]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode_sync.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / dnode_sync.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2020 Oxide Computer Company
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dbuf.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/spa.h>
38 #include <sys/range_tree.h>
39 #include <sys/zfeature.h>
40
41 static void
42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
43 {
44 dmu_buf_impl_t *db;
45 int txgoff = tx->tx_txg & TXG_MASK;
46 int nblkptr = dn->dn_phys->dn_nblkptr;
47 int old_toplvl = dn->dn_phys->dn_nlevels - 1;
48 int new_level = dn->dn_next_nlevels[txgoff];
49 int i;
50
51 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
52
53 /* this dnode can't be paged out because it's dirty */
54 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
56
57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
58 ASSERT(db != NULL);
59
60 dn->dn_phys->dn_nlevels = new_level;
61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
62 (u_longlong_t)dn->dn_object, dn->dn_phys->dn_nlevels);
63
64 /*
65 * Lock ordering requires that we hold the children's db_mutexes (by
66 * calling dbuf_find()) before holding the parent's db_rwlock. The lock
67 * order is imposed by dbuf_read's steps of "grab the lock to protect
68 * db_parent, get db_parent, hold db_parent's db_rwlock".
69 */
70 dmu_buf_impl_t *children[DN_MAX_NBLKPTR];
71 ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR);
72 for (i = 0; i < nblkptr; i++) {
73 children[i] =
74 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
75 }
76
77 /* transfer dnode's block pointers to new indirect block */
78 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
79 if (dn->dn_dbuf != NULL)
80 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER);
81 rw_enter(&db->db_rwlock, RW_WRITER);
82 ASSERT(db->db.db_data);
83 ASSERT(arc_released(db->db_buf));
84 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
85 memcpy(db->db.db_data, dn->dn_phys->dn_blkptr,
86 sizeof (blkptr_t) * nblkptr);
87 arc_buf_freeze(db->db_buf);
88
89 /* set dbuf's parent pointers to new indirect buf */
90 for (i = 0; i < nblkptr; i++) {
91 dmu_buf_impl_t *child = children[i];
92
93 if (child == NULL)
94 continue;
95 #ifdef ZFS_DEBUG
96 DB_DNODE_ENTER(child);
97 ASSERT3P(DB_DNODE(child), ==, dn);
98 DB_DNODE_EXIT(child);
99 #endif /* DEBUG */
100 if (child->db_parent && child->db_parent != dn->dn_dbuf) {
101 ASSERT(child->db_parent->db_level == db->db_level);
102 ASSERT(child->db_blkptr !=
103 &dn->dn_phys->dn_blkptr[child->db_blkid]);
104 mutex_exit(&child->db_mtx);
105 continue;
106 }
107 ASSERT(child->db_parent == NULL ||
108 child->db_parent == dn->dn_dbuf);
109
110 child->db_parent = db;
111 dbuf_add_ref(db, child);
112 if (db->db.db_data)
113 child->db_blkptr = (blkptr_t *)db->db.db_data + i;
114 else
115 child->db_blkptr = NULL;
116 dprintf_dbuf_bp(child, child->db_blkptr,
117 "changed db_blkptr to new indirect %s", "");
118
119 mutex_exit(&child->db_mtx);
120 }
121
122 memset(dn->dn_phys->dn_blkptr, 0, sizeof (blkptr_t) * nblkptr);
123
124 rw_exit(&db->db_rwlock);
125 if (dn->dn_dbuf != NULL)
126 rw_exit(&dn->dn_dbuf->db_rwlock);
127
128 dbuf_rele(db, FTAG);
129
130 rw_exit(&dn->dn_struct_rwlock);
131 }
132
133 static void
134 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
135 {
136 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
137 uint64_t bytesfreed = 0;
138
139 dprintf("ds=%p obj=%llx num=%d\n", ds, (u_longlong_t)dn->dn_object,
140 num);
141
142 for (int i = 0; i < num; i++, bp++) {
143 if (BP_IS_HOLE(bp))
144 continue;
145
146 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
147 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
148
149 /*
150 * Save some useful information on the holes being
151 * punched, including logical size, type, and indirection
152 * level. Retaining birth time enables detection of when
153 * holes are punched for reducing the number of free
154 * records transmitted during a zfs send.
