]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode_sync.c
Prefix all refcount functions with zfs_
[mirror_zfs.git] / module / zfs / dnode_sync.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/range_tree.h>
38 #include <sys/zfeature.h>
39
40 static void
41 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
42 {
43 dmu_buf_impl_t *db;
44 int txgoff = tx->tx_txg & TXG_MASK;
45 int nblkptr = dn->dn_phys->dn_nblkptr;
46 int old_toplvl = dn->dn_phys->dn_nlevels - 1;
47 int new_level = dn->dn_next_nlevels[txgoff];
48 int i;
49
50 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
51
52 /* this dnode can't be paged out because it's dirty */
53 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
54 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
56
57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
58 ASSERT(db != NULL);
59
60 dn->dn_phys->dn_nlevels = new_level;
61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
62 dn->dn_object, dn->dn_phys->dn_nlevels);
63
64 /* transfer dnode's block pointers to new indirect block */
65 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
66 ASSERT(db->db.db_data);
67 ASSERT(arc_released(db->db_buf));
68 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
69 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
70 sizeof (blkptr_t) * nblkptr);
71 arc_buf_freeze(db->db_buf);
72
73 /* set dbuf's parent pointers to new indirect buf */
74 for (i = 0; i < nblkptr; i++) {
75 dmu_buf_impl_t *child =
76 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
77
78 if (child == NULL)
79 continue;
80 #ifdef DEBUG
81 DB_DNODE_ENTER(child);
82 ASSERT3P(DB_DNODE(child), ==, dn);
83 DB_DNODE_EXIT(child);
84 #endif /* DEBUG */
85 if (child->db_parent && child->db_parent != dn->dn_dbuf) {
86 ASSERT(child->db_parent->db_level == db->db_level);
87 ASSERT(child->db_blkptr !=
88 &dn->dn_phys->dn_blkptr[child->db_blkid]);
89 mutex_exit(&child->db_mtx);
90 continue;
91 }
92 ASSERT(child->db_parent == NULL ||
93 child->db_parent == dn->dn_dbuf);
94
95 child->db_parent = db;
96 dbuf_add_ref(db, child);
97 if (db->db.db_data)
98 child->db_blkptr = (blkptr_t *)db->db.db_data + i;
99 else
100 child->db_blkptr = NULL;
101 dprintf_dbuf_bp(child, child->db_blkptr,
102 "changed db_blkptr to new indirect %s", "");
103
104 mutex_exit(&child->db_mtx);
105 }
106
107 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
108
109 dbuf_rele(db, FTAG);
110
111 rw_exit(&dn->dn_struct_rwlock);
112 }
113
114 static void
115 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
116 {
117 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
118 uint64_t bytesfreed = 0;
119
120 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
121
122 for (int i = 0; i < num; i++, bp++) {
123 if (BP_IS_HOLE(bp))
124 continue;
125
126 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
127 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
128
129 /*
130 * Save some useful information on the holes being
131 * punched, including logical size, type, and indirection
132 * level. Retaining birth time enables detection of when
133 * holes are punched for reducing the number of free
134 * records transmitted during a zfs send.
