]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_dnode.h>
41
42 static kmem_cache_t *dnode_cache;
43 /*
44 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
45 * turned on when DEBUG is also defined.
46 */
47 #ifdef DEBUG
48 #define DNODE_STATS
49 #endif /* DEBUG */
50
51 #ifdef DNODE_STATS
52 #define DNODE_STAT_ADD(stat) ((stat)++)
53 #else
54 #define DNODE_STAT_ADD(stat) /* nothing */
55 #endif /* DNODE_STATS */
56
57 ASSERTV(static dnode_phys_t dnode_phys_zero);
58
59 int zfs_default_bs = SPA_MINBLOCKSHIFT;
60 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
61
62 #ifdef _KERNEL
63 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
64 #endif /* _KERNEL */
65
66 static int
67 dbuf_compare(const void *x1, const void *x2)
68 {
69 const dmu_buf_impl_t *d1 = x1;
70 const dmu_buf_impl_t *d2 = x2;
71
72 int cmp = AVL_CMP(d1->db_level, d2->db_level);
73 if (likely(cmp))
74 return (cmp);
75
76 cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
77 if (likely(cmp))
78 return (cmp);
79
80 if (d1->db_state == DB_SEARCH) {
81 ASSERT3S(d2->db_state, !=, DB_SEARCH);
82 return (-1);
83 } else if (d2->db_state == DB_SEARCH) {
84 ASSERT3S(d1->db_state, !=, DB_SEARCH);
85 return (1);
86 }
87
88 return (AVL_PCMP(d1, d2));
89 }
90
91 /* ARGSUSED */
92 static int
93 dnode_cons(void *arg, void *unused, int kmflag)
94 {
95 dnode_t *dn = arg;
96 int i;
97
98 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
99 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
100 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
101 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
102
103 /*
104 * Every dbuf has a reference, and dropping a tracked reference is
105 * O(number of references), so don't track dn_holds.
106 */
107 refcount_create_untracked(&dn->dn_holds);
108 refcount_create(&dn->dn_tx_holds);
109 list_link_init(&dn->dn_link);
110
111 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
112 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
113 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
114 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
115 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
116 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
117 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
118
119 for (i = 0; i < TXG_SIZE; i++) {
120 list_link_init(&dn->dn_dirty_link[i]);
121 dn->dn_free_ranges[i] = NULL;
122 list_create(&dn->dn_dirty_records[i],
123 sizeof (dbuf_dirty_record_t),
124 offsetof(dbuf_dirty_record_t, dr_dirty_node));
125 }
126
127 dn->dn_allocated_txg = 0;
128 dn->dn_free_txg = 0;
129 dn->dn_assigned_txg = 0;
130 dn->dn_dirtyctx = 0;
131 dn->dn_dirtyctx_firstset = NULL;
132 dn->dn_bonus = NULL;
133 dn->dn_have_spill = B_FALSE;
134 dn->dn_zio = NULL;
135 dn->dn_oldused = 0;
136 dn->dn_oldflags = 0;
137 dn->dn_olduid = 0;
138 dn->dn_oldgid = 0;
139 dn->dn_newuid = 0;
140 dn->dn_newgid = 0;
141 dn->dn_id_flags = 0;
142
143 dn->dn_dbufs_count = 0;
144 dn->dn_unlisted_l0_blkid = 0;
145 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
146 offsetof(dmu_buf_impl_t, db_link));
147
148 dn->dn_moved = 0;
149 return (0);
150 }
151
152 /* ARGSUSED */
153 static void
154 dnode_dest(void *arg, void *unused)
155 {
156 int i;
157 dnode_t *dn = arg;
158
159 rw_destroy(&dn->dn_struct_rwlock);
160 mutex_destroy(&dn->dn_mtx);
161 mutex_destroy(&dn->dn_dbufs_mtx);
162 cv_destroy(&dn->dn_notxholds);
163 refcount_destroy(&dn->dn_holds);
164 refcount_destroy(&dn->dn_tx_holds);
165 ASSERT(!list_link_active(&dn->dn_link));
166
167 for (i = 0; i < TXG_SIZE; i++) {
168 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
169 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
170 list_destroy(&dn->dn_dirty_records[i]);
171 ASSERT0(dn->dn_next_nblkptr[i]);
172 ASSERT0(dn->dn_next_nlevels[i]);
173 ASSERT0(dn->dn_next_indblkshift[i]);
174 ASSERT0(dn->dn_next_bonustype[i]);
175 ASSERT0(dn->dn_rm_spillblk[i]);
176 ASSERT0(dn->dn_next_bonuslen[i]);
177 ASSERT0(dn->dn_next_blksz[i]);
178 }
179
180 ASSERT0(dn->dn_allocated_txg);
181 ASSERT0(dn->dn_free_txg);
182 ASSERT0(dn->dn_assigned_txg);
183 ASSERT0(dn->dn_dirtyctx);
184 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
185 ASSERT3P(dn->dn_bonus, ==, NULL);
186 ASSERT(!dn->dn_have_spill);
187 ASSERT3P(dn->dn_zio, ==, NULL);
188 ASSERT0(dn->dn_oldused);
189 ASSERT0(dn->dn_oldflags);
190 ASSERT0(dn->dn_olduid);
191 ASSERT0(dn->dn_oldgid);
192 ASSERT0(dn->dn_newuid);
193 ASSERT0(dn->dn_newgid);
194 ASSERT0(dn->dn_id_flags);
195
196 ASSERT0(dn->dn_dbufs_count);
197 ASSERT0(dn->dn_unlisted_l0_blkid);
198 avl_destroy(&dn->dn_dbufs);
199 }
200
201 void
202 dnode_init(void)
203 {
204 ASSERT(dnode_cache == NULL);
205 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
206 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
207 kmem_cache_set_move(dnode_cache, dnode_move);
208 }
209
210 void
211 dnode_fini(void)
212 {
213 kmem_cache_destroy(dnode_cache);
214 dnode_cache = NULL;
215 }
216
217
218 #ifdef ZFS_DEBUG
219 void
220 dnode_verify(dnode_t *dn)
221 {
222 int drop_struct_lock = FALSE;
223
224 ASSERT(dn->dn_phys);
225 ASSERT(dn->dn_objset);
226 ASSERT(dn->dn_handle->dnh_dnode == dn);
227
228 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
229
230 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
231 return;
232
233 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
234 rw_enter(&dn->dn_struct_rwlock, RW_READER);
235 drop_struct_lock = TRUE;
236 }
237 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
238 int i;
239 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
240 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
241 if (dn->dn_datablkshift) {
242 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
243 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
244 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
245 }
246 ASSERT3U(dn->dn_nlevels, <=, 30);
247 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
248 ASSERT3U(dn->dn_nblkptr, >=, 1);
249 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
250 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
251 ASSERT3U(dn->dn_datablksz, ==,
252 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
253 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
254 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
255 dn->dn_bonuslen, <=, max_bonuslen);
256 for (i = 0; i < TXG_SIZE; i++) {
257 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
258 }
259 }
260 if (dn->dn_phys->dn_type != DMU_OT_NONE)
261 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
262 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
263 if (dn->dn_dbuf != NULL) {
264 ASSERT3P(dn->dn_phys, ==,
265 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
266 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
267 }
268 if (drop_struct_lock)
269 rw_exit(&dn->dn_struct_rwlock);
270 }
271 #endif
272
273 void
274 dnode_byteswap(dnode_phys_t *dnp)
275 {
276 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
277 int i;
278
279 if (dnp->dn_type == DMU_OT_NONE) {
280 bzero(dnp, sizeof (dnode_phys_t));
281 return;
282 }
283
284 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
285 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
286 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
287 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
288 dnp->dn_used = BSWAP_64(dnp->dn_used);
289
290 /*
291 * dn_nblkptr is only one byte, so it's OK to read it in either
292 * byte order. We can't read dn_bouslen.
293 */
294 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
295 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
296 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
297 buf64[i] = BSWAP_64(buf64[i]);
298
299 /*
300 * OK to check dn_bonuslen for zero, because it won't matter if
301 * we have the wrong byte order. This is necessary because the
302 * dnode dnode is smaller than a regular dnode.
303 */
304 if (dnp->dn_bonuslen != 0) {
305 /*
306 * Note that the bonus length calculated here may be
307 * longer than the actual bonus buffer. This is because
308 * we always put the bonus buffer after the last block
309 * pointer (instead of packing it against the end of the
310 * dnode buffer).
