]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Implement large_dnode pool feature
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_dnode.h>
41
42 static kmem_cache_t *dnode_cache;
43 /*
44 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
45 * turned on when DEBUG is also defined.
46 */
47 #ifdef DEBUG
48 #define DNODE_STATS
49 #endif /* DEBUG */
50
51 #ifdef DNODE_STATS
52 #define DNODE_STAT_ADD(stat) ((stat)++)
53 #else
54 #define DNODE_STAT_ADD(stat) /* nothing */
55 #endif /* DNODE_STATS */
56
57 ASSERTV(static dnode_phys_t dnode_phys_zero);
58
59 int zfs_default_bs = SPA_MINBLOCKSHIFT;
60 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
61
62 #ifdef _KERNEL
63 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
64 #endif /* _KERNEL */
65
66 static int
67 dbuf_compare(const void *x1, const void *x2)
68 {
69 const dmu_buf_impl_t *d1 = x1;
70 const dmu_buf_impl_t *d2 = x2;
71
72 if (d1->db_level < d2->db_level) {
73 return (-1);
74 }
75 if (d1->db_level > d2->db_level) {
76 return (1);
77 }
78
79 if (d1->db_blkid < d2->db_blkid) {
80 return (-1);
81 }
82 if (d1->db_blkid > d2->db_blkid) {
83 return (1);
84 }
85
86 if (d1->db_state == DB_SEARCH) {
87 ASSERT3S(d2->db_state, !=, DB_SEARCH);
88 return (-1);
89 } else if (d2->db_state == DB_SEARCH) {
90 ASSERT3S(d1->db_state, !=, DB_SEARCH);
91 return (1);
92 }
93
94 if ((uintptr_t)d1 < (uintptr_t)d2) {
95 return (-1);
96 }
97 if ((uintptr_t)d1 > (uintptr_t)d2) {
98 return (1);
99 }
100 return (0);
101 }
102
103 /* ARGSUSED */
104 static int
105 dnode_cons(void *arg, void *unused, int kmflag)
106 {
107 dnode_t *dn = arg;
108 int i;
109
110 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
111 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
112 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
113 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
114
115 /*
116 * Every dbuf has a reference, and dropping a tracked reference is
117 * O(number of references), so don't track dn_holds.
118 */
119 refcount_create_untracked(&dn->dn_holds);
120 refcount_create(&dn->dn_tx_holds);
121 list_link_init(&dn->dn_link);
122
123 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
124 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
125 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
126 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
127 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
128 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
129 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
130
131 for (i = 0; i < TXG_SIZE; i++) {
132 list_link_init(&dn->dn_dirty_link[i]);
133 dn->dn_free_ranges[i] = NULL;
134 list_create(&dn->dn_dirty_records[i],
135 sizeof (dbuf_dirty_record_t),
136 offsetof(dbuf_dirty_record_t, dr_dirty_node));
137 }
138
139 dn->dn_allocated_txg = 0;
140 dn->dn_free_txg = 0;
141 dn->dn_assigned_txg = 0;
142 dn->dn_dirtyctx = 0;
143 dn->dn_dirtyctx_firstset = NULL;
144 dn->dn_bonus = NULL;
145 dn->dn_have_spill = B_FALSE;
146 dn->dn_zio = NULL;
147 dn->dn_oldused = 0;
148 dn->dn_oldflags = 0;
149 dn->dn_olduid = 0;
150 dn->dn_oldgid = 0;
151 dn->dn_newuid = 0;
152 dn->dn_newgid = 0;
153 dn->dn_id_flags = 0;
154
155 dn->dn_dbufs_count = 0;
156 dn->dn_unlisted_l0_blkid = 0;
157 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
158 offsetof(dmu_buf_impl_t, db_link));
159
160 dn->dn_moved = 0;
161 return (0);
162 }
163
164 /* ARGSUSED */
165 static void
166 dnode_dest(void *arg, void *unused)
167 {
168 int i;
169 dnode_t *dn = arg;
170
171 rw_destroy(&dn->dn_struct_rwlock);
172 mutex_destroy(&dn->dn_mtx);
173 mutex_destroy(&dn->dn_dbufs_mtx);
174 cv_destroy(&dn->dn_notxholds);
175 refcount_destroy(&dn->dn_holds);
176 refcount_destroy(&dn->dn_tx_holds);
177 ASSERT(!list_link_active(&dn->dn_link));
178
179 for (i = 0; i < TXG_SIZE; i++) {
180 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
181 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
182 list_destroy(&dn->dn_dirty_records[i]);
183 ASSERT0(dn->dn_next_nblkptr[i]);
184 ASSERT0(dn->dn_next_nlevels[i]);
185 ASSERT0(dn->dn_next_indblkshift[i]);
186 ASSERT0(dn->dn_next_bonustype[i]);
187 ASSERT0(dn->dn_rm_spillblk[i]);
188 ASSERT0(dn->dn_next_bonuslen[i]);
189 ASSERT0(dn->dn_next_blksz[i]);
190 }
191
192 ASSERT0(dn->dn_allocated_txg);
193 ASSERT0(dn->dn_free_txg);
194 ASSERT0(dn->dn_assigned_txg);
195 ASSERT0(dn->dn_dirtyctx);
196 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
197 ASSERT3P(dn->dn_bonus, ==, NULL);
198 ASSERT(!dn->dn_have_spill);
199 ASSERT3P(dn->dn_zio, ==, NULL);
200 ASSERT0(dn->dn_oldused);
201 ASSERT0(dn->dn_oldflags);
202 ASSERT0(dn->dn_olduid);
203 ASSERT0(dn->dn_oldgid);
204 ASSERT0(dn->dn_newuid);
205 ASSERT0(dn->dn_newgid);
206 ASSERT0(dn->dn_id_flags);
207
208 ASSERT0(dn->dn_dbufs_count);
209 ASSERT0(dn->dn_unlisted_l0_blkid);
210 avl_destroy(&dn->dn_dbufs);
211 }
212
213 void
214 dnode_init(void)
215 {
216 ASSERT(dnode_cache == NULL);
217 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
218 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
219 kmem_cache_set_move(dnode_cache, dnode_move);
220 }
221
222 void
223 dnode_fini(void)
224 {
225 kmem_cache_destroy(dnode_cache);
226 dnode_cache = NULL;
227 }
228
229
230 #ifdef ZFS_DEBUG
231 void
232 dnode_verify(dnode_t *dn)
233 {
234 int drop_struct_lock = FALSE;
235
236 ASSERT(dn->dn_phys);
237 ASSERT(dn->dn_objset);
238 ASSERT(dn->dn_handle->dnh_dnode == dn);
239
240 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
241
242 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
243 return;
244
245 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
246 rw_enter(&dn->dn_struct_rwlock, RW_READER);
247 drop_struct_lock = TRUE;
248 }
249 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
250 int i;
251 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
252 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
253 if (dn->dn_datablkshift) {
254 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
255 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
256 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
257 }
258 ASSERT3U(dn->dn_nlevels, <=, 30);
259 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
260 ASSERT3U(dn->dn_nblkptr, >=, 1);
261 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
262 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
263 ASSERT3U(dn->dn_datablksz, ==,
264 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
265 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
266 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
267 dn->dn_bonuslen, <=, max_bonuslen);
268 for (i = 0; i < TXG_SIZE; i++) {
269 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
270 }
271 }
272 if (dn->dn_phys->dn_type != DMU_OT_NONE)
273 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
274 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
275 if (dn->dn_dbuf != NULL) {
276 ASSERT3P(dn->dn_phys, ==,
277 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
278 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
279 }
280 if (drop_struct_lock)
281 rw_exit(&dn->dn_struct_rwlock);
282 }
283 #endif
284
285 void
286 dnode_byteswap(dnode_phys_t *dnp)
287 {
288 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
289 int i;
290
291 if (dnp->dn_type == DMU_OT_NONE) {
292 bzero(dnp, sizeof (dnode_phys_t));
293 return;
294 }
295
296 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
297 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
298 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
299 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
300 dnp->dn_used = BSWAP_64(dnp->dn_used);
301
302 /*
303 * dn_nblkptr is only one byte, so it's OK to read it in either
304 * byte order. We can't read dn_bouslen.
305 */
306 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
307 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
308 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
309 buf64[i] = BSWAP_64(buf64[i]);
310
311 /*
312 * OK to check dn_bonuslen for zero, because it won't matter if
313 * we have the wrong byte order. This is necessary because the
314 * dnode dnode is smaller than a regular dnode.
315 */
316 if (dnp->dn_bonuslen != 0) {
317 /*
318 * Note that the bonus length calculated here may be
319 * longer than the actual bonus buffer. This is because
320 * we always put the bonus buffer after the last block
321 * pointer (instead of packing it against the end of the
322 * dnode buffer).
