]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Revert "Fix issues with truncated files in raw sends"
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_dnode.h>
41 #include <sys/zfs_project.h>
42
43 dnode_stats_t dnode_stats = {
44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
58 { "dnode_hold_free_txg", KSTAT_DATA_UINT64 },
59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
60 { "dnode_allocate", KSTAT_DATA_UINT64 },
61 { "dnode_reallocate", KSTAT_DATA_UINT64 },
62 { "dnode_buf_evict", KSTAT_DATA_UINT64 },
63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
64 { "dnode_alloc_race", KSTAT_DATA_UINT64 },
65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
66 { "dnode_move_invalid", KSTAT_DATA_UINT64 },
67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 },
68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 },
69 { "dnode_move_special", KSTAT_DATA_UINT64 },
70 { "dnode_move_handle", KSTAT_DATA_UINT64 },
71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 },
72 { "dnode_move_active", KSTAT_DATA_UINT64 },
73 };
74
75 static kstat_t *dnode_ksp;
76 static kmem_cache_t *dnode_cache;
77
78 ASSERTV(static dnode_phys_t dnode_phys_zero);
79
80 int zfs_default_bs = SPA_MINBLOCKSHIFT;
81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
82
83 #ifdef _KERNEL
84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
85 #endif /* _KERNEL */
86
87 static int
88 dbuf_compare(const void *x1, const void *x2)
89 {
90 const dmu_buf_impl_t *d1 = x1;
91 const dmu_buf_impl_t *d2 = x2;
92
93 int cmp = AVL_CMP(d1->db_level, d2->db_level);
94 if (likely(cmp))
95 return (cmp);
96
97 cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
98 if (likely(cmp))
99 return (cmp);
100
101 if (d1->db_state == DB_SEARCH) {
102 ASSERT3S(d2->db_state, !=, DB_SEARCH);
103 return (-1);
104 } else if (d2->db_state == DB_SEARCH) {
105 ASSERT3S(d1->db_state, !=, DB_SEARCH);
106 return (1);
107 }
108
109 return (AVL_PCMP(d1, d2));
110 }
111
112 /* ARGSUSED */
113 static int
114 dnode_cons(void *arg, void *unused, int kmflag)
115 {
116 dnode_t *dn = arg;
117 int i;
118
119 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
123
124 /*
125 * Every dbuf has a reference, and dropping a tracked reference is
126 * O(number of references), so don't track dn_holds.
127 */
128 zfs_refcount_create_untracked(&dn->dn_holds);
129 zfs_refcount_create(&dn->dn_tx_holds);
130 list_link_init(&dn->dn_link);
131
132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
140
141 for (i = 0; i < TXG_SIZE; i++) {
142 multilist_link_init(&dn->dn_dirty_link[i]);
143 dn->dn_free_ranges[i] = NULL;
144 list_create(&dn->dn_dirty_records[i],
145 sizeof (dbuf_dirty_record_t),
146 offsetof(dbuf_dirty_record_t, dr_dirty_node));
147 }
148
149 dn->dn_allocated_txg = 0;
150 dn->dn_free_txg = 0;
151 dn->dn_assigned_txg = 0;
152 dn->dn_dirty_txg = 0;
153 dn->dn_dirtyctx = 0;
154 dn->dn_dirtyctx_firstset = NULL;
155 dn->dn_bonus = NULL;
156 dn->dn_have_spill = B_FALSE;
157 dn->dn_zio = NULL;
158 dn->dn_oldused = 0;
159 dn->dn_oldflags = 0;
160 dn->dn_olduid = 0;
161 dn->dn_oldgid = 0;
162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
163 dn->dn_newuid = 0;
164 dn->dn_newgid = 0;
165 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
166 dn->dn_id_flags = 0;
167
168 dn->dn_dbufs_count = 0;
169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
170 offsetof(dmu_buf_impl_t, db_link));
171
172 dn->dn_moved = 0;
173 return (0);
174 }
175
176 /* ARGSUSED */
177 static void
178 dnode_dest(void *arg, void *unused)
179 {
180 int i;
181 dnode_t *dn = arg;
182
183 rw_destroy(&dn->dn_struct_rwlock);
184 mutex_destroy(&dn->dn_mtx);
185 mutex_destroy(&dn->dn_dbufs_mtx);
186 cv_destroy(&dn->dn_notxholds);
187 zfs_refcount_destroy(&dn->dn_holds);
188 zfs_refcount_destroy(&dn->dn_tx_holds);
189 ASSERT(!list_link_active(&dn->dn_link));
190
191 for (i = 0; i < TXG_SIZE; i++) {
192 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
193 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
194 list_destroy(&dn->dn_dirty_records[i]);
195 ASSERT0(dn->dn_next_nblkptr[i]);
196 ASSERT0(dn->dn_next_nlevels[i]);
197 ASSERT0(dn->dn_next_indblkshift[i]);
198 ASSERT0(dn->dn_next_bonustype[i]);
199 ASSERT0(dn->dn_rm_spillblk[i]);
200 ASSERT0(dn->dn_next_bonuslen[i]);
201 ASSERT0(dn->dn_next_blksz[i]);
202 ASSERT0(dn->dn_next_maxblkid[i]);
203 }
204
205 ASSERT0(dn->dn_allocated_txg);
206 ASSERT0(dn->dn_free_txg);
207 ASSERT0(dn->dn_assigned_txg);
208 ASSERT0(dn->dn_dirty_txg);
209 ASSERT0(dn->dn_dirtyctx);
210 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
211 ASSERT3P(dn->dn_bonus, ==, NULL);
212 ASSERT(!dn->dn_have_spill);
213 ASSERT3P(dn->dn_zio, ==, NULL);
214 ASSERT0(dn->dn_oldused);
215 ASSERT0(dn->dn_oldflags);
216 ASSERT0(dn->dn_olduid);
217 ASSERT0(dn->dn_oldgid);
218 ASSERT0(dn->dn_oldprojid);
219 ASSERT0(dn->dn_newuid);
220 ASSERT0(dn->dn_newgid);
221 ASSERT0(dn->dn_newprojid);
222 ASSERT0(dn->dn_id_flags);
223
224 ASSERT0(dn->dn_dbufs_count);
225 avl_destroy(&dn->dn_dbufs);
226 }
227
228 void
229 dnode_init(void)
230 {
231 ASSERT(dnode_cache == NULL);
232 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
233 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
234 kmem_cache_set_move(dnode_cache, dnode_move);
235
236 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
237 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
238 KSTAT_FLAG_VIRTUAL);
239 if (dnode_ksp != NULL) {
240 dnode_ksp->ks_data = &dnode_stats;
241 kstat_install(dnode_ksp);
242 }
243 }
244
245 void
246 dnode_fini(void)
247 {
248 if (dnode_ksp != NULL) {
249 kstat_delete(dnode_ksp);
250 dnode_ksp = NULL;
251 }
252
253 kmem_cache_destroy(dnode_cache);
254 dnode_cache = NULL;
255 }
256
257
258 #ifdef ZFS_DEBUG
259 void
260 dnode_verify(dnode_t *dn)
261 {
262 int drop_struct_lock = FALSE;
263
264 ASSERT(dn->dn_phys);
265 ASSERT(dn->dn_objset);
266 ASSERT(dn->dn_handle->dnh_dnode == dn);
267
268 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
269
270 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
271 return;
272
273 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
274 rw_enter(&dn->dn_struct_rwlock, RW_READER);
275 drop_struct_lock = TRUE;
276 }
277 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
278 int i;
279 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
280 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
281 if (dn->dn_datablkshift) {
282 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
283 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
284 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
285 }
286 ASSERT3U(dn->dn_nlevels, <=, 30);
287 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
288 ASSERT3U(dn->dn_nblkptr, >=, 1);
289 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
290 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
291 ASSERT3U(dn->dn_datablksz, ==,
292 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
293 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
294 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
295 dn->dn_bonuslen, <=, max_bonuslen);
296 for (i = 0; i < TXG_SIZE; i++) {
297 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
298 }
299 }
300 if (dn->dn_phys->dn_type != DMU_OT_NONE)
301 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
302 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
303 if (dn->dn_dbuf != NULL) {
304 ASSERT3P(dn->dn_phys, ==,
305 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
306 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
307 }
308 if (drop_struct_lock)
309 rw_exit(&dn->dn_struct_rwlock);
310 }
311 #endif
312
313 void
314 dnode_byteswap(dnode_phys_t *dnp)
315 {
316 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
317 int i;
318
319 if (dnp->dn_type == DMU_OT_NONE) {
320 bzero(dnp, sizeof (dnode_phys_t));
321 return;
322 }
323
324 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
325 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
326 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
327 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
328 dnp->dn_used = BSWAP_64(dnp->dn_used);
329
330 /*
331 * dn_nblkptr is only one byte, so it's OK to read it in either
332 * byte order. We can't read dn_bouslen.
333 */
334 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
335 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
336 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
337 buf64[i] = BSWAP_64(buf64[i]);
338
339 /*
340 * OK to check dn_bonuslen for zero, because it won't matter if
341 * we have the wrong byte order. This is necessary because the
342 * dnode dnode is smaller than a regular dnode.
343 */
344 if (dnp->dn_bonuslen != 0) {
345 /*
346 * Note that the bonus length calculated here may be
347 * longer than the actual bonus buffer. This is because
348 * we always put the bonus buffer after the last block
349 * pointer (instead of packing it against the end of the
350 * dnode buffer).
