT_NONE);
609 ASSERT0(dn->dn_maxblkid);
610 ASSERT0(dn->dn_allocated_txg);
611 ASSERT0(dn->dn_assigned_txg);
612 ASSERT0(dn->dn_dirty_txg);
613 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
614 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
615 ASSERT(avl_is_empty(&dn->dn_dbufs));
616
617 for (i = 0; i < TXG_SIZE; i++) {
618 ASSERT0(dn->dn_next_nblkptr[i]);
619 ASSERT0(dn->dn_next_nlevels[i]);
620 ASSERT0(dn->dn_next_indblkshift[i]);
621 ASSERT0(dn->dn_next_bonuslen[i]);
622 ASSERT0(dn->dn_next_bonustype[i]);
623 ASSERT0(dn->dn_rm_spillblk[i]);
624 ASSERT0(dn->dn_next_blksz[i]);
625 ASSERT0(dn->dn_next_maxblkid[i]);
626 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
627 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
628 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
629 }
630
631 dn->dn_type = ot;
632 dnode_setdblksz(dn, blocksize);
633 dn->dn_indblkshift = ibs;
634 dn->dn_nlevels = 1;
635 dn->dn_num_slots = dn_slots;
636 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
637 dn->dn_nblkptr = 1;
638 else {
639 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
640 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
641 SPA_BLKPTRSHIFT));
642 }
643
644 dn->dn_bonustype = bonustype;
645 dn->dn_bonuslen = bonuslen;
646 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
647 dn->dn_compress = ZIO_COMPRESS_INHERIT;
648 dn->dn_dirtyctx = 0;
649
650 dn->dn_free_txg = 0;
651 dn->dn_dirtyctx_firstset = NULL;
652
653 dn->dn_allocated_txg = tx->tx_txg;
654 dn->dn_id_flags = 0;
655
656 dnode_setdirty(dn, tx);
657 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
658 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
659 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
660 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
661 }
662
663 void
664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
665 dmu_object_type_t bonustype, int bonuslen, int dn_slots,
666 boolean_t keep_spill, dmu_tx_t *tx)
667 {
668 int nblkptr;
669
670 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
671 ASSERT3U(blocksize, <=,
672 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
673 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
674 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
675 ASSERT(tx->tx_txg != 0);
676 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
677 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
678 (bonustype == DMU_OT_SA && bonuslen == 0));
679 ASSERT(DMU_OT_IS_VALID(bonustype));
680 ASSERT3U(bonuslen, <=,
681 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
682 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
683
684 dnode_free_interior_slots(dn);
685 DNODE_STAT_BUMP(dnode_reallocate);
686
687 /* clean up any unreferenced dbufs */
688 dnode_evict_dbufs(dn);
689
690 dn->dn_id_flags = 0;
691
692 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
693 dnode_setdirty(dn, tx);
694 if (dn->dn_datablksz != blocksize) {
695 /* change blocksize */
696 ASSERT0(dn->dn_maxblkid);
697 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
698 dnode_block_freed(dn, 0));
699
700 dnode_setdblksz(dn, blocksize);
701 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
702 }
703 if (dn->dn_bonuslen != bonuslen)
704 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
705
706 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
707 nblkptr = 1;
708 else
709 nblkptr = MIN(DN_MAX_NBLKPTR,
710 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
711 SPA_BLKPTRSHIFT));
712 if (dn->dn_bonustype != bonustype)
713 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
714 if (dn->dn_nblkptr != nblkptr)
715 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
716 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
717 dbuf_rm_spill(dn, tx);
718 dnode_rm_spill(dn, tx);
719 }
720
721 rw_exit(&dn->dn_struct_rwlock);
722
723 /* change type */
724 dn->dn_type = ot;
725
726 /* change bonus size and type */
727 mutex_enter(&dn->dn_mtx);
728 dn->dn_bonustype = bonustype;
729 dn->dn_bonuslen = bonuslen;
730 dn->dn_num_slots = dn_slots;
731 dn->dn_nblkptr = nblkptr;
732 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
733 dn->dn_compress = ZIO_COMPRESS_INHERIT;
734 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
735
736 /* fix up the bonus db_size */
737 if (dn->dn_bonus) {
738 dn->dn_bonus->db.db_size =
739 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
740 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
741 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
742 }
743
744 dn->dn_allocated_txg = tx->tx_txg;
745 mutex_exit(&dn->dn_mtx);
746 }
747
748 #ifdef _KERNEL
749 static void
750 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
751 {
752 int i;
753
754 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
755 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
756 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
757 ASSERT(!MUTEX_HELD(&odn->dn_zfetch.zf_lock));
758
759 /* Copy fields. */
760 ndn->dn_objset = odn->dn_objset;
761 ndn->dn_object = odn->dn_object;
762 ndn->dn_dbuf = odn->dn_dbuf;
763 ndn->dn_handle = odn->dn_handle;
764 ndn->dn_phys = odn->dn_phys;
765 ndn->dn_type = odn->dn_type;
766 ndn->dn_bonuslen = odn->dn_bonuslen;
767 ndn->dn_bonustype = odn->dn_bonustype;
768 ndn->dn_nblkptr = odn->dn_nblkptr;
769 ndn->dn_checksum = odn->dn_checksum;
770 ndn->dn_compress = odn->dn_compress;
771 ndn->dn_nlevels = odn->dn_nlevels;
772 ndn->dn_indblkshift = odn->dn_indblkshift;
773 ndn->dn_datablkshift = odn->dn_datablkshift;
774 ndn->dn_datablkszsec = odn->dn_datablkszsec;
775 ndn->dn_datablksz = odn->dn_datablksz;
776 ndn->dn_maxblkid = odn->dn_maxblkid;
777 ndn->dn_num_slots = odn->dn_num_slots;
778 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
779 sizeof (odn->dn_next_type));
780 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
781 sizeof (odn->dn_next_nblkptr));
782 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
783 sizeof (odn->dn_next_nlevels));
784 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
785 sizeof (odn->dn_next_indblkshift));
786 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
787 sizeof (odn->dn_next_bonustype));
788 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
789 sizeof (odn->dn_rm_spillblk));
790 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
791 sizeof (odn->dn_next_bonuslen));
792 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
793 sizeof (odn->dn_next_blksz));
794 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
795 sizeof (odn->dn_next_maxblkid));
796 for (i = 0; i < TXG_SIZE; i++) {
797 list_move_tail(&ndn->dn_dirty_records[i],
798 &odn->dn_dirty_records[i]);
799 }
800 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
801 sizeof (odn->dn_free_ranges));
802 ndn->dn_allocated_txg = odn->dn_allocated_txg;
803 ndn->dn_free_txg = odn->dn_free_txg;
804 ndn->dn_assigned_txg = odn->dn_assigned_txg;
805 ndn->dn_dirty_txg = odn->dn_dirty_txg;
806 ndn->dn_dirtyctx = odn->dn_dirtyctx;
807 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
808 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
809 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
810 ASSERT(avl_is_empty(&ndn->dn_dbufs));
811 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
812 ndn->dn_dbufs_count = odn->dn_dbufs_count;
813 ndn->dn_bonus = odn->dn_bonus;
814 ndn->dn_have_spill = odn->dn_have_spill;
815 ndn->dn_zio = odn->dn_zio;
816 ndn->dn_oldused = odn->dn_oldused;
817 ndn->dn_oldflags = odn->dn_oldflags;
818 ndn->dn_olduid = odn->dn_olduid;
819 ndn->dn_oldgid = odn->dn_oldgid;
820 ndn->dn_oldprojid = odn->dn_oldprojid;
821 ndn->dn_newuid = odn->dn_newuid;
822 ndn->dn_newgid = odn->dn_newgid;
823 ndn->dn_newprojid = odn->dn_newprojid;
824 ndn->dn_id_flags = odn->dn_id_flags;
825 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
826 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
827 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
828
829 /*
830 * Update back pointers. Updating the handle fixes the back pointer of
831 * every descendant dbuf as well as the bonus dbuf.
