]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_dir.c
vdev_disk: reorganise vdev_disk_io_start
[mirror_zfs.git] / module / zfs / dsl_dir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
30 */
31
32 #include <sys/dmu.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_prop.h>
38 #include <sys/dsl_synctask.h>
39 #include <sys/dsl_deleg.h>
40 #include <sys/dmu_impl.h>
41 #include <sys/spa.h>
42 #include <sys/spa_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/zap.h>
45 #include <sys/zio.h>
46 #include <sys/arc.h>
47 #include <sys/sunddi.h>
48 #include <sys/zfeature.h>
49 #include <sys/policy.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zvol.h>
53 #include <sys/zthr.h>
54 #include "zfs_namecheck.h"
55 #include "zfs_prop.h"
56
57 /*
58 * This controls if we verify the ZVOL quota or not.
59 * Currently, quotas are not implemented for ZVOLs.
60 * The quota size is the size of the ZVOL.
61 * The size of the volume already implies the ZVOL size quota.
62 * The quota mechanism can introduce a significant performance drop.
63 */
64 static int zvol_enforce_quotas = B_TRUE;
65
66 /*
67 * Filesystem and Snapshot Limits
68 * ------------------------------
69 *
70 * These limits are used to restrict the number of filesystems and/or snapshots
71 * that can be created at a given level in the tree or below. A typical
72 * use-case is with a delegated dataset where the administrator wants to ensure
73 * that a user within the zone is not creating too many additional filesystems
74 * or snapshots, even though they're not exceeding their space quota.
75 *
76 * The filesystem and snapshot counts are stored as extensible properties. This
77 * capability is controlled by a feature flag and must be enabled to be used.
78 * Once enabled, the feature is not active until the first limit is set. At
79 * that point, future operations to create/destroy filesystems or snapshots
80 * will validate and update the counts.
81 *
82 * Because the count properties will not exist before the feature is active,
83 * the counts are updated when a limit is first set on an uninitialized
84 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
85 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
86 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
87 * snapshot count properties on a node indicate uninitialized counts on that
88 * node.) When first setting a limit on an uninitialized node, the code starts
89 * at the filesystem with the new limit and descends into all sub-filesystems
90 * to add the count properties.
91 *
92 * In practice this is lightweight since a limit is typically set when the
93 * filesystem is created and thus has no children. Once valid, changing the
94 * limit value won't require a re-traversal since the counts are already valid.
95 * When recursively fixing the counts, if a node with a limit is encountered
96 * during the descent, the counts are known to be valid and there is no need to
97 * descend into that filesystem's children. The counts on filesystems above the
98 * one with the new limit will still be uninitialized, unless a limit is
99 * eventually set on one of those filesystems. The counts are always recursively
100 * updated when a limit is set on a dataset, unless there is already a limit.
101 * When a new limit value is set on a filesystem with an existing limit, it is
102 * possible for the new limit to be less than the current count at that level
103 * since a user who can change the limit is also allowed to exceed the limit.
104 *
105 * Once the feature is active, then whenever a filesystem or snapshot is
106 * created, the code recurses up the tree, validating the new count against the
107 * limit at each initialized level. In practice, most levels will not have a
108 * limit set. If there is a limit at any initialized level up the tree, the
109 * check must pass or the creation will fail. Likewise, when a filesystem or
110 * snapshot is destroyed, the counts are recursively adjusted all the way up
111 * the initialized nodes in the tree. Renaming a filesystem into different point
112 * in the tree will first validate, then update the counts on each branch up to
113 * the common ancestor. A receive will also validate the counts and then update
114 * them.
115 *
116 * An exception to the above behavior is that the limit is not enforced if the
117 * user has permission to modify the limit. This is primarily so that
118 * recursive snapshots in the global zone always work. We want to prevent a
119 * denial-of-service in which a lower level delegated dataset could max out its
120 * limit and thus block recursive snapshots from being taken in the global zone.
121 * Because of this, it is possible for the snapshot count to be over the limit
122 * and snapshots taken in the global zone could cause a lower level dataset to
123 * hit or exceed its limit. The administrator taking the global zone recursive
124 * snapshot should be aware of this side-effect and behave accordingly.
125 * For consistency, the filesystem limit is also not enforced if the user can
126 * modify the limit.
127 *
128 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
129 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
130 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
131 * dsl_dir_init_fs_ss_count().
132 */
133
134 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
135
136 typedef struct ddulrt_arg {
137 dsl_dir_t *ddulrta_dd;
138 uint64_t ddlrta_txg;
139 } ddulrt_arg_t;
140
141 static void
142 dsl_dir_evict_async(void *dbu)
143 {
144 dsl_dir_t *dd = dbu;
145 int t;
146 dsl_pool_t *dp __maybe_unused = dd->dd_pool;
147
148 dd->dd_dbuf = NULL;
149
150 for (t = 0; t < TXG_SIZE; t++) {
151 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
152 ASSERT(dd->dd_tempreserved[t] == 0);
153 ASSERT(dd->dd_space_towrite[t] == 0);
154 }
155
156 if (dd->dd_parent)
157 dsl_dir_async_rele(dd->dd_parent, dd);
158
159 spa_async_close(dd->dd_pool->dp_spa, dd);
160
161 if (dsl_deadlist_is_open(&dd->dd_livelist))
162 dsl_dir_livelist_close(dd);
163
164 dsl_prop_fini(dd);
165 cv_destroy(&dd->dd_activity_cv);
166 mutex_destroy(&dd->dd_activity_lock);
167 mutex_destroy(&dd->dd_lock);
168 kmem_free(dd, sizeof (dsl_dir_t));
169 }
170
171 int
172 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
173 const char *tail, const void *tag, dsl_dir_t **ddp)
174 {
175 dmu_buf_t *dbuf;
176 dsl_dir_t *dd;
177 dmu_object_info_t doi;
178 int err;
179
180 ASSERT(dsl_pool_config_held(dp));
181
182 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
183 if (err != 0)
184 return (err);
185 dd = dmu_buf_get_user(dbuf);
186
187 dmu_object_info_from_db(dbuf, &doi);
188 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
189 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
190
191 if (dd == NULL) {
192 dsl_dir_t *winner;
193
194 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
195 dd->dd_object = ddobj;
196 dd->dd_dbuf = dbuf;
197 dd->dd_pool = dp;
198
199 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
200 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
201 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
202 dsl_prop_init(dd);
203
204 if (dsl_dir_is_zapified(dd)) {
205 err = zap_lookup(dp->dp_meta_objset,
206 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
207 sizeof (uint64_t), 1, &dd->dd_crypto_obj);
208 if (err == 0) {
209 /* check for on-disk format errata */
210 if (dsl_dir_incompatible_encryption_version(
211 dd)) {
212 dp->dp_spa->spa_errata =
213 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
214 }
215 } else if (err != ENOENT) {
216 goto errout;
217 }
218 }
219
220 if (dsl_dir_phys(dd)->dd_parent_obj) {
221 err = dsl_dir_hold_obj(dp,
222 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
223 &dd->dd_parent);
224 if (err != 0)
225 goto errout;
226 if (tail) {
227 #ifdef ZFS_DEBUG
228 uint64_t foundobj;
229
230 err = zap_lookup(dp->dp_meta_objset,
231 dsl_dir_phys(dd->dd_parent)->
232 dd_child_dir_zapobj, tail,
233 sizeof (foundobj), 1, &foundobj);
234 ASSERT(err || foundobj == ddobj);
235 #endif
236 (void) strlcpy(dd->dd_myname, tail,
237 sizeof (dd->dd_myname));
238 } else {
239 err = zap_value_search(dp->dp_meta_objset,
240 dsl_dir_phys(dd->dd_parent)->
241 dd_child_dir_zapobj,
242 ddobj, 0, dd->dd_myname);
243 }
244 if (err != 0)
245 goto errout;
246 } else {
247 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
248 sizeof (dd->dd_myname));
249 }
250
251 if (dsl_dir_is_clone(dd)) {
252 dmu_buf_t *origin_bonus;
253 dsl_dataset_phys_t *origin_phys;
254
255 /*
256 * We can't open the origin dataset, because
257 * that would require opening this dsl_dir.