323 */
324 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
325 int slots = dnp->dn_extra_slots + 1;
326 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
327 dmu_object_byteswap_t byteswap;
328 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
329 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
330 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
331 }
332
333 /* Swap SPILL block if we have one */
334 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
335 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
336 }
337
338 void
339 dnode_buf_byteswap(void *vbuf, size_t size)
340 {
341 int i = 0;
342
343 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
344 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
345
346 while (i < size) {
347 dnode_phys_t *dnp = vbuf + i;
348 dnode_byteswap(dnp);
349
350 i += DNODE_MIN_SIZE;
351 if (dnp->dn_type != DMU_OT_NONE)
352 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
353 }
354 }
355
356 void
357 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
358 {
359 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
360
361 dnode_setdirty(dn, tx);
362 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
363 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
364 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
365 dn->dn_bonuslen = newsize;
366 if (newsize == 0)
367 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
368 else
369 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
370 rw_exit(&dn->dn_struct_rwlock);
371 }
372
373 void
374 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
375 {
376 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
377 dnode_setdirty(dn, tx);
378 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
379 dn->dn_bonustype = newtype;
380 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
381 rw_exit(&dn->dn_struct_rwlock);
382 }
383
384 void
385 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
386 {
387 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
388 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
389 dnode_setdirty(dn, tx);
390 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
391 dn->dn_have_spill = B_FALSE;
392 }
393
394 static void
395 dnode_setdblksz(dnode_t *dn, int size)
396 {
397 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
398 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
399 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
400 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
401 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
402 dn->dn_datablksz = size;
403 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
404 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
405 }
406
407 static dnode_t *
408 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
409 uint64_t object, dnode_handle_t *dnh)
410 {
411 dnode_t *dn;
412
413 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
414 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
415 dn->dn_moved = 0;
416
417 /*
418 * Defer setting dn_objset until the dnode is ready to be a candidate
419 * for the dnode_move() callback.
420 */
421 dn->dn_object = object;
422 dn->dn_dbuf = db;
423 dn->dn_handle = dnh;
424 dn->dn_phys = dnp;
425
426 if (dnp->dn_datablkszsec) {
427 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
428 } else {
429 dn->dn_datablksz = 0;
430 dn->dn_datablkszsec = 0;
431 dn->dn_datablkshift = 0;
432 }
433 dn->dn_indblkshift = dnp->dn_indblkshift;
434 dn->dn_nlevels = dnp->dn_nlevels;
435 dn->dn_type = dnp->dn_type;
436 dn->dn_nblkptr = dnp->dn_nblkptr;
437 dn->dn_checksum = dnp->dn_checksum;
438 dn->dn_compress = dnp->dn_compress;
439 dn->dn_bonustype = dnp->dn_bonustype;
440 dn->dn_bonuslen = dnp->dn_bonuslen;
441 dn->dn_num_slots = dnp->dn_extra_slots + 1;
442 dn->dn_maxblkid = dnp->dn_maxblkid;
443 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
444 dn->dn_id_flags = 0;
445
446 dmu_zfetch_init(&dn->dn_zfetch, dn);
447
448 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
449
450 mutex_enter(&os->os_lock);
451 if (dnh->dnh_dnode != NULL) {
452 /* Lost the allocation race. */
453 mutex_exit(&os->os_lock);
454 kmem_cache_free(dnode_cache, dn);
455 return (dnh->dnh_dnode);
456 }
457
458 /*
459 * Exclude special dnodes from os_dnodes so an empty os_dnodes
460 * signifies that the special dnodes have no references from
461 * their children (the entries in os_dnodes). This allows
462 * dnode_destroy() to easily determine if the last child has
463 * been removed and then complete eviction of the objset.
464 */
465 if (!DMU_OBJECT_IS_SPECIAL(object))
466 list_insert_head(&os->os_dnodes, dn);
467 membar_producer();
468
469 /*
470 * Everything else must be valid before assigning dn_objset
471 * makes the dnode eligible for dnode_move().
472 */
473 dn->dn_objset = os;
474
475 dnh->dnh_dnode = dn;
476 mutex_exit(&os->os_lock);
477
478 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
479 return (dn);
480 }
481
482 /*
483 * Caller must be holding the dnode handle, which is released upon return.
484 */
485 static void
486 dnode_destroy(dnode_t *dn)
487 {
488 objset_t *os = dn->dn_objset;
489 boolean_t complete_os_eviction = B_FALSE;
490
491 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
492
493 mutex_enter(&os->os_lock);
494 POINTER_INVALIDATE(&dn->dn_objset);
495 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
496 list_remove(&os->os_dnodes, dn);
497 complete_os_eviction =
498 list_is_empty(&os->os_dnodes) &&
499 list_link_active(&os->os_evicting_node);
500 }
501 mutex_exit(&os->os_lock);
502
503 /* the dnode can no longer move, so we can release the handle */
504 zrl_remove(&dn->dn_handle->dnh_zrlock);
505
506 dn->dn_allocated_txg = 0;
507 dn->dn_free_txg = 0;
508 dn->dn_assigned_txg = 0;
509
510 dn->dn_dirtyctx = 0;
511 if (dn->dn_dirtyctx_firstset != NULL) {
512 kmem_free(dn->dn_dirtyctx_firstset, 1);
513 dn->dn_dirtyctx_firstset = NULL;
514 }
515 if (dn->dn_bonus != NULL) {
516 mutex_enter(&dn->dn_bonus->db_mtx);
517 dbuf_evict(dn->dn_bonus);
518 dn->dn_bonus = NULL;
519 }
520 dn->dn_zio = NULL;
521
522 dn->dn_have_spill = B_FALSE;
523 dn->dn_oldused = 0;
524 dn->dn_oldflags = 0;
525 dn->dn_olduid = 0;
526 dn->dn_oldgid = 0;
527 dn->dn_newuid = 0;
528 dn->dn_newgid = 0;
529 dn->dn_id_flags = 0;
530 dn->dn_unlisted_l0_blkid = 0;
531
532 dmu_zfetch_fini(&dn->dn_zfetch);
533 kmem_cache_free(dnode_cache, dn);
534 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
535
536 if (complete_os_eviction)
537 dmu_objset_evict_done(os);
538 }
539
540 void
541 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
542 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
543 {
544 int i;
545
546 ASSERT3U(dn_slots, >, 0);
547 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
548 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
549 ASSERT3U(blocksize, <=,
550 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
551 if (blocksize == 0)
552 blocksize = 1 << zfs_default_bs;
553 else
554 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
555
556 if (ibs == 0)
557 ibs = zfs_default_ibs;
558
559 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
560
561 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
562 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
563
564 ASSERT(dn->dn_type == DMU_OT_NONE);
565 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
566 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
567 ASSERT(ot != DMU_OT_NONE);
568 ASSERT(DMU_OT_IS_VALID(ot));
569 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
570 (bonustype == DMU_OT_SA && bonuslen == 0) ||
571 (bonustype != DMU_OT_NONE && bonuslen != 0));
572 ASSERT(DMU_OT_IS_VALID(bonustype));
573 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
574 ASSERT(dn->dn_type == DMU_OT_NONE);
575 ASSERT0(dn->dn_maxblkid);
576 ASSERT0(dn->dn_allocated_txg);
577 ASSERT0(dn->dn_assigned_txg);
578 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
579 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
580 ASSERT(avl_is_empty(&dn->dn_dbufs));
581
582 for (i = 0; i < TXG_SIZE; i++) {
583 ASSERT0(dn->dn_next_nblkptr[i]);
584 ASSERT0(dn->dn_next_nlevels[i]);
585 ASSERT0(dn->dn_next_indblkshift[i]);
586 ASSERT0(dn->dn_next_bonuslen[i]);
587 ASSERT0(dn->dn_next_bonustype[i]);
588 ASSERT0(dn->dn_rm_spillblk[i]);
589 ASSERT0(dn->dn_next_blksz[i]);
590 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
591 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
592 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
593 }
594
595 dn->dn_type = ot;
596 dnode_setdblksz(dn, blocksize);
597 dn->dn_indblkshift = ibs;
598 dn->dn_nlevels = 1;
599 dn->dn_num_slots = dn_slots;
