]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/dbuf.h>
27 #include <sys/dnode.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/spa.h>
35 #include <sys/zio.h>
36 #include <sys/dmu_zfetch.h>
37
38 static int free_range_compar(const void *node1, const void *node2);
39
40 static kmem_cache_t *dnode_cache;
41
42 static dnode_phys_t dnode_phys_zero;
43
44 int zfs_default_bs = SPA_MINBLOCKSHIFT;
45 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
46
47 /* ARGSUSED */
48 static int
49 dnode_cons(void *arg, void *unused, int kmflag)
50 {
51 int i;
52 dnode_t *dn = arg;
53 bzero(dn, sizeof (dnode_t));
54
55 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
56 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
57 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
58 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
59
60 refcount_create(&dn->dn_holds);
61 refcount_create(&dn->dn_tx_holds);
62
63 for (i = 0; i < TXG_SIZE; i++) {
64 avl_create(&dn->dn_ranges[i], free_range_compar,
65 sizeof (free_range_t),
66 offsetof(struct free_range, fr_node));
67 list_create(&dn->dn_dirty_records[i],
68 sizeof (dbuf_dirty_record_t),
69 offsetof(dbuf_dirty_record_t, dr_dirty_node));
70 }
71
72 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
73 offsetof(dmu_buf_impl_t, db_link));
74
75 return (0);
76 }
77
78 /* ARGSUSED */
79 static void
80 dnode_dest(void *arg, void *unused)
81 {
82 int i;
83 dnode_t *dn = arg;
84
85 rw_destroy(&dn->dn_struct_rwlock);
86 mutex_destroy(&dn->dn_mtx);
87 mutex_destroy(&dn->dn_dbufs_mtx);
88 cv_destroy(&dn->dn_notxholds);
89 refcount_destroy(&dn->dn_holds);
90 refcount_destroy(&dn->dn_tx_holds);
91
92 for (i = 0; i < TXG_SIZE; i++) {
93 avl_destroy(&dn->dn_ranges[i]);
94 list_destroy(&dn->dn_dirty_records[i]);
95 }
96
97 list_destroy(&dn->dn_dbufs);
98 }
99
100 void
101 dnode_init(void)
102 {
103 dnode_cache = kmem_cache_create("dnode_t",
104 sizeof (dnode_t),
105 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
106 }
107
108 void
109 dnode_fini(void)
110 {
111 kmem_cache_destroy(dnode_cache);
112 }
113
114
115 #ifdef ZFS_DEBUG
116 void
117 dnode_verify(dnode_t *dn)
118 {
119 int drop_struct_lock = FALSE;
120
121 ASSERT(dn->dn_phys);
122 ASSERT(dn->dn_objset);
123
124 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
125
126 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
127 return;
128
129 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
130 rw_enter(&dn->dn_struct_rwlock, RW_READER);
131 drop_struct_lock = TRUE;
132 }
133 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
134 int i;
135 ASSERT3U(dn->dn_indblkshift, >=, 0);
136 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
137 if (dn->dn_datablkshift) {
138 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
139 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
140 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
141 }
142 ASSERT3U(dn->dn_nlevels, <=, 30);
143 ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES);
144 ASSERT3U(dn->dn_nblkptr, >=, 1);
145 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
146 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
147 ASSERT3U(dn->dn_datablksz, ==,
148 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
149 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
150 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
151 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
152 for (i = 0; i < TXG_SIZE; i++) {
153 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
154 }
155 }
156 if (dn->dn_phys->dn_type != DMU_OT_NONE)
157 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
158 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
159 if (dn->dn_dbuf != NULL) {
160 ASSERT3P(dn->dn_phys, ==,
161 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
162 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
163 }
164 if (drop_struct_lock)
165 rw_exit(&dn->dn_struct_rwlock);
166 }
167 #endif
168
169 void
170 dnode_byteswap(dnode_phys_t *dnp)
171 {
172 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
173 int i;
174
175 if (dnp->dn_type == DMU_OT_NONE) {
176 bzero(dnp, sizeof (dnode_phys_t));
177 return;
178 }
179
180 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
181 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
182 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
183 dnp->dn_used = BSWAP_64(dnp->dn_used);
184
185 /*
186 * dn_nblkptr is only one byte, so it's OK to read it in either
187 * byte order. We can't read dn_bouslen.
188 */
189 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
190 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
191 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
192 buf64[i] = BSWAP_64(buf64[i]);
193
194 /*
195 * OK to check dn_bonuslen for zero, because it won't matter if
196 * we have the wrong byte order. This is necessary because the
197 * dnode dnode is smaller than a regular dnode.
198 */
199 if (dnp->dn_bonuslen != 0) {
200 /*
201 * Note that the bonus length calculated here may be
202 * longer than the actual bonus buffer. This is because
203 * we always put the bonus buffer after the last block
204 * pointer (instead of packing it against the end of the
205 * dnode buffer).