258 * Just look at its phys directly instead.
259 */
260 err = dmu_bonus_hold(dp->dp_meta_objset,
261 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
262 &origin_bonus);
263 if (err != 0)
264 goto errout;
265 origin_phys = origin_bonus->db_data;
266 dd->dd_origin_txg =
267 origin_phys->ds_creation_txg;
268 dmu_buf_rele(origin_bonus, FTAG);
269 if (dsl_dir_is_zapified(dd)) {
270 uint64_t obj;
271 err = zap_lookup(dp->dp_meta_objset,
272 dd->dd_object, DD_FIELD_LIVELIST,
273 sizeof (uint64_t), 1, &obj);
274 if (err == 0)
275 dsl_dir_livelist_open(dd, obj);
276 else if (err != ENOENT)
277 goto errout;
278 }
279 }
280
281 if (dsl_dir_is_zapified(dd)) {
282 inode_timespec_t t = {0};
283 (void) zap_lookup(dp->dp_meta_objset, ddobj,
284 DD_FIELD_SNAPSHOTS_CHANGED,
285 sizeof (uint64_t),
286 sizeof (inode_timespec_t) / sizeof (uint64_t),
287 &t);
288 dd->dd_snap_cmtime = t;
289 }
290
291 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
292 &dd->dd_dbuf);
293 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
294 if (winner != NULL) {
295 if (dd->dd_parent)
296 dsl_dir_rele(dd->dd_parent, dd);
297 if (dsl_deadlist_is_open(&dd->dd_livelist))
298 dsl_dir_livelist_close(dd);
299 dsl_prop_fini(dd);
300 cv_destroy(&dd->dd_activity_cv);
301 mutex_destroy(&dd->dd_activity_lock);
302 mutex_destroy(&dd->dd_lock);
303 kmem_free(dd, sizeof (dsl_dir_t));
304 dd = winner;
305 } else {
306 spa_open_ref(dp->dp_spa, dd);
307 }
308 }
309
310 /*
311 * The dsl_dir_t has both open-to-close and instantiate-to-evict
312 * holds on the spa. We need the open-to-close holds because
313 * otherwise the spa_refcnt wouldn't change when we open a
314 * dir which the spa also has open, so we could incorrectly
315 * think it was OK to unload/export/destroy the pool. We need
316 * the instantiate-to-evict hold because the dsl_dir_t has a
317 * pointer to the dd_pool, which has a pointer to the spa_t.
318 */
319 spa_open_ref(dp->dp_spa, tag);
320 ASSERT3P(dd->dd_pool, ==, dp);
321 ASSERT3U(dd->dd_object, ==, ddobj);
322 ASSERT3P(dd->dd_dbuf, ==, dbuf);
323 *ddp = dd;
324 return (0);
325
326 errout:
327 if (dd->dd_parent)
328 dsl_dir_rele(dd->dd_parent, dd);
329 if (dsl_deadlist_is_open(&dd->dd_livelist))
330 dsl_dir_livelist_close(dd);
331 dsl_prop_fini(dd);
332 cv_destroy(&dd->dd_activity_cv);
333 mutex_destroy(&dd->dd_activity_lock);
334 mutex_destroy(&dd->dd_lock);
335 kmem_free(dd, sizeof (dsl_dir_t));
336 dmu_buf_rele(dbuf, tag);
337 return (err);
338 }
339
340 void
341 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
342 {
343 dprintf_dd(dd, "%s\n", "");
344 spa_close(dd->dd_pool->dp_spa, tag);
345 dmu_buf_rele(dd->dd_dbuf, tag);
346 }
347
348 /*
349 * Remove a reference to the given dsl dir that is being asynchronously
350 * released. Async releases occur from a taskq performing eviction of
351 * dsl datasets and dirs. This process is identical to a normal release
352 * with the exception of using the async API for releasing the reference on
353 * the spa.