135 */
136
137 uint64_t lsize = BP_GET_LSIZE(bp);
138 dmu_object_type_t type = BP_GET_TYPE(bp);
139 uint64_t lvl = BP_GET_LEVEL(bp);
140
141 bzero(bp, sizeof (blkptr_t));
142
143 if (spa_feature_is_active(dn->dn_objset->os_spa,
144 SPA_FEATURE_HOLE_BIRTH)) {
145 BP_SET_LSIZE(bp, lsize);
146 BP_SET_TYPE(bp, type);
147 BP_SET_LEVEL(bp, lvl);
148 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
149 }
150 }
151 dnode_diduse_space(dn, -bytesfreed);
152 }
153
154 #ifdef ZFS_DEBUG
155 static void
156 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
157 {
158 int off, num;
159 int i, err, epbs;
160 uint64_t txg = tx->tx_txg;
161 dnode_t *dn;
162
163 DB_DNODE_ENTER(db);
164 dn = DB_DNODE(db);
165 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
166 off = start - (db->db_blkid * 1<<epbs);
167 num = end - start + 1;
168
169 ASSERT3U(off, >=, 0);
170 ASSERT3U(num, >=, 0);
171 ASSERT3U(db->db_level, >, 0);
172 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
173 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
174 ASSERT(db->db_blkptr != NULL);
175
176 for (i = off; i < off+num; i++) {
177 uint64_t *buf;
178 dmu_buf_impl_t *child;
179 dbuf_dirty_record_t *dr;
180 int j;
181
182 ASSERT(db->db_level == 1);
183
184 rw_enter(&dn->dn_struct_rwlock, RW_READER);
185 err = dbuf_hold_impl(dn, db->db_level-1,
186 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
187 rw_exit(&dn->dn_struct_rwlock);
188 if (err == ENOENT)
189 continue;
190 ASSERT(err == 0);
191 ASSERT(child->db_level == 0);
192 dr = child->db_last_dirty;
193 while (dr && dr->dr_txg > txg)
194 dr = dr->dr_next;
195 ASSERT(dr == NULL || dr->dr_txg == txg);
196
197 /* data_old better be zeroed */
198 if (dr) {
199 buf = dr->dt.dl.dr_data->b_data;
200 for (j = 0; j < child->db.db_size >> 3; j++) {
201 if (buf[j] != 0) {
202 panic("freed data not zero: "
203 "child=%p i=%d off=%d num=%d\n",
204 (void *)child, i, off, num);
205 }
206 }
207 }
208
209 /*
210 * db_data better be zeroed unless it's dirty in a
211 * future txg.
212 */
213 mutex_enter(&child->db_mtx);
214 buf = child->db.db_data;
215 if (buf != NULL && child->db_state != DB_FILL &&
216 child->db_last_dirty == NULL) {
217 for (j = 0; j < child->db.db_size >> 3; j++) {
218 if (buf[j] != 0) {
219 panic("freed data not zero: "
220 "child=%p i=%d off=%d num=%d\n",
221 (void *)child, i, off, num);
222 }
223 }
224 }
225 mutex_exit(&child->db_mtx);
226
227 dbuf_rele(child, FTAG);
228 }
229 DB_DNODE_EXIT(db);
230 }
231 #endif
232
233 /*
234 * We don't usually free the indirect blocks here. If in one txg we have a
235 * free_range and a write to the same indirect block, it's important that we
236 * preserve the hole's birth times. Therefore, we don't free any any indirect
237 * blocks in free_children(). If an indirect block happens to turn into all
238 * holes, it will be freed by dbuf_write_children_ready, which happens at a
239 * point in the syncing process where we know for certain the contents of the
240 * indirect block.
241 *
242 * However, if we're freeing a dnode, its space accounting must go to zero
243 * before we actually try to free the dnode, or we will trip an assertion. In
244 * addition, we know the case described above cannot occur, because the dnode is
245 * being freed. Therefore, we free the indirect blocks immediately in that
246 * case.
247 */
248 static void
249 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
250 boolean_t free_indirects, dmu_tx_t *tx)
251 {
252 dnode_t *dn;
253 blkptr_t *bp;
254 dmu_buf_impl_t *subdb;
255 uint64_t start, end, dbstart, dbend;
256 unsigned int epbs, shift, i;
257
258 /*
259 * There is a small possibility that this block will not be cached:
260 * 1 - if level > 1 and there are no children with level <= 1
261 * 2 - if this block was evicted since we read it from
262 * dmu_tx_hold_free().
263 */
264 if (db->db_state != DB_CACHED)
265 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
266
267 /*
268 * If we modify this indirect block, and we are not freeing the
269 * dnode (!free_indirects), then this indirect block needs to get
270 * written to disk by dbuf_write(). If it is dirty, we know it will
271 * be written (otherwise, we would have incorrect on-disk state
272 * because the space would be freed but still referenced by the BP
273 * in this indirect block). Therefore we VERIFY that it is
274 * dirty.
275 *
276 * Our VERIFY covers some cases that do not actually have to be
277 * dirty, but the open-context code happens to dirty. E.g. if the
278 * blocks we are freeing are all holes, because in that case, we
279 * are only freeing part of this indirect block, so it is an
280 * ancestor of the first or last block to be freed. The first and
281 * last L1 indirect blocks are always dirtied by dnode_free_range().