832 */
833 ASSERT(ndn->dn_handle->dnh_dnode == odn);
834 ndn->dn_handle->dnh_dnode = ndn;
835 if (ndn->dn_zfetch.zf_dnode == odn) {
836 ndn->dn_zfetch.zf_dnode = ndn;
837 }
838
839 /*
840 * Invalidate the original dnode by clearing all of its back pointers.
841 */
842 odn->dn_dbuf = NULL;
843 odn->dn_handle = NULL;
844 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
845 offsetof(dmu_buf_impl_t, db_link));
846 odn->dn_dbufs_count = 0;
847 odn->dn_bonus = NULL;
848 dmu_zfetch_fini(&odn->dn_zfetch);
849
850 /*
851 * Set the low bit of the objset pointer to ensure that dnode_move()
852 * recognizes the dnode as invalid in any subsequent callback.
853 */
854 POINTER_INVALIDATE(&odn->dn_objset);
855
856 /*
857 * Satisfy the destructor.
858 */
859 for (i = 0; i < TXG_SIZE; i++) {
860 list_create(&odn->dn_dirty_records[i],
861 sizeof (dbuf_dirty_record_t),
862 offsetof(dbuf_dirty_record_t, dr_dirty_node));
863 odn->dn_free_ranges[i] = NULL;
864 odn->dn_next_nlevels[i] = 0;
865 odn->dn_next_indblkshift[i] = 0;
866 odn->dn_next_bonustype[i] = 0;
867 odn->dn_rm_spillblk[i] = 0;
868 odn->dn_next_bonuslen[i] = 0;
869 odn->dn_next_blksz[i] = 0;
870 }
871 odn->dn_allocated_txg = 0;
872 odn->dn_free_txg = 0;
873 odn->dn_assigned_txg = 0;
874 odn->dn_dirty_txg = 0;
875 odn->dn_dirtyctx = 0;
876 odn->dn_dirtyctx_firstset = NULL;
877 odn->dn_have_spill = B_FALSE;
878 odn->dn_zio = NULL;
879 odn->dn_oldused = 0;
880 odn->dn_oldflags = 0;
881 odn->dn_olduid = 0;
882 odn->dn_oldgid = 0;
883 odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
884 odn->dn_newuid = 0;
885 odn->dn_newgid = 0;
886 odn->dn_newprojid = ZFS_DEFAULT_PROJID;
887 odn->dn_id_flags = 0;
888
889 /*
890 * Mark the dnode.
891 */
892 ndn->dn_moved = 1;
893 odn->dn_moved = (uint8_t)-1;
894 }
895
896 /*ARGSUSED*/
897 static kmem_cbrc_t
898 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
899 {
900 dnode_t *odn = buf, *ndn = newbuf;
901 objset_t *os;
902 int64_t refcount;
903 uint32_t dbufs;
904
905 /*
906 * The dnode is on the objset's list of known dnodes if the objset
907 * pointer is valid. We set the low bit of the objset pointer when
908 * freeing the dnode to invalidate it, and the memory patterns written
909 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
910 * A newly created dnode sets the objset pointer last of all to indicate
911 * that the dnode is known and in a valid state to be moved by this
912 * function.
913 */
914 os = odn->dn_objset;
915 if (!POINTER_IS_VALID(os)) {
916 DNODE_STAT_BUMP(dnode_move_invalid);
917 return (KMEM_CBRC_DONT_KNOW);
918 }
919
920 /*
921 * Ensure that the objset does not go away during the move.
922 */
923 rw_enter(&os_lock, RW_WRITER);
924 if (os != odn->dn_objset) {
925 rw_exit(&os_lock);
926 DNODE_STAT_BUMP(dnode_move_recheck1);
927 return (KMEM_CBRC_DONT_KNOW);
928 }
929
930 /*
931 * If the dnode is still valid, then so is the objset. We know that no
932 * valid objset can be freed while we hold os_lock, so we can safely
933 * ensure that the objset remains in use.
934 */
935 mutex_enter(&os->os_lock);
936
937 /*
938 * Recheck the objset pointer in case the dnode was removed just before
939 * acquiring the lock.
940 */
941 if (os != odn->dn_objset) {
942 mutex_exit(&os->os_lock);
943 rw_exit(&os_lock);
944 DNODE_STAT_BUMP(dnode_move_recheck2);
945 return (KMEM_CBRC_DONT_KNOW);
946 }
947
948 /*
949 * At this point we know that as long as we hold os->os_lock, the dnode
950 * cannot be freed and fields within the dnode can be safely accessed.
951 * The objset listing this dnode cannot go away as long as this dnode is
952 * on its list.
953 */
954 rw_exit(&os_lock);
955 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
956 mutex_exit(&os->os_lock);
957 DNODE_STAT_BUMP(dnode_move_special);
958 return (KMEM_CBRC_NO);
959 }
960 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
961
962 /*
963 * Lock the dnode handle to prevent the dnode from obtaining any new
964 * holds. This also prevents the descendant dbufs and the bonus dbuf
965 * from accessing the dnode, so that we can discount their holds. The
966 * handle is safe to access because we know that while the dnode cannot
967 * go away, neither can its handle. Once we hold dnh_zrlock, we can
968 * safely move any dnode referenced only by dbufs.
969 */
970 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
971 mutex_exit(&os->os_lock);
972 DNODE_STAT_BUMP(dnode_move_handle);
973 return (KMEM_CBRC_LATER);
974 }
975
976 /*
977 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
978 * We need to guarantee that there is a hold for every dbuf in order to
979 * determine whether the dnode is actively referenced. Falsely matching
980 * a dbuf to an active hold would lead to an unsafe move. It's possible
981 * that a thread already having an active dnode hold is about to add a
982 * dbuf, and we can't compare hold and dbuf counts while the add is in
983 * progress.
984 */
985 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
986 zrl_exit(&odn->dn_handle->dnh_zrlock);
987 mutex_exit(&os->os_lock);
988 DNODE_STAT_BUMP(dnode_move_rwlock);
989 return (KMEM_CBRC_LATER);
990 }
991
992 /*
993 * A dbuf may be removed (evicted) without an active dnode hold. In that
994 * case, the dbuf count is decremented under the handle lock before the
995 * dbuf's hold is released. This order ensures that if we count the hold
996 * after the dbuf is removed but before its hold is released, we will
997 * treat the unmatched hold as active and exit safely. If we count the
998 * hold before the dbuf is removed, the hold is discounted, and the
999 * removal is blocked until the move completes.
1000 */
1001 refcount = zfs_refcount_count(&odn->dn_holds);
1002 ASSERT(refcount >= 0);
1003 dbufs = DN_DBUFS_COUNT(odn);
1004
1005 /* We can't have more dbufs than dnode holds. */
1006 ASSERT3U(dbufs, <=, refcount);
1007 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1008 uint32_t, dbufs);
1009
1010 if (refcount > dbufs) {
1011 rw_exit(&odn->dn_struct_rwlock);
1012 zrl_exit(&odn->dn_handle->dnh_zrlock);
1013 mutex_exit(&os->os_lock);
1014 DNODE_STAT_BUMP(dnode_move_active);
1015 return (KMEM_CBRC_LATER);
1016 }
1017
1018 rw_exit(&odn->dn_struct_rwlock);
1019
1020 /*
1021 * At this point we know that anyone with a hold on the dnode is not
1022 * actively referencing it. The dnode is known and in a valid state to
1023 * move. We're holding the locks needed to execute the critical section.