354 */
355 void
356 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
357 {
358 dprintf_dd(dd, "%s\n", "");
359 spa_async_close(dd->dd_pool->dp_spa, tag);
360 dmu_buf_rele(dd->dd_dbuf, tag);
361 }
362
363 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
364 void
365 dsl_dir_name(dsl_dir_t *dd, char *buf)
366 {
367 if (dd->dd_parent) {
368 dsl_dir_name(dd->dd_parent, buf);
369 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
370 ZFS_MAX_DATASET_NAME_LEN);
371 } else {
372 buf[0] = '\0';
373 }
374 if (!MUTEX_HELD(&dd->dd_lock)) {
375 /*
376 * recursive mutex so that we can use
377 * dprintf_dd() with dd_lock held
378 */
379 mutex_enter(&dd->dd_lock);
380 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
381 <, ZFS_MAX_DATASET_NAME_LEN);
382 mutex_exit(&dd->dd_lock);
383 } else {
384 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
385 <, ZFS_MAX_DATASET_NAME_LEN);
386 }
387 }
388
389 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
390 int
391 dsl_dir_namelen(dsl_dir_t *dd)
392 {
393 int result = 0;
394
395 if (dd->dd_parent) {
396 /* parent's name + 1 for the "/" */
397 result = dsl_dir_namelen(dd->dd_parent) + 1;
398 }
399
400 if (!MUTEX_HELD(&dd->dd_lock)) {
401 /* see dsl_dir_name */
402 mutex_enter(&dd->dd_lock);
403 result += strlen(dd->dd_myname);
404 mutex_exit(&dd->dd_lock);
405 } else {
406 result += strlen(dd->dd_myname);
407 }
408
409 return (result);
410 }
411
412 static int
413 getcomponent(const char *path, char *component, const char **nextp)
414 {
415 char *p;
416
417 if ((path == NULL) || (path[0] == '\0'))
418 return (SET_ERROR(ENOENT));
419 /* This would be a good place to reserve some namespace... */
420 p = strpbrk(path, "/@");
421 if (p && (p[1] == '/' || p[1] == '@')) {
422 /* two separators in a row */
423 return (SET_ERROR(EINVAL));
424 }
425 if (p == NULL || p == path) {
426 /*
427 * if the first thing is an @ or /, it had better be an
428 * @ and it had better not have any more ats or slashes,
429 * and it had better have something after the @.
430 */
431 if (p != NULL &&
432 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
433 return (SET_ERROR(EINVAL));
434 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
435 return (SET_ERROR(ENAMETOOLONG));
436 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
437 p = NULL;
438 } else if (p[0] == '/') {
439 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
440 return (SET_ERROR(ENAMETOOLONG));
441 (void) strlcpy(component, path, p - path + 1);
442 p++;
443 } else if (p[0] == '@') {
444 /*
445 * if the next separator is an @, there better not be
446 * any more slashes.
447 */
448 if (strchr(path, '/'))
449 return (SET_ERROR(EINVAL));
450 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
451 return (SET_ERROR(ENAMETOOLONG));
452 (void) strlcpy(component, path, p - path + 1);
453 } else {
454 panic("invalid p=%p", (void *)p);
455 }
456 *nextp = p;
457 return (0);
458 }
459
460 /*
461 * Return the dsl_dir_t, and possibly the last component which couldn't
462 * be found in *tail. The name must be in the specified dsl_pool_t. This
463 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
464 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
465 * (*tail)[0] == '@' means that the last component is a snapshot.
466 */
467 int
468 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
469 dsl_dir_t **ddp, const char **tailp)
470 {
471 char *buf;
472 const char *spaname, *next, *nextnext = NULL;
473 int err;
474 dsl_dir_t *dd;
475 uint64_t ddobj;
476
477 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
478 err = getcomponent(name, buf, &next);
479 if (err != 0)
480 goto error;
481
482 /* Make sure the name is in the specified pool. */
483 spaname = spa_name(dp->dp_spa);
484 if (strcmp(buf, spaname) != 0) {
485 err = SET_ERROR(EXDEV);
486 goto error;
487 }
488
489 ASSERT(dsl_pool_config_held(dp));
490
491 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
492 if (err != 0) {
493 goto error;
494 }
495
496 while (next != NULL) {
497 dsl_dir_t *child_dd;
498 err = getcomponent(next, buf, &nextnext);
499 if (err != 0)
500 break;
501 ASSERT(next[0] != '\0');
502 if (next[0] == '@')
503 break;
504 dprintf("looking up %s in obj%lld\n",
505 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
506
507 err = zap_lookup(dp->dp_meta_objset,
508 dsl_dir_phys(dd)->dd_child_dir_zapobj,
509 buf, sizeof (ddobj), 1, &ddobj);
510 if (err != 0) {
511 if (err == ENOENT)
512 err = 0;
513 break;
514 }
515
516 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
517 if (err != 0)
518 break;
519 dsl_dir_rele(dd, tag);
520 dd = child_dd;
521 next = nextnext;
522 }
523
524 if (err != 0) {
525 dsl_dir_rele(dd, tag);
526 goto error;
527 }
528
529 /*
530 * It's an error if there's more than one component left, or
531 * tailp==NULL and there's any component left.
532 */
533 if (next != NULL &&
534 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
535 /* bad path name */
536 dsl_dir_rele(dd, tag);
537 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
538 err = SET_ERROR(ENOENT);
539 }
540 if (tailp != NULL)
541 *tailp = next;
542 if (err == 0)
543 *ddp = dd;
544 error:
545 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
546 return (err);
547 }
548
549 /*
550 * If the counts are already initialized for this filesystem and its
551 * descendants then do nothing, otherwise initialize the counts.
552 *
553 * The counts on this filesystem, and those below, may be uninitialized due to
554 * either the use of a pre-existing pool which did not support the
555 * filesystem/snapshot limit feature, or one in which the feature had not yet
556 * been enabled.
557 *
558 * Recursively descend the filesystem tree and update the filesystem/snapshot
559 * counts on each filesystem below, then update the cumulative count on the
560 * current filesystem. If the filesystem already has a count set on it,
561 * then we know that its counts, and the counts on the filesystems below it,
562 * are already correct, so we don't have to update this filesystem.
563 */
564 static void
565 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
566 {
567 uint64_t my_fs_cnt = 0;
568 uint64_t my_ss_cnt = 0;
569 dsl_pool_t *dp = dd->dd_pool;
570 objset_t *os = dp->dp_meta_objset;
571 zap_cursor_t *zc;
572 zap_attribute_t *za;
573 dsl_dataset_t *ds;
574
575 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
576 ASSERT(dsl_pool_config_held(dp));
577 ASSERT(dmu_tx_is_syncing(tx));
578
579 dsl_dir_zapify(dd, tx);
580
581 /*
582 * If the filesystem count has already been initialized then we
583 * don't need to recurse down any further.