311 */
312 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
313 int slots = dnp->dn_extra_slots + 1;
314 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
315 dmu_object_byteswap_t byteswap;
316 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
317 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
318 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
319 }
320
321 /* Swap SPILL block if we have one */
322 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
323 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
324 }
325
326 void
327 dnode_buf_byteswap(void *vbuf, size_t size)
328 {
329 int i = 0;
330
331 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
332 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
333
334 while (i < size) {
335 dnode_phys_t *dnp = vbuf + i;
336 dnode_byteswap(dnp);
337
338 i += DNODE_MIN_SIZE;
339 if (dnp->dn_type != DMU_OT_NONE)
340 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
341 }
342 }
343
344 void
345 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
346 {
347 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
348
349 dnode_setdirty(dn, tx);
350 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
351 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
352 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
353 dn->dn_bonuslen = newsize;
354 if (newsize == 0)
355 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
356 else
357 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
358 rw_exit(&dn->dn_struct_rwlock);
359 }
360
361 void
362 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
363 {
364 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
365 dnode_setdirty(dn, tx);
366 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
367 dn->dn_bonustype = newtype;
368 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
369 rw_exit(&dn->dn_struct_rwlock);
370 }
371
372 void
373 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
374 {
375 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
376 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
377 dnode_setdirty(dn, tx);
378 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
379 dn->dn_have_spill = B_FALSE;
380 }
381
382 static void
383 dnode_setdblksz(dnode_t *dn, int size)
384 {
385 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
386 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
387 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
388 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
389 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
390 dn->dn_datablksz = size;
391 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
392 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
393 }
394
395 static dnode_t *
396 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
397 uint64_t object, dnode_handle_t *dnh)
398 {
399 dnode_t *dn;
400
401 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
402 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
403 dn->dn_moved = 0;
404
405 /*
406 * Defer setting dn_objset until the dnode is ready to be a candidate
407 * for the dnode_move() callback.
408 */
409 dn->dn_object = object;
410 dn->dn_dbuf = db;
411 dn->dn_handle = dnh;
412 dn->dn_phys = dnp;
413
414 if (dnp->dn_datablkszsec) {
415 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
416 } else {
417 dn->dn_datablksz = 0;
418 dn->dn_datablkszsec = 0;
419 dn->dn_datablkshift = 0;
420 }
421 dn->dn_indblkshift = dnp->dn_indblkshift;
422 dn->dn_nlevels = dnp->dn_nlevels;
423 dn->dn_type = dnp->dn_type;
424 dn->dn_nblkptr = dnp->dn_nblkptr;
425 dn->dn_checksum = dnp->dn_checksum;
426 dn->dn_compress = dnp->dn_compress;
427 dn->dn_bonustype = dnp->dn_bonustype;
428 dn->dn_bonuslen = dnp->dn_bonuslen;
429 dn->dn_num_slots = dnp->dn_extra_slots + 1;
430 dn->dn_maxblkid = dnp->dn_maxblkid;
431 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
432 dn->dn_id_flags = 0;
433
434 dmu_zfetch_init(&dn->dn_zfetch, dn);
435
436 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
437
438 mutex_enter(&os->os_lock);
439 if (dnh->dnh_dnode != NULL) {
440 /* Lost the allocation race. */
441 mutex_exit(&os->os_lock);
442 kmem_cache_free(dnode_cache, dn);
443 return (dnh->dnh_dnode);
444 }
445
446 /*
447 * Exclude special dnodes from os_dnodes so an empty os_dnodes
448 * signifies that the special dnodes have no references from
449 * their children (the entries in os_dnodes). This allows
450 * dnode_destroy() to easily determine if the last child has
451 * been removed and then complete eviction of the objset.
452 */
453 if (!DMU_OBJECT_IS_SPECIAL(object))
454 list_insert_head(&os->os_dnodes, dn);
455 membar_producer();
456
457 /*
458 * Everything else must be valid before assigning dn_objset
459 * makes the dnode eligible for dnode_move().
460 */
461 dn->dn_objset = os;
462
463 dnh->dnh_dnode = dn;
464 mutex_exit(&os->os_lock);
465
466 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
467 return (dn);
468 }
469
470 /*
471 * Caller must be holding the dnode handle, which is released upon return.
472 */
473 static void
474 dnode_destroy(dnode_t *dn)
475 {
476 objset_t *os = dn->dn_objset;
477 boolean_t complete_os_eviction = B_FALSE;
478
479 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
480
481 mutex_enter(&os->os_lock);
482 POINTER_INVALIDATE(&dn->dn_objset);
483 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
484 list_remove(&os->os_dnodes, dn);
485 complete_os_eviction =
486 list_is_empty(&os->os_dnodes) &&
487 list_link_active(&os->os_evicting_node);
488 }
489 mutex_exit(&os->os_lock);
490
491 /* the dnode can no longer move, so we can release the handle */
492 zrl_remove(&dn->dn_handle->dnh_zrlock);
493
494 dn->dn_allocated_txg = 0;
495 dn->dn_free_txg = 0;
496 dn->dn_assigned_txg = 0;
497
498 dn->dn_dirtyctx = 0;
499 if (dn->dn_dirtyctx_firstset != NULL) {
500 kmem_free(dn->dn_dirtyctx_firstset, 1);
501 dn->dn_dirtyctx_firstset = NULL;
502 }
503 if (dn->dn_bonus != NULL) {
504 mutex_enter(&dn->dn_bonus->db_mtx);
505 dbuf_destroy(dn->dn_bonus);
506 dn->dn_bonus = NULL;
507 }
508 dn->dn_zio = NULL;
509
510 dn->dn_have_spill = B_FALSE;
511 dn->dn_oldused = 0;
512 dn->dn_oldflags = 0;
513 dn->dn_olduid = 0;
514 dn->dn_oldgid = 0;
515 dn->dn_newuid = 0;
516 dn->dn_newgid = 0;
517 dn->dn_id_flags = 0;
518 dn->dn_unlisted_l0_blkid = 0;
519
520 dmu_zfetch_fini(&dn->dn_zfetch);
521 kmem_cache_free(dnode_cache, dn);
522 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
523
524 if (complete_os_eviction)
525 dmu_objset_evict_done(os);
526 }
527
528 void
529 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
530 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
531 {
532 int i;
533
534 ASSERT3U(dn_slots, >, 0);
535 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
536 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
537 ASSERT3U(blocksize, <=,
538 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
539 if (blocksize == 0)
540 blocksize = 1 << zfs_default_bs;
541 else
542 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
543
544 if (ibs == 0)
545 ibs = zfs_default_ibs;
546
547 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
548
549 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
550 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
551
552 ASSERT(dn->dn_type == DMU_OT_NONE);
553 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
554 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
555 ASSERT(ot != DMU_OT_NONE);
556 ASSERT(DMU_OT_IS_VALID(ot));
557 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
558 (bonustype == DMU_OT_SA && bonuslen == 0) ||
559 (bonustype != DMU_OT_NONE && bonuslen != 0));
560 ASSERT(DMU_OT_IS_VALID(bonustype));
561 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
562 ASSERT(dn->dn_type == DMU_OT_NONE);
563 ASSERT0(dn->dn_maxblkid);
564 ASSERT0(dn->dn_allocated_txg);
565 ASSERT0(dn->dn_assigned_txg);
566 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
567 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
568 ASSERT(avl_is_empty(&dn->dn_dbufs));
569
570 for (i = 0; i < TXG_SIZE; i++) {
571 ASSERT0(dn->dn_next_nblkptr[i]);
572 ASSERT0(dn->dn_next_nlevels[i]);
573 ASSERT0(dn->dn_next_indblkshift[i]);
574 ASSERT0(dn->dn_next_bonuslen[i]);
575 ASSERT0(dn->dn_next_bonustype[i]);
576 ASSERT0(dn->dn_rm_spillblk[i]);
577 ASSERT0(dn->dn_next_blksz[i]);
578 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
579 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
580 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
581 }
582
583 dn->dn_type = ot;
584 dnode_setdblksz(dn, blocksize);
585 dn->dn_indblkshift = ibs;
586 dn->dn_nlevels = 1;
587 dn->dn_num_slots = dn_slots;