1024 */
1025 dnode_move_impl(odn, ndn);
1026
1027 list_link_replace(&odn->dn_link, &ndn->dn_link);
1028 /* If the dnode was safe to move, the refcount cannot have changed. */
1029 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1030 ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1031 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1032 mutex_exit(&os->os_lock);
1033
1034 return (KMEM_CBRC_YES);
1035 }
1036 #endif /* _KERNEL */
1037
1038 static void
1039 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1040 {
1041 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1042
1043 for (int i = idx; i < idx + slots; i++) {
1044 dnode_handle_t *dnh = &children->dnc_children[i];
1045 zrl_add(&dnh->dnh_zrlock);
1046 }
1047 }
1048
1049 static void
1050 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1051 {
1052 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1053
1054 for (int i = idx; i < idx + slots; i++) {
1055 dnode_handle_t *dnh = &children->dnc_children[i];
1056
1057 if (zrl_is_locked(&dnh->dnh_zrlock))
1058 zrl_exit(&dnh->dnh_zrlock);
1059 else
1060 zrl_remove(&dnh->dnh_zrlock);
1061 }
1062 }
1063
1064 static int
1065 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1066 {
1067 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1068
1069 for (int i = idx; i < idx + slots; i++) {
1070 dnode_handle_t *dnh = &children->dnc_children[i];
1071
1072 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1073 for (int j = idx; j < i; j++) {
1074 dnh = &children->dnc_children[j];
1075 zrl_exit(&dnh->dnh_zrlock);
1076 }
1077
1078 return (0);
1079 }
1080 }
1081
1082 return (1);
1083 }
1084
1085 static void
1086 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1087 {
1088 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1089
1090 for (int i = idx; i < idx + slots; i++) {
1091 dnode_handle_t *dnh = &children->dnc_children[i];
1092 dnh->dnh_dnode = ptr;
1093 }
1094 }
1095
1096 static boolean_t
1097 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1098 {
1099 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1100
1101 /*
1102 * If all dnode slots are either already free or
1103 * evictable return B_TRUE.
1104 */
1105 for (int i = idx; i < idx + slots; i++) {
1106 dnode_handle_t *dnh = &children->dnc_children[i];
1107 dnode_t *dn = dnh->dnh_dnode;
1108
1109 if (dn == DN_SLOT_FREE) {
1110 continue;
1111 } else if (DN_SLOT_IS_PTR(dn)) {
1112 mutex_enter(&dn->dn_mtx);
1113 boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1114 zfs_refcount_is_zero(&dn->dn_holds) &&
1115 !DNODE_IS_DIRTY(dn));
1116 mutex_exit(&dn->dn_mtx);
1117
1118 if (!can_free)
1119 return (B_FALSE);
1120 else
1121 continue;
1122 } else {
1123 return (B_FALSE);
1124 }
1125 }
1126
1127 return (B_TRUE);
1128 }
1129
1130 static void
1131 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1132 {
1133 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1134
1135 for (int i = idx; i < idx + slots; i++) {
1136 dnode_handle_t *dnh = &children->dnc_children[i];
1137
1138 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1139
1140 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1141 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1142 dnode_destroy(dnh->dnh_dnode);
1143 dnh->dnh_dnode = DN_SLOT_FREE;
1144 }
1145 }
1146 }
1147
1148 void
1149 dnode_free_interior_slots(dnode_t *dn)
1150 {
1151 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1152 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1153 int idx = (dn->dn_object & (epb - 1)) + 1;
1154 int slots = dn->dn_num_slots - 1;
1155
1156 if (slots == 0)
1157 return;
1158
1159 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1160
1161 while (!dnode_slots_tryenter(children, idx, slots)) {
1162 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1163 cond_resched();
1164 }
1165
1166 dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1167 dnode_slots_rele(children, idx, slots);
1168 }
1169
1170 void
1171 dnode_special_close(dnode_handle_t *dnh)
1172 {
1173 dnode_t *dn = dnh->dnh_dnode;
1174
1175 /*
1176 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1177 * zfs_refcount_remove()
1178 */
1179 mutex_enter(&dn->dn_mtx);
1180 if (zfs_refcount_count(&dn->dn_holds) > 0)
1181 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1182 mutex_exit(&dn->dn_mtx);
1183 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1184
1185 ASSERT(dn->dn_dbuf == NULL ||
1186 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1187 zrl_add(&dnh->dnh_zrlock);
1188 dnode_destroy(dn); /* implicit zrl_remove() */
1189 zrl_destroy(&dnh->dnh_zrlock);
1190 dnh->dnh_dnode = NULL;
1191 }
1192
1193 void
1194 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1195 dnode_handle_t *dnh)
1196 {
1197 dnode_t *dn;
1198
1199 zrl_init(&dnh->dnh_zrlock);
1200 zrl_tryenter(&dnh->dnh_zrlock);
1201
1202 dn = dnode_create(os, dnp, NULL, object, dnh);
1203 DNODE_VERIFY(dn);
1204
1205 zrl_exit(&dnh->dnh_zrlock);
1206 }
1207
1208 static void
1209 dnode_buf_evict_async(void *dbu)
1210 {
1211 dnode_children_t *dnc = dbu;
1212
1213 DNODE_STAT_BUMP(dnode_buf_evict);
1214
1215 for (int i = 0; i < dnc->dnc_count; i++) {
1216 dnode_handle_t *dnh = &dnc->dnc_children[i];
1217 dnode_t *dn;
1218
1219 /*
1220 * The dnode handle lock guards against the dnode moving to
1221 * another valid address, so there is no need here to guard
1222 * against changes to or from NULL.
1223 */
1224 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1225 zrl_destroy(&dnh->dnh_zrlock);
1226 dnh->dnh_dnode = DN_SLOT_UNINIT;
1227 continue;
1228 }
1229
1230 zrl_add(&dnh->dnh_zrlock);
1231 dn = dnh->dnh_dnode;
1232 /*
1233 * If there are holds on this dnode, then there should
1234 * be holds on the dnode's containing dbuf as well; thus
1235 * it wouldn't be eligible for eviction and this function
1236 * would not have been called.
1237 */
1238 ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1239 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1240
1241 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1242 zrl_destroy(&dnh->dnh_zrlock);
1243 dnh->dnh_dnode = DN_SLOT_UNINIT;
1244 }
1245 kmem_free(dnc, sizeof (dnode_children_t) +
1246 dnc->dnc_count * sizeof (dnode_handle_t));
1247 }
1248
1249 /*
1250 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1251 * to ensure the hole at the specified object offset is large enough to
1252 * hold the dnode being created. The slots parameter is also used to ensure
1253 * a dnode does not span multiple dnode blocks. In both of these cases, if
1254 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1255 * are only possible when using DNODE_MUST_BE_FREE.
1256 *
1257 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1258 * dnode_hold_impl() will check if the requested dnode is already consumed
1259 * as an extra dnode slot by an large dnode, in which case it returns
1260 * ENOENT.
1261 *
1262 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1263 * return whether the hold would succeed or not. tag and dnp should set to
1264 * NULL in this case.
1265 *
1266 * errors:
1267 * EINVAL - Invalid object number or flags.
1268 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1269 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1270 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1271 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1272 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1273 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1274 * EIO - I/O error when reading the meta dnode dbuf.
1275 *
1276 * succeeds even for free dnodes.
1277 */
1278 int
1279 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1280 void *tag, dnode_t **dnp)
1281 {
1282 int epb, idx, err;
1283 int drop_struct_lock = FALSE;
1284 int type;
1285 uint64_t blk;
1286 dnode_t *mdn, *dn;
1287 dmu_buf_impl_t *db;
1288 dnode_children_t *dnc;
1289 dnode_phys_t *dn_block;
1290 dnode_handle_t *dnh;
1291
1292 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1293 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1294 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1295
1296 /*
1297 * If you are holding the spa config lock as writer, you shouldn't
1298 * be asking the DMU to do *anything* unless it's the root pool
1299 * which may require us to read from the root filesystem while
1300 * holding some (not all) of the locks as writer.