584 */
585 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
586 return;
587
588 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
589 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
590
591 /* Iterate my child dirs */
592 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
593 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
594 dsl_dir_t *chld_dd;
595 uint64_t count;
596
597 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
598 &chld_dd));
599
600 /*
601 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
602 */
603 if (chld_dd->dd_myname[0] == '$') {
604 dsl_dir_rele(chld_dd, FTAG);
605 continue;
606 }
607
608 my_fs_cnt++; /* count this child */
609
610 dsl_dir_init_fs_ss_count(chld_dd, tx);
611
612 VERIFY0(zap_lookup(os, chld_dd->dd_object,
613 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
614 my_fs_cnt += count;
615 VERIFY0(zap_lookup(os, chld_dd->dd_object,
616 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
617 my_ss_cnt += count;
618
619 dsl_dir_rele(chld_dd, FTAG);
620 }
621 zap_cursor_fini(zc);
622 /* Count my snapshots (we counted children's snapshots above) */
623 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
624 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
625
626 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
627 zap_cursor_retrieve(zc, za) == 0;
628 zap_cursor_advance(zc)) {
629 /* Don't count temporary snapshots */
630 if (za->za_name[0] != '%')
631 my_ss_cnt++;
632 }
633 zap_cursor_fini(zc);
634
635 dsl_dataset_rele(ds, FTAG);
636
637 kmem_free(zc, sizeof (zap_cursor_t));
638 kmem_free(za, sizeof (zap_attribute_t));
639
640 /* we're in a sync task, update counts */
641 dmu_buf_will_dirty(dd->dd_dbuf, tx);
642 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
643 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
644 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
645 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
646 }
647
648 static int
649 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
650 {
651 char *ddname = (char *)arg;
652 dsl_pool_t *dp = dmu_tx_pool(tx);
653 dsl_dataset_t *ds;
654 dsl_dir_t *dd;
655 int error;
656
657 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
658 if (error != 0)
659 return (error);
660
661 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
662 dsl_dataset_rele(ds, FTAG);
663 return (SET_ERROR(ENOTSUP));
664 }
665
666 dd = ds->ds_dir;
667 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
668 dsl_dir_is_zapified(dd) &&
669 zap_contains(dp->dp_meta_objset, dd->dd_object,
670 DD_FIELD_FILESYSTEM_COUNT) == 0) {
671 dsl_dataset_rele(ds, FTAG);
672 return (SET_ERROR(EALREADY));
673 }
674
675 dsl_dataset_rele(ds, FTAG);
676 return (0);
677 }
678
679 static void
680 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
681 {
682 char *ddname = (char *)arg;
683 dsl_pool_t *dp = dmu_tx_pool(tx);
684 dsl_dataset_t *ds;
685 spa_t *spa;
686
687 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
688
689 spa = dsl_dataset_get_spa(ds);
690
691 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
692 /*
693 * Since the feature was not active and we're now setting a
694 * limit, increment the feature-active counter so that the
695 * feature becomes active for the first time.
696 *
697 * We are already in a sync task so we can update the MOS.
698 */
699 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
700 }
701
702 /*
703 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
704 * we need to ensure the counts are correct. Descend down the tree from
705 * this point and update all of the counts to be accurate.
706 */
707 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
708
709 dsl_dataset_rele(ds, FTAG);
710 }
711
712 /*
713 * Make sure the feature is enabled and activate it if necessary.
714 * Since we're setting a limit, ensure the on-disk counts are valid.
715 * This is only called by the ioctl path when setting a limit value.
716 *
717 * We do not need to validate the new limit, since users who can change the
718 * limit are also allowed to exceed the limit.
719 */
720 int
721 dsl_dir_activate_fs_ss_limit(const char *ddname)
722 {
723 int error;
724
725 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
726 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
727 ZFS_SPACE_CHECK_RESERVED);
728
729 if (error == EALREADY)
730 error = 0;
731
732 return (error);
733 }
734
735 /*
736 * Used to determine if the filesystem_limit or snapshot_limit should be
737 * enforced. We allow the limit to be exceeded if the user has permission to
738 * write the property value. We pass in the creds that we got in the open
739 * context since we will always be the GZ root in syncing context. We also have
740 * to handle the case where we are allowed to change the limit on the current
741 * dataset, but there may be another limit in the tree above.
742 *
743 * We can never modify these two properties within a non-global zone. In
744 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
745 * can't use that function since we are already holding the dp_config_rwlock.
746 * In addition, we already have the dd and dealing with snapshots is simplified
747 * in this code.
748 */
749
750 typedef enum {
751 ENFORCE_ALWAYS,
752 ENFORCE_NEVER,
753 ENFORCE_ABOVE
754 } enforce_res_t;
755
756 static enforce_res_t
757 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
758 cred_t *cr, proc_t *proc)
759 {
760 enforce_res_t enforce = ENFORCE_ALWAYS;
761 uint64_t obj;
762 dsl_dataset_t *ds;
763 uint64_t zoned;
764 const char *zonedstr;
765
766 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
767 prop == ZFS_PROP_SNAPSHOT_LIMIT);
768
769 #ifdef _KERNEL
770 if (crgetzoneid(cr) != GLOBAL_ZONEID)
771 return (ENFORCE_ALWAYS);
772
773 /*
774 * We are checking the saved credentials of the user process, which is
775 * not the current process. Note that we can't use secpolicy_zfs(),
776 * because it only works if the cred is that of the current process (on
777 * Linux).
778 */
779 if (secpolicy_zfs_proc(cr, proc) == 0)
780 return (ENFORCE_NEVER);
781 #else
782 (void) proc;
783 #endif
784
785 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
786 return (ENFORCE_ALWAYS);
787
788 ASSERT(dsl_pool_config_held(dd->dd_pool));
789
790 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
791 return (ENFORCE_ALWAYS);
792
793 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
794 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
795 /* Only root can access zoned fs's from the GZ */
796 enforce = ENFORCE_ALWAYS;
797 } else {
798 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
799 enforce = ENFORCE_ABOVE;
800 }
801
802 dsl_dataset_rele(ds, FTAG);
803 return (enforce);
804 }
805
806 /*
807 * Check if adding additional child filesystem(s) would exceed any filesystem
808 * limits or adding additional snapshot(s) would exceed any snapshot limits.
809 * The prop argument indicates which limit to check.
810 *
811 * Note that all filesystem limits up to the root (or the highest
812 * initialized) filesystem or the given ancestor must be satisfied.