588 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
589 dn->dn_nblkptr = 1;
590 else {
591 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
592 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
593 SPA_BLKPTRSHIFT));
594 }
595
596 dn->dn_bonustype = bonustype;
597 dn->dn_bonuslen = bonuslen;
598 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
599 dn->dn_compress = ZIO_COMPRESS_INHERIT;
600 dn->dn_dirtyctx = 0;
601
602 dn->dn_free_txg = 0;
603 if (dn->dn_dirtyctx_firstset) {
604 kmem_free(dn->dn_dirtyctx_firstset, 1);
605 dn->dn_dirtyctx_firstset = NULL;
606 }
607
608 dn->dn_allocated_txg = tx->tx_txg;
609 dn->dn_id_flags = 0;
610
611 dnode_setdirty(dn, tx);
612 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
613 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
614 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
615 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
616 }
617
618 void
619 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
620 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
621 {
622 int nblkptr;
623
624 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
625 ASSERT3U(blocksize, <=,
626 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
627 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
628 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
629 ASSERT(tx->tx_txg != 0);
630 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
631 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
632 (bonustype == DMU_OT_SA && bonuslen == 0));
633 ASSERT(DMU_OT_IS_VALID(bonustype));
634 ASSERT3U(bonuslen, <=,
635 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
636
637 dn_slots = dn_slots > 0 ? dn_slots : DNODE_MIN_SLOTS;
638
639 /* clean up any unreferenced dbufs */
640 dnode_evict_dbufs(dn);
641
642 dn->dn_id_flags = 0;
643
644 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
645 dnode_setdirty(dn, tx);
646 if (dn->dn_datablksz != blocksize) {
647 /* change blocksize */
648 ASSERT(dn->dn_maxblkid == 0 &&
649 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
650 dnode_block_freed(dn, 0)));
651 dnode_setdblksz(dn, blocksize);
652 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
653 }
654 if (dn->dn_bonuslen != bonuslen)
655 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
656
657 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
658 nblkptr = 1;
659 else
660 nblkptr = MIN(DN_MAX_NBLKPTR,
661 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
662 SPA_BLKPTRSHIFT));
663 if (dn->dn_bonustype != bonustype)
664 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
665 if (dn->dn_nblkptr != nblkptr)
666 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
667 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
668 dbuf_rm_spill(dn, tx);
669 dnode_rm_spill(dn, tx);
670 }
671 rw_exit(&dn->dn_struct_rwlock);
672
673 /* change type */
674 dn->dn_type = ot;
675
676 /* change bonus size and type */
677 mutex_enter(&dn->dn_mtx);
678 dn->dn_bonustype = bonustype;
679 dn->dn_bonuslen = bonuslen;
680 dn->dn_num_slots = dn_slots;
681 dn->dn_nblkptr = nblkptr;
682 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
683 dn->dn_compress = ZIO_COMPRESS_INHERIT;
684 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
685
686 /* fix up the bonus db_size */
687 if (dn->dn_bonus) {
688 dn->dn_bonus->db.db_size =
689 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
690 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
691 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
692 }
693
694 dn->dn_allocated_txg = tx->tx_txg;
695 mutex_exit(&dn->dn_mtx);
696 }
697
698 #ifdef _KERNEL
699 #ifdef DNODE_STATS
700 static struct {
701 uint64_t dms_dnode_invalid;
702 uint64_t dms_dnode_recheck1;
703 uint64_t dms_dnode_recheck2;
704 uint64_t dms_dnode_special;
705 uint64_t dms_dnode_handle;
706 uint64_t dms_dnode_rwlock;
707 uint64_t dms_dnode_active;
708 } dnode_move_stats;
709 #endif /* DNODE_STATS */
710
711 static void
712 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
713 {
714 int i;
715
716 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
717 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
718 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
719 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
720
721 /* Copy fields. */
722 ndn->dn_objset = odn->dn_objset;
723 ndn->dn_object = odn->dn_object;
724 ndn->dn_dbuf = odn->dn_dbuf;
725 ndn->dn_handle = odn->dn_handle;
726 ndn->dn_phys = odn->dn_phys;
727 ndn->dn_type = odn->dn_type;
728 ndn->dn_bonuslen = odn->dn_bonuslen;
729 ndn->dn_bonustype = odn->dn_bonustype;
730 ndn->dn_nblkptr = odn->dn_nblkptr;
731 ndn->dn_checksum = odn->dn_checksum;
732 ndn->dn_compress = odn->dn_compress;
733 ndn->dn_nlevels = odn->dn_nlevels;
734 ndn->dn_indblkshift = odn->dn_indblkshift;
735 ndn->dn_datablkshift = odn->dn_datablkshift;
736 ndn->dn_datablkszsec = odn->dn_datablkszsec;
737 ndn->dn_datablksz = odn->dn_datablksz;
738 ndn->dn_maxblkid = odn->dn_maxblkid;
739 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
740 sizeof (odn->dn_next_nblkptr));
741 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
742 sizeof (odn->dn_next_nlevels));
743 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
744 sizeof (odn->dn_next_indblkshift));
745 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
746 sizeof (odn->dn_next_bonustype));
747 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
748 sizeof (odn->dn_rm_spillblk));
749 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
750 sizeof (odn->dn_next_bonuslen));
751 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
752 sizeof (odn->dn_next_blksz));
753 for (i = 0; i < TXG_SIZE; i++) {
754 list_move_tail(&ndn->dn_dirty_records[i],
755 &odn->dn_dirty_records[i]);
756 }
757 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
758 sizeof (odn->dn_free_ranges));
759 ndn->dn_allocated_txg = odn->dn_allocated_txg;
760 ndn->dn_free_txg = odn->dn_free_txg;
761 ndn->dn_assigned_txg = odn->dn_assigned_txg;
762 ndn->dn_dirtyctx = odn->dn_dirtyctx;
763 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
764 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
765 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
766 ASSERT(avl_is_empty(&ndn->dn_dbufs));
767 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
768 ndn->dn_dbufs_count = odn->dn_dbufs_count;
769 ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
770 ndn->dn_bonus = odn->dn_bonus;
771 ndn->dn_have_spill = odn->dn_have_spill;
772 ndn->dn_zio = odn->dn_zio;
773 ndn->dn_oldused = odn->dn_oldused;
774 ndn->dn_oldflags = odn->dn_oldflags;
775 ndn->dn_olduid = odn->dn_olduid;
776 ndn->dn_oldgid = odn->dn_oldgid;
777 ndn->dn_newuid = odn->dn_newuid;
778 ndn->dn_newgid = odn->dn_newgid;
779 ndn->dn_id_flags = odn->dn_id_flags;
780 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
781 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
782 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
783
784 /*
785 * Update back pointers. Updating the handle fixes the back pointer of
786 * every descendant dbuf as well as the bonus dbuf.
787 */
788 ASSERT(ndn->dn_handle->dnh_dnode == odn);
789 ndn->dn_handle->dnh_dnode = ndn;
790 if (ndn->dn_zfetch.zf_dnode == odn) {
791 ndn->dn_zfetch.zf_dnode = ndn;
792 }
793
794 /*
795 * Invalidate the original dnode by clearing all of its back pointers.
796 */
797 odn->dn_dbuf = NULL;
798 odn->dn_handle = NULL;
799 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
800 offsetof(dmu_buf_impl_t, db_link));
801 odn->dn_dbufs_count = 0;
802 odn->dn_unlisted_l0_blkid = 0;
803 odn->dn_bonus = NULL;
804 odn->dn_zfetch.zf_dnode = NULL;
805
806 /*
807 * Set the low bit of the objset pointer to ensure that dnode_move()
808 * recognizes the dnode as invalid in any subsequent callback.
809 */
810 POINTER_INVALIDATE(&odn->dn_objset);
811
812 /*
813 * Satisfy the destructor.
814 */
815 for (i = 0; i < TXG_SIZE; i++) {
816 list_create(&odn->dn_dirty_records[i],
817 sizeof (dbuf_dirty_record_t),
818 offsetof(dbuf_dirty_record_t, dr_dirty_node));
819 odn->dn_free_ranges[i] = NULL;
820 odn->dn_next_nlevels[i] = 0;
821 odn->dn_next_indblkshift[i] = 0;
822 odn->dn_next_bonustype[i] = 0;
823 odn->dn_rm_spillblk[i] = 0;
824 odn->dn_next_bonuslen[i] = 0;
825 odn->dn_next_blksz[i] = 0;
826 }
827 odn->dn_allocated_txg = 0;
828 odn->dn_free_txg = 0;
829 odn->dn_assigned_txg = 0;
830 odn->dn_dirtyctx = 0;
831 odn->dn_dirtyctx_firstset = NULL;
832 odn->dn_have_spill = B_FALSE;
833 odn->dn_zio = NULL;
834 odn->dn_oldused = 0;
835 odn->dn_oldflags = 0;
836 odn->dn_olduid = 0;
837 odn->dn_oldgid = 0;
838 odn->dn_newuid = 0;
839 odn->dn_newgid = 0;
840 odn->dn_id_flags = 0;
841
842 /*
843 * Mark the dnode.