206 */
207 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
208 size_t len = DN_MAX_BONUSLEN - off;
209 ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES);
210 dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len);
211 }
212
213 /* Swap SPILL block if we have one */
214 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
215 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
216
217 }
218
219 void
220 dnode_buf_byteswap(void *vbuf, size_t size)
221 {
222 dnode_phys_t *buf = vbuf;
223 int i;
224
225 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
226 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
227
228 size >>= DNODE_SHIFT;
229 for (i = 0; i < size; i++) {
230 dnode_byteswap(buf);
231 buf++;
232 }
233 }
234
235 static int
236 free_range_compar(const void *node1, const void *node2)
237 {
238 const free_range_t *rp1 = node1;
239 const free_range_t *rp2 = node2;
240
241 if (rp1->fr_blkid < rp2->fr_blkid)
242 return (-1);
243 else if (rp1->fr_blkid > rp2->fr_blkid)
244 return (1);
245 else return (0);
246 }
247
248 void
249 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
250 {
251 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
252
253 dnode_setdirty(dn, tx);
254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
255 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
256 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
257 dn->dn_bonuslen = newsize;
258 if (newsize == 0)
259 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
260 else
261 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
262 rw_exit(&dn->dn_struct_rwlock);
263 }
264
265 void
266 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
267 {
268 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
269 dnode_setdirty(dn, tx);
270 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
271 dn->dn_bonustype = newtype;
272 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
273 rw_exit(&dn->dn_struct_rwlock);
274 }
275
276 void
277 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
278 {
279 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
280 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
281 dnode_setdirty(dn, tx);
282 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
283 dn->dn_have_spill = B_FALSE;
284 }
285
286 static void
287 dnode_setdblksz(dnode_t *dn, int size)
288 {
289 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
290 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
291 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
292 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
293 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
294 dn->dn_datablksz = size;
295 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
296 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
297 }
298
299 static dnode_t *
300 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
301 uint64_t object)
302 {
303 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
304 (void) dnode_cons(dn, NULL, 0); /* XXX */
305
306 dn->dn_objset = os;
307 dn->dn_object = object;
308 dn->dn_dbuf = db;
309 dn->dn_phys = dnp;
310
311 if (dnp->dn_datablkszsec)
312 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
313 dn->dn_indblkshift = dnp->dn_indblkshift;
314 dn->dn_nlevels = dnp->dn_nlevels;
315 dn->dn_type = dnp->dn_type;
316 dn->dn_nblkptr = dnp->dn_nblkptr;
317 dn->dn_checksum = dnp->dn_checksum;
318 dn->dn_compress = dnp->dn_compress;
319 dn->dn_bonustype = dnp->dn_bonustype;
320 dn->dn_bonuslen = dnp->dn_bonuslen;
321 dn->dn_maxblkid = dnp->dn_maxblkid;
322 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
323 dn->dn_id_flags = 0;
324
325 dmu_zfetch_init(&dn->dn_zfetch, dn);
326
327 ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
328 mutex_enter(&os->os_lock);
329 list_insert_head(&os->os_dnodes, dn);
330 mutex_exit(&os->os_lock);
331
332 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
333 return (dn);
334 }
335
336 static void
337 dnode_destroy(dnode_t *dn)
338 {
339 objset_t *os = dn->dn_objset;
340
341 #ifdef ZFS_DEBUG
342 int i;
343
344 for (i = 0; i < TXG_SIZE; i++) {
345 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
346 ASSERT(NULL == list_head(&dn->dn_dirty_records[i]));
347 ASSERT(0 == avl_numnodes(&dn->dn_ranges[i]));
348 }
349 ASSERT(NULL == list_head(&dn->dn_dbufs));
350 #endif
351 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
352
353 mutex_enter(&os->os_lock);
354 list_remove(&os->os_dnodes, dn);
355 mutex_exit(&os->os_lock);
356
357 if (dn->dn_dirtyctx_firstset) {
358 kmem_free(dn->dn_dirtyctx_firstset, 1);
359 dn->dn_dirtyctx_firstset = NULL;
360 }
361 dmu_zfetch_rele(&dn->dn_zfetch);
362 if (dn->dn_bonus) {
363 mutex_enter(&dn->dn_bonus->db_mtx);
364 dbuf_evict(dn->dn_bonus);
365 dn->dn_bonus = NULL;
366 }
367 kmem_cache_free(dnode_cache, dn);
368 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
369 }
370
371 void
372 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
373 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
374 {
375 int i;
376
377 if (blocksize == 0)
378 blocksize = 1 << zfs_default_bs;
379 else if (blocksize > SPA_MAXBLOCKSIZE)
380 blocksize = SPA_MAXBLOCKSIZE;
381 else
382 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
383
384 if (ibs == 0)
385 ibs = zfs_default_ibs;
386
387 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
388
389 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
390 dn->dn_object, tx->tx_txg, blocksize, ibs);
391
392 ASSERT(dn->dn_type == DMU_OT_NONE);
393 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
394 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
395 ASSERT(ot != DMU_OT_NONE);
396 ASSERT3U(ot, <, DMU_OT_NUMTYPES);
397 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
398 (bonustype == DMU_OT_SA && bonuslen == 0) ||
399 (bonustype != DMU_OT_NONE && bonuslen != 0));
400 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
401 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
402 ASSERT(dn->dn_type == DMU_OT_NONE);
403 ASSERT3U(dn->dn_maxblkid, ==, 0);
404 ASSERT3U(dn->dn_allocated_txg, ==, 0);
405 ASSERT3U(dn->dn_assigned_txg, ==, 0);
406 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
407 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
408 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
409
410 for (i = 0; i < TXG_SIZE; i++) {