155 */
156
157 uint64_t lsize = BP_GET_LSIZE(bp);
158 dmu_object_type_t type = BP_GET_TYPE(bp);
159 uint64_t lvl = BP_GET_LEVEL(bp);
160
161 memset(bp, 0, sizeof (blkptr_t));
162
163 if (spa_feature_is_active(dn->dn_objset->os_spa,
164 SPA_FEATURE_HOLE_BIRTH)) {
165 BP_SET_LSIZE(bp, lsize);
166 BP_SET_TYPE(bp, type);
167 BP_SET_LEVEL(bp, lvl);
168 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
169 }
170 }
171 dnode_diduse_space(dn, -bytesfreed);
172 }
173
174 #ifdef ZFS_DEBUG
175 static void
176 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
177 {
178 int off, num;
179 int i, err, epbs;
180 uint64_t txg = tx->tx_txg;
181 dnode_t *dn;
182
183 DB_DNODE_ENTER(db);
184 dn = DB_DNODE(db);
185 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
186 off = start - (db->db_blkid * 1<<epbs);
187 num = end - start + 1;
188
189 ASSERT3U(off, >=, 0);
190 ASSERT3U(num, >=, 0);
191 ASSERT3U(db->db_level, >, 0);
192 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
193 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
194 ASSERT(db->db_blkptr != NULL);
195
196 for (i = off; i < off+num; i++) {
197 uint64_t *buf;
198 dmu_buf_impl_t *child;
199 dbuf_dirty_record_t *dr;
200 int j;
201
202 ASSERT(db->db_level == 1);
203
204 rw_enter(&dn->dn_struct_rwlock, RW_READER);
205 err = dbuf_hold_impl(dn, db->db_level - 1,
206 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
207 rw_exit(&dn->dn_struct_rwlock);
208 if (err == ENOENT)
209 continue;
210 ASSERT(err == 0);
211 ASSERT(child->db_level == 0);
212 dr = dbuf_find_dirty_eq(child, txg);
213
214 /* data_old better be zeroed */
215 if (dr) {
216 buf = dr->dt.dl.dr_data->b_data;
217 for (j = 0; j < child->db.db_size >> 3; j++) {
218 if (buf[j] != 0) {
219 panic("freed data not zero: "
220 "child=%p i=%d off=%d num=%d\n",
221 (void *)child, i, off, num);
222 }
223 }
224 }
225
226 /*
227 * db_data better be zeroed unless it's dirty in a
228 * future txg.
229 */
230 mutex_enter(&child->db_mtx);
231 buf = child->db.db_data;
232 if (buf != NULL && child->db_state != DB_FILL &&
233 list_is_empty(&child->db_dirty_records)) {
234 for (j = 0; j < child->db.db_size >> 3; j++) {
235 if (buf[j] != 0) {
236 panic("freed data not zero: "
237 "child=%p i=%d off=%d num=%d\n",
238 (void *)child, i, off, num);
239 }
240 }
241 }
242 mutex_exit(&child->db_mtx);
243
244 dbuf_rele(child, FTAG);
245 }
246 DB_DNODE_EXIT(db);
247 }
248 #endif
249
250 /*
251 * We don't usually free the indirect blocks here. If in one txg we have a
252 * free_range and a write to the same indirect block, it's important that we
253 * preserve the hole's birth times. Therefore, we don't free any any indirect
254 * blocks in free_children(). If an indirect block happens to turn into all
255 * holes, it will be freed by dbuf_write_children_ready, which happens at a
256 * point in the syncing process where we know for certain the contents of the
257 * indirect block.
258 *
259 * However, if we're freeing a dnode, its space accounting must go to zero
260 * before we actually try to free the dnode, or we will trip an assertion. In
261 * addition, we know the case described above cannot occur, because the dnode is
262 * being freed. Therefore, we free the indirect blocks immediately in that
263 * case.