351 */
352 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
353 int slots = dnp->dn_extra_slots + 1;
354 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
355 dmu_object_byteswap_t byteswap;
356 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
357 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
358 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
359 }
360
361 /* Swap SPILL block if we have one */
362 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
363 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
364 }
365
366 void
367 dnode_buf_byteswap(void *vbuf, size_t size)
368 {
369 int i = 0;
370
371 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
372 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
373
374 while (i < size) {
375 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
376 dnode_byteswap(dnp);
377
378 i += DNODE_MIN_SIZE;
379 if (dnp->dn_type != DMU_OT_NONE)
380 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
381 }
382 }
383
384 void
385 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
386 {
387 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
388
389 dnode_setdirty(dn, tx);
390 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
391 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
392 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
393 dn->dn_bonuslen = newsize;
394 if (newsize == 0)
395 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
396 else
397 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
398 rw_exit(&dn->dn_struct_rwlock);
399 }
400
401 void
402 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
403 {
404 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
405 dnode_setdirty(dn, tx);
406 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
407 dn->dn_bonustype = newtype;
408 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
409 rw_exit(&dn->dn_struct_rwlock);
410 }
411
412 void
413 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
414 {
415 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
416 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
417 dnode_setdirty(dn, tx);
418 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
419 dn->dn_have_spill = B_FALSE;
420 }
421
422 static void
423 dnode_setdblksz(dnode_t *dn, int size)
424 {
425 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
426 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
427 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
428 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
429 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
430 dn->dn_datablksz = size;
431 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
432 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
433 }
434
435 static dnode_t *
436 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
437 uint64_t object, dnode_handle_t *dnh)
438 {
439 dnode_t *dn;
440
441 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
442 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
443 dn->dn_moved = 0;
444
445 /*
446 * Defer setting dn_objset until the dnode is ready to be a candidate
447 * for the dnode_move() callback.
448 */
449 dn->dn_object = object;
450 dn->dn_dbuf = db;
451 dn->dn_handle = dnh;
452 dn->dn_phys = dnp;
453
454 if (dnp->dn_datablkszsec) {
455 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
456 } else {
457 dn->dn_datablksz = 0;
458 dn->dn_datablkszsec = 0;
459 dn->dn_datablkshift = 0;
460 }
461 dn->dn_indblkshift = dnp->dn_indblkshift;
462 dn->dn_nlevels = dnp->dn_nlevels;
463 dn->dn_type = dnp->dn_type;
464 dn->dn_nblkptr = dnp->dn_nblkptr;
465 dn->dn_checksum = dnp->dn_checksum;
466 dn->dn_compress = dnp->dn_compress;
467 dn->dn_bonustype = dnp->dn_bonustype;
468 dn->dn_bonuslen = dnp->dn_bonuslen;
469 dn->dn_num_slots = dnp->dn_extra_slots + 1;
470 dn->dn_maxblkid = dnp->dn_maxblkid;
471 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
472 dn->dn_id_flags = 0;
473
474 dmu_zfetch_init(&dn->dn_zfetch, dn);
475
476 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
477 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
478 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
479
480 mutex_enter(&os->os_lock);
481
482 /*
483 * Exclude special dnodes from os_dnodes so an empty os_dnodes
484 * signifies that the special dnodes have no references from
485 * their children (the entries in os_dnodes). This allows
486 * dnode_destroy() to easily determine if the last child has
487 * been removed and then complete eviction of the objset.
488 */
489 if (!DMU_OBJECT_IS_SPECIAL(object))
490 list_insert_head(&os->os_dnodes, dn);
491 membar_producer();
492
493 /*
494 * Everything else must be valid before assigning dn_objset
495 * makes the dnode eligible for dnode_move().
496 */
497 dn->dn_objset = os;
498
499 dnh->dnh_dnode = dn;
500 mutex_exit(&os->os_lock);
501
502 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
503
504 return (dn);
505 }
506
507 /*
508 * Caller must be holding the dnode handle, which is released upon return.
509 */
510 static void
511 dnode_destroy(dnode_t *dn)
512 {
513 objset_t *os = dn->dn_objset;
514 boolean_t complete_os_eviction = B_FALSE;
515
516 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
517
518 mutex_enter(&os->os_lock);
519 POINTER_INVALIDATE(&dn->dn_objset);
520 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
521 list_remove(&os->os_dnodes, dn);
522 complete_os_eviction =
523 list_is_empty(&os->os_dnodes) &&
524 list_link_active(&os->os_evicting_node);
525 }
526 mutex_exit(&os->os_lock);
527
528 /* the dnode can no longer move, so we can release the handle */
529 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
530 zrl_remove(&dn->dn_handle->dnh_zrlock);
531
532 dn->dn_allocated_txg = 0;
533 dn->dn_free_txg = 0;
534 dn->dn_assigned_txg = 0;
535 dn->dn_dirty_txg = 0;
536
537 dn->dn_dirtyctx = 0;
538 if (dn->dn_dirtyctx_firstset != NULL) {
539 kmem_free(dn->dn_dirtyctx_firstset, 1);
540 dn->dn_dirtyctx_firstset = NULL;
541 }
542 if (dn->dn_bonus != NULL) {
543 mutex_enter(&dn->dn_bonus->db_mtx);
544 dbuf_destroy(dn->dn_bonus);
545 dn->dn_bonus = NULL;
546 }
547 dn->dn_zio = NULL;
548
549 dn->dn_have_spill = B_FALSE;
550 dn->dn_oldused = 0;
551 dn->dn_oldflags = 0;
552 dn->dn_olduid = 0;
553 dn->dn_oldgid = 0;
554 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
555 dn->dn_newuid = 0;
556 dn->dn_newgid = 0;
557 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
558 dn->dn_id_flags = 0;
559
560 dmu_zfetch_fini(&dn->dn_zfetch);
561 kmem_cache_free(dnode_cache, dn);
562 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
563
564 if (complete_os_eviction)
565 dmu_objset_evict_done(os);
566 }
567
568 void
569 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
570 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
571 {
572 int i;
573
574 ASSERT3U(dn_slots, >, 0);
575 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
576 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
577 ASSERT3U(blocksize, <=,
578 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
579 if (blocksize == 0)
580 blocksize = 1 << zfs_default_bs;
581 else
582 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
583
584 if (ibs == 0)
585 ibs = zfs_default_ibs;
586
587 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
588
589 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
590 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
591 DNODE_STAT_BUMP(dnode_allocate);
592
593 ASSERT(dn->dn_type == DMU_OT_NONE);
594 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
595 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
596 ASSERT(ot != DMU_OT_NONE);
597 ASSERT(DMU_OT_IS_VALID(ot));
598 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
599 (bonustype == DMU_OT_SA && bonuslen == 0) ||
600 (bonustype != DMU_OT_NONE && bonuslen != 0));
601 ASSERT(DMU_OT_IS_VALID(bonustype));
602 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
603 ASSERT(dn->dn_type == DMU_OT_NONE);
604 ASSERT0(dn->dn_maxblkid);
605 ASSERT0(dn->dn_allocated_txg);
606 ASSERT0(dn->dn_assigned_txg);
607 ASSERT0(dn->dn_dirty_txg);
608 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
609 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
610 ASSERT(avl_is_empty(&dn->dn_dbufs));
611
612 for (i = 0; i < TXG_SIZE; i++) {
613 ASSERT0(dn->dn_next_nblkptr[i]);
614 ASSERT0(dn->dn_next_nlevels[i]);
615 ASSERT0(dn->dn_next_indblkshift[i]);
616 ASSERT0(dn->dn_next_bonuslen[i]);
617 ASSERT0(dn->dn_next_bonustype[i]);
618 ASSERT0(dn->dn_rm_spillblk[i]);
619 ASSERT0(dn->dn_next_blksz[i]);
620 ASSERT0(dn->dn_next_maxblkid[i]);
621 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
622 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
623 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
624 }
625
626 dn->dn_type = ot;
627 dnode_setdblksz(dn, blocksize);
628 dn->dn_indblkshift = ibs;
629 dn->dn_nlevels = 1;
630 dn->dn_num_slots = dn_slots;
631 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
632 dn->dn_nblkptr = 1;
633 else {
634 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
635 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
636 SPA_BLKPTRSHIFT));
637 }
638
639 dn->dn_bonustype = bonustype;
640 dn->dn_bonuslen = bonuslen;
641 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
642 dn->dn_compress = ZIO_COMPRESS_INHERIT;
643 dn->dn_dirtyctx = 0;
644
645 dn->dn_free_txg = 0;
646 if (dn->dn_dirtyctx_firstset) {
647 kmem_free(dn->dn_dirtyctx_firstset, 1);
648 dn->dn_dirtyctx_firstset = NULL;
649 }
650
651 dn->dn_allocated_txg = tx->tx_txg;
652 dn->dn_id_flags = 0;
653
654 dnode_setdirty(dn, tx);
655 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
656 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
657 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