1301 */
1302 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1303 (spa_is_root(os->os_spa) &&
1304 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1305
1306 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1307
1308 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1309 object == DMU_PROJECTUSED_OBJECT) {
1310 if (object == DMU_USERUSED_OBJECT)
1311 dn = DMU_USERUSED_DNODE(os);
1312 else if (object == DMU_GROUPUSED_OBJECT)
1313 dn = DMU_GROUPUSED_DNODE(os);
1314 else
1315 dn = DMU_PROJECTUSED_DNODE(os);
1316 if (dn == NULL)
1317 return (SET_ERROR(ENOENT));
1318 type = dn->dn_type;
1319 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1320 return (SET_ERROR(ENOENT));
1321 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1322 return (SET_ERROR(EEXIST));
1323 DNODE_VERIFY(dn);
1324 /* Don't actually hold if dry run, just return 0 */
1325 if (!(flag & DNODE_DRY_RUN)) {
1326 (void) zfs_refcount_add(&dn->dn_holds, tag);
1327 *dnp = dn;
1328 }
1329 return (0);
1330 }
1331
1332 if (object == 0 || object >= DN_MAX_OBJECT)
1333 return (SET_ERROR(EINVAL));
1334
1335 mdn = DMU_META_DNODE(os);
1336 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1337
1338 DNODE_VERIFY(mdn);
1339
1340 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1341 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1342 drop_struct_lock = TRUE;
1343 }
1344
1345 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1346 db = dbuf_hold(mdn, blk, FTAG);
1347 if (drop_struct_lock)
1348 rw_exit(&mdn->dn_struct_rwlock);
1349 if (db == NULL) {
1350 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1351 return (SET_ERROR(EIO));
1352 }
1353
1354 /*
1355 * We do not need to decrypt to read the dnode so it doesn't matter
1356 * if we get the encrypted or decrypted version.
1357 */
1358 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1359 if (err) {
1360 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1361 dbuf_rele(db, FTAG);
1362 return (err);
1363 }
1364
1365 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1366 epb = db->db.db_size >> DNODE_SHIFT;
1367
1368 idx = object & (epb - 1);
1369 dn_block = (dnode_phys_t *)db->db.db_data;
1370
1371 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1372 dnc = dmu_buf_get_user(&db->db);
1373 dnh = NULL;
1374 if (dnc == NULL) {
1375 dnode_children_t *winner;
1376 int skip = 0;
1377
1378 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1379 epb * sizeof (dnode_handle_t), KM_SLEEP);
1380 dnc->dnc_count = epb;
1381 dnh = &dnc->dnc_children[0];
1382
1383 /* Initialize dnode slot status from dnode_phys_t */
1384 for (int i = 0; i < epb; i++) {
1385 zrl_init(&dnh[i].dnh_zrlock);
1386
1387 if (skip) {
1388 skip--;
1389 continue;
1390 }
1391
1392 if (dn_block[i].dn_type != DMU_OT_NONE) {
1393 int interior = dn_block[i].dn_extra_slots;
1394
1395 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1396 dnode_set_slots(dnc, i + 1, interior,
1397 DN_SLOT_INTERIOR);
1398 skip = interior;
1399 } else {
1400 dnh[i].dnh_dnode = DN_SLOT_FREE;
1401 skip = 0;
1402 }
1403 }
1404
1405 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1406 dnode_buf_evict_async, NULL);
1407 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1408 if (winner != NULL) {
1409
1410 for (int i = 0; i < epb; i++)
1411 zrl_destroy(&dnh[i].dnh_zrlock);
1412
1413 kmem_free(dnc, sizeof (dnode_children_t) +
1414 epb * sizeof (dnode_handle_t));
1415 dnc = winner;
1416 }
1417 }
1418
1419 ASSERT(dnc->dnc_count == epb);
1420
1421 if (flag & DNODE_MUST_BE_ALLOCATED) {
1422 slots = 1;
1423
1424 dnode_slots_hold(dnc, idx, slots);
1425 dnh = &dnc->dnc_children[idx];
1426
1427 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1428 dn = dnh->dnh_dnode;
1429 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1430 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1431 dnode_slots_rele(dnc, idx, slots);
1432 dbuf_rele(db, FTAG);
1433 return (SET_ERROR(EEXIST));
1434 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1435 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1436 dnode_slots_rele(dnc, idx, slots);
1437 dbuf_rele(db, FTAG);
1438 return (SET_ERROR(ENOENT));
1439 } else {
1440 dnode_slots_rele(dnc, idx, slots);
1441 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1442 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1443 cond_resched();
1444 }
1445
1446 /*
1447 * Someone else won the race and called dnode_create()
1448 * after we checked DN_SLOT_IS_PTR() above but before
1449 * we acquired the lock.
1450 */
1451 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1452 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1453 dn = dnh->dnh_dnode;
1454 } else {
1455 dn = dnode_create(os, dn_block + idx, db,
1456 object, dnh);
1457 }
1458 }
1459
1460 mutex_enter(&dn->dn_mtx);
1461 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1462 DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1463 mutex_exit(&dn->dn_mtx);
1464 dnode_slots_rele(dnc, idx, slots);
1465 dbuf_rele(db, FTAG);
1466 return (SET_ERROR(ENOENT));
1467 }
1468
1469 /* Don't actually hold if dry run, just return 0 */
1470 if (flag & DNODE_DRY_RUN) {
1471 mutex_exit(&dn->dn_mtx);
1472 dnode_slots_rele(dnc, idx, slots);
1473 dbuf_rele(db, FTAG);
1474 return (0);
1475 }
1476
1477 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1478 } else if (flag & DNODE_MUST_BE_FREE) {
1479
1480 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1481 DNODE_STAT_BUMP(dnode_hold_free_overflow);
1482 dbuf_rele(db, FTAG);
1483 return (SET_ERROR(ENOSPC));
1484 }
1485
1486 dnode_slots_hold(dnc, idx, slots);
1487
1488 if (!dnode_check_slots_free(dnc, idx, slots)) {
1489 DNODE_STAT_BUMP(dnode_hold_free_misses);
1490 dnode_slots_rele(dnc, idx, slots);
1491 dbuf_rele(db, FTAG);
1492 return (SET_ERROR(ENOSPC));
1493 }
1494
1495 dnode_slots_rele(dnc, idx, slots);
1496 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1497 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1498 cond_resched();
1499 }
1500
1501 if (!dnode_check_slots_free(dnc, idx, slots)) {
1502 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1503 dnode_slots_rele(dnc, idx, slots);
1504 dbuf_rele(db, FTAG);
1505 return (SET_ERROR(ENOSPC));
1506 }
1507
1508 /*
1509 * Allocated but otherwise free dnodes which would
1510 * be in the interior of a multi-slot dnodes need
1511 * to be freed. Single slot dnodes can be safely
1512 * re-purposed as a performance optimization.
1513 */
1514 if (slots > 1)
1515 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1516
1517 dnh = &dnc->dnc_children[idx];
1518 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1519 dn = dnh->dnh_dnode;
1520 } else {
1521 dn = dnode_create(os, dn_block + idx, db,
1522 object, dnh);
1523 }
1524
1525 mutex_enter(&dn->dn_mtx);
1526 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1527 DNODE_STAT_BUMP(dnode_hold_free_refcount);
1528 mutex_exit(&dn->dn_mtx);
1529 dnode_slots_rele(dnc, idx, slots);
1530 dbuf_rele(db, FTAG);
1531 return (SET_ERROR(EEXIST));
1532 }
1533
1534 /* Don't actually hold if dry run, just return 0 */
1535 if (flag & DNODE_DRY_RUN) {
1536 mutex_exit(&dn->dn_mtx);
1537 dnode_slots_rele(dnc, idx, slots);
1538 dbuf_rele(db, FTAG);
1539 return (0);
1540 }
1541
1542 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1543 DNODE_STAT_BUMP(dnode_hold_free_hits);
1544 } else {
1545 dbuf_rele(db, FTAG);
1546 return (SET_ERROR(EINVAL));
1547 }
1548
1549 ASSERT0(dn->dn_free_txg);
1550
1551 if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1552 dbuf_add_ref(db, dnh);
1553
1554 mutex_exit(&dn->dn_mtx);
1555
1556 /* Now we can rely on the hold to prevent the dnode from moving. */
1557 dnode_slots_rele(dnc, idx, slots);
1558
1559 DNODE_VERIFY(dn);
1560 ASSERT3P(dnp, !=, NULL);
1561 ASSERT3P(dn->dn_dbuf, ==, db);
1562 ASSERT3U(dn->dn_object, ==, object);
1563 dbuf_rele(db, FTAG);
1564
1565 *dnp = dn;
1566 return (0);
1567 }
1568
1569 /*
1570 * Return held dnode if the object is allocated, NULL if not.