264 */
265 static void
266 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
267 boolean_t free_indirects, dmu_tx_t *tx)
268 {
269 dnode_t *dn;
270 blkptr_t *bp;
271 dmu_buf_impl_t *subdb;
272 uint64_t start, end, dbstart, dbend;
273 unsigned int epbs, shift, i;
274
275 /*
276 * There is a small possibility that this block will not be cached:
277 * 1 - if level > 1 and there are no children with level <= 1
278 * 2 - if this block was evicted since we read it from
279 * dmu_tx_hold_free().
280 */
281 if (db->db_state != DB_CACHED)
282 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
283
284 /*
285 * If we modify this indirect block, and we are not freeing the
286 * dnode (!free_indirects), then this indirect block needs to get
287 * written to disk by dbuf_write(). If it is dirty, we know it will
288 * be written (otherwise, we would have incorrect on-disk state
289 * because the space would be freed but still referenced by the BP
290 * in this indirect block). Therefore we VERIFY that it is
291 * dirty.
292 *
293 * Our VERIFY covers some cases that do not actually have to be
294 * dirty, but the open-context code happens to dirty. E.g. if the
295 * blocks we are freeing are all holes, because in that case, we
296 * are only freeing part of this indirect block, so it is an
297 * ancestor of the first or last block to be freed. The first and
298 * last L1 indirect blocks are always dirtied by dnode_free_range().
299 */
300 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
301 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
302 dmu_buf_unlock_parent(db, dblt, FTAG);
303
304 dbuf_release_bp(db);
305 bp = db->db.db_data;
306
307 DB_DNODE_ENTER(db);
308 dn = DB_DNODE(db);
309 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
310 ASSERT3U(epbs, <, 31);
311 shift = (db->db_level - 1) * epbs;
312 dbstart = db->db_blkid << epbs;
313 start = blkid >> shift;
314 if (dbstart < start) {
315 bp += start - dbstart;
316 } else {
317 start = dbstart;
318 }
319 dbend = ((db->db_blkid + 1) << epbs) - 1;
320 end = (blkid + nblks - 1) >> shift;
321 if (dbend <= end)
322 end = dbend;
323
324 ASSERT3U(start, <=, end);
325
326 if (db->db_level == 1) {
327 FREE_VERIFY(db, start, end, tx);
328 rw_enter(&db->db_rwlock, RW_WRITER);
329 free_blocks(dn, bp, end - start + 1, tx);
330 rw_exit(&db->db_rwlock);
331 } else {
332 for (uint64_t id = start; id <= end; id++, bp++) {
333 if (BP_IS_HOLE(bp))
334 continue;
335 rw_enter(&dn->dn_struct_rwlock, RW_READER);
336 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
337 id, TRUE, FALSE, FTAG, &subdb));
338 rw_exit(&dn->dn_struct_rwlock);
339 ASSERT3P(bp, ==, subdb->db_blkptr);
340
341 free_children(subdb, blkid, nblks, free_indirects, tx);
342 dbuf_rele(subdb, FTAG);
343 }
344 }
345
346 if (free_indirects) {
347 rw_enter(&db->db_rwlock, RW_WRITER);
348 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
349 ASSERT(BP_IS_HOLE(bp));
350 memset(db->db.db_data, 0, db->db.db_size);
351 free_blocks(dn, db->db_blkptr, 1, tx);
352 rw_exit(&db->db_rwlock);
353 }
354
355 DB_DNODE_EXIT(db);
356 arc_buf_freeze(db->db_buf);
357 }
358
359 /*
360 * Traverse the indicated range of the provided file
361 * and "free" all the blocks contained there.