600 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
601 dn->dn_nblkptr = 1;
602 else {
603 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
604 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
605 SPA_BLKPTRSHIFT));
606 }
607
608 dn->dn_bonustype = bonustype;
609 dn->dn_bonuslen = bonuslen;
610 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
611 dn->dn_compress = ZIO_COMPRESS_INHERIT;
612 dn->dn_dirtyctx = 0;
613
614 dn->dn_free_txg = 0;
615 if (dn->dn_dirtyctx_firstset) {
616 kmem_free(dn->dn_dirtyctx_firstset, 1);
617 dn->dn_dirtyctx_firstset = NULL;
618 }
619
620 dn->dn_allocated_txg = tx->tx_txg;
621 dn->dn_id_flags = 0;
622
623 dnode_setdirty(dn, tx);
624 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
625 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
626 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
627 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
628 }
629
630 void
631 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
632 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
633 {
634 int nblkptr;
635
636 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
637 ASSERT3U(blocksize, <=,
638 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
639 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
640 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
641 ASSERT(tx->tx_txg != 0);
642 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
643 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
644 (bonustype == DMU_OT_SA && bonuslen == 0));
645 ASSERT(DMU_OT_IS_VALID(bonustype));
646 ASSERT3U(bonuslen, <=,
647 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
648
649 dn_slots = dn_slots > 0 ? dn_slots : DNODE_MIN_SLOTS;
650
651 /* clean up any unreferenced dbufs */
652 dnode_evict_dbufs(dn);
653
654 dn->dn_id_flags = 0;
655
656 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
657 dnode_setdirty(dn, tx);
658 if (dn->dn_datablksz != blocksize) {
659 /* change blocksize */
660 ASSERT(dn->dn_maxblkid == 0 &&
661 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
662 dnode_block_freed(dn, 0)));
663 dnode_setdblksz(dn, blocksize);
664 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
665 }
666 if (dn->dn_bonuslen != bonuslen)
667 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
668
669 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
670 nblkptr = 1;
671 else
672 nblkptr = MIN(DN_MAX_NBLKPTR,
673 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
674 SPA_BLKPTRSHIFT));
675 if (dn->dn_bonustype != bonustype)
676 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
677 if (dn->dn_nblkptr != nblkptr)
678 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
679 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
680 dbuf_rm_spill(dn, tx);
681 dnode_rm_spill(dn, tx);
682 }
683 rw_exit(&dn->dn_struct_rwlock);
684
685 /* change type */
686 dn->dn_type = ot;
687
688 /* change bonus size and type */
689 mutex_enter(&dn->dn_mtx);
690 dn->dn_bonustype = bonustype;
691 dn->dn_bonuslen = bonuslen;
692 dn->dn_num_slots = dn_slots;
693 dn->dn_nblkptr = nblkptr;
694 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
695 dn->dn_compress = ZIO_COMPRESS_INHERIT;
696 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
697
698 /* fix up the bonus db_size */
699 if (dn->dn_bonus) {
700 dn->dn_bonus->db.db_size =
701 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
702 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
703 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
704 }
705
706 dn->dn_allocated_txg = tx->tx_txg;
707 mutex_exit(&dn->dn_mtx);
708 }
709
710 #ifdef _KERNEL
711 #ifdef DNODE_STATS
712 static struct {
713 uint64_t dms_dnode_invalid;
714 uint64_t dms_dnode_recheck1;
715 uint64_t dms_dnode_recheck2;
716 uint64_t dms_dnode_special;
717 uint64_t dms_dnode_handle;
718 uint64_t dms_dnode_rwlock;
719 uint64_t dms_dnode_active;
720 } dnode_move_stats;
721 #endif /* DNODE_STATS */
722
723 static void
724 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
725 {
726 int i;
727
728 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
729 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
730 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
731 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
732
733 /* Copy fields. */
734 ndn->dn_objset = odn->dn_objset;
735 ndn->dn_object = odn->dn_object;
736 ndn->dn_dbuf = odn->dn_dbuf;
737 ndn->dn_handle = odn->dn_handle;
738 ndn->dn_phys = odn->dn_phys;
739 ndn->dn_type = odn->dn_type;
740 ndn->dn_bonuslen = odn->dn_bonuslen;
741 ndn->dn_bonustype = odn->dn_bonustype;
742 ndn->dn_nblkptr = odn->dn_nblkptr;
743 ndn->dn_checksum = odn->dn_checksum;
744 ndn->dn_compress = odn->dn_compress;
745 ndn->dn_nlevels = odn->dn_nlevels;
746 ndn->dn_indblkshift = odn->dn_indblkshift;
747 ndn->dn_datablkshift = odn->dn_datablkshift;
748 ndn->dn_datablkszsec = odn->dn_datablkszsec;
749 ndn->dn_datablksz = odn->dn_datablksz;
750 ndn->dn_maxblkid = odn->dn_maxblkid;
751 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
752 sizeof (odn->dn_next_nblkptr));
753 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
754 sizeof (odn->dn_next_nlevels));
755 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
756 sizeof (odn->dn_next_indblkshift));
757 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
758 sizeof (odn->dn_next_bonustype));
759 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
760 sizeof (odn->dn_rm_spillblk));
761 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
762 sizeof (odn->dn_next_bonuslen));
763 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
764 sizeof (odn->dn_next_blksz));
765 for (i = 0; i < TXG_SIZE; i++) {
766 list_move_tail(&ndn->dn_dirty_records[i],
767 &odn->dn_dirty_records[i]);
768 }
769 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
770 sizeof (odn->dn_free_ranges));
771 ndn->dn_allocated_txg = odn->dn_allocated_txg;
772 ndn->dn_free_txg = odn->dn_free_txg;
773 ndn->dn_assigned_txg = odn->dn_assigned_txg;
774 ndn->dn_dirtyctx = odn->dn_dirtyctx;
775 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
776 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
777 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
778 ASSERT(avl_is_empty(&ndn->dn_dbufs));
779 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
780 ndn->dn_dbufs_count = odn->dn_dbufs_count;
781 ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
782 ndn->dn_bonus = odn->dn_bonus;
783 ndn->dn_have_spill = odn->dn_have_spill;
784 ndn->dn_zio = odn->dn_zio;
785 ndn->dn_oldused = odn->dn_oldused;
786 ndn->dn_oldflags = odn->dn_oldflags;
787 ndn->dn_olduid = odn->dn_olduid;
788 ndn->dn_oldgid = odn->dn_oldgid;
789 ndn->dn_newuid = odn->dn_newuid;
790 ndn->dn_newgid = odn->dn_newgid;
791 ndn->dn_id_flags = odn->dn_id_flags;
792 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
793 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
794 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
795
796 /*
797 * Update back pointers. Updating the handle fixes the back pointer of
798 * every descendant dbuf as well as the bonus dbuf.
799 */
800 ASSERT(ndn->dn_handle->dnh_dnode == odn);
801 ndn->dn_handle->dnh_dnode = ndn;
802 if (ndn->dn_zfetch.zf_dnode == odn) {
803 ndn->dn_zfetch.zf_dnode = ndn;
804 }
805
806 /*
807 * Invalidate the original dnode by clearing all of its back pointers.
808 */
809 odn->dn_dbuf = NULL;
810 odn->dn_handle = NULL;
811 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
812 offsetof(dmu_buf_impl_t, db_link));
813 odn->dn_dbufs_count = 0;
814 odn->dn_unlisted_l0_blkid = 0;
815 odn->dn_bonus = NULL;
816 odn->dn_zfetch.zf_dnode = NULL;
817
818 /*
819 * Set the low bit of the objset pointer to ensure that dnode_move()
820 * recognizes the dnode as invalid in any subsequent callback.
821 */
822 POINTER_INVALIDATE(&odn->dn_objset);
823
824 /*
825 * Satisfy the destructor.
826 */
827 for (i = 0; i < TXG_SIZE; i++) {
828 list_create(&odn->dn_dirty_records[i],
829 sizeof (dbuf_dirty_record_t),
830 offsetof(dbuf_dirty_record_t, dr_dirty_node));
831 odn->dn_free_ranges[i] = NULL;
832 odn->dn_next_nlevels[i] = 0;
833 odn->dn_next_indblkshift[i] = 0;
834 odn->dn_next_bonustype[i] = 0;
835 odn->dn_rm_spillblk[i] = 0;
836 odn->dn_next_bonuslen[i] = 0;
837 odn->dn_next_blksz[i] = 0;
838 }
839 odn->dn_allocated_txg = 0;
840 odn->dn_free_txg = 0;
841 odn->dn_assigned_txg = 0;
842 odn->dn_dirtyctx = 0;
843 odn->dn_dirtyctx_firstset = NULL;
844 odn->dn_have_spill = B_FALSE;
845 odn->dn_zio = NULL;
846 odn->dn_oldused = 0;
847 odn->dn_oldflags = 0;
848 odn->dn_olduid = 0;
849 odn->dn_oldgid = 0;
850 odn->dn_newuid = 0;
851 odn->dn_newgid = 0;
852 odn->dn_id_flags = 0;
853
854 /*
855 * Mark the dnode.