658 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
659 }
660
661 void
662 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
663 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
664 {
665 int nblkptr;
666
667 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
668 ASSERT3U(blocksize, <=,
669 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
670 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
671 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
672 ASSERT(tx->tx_txg != 0);
673 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
674 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
675 (bonustype == DMU_OT_SA && bonuslen == 0));
676 ASSERT(DMU_OT_IS_VALID(bonustype));
677 ASSERT3U(bonuslen, <=,
678 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
679 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
680
681 dnode_free_interior_slots(dn);
682 DNODE_STAT_BUMP(dnode_reallocate);
683
684 /* clean up any unreferenced dbufs */
685 dnode_evict_dbufs(dn);
686
687 dn->dn_id_flags = 0;
688
689 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
690 dnode_setdirty(dn, tx);
691 if (dn->dn_datablksz != blocksize) {
692 /* change blocksize */
693 ASSERT(dn->dn_maxblkid == 0 &&
694 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
695 dnode_block_freed(dn, 0)));
696 dnode_setdblksz(dn, blocksize);
697 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
698 }
699 if (dn->dn_bonuslen != bonuslen)
700 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
701
702 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
703 nblkptr = 1;
704 else
705 nblkptr = MIN(DN_MAX_NBLKPTR,
706 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
707 SPA_BLKPTRSHIFT));
708 if (dn->dn_bonustype != bonustype)
709 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
710 if (dn->dn_nblkptr != nblkptr)
711 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
712 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
713 dbuf_rm_spill(dn, tx);
714 dnode_rm_spill(dn, tx);
715 }
716 rw_exit(&dn->dn_struct_rwlock);
717
718 /* change type */
719 dn->dn_type = ot;
720
721 /* change bonus size and type */
722 mutex_enter(&dn->dn_mtx);
723 dn->dn_bonustype = bonustype;
724 dn->dn_bonuslen = bonuslen;
725 dn->dn_num_slots = dn_slots;
726 dn->dn_nblkptr = nblkptr;
727 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
728 dn->dn_compress = ZIO_COMPRESS_INHERIT;
729 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
730
731 /* fix up the bonus db_size */
732 if (dn->dn_bonus) {
733 dn->dn_bonus->db.db_size =
734 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
735 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
736 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
737 }
738
739 dn->dn_allocated_txg = tx->tx_txg;
740 mutex_exit(&dn->dn_mtx);
741 }
742
743 #ifdef _KERNEL
744 static void
745 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
746 {
747 int i;
748
749 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
750 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
751 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
752 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
753
754 /* Copy fields. */
755 ndn->dn_objset = odn->dn_objset;
756 ndn->dn_object = odn->dn_object;
757 ndn->dn_dbuf = odn->dn_dbuf;
758 ndn->dn_handle = odn->dn_handle;
759 ndn->dn_phys = odn->dn_phys;
760 ndn->dn_type = odn->dn_type;
761 ndn->dn_bonuslen = odn->dn_bonuslen;
762 ndn->dn_bonustype = odn->dn_bonustype;
763 ndn->dn_nblkptr = odn->dn_nblkptr;
764 ndn->dn_checksum = odn->dn_checksum;
765 ndn->dn_compress = odn->dn_compress;
766 ndn->dn_nlevels = odn->dn_nlevels;
767 ndn->dn_indblkshift = odn->dn_indblkshift;
768 ndn->dn_datablkshift = odn->dn_datablkshift;
769 ndn->dn_datablkszsec = odn->dn_datablkszsec;
770 ndn->dn_datablksz = odn->dn_datablksz;
771 ndn->dn_maxblkid = odn->dn_maxblkid;
772 ndn->dn_num_slots = odn->dn_num_slots;
773 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
774 sizeof (odn->dn_next_type));
775 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
776 sizeof (odn->dn_next_nblkptr));
777 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
778 sizeof (odn->dn_next_nlevels));
779 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
780 sizeof (odn->dn_next_indblkshift));
781 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
782 sizeof (odn->dn_next_bonustype));
783 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
784 sizeof (odn->dn_rm_spillblk));
785 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
786 sizeof (odn->dn_next_bonuslen));
787 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
788 sizeof (odn->dn_next_blksz));
789 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
790 sizeof (odn->dn_next_maxblkid));
791 for (i = 0; i < TXG_SIZE; i++) {
792 list_move_tail(&ndn->dn_dirty_records[i],
793 &odn->dn_dirty_records[i]);
794 }
795 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
796 sizeof (odn->dn_free_ranges));
797 ndn->dn_allocated_txg = odn->dn_allocated_txg;
798 ndn->dn_free_txg = odn->dn_free_txg;
799 ndn->dn_assigned_txg = odn->dn_assigned_txg;
800 ndn->dn_dirty_txg = odn->dn_dirty_txg;
801 ndn->dn_dirtyctx = odn->dn_dirtyctx;
802 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
803 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
804 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
805 ASSERT(avl_is_empty(&ndn->dn_dbufs));
806 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
807 ndn->dn_dbufs_count = odn->dn_dbufs_count;
808 ndn->dn_bonus = odn->dn_bonus;
809 ndn->dn_have_spill = odn->dn_have_spill;
810 ndn->dn_zio = odn->dn_zio;
811 ndn->dn_oldused = odn->dn_oldused;
812 ndn->dn_oldflags = odn->dn_oldflags;
813 ndn->dn_olduid = odn->dn_olduid;
814 ndn->dn_oldgid = odn->dn_oldgid;
815 ndn->dn_oldprojid = odn->dn_oldprojid;
816 ndn->dn_newuid = odn->dn_newuid;
817 ndn->dn_newgid = odn->dn_newgid;
818 ndn->dn_newprojid = odn->dn_newprojid;
819 ndn->dn_id_flags = odn->dn_id_flags;
820 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
821 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
822 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
823
824 /*
825 * Update back pointers. Updating the handle fixes the back pointer of
826 * every descendant dbuf as well as the bonus dbuf.
827 */
828 ASSERT(ndn->dn_handle->dnh_dnode == odn);
829 ndn->dn_handle->dnh_dnode = ndn;
830 if (ndn->dn_zfetch.zf_dnode == odn) {
831 ndn->dn_zfetch.zf_dnode = ndn;
832 }
833
834 /*
835 * Invalidate the original dnode by clearing all of its back pointers.
836 */
837 odn->dn_dbuf = NULL;
838 odn->dn_handle = NULL;
839 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
840 offsetof(dmu_buf_impl_t, db_link));
841 odn->dn_dbufs_count = 0;
842 odn->dn_bonus = NULL;
843 dmu_zfetch_fini(&odn->dn_zfetch);
844
845 /*
846 * Set the low bit of the objset pointer to ensure that dnode_move()
847 * recognizes the dnode as invalid in any subsequent callback.
848 */
849 POINTER_INVALIDATE(&odn->dn_objset);
850
851 /*
852 * Satisfy the destructor.
853 */
854 for (i = 0; i < TXG_SIZE; i++) {
855 list_create(&odn->dn_dirty_records[i],
856 sizeof (dbuf_dirty_record_t),
857 offsetof(dbuf_dirty_record_t, dr_dirty_node));
858 odn->dn_free_ranges[i] = NULL;
859 odn->dn_next_nlevels[i] = 0;
860 odn->dn_next_indblkshift[i] = 0;
861 odn->dn_next_bonustype[i] = 0;
862 odn->dn_rm_spillblk[i] = 0;
863 odn->dn_next_bonuslen[i] = 0;
864 odn->dn_next_blksz[i] = 0;
865 }
866 odn->dn_allocated_txg = 0;
867 odn->dn_free_txg = 0;
868 odn->dn_assigned_txg = 0;
869 odn->dn_dirty_txg = 0;
870 odn->dn_dirtyctx = 0;
871 odn->dn_dirtyctx_firstset = NULL;
872 odn->dn_have_spill = B_FALSE;
873 odn->dn_zio = NULL;
874 odn->dn_oldused = 0;
875 odn->dn_oldflags = 0;
876 odn->dn_olduid = 0;
877 odn->dn_oldgid = 0;
878 odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
879 odn->dn_newuid = 0;
880 odn->dn_newgid = 0;
881 odn->dn_newprojid = ZFS_DEFAULT_PROJID;
882 odn->dn_id_flags = 0;
883
884 /*
885 * Mark the dnode.
886 */
887 ndn->dn_moved = 1;
888 odn->dn_moved = (uint8_t)-1;
889 }
890
891 /*ARGSUSED*/
892 static kmem_cbrc_t
893 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
894 {
895 dnode_t *odn = buf, *ndn = newbuf;
896 objset_t *os;
897 int64_t refcount;
898 uint32_t dbufs;
899
900 /*
901 * The dnode is on the objset's list of known dnodes if the objset
902 * pointer is valid. We set the low bit of the objset pointer when
903 * freeing the dnode to invalidate it, and the memory patterns written
904 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
905 * A newly created dnode sets the objset pointer last of all to indicate
906 * that the dnode is known and in a valid state to be moved by this
907 * function.
908 */
909 os = odn->dn_objset;
910 if (!POINTER_IS_VALID(os)) {
911 DNODE_STAT_BUMP(dnode_move_invalid);
912 return (KMEM_CBRC_DONT_KNOW);
913 }
914
915 /*
916 * Ensure that the objset does not go away during the move.
917 */
918 rw_enter(&os_lock, RW_WRITER);
919 if (os != odn->dn_objset) {
920 rw_exit(&os_lock);
921 DNODE_STAT_BUMP(dnode_move_recheck1);
922 return (KMEM_CBRC_DONT_KNOW);
923 }
924
925 /*
926 * If the dnode is still valid, then so is the objset. We know that no
927 * valid objset can be freed while we hold os_lock, so we can safely
928 * ensure that the objset remains in use.
929 */
930 mutex_enter(&os->os_lock);
931
932 /*
933 * Recheck the objset pointer in case the dnode was removed just before
934 * acquiring the lock.
935 */
936 if (os != odn->dn_objset) {
937 mutex_exit(&os->os_lock);
938 rw_exit(&os_lock);
939 DNODE_STAT_BUMP(dnode_move_recheck2);
940 return (KMEM_CBRC_DONT_KNOW);
941 }
942
943 /*
944 * At this point we know that as long as we hold os->os_lock, the dnode
945 * cannot be freed and fields within the dnode can be safely accessed.