362 */
363 static void
364 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
365 boolean_t free_indirects, dmu_tx_t *tx)
366 {
367 blkptr_t *bp = dn->dn_phys->dn_blkptr;
368 int dnlevel = dn->dn_phys->dn_nlevels;
369 boolean_t trunc = B_FALSE;
370
371 if (blkid > dn->dn_phys->dn_maxblkid)
372 return;
373
374 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
375 if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
376 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
377 trunc = B_TRUE;
378 }
379
380 /* There are no indirect blocks in the object */
381 if (dnlevel == 1) {
382 if (blkid >= dn->dn_phys->dn_nblkptr) {
383 /* this range was never made persistent */
384 return;
385 }
386 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
387 free_blocks(dn, bp + blkid, nblks, tx);
388 } else {
389 int shift = (dnlevel - 1) *
390 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
391 int start = blkid >> shift;
392 int end = (blkid + nblks - 1) >> shift;
393 dmu_buf_impl_t *db;
394
395 ASSERT(start < dn->dn_phys->dn_nblkptr);
396 bp += start;
397 for (int i = start; i <= end; i++, bp++) {
398 if (BP_IS_HOLE(bp))
399 continue;
400 rw_enter(&dn->dn_struct_rwlock, RW_READER);
401 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
402 TRUE, FALSE, FTAG, &db));
403 rw_exit(&dn->dn_struct_rwlock);
404 free_children(db, blkid, nblks, free_indirects, tx);
405 dbuf_rele(db, FTAG);
406 }
407 }
408
409 /*
410 * Do not truncate the maxblkid if we are performing a raw
411 * receive. The raw receive sets the maxblkid manually and
412 * must not be overridden. Usually, the last DRR_FREE record
413 * will be at the maxblkid, because the source system sets
414 * the maxblkid when truncating. However, if the last block
415 * was freed by overwriting with zeros and being compressed
416 * away to a hole, the source system will generate a DRR_FREE
417 * record while leaving the maxblkid after the end of that
418 * record. In this case we need to leave the maxblkid as
419 * indicated in the DRR_OBJECT record, so that it matches the
420 * source system, ensuring that the cryptographic hashes will
421 * match.
422 */
423 if (trunc && !dn->dn_objset->os_raw_receive) {
424 uint64_t off __maybe_unused;
425 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
426
427 off = (dn->dn_phys->dn_maxblkid + 1) *
428 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
429 ASSERT(off < dn->dn_phys->dn_maxblkid ||
430 dn->dn_phys->dn_maxblkid == 0 ||
431 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
432 }
433 }
434
435 typedef struct dnode_sync_free_range_arg {
436 dnode_t *dsfra_dnode;
437 dmu_tx_t *dsfra_tx;
438 boolean_t dsfra_free_indirects;
439 } dnode_sync_free_range_arg_t;
440
441 static void
442 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
443 {
444 dnode_sync_free_range_arg_t *dsfra = arg;
445 dnode_t *dn = dsfra->dsfra_dnode;
446
447 mutex_exit(&dn->dn_mtx);
448 dnode_sync_free_range_impl(dn, blkid, nblks,
449 dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
450 mutex_enter(&dn->dn_mtx);
451 }
452
453 /*
454 * Try to kick all the dnode's dbufs out of the cache...
455 */
456 void
457 dnode_evict_dbufs(dnode_t *dn)
458 {
459 dmu_buf_impl_t *db_marker;
460 dmu_buf_impl_t *db, *db_next;
461
462 db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
463
464 mutex_enter(&dn->dn_dbufs_mtx);
465 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
466
467 #ifdef ZFS_DEBUG
468 DB_DNODE_ENTER(db);
469 ASSERT3P(DB_DNODE(db), ==, dn);
470 DB_DNODE_EXIT(db);
471 #endif /* DEBUG */
472
473 mutex_enter(&db->db_mtx);
474 if (db->db_state != DB_EVICTING &&
475 zfs_refcount_is_zero(&db->db_holds)) {
476 db_marker->db_level = db->db_level;
477 db_marker->db_blkid = db->db_blkid;
478 db_marker->db_state = DB_SEARCH;
479 avl_insert_here(&dn->dn_dbufs, db_marker, db,
480 AVL_BEFORE);
481
482 /*
483 * We need to use the "marker" dbuf rather than
484 * simply getting the next dbuf, because
485 * dbuf_destroy() may actually remove multiple dbufs.