411 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
412 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
413 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
414 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
415 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
416 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
417 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
418 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
419 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
420 }
421
422 dn->dn_type = ot;
423 dnode_setdblksz(dn, blocksize);
424 dn->dn_indblkshift = ibs;
425 dn->dn_nlevels = 1;
426 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
427 dn->dn_nblkptr = 1;
428 else
429 dn->dn_nblkptr = 1 +
430 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
431 dn->dn_bonustype = bonustype;
432 dn->dn_bonuslen = bonuslen;
433 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
434 dn->dn_compress = ZIO_COMPRESS_INHERIT;
435 dn->dn_dirtyctx = 0;
436
437 dn->dn_free_txg = 0;
438 if (dn->dn_dirtyctx_firstset) {
439 kmem_free(dn->dn_dirtyctx_firstset, 1);
440 dn->dn_dirtyctx_firstset = NULL;
441 }
442
443 dn->dn_allocated_txg = tx->tx_txg;
444 dn->dn_id_flags = 0;
445
446 dnode_setdirty(dn, tx);
447 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
448 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
449 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
450 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
451 }
452
453 void
454 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
455 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
456 {
457 int nblkptr;
458
459 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
460 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
461 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
462 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
463 ASSERT(tx->tx_txg != 0);
464 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
465 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
466 (bonustype == DMU_OT_SA && bonuslen == 0));
467 ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
468 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
469
470 /* clean up any unreferenced dbufs */
471 dnode_evict_dbufs(dn);
472
473 dn->dn_id_flags = 0;
474
475 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
476 dnode_setdirty(dn, tx);
477 if (dn->dn_datablksz != blocksize) {
478 /* change blocksize */
479 ASSERT(dn->dn_maxblkid == 0 &&
480 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
481 dnode_block_freed(dn, 0)));
482 dnode_setdblksz(dn, blocksize);
483 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
484 }
485 if (dn->dn_bonuslen != bonuslen)
486 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
487
488 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
489 nblkptr = 1;
490 else
491 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
492 if (dn->dn_bonustype != bonustype)
493 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
494 if (dn->dn_nblkptr != nblkptr)
495 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
496 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
497 dbuf_rm_spill(dn, tx);
498 dnode_rm_spill(dn, tx);
499 }
500 rw_exit(&dn->dn_struct_rwlock);
501
502 /* change type */
503 dn->dn_type = ot;
504
505 /* change bonus size and type */
506 mutex_enter(&dn->dn_mtx);
507 dn->dn_bonustype = bonustype;
508 dn->dn_bonuslen = bonuslen;
509 dn->dn_nblkptr = nblkptr;
510 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
511 dn->dn_compress = ZIO_COMPRESS_INHERIT;
512 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
513
514 /* fix up the bonus db_size */
515 if (dn->dn_bonus) {
516 dn->dn_bonus->db.db_size =
517 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
518 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
519 }
520
521 dn->dn_allocated_txg = tx->tx_txg;
522 mutex_exit(&dn->dn_mtx);
523 }
524
525 void
526 dnode_special_close(dnode_t *dn)
527 {
528 /*
529 * Wait for final references to the dnode to clear. This can
530 * only happen if the arc is asyncronously evicting state that
531 * has a hold on this dnode while we are trying to evict this
532 * dnode.
533 */
534 while (refcount_count(&dn->dn_holds) > 0)
535 delay(1);
536 dnode_destroy(dn);
537 }
538
539 dnode_t *
540 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object)
541 {
542 dnode_t *dn = dnode_create(os, dnp, NULL, object);
543 DNODE_VERIFY(dn);
544 return (dn);
545 }
546
547 static void
548 dnode_buf_pageout(dmu_buf_t *db, void *arg)
549 {
550 dnode_t **children_dnodes = arg;
551 int i;
552 int epb = db->db_size >> DNODE_SHIFT;
553
554 for (i = 0; i < epb; i++) {
555 dnode_t *dn = children_dnodes[i];
556 int n;
557
558 if (dn == NULL)
559 continue;
560 #ifdef ZFS_DEBUG
561 /*
562 * If there are holds on this dnode, then there should
563 * be holds on the dnode's containing dbuf as well; thus
564 * it wouldn't be eligable for eviction and this function
565 * would not have been called.
566 */
567 ASSERT(refcount_is_zero(&dn->dn_holds));
568 ASSERT(list_head(&dn->dn_dbufs) == NULL);
569 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
570
571 for (n = 0; n < TXG_SIZE; n++)
572 ASSERT(!list_link_active(&dn->dn_dirty_link[n]));
573 #endif
574 children_dnodes[i] = NULL;
575 dnode_destroy(dn);
576 }
577 kmem_free(children_dnodes, epb * sizeof (dnode_t *));
578 }
579
580 /*
581 * errors:
582 * EINVAL - invalid object number.
583 * EIO - i/o error.
584 * succeeds even for free dnodes.
585 */
586 int
587 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
588 void *tag, dnode_t **dnp)
589 {
590 int epb, idx, err;
591 int drop_struct_lock = FALSE;
592 int type;
593 uint64_t blk;
594 dnode_t *mdn, *dn;
595 dmu_buf_impl_t *db;
596 dnode_t **children_dnodes;
597
598 /*
599 * If you are holding the spa config lock as writer, you shouldn't
600 * be asking the DMU to do *anything* unless it's the root pool
601 * which may require us to read from the root filesystem while
602 * holding some (not all) of the locks as writer.
603 */
604 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
605 (spa_is_root(os->os_spa) &&
606 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER) &&
607 !spa_config_held(os->os_spa, SCL_ZIO, RW_WRITER)));
608
609 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
610 dn = (object == DMU_USERUSED_OBJECT) ?