946 * The objset listing this dnode cannot go away as long as this dnode is
947 * on its list.
948 */
949 rw_exit(&os_lock);
950 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
951 mutex_exit(&os->os_lock);
952 DNODE_STAT_BUMP(dnode_move_special);
953 return (KMEM_CBRC_NO);
954 }
955 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
956
957 /*
958 * Lock the dnode handle to prevent the dnode from obtaining any new
959 * holds. This also prevents the descendant dbufs and the bonus dbuf
960 * from accessing the dnode, so that we can discount their holds. The
961 * handle is safe to access because we know that while the dnode cannot
962 * go away, neither can its handle. Once we hold dnh_zrlock, we can
963 * safely move any dnode referenced only by dbufs.
964 */
965 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
966 mutex_exit(&os->os_lock);
967 DNODE_STAT_BUMP(dnode_move_handle);
968 return (KMEM_CBRC_LATER);
969 }
970
971 /*
972 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
973 * We need to guarantee that there is a hold for every dbuf in order to
974 * determine whether the dnode is actively referenced. Falsely matching
975 * a dbuf to an active hold would lead to an unsafe move. It's possible
976 * that a thread already having an active dnode hold is about to add a
977 * dbuf, and we can't compare hold and dbuf counts while the add is in
978 * progress.
979 */
980 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
981 zrl_exit(&odn->dn_handle->dnh_zrlock);
982 mutex_exit(&os->os_lock);
983 DNODE_STAT_BUMP(dnode_move_rwlock);
984 return (KMEM_CBRC_LATER);
985 }
986
987 /*
988 * A dbuf may be removed (evicted) without an active dnode hold. In that
989 * case, the dbuf count is decremented under the handle lock before the
990 * dbuf's hold is released. This order ensures that if we count the hold
991 * after the dbuf is removed but before its hold is released, we will
992 * treat the unmatched hold as active and exit safely. If we count the
993 * hold before the dbuf is removed, the hold is discounted, and the
994 * removal is blocked until the move completes.
995 */
996 refcount = zfs_refcount_count(&odn->dn_holds);
997 ASSERT(refcount >= 0);
998 dbufs = odn->dn_dbufs_count;
999
1000 /* We can't have more dbufs than dnode holds. */
1001 ASSERT3U(dbufs, <=, refcount);
1002 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1003 uint32_t, dbufs);
1004
1005 if (refcount > dbufs) {
1006 rw_exit(&odn->dn_struct_rwlock);
1007 zrl_exit(&odn->dn_handle->dnh_zrlock);
1008 mutex_exit(&os->os_lock);
1009 DNODE_STAT_BUMP(dnode_move_active);
1010 return (KMEM_CBRC_LATER);
1011 }
1012
1013 rw_exit(&odn->dn_struct_rwlock);
1014
1015 /*
1016 * At this point we know that anyone with a hold on the dnode is not
1017 * actively referencing it. The dnode is known and in a valid state to
1018 * move. We're holding the locks needed to execute the critical section.
1019 */
1020 dnode_move_impl(odn, ndn);
1021
1022 list_link_replace(&odn->dn_link, &ndn->dn_link);
1023 /* If the dnode was safe to move, the refcount cannot have changed. */
1024 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1025 ASSERT(dbufs == ndn->dn_dbufs_count);
1026 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1027 mutex_exit(&os->os_lock);
1028
1029 return (KMEM_CBRC_YES);
1030 }
1031 #endif /* _KERNEL */
1032
1033 static void
1034 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1035 {
1036 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1037
1038 for (int i = idx; i < idx + slots; i++) {
1039 dnode_handle_t *dnh = &children->dnc_children[i];
1040 zrl_add(&dnh->dnh_zrlock);
1041 }
1042 }
1043
1044 static void
1045 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1046 {
1047 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1048
1049 for (int i = idx; i < idx + slots; i++) {
1050 dnode_handle_t *dnh = &children->dnc_children[i];
1051
1052 if (zrl_is_locked(&dnh->dnh_zrlock))
1053 zrl_exit(&dnh->dnh_zrlock);
1054 else
1055 zrl_remove(&dnh->dnh_zrlock);
1056 }
1057 }
1058
1059 static int
1060 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1061 {
1062 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1063
1064 for (int i = idx; i < idx + slots; i++) {
1065 dnode_handle_t *dnh = &children->dnc_children[i];
1066
1067 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1068 for (int j = idx; j < i; j++) {
1069 dnh = &children->dnc_children[j];
1070 zrl_exit(&dnh->dnh_zrlock);
1071 }
1072
1073 return (0);
1074 }
1075 }
1076
1077 return (1);
1078 }
1079
1080 static void
1081 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1082 {
1083 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1084
1085 for (int i = idx; i < idx + slots; i++) {
1086 dnode_handle_t *dnh = &children->dnc_children[i];
1087 dnh->dnh_dnode = ptr;
1088 }
1089 }
1090
1091 static boolean_t
1092 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1093 {
1094 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1095
1096 /*
1097 * If all dnode slots are either already free or
1098 * evictable return B_TRUE.
1099 */
1100 for (int i = idx; i < idx + slots; i++) {
1101 dnode_handle_t *dnh = &children->dnc_children[i];
1102 dnode_t *dn = dnh->dnh_dnode;
1103
1104 if (dn == DN_SLOT_FREE) {
1105 continue;
1106 } else if (DN_SLOT_IS_PTR(dn)) {
1107 mutex_enter(&dn->dn_mtx);
1108 boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1109 zfs_refcount_is_zero(&dn->dn_holds) &&
1110 !DNODE_IS_DIRTY(dn));
1111 mutex_exit(&dn->dn_mtx);
1112
1113 if (!can_free)
1114 return (B_FALSE);
1115 else
1116 continue;
1117 } else {
1118 return (B_FALSE);
1119 }
1120 }
1121
1122 return (B_TRUE);
1123 }
1124
1125 static void
1126 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1127 {
1128 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1129
1130 for (int i = idx; i < idx + slots; i++) {
1131 dnode_handle_t *dnh = &children->dnc_children[i];
1132
1133 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1134
1135 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1136 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1137 dnode_destroy(dnh->dnh_dnode);
1138 dnh->dnh_dnode = DN_SLOT_FREE;
1139 }
1140 }
1141 }
1142
1143 void
1144 dnode_free_interior_slots(dnode_t *dn)
1145 {
1146 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1147 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1148 int idx = (dn->dn_object & (epb - 1)) + 1;
1149 int slots = dn->dn_num_slots - 1;
1150
1151 if (slots == 0)
1152 return;
1153
1154 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1155
1156 while (!dnode_slots_tryenter(children, idx, slots)) {
1157 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1158 cond_resched();
1159 }
1160
1161 dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1162 dnode_slots_rele(children, idx, slots);
1163 }
1164
1165 void
1166 dnode_special_close(dnode_handle_t *dnh)
1167 {
1168 dnode_t *dn = dnh->dnh_dnode;
1169
1170 /*
1171 * Wait for final references to the dnode to clear. This can
1172 * only happen if the arc is asynchronously evicting state that
1173 * has a hold on this dnode while we are trying to evict this
1174 * dnode.
1175 */
1176 while (zfs_refcount_count(&dn->dn_holds) > 0)
1177 delay(1);
1178 ASSERT(dn->dn_dbuf == NULL ||
1179 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1180 zrl_add(&dnh->dnh_zrlock);
1181 dnode_destroy(dn); /* implicit zrl_remove() */
1182 zrl_destroy(&dnh->dnh_zrlock);
1183 dnh->dnh_dnode = NULL;
1184 }
1185
1186 void
1187 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1188 dnode_handle_t *dnh)
1189 {
1190 dnode_t *dn;
1191
1192 zrl_init(&dnh->dnh_zrlock);
1193 zrl_tryenter(&dnh->dnh_zrlock);
1194
1195 dn = dnode_create(os, dnp, NULL, object, dnh);
1196 DNODE_VERIFY(dn);
1197
1198 zrl_exit(&dnh->dnh_zrlock);
1199 }
1200
1201 static void
1202 dnode_buf_evict_async(void *dbu)
1203 {
1204 dnode_children_t *dnc = dbu;
1205
1206 DNODE_STAT_BUMP(dnode_buf_evict);
1207
1208 for (int i = 0; i < dnc->dnc_count; i++) {
1209 dnode_handle_t *dnh = &dnc->dnc_children[i];
1210 dnode_t *dn;
1211
1212 /*
1213 * The dnode handle lock guards against the dnode moving to
1214 * another valid address, so there is no need here to guard
1215 * against changes to or from NULL.
1216 */
1217 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1218 zrl_destroy(&dnh->dnh_zrlock);
1219 dnh->dnh_dnode = DN_SLOT_UNINIT;
1220 continue;
1221 }
1222
1223 zrl_add(&dnh->dnh_zrlock);
1224 dn = dnh->dnh_dnode;
1225 /*
1226 * If there are holds on this dnode, then there should
1227 * be holds on the dnode's containing dbuf as well; thus
1228 * it wouldn't be eligible for eviction and this function
1229 * would not have been called.