486 * It can call itself recursively on the parent dbuf,
487 * which may also be removed from dn_dbufs. The code
488 * flow would look like:
489 *
490 * dbuf_destroy():
491 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
492 * if (!cacheable || pending_evict)
493 * dbuf_destroy()
494 */
495 dbuf_destroy(db);
496
497 db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
498 avl_remove(&dn->dn_dbufs, db_marker);
499 } else {
500 db->db_pending_evict = TRUE;
501 mutex_exit(&db->db_mtx);
502 db_next = AVL_NEXT(&dn->dn_dbufs, db);
503 }
504 }
505 mutex_exit(&dn->dn_dbufs_mtx);
506
507 kmem_free(db_marker, sizeof (dmu_buf_impl_t));
508
509 dnode_evict_bonus(dn);
510 }
511
512 void
513 dnode_evict_bonus(dnode_t *dn)
514 {
515 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
516 if (dn->dn_bonus != NULL) {
517 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
518 mutex_enter(&dn->dn_bonus->db_mtx);
519 dbuf_destroy(dn->dn_bonus);
520 dn->dn_bonus = NULL;
521 } else {
522 dn->dn_bonus->db_pending_evict = TRUE;
523 }
524 }
525 rw_exit(&dn->dn_struct_rwlock);
526 }
527
528 static void
529 dnode_undirty_dbufs(list_t *list)
530 {
531 dbuf_dirty_record_t *dr;
532
533 while ((dr = list_head(list))) {
534 dmu_buf_impl_t *db = dr->dr_dbuf;
535 uint64_t txg = dr->dr_txg;
536
537 if (db->db_level != 0)
538 dnode_undirty_dbufs(&dr->dt.di.dr_children);
539
540 mutex_enter(&db->db_mtx);
541 /* XXX - use dbuf_undirty()? */
542 list_remove(list, dr);
543 ASSERT(list_head(&db->db_dirty_records) == dr);
544 list_remove_head(&db->db_dirty_records);
545 ASSERT(list_is_empty(&db->db_dirty_records));
546 db->db_dirtycnt -= 1;
547 if (db->db_level == 0) {
548 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
549 dr->dt.dl.dr_data == db->db_buf);
550 dbuf_unoverride(dr);
551 } else {
552 mutex_destroy(&dr->dt.di.dr_mtx);
553 list_destroy(&dr->dt.di.dr_children);
554 }
555 kmem_free(dr, sizeof (dbuf_dirty_record_t));
556 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
557 }
558 }
559
560 static void
561 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
562 {
563 int txgoff = tx->tx_txg & TXG_MASK;
564
565 ASSERT(dmu_tx_is_syncing(tx));
566
567 /*
568 * Our contents should have been freed in dnode_sync() by the
569 * free range record inserted by the caller of dnode_free().
570 */
571 ASSERT0(DN_USED_BYTES(dn->dn_phys));
572 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
573
574 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
575 dnode_evict_dbufs(dn);
576
577 /*
578 * XXX - It would be nice to assert this, but we may still
579 * have residual holds from async evictions from the arc...
580 *
581 * zfs_obj_to_path() also depends on this being
582 * commented out.
583 *
584 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
585 */
586
587 /* Undirty next bits */
588 dn->dn_next_nlevels[txgoff] = 0;
589 dn->dn_next_indblkshift[txgoff] = 0;
590 dn->dn_next_blksz[txgoff] = 0;
591 dn->dn_next_maxblkid[txgoff] = 0;
592
593 /* ASSERT(blkptrs are zero); */
594 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
595 ASSERT(dn->dn_type != DMU_OT_NONE);
596
597 ASSERT(dn->dn_free_txg > 0);
598 if (dn->dn_allocated_txg != dn->dn_free_txg)
599 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
600 memset(dn->dn_phys, 0, sizeof (dnode_phys_t) * dn->dn_num_slots);
601 dnode_free_interior_slots(dn);
602
603 mutex_enter(&dn->dn_mtx);
604 dn->dn_type = DMU_OT_NONE;
605 dn->dn_maxblkid = 0;
606 dn->dn_allocated_txg = 0;
607 dn->dn_free_txg = 0;
608 dn->dn_have_spill = B_FALSE;
609 dn->dn_num_slots = 1;
610 mutex_exit(&dn->dn_mtx);
611
612 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
613
614 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
615 /*
616 * Now that we've released our hold, the dnode may
617 * be evicted, so we mustn't access it.
618 */
619 }
620
621 /*
622 * Write out the dnode's dirty buffers.