611 os->os_userused_dnode : os->os_groupused_dnode;
612 if (dn == NULL)
613 return (ENOENT);
614 type = dn->dn_type;
615 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
616 return (ENOENT);
617 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
618 return (EEXIST);
619 DNODE_VERIFY(dn);
620 (void) refcount_add(&dn->dn_holds, tag);
621 *dnp = dn;
622 return (0);
623 }
624
625 if (object == 0 || object >= DN_MAX_OBJECT)
626 return (EINVAL);
627
628 mdn = os->os_meta_dnode;
629
630 DNODE_VERIFY(mdn);
631
632 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
633 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
634 drop_struct_lock = TRUE;
635 }
636
637 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
638
639 db = dbuf_hold(mdn, blk, FTAG);
640 if (drop_struct_lock)
641 rw_exit(&mdn->dn_struct_rwlock);
642 if (db == NULL)
643 return (EIO);
644 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
645 if (err) {
646 dbuf_rele(db, FTAG);
647 return (err);
648 }
649
650 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
651 epb = db->db.db_size >> DNODE_SHIFT;
652
653 idx = object & (epb-1);
654
655 children_dnodes = dmu_buf_get_user(&db->db);
656 if (children_dnodes == NULL) {
657 dnode_t **winner;
658 children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *),
659 KM_SLEEP);
660 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
661 dnode_buf_pageout)) {
662 kmem_free(children_dnodes, epb * sizeof (dnode_t *));
663 children_dnodes = winner;
664 }
665 }
666
667 if ((dn = children_dnodes[idx]) == NULL) {
668 dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx;
669 dnode_t *winner;
670
671 dn = dnode_create(os, dnp, db, object);
672 winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn);
673 if (winner != NULL) {
674 dnode_destroy(dn);
675 dn = winner;
676 }
677 }
678
679 mutex_enter(&dn->dn_mtx);
680 type = dn->dn_type;
681 if (dn->dn_free_txg ||
682 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
683 ((flag & DNODE_MUST_BE_FREE) &&
684 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
685 mutex_exit(&dn->dn_mtx);
686 dbuf_rele(db, FTAG);
687 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
688 }
689 mutex_exit(&dn->dn_mtx);
690
691 if (refcount_add(&dn->dn_holds, tag) == 1)
692 dbuf_add_ref(db, dn);
693
694 DNODE_VERIFY(dn);
695 ASSERT3P(dn->dn_dbuf, ==, db);
696 ASSERT3U(dn->dn_object, ==, object);
697 dbuf_rele(db, FTAG);
698
699 *dnp = dn;
700 return (0);
701 }
702
703 /*
704 * Return held dnode if the object is allocated, NULL if not.
705 */
706 int
707 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
708 {
709 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
710 }
711
712 /*
713 * Can only add a reference if there is already at least one
714 * reference on the dnode. Returns FALSE if unable to add a
715 * new reference.
716 */
717 boolean_t
718 dnode_add_ref(dnode_t *dn, void *tag)
719 {
720 mutex_enter(&dn->dn_mtx);
721 if (refcount_is_zero(&dn->dn_holds)) {
722 mutex_exit(&dn->dn_mtx);
723 return (FALSE);
724 }
725 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
726 mutex_exit(&dn->dn_mtx);
727 return (TRUE);
728 }
729
730 void
731 dnode_rele(dnode_t *dn, void *tag)
732 {
733 uint64_t refs;
734
735 mutex_enter(&dn->dn_mtx);
736 refs = refcount_remove(&dn->dn_holds, tag);
737 mutex_exit(&dn->dn_mtx);
738 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
739 if (refs == 0 && dn->dn_dbuf)
740 dbuf_rele(dn->dn_dbuf, dn);
741 }
742
743 void
744 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
745 {
746 objset_t *os = dn->dn_objset;
747 uint64_t txg = tx->tx_txg;
748
749 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
750 dsl_dataset_dirty(os->os_dsl_dataset, tx);
751 return;
752 }
753
754 DNODE_VERIFY(dn);
755
756 #ifdef ZFS_DEBUG
757 mutex_enter(&dn->dn_mtx);
758 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
759 /* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */
760 mutex_exit(&dn->dn_mtx);
761 #endif
762
763 /*
764 * Determine old uid/gid when necessary
765 */
766 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
767
768 mutex_enter(&os->os_lock);
769
770 /*
771 * If we are already marked dirty, we're done.
772 */
773 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
774 mutex_exit(&os->os_lock);
775 return;
776 }
777
778 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
779 ASSERT(dn->dn_datablksz != 0);
780 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
781 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
782 ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);
783
784 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
785 dn->dn_object, txg);
786
787 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
788 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
789 } else {
790 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
791 }
792
793 mutex_exit(&os->os_lock);
794
795 /*
796 * The dnode maintains a hold on its containing dbuf as
797 * long as there are holds on it. Each instantiated child
798 * dbuf maintaines a hold on the dnode. When the last child
799 * drops its hold, the dnode will drop its hold on the
800 * containing dbuf. We add a "dirty hold" here so that the
801 * dnode will hang around after we finish processing its
802 * children.
803 */
804 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
805
806 (void) dbuf_dirty(dn->dn_dbuf, tx);
807
808 dsl_dataset_dirty(os->os_dsl_dataset, tx);
809 }
810
811 void
812 dnode_free(dnode_t *dn, dmu_tx_t *tx)
813 {
814 int txgoff = tx->tx_txg & TXG_MASK;
815
816 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
817
818 /* we should be the only holder... hopefully */
819 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
820
821 mutex_enter(&dn->dn_mtx);
822 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
823 mutex_exit(&dn->dn_mtx);
824 return;
825 }
826 dn->dn_free_txg = tx->tx_txg;
827 mutex_exit(&dn->dn_mtx);
828
829 /*
830 * If the dnode is already dirty, it needs to be moved from
831 * the dirty list to the free list.