1571 */
1572 int
1573 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1574 {
1575 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1576 dnp));
1577 }
1578
1579 /*
1580 * Can only add a reference if there is already at least one
1581 * reference on the dnode. Returns FALSE if unable to add a
1582 * new reference.
1583 */
1584 boolean_t
1585 dnode_add_ref(dnode_t *dn, void *tag)
1586 {
1587 mutex_enter(&dn->dn_mtx);
1588 if (zfs_refcount_is_zero(&dn->dn_holds)) {
1589 mutex_exit(&dn->dn_mtx);
1590 return (FALSE);
1591 }
1592 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1593 mutex_exit(&dn->dn_mtx);
1594 return (TRUE);
1595 }
1596
1597 void
1598 dnode_rele(dnode_t *dn, void *tag)
1599 {
1600 mutex_enter(&dn->dn_mtx);
1601 dnode_rele_and_unlock(dn, tag, B_FALSE);
1602 }
1603
1604 void
1605 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1606 {
1607 uint64_t refs;
1608 /* Get while the hold prevents the dnode from moving. */
1609 dmu_buf_impl_t *db = dn->dn_dbuf;
1610 dnode_handle_t *dnh = dn->dn_handle;
1611
1612 refs = zfs_refcount_remove(&dn->dn_holds, tag);
1613 if (refs == 0)
1614 cv_broadcast(&dn->dn_nodnholds);
1615 mutex_exit(&dn->dn_mtx);
1616 /* dnode could get destroyed at this point, so don't use it anymore */
1617
1618 /*
1619 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1620 * indirectly by dbuf_rele() while relying on the dnode handle to
1621 * prevent the dnode from moving, since releasing the last hold could
1622 * result in the dnode's parent dbuf evicting its dnode handles. For
1623 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1624 * other direct or indirect hold on the dnode must first drop the dnode
1625 * handle.
1626 */
1627 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1628
1629 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1630 if (refs == 0 && db != NULL) {
1631 /*
1632 * Another thread could add a hold to the dnode handle in
1633 * dnode_hold_impl() while holding the parent dbuf. Since the
1634 * hold on the parent dbuf prevents the handle from being
1635 * destroyed, the hold on the handle is OK. We can't yet assert
1636 * that the handle has zero references, but that will be
1637 * asserted anyway when the handle gets destroyed.
1638 */
1639 mutex_enter(&db->db_mtx);
1640 dbuf_rele_and_unlock(db, dnh, evicting);
1641 }
1642 }
1643
1644 /*
1645 * Test whether we can create a dnode at the specified location.
1646 */
1647 int
1648 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1649 {
1650 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1651 slots, NULL, NULL));
1652 }
1653
1654 void
1655 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1656 {
1657 objset_t *os = dn->dn_objset;
1658 uint64_t txg = tx->tx_txg;
1659
1660 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1661 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1662 return;
1663 }
1664
1665 DNODE_VERIFY(dn);
1666
1667 #ifdef ZFS_DEBUG
1668 mutex_enter(&dn->dn_mtx);
1669 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1670 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1671 mutex_exit(&dn->dn_mtx);
1672 #endif
1673
1674 /*
1675 * Determine old uid/gid when necessary
1676 */
1677 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1678
1679 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1680 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1681
1682 /*
1683 * If we are already marked dirty, we're done.
1684 */
1685 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1686 multilist_sublist_unlock(mls);
1687 return;
1688 }
1689
1690 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1691 !avl_is_empty(&dn->dn_dbufs));
1692 ASSERT(dn->dn_datablksz != 0);
1693 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1694 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1695 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1696
1697 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1698 dn->dn_object, txg);
1699
1700 multilist_sublist_insert_head(mls, dn);
1701
1702 multilist_sublist_unlock(mls);
1703
1704 /*
1705 * The dnode maintains a hold on its containing dbuf as
1706 * long as there are holds on it. Each instantiated child
1707 * dbuf maintains a hold on the dnode. When the last child
1708 * drops its hold, the dnode will drop its hold on the
1709 * containing dbuf. We add a "dirty hold" here so that the
1710 * dnode will hang around after we finish processing its
1711 * children.
1712 */
1713 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1714
1715 (void) dbuf_dirty(dn->dn_dbuf, tx);
1716
1717 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1718 }
1719
1720 void
1721 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1722 {
1723 mutex_enter(&dn->dn_mtx);
1724 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1725 mutex_exit(&dn->dn_mtx);
1726 return;
1727 }
1728 dn->dn_free_txg = tx->tx_txg;
1729 mutex_exit(&dn->dn_mtx);
1730
1731 dnode_setdirty(dn, tx);
1732 }
1733
1734 /*
1735 * Try to change the block size for the indicated dnode. This can only
1736 * succeed if there are no blocks allocated or dirty beyond first block
1737 */
1738 int
1739 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1740 {
1741 dmu_buf_impl_t *db;
1742 int err;
1743
1744 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1745 if (size == 0)
1746 size = SPA_MINBLOCKSIZE;
1747 else
1748 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1749
1750 if (ibs == dn->dn_indblkshift)
1751 ibs = 0;
1752
1753 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1754 return (0);
1755
1756 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1757
1758 /* Check for any allocated blocks beyond the first */
1759 if (dn->dn_maxblkid != 0)
1760 goto fail;
1761
1762 mutex_enter(&dn->dn_dbufs_mtx);
1763 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1764 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1765 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1766 db->db_blkid != DMU_SPILL_BLKID) {
1767 mutex_exit(&dn->dn_dbufs_mtx);
1768 goto fail;
1769 }
1770 }
1771 mutex_exit(&dn->dn_dbufs_mtx);
1772
1773 if (ibs && dn->dn_nlevels != 1)
1774 goto fail;
1775
1776 /* resize the old block */
1777 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1778 if (err == 0) {
1779 dbuf_new_size(db, size, tx);
1780 } else if (err != ENOENT) {
1781 goto fail;
1782 }
1783
1784 dnode_setdblksz(dn, size);
1785 dnode_setdirty(dn, tx);
1786 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1787 if (ibs) {
1788 dn->dn_indblkshift = ibs;
1789 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1790 }
1791 /* release after we have fixed the blocksize in the dnode */
1792 if (db)
1793 dbuf_rele(db, FTAG);
1794
1795 rw_exit(&dn->dn_struct_rwlock);
1796 return (0);
1797
1798 fail:
1799 rw_exit(&dn->dn_struct_rwlock);
1800 return (SET_ERROR(ENOTSUP));
1801 }
1802
1803 static void
1804 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1805 {
1806 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1807 int old_nlevels = dn->dn_nlevels;
1808 dmu_buf_impl_t *db;
1809 list_t *list;
1810 dbuf_dirty_record_t *new, *dr, *dr_next;
1811
1812 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1813
1814 dn->dn_nlevels = new_nlevels;
1815
1816 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1817 dn->dn_next_nlevels[txgoff] = new_nlevels;
1818
1819 /* dirty the left indirects */
1820 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1821 ASSERT(db != NULL);
1822 new = dbuf_dirty(db, tx);
1823 dbuf_rele(db, FTAG);
1824
1825 /* transfer the dirty records to the new indirect */
1826 mutex_enter(&dn->dn_mtx);
1827 mutex_enter(&new->dt.di.dr_mtx);
1828 list = &dn->dn_dirty_records[txgoff];
1829 for (dr = list_head(list); dr; dr = dr_next) {
1830 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1831 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1832 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1833 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1834 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1835 list_remove(&dn->dn_dirty_records[txgoff], dr);
1836 list_insert_tail(&new->dt.di.dr_children, dr);
1837 dr->dr_parent = new;
1838 }
1839 }
1840 mutex_exit(&new->dt.di.dr_mtx);
1841 mutex_exit(&dn->dn_mtx);
1842 }
1843
1844 int
1845 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1846 {
1847 int ret = 0;
1848
1849 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1850
1851 if (dn->dn_nlevels == nlevels) {
1852 ret = 0;
1853 goto out;
1854 } else if (nlevels < dn->dn_nlevels) {
1855 ret = SET_ERROR(EINVAL);
1856 goto out;
1857 }
1858
1859 dnode_set_nlevels_impl(dn, nlevels, tx);
1860
1861 out:
1862 rw_exit(&dn->dn_struct_rwlock);
1863 return (ret);
1864 }
1865
1866 /* read-holding callers must not rely on the lock being continuously held */
1867 void
1868 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1869 boolean_t force)
1870 {
1871 int epbs, new_nlevels;
1872 uint64_t sz;