623 */
624 void
625 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
626 {
627 objset_t *os = dn->dn_objset;
628 dnode_phys_t *dnp = dn->dn_phys;
629 int txgoff = tx->tx_txg & TXG_MASK;
630 list_t *list = &dn->dn_dirty_records[txgoff];
631 static const dnode_phys_t zerodn __maybe_unused = { 0 };
632 boolean_t kill_spill = B_FALSE;
633
634 ASSERT(dmu_tx_is_syncing(tx));
635 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
636 ASSERT(dnp->dn_type != DMU_OT_NONE ||
637 memcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
638 DNODE_VERIFY(dn);
639
640 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
641
642 /*
643 * Do user accounting if it is enabled and this is not
644 * an encrypted receive.
645 */
646 if (dmu_objset_userused_enabled(os) &&
647 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
648 (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
649 mutex_enter(&dn->dn_mtx);
650 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
651 dn->dn_oldflags = dn->dn_phys->dn_flags;
652 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
653 if (dmu_objset_userobjused_enabled(dn->dn_objset))
654 dn->dn_phys->dn_flags |=
655 DNODE_FLAG_USEROBJUSED_ACCOUNTED;
656 mutex_exit(&dn->dn_mtx);
657 dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
658 } else if (!(os->os_encrypted && dmu_objset_is_receiving(os))) {
659 /*
660 * Once we account for it, we should always account for it,
661 * except for the case of a raw receive. We will not be able
662 * to account for it until the receiving dataset has been
663 * mounted.
664 */
665 ASSERT(!(dn->dn_phys->dn_flags &
666 DNODE_FLAG_USERUSED_ACCOUNTED));
667 ASSERT(!(dn->dn_phys->dn_flags &
668 DNODE_FLAG_USEROBJUSED_ACCOUNTED));
669 }
670
671 mutex_enter(&dn->dn_mtx);
672 if (dn->dn_allocated_txg == tx->tx_txg) {
673 /* The dnode is newly allocated or reallocated */
674 if (dnp->dn_type == DMU_OT_NONE) {
675 /* this is a first alloc, not a realloc */
676 dnp->dn_nlevels = 1;
677 dnp->dn_nblkptr = dn->dn_nblkptr;
678 }
679
680 dnp->dn_type = dn->dn_type;
681 dnp->dn_bonustype = dn->dn_bonustype;
682 dnp->dn_bonuslen = dn->dn_bonuslen;
683 }
684
685 dnp->dn_extra_slots = dn->dn_num_slots - 1;
686
687 ASSERT(dnp->dn_nlevels > 1 ||
688 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
689 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
690 BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
691 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
692 ASSERT(dnp->dn_nlevels < 2 ||
693 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
694 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
695
696 if (dn->dn_next_type[txgoff] != 0) {
697 dnp->dn_type = dn->dn_type;
698 dn->dn_next_type[txgoff] = 0;
699 }
700
701 if (dn->dn_next_blksz[txgoff] != 0) {
702 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
703 SPA_MINBLOCKSIZE) == 0);
704 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
705 dn->dn_maxblkid == 0 || list_head(list) != NULL ||
706 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
707 dnp->dn_datablkszsec ||
708 !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
709 dnp->dn_datablkszsec =
710 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
711 dn->dn_next_blksz[txgoff] = 0;
712 }
713
714 if (dn->dn_next_bonuslen[txgoff] != 0) {
715 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
716 dnp->dn_bonuslen = 0;
717 else
718 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
719 ASSERT(dnp->dn_bonuslen <=
720 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
721 dn->dn_next_bonuslen[txgoff] = 0;
722 }
723
724 if (dn->dn_next_bonustype[txgoff] != 0) {
725 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
726 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
727 dn->dn_next_bonustype[txgoff] = 0;
728 }
729
730 boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
731 dn->dn_free_txg <= tx->tx_txg;
732
733 /*
734 * Remove the spill block if we have been explicitly asked to
735 * remove it, or if the object is being removed.
736 */
737 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
738 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
739 kill_spill = B_TRUE;
740 dn->dn_rm_spillblk[txgoff] = 0;
741 }
742
743 if (dn->dn_next_indblkshift[txgoff] != 0) {
744 ASSERT(dnp->dn_nlevels == 1);
745 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
746 dn->dn_next_indblkshift[txgoff] = 0;
747 }
748
749 /*
750 * Just take the live (open-context) values for checksum and compress.