832 */
833 mutex_enter(&dn->dn_objset->os_lock);
834 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
835 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
836 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
837 mutex_exit(&dn->dn_objset->os_lock);
838 } else {
839 mutex_exit(&dn->dn_objset->os_lock);
840 dnode_setdirty(dn, tx);
841 }
842 }
843
844 /*
845 * Try to change the block size for the indicated dnode. This can only
846 * succeed if there are no blocks allocated or dirty beyond first block
847 */
848 int
849 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
850 {
851 dmu_buf_impl_t *db, *db_next;
852 int err;
853
854 if (size == 0)
855 size = SPA_MINBLOCKSIZE;
856 if (size > SPA_MAXBLOCKSIZE)
857 size = SPA_MAXBLOCKSIZE;
858 else
859 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
860
861 if (ibs == dn->dn_indblkshift)
862 ibs = 0;
863
864 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
865 return (0);
866
867 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
868
869 /* Check for any allocated blocks beyond the first */
870 if (dn->dn_phys->dn_maxblkid != 0)
871 goto fail;
872
873 mutex_enter(&dn->dn_dbufs_mtx);
874 for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
875 db_next = list_next(&dn->dn_dbufs, db);
876
877 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
878 db->db_blkid != DMU_SPILL_BLKID) {
879 mutex_exit(&dn->dn_dbufs_mtx);
880 goto fail;
881 }
882 }
883 mutex_exit(&dn->dn_dbufs_mtx);
884
885 if (ibs && dn->dn_nlevels != 1)
886 goto fail;
887
888 /* resize the old block */
889 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
890 if (err == 0)
891 dbuf_new_size(db, size, tx);
892 else if (err != ENOENT)
893 goto fail;
894
895 dnode_setdblksz(dn, size);
896 dnode_setdirty(dn, tx);
897 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
898 if (ibs) {
899 dn->dn_indblkshift = ibs;
900 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
901 }
902 /* rele after we have fixed the blocksize in the dnode */
903 if (db)
904 dbuf_rele(db, FTAG);
905
906 rw_exit(&dn->dn_struct_rwlock);
907 return (0);
908
909 fail:
910 rw_exit(&dn->dn_struct_rwlock);
911 return (ENOTSUP);
912 }
913
914 /* read-holding callers must not rely on the lock being continuously held */
915 void
916 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
917 {
918 uint64_t txgoff = tx->tx_txg & TXG_MASK;
919 int epbs, new_nlevels;
920 uint64_t sz;
921
922 ASSERT(blkid != DMU_BONUS_BLKID);
923
924 ASSERT(have_read ?
925 RW_READ_HELD(&dn->dn_struct_rwlock) :
926 RW_WRITE_HELD(&dn->dn_struct_rwlock));
927
928 /*
929 * if we have a read-lock, check to see if we need to do any work
930 * before upgrading to a write-lock.
931 */
932 if (have_read) {
933 if (blkid <= dn->dn_maxblkid)
934 return;
935
936 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
937 rw_exit(&dn->dn_struct_rwlock);
938 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
939 }
940 }
941
942 if (blkid <= dn->dn_maxblkid)
943 goto out;
944
945 dn->dn_maxblkid = blkid;
946
947 /*
948 * Compute the number of levels necessary to support the new maxblkid.
949 */
950 new_nlevels = 1;
951 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
952 for (sz = dn->dn_nblkptr;
953 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
954 new_nlevels++;
955
956 if (new_nlevels > dn->dn_nlevels) {
957 int old_nlevels = dn->dn_nlevels;
958 dmu_buf_impl_t *db;
959 list_t *list;
960 dbuf_dirty_record_t *new, *dr, *dr_next;
961
962 dn->dn_nlevels = new_nlevels;
963
964 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
965 dn->dn_next_nlevels[txgoff] = new_nlevels;
966
967 /* dirty the left indirects */
968 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
969 ASSERT(db != NULL);
970 new = dbuf_dirty(db, tx);
971 dbuf_rele(db, FTAG);
972
973 /* transfer the dirty records to the new indirect */
974 mutex_enter(&dn->dn_mtx);
975 mutex_enter(&new->dt.di.dr_mtx);
976 list = &dn->dn_dirty_records[txgoff];
977 for (dr = list_head(list); dr; dr = dr_next) {
978 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
979 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
980 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
981 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
982 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
983 list_remove(&dn->dn_dirty_records[txgoff], dr);
984 list_insert_tail(&new->dt.di.dr_children, dr);
985 dr->dr_parent = new;
986 }
987 }
988 mutex_exit(&new->dt.di.dr_mtx);
989 mutex_exit(&dn->dn_mtx);
990 }
991
992 out:
993 if (have_read)
994 rw_downgrade(&dn->dn_struct_rwlock);
995 }
996
997 void
998 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
999 {
1000 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1001 avl_index_t where;
1002 free_range_t *rp;
1003 free_range_t rp_tofind;
1004 uint64_t endblk = blkid + nblks;
1005
1006 ASSERT(MUTEX_HELD(&dn->dn_mtx));
1007 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
1008
1009 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1010 blkid, nblks, tx->tx_txg);
1011 rp_tofind.fr_blkid = blkid;
1012 rp = avl_find(tree, &rp_tofind, &where);
1013 if (rp == NULL)
1014 rp = avl_nearest(tree, where, AVL_BEFORE);
1015 if (rp == NULL)
1016 rp = avl_nearest(tree, where, AVL_AFTER);
1017
1018 while (rp && (rp->fr_blkid <= blkid + nblks)) {