1873
1874 ASSERT(blkid != DMU_BONUS_BLKID);
1875
1876 ASSERT(have_read ?
1877 RW_READ_HELD(&dn->dn_struct_rwlock) :
1878 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1879
1880 /*
1881 * if we have a read-lock, check to see if we need to do any work
1882 * before upgrading to a write-lock.
1883 */
1884 if (have_read) {
1885 if (blkid <= dn->dn_maxblkid)
1886 return;
1887
1888 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1889 rw_exit(&dn->dn_struct_rwlock);
1890 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1891 }
1892 }
1893
1894 /*
1895 * Raw sends (indicated by the force flag) require that we take the
1896 * given blkid even if the value is lower than the current value.
1897 */
1898 if (!force && blkid <= dn->dn_maxblkid)
1899 goto out;
1900
1901 /*
1902 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1903 * to indicate that this field is set. This allows us to set the
1904 * maxblkid to 0 on an existing object in dnode_sync().
1905 */
1906 dn->dn_maxblkid = blkid;
1907 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1908 blkid | DMU_NEXT_MAXBLKID_SET;
1909
1910 /*
1911 * Compute the number of levels necessary to support the new maxblkid.
1912 * Raw sends will ensure nlevels is set correctly for us.
1913 */
1914 new_nlevels = 1;
1915 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1916 for (sz = dn->dn_nblkptr;
1917 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1918 new_nlevels++;
1919
1920 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1921
1922 if (!force) {
1923 if (new_nlevels > dn->dn_nlevels)
1924 dnode_set_nlevels_impl(dn, new_nlevels, tx);
1925 } else {
1926 ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1927 }
1928
1929 out:
1930 if (have_read)
1931 rw_downgrade(&dn->dn_struct_rwlock);
1932 }
1933
1934 static void
1935 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1936 {
1937 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1938 if (db != NULL) {
1939 dmu_buf_will_dirty(&db->db, tx);
1940 dbuf_rele(db, FTAG);
1941 }
1942 }
1943
1944 /*
1945 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1946 * and end_blkid.
1947 */
1948 static void
1949 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1950 dmu_tx_t *tx)
1951 {
1952 dmu_buf_impl_t db_search;
1953 dmu_buf_impl_t *db;
1954 avl_index_t where;
1955
1956 mutex_enter(&dn->dn_dbufs_mtx);
1957
1958 db_search.db_level = 1;
1959 db_search.db_blkid = start_blkid + 1;
1960 db_search.db_state = DB_SEARCH;
1961 for (;;) {
1962
1963 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1964 if (db == NULL)
1965 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1966
1967 if (db == NULL || db->db_level != 1 ||
1968 db->db_blkid >= end_blkid) {
1969 break;
1970 }
1971
1972 /*
1973 * Setup the next blkid we want to search for.
1974 */
1975 db_search.db_blkid = db->db_blkid + 1;
1976 ASSERT3U(db->db_blkid, >=, start_blkid);
1977
1978 /*
1979 * If the dbuf transitions to DB_EVICTING while we're trying
1980 * to dirty it, then we will be unable to discover it in
1981 * the dbuf hash table. This will result in a call to
1982 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1983 * lock. To avoid a deadlock, we drop the lock before
1984 * dirtying the level-1 dbuf.
1985 */
1986 mutex_exit(&dn->dn_dbufs_mtx);
1987 dnode_dirty_l1(dn, db->db_blkid, tx);
1988 mutex_enter(&dn->dn_dbufs_mtx);
1989 }
1990
1991 #ifdef ZFS_DEBUG
1992 /*
1993 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1994 */
1995 db_search.db_level = 1;
1996 db_search.db_blkid = start_blkid + 1;
1997 db_search.db_state = DB_SEARCH;
1998 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1999 if (db == NULL)
2000 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2001 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2002 if (db->db_level != 1 || db->db_blkid >= end_blkid)
2003 break;
2004 if (db->db_state != DB_EVICTING)
2005 ASSERT(db->db_dirtycnt > 0);
2006 }
2007 #endif
2008 mutex_exit(&dn->dn_dbufs_mtx);
2009 }
2010
2011 void
2012 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag)
2013 {
2014 /*
2015 * Don't set dirtyctx to SYNC if we're just modifying this as we
2016 * initialize the objset.
2017 */
2018 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2019 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2020
2021 if (ds != NULL) {
2022 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2023 }
2024 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2025 if (dmu_tx_is_syncing(tx))
2026 dn->dn_dirtyctx = DN_DIRTY_SYNC;
2027 else
2028 dn->dn_dirtyctx = DN_DIRTY_OPEN;
2029 dn->dn_dirtyctx_firstset = tag;
2030 }
2031 if (ds != NULL) {
2032 rrw_exit(&ds->ds_bp_rwlock, tag);
2033 }
2034 }
2035 }
2036
2037 void
2038 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2039 {
2040 dmu_buf_impl_t *db;
2041 uint64_t blkoff, blkid, nblks;
2042 int blksz, blkshift, head, tail;
2043 int trunc = FALSE;
2044 int epbs;
2045
2046 blksz = dn->dn_datablksz;
2047 blkshift = dn->dn_datablkshift;
2048 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2049
2050 if (len == DMU_OBJECT_END) {
2051 len = UINT64_MAX - off;
2052 trunc = TRUE;
2053 }
2054
2055 /*
2056 * First, block align the region to free:
2057 */
2058 if (ISP2(blksz)) {
2059 head = P2NPHASE(off, blksz);
2060 blkoff = P2PHASE(off, blksz);
2061 if ((off >> blkshift) > dn->dn_maxblkid)
2062 return;
2063 } else {
2064 ASSERT(dn->dn_maxblkid == 0);
2065 if (off == 0 && len >= blksz) {
2066 /*
2067 * Freeing the whole block; fast-track this request.