856 */
857 ndn->dn_moved = 1;
858 odn->dn_moved = (uint8_t)-1;
859 }
860
861 /*ARGSUSED*/
862 static kmem_cbrc_t
863 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
864 {
865 dnode_t *odn = buf, *ndn = newbuf;
866 objset_t *os;
867 int64_t refcount;
868 uint32_t dbufs;
869
870 /*
871 * The dnode is on the objset's list of known dnodes if the objset
872 * pointer is valid. We set the low bit of the objset pointer when
873 * freeing the dnode to invalidate it, and the memory patterns written
874 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
875 * A newly created dnode sets the objset pointer last of all to indicate
876 * that the dnode is known and in a valid state to be moved by this
877 * function.
878 */
879 os = odn->dn_objset;
880 if (!POINTER_IS_VALID(os)) {
881 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
882 return (KMEM_CBRC_DONT_KNOW);
883 }
884
885 /*
886 * Ensure that the objset does not go away during the move.
887 */
888 rw_enter(&os_lock, RW_WRITER);
889 if (os != odn->dn_objset) {
890 rw_exit(&os_lock);
891 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
892 return (KMEM_CBRC_DONT_KNOW);
893 }
894
895 /*
896 * If the dnode is still valid, then so is the objset. We know that no
897 * valid objset can be freed while we hold os_lock, so we can safely
898 * ensure that the objset remains in use.
899 */
900 mutex_enter(&os->os_lock);
901
902 /*
903 * Recheck the objset pointer in case the dnode was removed just before
904 * acquiring the lock.
905 */
906 if (os != odn->dn_objset) {
907 mutex_exit(&os->os_lock);
908 rw_exit(&os_lock);
909 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
910 return (KMEM_CBRC_DONT_KNOW);
911 }
912
913 /*
914 * At this point we know that as long as we hold os->os_lock, the dnode
915 * cannot be freed and fields within the dnode can be safely accessed.
916 * The objset listing this dnode cannot go away as long as this dnode is
917 * on its list.
918 */
919 rw_exit(&os_lock);
920 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
921 mutex_exit(&os->os_lock);
922 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
923 return (KMEM_CBRC_NO);
924 }
925 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
926
927 /*
928 * Lock the dnode handle to prevent the dnode from obtaining any new
929 * holds. This also prevents the descendant dbufs and the bonus dbuf
930 * from accessing the dnode, so that we can discount their holds. The
931 * handle is safe to access because we know that while the dnode cannot
932 * go away, neither can its handle. Once we hold dnh_zrlock, we can
933 * safely move any dnode referenced only by dbufs.
934 */
935 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
936 mutex_exit(&os->os_lock);
937 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
938 return (KMEM_CBRC_LATER);
939 }
940
941 /*
942 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
943 * We need to guarantee that there is a hold for every dbuf in order to
944 * determine whether the dnode is actively referenced. Falsely matching
945 * a dbuf to an active hold would lead to an unsafe move. It's possible
946 * that a thread already having an active dnode hold is about to add a
947 * dbuf, and we can't compare hold and dbuf counts while the add is in
948 * progress.
949 */
950 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
951 zrl_exit(&odn->dn_handle->dnh_zrlock);
952 mutex_exit(&os->os_lock);
953 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
954 return (KMEM_CBRC_LATER);
955 }
956
957 /*
958 * A dbuf may be removed (evicted) without an active dnode hold. In that
959 * case, the dbuf count is decremented under the handle lock before the
960 * dbuf's hold is released. This order ensures that if we count the hold
961 * after the dbuf is removed but before its hold is released, we will
962 * treat the unmatched hold as active and exit safely. If we count the
963 * hold before the dbuf is removed, the hold is discounted, and the
964 * removal is blocked until the move completes.
965 */
966 refcount = refcount_count(&odn->dn_holds);
967 ASSERT(refcount >= 0);
968 dbufs = odn->dn_dbufs_count;
969
970 /* We can't have more dbufs than dnode holds. */
971 ASSERT3U(dbufs, <=, refcount);
972 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
973 uint32_t, dbufs);
974
975 if (refcount > dbufs) {
976 rw_exit(&odn->dn_struct_rwlock);
977 zrl_exit(&odn->dn_handle->dnh_zrlock);
978 mutex_exit(&os->os_lock);
979 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
980 return (KMEM_CBRC_LATER);
981 }
982
983 rw_exit(&odn->dn_struct_rwlock);
984
985 /*
986 * At this point we know that anyone with a hold on the dnode is not
987 * actively referencing it. The dnode is known and in a valid state to
988 * move. We're holding the locks needed to execute the critical section.
989 */
990 dnode_move_impl(odn, ndn);
991
992 list_link_replace(&odn->dn_link, &ndn->dn_link);
993 /* If the dnode was safe to move, the refcount cannot have changed. */
994 ASSERT(refcount == refcount_count(&ndn->dn_holds));
995 ASSERT(dbufs == ndn->dn_dbufs_count);
996 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
997 mutex_exit(&os->os_lock);
998
999 return (KMEM_CBRC_YES);
1000 }
1001 #endif /* _KERNEL */
1002
1003 void
1004 dnode_special_close(dnode_handle_t *dnh)
1005 {
1006 dnode_t *dn = dnh->dnh_dnode;
1007
1008 /*
1009 * Wait for final references to the dnode to clear. This can
1010 * only happen if the arc is asyncronously evicting state that
1011 * has a hold on this dnode while we are trying to evict this
1012 * dnode.
1013 */
1014 while (refcount_count(&dn->dn_holds) > 0)
1015 delay(1);
1016 ASSERT(dn->dn_dbuf == NULL ||
1017 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1018 zrl_add(&dnh->dnh_zrlock);
1019 dnode_destroy(dn); /* implicit zrl_remove() */
1020 zrl_destroy(&dnh->dnh_zrlock);
1021 dnh->dnh_dnode = NULL;
1022 }
1023
1024 void
1025 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1026 dnode_handle_t *dnh)
1027 {
1028 dnode_t *dn;
1029
1030 dn = dnode_create(os, dnp, NULL, object, dnh);
1031 zrl_init(&dnh->dnh_zrlock);
1032 DNODE_VERIFY(dn);
1033 }
1034
1035 static void
1036 dnode_buf_pageout(void *dbu)
1037 {
1038 dnode_children_t *children_dnodes = dbu;
1039 int i;
1040
1041 for (i = 0; i < children_dnodes->dnc_count; i++) {
1042 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1043 dnode_t *dn;
1044
1045 /*
1046 * The dnode handle lock guards against the dnode moving to
1047 * another valid address, so there is no need here to guard
1048 * against changes to or from NULL.
1049 */
1050 if (dnh->dnh_dnode == NULL) {
1051 zrl_destroy(&dnh->dnh_zrlock);
1052 continue;
1053 }
1054
1055 zrl_add(&dnh->dnh_zrlock);
1056 dn = dnh->dnh_dnode;
1057 /*
1058 * If there are holds on this dnode, then there should
1059 * be holds on the dnode's containing dbuf as well; thus
1060 * it wouldn't be eligible for eviction and this function
1061 * would not have been called.
1062 */
1063 ASSERT(refcount_is_zero(&dn->dn_holds));
1064 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1065
1066 dnode_destroy(dn); /* implicit zrl_remove() */
1067 zrl_destroy(&dnh->dnh_zrlock);
1068 dnh->dnh_dnode = NULL;
1069 }
1070 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1071 children_dnodes->dnc_count * sizeof (dnode_handle_t));
1072 }
1073
1074 /*
1075 * Return true if the given index is interior to a dnode already
1076 * allocated in the block. That is, the index is neither free nor
1077 * allocated, but is consumed by a large dnode.
1078 *
1079 * The dnode_phys_t buffer may not be in sync with the in-core dnode
1080 * structure, so we try to check the dnode structure first and fall back
1081 * to the dnode_phys_t buffer it doesn't exist.
1082 */
1083 static boolean_t
1084 dnode_is_consumed(dmu_buf_impl_t *db, int idx)
1085 {
1086 dnode_handle_t *dnh;
1087 dmu_object_type_t ot;
1088 dnode_children_t *children_dnodes;
1089 dnode_phys_t *dn_block;
1090 int skip;
1091 int i;
1092
1093 children_dnodes = dmu_buf_get_user(&db->db);
1094 dn_block = (dnode_phys_t *)db->db.db_data;
1095
1096 for (i = 0; i < idx; i += skip) {
1097 dnh = &children_dnodes->dnc_children[i];
1098
1099 zrl_add(&dnh->dnh_zrlock);
1100 if (dnh->dnh_dnode != NULL) {
1101 ot = dnh->dnh_dnode->dn_type;
1102 skip = dnh->dnh_dnode->dn_num_slots;
1103 } else {
1104 ot = dn_block[i].dn_type;
1105 skip = dn_block[i].dn_extra_slots + 1;
1106 }
1107 zrl_remove(&dnh->dnh_zrlock);
1108
1109 if (ot == DMU_OT_NONE)
1110 skip = 1;
1111 }
1112
1113 return (i > idx);
1114 }
1115
1116 /*
1117 * Return true if the given index in the dnode block is a valid
1118 * allocated dnode. That is, the index is not consumed by a large
1119 * dnode and is not free.