1019 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
1020 free_range_t *nrp = AVL_NEXT(tree, rp);
1021
1022 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
1023 /* clear this entire range */
1024 avl_remove(tree, rp);
1025 kmem_free(rp, sizeof (free_range_t));
1026 } else if (blkid <= rp->fr_blkid &&
1027 endblk > rp->fr_blkid && endblk < fr_endblk) {
1028 /* clear the beginning of this range */
1029 rp->fr_blkid = endblk;
1030 rp->fr_nblks = fr_endblk - endblk;
1031 } else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
1032 endblk >= fr_endblk) {
1033 /* clear the end of this range */
1034 rp->fr_nblks = blkid - rp->fr_blkid;
1035 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
1036 /* clear a chunk out of this range */
1037 free_range_t *new_rp =
1038 kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1039
1040 new_rp->fr_blkid = endblk;
1041 new_rp->fr_nblks = fr_endblk - endblk;
1042 avl_insert_here(tree, new_rp, rp, AVL_AFTER);
1043 rp->fr_nblks = blkid - rp->fr_blkid;
1044 }
1045 /* there may be no overlap */
1046 rp = nrp;
1047 }
1048 }
1049
1050 void
1051 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1052 {
1053 dmu_buf_impl_t *db;
1054 uint64_t blkoff, blkid, nblks;
1055 int blksz, blkshift, head, tail;
1056 int trunc = FALSE;
1057 int epbs;
1058
1059 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1060 blksz = dn->dn_datablksz;
1061 blkshift = dn->dn_datablkshift;
1062 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1063
1064 if (len == -1ULL) {
1065 len = UINT64_MAX - off;
1066 trunc = TRUE;
1067 }
1068
1069 /*
1070 * First, block align the region to free:
1071 */
1072 if (ISP2(blksz)) {
1073 head = P2NPHASE(off, blksz);
1074 blkoff = P2PHASE(off, blksz);
1075 if ((off >> blkshift) > dn->dn_maxblkid)
1076 goto out;
1077 } else {
1078 ASSERT(dn->dn_maxblkid == 0);
1079 if (off == 0 && len >= blksz) {
1080 /* Freeing the whole block; fast-track this request */
1081 blkid = 0;
1082 nblks = 1;
1083 goto done;
1084 } else if (off >= blksz) {
1085 /* Freeing past end-of-data */
1086 goto out;
1087 } else {
1088 /* Freeing part of the block. */
1089 head = blksz - off;
1090 ASSERT3U(head, >, 0);
1091 }
1092 blkoff = off;
1093 }
1094 /* zero out any partial block data at the start of the range */
1095 if (head) {
1096 ASSERT3U(blkoff + head, ==, blksz);
1097 if (len < head)
1098 head = len;
1099 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1100 FTAG, &db) == 0) {
1101 caddr_t data;
1102
1103 /* don't dirty if it isn't on disk and isn't dirty */
1104 if (db->db_last_dirty ||
1105 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1106 rw_exit(&dn->dn_struct_rwlock);
1107 dbuf_will_dirty(db, tx);
1108 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1109 data = db->db.db_data;
1110 bzero(data + blkoff, head);
1111 }
1112 dbuf_rele(db, FTAG);
1113 }
1114 off += head;
1115 len -= head;
1116 }
1117
1118 /* If the range was less than one block, we're done */
1119 if (len == 0)
1120 goto out;
1121
1122 /* If the remaining range is past end of file, we're done */
1123 if ((off >> blkshift) > dn->dn_maxblkid)
1124 goto out;
1125
1126 ASSERT(ISP2(blksz));
1127 if (trunc)
1128 tail = 0;
1129 else
1130 tail = P2PHASE(len, blksz);
1131
1132 ASSERT3U(P2PHASE(off, blksz), ==, 0);
1133 /* zero out any partial block data at the end of the range */
1134 if (tail) {
1135 if (len < tail)
1136 tail = len;
1137 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1138 TRUE, FTAG, &db) == 0) {
1139 /* don't dirty if not on disk and not dirty */
1140 if (db->db_last_dirty ||
1141 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1142 rw_exit(&dn->dn_struct_rwlock);
1143 dbuf_will_dirty(db, tx);
1144 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1145 bzero(db->db.db_data, tail);
1146 }
1147 dbuf_rele(db, FTAG);
1148 }
1149 len -= tail;
1150 }
1151
1152 /* If the range did not include a full block, we are done */
1153 if (len == 0)
1154 goto out;
1155
1156 ASSERT(IS_P2ALIGNED(off, blksz));
1157 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1158 blkid = off >> blkshift;
1159 nblks = len >> blkshift;
1160 if (trunc)
1161 nblks += 1;
1162
1163 /*
1164 * Read in and mark all the level-1 indirects dirty,
1165 * so that they will stay in memory until syncing phase.
1166 * Always dirty the first and last indirect to make sure
1167 * we dirty all the partial indirects.
1168 */
1169 if (dn->dn_nlevels > 1) {
1170 uint64_t i, first, last;
1171 int shift = epbs + dn->dn_datablkshift;
1172
1173 first = blkid >> epbs;
1174 if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1175 dbuf_will_dirty(db, tx);
1176 dbuf_rele(db, FTAG);
1177 }
1178 if (trunc)
1179 last = dn->dn_maxblkid >> epbs;
1180 else
1181 last = (blkid + nblks - 1) >> epbs;
1182 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1183 dbuf_will_dirty(db, tx);
1184 dbuf_rele(db, FTAG);
1185 }
1186 for (i = first + 1; i < last; i++) {
1187 uint64_t ibyte = i << shift;
1188 int err;
1189
1190 err = dnode_next_offset(dn,
1191 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1192 i = ibyte >> shift;
1193 if (err == ESRCH || i >= last)
1194 break;
1195 ASSERT(err == 0);
1196 db = dbuf_hold_level(dn, 1, i, FTAG);
1197 if (db) {
1198 dbuf_will_dirty(db, tx);
1199 dbuf_rele(db, FTAG);
1200 }
1201 }
1202 }
1203 done:
1204 /*
1205 * Add this range to the dnode range list.