844 */
845 ndn->dn_moved = 1;
846 odn->dn_moved = (uint8_t)-1;
847 }
848
849 /*ARGSUSED*/
850 static kmem_cbrc_t
851 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
852 {
853 dnode_t *odn = buf, *ndn = newbuf;
854 objset_t *os;
855 int64_t refcount;
856 uint32_t dbufs;
857
858 /*
859 * The dnode is on the objset's list of known dnodes if the objset
860 * pointer is valid. We set the low bit of the objset pointer when
861 * freeing the dnode to invalidate it, and the memory patterns written
862 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
863 * A newly created dnode sets the objset pointer last of all to indicate
864 * that the dnode is known and in a valid state to be moved by this
865 * function.
866 */
867 os = odn->dn_objset;
868 if (!POINTER_IS_VALID(os)) {
869 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
870 return (KMEM_CBRC_DONT_KNOW);
871 }
872
873 /*
874 * Ensure that the objset does not go away during the move.
875 */
876 rw_enter(&os_lock, RW_WRITER);
877 if (os != odn->dn_objset) {
878 rw_exit(&os_lock);
879 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
880 return (KMEM_CBRC_DONT_KNOW);
881 }
882
883 /*
884 * If the dnode is still valid, then so is the objset. We know that no
885 * valid objset can be freed while we hold os_lock, so we can safely
886 * ensure that the objset remains in use.
887 */
888 mutex_enter(&os->os_lock);
889
890 /*
891 * Recheck the objset pointer in case the dnode was removed just before
892 * acquiring the lock.
893 */
894 if (os != odn->dn_objset) {
895 mutex_exit(&os->os_lock);
896 rw_exit(&os_lock);
897 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
898 return (KMEM_CBRC_DONT_KNOW);
899 }
900
901 /*
902 * At this point we know that as long as we hold os->os_lock, the dnode
903 * cannot be freed and fields within the dnode can be safely accessed.
904 * The objset listing this dnode cannot go away as long as this dnode is
905 * on its list.
906 */
907 rw_exit(&os_lock);
908 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
909 mutex_exit(&os->os_lock);
910 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
911 return (KMEM_CBRC_NO);
912 }
913 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
914
915 /*
916 * Lock the dnode handle to prevent the dnode from obtaining any new
917 * holds. This also prevents the descendant dbufs and the bonus dbuf
918 * from accessing the dnode, so that we can discount their holds. The
919 * handle is safe to access because we know that while the dnode cannot
920 * go away, neither can its handle. Once we hold dnh_zrlock, we can
921 * safely move any dnode referenced only by dbufs.
922 */
923 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
924 mutex_exit(&os->os_lock);
925 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
926 return (KMEM_CBRC_LATER);
927 }
928
929 /*
930 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
931 * We need to guarantee that there is a hold for every dbuf in order to
932 * determine whether the dnode is actively referenced. Falsely matching
933 * a dbuf to an active hold would lead to an unsafe move. It's possible
934 * that a thread already having an active dnode hold is about to add a
935 * dbuf, and we can't compare hold and dbuf counts while the add is in
936 * progress.
937 */
938 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
939 zrl_exit(&odn->dn_handle->dnh_zrlock);
940 mutex_exit(&os->os_lock);
941 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
942 return (KMEM_CBRC_LATER);
943 }
944
945 /*
946 * A dbuf may be removed (evicted) without an active dnode hold. In that
947 * case, the dbuf count is decremented under the handle lock before the
948 * dbuf's hold is released. This order ensures that if we count the hold
949 * after the dbuf is removed but before its hold is released, we will
950 * treat the unmatched hold as active and exit safely. If we count the
951 * hold before the dbuf is removed, the hold is discounted, and the
952 * removal is blocked until the move completes.
953 */
954 refcount = refcount_count(&odn->dn_holds);
955 ASSERT(refcount >= 0);
956 dbufs = odn->dn_dbufs_count;
957
958 /* We can't have more dbufs than dnode holds. */
959 ASSERT3U(dbufs, <=, refcount);
960 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
961 uint32_t, dbufs);
962
963 if (refcount > dbufs) {
964 rw_exit(&odn->dn_struct_rwlock);
965 zrl_exit(&odn->dn_handle->dnh_zrlock);
966 mutex_exit(&os->os_lock);
967 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
968 return (KMEM_CBRC_LATER);
969 }
970
971 rw_exit(&odn->dn_struct_rwlock);
972
973 /*
974 * At this point we know that anyone with a hold on the dnode is not
975 * actively referencing it. The dnode is known and in a valid state to
976 * move. We're holding the locks needed to execute the critical section.
977 */
978 dnode_move_impl(odn, ndn);
979
980 list_link_replace(&odn->dn_link, &ndn->dn_link);
981 /* If the dnode was safe to move, the refcount cannot have changed. */
982 ASSERT(refcount == refcount_count(&ndn->dn_holds));
983 ASSERT(dbufs == ndn->dn_dbufs_count);
984 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
985 mutex_exit(&os->os_lock);
986
987 return (KMEM_CBRC_YES);
988 }
989 #endif /* _KERNEL */
990
991 void
992 dnode_special_close(dnode_handle_t *dnh)
993 {
994 dnode_t *dn = dnh->dnh_dnode;
995
996 /*
997 * Wait for final references to the dnode to clear. This can
998 * only happen if the arc is asyncronously evicting state that
999 * has a hold on this dnode while we are trying to evict this
1000 * dnode.
1001 */
1002 while (refcount_count(&dn->dn_holds) > 0)
1003 delay(1);
1004 ASSERT(dn->dn_dbuf == NULL ||
1005 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1006 zrl_add(&dnh->dnh_zrlock);
1007 dnode_destroy(dn); /* implicit zrl_remove() */
1008 zrl_destroy(&dnh->dnh_zrlock);
1009 dnh->dnh_dnode = NULL;
1010 }
1011
1012 void
1013 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1014 dnode_handle_t *dnh)
1015 {
1016 dnode_t *dn;
1017
1018 dn = dnode_create(os, dnp, NULL, object, dnh);
1019 zrl_init(&dnh->dnh_zrlock);
1020 DNODE_VERIFY(dn);
1021 }
1022
1023 static void
1024 dnode_buf_pageout(void *dbu)
1025 {
1026 dnode_children_t *children_dnodes = dbu;
1027 int i;
1028
1029 for (i = 0; i < children_dnodes->dnc_count; i++) {
1030 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1031 dnode_t *dn;
1032
1033 /*
1034 * The dnode handle lock guards against the dnode moving to
1035 * another valid address, so there is no need here to guard
1036 * against changes to or from NULL.
1037 */
1038 if (dnh->dnh_dnode == NULL) {
1039 zrl_destroy(&dnh->dnh_zrlock);
1040 continue;
1041 }
1042
1043 zrl_add(&dnh->dnh_zrlock);
1044 dn = dnh->dnh_dnode;
1045 /*
1046 * If there are holds on this dnode, then there should
1047 * be holds on the dnode's containing dbuf as well; thus
1048 * it wouldn't be eligible for eviction and this function
1049 * would not have been called.
1050 */
1051 ASSERT(refcount_is_zero(&dn->dn_holds));
1052 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1053
1054 dnode_destroy(dn); /* implicit zrl_remove() */
1055 zrl_destroy(&dnh->dnh_zrlock);
1056 dnh->dnh_dnode = NULL;
1057 }
1058 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1059 children_dnodes->dnc_count * sizeof (dnode_handle_t));
1060 }
1061
1062 /*
1063 * Return true if the given index is interior to a dnode already
1064 * allocated in the block. That is, the index is neither free nor
1065 * allocated, but is consumed by a large dnode.
1066 *
1067 * The dnode_phys_t buffer may not be in sync with the in-core dnode
1068 * structure, so we try to check the dnode structure first and fall back
1069 * to the dnode_phys_t buffer it doesn't exist.
1070 */
1071 static boolean_t
1072 dnode_is_consumed(dmu_buf_impl_t *db, int idx)
1073 {
1074 dnode_handle_t *dnh;
1075 dmu_object_type_t ot;
1076 dnode_children_t *children_dnodes;
1077 dnode_phys_t *dn_block;
1078 int skip;
1079 int i;
1080
1081 children_dnodes = dmu_buf_get_user(&db->db);
1082 dn_block = (dnode_phys_t *)db->db.db_data;
1083
1084 for (i = 0; i < idx; i += skip) {
1085 dnh = &children_dnodes->dnc_children[i];
1086
1087 zrl_add(&dnh->dnh_zrlock);
1088 if (dnh->dnh_dnode != NULL) {
1089 ot = dnh->dnh_dnode->dn_type;
1090 skip = dnh->dnh_dnode->dn_num_slots;
1091 } else {
1092 ot = dn_block[i].dn_type;
1093 skip = dn_block[i].dn_extra_slots + 1;
1094 }
1095 zrl_remove(&dnh->dnh_zrlock);
1096
1097 if (ot == DMU_OT_NONE)
1098 skip = 1;
1099 }
1100
1101 return (i > idx);
1102 }
1103
1104 /*
1105 * Return true if the given index in the dnode block is a valid
1106 * allocated dnode. That is, the index is not consumed by a large
1107 * dnode and is not free.