1230 */
1231 ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1232 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1233
1234 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1235 zrl_destroy(&dnh->dnh_zrlock);
1236 dnh->dnh_dnode = DN_SLOT_UNINIT;
1237 }
1238 kmem_free(dnc, sizeof (dnode_children_t) +
1239 dnc->dnc_count * sizeof (dnode_handle_t));
1240 }
1241
1242 /*
1243 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1244 * to ensure the hole at the specified object offset is large enough to
1245 * hold the dnode being created. The slots parameter is also used to ensure
1246 * a dnode does not span multiple dnode blocks. In both of these cases, if
1247 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1248 * are only possible when using DNODE_MUST_BE_FREE.
1249 *
1250 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1251 * dnode_hold_impl() will check if the requested dnode is already consumed
1252 * as an extra dnode slot by an large dnode, in which case it returns
1253 * ENOENT.
1254 *
1255 * errors:
1256 * EINVAL - Invalid object number or flags.
1257 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1258 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1259 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1260 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1261 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1262 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1263 * EIO - I/O error when reading the meta dnode dbuf.
1264 *
1265 * succeeds even for free dnodes.
1266 */
1267 int
1268 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1269 void *tag, dnode_t **dnp)
1270 {
1271 int epb, idx, err;
1272 int drop_struct_lock = FALSE;
1273 int type;
1274 uint64_t blk;
1275 dnode_t *mdn, *dn;
1276 dmu_buf_impl_t *db;
1277 dnode_children_t *dnc;
1278 dnode_phys_t *dn_block;
1279 dnode_handle_t *dnh;
1280
1281 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1282 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1283
1284 /*
1285 * If you are holding the spa config lock as writer, you shouldn't
1286 * be asking the DMU to do *anything* unless it's the root pool
1287 * which may require us to read from the root filesystem while
1288 * holding some (not all) of the locks as writer.
1289 */
1290 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1291 (spa_is_root(os->os_spa) &&
1292 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1293
1294 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1295
1296 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1297 object == DMU_PROJECTUSED_OBJECT) {
1298 if (object == DMU_USERUSED_OBJECT)
1299 dn = DMU_USERUSED_DNODE(os);
1300 else if (object == DMU_GROUPUSED_OBJECT)
1301 dn = DMU_GROUPUSED_DNODE(os);
1302 else
1303 dn = DMU_PROJECTUSED_DNODE(os);
1304 if (dn == NULL)
1305 return (SET_ERROR(ENOENT));
1306 type = dn->dn_type;
1307 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1308 return (SET_ERROR(ENOENT));
1309 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1310 return (SET_ERROR(EEXIST));
1311 DNODE_VERIFY(dn);
1312 (void) zfs_refcount_add(&dn->dn_holds, tag);
1313 *dnp = dn;
1314 return (0);
1315 }
1316
1317 if (object == 0 || object >= DN_MAX_OBJECT)
1318 return (SET_ERROR(EINVAL));
1319
1320 mdn = DMU_META_DNODE(os);
1321 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1322
1323 DNODE_VERIFY(mdn);
1324
1325 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1326 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1327 drop_struct_lock = TRUE;
1328 }
1329
1330 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1331
1332 db = dbuf_hold(mdn, blk, FTAG);
1333 if (drop_struct_lock)
1334 rw_exit(&mdn->dn_struct_rwlock);
1335 if (db == NULL) {
1336 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1337 return (SET_ERROR(EIO));
1338 }
1339
1340 /*
1341 * We do not need to decrypt to read the dnode so it doesn't matter
1342 * if we get the encrypted or decrypted version.
1343 */
1344 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1345 if (err) {
1346 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1347 dbuf_rele(db, FTAG);
1348 return (err);
1349 }
1350
1351 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1352 epb = db->db.db_size >> DNODE_SHIFT;
1353
1354 idx = object & (epb - 1);
1355 dn_block = (dnode_phys_t *)db->db.db_data;
1356
1357 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1358 dnc = dmu_buf_get_user(&db->db);
1359 dnh = NULL;
1360 if (dnc == NULL) {
1361 dnode_children_t *winner;
1362 int skip = 0;
1363
1364 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1365 epb * sizeof (dnode_handle_t), KM_SLEEP);
1366 dnc->dnc_count = epb;
1367 dnh = &dnc->dnc_children[0];
1368
1369 /* Initialize dnode slot status from dnode_phys_t */
1370 for (int i = 0; i < epb; i++) {
1371 zrl_init(&dnh[i].dnh_zrlock);
1372
1373 if (skip) {
1374 skip--;
1375 continue;
1376 }
1377
1378 if (dn_block[i].dn_type != DMU_OT_NONE) {
1379 int interior = dn_block[i].dn_extra_slots;
1380
1381 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1382 dnode_set_slots(dnc, i + 1, interior,
1383 DN_SLOT_INTERIOR);
1384 skip = interior;
1385 } else {
1386 dnh[i].dnh_dnode = DN_SLOT_FREE;
1387 skip = 0;
1388 }
1389 }
1390
1391 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1392 dnode_buf_evict_async, NULL);
1393 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1394 if (winner != NULL) {
1395
1396 for (int i = 0; i < epb; i++)
1397 zrl_destroy(&dnh[i].dnh_zrlock);
1398
1399 kmem_free(dnc, sizeof (dnode_children_t) +
1400 epb * sizeof (dnode_handle_t));
1401 dnc = winner;
1402 }
1403 }
1404
1405 ASSERT(dnc->dnc_count == epb);
1406
1407 if (flag & DNODE_MUST_BE_ALLOCATED) {
1408 slots = 1;
1409
1410 dnode_slots_hold(dnc, idx, slots);
1411 dnh = &dnc->dnc_children[idx];
1412
1413 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1414 dn = dnh->dnh_dnode;
1415 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1416 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1417 dnode_slots_rele(dnc, idx, slots);
1418 dbuf_rele(db, FTAG);
1419 return (SET_ERROR(EEXIST));
1420 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1421 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1422 dnode_slots_rele(dnc, idx, slots);
1423 dbuf_rele(db, FTAG);
1424 return (SET_ERROR(ENOENT));
1425 } else {
1426 dnode_slots_rele(dnc, idx, slots);
1427 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1428 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1429 cond_resched();
1430 }
1431
1432 /*
1433 * Someone else won the race and called dnode_create()
1434 * after we checked DN_SLOT_IS_PTR() above but before
1435 * we acquired the lock.
1436 */
1437 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1438 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1439 dn = dnh->dnh_dnode;
1440 } else {
1441 dn = dnode_create(os, dn_block + idx, db,
1442 object, dnh);
1443 }
1444 }
1445
1446 mutex_enter(&dn->dn_mtx);
1447 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1448 DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1449 mutex_exit(&dn->dn_mtx);
1450 dnode_slots_rele(dnc, idx, slots);
1451 dbuf_rele(db, FTAG);
1452 return (SET_ERROR(ENOENT));
1453 }
1454
1455 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1456 } else if (flag & DNODE_MUST_BE_FREE) {
1457
1458 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1459 DNODE_STAT_BUMP(dnode_hold_free_overflow);
1460 dbuf_rele(db, FTAG);
1461 return (SET_ERROR(ENOSPC));
1462 }
1463
1464 dnode_slots_hold(dnc, idx, slots);
1465
1466 if (!dnode_check_slots_free(dnc, idx, slots)) {
1467 DNODE_STAT_BUMP(dnode_hold_free_misses);
1468 dnode_slots_rele(dnc, idx, slots);
1469 dbuf_rele(db, FTAG);
1470 return (SET_ERROR(ENOSPC));
1471 }
1472
1473 dnode_slots_rele(dnc, idx, slots);
1474 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1475 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1476 cond_resched();
1477 }
1478
1479 if (!dnode_check_slots_free(dnc, idx, slots)) {
1480 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1481 dnode_slots_rele(dnc, idx, slots);
1482 dbuf_rele(db, FTAG);
1483 return (SET_ERROR(ENOSPC));
1484 }
1485
1486 /*
1487 * Allocated but otherwise free dnodes which would
1488 * be in the interior of a multi-slot dnodes need
1489 * to be freed. Single slot dnodes can be safely
1490 * re-purposed as a performance optimization.
1491 */
1492 if (slots > 1)
1493 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1494
1495 dnh = &dnc->dnc_children[idx];
1496 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1497 dn = dnh->dnh_dnode;
1498 } else {
1499 dn = dnode_create(os, dn_block + idx, db,
1500 object, dnh);
1501 }
1502
1503 mutex_enter(&dn->dn_mtx);
1504 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1505 DNODE_STAT_BUMP(dnode_hold_free_refcount);
1506 mutex_exit(&dn->dn_mtx);
1507 dnode_slots_rele(dnc, idx, slots);
1508 dbuf_rele(db, FTAG);
1509 return (SET_ERROR(EEXIST));
1510 }
1511
1512 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1513 DNODE_STAT_BUMP(dnode_hold_free_hits);
1514 } else {
1515 dbuf_rele(db, FTAG);
1516 return (SET_ERROR(EINVAL));
1517 }
1518
1519 if (dn->dn_free_txg) {
1520 DNODE_STAT_BUMP(dnode_hold_free_txg);
1521 type = dn->dn_type;
1522 mutex_exit(&dn->dn_mtx);
1523 dnode_slots_rele(dnc, idx, slots);
1524 dbuf_rele(db, FTAG);
1525 return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ?
1526 ENOENT : EEXIST));
1527 }
1528
1529 if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1530 dbuf_add_ref(db, dnh);
1531
1532 mutex_exit(&dn->dn_mtx);
1533
1534 /* Now we can rely on the hold to prevent the dnode from moving. */
1535 dnode_slots_rele(dnc, idx, slots);
1536
1537 DNODE_VERIFY(dn);
1538 ASSERT3P(dn->dn_dbuf, ==, db);
1539 ASSERT3U(dn->dn_object, ==, object);
1540 dbuf_rele(db, FTAG);
1541
1542 *dnp = dn;
1543 return (0);
1544 }
1545
1546 /*
1547 * Return held dnode if the object is allocated, NULL if not.