1206 * We will finish up this free operation in the syncing phase.
1207 */
1208 mutex_enter(&dn->dn_mtx);
1209 dnode_clear_range(dn, blkid, nblks, tx);
1210 {
1211 free_range_t *rp, *found;
1212 avl_index_t where;
1213 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1214
1215 /* Add new range to dn_ranges */
1216 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1217 rp->fr_blkid = blkid;
1218 rp->fr_nblks = nblks;
1219 found = avl_find(tree, rp, &where);
1220 ASSERT(found == NULL);
1221 avl_insert(tree, rp, where);
1222 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1223 blkid, nblks, tx->tx_txg);
1224 }
1225 mutex_exit(&dn->dn_mtx);
1226
1227 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1228 dnode_setdirty(dn, tx);
1229 out:
1230 if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1231 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1232
1233 rw_exit(&dn->dn_struct_rwlock);
1234 }
1235
1236 static boolean_t
1237 dnode_spill_freed(dnode_t *dn)
1238 {
1239 int i;
1240
1241 mutex_enter(&dn->dn_mtx);
1242 for (i = 0; i < TXG_SIZE; i++) {
1243 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1244 break;
1245 }
1246 mutex_exit(&dn->dn_mtx);
1247 return (i < TXG_SIZE);
1248 }
1249
1250 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1251 uint64_t
1252 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1253 {
1254 free_range_t range_tofind;
1255 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1256 int i;
1257
1258 if (blkid == DMU_BONUS_BLKID)
1259 return (FALSE);
1260
1261 /*
1262 * If we're in the process of opening the pool, dp will not be
1263 * set yet, but there shouldn't be anything dirty.
1264 */
1265 if (dp == NULL)
1266 return (FALSE);
1267
1268 if (dn->dn_free_txg)
1269 return (TRUE);
1270
1271 if (blkid == DMU_SPILL_BLKID)
1272 return (dnode_spill_freed(dn));
1273
1274 range_tofind.fr_blkid = blkid;
1275 mutex_enter(&dn->dn_mtx);
1276 for (i = 0; i < TXG_SIZE; i++) {
1277 free_range_t *range_found;
1278 avl_index_t idx;
1279
1280 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1281 if (range_found) {
1282 ASSERT(range_found->fr_nblks > 0);
1283 break;
1284 }
1285 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1286 if (range_found &&
1287 range_found->fr_blkid + range_found->fr_nblks > blkid)
1288 break;
1289 }
1290 mutex_exit(&dn->dn_mtx);
1291 return (i < TXG_SIZE);
1292 }
1293
1294 /* call from syncing context when we actually write/free space for this dnode */
1295 void
1296 dnode_diduse_space(dnode_t *dn, int64_t delta)
1297 {
1298 uint64_t space;
1299 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1300 dn, dn->dn_phys,
1301 (u_longlong_t)dn->dn_phys->dn_used,
1302 (longlong_t)delta);
1303
1304 mutex_enter(&dn->dn_mtx);
1305 space = DN_USED_BYTES(dn->dn_phys);
1306 if (delta > 0) {
1307 ASSERT3U(space + delta, >=, space); /* no overflow */
1308 } else {
1309 ASSERT3U(space, >=, -delta); /* no underflow */
1310 }
1311 space += delta;
1312 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1313 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1314 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1315 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1316 } else {
1317 dn->dn_phys->dn_used = space;
1318 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1319 }
1320 mutex_exit(&dn->dn_mtx);
1321 }
1322
1323 /*
1324 * Call when we think we're going to write/free space in open context.
1325 * Be conservative (ie. OK to write less than this or free more than
1326 * this, but don't write more or free less).
1327 */
1328 void
1329 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1330 {
1331 objset_t *os = dn->dn_objset;
1332 dsl_dataset_t *ds = os->os_dsl_dataset;
1333
1334 if (space > 0)
1335 space = spa_get_asize(os->os_spa, space);
1336
1337 if (ds)
1338 dsl_dir_willuse_space(ds->ds_dir, space, tx);
1339
1340 dmu_tx_willuse_space(tx, space);
1341 }
1342
1343 /*
1344 * This function scans a block at the indicated "level" looking for
1345 * a hole or data (depending on 'flags'). If level > 0, then we are
1346 * scanning an indirect block looking at its pointers. If level == 0,
1347 * then we are looking at a block of dnodes. If we don't find what we
1348 * are looking for in the block, we return ESRCH. Otherwise, return
1349 * with *offset pointing to the beginning (if searching forwards) or
1350 * end (if searching backwards) of the range covered by the block
1351 * pointer we matched on (or dnode).
1352 *
1353 * The basic search algorithm used below by dnode_next_offset() is to
1354 * use this function to search up the block tree (widen the search) until
1355 * we find something (i.e., we don't return ESRCH) and then search back
1356 * down the tree (narrow the search) until we reach our original search
1357 * level.