2068 */
2069 blkid = 0;
2070 nblks = 1;
2071 if (dn->dn_nlevels > 1) {
2072 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2073 dnode_dirty_l1(dn, 0, tx);
2074 rw_exit(&dn->dn_struct_rwlock);
2075 }
2076 goto done;
2077 } else if (off >= blksz) {
2078 /* Freeing past end-of-data */
2079 return;
2080 } else {
2081 /* Freeing part of the block. */
2082 head = blksz - off;
2083 ASSERT3U(head, >, 0);
2084 }
2085 blkoff = off;
2086 }
2087 /* zero out any partial block data at the start of the range */
2088 if (head) {
2089 int res;
2090 ASSERT3U(blkoff + head, ==, blksz);
2091 if (len < head)
2092 head = len;
2093 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2094 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2095 TRUE, FALSE, FTAG, &db);
2096 rw_exit(&dn->dn_struct_rwlock);
2097 if (res == 0) {
2098 caddr_t data;
2099 boolean_t dirty;
2100
2101 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER,
2102 FTAG);
2103 /* don't dirty if it isn't on disk and isn't dirty */
2104 dirty = !list_is_empty(&db->db_dirty_records) ||
2105 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2106 dmu_buf_unlock_parent(db, dblt, FTAG);
2107 if (dirty) {
2108 dmu_buf_will_dirty(&db->db, tx);
2109 data = db->db.db_data;
2110 bzero(data + blkoff, head);
2111 }
2112 dbuf_rele(db, FTAG);
2113 }
2114 off += head;
2115 len -= head;
2116 }
2117
2118 /* If the range was less than one block, we're done */
2119 if (len == 0)
2120 return;
2121
2122 /* If the remaining range is past end of file, we're done */
2123 if ((off >> blkshift) > dn->dn_maxblkid)
2124 return;
2125
2126 ASSERT(ISP2(blksz));
2127 if (trunc)
2128 tail = 0;
2129 else
2130 tail = P2PHASE(len, blksz);
2131
2132 ASSERT0(P2PHASE(off, blksz));
2133 /* zero out any partial block data at the end of the range */
2134 if (tail) {
2135 int res;
2136 if (len < tail)
2137 tail = len;
2138 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2139 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2140 TRUE, FALSE, FTAG, &db);
2141 rw_exit(&dn->dn_struct_rwlock);
2142 if (res == 0) {
2143 boolean_t dirty;
2144 /* don't dirty if not on disk and not dirty */
2145 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER,
2146 FTAG);
2147 dirty = !list_is_empty(&db->db_dirty_records) ||
2148 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2149 dmu_buf_unlock_parent(db, type, FTAG);
2150 if (dirty) {
2151 dmu_buf_will_dirty(&db->db, tx);
2152 bzero(db->db.db_data, tail);
2153 }
2154 dbuf_rele(db, FTAG);
2155 }
2156 len -= tail;
2157 }
2158
2159 /* If the range did not include a full block, we are done */
2160 if (len == 0)
2161 return;
2162
2163 ASSERT(IS_P2ALIGNED(off, blksz));
2164 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2165 blkid = off >> blkshift;
2166 nblks = len >> blkshift;
2167 if (trunc)
2168 nblks += 1;
2169
2170 /*
2171 * Dirty all the indirect blocks in this range. Note that only
2172 * the first and last indirect blocks can actually be written
2173 * (if they were partially freed) -- they must be dirtied, even if
2174 * they do not exist on disk yet. The interior blocks will
2175 * be freed by free_children(), so they will not actually be written.
2176 * Even though these interior blocks will not be written, we
2177 * dirty them for two reasons:
2178 *
2179 * - It ensures that the indirect blocks remain in memory until
2180 * syncing context. (They have already been prefetched by
2181 * dmu_tx_hold_free(), so we don't have to worry about reading
2182 * them serially here.)
2183 *
2184 * - The dirty space accounting will put pressure on the txg sync
2185 * mechanism to begin syncing, and to delay transactions if there
2186 * is a large amount of freeing. Even though these indirect
2187 * blocks will not be written, we could need to write the same
2188 * amount of space if we copy the freed BPs into deadlists.
2189 */
2190 if (dn->dn_nlevels > 1) {
2191 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2192 uint64_t first, last;
2193
2194 first = blkid >> epbs;
2195 dnode_dirty_l1(dn, first, tx);
2196 if (trunc)
2197 last = dn->dn_maxblkid >> epbs;
2198 else
2199 last = (blkid + nblks - 1) >> epbs;
2200 if (last != first)
2201 dnode_dirty_l1(dn, last, tx);
2202
2203 dnode_dirty_l1range(dn, first, last, tx);
2204
2205 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2206 SPA_BLKPTRSHIFT;
2207 for (uint64_t i = first + 1; i < last; i++) {
2208 /*
2209 * Set i to the blockid of the next non-hole
2210 * level-1 indirect block at or after i. Note
2211 * that dnode_next_offset() operates in terms of
2212 * level-0-equivalent bytes.
2213 */
2214 uint64_t ibyte = i << shift;
2215 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2216 &ibyte, 2, 1, 0);
2217 i = ibyte >> shift;
2218 if (i >= last)
2219 break;
2220
2221 /*
2222 * Normally we should not see an error, either
2223 * from dnode_next_offset() or dbuf_hold_level()
2224 * (except for ESRCH from dnode_next_offset).
2225 * If there is an i/o error, then when we read
2226 * this block in syncing context, it will use
2227 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2228 * to the "failmode" property. dnode_next_offset()
2229 * doesn't have a flag to indicate MUSTSUCCEED.
2230 */
2231 if (err != 0)
2232 break;
2233
2234 dnode_dirty_l1(dn, i, tx);
2235 }
2236 rw_exit(&dn->dn_struct_rwlock);
2237 }
2238
2239 done:
2240 /*
2241 * Add this range to the dnode range list.
2242 * We will finish up this free operation in the syncing phase.
2243 */
2244 mutex_enter(&dn->dn_mtx);
2245 {
2246 int txgoff = tx->tx_txg & TXG_MASK;
2247 if (dn->dn_free_ranges[txgoff] == NULL) {
2248 dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2249 RANGE_SEG64, NULL, 0, 0);
2250 }
2251 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2252 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2253 }
2254 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2255 blkid, nblks, tx->tx_txg);
2256 mutex_exit(&dn->dn_mtx);
2257
2258 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2259 dnode_setdirty(dn, tx);
2260 }
2261
2262 static boolean_t
2263 dnode_spill_freed(dnode_t *dn)
2264 {
2265 int i;
2266
2267 mutex_enter(&dn->dn_mtx);
2268 for (i = 0; i < TXG_SIZE; i++) {
2269 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2270 break;
2271 }
2272 mutex_exit(&dn->dn_mtx);
2273 return (i < TXG_SIZE);
2274 }
2275
2276 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2277 uint64_t
2278 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2279 {
2280 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2281 int i;
2282
2283 if (blkid == DMU_BONUS_BLKID)
2284 return (FALSE);
2285
2286 /*
2287 * If we're in the process of opening the pool, dp will not be
2288 * set yet, but there shouldn't be anything dirty.
2289 */
2290 if (dp == NULL)
2291 return (FALSE);
2292
2293 if (dn->dn_free_txg)
2294 return (TRUE);
2295
2296 if (blkid == DMU_SPILL_BLKID)
2297 return (dnode_spill_freed(dn));
2298
2299 mutex_enter(&dn->dn_mtx);
2300 for (i = 0; i < TXG_SIZE; i++) {
2301 if (dn->dn_free_ranges[i] != NULL &&
2302 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2303 break;
2304 }
2305 mutex_exit(&dn->dn_mtx);
2306 return (i < TXG_SIZE);
2307 }
2308
2309 /* call from syncing context when we actually write/free space for this dnode */
2310 void
2311 dnode_diduse_space(dnode_t *dn, int64_t delta)
2312 {
2313 uint64_t space;
2314 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2315 dn, dn->dn_phys,
2316 (u_longlong_t)dn->dn_phys->dn_used,
2317 (longlong_t)delta);
2318
2319 mutex_enter(&dn->dn_mtx);
2320 space = DN_USED_BYTES(dn->dn_phys);
2321 if (delta > 0) {
2322 ASSERT3U(space + delta, >=, space); /* no overflow */
2323 } else {
2324 ASSERT3U(space, >=, -delta); /* no underflow */
2325 }
2326 space += delta;
2327 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2328 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2329 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2330 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2331 } else {
2332 dn->dn_phys->dn_used = space;
2333 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2334 }
2335 mutex_exit(&dn->dn_mtx);
2336 }
2337
2338 /*
2339 * Scans a block at the indicated "level" looking for a hole or data,
2340 * depending on 'flags'.