1548 */
1549 int
1550 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1551 {
1552 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1553 dnp));
1554 }
1555
1556 /*
1557 * Can only add a reference if there is already at least one
1558 * reference on the dnode. Returns FALSE if unable to add a
1559 * new reference.
1560 */
1561 boolean_t
1562 dnode_add_ref(dnode_t *dn, void *tag)
1563 {
1564 mutex_enter(&dn->dn_mtx);
1565 if (zfs_refcount_is_zero(&dn->dn_holds)) {
1566 mutex_exit(&dn->dn_mtx);
1567 return (FALSE);
1568 }
1569 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1570 mutex_exit(&dn->dn_mtx);
1571 return (TRUE);
1572 }
1573
1574 void
1575 dnode_rele(dnode_t *dn, void *tag)
1576 {
1577 mutex_enter(&dn->dn_mtx);
1578 dnode_rele_and_unlock(dn, tag, B_FALSE);
1579 }
1580
1581 void
1582 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1583 {
1584 uint64_t refs;
1585 /* Get while the hold prevents the dnode from moving. */
1586 dmu_buf_impl_t *db = dn->dn_dbuf;
1587 dnode_handle_t *dnh = dn->dn_handle;
1588
1589 refs = zfs_refcount_remove(&dn->dn_holds, tag);
1590 mutex_exit(&dn->dn_mtx);
1591
1592 /*
1593 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1594 * indirectly by dbuf_rele() while relying on the dnode handle to
1595 * prevent the dnode from moving, since releasing the last hold could
1596 * result in the dnode's parent dbuf evicting its dnode handles. For
1597 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1598 * other direct or indirect hold on the dnode must first drop the dnode
1599 * handle.
1600 */
1601 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1602
1603 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1604 if (refs == 0 && db != NULL) {
1605 /*
1606 * Another thread could add a hold to the dnode handle in
1607 * dnode_hold_impl() while holding the parent dbuf. Since the
1608 * hold on the parent dbuf prevents the handle from being
1609 * destroyed, the hold on the handle is OK. We can't yet assert
1610 * that the handle has zero references, but that will be
1611 * asserted anyway when the handle gets destroyed.
1612 */
1613 mutex_enter(&db->db_mtx);
1614 dbuf_rele_and_unlock(db, dnh, evicting);
1615 }
1616 }
1617
1618 void
1619 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1620 {
1621 objset_t *os = dn->dn_objset;
1622 uint64_t txg = tx->tx_txg;
1623
1624 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1625 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1626 return;
1627 }
1628
1629 DNODE_VERIFY(dn);
1630
1631 #ifdef ZFS_DEBUG
1632 mutex_enter(&dn->dn_mtx);
1633 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1634 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1635 mutex_exit(&dn->dn_mtx);
1636 #endif
1637
1638 /*
1639 * Determine old uid/gid when necessary
1640 */
1641 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1642
1643 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1644 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1645
1646 /*
1647 * If we are already marked dirty, we're done.
1648 */
1649 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1650 multilist_sublist_unlock(mls);
1651 return;
1652 }
1653
1654 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1655 !avl_is_empty(&dn->dn_dbufs));
1656 ASSERT(dn->dn_datablksz != 0);
1657 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1658 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1659 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1660
1661 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1662 dn->dn_object, txg);
1663
1664 multilist_sublist_insert_head(mls, dn);
1665
1666 multilist_sublist_unlock(mls);
1667
1668 /*
1669 * The dnode maintains a hold on its containing dbuf as
1670 * long as there are holds on it. Each instantiated child
1671 * dbuf maintains a hold on the dnode. When the last child
1672 * drops its hold, the dnode will drop its hold on the
1673 * containing dbuf. We add a "dirty hold" here so that the
1674 * dnode will hang around after we finish processing its
1675 * children.
1676 */
1677 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1678
1679 (void) dbuf_dirty(dn->dn_dbuf, tx);
1680
1681 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1682 }
1683
1684 void
1685 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1686 {
1687 mutex_enter(&dn->dn_mtx);
1688 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1689 mutex_exit(&dn->dn_mtx);
1690 return;
1691 }
1692 dn->dn_free_txg = tx->tx_txg;
1693 mutex_exit(&dn->dn_mtx);
1694
1695 dnode_setdirty(dn, tx);
1696 }
1697
1698 /*
1699 * Try to change the block size for the indicated dnode. This can only
1700 * succeed if there are no blocks allocated or dirty beyond first block
1701 */
1702 int
1703 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1704 {
1705 dmu_buf_impl_t *db;
1706 int err;
1707
1708 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1709 if (size == 0)
1710 size = SPA_MINBLOCKSIZE;
1711 else
1712 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1713
1714 if (ibs == dn->dn_indblkshift)
1715 ibs = 0;
1716
1717 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1718 return (0);
1719
1720 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1721
1722 /* Check for any allocated blocks beyond the first */
1723 if (dn->dn_maxblkid != 0)
1724 goto fail;
1725
1726 mutex_enter(&dn->dn_dbufs_mtx);
1727 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1728 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1729 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1730 db->db_blkid != DMU_SPILL_BLKID) {
1731 mutex_exit(&dn->dn_dbufs_mtx);
1732 goto fail;
1733 }
1734 }
1735 mutex_exit(&dn->dn_dbufs_mtx);
1736
1737 if (ibs && dn->dn_nlevels != 1)
1738 goto fail;
1739
1740 /* resize the old block */
1741 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1742 if (err == 0)
1743 dbuf_new_size(db, size, tx);
1744 else if (err != ENOENT)
1745 goto fail;
1746
1747 dnode_setdblksz(dn, size);
1748 dnode_setdirty(dn, tx);
1749 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1750 if (ibs) {
1751 dn->dn_indblkshift = ibs;
1752 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1753 }
1754 /* rele after we have fixed the blocksize in the dnode */
1755 if (db)
1756 dbuf_rele(db, FTAG);
1757
1758 rw_exit(&dn->dn_struct_rwlock);
1759 return (0);
1760
1761 fail:
1762 rw_exit(&dn->dn_struct_rwlock);
1763 return (SET_ERROR(ENOTSUP));
1764 }
1765
1766 static void
1767 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1768 {
1769 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1770 int old_nlevels = dn->dn_nlevels;
1771 dmu_buf_impl_t *db;
1772 list_t *list;
1773 dbuf_dirty_record_t *new, *dr, *dr_next;
1774
1775 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1776
1777 dn->dn_nlevels = new_nlevels;
1778
1779 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1780 dn->dn_next_nlevels[txgoff] = new_nlevels;
1781
1782 /* dirty the left indirects */
1783 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1784 ASSERT(db != NULL);
1785 new = dbuf_dirty(db, tx);
1786 dbuf_rele(db, FTAG);
1787
1788 /* transfer the dirty records to the new indirect */
1789 mutex_enter(&dn->dn_mtx);
1790 mutex_enter(&new->dt.di.dr_mtx);
1791 list = &dn->dn_dirty_records[txgoff];
1792 for (dr = list_head(list); dr; dr = dr_next) {
1793 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1794 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1795 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1796 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1797 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1798 list_remove(&dn->dn_dirty_records[txgoff], dr);
1799 list_insert_tail(&new->dt.di.dr_children, dr);
1800 dr->dr_parent = new;
1801 }
1802 }
1803 mutex_exit(&new->dt.di.dr_mtx);
1804 mutex_exit(&dn->dn_mtx);
1805 }
1806
1807 int
1808 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1809 {
1810 int ret = 0;
1811
1812 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1813
1814 if (dn->dn_nlevels == nlevels) {
1815 ret = 0;
1816 goto out;
1817 } else if (nlevels < dn->dn_nlevels) {
1818 ret = SET_ERROR(EINVAL);
1819 goto out;
1820 }
1821
1822 dnode_set_nlevels_impl(dn, nlevels, tx);
1823
1824 out:
1825 rw_exit(&dn->dn_struct_rwlock);
1826 return (ret);
1827 }
1828
1829 /* read-holding callers must not rely on the lock being continuously held */
1830 void
1831 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1832 boolean_t force)
1833 {
1834 int epbs, new_nlevels;
1835 uint64_t sz;
1836
1837 ASSERT(blkid != DMU_BONUS_BLKID);
1838
1839 ASSERT(have_read ?
1840 RW_READ_HELD(&dn->dn_struct_rwlock) :
1841 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1842
1843 /*
1844 * if we have a read-lock, check to see if we need to do any work
1845 * before upgrading to a write-lock.
1846 */
1847 if (have_read) {
1848 if (blkid <= dn->dn_maxblkid)
1849 return;
1850
1851 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1852 rw_exit(&dn->dn_struct_rwlock);
1853 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1854 }
1855 }
1856
1857 /*
1858 * Raw sends (indicated by the force flag) require that we take the
1859 * given blkid even if the value is lower than the current value.
1860 */
1861 if (!force && blkid <= dn->dn_maxblkid)
1862 goto out;
1863
1864 /*
1865 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1866 * to indicate that this field is set. This allows us to set the
1867 * maxblkid to 0 on an existing object in dnode_sync().