282 */
283 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
284
285 dbuf_release_bp(db);
286 bp = db->db.db_data;
287
288 DB_DNODE_ENTER(db);
289 dn = DB_DNODE(db);
290 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
291 ASSERT3U(epbs, <, 31);
292 shift = (db->db_level - 1) * epbs;
293 dbstart = db->db_blkid << epbs;
294 start = blkid >> shift;
295 if (dbstart < start) {
296 bp += start - dbstart;
297 } else {
298 start = dbstart;
299 }
300 dbend = ((db->db_blkid + 1) << epbs) - 1;
301 end = (blkid + nblks - 1) >> shift;
302 if (dbend <= end)
303 end = dbend;
304
305 ASSERT3U(start, <=, end);
306
307 if (db->db_level == 1) {
308 FREE_VERIFY(db, start, end, tx);
309 free_blocks(dn, bp, end-start+1, tx);
310 } else {
311 for (uint64_t id = start; id <= end; id++, bp++) {
312 if (BP_IS_HOLE(bp))
313 continue;
314 rw_enter(&dn->dn_struct_rwlock, RW_READER);
315 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
316 id, TRUE, FALSE, FTAG, &subdb));
317 rw_exit(&dn->dn_struct_rwlock);
318 ASSERT3P(bp, ==, subdb->db_blkptr);
319
320 free_children(subdb, blkid, nblks, free_indirects, tx);
321 dbuf_rele(subdb, FTAG);
322 }
323 }
324
325 if (free_indirects) {
326 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
327 ASSERT(BP_IS_HOLE(bp));
328 bzero(db->db.db_data, db->db.db_size);
329 free_blocks(dn, db->db_blkptr, 1, tx);
330 }
331
332 DB_DNODE_EXIT(db);
333 arc_buf_freeze(db->db_buf);
334 }
335
336 /*
337 * Traverse the indicated range of the provided file
338 * and "free" all the blocks contained there.
339 */
340 static void
341 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
342 boolean_t free_indirects, dmu_tx_t *tx)
343 {
344 blkptr_t *bp = dn->dn_phys->dn_blkptr;
345 int dnlevel = dn->dn_phys->dn_nlevels;
346 boolean_t trunc = B_FALSE;
347
348 if (blkid > dn->dn_phys->dn_maxblkid)
349 return;
350
351 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
352 if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
353 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
354 trunc = B_TRUE;
355 }
356
357 /* There are no indirect blocks in the object */
358 if (dnlevel == 1) {
359 if (blkid >= dn->dn_phys->dn_nblkptr) {
360 /* this range was never made persistent */
361 return;
362 }
363 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
364 free_blocks(dn, bp + blkid, nblks, tx);
365 } else {
366 int shift = (dnlevel - 1) *
367 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
368 int start = blkid >> shift;
369 int end = (blkid + nblks - 1) >> shift;
370 dmu_buf_impl_t *db;
371
372 ASSERT(start < dn->dn_phys->dn_nblkptr);
373 bp += start;
374 for (int i = start; i <= end; i++, bp++) {
375 if (BP_IS_HOLE(bp))
376 continue;
377 rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
379 TRUE, FALSE, FTAG, &db));
380 rw_exit(&dn->dn_struct_rwlock);
381
382 free_children(db, blkid, nblks, free_indirects, tx);
383 dbuf_rele(db, FTAG);
384 }
385 }
386
387 /*
388 * Do not truncate the maxblkid if we are performing a raw
389 * receive. The raw receive sets the mablkid manually and
390 * must not be overriden.
391 */
392 if (trunc && !dn->dn_objset->os_raw_receive) {
393 ASSERTV(uint64_t off);
394 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
395
396 ASSERTV(off = (dn->dn_phys->dn_maxblkid + 1) *
397 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT));
398 ASSERT(off < dn->dn_phys->dn_maxblkid ||
399 dn->dn_phys->dn_maxblkid == 0 ||
400 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
401 }
402 }
403
404 typedef struct dnode_sync_free_range_arg {
405 dnode_t *dsfra_dnode;
406 dmu_tx_t *dsfra_tx;
407 boolean_t dsfra_free_indirects;
408 } dnode_sync_free_range_arg_t;
409
410 static void
411 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
412 {
413 dnode_sync_free_range_arg_t *dsfra = arg;
414 dnode_t *dn = dsfra->dsfra_dnode;
415
416 mutex_exit(&dn->dn_mtx);
417 dnode_sync_free_range_impl(dn, blkid, nblks,
418 dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
419 mutex_enter(&dn->dn_mtx);
420 }
421
422 /*
423 * Try to kick all the dnode's dbufs out of the cache...