1108 *
1109 * The dnode_phys_t buffer may not be in sync with the in-core dnode
1110 * structure, so we try to check the dnode structure first and fall back
1111 * to the dnode_phys_t buffer it doesn't exist.
1112 */
1113 static boolean_t
1114 dnode_is_allocated(dmu_buf_impl_t *db, int idx)
1115 {
1116 dnode_handle_t *dnh;
1117 dmu_object_type_t ot;
1118 dnode_children_t *children_dnodes;
1119 dnode_phys_t *dn_block;
1120
1121 if (dnode_is_consumed(db, idx))
1122 return (B_FALSE);
1123
1124 children_dnodes = dmu_buf_get_user(&db->db);
1125 dn_block = (dnode_phys_t *)db->db.db_data;
1126
1127 dnh = &children_dnodes->dnc_children[idx];
1128
1129 zrl_add(&dnh->dnh_zrlock);
1130 if (dnh->dnh_dnode != NULL)
1131 ot = dnh->dnh_dnode->dn_type;
1132 else
1133 ot = dn_block[idx].dn_type;
1134 zrl_remove(&dnh->dnh_zrlock);
1135
1136 return (ot != DMU_OT_NONE);
1137 }
1138
1139 /*
1140 * Return true if the given range of indices in the dnode block are
1141 * free. That is, the starting index is not consumed by a large dnode
1142 * and none of the indices are allocated.
1143 *
1144 * The dnode_phys_t buffer may not be in sync with the in-core dnode
1145 * structure, so we try to check the dnode structure first and fall back
1146 * to the dnode_phys_t buffer it doesn't exist.
1147 */
1148 static boolean_t
1149 dnode_is_free(dmu_buf_impl_t *db, int idx, int slots)
1150 {
1151 dnode_handle_t *dnh;
1152 dmu_object_type_t ot;
1153 dnode_children_t *children_dnodes;
1154 dnode_phys_t *dn_block;
1155 int i;
1156
1157 if (idx + slots > DNODES_PER_BLOCK)
1158 return (B_FALSE);
1159
1160 children_dnodes = dmu_buf_get_user(&db->db);
1161 dn_block = (dnode_phys_t *)db->db.db_data;
1162
1163 if (dnode_is_consumed(db, idx))
1164 return (B_FALSE);
1165
1166 for (i = idx; i < idx + slots; i++) {
1167 dnh = &children_dnodes->dnc_children[i];
1168
1169 zrl_add(&dnh->dnh_zrlock);
1170 if (dnh->dnh_dnode != NULL)
1171 ot = dnh->dnh_dnode->dn_type;
1172 else
1173 ot = dn_block[i].dn_type;
1174 zrl_remove(&dnh->dnh_zrlock);
1175
1176 if (ot != DMU_OT_NONE)
1177 return (B_FALSE);
1178 }
1179
1180 return (B_TRUE);
1181 }
1182
1183 /*
1184 * errors:
1185 * EINVAL - invalid object number.
1186 * ENOSPC - hole too small to fulfill "slots" request
1187 * EIO - i/o error.
1188 * succeeds even for free dnodes.
1189 */
1190 int
1191 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1192 void *tag, dnode_t **dnp)
1193 {
1194 int epb, idx, err, i;
1195 int drop_struct_lock = FALSE;
1196 int type;
1197 uint64_t blk;
1198 dnode_t *mdn, *dn;
1199 dmu_buf_impl_t *db;
1200 dnode_children_t *children_dnodes;
1201 dnode_phys_t *dn_block_begin;
1202 dnode_handle_t *dnh;
1203
1204 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1205 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1206
1207 /*
1208 * If you are holding the spa config lock as writer, you shouldn't
1209 * be asking the DMU to do *anything* unless it's the root pool
1210 * which may require us to read from the root filesystem while
1211 * holding some (not all) of the locks as writer.
1212 */
1213 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1214 (spa_is_root(os->os_spa) &&
1215 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1216
1217 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1218 dn = (object == DMU_USERUSED_OBJECT) ?
1219 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1220 if (dn == NULL)
1221 return (SET_ERROR(ENOENT));
1222 type = dn->dn_type;
1223 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1224 return (SET_ERROR(ENOENT));
1225 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1226 return (SET_ERROR(EEXIST));
1227 DNODE_VERIFY(dn);
1228 (void) refcount_add(&dn->dn_holds, tag);
1229 *dnp = dn;
1230 return (0);
1231 }
1232
1233 if (object == 0 || object >= DN_MAX_OBJECT)
1234 return (SET_ERROR(EINVAL));
1235
1236 mdn = DMU_META_DNODE(os);
1237 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1238
1239 DNODE_VERIFY(mdn);
1240
1241 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1242 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1243 drop_struct_lock = TRUE;
1244 }
1245
1246 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1247
1248 db = dbuf_hold(mdn, blk, FTAG);
1249 if (drop_struct_lock)
1250 rw_exit(&mdn->dn_struct_rwlock);
1251 if (db == NULL)
1252 return (SET_ERROR(EIO));
1253 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1254 if (err) {
1255 dbuf_rele(db, FTAG);
1256 return (err);
1257 }
1258
1259 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1260 epb = db->db.db_size >> DNODE_SHIFT;
1261
1262 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1263 children_dnodes = dmu_buf_get_user(&db->db);
1264 if (children_dnodes == NULL) {
1265 dnode_children_t *winner;
1266 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1267 epb * sizeof (dnode_handle_t), KM_SLEEP);
1268 children_dnodes->dnc_count = epb;
1269 dnh = &children_dnodes->dnc_children[0];
1270 for (i = 0; i < epb; i++) {
1271 zrl_init(&dnh[i].dnh_zrlock);
1272 }
1273 dmu_buf_init_user(&children_dnodes->dnc_dbu,
1274 dnode_buf_pageout, NULL);
1275 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1276 if (winner != NULL) {
1277
1278 for (i = 0; i < epb; i++) {
1279 zrl_destroy(&dnh[i].dnh_zrlock);
1280 }
1281
1282 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1283 epb * sizeof (dnode_handle_t));
1284 children_dnodes = winner;
1285 }
1286 }
1287 ASSERT(children_dnodes->dnc_count == epb);
1288
1289 idx = object & (epb - 1);
1290 dn_block_begin = (dnode_phys_t *)db->db.db_data;
1291
1292 if ((flag & DNODE_MUST_BE_FREE) && !dnode_is_free(db, idx, slots)) {
1293 dbuf_rele(db, FTAG);
1294 return (ENOSPC);
1295 } else if ((flag & DNODE_MUST_BE_ALLOCATED) &&
1296 !dnode_is_allocated(db, idx)) {
1297 dbuf_rele(db, FTAG);
1298 return (ENOENT);
1299 }
1300
1301 dnh = &children_dnodes->dnc_children[idx];
1302 zrl_add(&dnh->dnh_zrlock);
1303 dn = dnh->dnh_dnode;
1304 if (dn == NULL)
1305 dn = dnode_create(os, dn_block_begin + idx, db, object, dnh);
1306
1307 mutex_enter(&dn->dn_mtx);
1308 type = dn->dn_type;
1309 if (dn->dn_free_txg ||
1310 ((flag & DNODE_MUST_BE_FREE) && !refcount_is_zero(&dn->dn_holds))) {
1311 mutex_exit(&dn->dn_mtx);
1312 zrl_remove(&dnh->dnh_zrlock);
1313 dbuf_rele(db, FTAG);
1314 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1315 }
1316 if (refcount_add(&dn->dn_holds, tag) == 1)
1317 dbuf_add_ref(db, dnh);
1318 mutex_exit(&dn->dn_mtx);
1319
1320 /* Now we can rely on the hold to prevent the dnode from moving. */
1321 zrl_remove(&dnh->dnh_zrlock);
1322
1323 DNODE_VERIFY(dn);
1324 ASSERT3P(dn->dn_dbuf, ==, db);
1325 ASSERT3U(dn->dn_object, ==, object);
1326 dbuf_rele(db, FTAG);
1327
1328 *dnp = dn;
1329 return (0);
1330 }
1331
1332 /*
1333 * Return held dnode if the object is allocated, NULL if not.
1334 */
1335 int
1336 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1337 {
1338 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1339 dnp));
1340 }
1341
1342 /*
1343 * Can only add a reference if there is already at least one
1344 * reference on the dnode. Returns FALSE if unable to add a
1345 * new reference.