1868 */
1869 dn->dn_maxblkid = blkid;
1870 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1871 blkid | DMU_NEXT_MAXBLKID_SET;
1872
1873 /*
1874 * Compute the number of levels necessary to support the new maxblkid.
1875 * Raw sends will ensure nlevels is set correctly for us.
1876 */
1877 new_nlevels = 1;
1878 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1879 for (sz = dn->dn_nblkptr;
1880 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1881 new_nlevels++;
1882
1883 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1884
1885 if (!force) {
1886 if (new_nlevels > dn->dn_nlevels)
1887 dnode_set_nlevels_impl(dn, new_nlevels, tx);
1888 } else {
1889 ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1890 }
1891
1892 out:
1893 if (have_read)
1894 rw_downgrade(&dn->dn_struct_rwlock);
1895 }
1896
1897 static void
1898 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1899 {
1900 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1901 if (db != NULL) {
1902 dmu_buf_will_dirty(&db->db, tx);
1903 dbuf_rele(db, FTAG);
1904 }
1905 }
1906
1907 /*
1908 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1909 * and end_blkid.
1910 */
1911 static void
1912 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1913 dmu_tx_t *tx)
1914 {
1915 dmu_buf_impl_t db_search;
1916 dmu_buf_impl_t *db;
1917 avl_index_t where;
1918
1919 mutex_enter(&dn->dn_dbufs_mtx);
1920
1921 db_search.db_level = 1;
1922 db_search.db_blkid = start_blkid + 1;
1923 db_search.db_state = DB_SEARCH;
1924 for (;;) {
1925
1926 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1927 if (db == NULL)
1928 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1929
1930 if (db == NULL || db->db_level != 1 ||
1931 db->db_blkid >= end_blkid) {
1932 break;
1933 }
1934
1935 /*
1936 * Setup the next blkid we want to search for.
1937 */
1938 db_search.db_blkid = db->db_blkid + 1;
1939 ASSERT3U(db->db_blkid, >=, start_blkid);
1940
1941 /*
1942 * If the dbuf transitions to DB_EVICTING while we're trying
1943 * to dirty it, then we will be unable to discover it in
1944 * the dbuf hash table. This will result in a call to
1945 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1946 * lock. To avoid a deadlock, we drop the lock before
1947 * dirtying the level-1 dbuf.
1948 */
1949 mutex_exit(&dn->dn_dbufs_mtx);
1950 dnode_dirty_l1(dn, db->db_blkid, tx);
1951 mutex_enter(&dn->dn_dbufs_mtx);
1952 }
1953
1954 #ifdef ZFS_DEBUG
1955 /*
1956 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1957 */
1958 db_search.db_level = 1;
1959 db_search.db_blkid = start_blkid + 1;
1960 db_search.db_state = DB_SEARCH;
1961 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1962 if (db == NULL)
1963 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1964 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
1965 if (db->db_level != 1 || db->db_blkid >= end_blkid)
1966 break;
1967 ASSERT(db->db_dirtycnt > 0);
1968 }
1969 #endif
1970 mutex_exit(&dn->dn_dbufs_mtx);
1971 }
1972
1973 void
1974 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1975 {
1976 dmu_buf_impl_t *db;
1977 uint64_t blkoff, blkid, nblks;
1978 int blksz, blkshift, head, tail;
1979 int trunc = FALSE;
1980 int epbs;
1981
1982 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1983 blksz = dn->dn_datablksz;
1984 blkshift = dn->dn_datablkshift;
1985 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1986
1987 if (len == DMU_OBJECT_END) {
1988 len = UINT64_MAX - off;
1989 trunc = TRUE;
1990 }
1991
1992 /*
1993 * First, block align the region to free:
1994 */
1995 if (ISP2(blksz)) {
1996 head = P2NPHASE(off, blksz);
1997 blkoff = P2PHASE(off, blksz);
1998 if ((off >> blkshift) > dn->dn_maxblkid)
1999 goto out;
2000 } else {
2001 ASSERT(dn->dn_maxblkid == 0);
2002 if (off == 0 && len >= blksz) {
2003 /*
2004 * Freeing the whole block; fast-track this request.
2005 */
2006 blkid = 0;
2007 nblks = 1;
2008 if (dn->dn_nlevels > 1)
2009 dnode_dirty_l1(dn, 0, tx);
2010 goto done;
2011 } else if (off >= blksz) {
2012 /* Freeing past end-of-data */
2013 goto out;
2014 } else {
2015 /* Freeing part of the block. */
2016 head = blksz - off;
2017 ASSERT3U(head, >, 0);
2018 }
2019 blkoff = off;
2020 }
2021 /* zero out any partial block data at the start of the range */
2022 if (head) {
2023 ASSERT3U(blkoff + head, ==, blksz);
2024 if (len < head)
2025 head = len;
2026 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2027 TRUE, FALSE, FTAG, &db) == 0) {
2028 caddr_t data;
2029
2030 /* don't dirty if it isn't on disk and isn't dirty */
2031 if (db->db_last_dirty ||
2032 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2033 rw_exit(&dn->dn_struct_rwlock);
2034 dmu_buf_will_dirty(&db->db, tx);
2035 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2036 data = db->db.db_data;
2037 bzero(data + blkoff, head);
2038 }
2039 dbuf_rele(db, FTAG);
2040 }
2041 off += head;
2042 len -= head;
2043 }
2044
2045 /* If the range was less than one block, we're done */
2046 if (len == 0)
2047 goto out;
2048
2049 /* If the remaining range is past end of file, we're done */
2050 if ((off >> blkshift) > dn->dn_maxblkid)
2051 goto out;
2052
2053 ASSERT(ISP2(blksz));
2054 if (trunc)
2055 tail = 0;
2056 else
2057 tail = P2PHASE(len, blksz);
2058
2059 ASSERT0(P2PHASE(off, blksz));
2060 /* zero out any partial block data at the end of the range */
2061 if (tail) {
2062 if (len < tail)
2063 tail = len;
2064 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2065 TRUE, FALSE, FTAG, &db) == 0) {
2066 /* don't dirty if not on disk and not dirty */
2067 if (db->db_last_dirty ||
2068 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2069 rw_exit(&dn->dn_struct_rwlock);
2070 dmu_buf_will_dirty(&db->db, tx);
2071 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2072 bzero(db->db.db_data, tail);
2073 }
2074 dbuf_rele(db, FTAG);
2075 }
2076 len -= tail;
2077 }
2078
2079 /* If the range did not include a full block, we are done */
2080 if (len == 0)
2081 goto out;
2082
2083 ASSERT(IS_P2ALIGNED(off, blksz));
2084 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2085 blkid = off >> blkshift;
2086 nblks = len >> blkshift;
2087 if (trunc)
2088 nblks += 1;
2089
2090 /*
2091 * Dirty all the indirect blocks in this range. Note that only
2092 * the first and last indirect blocks can actually be written
2093 * (if they were partially freed) -- they must be dirtied, even if
2094 * they do not exist on disk yet. The interior blocks will
2095 * be freed by free_children(), so they will not actually be written.
2096 * Even though these interior blocks will not be written, we
2097 * dirty them for two reasons:
2098 *
2099 * - It ensures that the indirect blocks remain in memory until
2100 * syncing context. (They have already been prefetched by
2101 * dmu_tx_hold_free(), so we don't have to worry about reading
2102 * them serially here.)
2103 *
2104 * - The dirty space accounting will put pressure on the txg sync
2105 * mechanism to begin syncing, and to delay transactions if there
2106 * is a large amount of freeing. Even though these indirect
2107 * blocks will not be written, we could need to write the same
2108 * amount of space if we copy the freed BPs into deadlists.
2109 */
2110 if (dn->dn_nlevels > 1) {
2111 uint64_t first, last;
2112
2113 first = blkid >> epbs;
2114 dnode_dirty_l1(dn, first, tx);
2115 if (trunc)
2116 last = dn->dn_maxblkid >> epbs;
2117 else
2118 last = (blkid + nblks - 1) >> epbs;
2119 if (last != first)
2120 dnode_dirty_l1(dn, last, tx);
2121
2122 dnode_dirty_l1range(dn, first, last, tx);
2123
2124 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2125 SPA_BLKPTRSHIFT;
2126 for (uint64_t i = first + 1; i < last; i++) {
2127 /*
2128 * Set i to the blockid of the next non-hole
2129 * level-1 indirect block at or after i. Note
2130 * that dnode_next_offset() operates in terms of
2131 * level-0-equivalent bytes.
2132 */
2133 uint64_t ibyte = i << shift;
2134 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2135 &ibyte, 2, 1, 0);
2136 i = ibyte >> shift;
2137 if (i >= last)
2138 break;
2139
2140 /*
2141 * Normally we should not see an error, either
2142 * from dnode_next_offset() or dbuf_hold_level()
2143 * (except for ESRCH from dnode_next_offset).
2144 * If there is an i/o error, then when we read
2145 * this block in syncing context, it will use
2146 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2147 * to the "failmode" property. dnode_next_offset()
2148 * doesn't have a flag to indicate MUSTSUCCEED.
2149 */
2150 if (err != 0)
2151 break;
2152
2153 dnode_dirty_l1(dn, i, tx);
2154 }
2155 }
2156
2157 done:
2158 /*
2159 * Add this range to the dnode range list.
2160 * We will finish up this free operation in the syncing phase.