424 */
425 void
426 dnode_evict_dbufs(dnode_t *dn)
427 {
428 dmu_buf_impl_t *db_marker;
429 dmu_buf_impl_t *db, *db_next;
430
431 db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
432
433 mutex_enter(&dn->dn_dbufs_mtx);
434 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
435
436 #ifdef DEBUG
437 DB_DNODE_ENTER(db);
438 ASSERT3P(DB_DNODE(db), ==, dn);
439 DB_DNODE_EXIT(db);
440 #endif /* DEBUG */
441
442 mutex_enter(&db->db_mtx);
443 if (db->db_state != DB_EVICTING &&
444 zfs_refcount_is_zero(&db->db_holds)) {
445 db_marker->db_level = db->db_level;
446 db_marker->db_blkid = db->db_blkid;
447 db_marker->db_state = DB_SEARCH;
448 avl_insert_here(&dn->dn_dbufs, db_marker, db,
449 AVL_BEFORE);
450
451 /*
452 * We need to use the "marker" dbuf rather than
453 * simply getting the next dbuf, because
454 * dbuf_destroy() may actually remove multiple dbufs.
455 * It can call itself recursively on the parent dbuf,
456 * which may also be removed from dn_dbufs. The code
457 * flow would look like:
458 *
459 * dbuf_destroy():
460 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
461 * if (!cacheable || pending_evict)
462 * dbuf_destroy()
463 */
464 dbuf_destroy(db);
465
466 db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
467 avl_remove(&dn->dn_dbufs, db_marker);
468 } else {
469 db->db_pending_evict = TRUE;
470 mutex_exit(&db->db_mtx);
471 db_next = AVL_NEXT(&dn->dn_dbufs, db);
472 }
473 }
474 mutex_exit(&dn->dn_dbufs_mtx);
475
476 kmem_free(db_marker, sizeof (dmu_buf_impl_t));
477
478 dnode_evict_bonus(dn);
479 }
480
481 void
482 dnode_evict_bonus(dnode_t *dn)
483 {
484 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
485 if (dn->dn_bonus != NULL) {
486 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
487 mutex_enter(&dn->dn_bonus->db_mtx);
488 dbuf_destroy(dn->dn_bonus);
489 dn->dn_bonus = NULL;
490 } else {
491 dn->dn_bonus->db_pending_evict = TRUE;
492 }
493 }
494 rw_exit(&dn->dn_struct_rwlock);
495 }
496
497 static void
498 dnode_undirty_dbufs(list_t *list)
499 {
500 dbuf_dirty_record_t *dr;
501
502 while ((dr = list_head(list))) {
503 dmu_buf_impl_t *db = dr->dr_dbuf;
504 uint64_t txg = dr->dr_txg;
505
506 if (db->db_level != 0)
507 dnode_undirty_dbufs(&dr->dt.di.dr_children);
508
509 mutex_enter(&db->db_mtx);
510 /* XXX - use dbuf_undirty()? */
511 list_remove(list, dr);
512 ASSERT(db->db_last_dirty == dr);
513 db->db_last_dirty = NULL;
514 db->db_dirtycnt -= 1;
515 if (db->db_level == 0) {
516 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
517 dr->dt.dl.dr_data == db->db_buf);
518 dbuf_unoverride(dr);
519 } else {
520 mutex_destroy(&dr->dt.di.dr_mtx);
521 list_destroy(&dr->dt.di.dr_children);
522 }
523 kmem_free(dr, sizeof (dbuf_dirty_record_t));
524 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
525 }
526 }
527
528 static void
529 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
530 {
531 int txgoff = tx->tx_txg & TXG_MASK;
532
533 ASSERT(dmu_tx_is_syncing(tx));
534
535 /*
536 * Our contents should have been freed in dnode_sync() by the
537 * free range record inserted by the caller of dnode_free().
538 */
539 ASSERT0(DN_USED_BYTES(dn->dn_phys));
540 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
541
542 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
543 dnode_evict_dbufs(dn);
544
545 /*
546 * XXX - It would be nice to assert this, but we may still
547 * have residual holds from async evictions from the arc...
548 *
549 * zfs_obj_to_path() also depends on this being
550 * commented out.