1346 */
1347 boolean_t
1348 dnode_add_ref(dnode_t *dn, void *tag)
1349 {
1350 mutex_enter(&dn->dn_mtx);
1351 if (refcount_is_zero(&dn->dn_holds)) {
1352 mutex_exit(&dn->dn_mtx);
1353 return (FALSE);
1354 }
1355 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1356 mutex_exit(&dn->dn_mtx);
1357 return (TRUE);
1358 }
1359
1360 void
1361 dnode_rele(dnode_t *dn, void *tag)
1362 {
1363 mutex_enter(&dn->dn_mtx);
1364 dnode_rele_and_unlock(dn, tag);
1365 }
1366
1367 void
1368 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1369 {
1370 uint64_t refs;
1371 /* Get while the hold prevents the dnode from moving. */
1372 dmu_buf_impl_t *db = dn->dn_dbuf;
1373 dnode_handle_t *dnh = dn->dn_handle;
1374
1375 refs = refcount_remove(&dn->dn_holds, tag);
1376 mutex_exit(&dn->dn_mtx);
1377
1378 /*
1379 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1380 * indirectly by dbuf_rele() while relying on the dnode handle to
1381 * prevent the dnode from moving, since releasing the last hold could
1382 * result in the dnode's parent dbuf evicting its dnode handles. For
1383 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1384 * other direct or indirect hold on the dnode must first drop the dnode
1385 * handle.
1386 */
1387 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1388
1389 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1390 if (refs == 0 && db != NULL) {
1391 /*
1392 * Another thread could add a hold to the dnode handle in
1393 * dnode_hold_impl() while holding the parent dbuf. Since the
1394 * hold on the parent dbuf prevents the handle from being
1395 * destroyed, the hold on the handle is OK. We can't yet assert
1396 * that the handle has zero references, but that will be
1397 * asserted anyway when the handle gets destroyed.
1398 */
1399 dbuf_rele(db, dnh);
1400 }
1401 }
1402
1403 void
1404 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1405 {
1406 objset_t *os = dn->dn_objset;
1407 uint64_t txg = tx->tx_txg;
1408
1409 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1410 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1411 return;
1412 }
1413
1414 DNODE_VERIFY(dn);
1415
1416 #ifdef ZFS_DEBUG
1417 mutex_enter(&dn->dn_mtx);
1418 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1419 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1420 mutex_exit(&dn->dn_mtx);
1421 #endif
1422
1423 /*
1424 * Determine old uid/gid when necessary
1425 */
1426 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1427
1428 mutex_enter(&os->os_lock);
1429
1430 /*
1431 * If we are already marked dirty, we're done.
1432 */
1433 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1434 mutex_exit(&os->os_lock);
1435 return;
1436 }
1437
1438 ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1439 !avl_is_empty(&dn->dn_dbufs));
1440 ASSERT(dn->dn_datablksz != 0);
1441 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1442 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1443 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1444
1445 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1446 dn->dn_object, txg);
1447
1448 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1449 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1450 } else {
1451 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1452 }
1453
1454 mutex_exit(&os->os_lock);
1455
1456 /*
1457 * The dnode maintains a hold on its containing dbuf as
1458 * long as there are holds on it. Each instantiated child
1459 * dbuf maintains a hold on the dnode. When the last child
1460 * drops its hold, the dnode will drop its hold on the
1461 * containing dbuf. We add a "dirty hold" here so that the
1462 * dnode will hang around after we finish processing its
1463 * children.
1464 */
1465 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1466
1467 (void) dbuf_dirty(dn->dn_dbuf, tx);
1468
1469 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1470 }
1471
1472 void
1473 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1474 {
1475 int txgoff = tx->tx_txg & TXG_MASK;
1476
1477 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1478
1479 /* we should be the only holder... hopefully */
1480 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1481
1482 mutex_enter(&dn->dn_mtx);
1483 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1484 mutex_exit(&dn->dn_mtx);
1485 return;
1486 }
1487 dn->dn_free_txg = tx->tx_txg;
1488 mutex_exit(&dn->dn_mtx);
1489
1490 /*
1491 * If the dnode is already dirty, it needs to be moved from
1492 * the dirty list to the free list.
1493 */
1494 mutex_enter(&dn->dn_objset->os_lock);
1495 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1496 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1497 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1498 mutex_exit(&dn->dn_objset->os_lock);
1499 } else {
1500 mutex_exit(&dn->dn_objset->os_lock);
1501 dnode_setdirty(dn, tx);
1502 }
1503 }
1504
1505 /*
1506 * Try to change the block size for the indicated dnode. This can only
1507 * succeed if there are no blocks allocated or dirty beyond first block
1508 */
1509 int
1510 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1511 {
1512 dmu_buf_impl_t *db;
1513 int err;
1514
1515 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1516 if (size == 0)
1517 size = SPA_MINBLOCKSIZE;
1518 else
1519 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1520
1521 if (ibs == dn->dn_indblkshift)
1522 ibs = 0;
1523
1524 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1525 return (0);
1526
1527 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1528
1529 /* Check for any allocated blocks beyond the first */
1530 if (dn->dn_maxblkid != 0)
1531 goto fail;
1532
1533 mutex_enter(&dn->dn_dbufs_mtx);
1534 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1535 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1536 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1537 db->db_blkid != DMU_SPILL_BLKID) {
1538 mutex_exit(&dn->dn_dbufs_mtx);
1539 goto fail;
1540 }
1541 }
1542 mutex_exit(&dn->dn_dbufs_mtx);
1543
1544 if (ibs && dn->dn_nlevels != 1)
1545 goto fail;
1546
1547 /* resize the old block */
1548 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1549 if (err == 0)
1550 dbuf_new_size(db, size, tx);
1551 else if (err != ENOENT)
1552 goto fail;
1553
1554 dnode_setdblksz(dn, size);
1555 dnode_setdirty(dn, tx);
1556 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1557 if (ibs) {
1558 dn->dn_indblkshift = ibs;
1559 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1560 }
1561 /* rele after we have fixed the blocksize in the dnode */
1562 if (db)
1563 dbuf_rele(db, FTAG);
1564
1565 rw_exit(&dn->dn_struct_rwlock);
1566 return (0);
1567
1568 fail:
1569 rw_exit(&dn->dn_struct_rwlock);
1570 return (SET_ERROR(ENOTSUP));
1571 }
1572
1573 /* read-holding callers must not rely on the lock being continuously held */
1574 void
1575 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1576 {
1577 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1578 int epbs, new_nlevels;
1579 uint64_t sz;
1580
1581 ASSERT(blkid != DMU_BONUS_BLKID);
1582
1583 ASSERT(have_read ?
1584 RW_READ_HELD(&dn->dn_struct_rwlock) :
1585 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1586
1587 /*
1588 * if we have a read-lock, check to see if we need to do any work
1589 * before upgrading to a write-lock.
1590 */
1591 if (have_read) {
1592 if (blkid <= dn->dn_maxblkid)
1593 return;
1594
1595 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1596 rw_exit(&dn->dn_struct_rwlock);
1597 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1598 }
1599 }
1600
1601 if (blkid <= dn->dn_maxblkid)
1602 goto out;
1603
1604 dn->dn_maxblkid = blkid;
1605
1606 /*
1607 * Compute the number of levels necessary to support the new maxblkid.