2161 */
2162 mutex_enter(&dn->dn_mtx);
2163 {
2164 int txgoff = tx->tx_txg & TXG_MASK;
2165 if (dn->dn_free_ranges[txgoff] == NULL) {
2166 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
2167 }
2168 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2169 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2170 }
2171 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2172 blkid, nblks, tx->tx_txg);
2173 mutex_exit(&dn->dn_mtx);
2174
2175 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2176 dnode_setdirty(dn, tx);
2177 out:
2178
2179 rw_exit(&dn->dn_struct_rwlock);
2180 }
2181
2182 static boolean_t
2183 dnode_spill_freed(dnode_t *dn)
2184 {
2185 int i;
2186
2187 mutex_enter(&dn->dn_mtx);
2188 for (i = 0; i < TXG_SIZE; i++) {
2189 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2190 break;
2191 }
2192 mutex_exit(&dn->dn_mtx);
2193 return (i < TXG_SIZE);
2194 }
2195
2196 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2197 uint64_t
2198 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2199 {
2200 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2201 int i;
2202
2203 if (blkid == DMU_BONUS_BLKID)
2204 return (FALSE);
2205
2206 /*
2207 * If we're in the process of opening the pool, dp will not be
2208 * set yet, but there shouldn't be anything dirty.
2209 */
2210 if (dp == NULL)
2211 return (FALSE);
2212
2213 if (dn->dn_free_txg)
2214 return (TRUE);
2215
2216 if (blkid == DMU_SPILL_BLKID)
2217 return (dnode_spill_freed(dn));
2218
2219 mutex_enter(&dn->dn_mtx);
2220 for (i = 0; i < TXG_SIZE; i++) {
2221 if (dn->dn_free_ranges[i] != NULL &&
2222 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2223 break;
2224 }
2225 mutex_exit(&dn->dn_mtx);
2226 return (i < TXG_SIZE);
2227 }
2228
2229 /* call from syncing context when we actually write/free space for this dnode */
2230 void
2231 dnode_diduse_space(dnode_t *dn, int64_t delta)
2232 {
2233 uint64_t space;
2234 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2235 dn, dn->dn_phys,
2236 (u_longlong_t)dn->dn_phys->dn_used,
2237 (longlong_t)delta);
2238
2239 mutex_enter(&dn->dn_mtx);
2240 space = DN_USED_BYTES(dn->dn_phys);
2241 if (delta > 0) {
2242 ASSERT3U(space + delta, >=, space); /* no overflow */
2243 } else {
2244 ASSERT3U(space, >=, -delta); /* no underflow */
2245 }
2246 space += delta;
2247 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2248 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2249 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2250 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2251 } else {
2252 dn->dn_phys->dn_used = space;
2253 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2254 }
2255 mutex_exit(&dn->dn_mtx);
2256 }
2257
2258 /*
2259 * Scans a block at the indicated "level" looking for a hole or data,
2260 * depending on 'flags'.
2261 *
2262 * If level > 0, then we are scanning an indirect block looking at its
2263 * pointers. If level == 0, then we are looking at a block of dnodes.
2264 *
2265 * If we don't find what we are looking for in the block, we return ESRCH.
2266 * Otherwise, return with *offset pointing to the beginning (if searching
2267 * forwards) or end (if searching backwards) of the range covered by the
2268 * block pointer we matched on (or dnode).
2269 *
2270 * The basic search algorithm used below by dnode_next_offset() is to
2271 * use this function to search up the block tree (widen the search) until
2272 * we find something (i.e., we don't return ESRCH) and then search back
2273 * down the tree (narrow the search) until we reach our original search
2274 * level.
2275 */
2276 static int
2277 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2278 int lvl, uint64_t blkfill, uint64_t txg)
2279 {
2280 dmu_buf_impl_t *db = NULL;
2281 void *data = NULL;
2282 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2283 uint64_t epb = 1ULL << epbs;
2284 uint64_t minfill, maxfill;
2285 boolean_t hole;
2286 int i, inc, error, span;
2287
2288 hole = ((flags & DNODE_FIND_HOLE) != 0);
2289 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2290 ASSERT(txg == 0 || !hole);
2291
2292 if (lvl == dn->dn_phys->dn_nlevels) {
2293 error = 0;
2294 epb = dn->dn_phys->dn_nblkptr;
2295 data = dn->dn_phys->dn_blkptr;
2296 } else {
2297 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2298 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2299 if (error) {
2300 if (error != ENOENT)
2301 return (error);
2302 if (hole)
2303 return (0);
2304 /*
2305 * This can only happen when we are searching up
2306 * the block tree for data. We don't really need to
2307 * adjust the offset, as we will just end up looking
2308 * at the pointer to this block in its parent, and its
2309 * going to be unallocated, so we will skip over it.
2310 */
2311 return (SET_ERROR(ESRCH));
2312 }
2313 error = dbuf_read(db, NULL,
2314 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2315 if (error) {
2316 dbuf_rele(db, FTAG);
2317 return (error);
2318 }
2319 data = db->db.db_data;
2320 }
2321
2322
2323 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2324 db->db_blkptr->blk_birth <= txg ||
2325 BP_IS_HOLE(db->db_blkptr))) {
2326 /*
2327 * This can only happen when we are searching up the tree
2328 * and these conditions mean that we need to keep climbing.
2329 */
2330 error = SET_ERROR(ESRCH);
2331 } else if (lvl == 0) {
2332 dnode_phys_t *dnp = data;
2333
2334 ASSERT(dn->dn_type == DMU_OT_DNODE);
2335 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2336
2337 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2338 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2339 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2340 break;
2341 }
2342
2343 if (i == blkfill)
2344 error = SET_ERROR(ESRCH);
2345
2346 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2347 (i << DNODE_SHIFT);
2348 } else {
2349 blkptr_t *bp = data;
2350 uint64_t start = *offset;
2351 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2352 minfill = 0;
2353 maxfill = blkfill << ((lvl - 1) * epbs);
2354
2355 if (hole)
2356 maxfill--;
2357 else
2358 minfill++;
2359
2360 if (span >= 8 * sizeof (*offset)) {
2361 /* This only happens on the highest indirection level */
2362 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2363 *offset = 0;
2364 } else {
2365 *offset = *offset >> span;
2366 }
2367
2368 for (i = BF64_GET(*offset, 0, epbs);
2369 i >= 0 && i < epb; i += inc) {
2370 if (BP_GET_FILL(&bp[i]) >= minfill &&
2371 BP_GET_FILL(&bp[i]) <= maxfill &&
2372 (hole || bp[i].blk_birth > txg))
2373 break;
2374 if (inc > 0 || *offset > 0)
2375 *offset += inc;
2376 }
2377
2378 if (span >= 8 * sizeof (*offset)) {
2379 *offset = start;
2380 } else {
2381 *offset = *offset << span;
2382 }
2383
2384 if (inc < 0) {
2385 /* traversing backwards; position offset at the end */
2386 ASSERT3U(*offset, <=, start);
2387 *offset = MIN(*offset + (1ULL << span) - 1, start);
2388 } else if (*offset < start) {
2389 *offset = start;
2390 }
2391 if (i < 0 || i >= epb)
2392 error = SET_ERROR(ESRCH);
2393 }
2394
2395 if (db)
2396 dbuf_rele(db, FTAG);
2397
2398 return (error);
2399 }
2400
2401 /*
2402 * Find the next hole, data, or sparse region at or after *offset.
2403 * The value 'blkfill' tells us how many items we expect to find
2404 * in an L0 data block; this value is 1 for normal objects,
2405 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2406 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2407 *
2408 * Examples:
2409 *
2410 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2411 * Finds the next/previous hole/data in a file.
2412 * Used in dmu_offset_next().
2413 *
2414 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2415 * Finds the next free/allocated dnode an objset's meta-dnode.
2416 * Only finds objects that have new contents since txg (ie.
2417 * bonus buffer changes and content removal are ignored).
2418 * Used in dmu_object_next().
2419 *
2420 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2421 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2422 * Used in dmu_object_alloc().
2423 */
2424 int
2425 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2426 int minlvl, uint64_t blkfill, uint64_t txg)
2427 {
2428 uint64_t initial_offset = *offset;
2429 int lvl, maxlvl;
2430 int error = 0;
2431
2432 if (!(flags & DNODE_FIND_HAVELOCK))
2433 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2434
2435 if (dn->dn_phys->dn_nlevels == 0) {
2436 error = SET_ERROR(ESRCH);
2437 goto out;
2438 }
2439
2440 if (dn->dn_datablkshift == 0) {
2441 if (*offset < dn->dn_datablksz) {
2442 if (flags & DNODE_FIND_HOLE)
2443 *offset = dn->dn_datablksz;
2444 } else {
2445 error = SET_ERROR(ESRCH);
2446 }
2447 goto out;
2448 }
2449
2450 maxlvl = dn->dn_phys->dn_nlevels;
2451
2452 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2453 error = dnode_next_offset_level(dn,
2454 flags, offset, lvl, blkfill, txg);
2455 if (error != ESRCH)
2456 break;
2457 }
2458
2459 while (error == 0 && --lvl >= minlvl) {
2460 error = dnode_next_offset_level(dn,
2461 flags, offset, lvl, blkfill, txg);
2462 }
2463
2464 /*
2465 * There's always a "virtual hole" at the end of the object, even
2466 * if all BP's which physically exist are non-holes.
2467 */
2468 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2469 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2470 error = 0;
2471 }
2472
2473 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2474 initial_offset < *offset : initial_offset > *offset))
2475 error = SET_ERROR(ESRCH);
2476 out:
2477 if (!(flags & DNODE_FIND_HAVELOCK))
2478 rw_exit(&dn->dn_struct_rwlock);
2479
2480 return (error);
2481 }