551 *
552 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
553 */
554
555 /* Undirty next bits */
556 dn->dn_next_nlevels[txgoff] = 0;
557 dn->dn_next_indblkshift[txgoff] = 0;
558 dn->dn_next_blksz[txgoff] = 0;
559 dn->dn_next_maxblkid[txgoff] = 0;
560
561 /* ASSERT(blkptrs are zero); */
562 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
563 ASSERT(dn->dn_type != DMU_OT_NONE);
564
565 ASSERT(dn->dn_free_txg > 0);
566 if (dn->dn_allocated_txg != dn->dn_free_txg)
567 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
568 bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
569 dnode_free_interior_slots(dn);
570
571 mutex_enter(&dn->dn_mtx);
572 dn->dn_type = DMU_OT_NONE;
573 dn->dn_maxblkid = 0;
574 dn->dn_allocated_txg = 0;
575 dn->dn_free_txg = 0;
576 dn->dn_have_spill = B_FALSE;
577 dn->dn_num_slots = 1;
578 mutex_exit(&dn->dn_mtx);
579
580 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
581
582 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
583 /*
584 * Now that we've released our hold, the dnode may
585 * be evicted, so we mustn't access it.
586 */
587 }
588
589 /*
590 * Write out the dnode's dirty buffers.
591 */
592 void
593 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
594 {
595 objset_t *os = dn->dn_objset;
596 dnode_phys_t *dnp = dn->dn_phys;
597 int txgoff = tx->tx_txg & TXG_MASK;
598 list_t *list = &dn->dn_dirty_records[txgoff];
599 ASSERTV(static const dnode_phys_t zerodn = { 0 });
600 boolean_t kill_spill = B_FALSE;
601
602 ASSERT(dmu_tx_is_syncing(tx));
603 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
604 ASSERT(dnp->dn_type != DMU_OT_NONE ||
605 bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
606 DNODE_VERIFY(dn);
607
608 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
609
610 /*
611 * Do user accounting if it is enabled and this is not
612 * an encrypted receive.
613 */
614 if (dmu_objset_userused_enabled(os) &&
615 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
616 (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
617 mutex_enter(&dn->dn_mtx);
618 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
619 dn->dn_oldflags = dn->dn_phys->dn_flags;
620 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
621 if (dmu_objset_userobjused_enabled(dn->dn_objset))
622 dn->dn_phys->dn_flags |=
623 DNODE_FLAG_USEROBJUSED_ACCOUNTED;
624 mutex_exit(&dn->dn_mtx);
625 dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
626 } else {
627 /* Once we account for it, we should always account for it */
628 ASSERT(!(dn->dn_phys->dn_flags &
629 DNODE_FLAG_USERUSED_ACCOUNTED));
630 ASSERT(!(dn->dn_phys->dn_flags &
631 DNODE_FLAG_USEROBJUSED_ACCOUNTED));
632 }
633
634 mutex_enter(&dn->dn_mtx);
635 if (dn->dn_allocated_txg == tx->tx_txg) {
636 /* The dnode is newly allocated or reallocated */
637 if (dnp->dn_type == DMU_OT_NONE) {
638 /* this is a first alloc, not a realloc */
639 dnp->dn_nlevels = 1;
640 dnp->dn_nblkptr = dn->dn_nblkptr;
641 }
642
643 dnp->dn_type = dn->dn_type;
644 dnp->dn_bonustype = dn->dn_bonustype;
645 dnp->dn_bonuslen = dn->dn_bonuslen;
646 }
647
648 dnp->dn_extra_slots = dn->dn_num_slots - 1;
649
650 ASSERT(dnp->dn_nlevels > 1 ||
651 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
652 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
653 BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
654 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
655 ASSERT(dnp->dn_nlevels < 2 ||
656 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
657 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
658
659 if (dn->dn_next_type[txgoff] != 0) {
660 dnp->dn_type = dn->dn_type;
661 dn->dn_next_type[txgoff] = 0;
662 }
663
664 if (dn->dn_next_blksz[txgoff] != 0) {
665 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
666 SPA_MINBLOCKSIZE) == 0);
667 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
668 dn->dn_maxblkid == 0 || list_head(list) != NULL ||
669 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
670 dnp->dn_datablkszsec ||
671 !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
672 dnp->dn_datablkszsec =
673 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
674 dn->dn_next_blksz[txgoff] = 0;
675 }
676
677 if (dn->dn_next_bonuslen[txgoff] != 0) {
678 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
679 dnp->dn_bonuslen = 0;
680 else
681 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
682 ASSERT(dnp->dn_bonuslen <=
683 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
684 dn->dn_next_bonuslen[txgoff] = 0;
685 }
686
687 if (dn->dn_next_bonustype[txgoff] != 0) {
688 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
689 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
690 dn->dn_next_bonustype[txgoff] = 0;
691 }
692
693 boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
694 dn->dn_free_txg <= tx->tx_txg;
695
696 /*
697 * Remove the spill block if we have been explicitly asked to
698 * remove it, or if the object is being removed.