1120 *
1121 * The dnode_phys_t buffer may not be in sync with the in-core dnode
1122 * structure, so we try to check the dnode structure first and fall back
1123 * to the dnode_phys_t buffer it doesn't exist.
1124 */
1125 static boolean_t
1126 dnode_is_allocated(dmu_buf_impl_t *db, int idx)
1127 {
1128 dnode_handle_t *dnh;
1129 dmu_object_type_t ot;
1130 dnode_children_t *children_dnodes;
1131 dnode_phys_t *dn_block;
1132
1133 if (dnode_is_consumed(db, idx))
1134 return (B_FALSE);
1135
1136 children_dnodes = dmu_buf_get_user(&db->db);
1137 dn_block = (dnode_phys_t *)db->db.db_data;
1138
1139 dnh = &children_dnodes->dnc_children[idx];
1140
1141 zrl_add(&dnh->dnh_zrlock);
1142 if (dnh->dnh_dnode != NULL)
1143 ot = dnh->dnh_dnode->dn_type;
1144 else
1145 ot = dn_block[idx].dn_type;
1146 zrl_remove(&dnh->dnh_zrlock);
1147
1148 return (ot != DMU_OT_NONE);
1149 }
1150
1151 /*
1152 * Return true if the given range of indices in the dnode block are
1153 * free. That is, the starting index is not consumed by a large dnode
1154 * and none of the indices are allocated.
1155 *
1156 * The dnode_phys_t buffer may not be in sync with the in-core dnode
1157 * structure, so we try to check the dnode structure first and fall back
1158 * to the dnode_phys_t buffer it doesn't exist.
1159 */
1160 static boolean_t
1161 dnode_is_free(dmu_buf_impl_t *db, int idx, int slots)
1162 {
1163 dnode_handle_t *dnh;
1164 dmu_object_type_t ot;
1165 dnode_children_t *children_dnodes;
1166 dnode_phys_t *dn_block;
1167 int i;
1168
1169 if (idx + slots > DNODES_PER_BLOCK)
1170 return (B_FALSE);
1171
1172 children_dnodes = dmu_buf_get_user(&db->db);
1173 dn_block = (dnode_phys_t *)db->db.db_data;
1174
1175 if (dnode_is_consumed(db, idx))
1176 return (B_FALSE);
1177
1178 for (i = idx; i < idx + slots; i++) {
1179 dnh = &children_dnodes->dnc_children[i];
1180
1181 zrl_add(&dnh->dnh_zrlock);
1182 if (dnh->dnh_dnode != NULL)
1183 ot = dnh->dnh_dnode->dn_type;
1184 else
1185 ot = dn_block[i].dn_type;
1186 zrl_remove(&dnh->dnh_zrlock);
1187
1188 if (ot != DMU_OT_NONE)
1189 return (B_FALSE);
1190 }
1191
1192 return (B_TRUE);
1193 }
1194
1195 /*
1196 * errors:
1197 * EINVAL - invalid object number.
1198 * ENOSPC - hole too small to fulfill "slots" request
1199 * EIO - i/o error.
1200 * succeeds even for free dnodes.
1201 */
1202 int
1203 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1204 void *tag, dnode_t **dnp)
1205 {
1206 int epb, idx, err, i;
1207 int drop_struct_lock = FALSE;
1208 int type;
1209 uint64_t blk;
1210 dnode_t *mdn, *dn;
1211 dmu_buf_impl_t *db;
1212 dnode_children_t *children_dnodes;
1213 dnode_phys_t *dn_block_begin;
1214 dnode_handle_t *dnh;
1215
1216 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1217 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1218
1219 /*
1220 * If you are holding the spa config lock as writer, you shouldn't
1221 * be asking the DMU to do *anything* unless it's the root pool
1222 * which may require us to read from the root filesystem while
1223 * holding some (not all) of the locks as writer.
1224 */
1225 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1226 (spa_is_root(os->os_spa) &&
1227 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1228
1229 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1230 dn = (object == DMU_USERUSED_OBJECT) ?
1231 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1232 if (dn == NULL)
1233 return (SET_ERROR(ENOENT));
1234 type = dn->dn_type;
1235 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1236 return (SET_ERROR(ENOENT));
1237 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1238 return (SET_ERROR(EEXIST));
1239 DNODE_VERIFY(dn);
1240 (void) refcount_add(&dn->dn_holds, tag);
1241 *dnp = dn;
1242 return (0);
1243 }
1244
1245 if (object == 0 || object >= DN_MAX_OBJECT)
1246 return (SET_ERROR(EINVAL));
1247
1248 mdn = DMU_META_DNODE(os);
1249 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1250
1251 DNODE_VERIFY(mdn);
1252
1253 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1254 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1255 drop_struct_lock = TRUE;
1256 }
1257
1258 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1259
1260 db = dbuf_hold(mdn, blk, FTAG);
1261 if (drop_struct_lock)
1262 rw_exit(&mdn->dn_struct_rwlock);
1263 if (db == NULL)
1264 return (SET_ERROR(EIO));
1265 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1266 if (err) {
1267 dbuf_rele(db, FTAG);
1268 return (err);
1269 }
1270
1271 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1272 epb = db->db.db_size >> DNODE_SHIFT;
1273
1274 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1275 children_dnodes = dmu_buf_get_user(&db->db);
1276 if (children_dnodes == NULL) {
1277 dnode_children_t *winner;
1278 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1279 epb * sizeof (dnode_handle_t), KM_SLEEP);
1280 children_dnodes->dnc_count = epb;
1281 dnh = &children_dnodes->dnc_children[0];
1282 for (i = 0; i < epb; i++) {
1283 zrl_init(&dnh[i].dnh_zrlock);
1284 }
1285 dmu_buf_init_user(&children_dnodes->dnc_dbu,
1286 dnode_buf_pageout, NULL);
1287 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1288 if (winner != NULL) {
1289
1290 for (i = 0; i < epb; i++) {
1291 zrl_destroy(&dnh[i].dnh_zrlock);
1292 }
1293
1294 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1295 epb * sizeof (dnode_handle_t));
1296 children_dnodes = winner;
1297 }
1298 }
1299 ASSERT(children_dnodes->dnc_count == epb);
1300
1301 idx = object & (epb - 1);
1302 dn_block_begin = (dnode_phys_t *)db->db.db_data;
1303
1304 if ((flag & DNODE_MUST_BE_FREE) && !dnode_is_free(db, idx, slots)) {
1305 dbuf_rele(db, FTAG);
1306 return (ENOSPC);
1307 } else if ((flag & DNODE_MUST_BE_ALLOCATED) &&
1308 !dnode_is_allocated(db, idx)) {
1309 dbuf_rele(db, FTAG);
1310 return (ENOENT);
1311 }
1312
1313 dnh = &children_dnodes->dnc_children[idx];
1314 zrl_add(&dnh->dnh_zrlock);
1315 dn = dnh->dnh_dnode;
1316 if (dn == NULL)
1317 dn = dnode_create(os, dn_block_begin + idx, db, object, dnh);
1318
1319 mutex_enter(&dn->dn_mtx);
1320 type = dn->dn_type;
1321 if (dn->dn_free_txg ||
1322 ((flag & DNODE_MUST_BE_FREE) && !refcount_is_zero(&dn->dn_holds))) {
1323 mutex_exit(&dn->dn_mtx);
1324 zrl_remove(&dnh->dnh_zrlock);
1325 dbuf_rele(db, FTAG);
1326 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1327 }
1328 if (refcount_add(&dn->dn_holds, tag) == 1)
1329 dbuf_add_ref(db, dnh);
1330 mutex_exit(&dn->dn_mtx);
1331
1332 /* Now we can rely on the hold to prevent the dnode from moving. */
1333 zrl_remove(&dnh->dnh_zrlock);
1334
1335 DNODE_VERIFY(dn);
1336 ASSERT3P(dn->dn_dbuf, ==, db);
1337 ASSERT3U(dn->dn_object, ==, object);
1338 dbuf_rele(db, FTAG);
1339
1340 *dnp = dn;
1341 return (0);
1342 }
1343
1344 /*
1345 * Return held dnode if the object is allocated, NULL if not.