751 * Strictly speaking it's a future leak, but nothing bad happens if we
752 * start using the new checksum or compress algorithm a little early.
753 */
754 dnp->dn_checksum = dn->dn_checksum;
755 dnp->dn_compress = dn->dn_compress;
756
757 mutex_exit(&dn->dn_mtx);
758
759 if (kill_spill) {
760 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
761 mutex_enter(&dn->dn_mtx);
762 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
763 mutex_exit(&dn->dn_mtx);
764 }
765
766 /* process all the "freed" ranges in the file */
767 if (dn->dn_free_ranges[txgoff] != NULL) {
768 dnode_sync_free_range_arg_t dsfra;
769 dsfra.dsfra_dnode = dn;
770 dsfra.dsfra_tx = tx;
771 dsfra.dsfra_free_indirects = freeing_dnode;
772 mutex_enter(&dn->dn_mtx);
773 if (freeing_dnode) {
774 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
775 0, dn->dn_maxblkid + 1));
776 }
777 /*
778 * Because dnode_sync_free_range() must drop dn_mtx during its
779 * processing, using it as a callback to range_tree_vacate() is
780 * not safe. No other operations (besides destroy) are allowed
781 * once range_tree_vacate() has begun, and dropping dn_mtx
782 * would leave a window open for another thread to observe that
783 * invalid (and unsafe) state.
784 */
785 range_tree_walk(dn->dn_free_ranges[txgoff],
786 dnode_sync_free_range, &dsfra);
787 range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL);
788 range_tree_destroy(dn->dn_free_ranges[txgoff]);
789 dn->dn_free_ranges[txgoff] = NULL;
790 mutex_exit(&dn->dn_mtx);
791 }
792
793 if (freeing_dnode) {
794 dn->dn_objset->os_freed_dnodes++;
795 dnode_sync_free(dn, tx);
796 return;
797 }
798
799 if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
800 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
801 mutex_enter(&ds->ds_lock);
802 ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] =
803 (void *)B_TRUE;
804 mutex_exit(&ds->ds_lock);
805 }
806
807 if (dn->dn_next_nlevels[txgoff]) {
808 dnode_increase_indirection(dn, tx);
809 dn->dn_next_nlevels[txgoff] = 0;
810 }
811
812 /*
813 * This must be done after dnode_sync_free_range()
814 * and dnode_increase_indirection(). See dnode_new_blkid()
815 * for an explanation of the high bit being set.
816 */
817 if (dn->dn_next_maxblkid[txgoff]) {
818 mutex_enter(&dn->dn_mtx);
819 dnp->dn_maxblkid =
820 dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
821 dn->dn_next_maxblkid[txgoff] = 0;
822 mutex_exit(&dn->dn_mtx);
823 }
824
825 if (dn->dn_next_nblkptr[txgoff]) {
826 /* this should only happen on a realloc */
827 ASSERT(dn->dn_allocated_txg == tx->tx_txg);
828 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
829 /* zero the new blkptrs we are gaining */
830 memset(dnp->dn_blkptr + dnp->dn_nblkptr, 0,
831 sizeof (blkptr_t) *
832 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
833 #ifdef ZFS_DEBUG
834 } else {
835 int i;
836 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
837 /* the blkptrs we are losing better be unallocated */
838 for (i = 0; i < dnp->dn_nblkptr; i++) {
839 if (i >= dn->dn_next_nblkptr[txgoff])
840 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
841 }
842 #endif
843 }
844 mutex_enter(&dn->dn_mtx);
845 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
846 dn->dn_next_nblkptr[txgoff] = 0;
847 mutex_exit(&dn->dn_mtx);
848 }
849
850 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
851
852 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
853 ASSERT3P(list_head(list), ==, NULL);
854 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
855 }
856
857 ASSERT3U(dnp->dn_bonuslen, <=, DN_MAX_BONUS_LEN(dnp));
858
859 /*
860 * Although we have dropped our reference to the dnode, it
861 * can't be evicted until its written, and we haven't yet
862 * initiated the IO for the dnode's dbuf. Additionally, the caller
863 * has already added a reference to the dnode because it's on the
864 * os_synced_dnodes list.
865 */
866 }