2341 *
2342 * If level > 0, then we are scanning an indirect block looking at its
2343 * pointers. If level == 0, then we are looking at a block of dnodes.
2344 *
2345 * If we don't find what we are looking for in the block, we return ESRCH.
2346 * Otherwise, return with *offset pointing to the beginning (if searching
2347 * forwards) or end (if searching backwards) of the range covered by the
2348 * block pointer we matched on (or dnode).
2349 *
2350 * The basic search algorithm used below by dnode_next_offset() is to
2351 * use this function to search up the block tree (widen the search) until
2352 * we find something (i.e., we don't return ESRCH) and then search back
2353 * down the tree (narrow the search) until we reach our original search
2354 * level.
2355 */
2356 static int
2357 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2358 int lvl, uint64_t blkfill, uint64_t txg)
2359 {
2360 dmu_buf_impl_t *db = NULL;
2361 void *data = NULL;
2362 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2363 uint64_t epb = 1ULL << epbs;
2364 uint64_t minfill, maxfill;
2365 boolean_t hole;
2366 int i, inc, error, span;
2367
2368 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2369
2370 hole = ((flags & DNODE_FIND_HOLE) != 0);
2371 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2372 ASSERT(txg == 0 || !hole);
2373
2374 if (lvl == dn->dn_phys->dn_nlevels) {
2375 error = 0;
2376 epb = dn->dn_phys->dn_nblkptr;
2377 data = dn->dn_phys->dn_blkptr;
2378 } else {
2379 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2380 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2381 if (error) {
2382 if (error != ENOENT)
2383 return (error);
2384 if (hole)
2385 return (0);
2386 /*
2387 * This can only happen when we are searching up
2388 * the block tree for data. We don't really need to
2389 * adjust the offset, as we will just end up looking
2390 * at the pointer to this block in its parent, and its
2391 * going to be unallocated, so we will skip over it.
2392 */
2393 return (SET_ERROR(ESRCH));
2394 }
2395 error = dbuf_read(db, NULL,
2396 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2397 if (error) {
2398 dbuf_rele(db, FTAG);
2399 return (error);
2400 }
2401 data = db->db.db_data;
2402 rw_enter(&db->db_rwlock, RW_READER);
2403 }
2404
2405 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2406 db->db_blkptr->blk_birth <= txg ||
2407 BP_IS_HOLE(db->db_blkptr))) {
2408 /*
2409 * This can only happen when we are searching up the tree
2410 * and these conditions mean that we need to keep climbing.
2411 */
2412 error = SET_ERROR(ESRCH);
2413 } else if (lvl == 0) {
2414 dnode_phys_t *dnp = data;
2415
2416 ASSERT(dn->dn_type == DMU_OT_DNODE);
2417 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2418
2419 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2420 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2421 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2422 break;
2423 }
2424
2425 if (i == blkfill)
2426 error = SET_ERROR(ESRCH);
2427
2428 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2429 (i << DNODE_SHIFT);
2430 } else {
2431 blkptr_t *bp = data;
2432 uint64_t start = *offset;
2433 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2434 minfill = 0;
2435 maxfill = blkfill << ((lvl - 1) * epbs);
2436
2437 if (hole)
2438 maxfill--;
2439 else
2440 minfill++;
2441
2442 if (span >= 8 * sizeof (*offset)) {
2443 /* This only happens on the highest indirection level */
2444 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2445 *offset = 0;
2446 } else {
2447 *offset = *offset >> span;
2448 }
2449
2450 for (i = BF64_GET(*offset, 0, epbs);
2451 i >= 0 && i < epb; i += inc) {
2452 if (BP_GET_FILL(&bp[i]) >= minfill &&
2453 BP_GET_FILL(&bp[i]) <= maxfill &&
2454 (hole || bp[i].blk_birth > txg))
2455 break;
2456 if (inc > 0 || *offset > 0)
2457 *offset += inc;
2458 }
2459
2460 if (span >= 8 * sizeof (*offset)) {
2461 *offset = start;
2462 } else {
2463 *offset = *offset << span;
2464 }
2465
2466 if (inc < 0) {
2467 /* traversing backwards; position offset at the end */
2468 ASSERT3U(*offset, <=, start);
2469 *offset = MIN(*offset + (1ULL << span) - 1, start);
2470 } else if (*offset < start) {
2471 *offset = start;
2472 }
2473 if (i < 0 || i >= epb)
2474 error = SET_ERROR(ESRCH);
2475 }
2476
2477 if (db != NULL) {
2478 rw_exit(&db->db_rwlock);
2479 dbuf_rele(db, FTAG);
2480 }
2481
2482 return (error);
2483 }
2484
2485 /*
2486 * Find the next hole, data, or sparse region at or after *offset.
2487 * The value 'blkfill' tells us how many items we expect to find
2488 * in an L0 data block; this value is 1 for normal objects,
2489 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2490 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2491 *
2492 * Examples:
2493 *
2494 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2495 * Finds the next/previous hole/data in a file.
2496 * Used in dmu_offset_next().
2497 *
2498 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2499 * Finds the next free/allocated dnode an objset's meta-dnode.
2500 * Only finds objects that have new contents since txg (ie.
2501 * bonus buffer changes and content removal are ignored).
2502 * Used in dmu_object_next().
2503 *
2504 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2505 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2506 * Used in dmu_object_alloc().
2507 */
2508 int
2509 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2510 int minlvl, uint64_t blkfill, uint64_t txg)
2511 {
2512 uint64_t initial_offset = *offset;
2513 int lvl, maxlvl;
2514 int error = 0;
2515
2516 if (!(flags & DNODE_FIND_HAVELOCK))
2517 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2518
2519 if (dn->dn_phys->dn_nlevels == 0) {
2520 error = SET_ERROR(ESRCH);
2521 goto out;
2522 }
2523
2524 if (dn->dn_datablkshift == 0) {
2525 if (*offset < dn->dn_datablksz) {
2526 if (flags & DNODE_FIND_HOLE)
2527 *offset = dn->dn_datablksz;
2528 } else {
2529 error = SET_ERROR(ESRCH);
2530 }
2531 goto out;
2532 }
2533
2534 maxlvl = dn->dn_phys->dn_nlevels;
2535
2536 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2537 error = dnode_next_offset_level(dn,
2538 flags, offset, lvl, blkfill, txg);
2539 if (error != ESRCH)
2540 break;
2541 }
2542
2543 while (error == 0 && --lvl >= minlvl) {
2544 error = dnode_next_offset_level(dn,
2545 flags, offset, lvl, blkfill, txg);
2546 }
2547
2548 /*
2549 * There's always a "virtual hole" at the end of the object, even
2550 * if all BP's which physically exist are non-holes.
2551 */
2552 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2553 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2554 error = 0;
2555 }
2556
2557 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2558 initial_offset < *offset : initial_offset > *offset))
2559 error = SET_ERROR(ESRCH);
2560 out:
2561 if (!(flags & DNODE_FIND_HAVELOCK))
2562 rw_exit(&dn->dn_struct_rwlock);
2563
2564 return (error);
2565 }
2566
2567 #if defined(_KERNEL)
2568 EXPORT_SYMBOL(dnode_hold);
2569 EXPORT_SYMBOL(dnode_rele);
2570 EXPORT_SYMBOL(dnode_set_nlevels);
2571 EXPORT_SYMBOL(dnode_set_blksz);
2572 EXPORT_SYMBOL(dnode_free_range);
2573 EXPORT_SYMBOL(dnode_evict_dbufs);
2574 EXPORT_SYMBOL(dnode_evict_bonus);
2575 #endif