813 */
814 int
815 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
816 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
817 {
818 objset_t *os = dd->dd_pool->dp_meta_objset;
819 uint64_t limit, count;
820 const char *count_prop;
821 enforce_res_t enforce;
822 int err = 0;
823
824 ASSERT(dsl_pool_config_held(dd->dd_pool));
825 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
826 prop == ZFS_PROP_SNAPSHOT_LIMIT);
827
828 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
829 /*
830 * We don't enforce the limit for temporary snapshots. This is
831 * indicated by a NULL cred_t argument.
832 */
833 if (cr == NULL)
834 return (0);
835
836 count_prop = DD_FIELD_SNAPSHOT_COUNT;
837 } else {
838 count_prop = DD_FIELD_FILESYSTEM_COUNT;
839 }
840 /*
841 * If we're allowed to change the limit, don't enforce the limit
842 * e.g. this can happen if a snapshot is taken by an administrative
843 * user in the global zone (i.e. a recursive snapshot by root).
844 * However, we must handle the case of delegated permissions where we
845 * are allowed to change the limit on the current dataset, but there
846 * is another limit in the tree above.
847 */
848 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
849 if (enforce == ENFORCE_NEVER)
850 return (0);
851
852 /*
853 * e.g. if renaming a dataset with no snapshots, count adjustment
854 * is 0.
855 */
856 if (delta == 0)
857 return (0);
858
859 /*
860 * If an ancestor has been provided, stop checking the limit once we
861 * hit that dir. We need this during rename so that we don't overcount
862 * the check once we recurse up to the common ancestor.
863 */
864 if (ancestor == dd)
865 return (0);
866
867 /*
868 * If we hit an uninitialized node while recursing up the tree, we can
869 * stop since we know there is no limit here (or above). The counts are
870 * not valid on this node and we know we won't touch this node's counts.
871 */
872 if (!dsl_dir_is_zapified(dd))
873 return (0);
874 err = zap_lookup(os, dd->dd_object,
875 count_prop, sizeof (count), 1, &count);
876 if (err == ENOENT)
877 return (0);
878 if (err != 0)
879 return (err);
880
881 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
882 B_FALSE);
883 if (err != 0)
884 return (err);
885
886 /* Is there a limit which we've hit? */
887 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
888 return (SET_ERROR(EDQUOT));
889
890 if (dd->dd_parent != NULL)
891 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
892 ancestor, cr, proc);
893
894 return (err);
895 }
896
897 /*
898 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
899 * parents. When a new filesystem/snapshot is created, increment the count on
900 * all parents, and when a filesystem/snapshot is destroyed, decrement the
901 * count.
902 */
903 void
904 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
905 dmu_tx_t *tx)
906 {
907 int err;
908 objset_t *os = dd->dd_pool->dp_meta_objset;
909 uint64_t count;
910
911 ASSERT(dsl_pool_config_held(dd->dd_pool));
912 ASSERT(dmu_tx_is_syncing(tx));
913 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
914 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
915
916 /*
917 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
918 */
919 if (dd->dd_myname[0] == '$' && strcmp(prop,
920 DD_FIELD_FILESYSTEM_COUNT) == 0) {
921 return;
922 }
923
924 /*
925 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
926 */
927 if (delta == 0)
928 return;
929
930 /*
931 * If we hit an uninitialized node while recursing up the tree, we can
932 * stop since we know the counts are not valid on this node and we
933 * know we shouldn't touch this node's counts. An uninitialized count
934 * on the node indicates that either the feature has not yet been
935 * activated or there are no limits on this part of the tree.
936 */
937 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
938 prop, sizeof (count), 1, &count)) == ENOENT)
939 return;
940 VERIFY0(err);
941
942 count += delta;
943 /* Use a signed verify to make sure we're not neg. */
944 VERIFY3S(count, >=, 0);
945
946 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
947 tx));
948
949 /* Roll up this additional count into our ancestors */
950 if (dd->dd_parent != NULL)
951 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
952 }
953
954 uint64_t
955 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
956 dmu_tx_t *tx)
957 {
958 objset_t *mos = dp->dp_meta_objset;
959 uint64_t ddobj;
960 dsl_dir_phys_t *ddphys;
961 dmu_buf_t *dbuf;
962
963 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
964 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
965 if (pds) {
966 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
967 name, sizeof (uint64_t), 1, &ddobj, tx));
968 } else {
969 /* it's the root dir */
970 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
971 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
972 }
973 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
974 dmu_buf_will_dirty(dbuf, tx);
975 ddphys = dbuf->db_data;
976
977 ddphys->dd_creation_time = gethrestime_sec();
978 if (pds) {
979 ddphys->dd_parent_obj = pds->dd_object;
980
981 /* update the filesystem counts */
982 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
983 }
984 ddphys->dd_props_zapobj = zap_create(mos,
985 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
986 ddphys->dd_child_dir_zapobj = zap_create(mos,
987 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
988 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
989 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
990
991 dmu_buf_rele(dbuf, FTAG);
992
993 return (ddobj);
994 }
995
996 boolean_t
997 dsl_dir_is_clone(dsl_dir_t *dd)
998 {
999 return (dsl_dir_phys(dd)->dd_origin_obj &&
1000 (dd->dd_pool->dp_origin_snap == NULL ||
1001 dsl_dir_phys(dd)->dd_origin_obj !=
1002 dd->dd_pool->dp_origin_snap->ds_object));
1003 }
1004
1005 uint64_t
1006 dsl_dir_get_used(dsl_dir_t *dd)
1007 {
1008 return (dsl_dir_phys(dd)->dd_used_bytes);
1009 }
1010
1011 uint64_t
1012 dsl_dir_get_compressed(dsl_dir_t *dd)
1013 {
1014 return (dsl_dir_phys(dd)->dd_compressed_bytes);
1015 }
1016
1017 uint64_t
1018 dsl_dir_get_quota(dsl_dir_t *dd)
1019 {
1020 return (dsl_dir_phys(dd)->dd_quota);
1021 }
1022
1023 uint64_t
1024 dsl_dir_get_reservation(dsl_dir_t *dd)
1025 {
1026 return (dsl_dir_phys(dd)->dd_reserved);
1027 }
1028
1029 uint64_t
1030 dsl_dir_get_compressratio(dsl_dir_t *dd)
1031 {
1032 /* a fixed point number, 100x the ratio */
1033 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1034 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1035 dsl_dir_phys(dd)->dd_compressed_bytes));
1036 }
1037
1038 uint64_t
1039 dsl_dir_get_logicalused(dsl_dir_t *dd)
1040 {
1041 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1042 }
1043
1044 uint64_t