1346 */
1347 int
1348 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1349 {
1350 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1351 dnp));
1352 }
1353
1354 /*
1355 * Can only add a reference if there is already at least one
1356 * reference on the dnode. Returns FALSE if unable to add a
1357 * new reference.
1358 */
1359 boolean_t
1360 dnode_add_ref(dnode_t *dn, void *tag)
1361 {
1362 mutex_enter(&dn->dn_mtx);
1363 if (refcount_is_zero(&dn->dn_holds)) {
1364 mutex_exit(&dn->dn_mtx);
1365 return (FALSE);
1366 }
1367 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1368 mutex_exit(&dn->dn_mtx);
1369 return (TRUE);
1370 }
1371
1372 void
1373 dnode_rele(dnode_t *dn, void *tag)
1374 {
1375 mutex_enter(&dn->dn_mtx);
1376 dnode_rele_and_unlock(dn, tag);
1377 }
1378
1379 void
1380 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1381 {
1382 uint64_t refs;
1383 /* Get while the hold prevents the dnode from moving. */
1384 dmu_buf_impl_t *db = dn->dn_dbuf;
1385 dnode_handle_t *dnh = dn->dn_handle;
1386
1387 refs = refcount_remove(&dn->dn_holds, tag);
1388 mutex_exit(&dn->dn_mtx);
1389
1390 /*
1391 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1392 * indirectly by dbuf_rele() while relying on the dnode handle to
1393 * prevent the dnode from moving, since releasing the last hold could
1394 * result in the dnode's parent dbuf evicting its dnode handles. For
1395 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1396 * other direct or indirect hold on the dnode must first drop the dnode
1397 * handle.
1398 */
1399 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1400
1401 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1402 if (refs == 0 && db != NULL) {
1403 /*
1404 * Another thread could add a hold to the dnode handle in
1405 * dnode_hold_impl() while holding the parent dbuf. Since the
1406 * hold on the parent dbuf prevents the handle from being
1407 * destroyed, the hold on the handle is OK. We can't yet assert
1408 * that the handle has zero references, but that will be
1409 * asserted anyway when the handle gets destroyed.
1410 */
1411 dbuf_rele(db, dnh);
1412 }
1413 }
1414
1415 void
1416 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1417 {
1418 objset_t *os = dn->dn_objset;
1419 uint64_t txg = tx->tx_txg;
1420
1421 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1422 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1423 return;
1424 }
1425
1426 DNODE_VERIFY(dn);
1427
1428 #ifdef ZFS_DEBUG
1429 mutex_enter(&dn->dn_mtx);
1430 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1431 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1432 mutex_exit(&dn->dn_mtx);
1433 #endif
1434
1435 /*
1436 * Determine old uid/gid when necessary
1437 */
1438 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1439
1440 mutex_enter(&os->os_lock);
1441
1442 /*
1443 * If we are already marked dirty, we're done.
1444 */
1445 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1446 mutex_exit(&os->os_lock);
1447 return;
1448 }
1449
1450 ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1451 !avl_is_empty(&dn->dn_dbufs));
1452 ASSERT(dn->dn_datablksz != 0);
1453 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1454 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1455 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1456
1457 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1458 dn->dn_object, txg);
1459
1460 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1461 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1462 } else {
1463 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1464 }
1465
1466 mutex_exit(&os->os_lock);
1467
1468 /*
1469 * The dnode maintains a hold on its containing dbuf as
1470 * long as there are holds on it. Each instantiated child
1471 * dbuf maintains a hold on the dnode. When the last child
1472 * drops its hold, the dnode will drop its hold on the
1473 * containing dbuf. We add a "dirty hold" here so that the
1474 * dnode will hang around after we finish processing its
1475 * children.
1476 */
1477 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1478
1479 (void) dbuf_dirty(dn->dn_dbuf, tx);
1480
1481 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1482 }
1483
1484 void
1485 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1486 {
1487 int txgoff = tx->tx_txg & TXG_MASK;
1488
1489 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1490
1491 /* we should be the only holder... hopefully */
1492 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1493
1494 mutex_enter(&dn->dn_mtx);
1495 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1496 mutex_exit(&dn->dn_mtx);
1497 return;
1498 }
1499 dn->dn_free_txg = tx->tx_txg;
1500 mutex_exit(&dn->dn_mtx);
1501
1502 /*
1503 * If the dnode is already dirty, it needs to be moved from
1504 * the dirty list to the free list.
1505 */
1506 mutex_enter(&dn->dn_objset->os_lock);
1507 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1508 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1509 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1510 mutex_exit(&dn->dn_objset->os_lock);
1511 } else {
1512 mutex_exit(&dn->dn_objset->os_lock);
1513 dnode_setdirty(dn, tx);
1514 }
1515 }
1516
1517 /*
1518 * Try to change the block size for the indicated dnode. This can only
1519 * succeed if there are no blocks allocated or dirty beyond first block
1520 */
1521 int
1522 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1523 {
1524 dmu_buf_impl_t *db;
1525 int err;
1526
1527 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1528 if (size == 0)
1529 size = SPA_MINBLOCKSIZE;
1530 else
1531 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1532
1533 if (ibs == dn->dn_indblkshift)
1534 ibs = 0;
1535
1536 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1537 return (0);
1538
1539 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1540
1541 /* Check for any allocated blocks beyond the first */
1542 if (dn->dn_maxblkid != 0)
1543 goto fail;
1544
1545 mutex_enter(&dn->dn_dbufs_mtx);
1546 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1547 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1548 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1549 db->db_blkid != DMU_SPILL_BLKID) {
1550 mutex_exit(&dn->dn_dbufs_mtx);
1551 goto fail;
1552 }
1553 }
1554 mutex_exit(&dn->dn_dbufs_mtx);
1555
1556 if (ibs && dn->dn_nlevels != 1)
1557 goto fail;
1558
1559 /* resize the old block */
1560 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1561 if (err == 0)
1562 dbuf_new_size(db, size, tx);
1563 else if (err != ENOENT)
1564 goto fail;
1565
1566 dnode_setdblksz(dn, size);
1567 dnode_setdirty(dn, tx);
1568 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1569 if (ibs) {
1570 dn->dn_indblkshift = ibs;
1571 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1572 }
1573 /* rele after we have fixed the blocksize in the dnode */
1574 if (db)
1575 dbuf_rele(db, FTAG);
1576
1577 rw_exit(&dn->dn_struct_rwlock);
1578 return (0);
1579
1580 fail:
1581 rw_exit(&dn->dn_struct_rwlock);
1582 return (SET_ERROR(ENOTSUP));
1583 }
1584
1585 /* read-holding callers must not rely on the lock being continuously held */
1586 void
1587 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1588 {
1589 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1590 int epbs, new_nlevels;
1591 uint64_t sz;
1592
1593 ASSERT(blkid != DMU_BONUS_BLKID);
1594
1595 ASSERT(have_read ?
1596 RW_READ_HELD(&dn->dn_struct_rwlock) :
1597 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1598
1599 /*
1600 * if we have a read-lock, check to see if we need to do any work
1601 * before upgrading to a write-lock.
1602 */
1603 if (have_read) {
1604 if (blkid <= dn->dn_maxblkid)
1605 return;
1606
1607 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1608 rw_exit(&dn->dn_struct_rwlock);
1609 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1610 }
1611 }
1612
1613 if (blkid <= dn->dn_maxblkid)
1614 goto out;
1615
1616 dn->dn_maxblkid = blkid;
1617
1618 /*
1619 * Compute the number of levels necessary to support the new maxblkid.