1608 */
1609 new_nlevels = 1;
1610 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1611 for (sz = dn->dn_nblkptr;
1612 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1613 new_nlevels++;
1614
1615 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1616
1617 if (new_nlevels > dn->dn_nlevels) {
1618 int old_nlevels = dn->dn_nlevels;
1619 dmu_buf_impl_t *db;
1620 list_t *list;
1621 dbuf_dirty_record_t *new, *dr, *dr_next;
1622
1623 dn->dn_nlevels = new_nlevels;
1624
1625 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1626 dn->dn_next_nlevels[txgoff] = new_nlevels;
1627
1628 /* dirty the left indirects */
1629 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1630 ASSERT(db != NULL);
1631 new = dbuf_dirty(db, tx);
1632 dbuf_rele(db, FTAG);
1633
1634 /* transfer the dirty records to the new indirect */
1635 mutex_enter(&dn->dn_mtx);
1636 mutex_enter(&new->dt.di.dr_mtx);
1637 list = &dn->dn_dirty_records[txgoff];
1638 for (dr = list_head(list); dr; dr = dr_next) {
1639 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1640 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1641 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1642 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1643 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1644 list_remove(&dn->dn_dirty_records[txgoff], dr);
1645 list_insert_tail(&new->dt.di.dr_children, dr);
1646 dr->dr_parent = new;
1647 }
1648 }
1649 mutex_exit(&new->dt.di.dr_mtx);
1650 mutex_exit(&dn->dn_mtx);
1651 }
1652
1653 out:
1654 if (have_read)
1655 rw_downgrade(&dn->dn_struct_rwlock);
1656 }
1657
1658 static void
1659 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1660 {
1661 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1662 if (db != NULL) {
1663 dmu_buf_will_dirty(&db->db, tx);
1664 dbuf_rele(db, FTAG);
1665 }
1666 }
1667
1668 void
1669 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1670 {
1671 dmu_buf_impl_t *db;
1672 uint64_t blkoff, blkid, nblks;
1673 int blksz, blkshift, head, tail;
1674 int trunc = FALSE;
1675 int epbs;
1676
1677 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1678 blksz = dn->dn_datablksz;
1679 blkshift = dn->dn_datablkshift;
1680 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1681
1682 if (len == DMU_OBJECT_END) {
1683 len = UINT64_MAX - off;
1684 trunc = TRUE;
1685 }
1686
1687 /*
1688 * First, block align the region to free:
1689 */
1690 if (ISP2(blksz)) {
1691 head = P2NPHASE(off, blksz);
1692 blkoff = P2PHASE(off, blksz);
1693 if ((off >> blkshift) > dn->dn_maxblkid)
1694 goto out;
1695 } else {
1696 ASSERT(dn->dn_maxblkid == 0);
1697 if (off == 0 && len >= blksz) {
1698 /*
1699 * Freeing the whole block; fast-track this request.
1700 * Note that we won't dirty any indirect blocks,
1701 * which is fine because we will be freeing the entire
1702 * file and thus all indirect blocks will be freed
1703 * by free_children().
1704 */
1705 blkid = 0;
1706 nblks = 1;
1707 goto done;
1708 } else if (off >= blksz) {
1709 /* Freeing past end-of-data */
1710 goto out;
1711 } else {
1712 /* Freeing part of the block. */
1713 head = blksz - off;
1714 ASSERT3U(head, >, 0);
1715 }
1716 blkoff = off;
1717 }
1718 /* zero out any partial block data at the start of the range */
1719 if (head) {
1720 ASSERT3U(blkoff + head, ==, blksz);
1721 if (len < head)
1722 head = len;
1723 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1724 TRUE, FALSE, FTAG, &db) == 0) {
1725 caddr_t data;
1726
1727 /* don't dirty if it isn't on disk and isn't dirty */
1728 if (db->db_last_dirty ||
1729 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1730 rw_exit(&dn->dn_struct_rwlock);
1731 dmu_buf_will_dirty(&db->db, tx);
1732 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1733 data = db->db.db_data;
1734 bzero(data + blkoff, head);
1735 }
1736 dbuf_rele(db, FTAG);
1737 }
1738 off += head;
1739 len -= head;
1740 }
1741
1742 /* If the range was less than one block, we're done */
1743 if (len == 0)
1744 goto out;
1745
1746 /* If the remaining range is past end of file, we're done */
1747 if ((off >> blkshift) > dn->dn_maxblkid)
1748 goto out;
1749
1750 ASSERT(ISP2(blksz));
1751 if (trunc)
1752 tail = 0;
1753 else
1754 tail = P2PHASE(len, blksz);
1755
1756 ASSERT0(P2PHASE(off, blksz));
1757 /* zero out any partial block data at the end of the range */
1758 if (tail) {
1759 if (len < tail)
1760 tail = len;
1761 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1762 TRUE, FALSE, FTAG, &db) == 0) {
1763 /* don't dirty if not on disk and not dirty */
1764 if (db->db_last_dirty ||
1765 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1766 rw_exit(&dn->dn_struct_rwlock);
1767 dmu_buf_will_dirty(&db->db, tx);
1768 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1769 bzero(db->db.db_data, tail);
1770 }
1771 dbuf_rele(db, FTAG);
1772 }
1773 len -= tail;
1774 }
1775
1776 /* If the range did not include a full block, we are done */
1777 if (len == 0)
1778 goto out;
1779
1780 ASSERT(IS_P2ALIGNED(off, blksz));
1781 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1782 blkid = off >> blkshift;
1783 nblks = len >> blkshift;
1784 if (trunc)
1785 nblks += 1;
1786
1787 /*
1788 * Dirty all the indirect blocks in this range. Note that only
1789 * the first and last indirect blocks can actually be written
1790 * (if they were partially freed) -- they must be dirtied, even if
1791 * they do not exist on disk yet. The interior blocks will
1792 * be freed by free_children(), so they will not actually be written.
1793 * Even though these interior blocks will not be written, we
1794 * dirty them for two reasons:
1795 *
1796 * - It ensures that the indirect blocks remain in memory until
1797 * syncing context. (They have already been prefetched by
1798 * dmu_tx_hold_free(), so we don't have to worry about reading
1799 * them serially here.)
1800 *
1801 * - The dirty space accounting will put pressure on the txg sync
1802 * mechanism to begin syncing, and to delay transactions if there
1803 * is a large amount of freeing. Even though these indirect
1804 * blocks will not be written, we could need to write the same
1805 * amount of space if we copy the freed BPs into deadlists.
1806 */
1807 if (dn->dn_nlevels > 1) {
1808 uint64_t first, last, i, ibyte;
1809 int shift, err;
1810
1811 first = blkid >> epbs;
1812 dnode_dirty_l1(dn, first, tx);
1813 if (trunc)
1814 last = dn->dn_maxblkid >> epbs;
1815 else
1816 last = (blkid + nblks - 1) >> epbs;
1817 if (last != first)
1818 dnode_dirty_l1(dn, last, tx);
1819
1820 shift = dn->dn_datablkshift + dn->dn_indblkshift -
1821 SPA_BLKPTRSHIFT;
1822 for (i = first + 1; i < last; i++) {
1823 /*
1824 * Set i to the blockid of the next non-hole
1825 * level-1 indirect block at or after i. Note
1826 * that dnode_next_offset() operates in terms of
1827 * level-0-equivalent bytes.
1828 */
1829 ibyte = i << shift;
1830 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1831 &ibyte, 2, 1, 0);
1832 i = ibyte >> shift;
1833 if (i >= last)
1834 break;
1835
1836 /*
1837 * Normally we should not see an error, either
1838 * from dnode_next_offset() or dbuf_hold_level()
1839 * (except for ESRCH from dnode_next_offset).
1840 * If there is an i/o error, then when we read
1841 * this block in syncing context, it will use
1842 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1843 * to the "failmode" property. dnode_next_offset()
1844 * doesn't have a flag to indicate MUSTSUCCEED.
1845 */
1846 if (err != 0)
1847 break;
1848
1849 dnode_dirty_l1(dn, i, tx);
1850 }
1851 }
1852
1853 done:
1854 /*
1855 * Add this range to the dnode range list.
1856 * We will finish up this free operation in the syncing phase.
1857 */
1858 mutex_enter(&dn->dn_mtx);
1859 {
1860 int txgoff = tx->tx_txg & TXG_MASK;
1861 if (dn->dn_free_ranges[txgoff] == NULL) {
1862 dn->dn_free_ranges[txgoff] =
1863 range_tree_create(NULL, NULL, &dn->dn_mtx);
1864 }
1865 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1866 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1867 }
1868 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1869 blkid, nblks, tx->tx_txg);
1870 mutex_exit(&dn->dn_mtx);
1871
1872 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1873 dnode_setdirty(dn, tx);
1874 out:
1875
1876 rw_exit(&dn->dn_struct_rwlock);
1877 }
1878
1879 static boolean_t
1880 dnode_spill_freed(dnode_t *dn)
1881 {
1882 int i;
1883
1884 mutex_enter(&dn->dn_mtx);
1885 for (i = 0; i < TXG_SIZE; i++) {
1886 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1887 break;
1888 }
1889 mutex_exit(&dn->dn_mtx);
1890 return (i < TXG_SIZE);
1891 }
1892
1893 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1894 uint64_t
1895 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1896 {
1897 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1898 int i;
1899
1900 if (blkid == DMU_BONUS_BLKID)
1901 return (FALSE);
1902
1903 /*
1904 * If we're in the process of opening the pool, dp will not be
1905 * set yet, but there shouldn't be anything dirty.