1358 */
1359 static int
1360 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1361 int lvl, uint64_t blkfill, uint64_t txg)
1362 {
1363 dmu_buf_impl_t *db = NULL;
1364 void *data = NULL;
1365 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1366 uint64_t epb = 1ULL << epbs;
1367 uint64_t minfill, maxfill;
1368 boolean_t hole;
1369 int i, inc, error, span;
1370
1371 dprintf("probing object %llu offset %llx level %d of %u\n",
1372 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1373
1374 hole = ((flags & DNODE_FIND_HOLE) != 0);
1375 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1376 ASSERT(txg == 0 || !hole);
1377
1378 if (lvl == dn->dn_phys->dn_nlevels) {
1379 error = 0;
1380 epb = dn->dn_phys->dn_nblkptr;
1381 data = dn->dn_phys->dn_blkptr;
1382 } else {
1383 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1384 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1385 if (error) {
1386 if (error != ENOENT)
1387 return (error);
1388 if (hole)
1389 return (0);
1390 /*
1391 * This can only happen when we are searching up
1392 * the block tree for data. We don't really need to
1393 * adjust the offset, as we will just end up looking
1394 * at the pointer to this block in its parent, and its
1395 * going to be unallocated, so we will skip over it.
1396 */
1397 return (ESRCH);
1398 }
1399 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1400 if (error) {
1401 dbuf_rele(db, FTAG);
1402 return (error);
1403 }
1404 data = db->db.db_data;
1405 }
1406
1407 if (db && txg &&
1408 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1409 /*
1410 * This can only happen when we are searching up the tree
1411 * and these conditions mean that we need to keep climbing.
1412 */
1413 error = ESRCH;
1414 } else if (lvl == 0) {
1415 dnode_phys_t *dnp = data;
1416 span = DNODE_SHIFT;
1417 ASSERT(dn->dn_type == DMU_OT_DNODE);
1418
1419 for (i = (*offset >> span) & (blkfill - 1);
1420 i >= 0 && i < blkfill; i += inc) {
1421 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1422 break;
1423 *offset += (1ULL << span) * inc;
1424 }
1425 if (i < 0 || i == blkfill)
1426 error = ESRCH;
1427 } else {
1428 blkptr_t *bp = data;
1429 uint64_t start = *offset;
1430 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1431 minfill = 0;
1432 maxfill = blkfill << ((lvl - 1) * epbs);
1433
1434 if (hole)
1435 maxfill--;
1436 else
1437 minfill++;
1438
1439 *offset = *offset >> span;
1440 for (i = BF64_GET(*offset, 0, epbs);
1441 i >= 0 && i < epb; i += inc) {
1442 if (bp[i].blk_fill >= minfill &&
1443 bp[i].blk_fill <= maxfill &&
1444 (hole || bp[i].blk_birth > txg))
1445 break;
1446 if (inc > 0 || *offset > 0)
1447 *offset += inc;
1448 }
1449 *offset = *offset << span;
1450 if (inc < 0) {
1451 /* traversing backwards; position offset at the end */
1452 ASSERT3U(*offset, <=, start);
1453 *offset = MIN(*offset + (1ULL << span) - 1, start);
1454 } else if (*offset < start) {
1455 *offset = start;
1456 }
1457 if (i < 0 || i >= epb)
1458 error = ESRCH;
1459 }
1460
1461 if (db)
1462 dbuf_rele(db, FTAG);
1463
1464 return (error);
1465 }
1466
1467 /*
1468 * Find the next hole, data, or sparse region at or after *offset.
1469 * The value 'blkfill' tells us how many items we expect to find
1470 * in an L0 data block; this value is 1 for normal objects,
1471 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1472 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1473 *
1474 * Examples:
1475 *
1476 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1477 * Finds the next/previous hole/data in a file.
1478 * Used in dmu_offset_next().
1479 *
1480 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1481 * Finds the next free/allocated dnode an objset's meta-dnode.
1482 * Only finds objects that have new contents since txg (ie.
1483 * bonus buffer changes and content removal are ignored).
1484 * Used in dmu_object_next().
1485 *
1486 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1487 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
1488 * Used in dmu_object_alloc().
1489 */
1490 int
1491 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1492 int minlvl, uint64_t blkfill, uint64_t txg)
1493 {
1494 uint64_t initial_offset = *offset;
1495 int lvl, maxlvl;
1496 int error = 0;
1497
1498 if (!(flags & DNODE_FIND_HAVELOCK))
1499 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1500
1501 if (dn->dn_phys->dn_nlevels == 0) {
1502 error = ESRCH;
1503 goto out;
1504 }
1505
1506 if (dn->dn_datablkshift == 0) {
1507 if (*offset < dn->dn_datablksz) {
1508 if (flags & DNODE_FIND_HOLE)
1509 *offset = dn->dn_datablksz;
1510 } else {
1511 error = ESRCH;
1512 }
1513 goto out;
1514 }
1515
1516 maxlvl = dn->dn_phys->dn_nlevels;
1517
1518 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1519 error = dnode_next_offset_level(dn,
1520 flags, offset, lvl, blkfill, txg);
1521 if (error != ESRCH)
1522 break;
1523 }
1524
1525 while (error == 0 && --lvl >= minlvl) {
1526 error = dnode_next_offset_level(dn,
1527 flags, offset, lvl, blkfill, txg);
1528 }
1529
1530 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1531 initial_offset < *offset : initial_offset > *offset))
1532 error = ESRCH;
1533 out:
1534 if (!(flags & DNODE_FIND_HAVELOCK))
1535 rw_exit(&dn->dn_struct_rwlock);
1536
1537 return (error);
1538 }