1620 */
1621 new_nlevels = 1;
1622 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1623 for (sz = dn->dn_nblkptr;
1624 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1625 new_nlevels++;
1626
1627 if (new_nlevels > dn->dn_nlevels) {
1628 int old_nlevels = dn->dn_nlevels;
1629 dmu_buf_impl_t *db;
1630 list_t *list;
1631 dbuf_dirty_record_t *new, *dr, *dr_next;
1632
1633 dn->dn_nlevels = new_nlevels;
1634
1635 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1636 dn->dn_next_nlevels[txgoff] = new_nlevels;
1637
1638 /* dirty the left indirects */
1639 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1640 ASSERT(db != NULL);
1641 new = dbuf_dirty(db, tx);
1642 dbuf_rele(db, FTAG);
1643
1644 /* transfer the dirty records to the new indirect */
1645 mutex_enter(&dn->dn_mtx);
1646 mutex_enter(&new->dt.di.dr_mtx);
1647 list = &dn->dn_dirty_records[txgoff];
1648 for (dr = list_head(list); dr; dr = dr_next) {
1649 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1650 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1651 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1652 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1653 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1654 list_remove(&dn->dn_dirty_records[txgoff], dr);
1655 list_insert_tail(&new->dt.di.dr_children, dr);
1656 dr->dr_parent = new;
1657 }
1658 }
1659 mutex_exit(&new->dt.di.dr_mtx);
1660 mutex_exit(&dn->dn_mtx);
1661 }
1662
1663 out:
1664 if (have_read)
1665 rw_downgrade(&dn->dn_struct_rwlock);
1666 }
1667
1668 static void
1669 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1670 {
1671 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1672 if (db != NULL) {
1673 dmu_buf_will_dirty(&db->db, tx);
1674 dbuf_rele(db, FTAG);
1675 }
1676 }
1677
1678 void
1679 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1680 {
1681 dmu_buf_impl_t *db;
1682 uint64_t blkoff, blkid, nblks;
1683 int blksz, blkshift, head, tail;
1684 int trunc = FALSE;
1685 int epbs;
1686
1687 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1688 blksz = dn->dn_datablksz;
1689 blkshift = dn->dn_datablkshift;
1690 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1691
1692 if (len == DMU_OBJECT_END) {
1693 len = UINT64_MAX - off;
1694 trunc = TRUE;
1695 }
1696
1697 /*
1698 * First, block align the region to free:
1699 */
1700 if (ISP2(blksz)) {
1701 head = P2NPHASE(off, blksz);
1702 blkoff = P2PHASE(off, blksz);
1703 if ((off >> blkshift) > dn->dn_maxblkid)
1704 goto out;
1705 } else {
1706 ASSERT(dn->dn_maxblkid == 0);
1707 if (off == 0 && len >= blksz) {
1708 /*
1709 * Freeing the whole block; fast-track this request.
1710 * Note that we won't dirty any indirect blocks,
1711 * which is fine because we will be freeing the entire
1712 * file and thus all indirect blocks will be freed
1713 * by free_children().
1714 */
1715 blkid = 0;
1716 nblks = 1;
1717 goto done;
1718 } else if (off >= blksz) {
1719 /* Freeing past end-of-data */
1720 goto out;
1721 } else {
1722 /* Freeing part of the block. */
1723 head = blksz - off;
1724 ASSERT3U(head, >, 0);
1725 }
1726 blkoff = off;
1727 }
1728 /* zero out any partial block data at the start of the range */
1729 if (head) {
1730 ASSERT3U(blkoff + head, ==, blksz);
1731 if (len < head)
1732 head = len;
1733 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1734 TRUE, FALSE, FTAG, &db) == 0) {
1735 caddr_t data;
1736
1737 /* don't dirty if it isn't on disk and isn't dirty */
1738 if (db->db_last_dirty ||
1739 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1740 rw_exit(&dn->dn_struct_rwlock);
1741 dmu_buf_will_dirty(&db->db, tx);
1742 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1743 data = db->db.db_data;
1744 bzero(data + blkoff, head);
1745 }
1746 dbuf_rele(db, FTAG);
1747 }
1748 off += head;
1749 len -= head;
1750 }
1751
1752 /* If the range was less than one block, we're done */
1753 if (len == 0)
1754 goto out;
1755
1756 /* If the remaining range is past end of file, we're done */
1757 if ((off >> blkshift) > dn->dn_maxblkid)
1758 goto out;
1759
1760 ASSERT(ISP2(blksz));
1761 if (trunc)
1762 tail = 0;
1763 else
1764 tail = P2PHASE(len, blksz);
1765
1766 ASSERT0(P2PHASE(off, blksz));
1767 /* zero out any partial block data at the end of the range */
1768 if (tail) {
1769 if (len < tail)
1770 tail = len;
1771 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1772 TRUE, FALSE, FTAG, &db) == 0) {
1773 /* don't dirty if not on disk and not dirty */
1774 if (db->db_last_dirty ||
1775 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1776 rw_exit(&dn->dn_struct_rwlock);
1777 dmu_buf_will_dirty(&db->db, tx);
1778 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1779 bzero(db->db.db_data, tail);
1780 }
1781 dbuf_rele(db, FTAG);
1782 }
1783 len -= tail;
1784 }
1785
1786 /* If the range did not include a full block, we are done */
1787 if (len == 0)
1788 goto out;
1789
1790 ASSERT(IS_P2ALIGNED(off, blksz));
1791 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1792 blkid = off >> blkshift;
1793 nblks = len >> blkshift;
1794 if (trunc)
1795 nblks += 1;
1796
1797 /*
1798 * Dirty all the indirect blocks in this range. Note that only
1799 * the first and last indirect blocks can actually be written
1800 * (if they were partially freed) -- they must be dirtied, even if
1801 * they do not exist on disk yet. The interior blocks will
1802 * be freed by free_children(), so they will not actually be written.
1803 * Even though these interior blocks will not be written, we
1804 * dirty them for two reasons:
1805 *
1806 * - It ensures that the indirect blocks remain in memory until
1807 * syncing context. (They have already been prefetched by
1808 * dmu_tx_hold_free(), so we don't have to worry about reading
1809 * them serially here.)
1810 *
1811 * - The dirty space accounting will put pressure on the txg sync
1812 * mechanism to begin syncing, and to delay transactions if there
1813 * is a large amount of freeing. Even though these indirect
1814 * blocks will not be written, we could need to write the same
1815 * amount of space if we copy the freed BPs into deadlists.
1816 */
1817 if (dn->dn_nlevels > 1) {
1818 uint64_t first, last, i, ibyte;
1819 int shift, err;
1820
1821 first = blkid >> epbs;
1822 dnode_dirty_l1(dn, first, tx);
1823 if (trunc)
1824 last = dn->dn_maxblkid >> epbs;
1825 else
1826 last = (blkid + nblks - 1) >> epbs;
1827 if (last != first)
1828 dnode_dirty_l1(dn, last, tx);
1829
1830 shift = dn->dn_datablkshift + dn->dn_indblkshift -
1831 SPA_BLKPTRSHIFT;
1832 for (i = first + 1; i < last; i++) {
1833 /*
1834 * Set i to the blockid of the next non-hole
1835 * level-1 indirect block at or after i. Note
1836 * that dnode_next_offset() operates in terms of
1837 * level-0-equivalent bytes.
1838 */
1839 ibyte = i << shift;
1840 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1841 &ibyte, 2, 1, 0);
1842 i = ibyte >> shift;
1843 if (i >= last)
1844 break;
1845
1846 /*
1847 * Normally we should not see an error, either
1848 * from dnode_next_offset() or dbuf_hold_level()
1849 * (except for ESRCH from dnode_next_offset).
1850 * If there is an i/o error, then when we read
1851 * this block in syncing context, it will use
1852 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1853 * to the "failmode" property. dnode_next_offset()
1854 * doesn't have a flag to indicate MUSTSUCCEED.
1855 */
1856 if (err != 0)
1857 break;
1858
1859 dnode_dirty_l1(dn, i, tx);
1860 }
1861 }
1862
1863 done:
1864 /*
1865 * Add this range to the dnode range list.
1866 * We will finish up this free operation in the syncing phase.
1867 */
1868 mutex_enter(&dn->dn_mtx);
1869 {
1870 int txgoff = tx->tx_txg & TXG_MASK;
1871 if (dn->dn_free_ranges[txgoff] == NULL) {
1872 dn->dn_free_ranges[txgoff] =
1873 range_tree_create(NULL, NULL, &dn->dn_mtx);
1874 }
1875 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1876 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1877 }
1878 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1879 blkid, nblks, tx->tx_txg);
1880 mutex_exit(&dn->dn_mtx);
1881
1882 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1883 dnode_setdirty(dn, tx);
1884 out:
1885
1886 rw_exit(&dn->dn_struct_rwlock);
1887 }
1888
1889 static boolean_t
1890 dnode_spill_freed(dnode_t *dn)
1891 {
1892 int i;
1893
1894 mutex_enter(&dn->dn_mtx);
1895 for (i = 0; i < TXG_SIZE; i++) {
1896 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1897 break;
1898 }
1899 mutex_exit(&dn->dn_mtx);
1900 return (i < TXG_SIZE);
1901 }
1902
1903 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1904 uint64_t
1905 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1906 {
1907 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1908 int i;
1909
1910 if (blkid == DMU_BONUS_BLKID)
1911 return (FALSE);
1912
1913 /*
1914 * If we're in the process of opening the pool, dp will not be
1915 * set yet, but there shouldn't be anything dirty.