699 */
700 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
701 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
702 kill_spill = B_TRUE;
703 dn->dn_rm_spillblk[txgoff] = 0;
704 }
705
706 if (dn->dn_next_indblkshift[txgoff] != 0) {
707 ASSERT(dnp->dn_nlevels == 1);
708 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
709 dn->dn_next_indblkshift[txgoff] = 0;
710 }
711
712 /*
713 * Just take the live (open-context) values for checksum and compress.
714 * Strictly speaking it's a future leak, but nothing bad happens if we
715 * start using the new checksum or compress algorithm a little early.
716 */
717 dnp->dn_checksum = dn->dn_checksum;
718 dnp->dn_compress = dn->dn_compress;
719
720 mutex_exit(&dn->dn_mtx);
721
722 if (kill_spill) {
723 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
724 mutex_enter(&dn->dn_mtx);
725 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
726 mutex_exit(&dn->dn_mtx);
727 }
728
729 /* process all the "freed" ranges in the file */
730 if (dn->dn_free_ranges[txgoff] != NULL) {
731 dnode_sync_free_range_arg_t dsfra;
732 dsfra.dsfra_dnode = dn;
733 dsfra.dsfra_tx = tx;
734 dsfra.dsfra_free_indirects = freeing_dnode;
735 if (freeing_dnode) {
736 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
737 0, dn->dn_maxblkid + 1));
738 }
739 mutex_enter(&dn->dn_mtx);
740 range_tree_vacate(dn->dn_free_ranges[txgoff],
741 dnode_sync_free_range, &dsfra);
742 range_tree_destroy(dn->dn_free_ranges[txgoff]);
743 dn->dn_free_ranges[txgoff] = NULL;
744 mutex_exit(&dn->dn_mtx);
745 }
746
747 if (freeing_dnode) {
748 dn->dn_objset->os_freed_dnodes++;
749 dnode_sync_free(dn, tx);
750 return;
751 }
752
753 if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
754 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
755 mutex_enter(&ds->ds_lock);
756 ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] =
757 B_TRUE;
758 mutex_exit(&ds->ds_lock);
759 }
760
761 if (dn->dn_next_nlevels[txgoff]) {
762 dnode_increase_indirection(dn, tx);
763 dn->dn_next_nlevels[txgoff] = 0;
764 }
765
766 /*
767 * This must be done after dnode_sync_free_range()
768 * and dnode_increase_indirection().
769 */
770 if (dn->dn_next_maxblkid[txgoff]) {
771 mutex_enter(&dn->dn_mtx);
772 dnp->dn_maxblkid = dn->dn_next_maxblkid[txgoff];
773 dn->dn_next_maxblkid[txgoff] = 0;
774 mutex_exit(&dn->dn_mtx);
775 }
776
777 if (dn->dn_next_nblkptr[txgoff]) {
778 /* this should only happen on a realloc */
779 ASSERT(dn->dn_allocated_txg == tx->tx_txg);
780 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
781 /* zero the new blkptrs we are gaining */
782 bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
783 sizeof (blkptr_t) *
784 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
785 #ifdef ZFS_DEBUG
786 } else {
787 int i;
788 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
789 /* the blkptrs we are losing better be unallocated */
790 for (i = 0; i < dnp->dn_nblkptr; i++) {
791 if (i >= dn->dn_next_nblkptr[txgoff])
792 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
793 }
794 #endif
795 }
796 mutex_enter(&dn->dn_mtx);
797 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
798 dn->dn_next_nblkptr[txgoff] = 0;
799 mutex_exit(&dn->dn_mtx);
800 }
801
802 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
803
804 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
805 ASSERT3P(list_head(list), ==, NULL);
806 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
807 }
808
809 /*
810 * Although we have dropped our reference to the dnode, it
811 * can't be evicted until its written, and we haven't yet
812 * initiated the IO for the dnode's dbuf.
813 */
814 }