1906 */
1907 if (dp == NULL)
1908 return (FALSE);
1909
1910 if (dn->dn_free_txg)
1911 return (TRUE);
1912
1913 if (blkid == DMU_SPILL_BLKID)
1914 return (dnode_spill_freed(dn));
1915
1916 mutex_enter(&dn->dn_mtx);
1917 for (i = 0; i < TXG_SIZE; i++) {
1918 if (dn->dn_free_ranges[i] != NULL &&
1919 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1920 break;
1921 }
1922 mutex_exit(&dn->dn_mtx);
1923 return (i < TXG_SIZE);
1924 }
1925
1926 /* call from syncing context when we actually write/free space for this dnode */
1927 void
1928 dnode_diduse_space(dnode_t *dn, int64_t delta)
1929 {
1930 uint64_t space;
1931 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1932 dn, dn->dn_phys,
1933 (u_longlong_t)dn->dn_phys->dn_used,
1934 (longlong_t)delta);
1935
1936 mutex_enter(&dn->dn_mtx);
1937 space = DN_USED_BYTES(dn->dn_phys);
1938 if (delta > 0) {
1939 ASSERT3U(space + delta, >=, space); /* no overflow */
1940 } else {
1941 ASSERT3U(space, >=, -delta); /* no underflow */
1942 }
1943 space += delta;
1944 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1945 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1946 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1947 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1948 } else {
1949 dn->dn_phys->dn_used = space;
1950 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1951 }
1952 mutex_exit(&dn->dn_mtx);
1953 }
1954
1955 /*
1956 * Call when we think we're going to write/free space in open context to track
1957 * the amount of memory in use by the currently open txg.
1958 */
1959 void
1960 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1961 {
1962 objset_t *os = dn->dn_objset;
1963 dsl_dataset_t *ds = os->os_dsl_dataset;
1964 int64_t aspace = spa_get_asize(os->os_spa, space);
1965
1966 if (ds != NULL) {
1967 dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1968 dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1969 }
1970
1971 dmu_tx_willuse_space(tx, aspace);
1972 }
1973
1974 /*
1975 * Scans a block at the indicated "level" looking for a hole or data,
1976 * depending on 'flags'.
1977 *
1978 * If level > 0, then we are scanning an indirect block looking at its
1979 * pointers. If level == 0, then we are looking at a block of dnodes.
1980 *
1981 * If we don't find what we are looking for in the block, we return ESRCH.
1982 * Otherwise, return with *offset pointing to the beginning (if searching
1983 * forwards) or end (if searching backwards) of the range covered by the
1984 * block pointer we matched on (or dnode).
1985 *
1986 * The basic search algorithm used below by dnode_next_offset() is to
1987 * use this function to search up the block tree (widen the search) until
1988 * we find something (i.e., we don't return ESRCH) and then search back
1989 * down the tree (narrow the search) until we reach our original search
1990 * level.
1991 */
1992 static int
1993 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1994 int lvl, uint64_t blkfill, uint64_t txg)
1995 {
1996 dmu_buf_impl_t *db = NULL;
1997 void *data = NULL;
1998 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1999 uint64_t epb = 1ULL << epbs;
2000 uint64_t minfill, maxfill;
2001 boolean_t hole;
2002 int i, inc, error, span;
2003
2004 hole = ((flags & DNODE_FIND_HOLE) != 0);
2005 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2006 ASSERT(txg == 0 || !hole);
2007
2008 if (lvl == dn->dn_phys->dn_nlevels) {
2009 error = 0;
2010 epb = dn->dn_phys->dn_nblkptr;
2011 data = dn->dn_phys->dn_blkptr;
2012 } else {
2013 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2014 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2015 if (error) {
2016 if (error != ENOENT)
2017 return (error);
2018 if (hole)
2019 return (0);
2020 /*
2021 * This can only happen when we are searching up
2022 * the block tree for data. We don't really need to
2023 * adjust the offset, as we will just end up looking
2024 * at the pointer to this block in its parent, and its
2025 * going to be unallocated, so we will skip over it.
2026 */
2027 return (SET_ERROR(ESRCH));
2028 }
2029 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
2030 if (error) {
2031 dbuf_rele(db, FTAG);
2032 return (error);
2033 }
2034 data = db->db.db_data;
2035 }
2036
2037
2038 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2039 db->db_blkptr->blk_birth <= txg ||
2040 BP_IS_HOLE(db->db_blkptr))) {
2041 /*
2042 * This can only happen when we are searching up the tree
2043 * and these conditions mean that we need to keep climbing.
2044 */
2045 error = SET_ERROR(ESRCH);
2046 } else if (lvl == 0) {
2047 dnode_phys_t *dnp = data;
2048
2049 ASSERT(dn->dn_type == DMU_OT_DNODE);
2050 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2051
2052 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2053 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2054 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2055 break;
2056 }
2057
2058 if (i == blkfill)
2059 error = SET_ERROR(ESRCH);
2060
2061 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2062 (i << DNODE_SHIFT);
2063 } else {
2064 blkptr_t *bp = data;
2065 uint64_t start = *offset;
2066 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2067 minfill = 0;
2068 maxfill = blkfill << ((lvl - 1) * epbs);
2069
2070 if (hole)
2071 maxfill--;
2072 else
2073 minfill++;
2074
2075 if (span >= 8 * sizeof (*offset)) {
2076 /* This only happens on the highest indirection level */
2077 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2078 *offset = 0;
2079 } else {
2080 *offset = *offset >> span;
2081 }
2082
2083 for (i = BF64_GET(*offset, 0, epbs);
2084 i >= 0 && i < epb; i += inc) {
2085 if (BP_GET_FILL(&bp[i]) >= minfill &&
2086 BP_GET_FILL(&bp[i]) <= maxfill &&
2087 (hole || bp[i].blk_birth > txg))
2088 break;
2089 if (inc > 0 || *offset > 0)
2090 *offset += inc;
2091 }
2092
2093 if (span >= 8 * sizeof (*offset)) {
2094 *offset = start;
2095 } else {
2096 *offset = *offset << span;
2097 }
2098
2099 if (inc < 0) {
2100 /* traversing backwards; position offset at the end */
2101 ASSERT3U(*offset, <=, start);
2102 *offset = MIN(*offset + (1ULL << span) - 1, start);
2103 } else if (*offset < start) {
2104 *offset = start;
2105 }
2106 if (i < 0 || i >= epb)
2107 error = SET_ERROR(ESRCH);
2108 }
2109
2110 if (db)
2111 dbuf_rele(db, FTAG);
2112
2113 return (error);
2114 }
2115
2116 /*
2117 * Find the next hole, data, or sparse region at or after *offset.
2118 * The value 'blkfill' tells us how many items we expect to find
2119 * in an L0 data block; this value is 1 for normal objects,
2120 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2121 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2122 *
2123 * Examples:
2124 *
2125 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2126 * Finds the next/previous hole/data in a file.
2127 * Used in dmu_offset_next().
2128 *
2129 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2130 * Finds the next free/allocated dnode an objset's meta-dnode.
2131 * Only finds objects that have new contents since txg (ie.
2132 * bonus buffer changes and content removal are ignored).
2133 * Used in dmu_object_next().
2134 *
2135 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2136 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2137 * Used in dmu_object_alloc().
2138 */
2139 int
2140 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2141 int minlvl, uint64_t blkfill, uint64_t txg)
2142 {
2143 uint64_t initial_offset = *offset;
2144 int lvl, maxlvl;
2145 int error = 0;
2146
2147 if (!(flags & DNODE_FIND_HAVELOCK))
2148 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2149
2150 if (dn->dn_phys->dn_nlevels == 0) {
2151 error = SET_ERROR(ESRCH);
2152 goto out;
2153 }
2154
2155 if (dn->dn_datablkshift == 0) {
2156 if (*offset < dn->dn_datablksz) {
2157 if (flags & DNODE_FIND_HOLE)
2158 *offset = dn->dn_datablksz;
2159 } else {
2160 error = SET_ERROR(ESRCH);
2161 }
2162 goto out;
2163 }
2164
2165 maxlvl = dn->dn_phys->dn_nlevels;
2166
2167 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2168 error = dnode_next_offset_level(dn,
2169 flags, offset, lvl, blkfill, txg);
2170 if (error != ESRCH)
2171 break;
2172 }
2173
2174 while (error == 0 && --lvl >= minlvl) {
2175 error = dnode_next_offset_level(dn,
2176 flags, offset, lvl, blkfill, txg);
2177 }
2178
2179 /*
2180 * There's always a "virtual hole" at the end of the object, even
2181 * if all BP's which physically exist are non-holes.
2182 */
2183 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2184 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2185 error = 0;
2186 }
2187
2188 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2189 initial_offset < *offset : initial_offset > *offset))
2190 error = SET_ERROR(ESRCH);
2191 out:
2192 if (!(flags & DNODE_FIND_HAVELOCK))
2193 rw_exit(&dn->dn_struct_rwlock);
2194
2195 return (error);
2196 }