1045 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1046 {
1047 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1048 }
1049
1050 uint64_t
1051 dsl_dir_get_usedds(dsl_dir_t *dd)
1052 {
1053 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1054 }
1055
1056 uint64_t
1057 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1058 {
1059 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1060 }
1061
1062 uint64_t
1063 dsl_dir_get_usedchild(dsl_dir_t *dd)
1064 {
1065 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1066 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1067 }
1068
1069 void
1070 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1071 {
1072 dsl_dataset_t *ds;
1073 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1074 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1075
1076 dsl_dataset_name(ds, buf);
1077
1078 dsl_dataset_rele(ds, FTAG);
1079 }
1080
1081 int
1082 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1083 {
1084 if (dsl_dir_is_zapified(dd)) {
1085 objset_t *os = dd->dd_pool->dp_meta_objset;
1086 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1087 sizeof (*count), 1, count));
1088 } else {
1089 return (SET_ERROR(ENOENT));
1090 }
1091 }
1092
1093 int
1094 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1095 {
1096 if (dsl_dir_is_zapified(dd)) {
1097 objset_t *os = dd->dd_pool->dp_meta_objset;
1098 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1099 sizeof (*count), 1, count));
1100 } else {
1101 return (SET_ERROR(ENOENT));
1102 }
1103 }
1104
1105 void
1106 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1107 {
1108 mutex_enter(&dd->dd_lock);
1109 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1110 dsl_dir_get_quota(dd));
1111 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1112 dsl_dir_get_reservation(dd));
1113 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1114 dsl_dir_get_logicalused(dd));
1115 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1116 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1117 dsl_dir_get_usedsnap(dd));
1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1119 dsl_dir_get_usedds(dd));
1120 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1121 dsl_dir_get_usedrefreserv(dd));
1122 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1123 dsl_dir_get_usedchild(dd));
1124 }
1125 mutex_exit(&dd->dd_lock);
1126
1127 uint64_t count;
1128 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1129 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1130 count);
1131 }
1132 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1133 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1134 count);
1135 }
1136
1137 if (dsl_dir_is_clone(dd)) {
1138 char buf[ZFS_MAX_DATASET_NAME_LEN];
1139 dsl_dir_get_origin(dd, buf);
1140 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1141 }
1142
1143 }
1144
1145 void
1146 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1147 {
1148 dsl_pool_t *dp = dd->dd_pool;
1149
1150 ASSERT(dsl_dir_phys(dd));
1151
1152 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1153 /* up the hold count until we can be written out */
1154 dmu_buf_add_ref(dd->dd_dbuf, dd);
1155 }
1156 }
1157
1158 static int64_t
1159 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1160 {
1161 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1162 uint64_t new_accounted =
1163 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1164 return (new_accounted - old_accounted);
1165 }
1166
1167 void
1168 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1169 {
1170 ASSERT(dmu_tx_is_syncing(tx));
1171
1172 mutex_enter(&dd->dd_lock);
1173 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1174 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1175 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1176 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1177 mutex_exit(&dd->dd_lock);
1178
1179 /* release the hold from dsl_dir_dirty */
1180 dmu_buf_rele(dd->dd_dbuf, dd);
1181 }
1182
1183 static uint64_t
1184 dsl_dir_space_towrite(dsl_dir_t *dd)
1185 {
1186 uint64_t space = 0;
1187
1188 ASSERT(MUTEX_HELD(&dd->dd_lock));
1189
1190 for (int i = 0; i < TXG_SIZE; i++)
1191 space += dd->dd_space_towrite[i & TXG_MASK];
1192
1193 return (space);
1194 }
1195
1196 /*
1197 * How much space would dd have available if ancestor had delta applied
1198 * to it? If ondiskonly is set, we're only interested in what's
1199 * on-disk, not estimated pending changes.
1200 */
1201 uint64_t
1202 dsl_dir_space_available(dsl_dir_t *dd,
1203 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1204 {
1205 uint64_t parentspace, myspace, quota, used;
1206
1207 /*
1208 * If there are no restrictions otherwise, assume we have
1209 * unlimited space available.
1210 */
1211 quota = UINT64_MAX;
1212 parentspace = UINT64_MAX;
1213
1214 if (dd->dd_parent != NULL) {
1215 parentspace = dsl_dir_space_available(dd->dd_parent,
1216 ancestor, delta, ondiskonly);
1217 }
1218
1219 mutex_enter(&dd->dd_lock);
1220 if (dsl_dir_phys(dd)->dd_quota != 0)
1221 quota = dsl_dir_phys(dd)->dd_quota;
1222 used = dsl_dir_phys(dd)->dd_used_bytes;
1223 if (!ondiskonly)
1224 used += dsl_dir_space_towrite(dd);
1225
1226 if (dd->dd_parent == NULL) {
1227 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1228 ZFS_SPACE_CHECK_NORMAL);
1229 quota = MIN(quota, poolsize);
1230 }
1231
1232 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1233 /*
1234 * We have some space reserved, in addition to what our
1235 * parent gave us.
1236 */
1237 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1238 }
1239
1240 if (dd == ancestor) {
1241 ASSERT(delta <= 0);
1242 ASSERT(used >= -delta);
1243 used += delta;
1244 if (parentspace != UINT64_MAX)
1245 parentspace -= delta;
1246 }
1247
1248 if (used > quota) {
1249 /* over quota */
1250 myspace = 0;
1251 } else {
1252 /*
1253 * the lesser of the space provided by our parent and
1254 * the space left in our quota
1255 */
1256 myspace = MIN(parentspace, quota - used);
1257 }
1258
1259 mutex_exit(&dd->dd_lock);
1260
1261 return (myspace);
1262 }
1263
1264 struct tempreserve {
1265 list_node_t tr_node;
1266 dsl_dir_t *tr_ds;
1267 uint64_t tr_size;
1268 };
1269
1270 static int
1271 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1272 boolean_t ignorequota, list_t *tr_list,
1273 dmu_tx_t *tx, boolean_t first)
1274 {
1275 uint64_t txg;
1276 uint64_t quota;
1277 struct tempreserve *tr;
1278 int retval;
1279 uint64_t ext_quota;
1280 uint64_t ref_rsrv;
1281
1282 top_of_function:
1283 txg = tx->tx_txg;
1284 retval = EDQUOT;
1285 ref_rsrv = 0;
1286
1287 ASSERT3U(txg, !=, 0);
1288 ASSERT3S(asize, >, 0);
1289
1290 mutex_enter(&dd->dd_lock);
1291
1292 /*
1293 * Check against the dsl_dir's quota. We don't add in the delta
1294 * when checking for over-quota because they get one free hit.