1916 */
1917 if (dp == NULL)
1918 return (FALSE);
1919
1920 if (dn->dn_free_txg)
1921 return (TRUE);
1922
1923 if (blkid == DMU_SPILL_BLKID)
1924 return (dnode_spill_freed(dn));
1925
1926 mutex_enter(&dn->dn_mtx);
1927 for (i = 0; i < TXG_SIZE; i++) {
1928 if (dn->dn_free_ranges[i] != NULL &&
1929 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1930 break;
1931 }
1932 mutex_exit(&dn->dn_mtx);
1933 return (i < TXG_SIZE);
1934 }
1935
1936 /* call from syncing context when we actually write/free space for this dnode */
1937 void
1938 dnode_diduse_space(dnode_t *dn, int64_t delta)
1939 {
1940 uint64_t space;
1941 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1942 dn, dn->dn_phys,
1943 (u_longlong_t)dn->dn_phys->dn_used,
1944 (longlong_t)delta);
1945
1946 mutex_enter(&dn->dn_mtx);
1947 space = DN_USED_BYTES(dn->dn_phys);
1948 if (delta > 0) {
1949 ASSERT3U(space + delta, >=, space); /* no overflow */
1950 } else {
1951 ASSERT3U(space, >=, -delta); /* no underflow */
1952 }
1953 space += delta;
1954 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1955 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1956 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1957 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1958 } else {
1959 dn->dn_phys->dn_used = space;
1960 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1961 }
1962 mutex_exit(&dn->dn_mtx);
1963 }
1964
1965 /*
1966 * Call when we think we're going to write/free space in open context to track
1967 * the amount of memory in use by the currently open txg.
1968 */
1969 void
1970 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1971 {
1972 objset_t *os = dn->dn_objset;
1973 dsl_dataset_t *ds = os->os_dsl_dataset;
1974 int64_t aspace = spa_get_asize(os->os_spa, space);
1975
1976 if (ds != NULL) {
1977 dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1978 dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1979 }
1980
1981 dmu_tx_willuse_space(tx, aspace);
1982 }
1983
1984 /*
1985 * Scans a block at the indicated "level" looking for a hole or data,
1986 * depending on 'flags'.
1987 *
1988 * If level > 0, then we are scanning an indirect block looking at its
1989 * pointers. If level == 0, then we are looking at a block of dnodes.
1990 *
1991 * If we don't find what we are looking for in the block, we return ESRCH.
1992 * Otherwise, return with *offset pointing to the beginning (if searching
1993 * forwards) or end (if searching backwards) of the range covered by the
1994 * block pointer we matched on (or dnode).
1995 *
1996 * The basic search algorithm used below by dnode_next_offset() is to
1997 * use this function to search up the block tree (widen the search) until
1998 * we find something (i.e., we don't return ESRCH) and then search back
1999 * down the tree (narrow the search) until we reach our original search
2000 * level.
2001 */
2002 static int
2003 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2004 int lvl, uint64_t blkfill, uint64_t txg)
2005 {
2006 dmu_buf_impl_t *db = NULL;
2007 void *data = NULL;
2008 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2009 uint64_t epb = 1ULL << epbs;
2010 uint64_t minfill, maxfill;
2011 boolean_t hole;
2012 int i, inc, error, span;
2013
2014 dprintf("probing object %llu offset %llx level %d of %u\n",
2015 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
2016
2017 hole = ((flags & DNODE_FIND_HOLE) != 0);
2018 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2019 ASSERT(txg == 0 || !hole);
2020
2021 if (lvl == dn->dn_phys->dn_nlevels) {
2022 error = 0;
2023 epb = dn->dn_phys->dn_nblkptr;
2024 data = dn->dn_phys->dn_blkptr;
2025 } else {
2026 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2027 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2028 if (error) {
2029 if (error != ENOENT)
2030 return (error);
2031 if (hole)
2032 return (0);
2033 /*
2034 * This can only happen when we are searching up
2035 * the block tree for data. We don't really need to
2036 * adjust the offset, as we will just end up looking
2037 * at the pointer to this block in its parent, and its
2038 * going to be unallocated, so we will skip over it.
2039 */
2040 return (SET_ERROR(ESRCH));
2041 }
2042 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
2043 if (error) {
2044 dbuf_rele(db, FTAG);
2045 return (error);
2046 }
2047 data = db->db.db_data;
2048 }
2049
2050
2051 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2052 db->db_blkptr->blk_birth <= txg ||
2053 BP_IS_HOLE(db->db_blkptr))) {
2054 /*
2055 * This can only happen when we are searching up the tree
2056 * and these conditions mean that we need to keep climbing.
2057 */
2058 error = SET_ERROR(ESRCH);
2059 } else if (lvl == 0) {
2060 dnode_phys_t *dnp = data;
2061
2062 ASSERT(dn->dn_type == DMU_OT_DNODE);
2063 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2064
2065 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2066 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2067 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2068 break;
2069 }
2070
2071 if (i == blkfill)
2072 error = SET_ERROR(ESRCH);
2073
2074 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2075 (i << DNODE_SHIFT);
2076 } else {
2077 blkptr_t *bp = data;
2078 uint64_t start = *offset;
2079 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2080 minfill = 0;
2081 maxfill = blkfill << ((lvl - 1) * epbs);
2082
2083 if (hole)
2084 maxfill--;
2085 else
2086 minfill++;
2087
2088 *offset = *offset >> span;
2089 for (i = BF64_GET(*offset, 0, epbs);
2090 i >= 0 && i < epb; i += inc) {
2091 if (BP_GET_FILL(&bp[i]) >= minfill &&
2092 BP_GET_FILL(&bp[i]) <= maxfill &&
2093 (hole || bp[i].blk_birth > txg))
2094 break;
2095 if (inc > 0 || *offset > 0)
2096 *offset += inc;
2097 }
2098 *offset = *offset << span;
2099 if (inc < 0) {
2100 /* traversing backwards; position offset at the end */
2101 ASSERT3U(*offset, <=, start);
2102 *offset = MIN(*offset + (1ULL << span) - 1, start);
2103 } else if (*offset < start) {
2104 *offset = start;
2105 }
2106 if (i < 0 || i >= epb)
2107 error = SET_ERROR(ESRCH);
2108 }
2109
2110 if (db)
2111 dbuf_rele(db, FTAG);
2112
2113 return (error);
2114 }
2115
2116 /*
2117 * Find the next hole, data, or sparse region at or after *offset.
2118 * The value 'blkfill' tells us how many items we expect to find
2119 * in an L0 data block; this value is 1 for normal objects,
2120 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2121 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2122 *
2123 * Examples:
2124 *
2125 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2126 * Finds the next/previous hole/data in a file.
2127 * Used in dmu_offset_next().
2128 *
2129 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2130 * Finds the next free/allocated dnode an objset's meta-dnode.
2131 * Only finds objects that have new contents since txg (ie.
2132 * bonus buffer changes and content removal are ignored).
2133 * Used in dmu_object_next().
2134 *
2135 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2136 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2137 * Used in dmu_object_alloc().
2138 */
2139 int
2140 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2141 int minlvl, uint64_t blkfill, uint64_t txg)
2142 {
2143 uint64_t initial_offset = *offset;
2144 int lvl, maxlvl;
2145 int error = 0;
2146
2147 if (!(flags & DNODE_FIND_HAVELOCK))
2148 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2149
2150 if (dn->dn_phys->dn_nlevels == 0) {
2151 error = SET_ERROR(ESRCH);
2152 goto out;
2153 }
2154
2155 if (dn->dn_datablkshift == 0) {
2156 if (*offset < dn->dn_datablksz) {
2157 if (flags & DNODE_FIND_HOLE)
2158 *offset = dn->dn_datablksz;
2159 } else {
2160 error = SET_ERROR(ESRCH);
2161 }
2162 goto out;
2163 }
2164
2165 maxlvl = dn->dn_phys->dn_nlevels;
2166
2167 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2168 error = dnode_next_offset_level(dn,
2169 flags, offset, lvl, blkfill, txg);
2170 if (error != ESRCH)
2171 break;
2172 }
2173
2174 while (error == 0 && --lvl >= minlvl) {
2175 error = dnode_next_offset_level(dn,
2176 flags, offset, lvl, blkfill, txg);
2177 }
2178
2179 /*
2180 * There's always a "virtual hole" at the end of the object, even
2181 * if all BP's which physically exist are non-holes.
2182 */
2183 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2184 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2185 error = 0;
2186 }
2187
2188 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2189 initial_offset < *offset : initial_offset > *offset))
2190 error = SET_ERROR(ESRCH);
2191 out:
2192 if (!(flags & DNODE_FIND_HAVELOCK))
2193 rw_exit(&dn->dn_struct_rwlock);
2194
2195 return (error);
2196 }