1295 */
1296 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1297 for (int i = 0; i < TXG_SIZE; i++)
1298 est_inflight += dd->dd_tempreserved[i];
1299 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1300
1301 /*
1302 * On the first iteration, fetch the dataset's used-on-disk and
1303 * refreservation values. Also, if checkrefquota is set, test if
1304 * allocating this space would exceed the dataset's refquota.
1305 */
1306 if (first && tx->tx_objset) {
1307 int error;
1308 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1309
1310 error = dsl_dataset_check_quota(ds, !netfree,
1311 asize, est_inflight, &used_on_disk, &ref_rsrv);
1312 if (error != 0) {
1313 mutex_exit(&dd->dd_lock);
1314 DMU_TX_STAT_BUMP(dmu_tx_quota);
1315 return (error);
1316 }
1317 }
1318
1319 /*
1320 * If this transaction will result in a net free of space,
1321 * we want to let it through.
1322 */
1323 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1324 (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1325 zvol_enforce_quotas == B_FALSE))
1326 quota = UINT64_MAX;
1327 else
1328 quota = dsl_dir_phys(dd)->dd_quota;
1329
1330 /*
1331 * Adjust the quota against the actual pool size at the root
1332 * minus any outstanding deferred frees.
1333 * To ensure that it's possible to remove files from a full
1334 * pool without inducing transient overcommits, we throttle
1335 * netfree transactions against a quota that is slightly larger,
1336 * but still within the pool's allocation slop. In cases where
1337 * we're very close to full, this will allow a steady trickle of
1338 * removes to get through.
1339 */
1340 if (dd->dd_parent == NULL) {
1341 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1342 (netfree) ?
1343 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1344
1345 if (avail < quota) {
1346 quota = avail;
1347 retval = SET_ERROR(ENOSPC);
1348 }
1349 }
1350
1351 /*
1352 * If they are requesting more space, and our current estimate
1353 * is over quota, they get to try again unless the actual
1354 * on-disk is over quota and there are no pending changes
1355 * or deferred frees (which may free up space for us).
1356 */
1357 ext_quota = quota >> 5;
1358 if (quota == UINT64_MAX)
1359 ext_quota = 0;
1360
1361 if (used_on_disk >= quota) {
1362 if (retval == ENOSPC && (used_on_disk - quota) <
1363 dsl_pool_deferred_space(dd->dd_pool)) {
1364 retval = SET_ERROR(ERESTART);
1365 }
1366 /* Quota exceeded */
1367 mutex_exit(&dd->dd_lock);
1368 DMU_TX_STAT_BUMP(dmu_tx_quota);
1369 return (retval);
1370 } else if (used_on_disk + est_inflight >= quota + ext_quota) {
1371 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1372 "quota=%lluK tr=%lluK\n",
1373 (u_longlong_t)used_on_disk>>10,
1374 (u_longlong_t)est_inflight>>10,
1375 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1376 mutex_exit(&dd->dd_lock);
1377 DMU_TX_STAT_BUMP(dmu_tx_quota);
1378 return (SET_ERROR(ERESTART));
1379 }
1380
1381 /* We need to up our estimated delta before dropping dd_lock */
1382 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1383
1384 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1385 asize - ref_rsrv);
1386 mutex_exit(&dd->dd_lock);
1387
1388 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1389 tr->tr_ds = dd;
1390 tr->tr_size = asize;
1391 list_insert_tail(tr_list, tr);
1392
1393 /* see if it's OK with our parent */
1394 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1395 /*
1396 * Recurse on our parent without recursion. This has been
1397 * observed to be potentially large stack usage even within
1398 * the test suite. Largest seen stack was 7632 bytes on linux.
1399 */
1400
1401 dd = dd->dd_parent;
1402 asize = parent_rsrv;
1403 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1404 first = B_FALSE;
1405 goto top_of_function;
1406 }
1407
1408 return (0);
1409 }
1410
1411 /*
1412 * Reserve space in this dsl_dir, to be used in this tx's txg.
1413 * After the space has been dirtied (and dsl_dir_willuse_space()
1414 * has been called), the reservation should be canceled, using
1415 * dsl_dir_tempreserve_clear().
1416 */
1417 int
1418 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1419 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1420 {
1421 int err;
1422 list_t *tr_list;
1423
1424 if (asize == 0) {
1425 *tr_cookiep = NULL;
1426 return (0);
1427 }
1428
1429 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1430 list_create(tr_list, sizeof (struct tempreserve),
1431 offsetof(struct tempreserve, tr_node));
1432 ASSERT3S(asize, >, 0);
1433
1434 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1435 if (err == 0) {
1436 struct tempreserve *tr;
1437
1438 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1439 tr->tr_size = lsize;
1440 list_insert_tail(tr_list, tr);
1441 } else {
1442 if (err == EAGAIN) {
1443 /*
1444 * If arc_memory_throttle() detected that pageout
1445 * is running and we are low on memory, we delay new
1446 * non-pageout transactions to give pageout an
1447 * advantage.
1448 *
1449 * It is unfortunate to be delaying while the caller's
1450 * locks are held.
1451 */
1452 txg_delay(dd->dd_pool, tx->tx_txg,
1453 MSEC2NSEC(10), MSEC2NSEC(10));
1454 err = SET_ERROR(ERESTART);
1455 }
1456 }
1457
1458 if (err == 0) {
1459 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1460 B_FALSE, tr_list, tx, B_TRUE);
1461 }
1462
1463 if (err != 0)
1464 dsl_dir_tempreserve_clear(tr_list, tx);
1465 else
1466 *tr_cookiep = tr_list;
1467
1468 return (err);
1469 }
1470
1471 /*
1472 * Clear a temporary reservation that we previously made with
1473 * dsl_dir_tempreserve_space().
1474 */
1475 void
1476 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1477 {
1478 int txgidx = tx->tx_txg & TXG_MASK;
1479 list_t *tr_list = tr_cookie;
1480 struct tempreserve *tr;
1481
1482 ASSERT3U(tx->tx_txg, !=, 0);
1483
1484 if (tr_cookie == NULL)
1485 return;
1486
1487 while ((tr = list_remove_head(tr_list)) != NULL) {
1488 if (tr->tr_ds) {
1489 mutex_enter(&tr->tr_ds->dd_lock);
1490 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1491 tr->tr_size);
1492 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1493 mutex_exit(&tr->tr_ds->dd_lock);
1494 } else {
1495 arc_tempreserve_clear(tr->tr_size);
1496 }
1497 kmem_free(tr, sizeof (struct tempreserve));
1498 }
1499
1500 kmem_free(tr_list, sizeof (list_t));
1501 }
1502
1503 /*
1504 * This should be called from open context when we think we're going to write
1505 * or free space, for example when dirtying data. Be conservative; it's okay
1506 * to write less space or free more, but we don't want to write more or free
1507 * less than the amount specified.
1508 *
1509 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1510 * version however it has been adjusted to use an iterative rather than
1511 * recursive algorithm to minimize stack usage.
1512 */
1513 void
1514 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1515 {
1516 int64_t parent_space;
1517 uint64_t est_used;
1518
1519 do {
1520 mutex_enter(&dd->dd_lock);
1521 if (space > 0)
1522 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1523
1524 est_used = dsl_dir_space_towrite(dd) +
1525 dsl_dir_phys(dd)->dd_used_bytes;
1526 parent_space = parent_delta(dd, est_used, space);
1527 mutex_exit(&dd->dd_lock);
1528
1529 /* Make sure that we clean up dd_space_to* */
1530 dsl_dir_dirty(dd, tx);
1531
1532 dd = dd->dd_parent;
1533 space = parent_space;
1534 } while (space && dd);
1535 }
1536
1537 /* call from syncing context when we actually write/free space for this dd */
1538 void
1539 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1540 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1541 {
1542 int64_t accounted_delta;
1543
1544 ASSERT(dmu_tx_is_syncing(tx));
1545 ASSERT(type < DD_USED_NUM);
1546
1547 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1548
1549 /*
1550 * dsl_dataset_set_refreservation_sync_impl() calls this with
1551 * dd_lock held, so that it can atomically update
1552 * ds->ds_reserved and the dsl_dir accounting, so that
1553 * dsl_dataset_check_quota() can see dataset and dir accounting
1554 * consistently.
1555 */
1556 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1557 if (needlock)
1558 mutex_enter(&dd->dd_lock);
1559 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1560 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1561 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1562 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1563 ASSERT(uncompressed >= 0 ||
1564 ddp->dd_uncompressed_bytes >= -uncompressed);
1565 ddp->dd_used_bytes += used;
1566 ddp->dd_uncompressed_bytes += uncompressed;
1567 ddp->dd_compressed_bytes += compressed;
1568
1569 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1570 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1571 ddp->dd_used_breakdown[type] += used;
1572 #ifdef ZFS_DEBUG
1573 {
1574 dd_used_t t;
1575 uint64_t u = 0;
1576 for (t = 0; t < DD_USED_NUM; t++)
1577 u += ddp->dd_used_breakdown[t];
1578 ASSERT3U(u, ==, ddp->dd_used_bytes);
1579 }
1580 #endif
1581 }
1582 if (needlock)
1583 mutex_exit(&dd->dd_lock);
1584
1585 if (dd->dd_parent != NULL) {
1586 dsl_dir_diduse_transfer_space(dd->dd_parent,
1587 accounted_delta, compressed, uncompressed,
1588 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1589 }
1590 }
1591
1592 void
1593 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1594 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1595 {
1596 ASSERT(dmu_tx_is_syncing(tx));
1597 ASSERT(oldtype < DD_USED_NUM);
1598 ASSERT(newtype < DD_USED_NUM);
1599
1600 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1601 if (delta == 0 ||
1602 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1603 return;
1604
1605 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1606 mutex_enter(&dd->dd_lock);
1607 ASSERT(delta > 0 ?
1608 ddp->dd_used_breakdown[oldtype] >= delta :
1609 ddp->dd_used_breakdown[newtype] >= -delta);
1610 ASSERT(ddp->dd_used_bytes >= ABS(delta));
1611 ddp->dd_used_breakdown[oldtype] -= delta;
1612 ddp->dd_used_breakdown[newtype] += delta;
1613 mutex_exit(&dd->dd_lock);
1614 }
1615
1616 void
1617 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1618 int64_t compressed, int64_t uncompressed, int64_t tonew,
1619 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1620 {
1621 int64_t accounted_delta;
1622
1623 ASSERT(dmu_tx_is_syncing(tx));
1624 ASSERT(oldtype < DD_USED_NUM);
1625 ASSERT(newtype < DD_USED_NUM);
1626
1627 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1628
1629 mutex_enter(&dd->dd_lock);
1630 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1631 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1632 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1633 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1634 ASSERT(uncompressed >= 0 ||
1635 ddp->dd_uncompressed_bytes >= -uncompressed);
1636 ddp->dd_used_bytes += used;
1637 ddp->dd_uncompressed_bytes += uncompressed;
1638 ddp->dd_compressed_bytes += compressed;
1639
1640 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1641 ASSERT(tonew - used <= 0 ||
1642 ddp->dd_used_breakdown[oldtype] >= tonew - used);
1643 ASSERT(tonew >= 0 ||
1644 ddp->dd_used_breakdown[newtype] >= -tonew);
1645 ddp->dd_used_breakdown[oldtype] -= tonew - used;
1646 ddp->dd_used_breakdown[newtype] += tonew;
1647 #ifdef ZFS_DEBUG
1648 {
1649 dd_used_t t;
1650 uint64_t u = 0;
1651 for (t = 0; t < DD_USED_NUM; t++)
1652 u += ddp->dd_used_breakdown[t];
1653 ASSERT3U(u, ==, ddp->dd_used_bytes);
1654 }
1655 #endif
1656 }
1657 mutex_exit(&dd->dd_lock);
1658
1659 if (dd->dd_parent != NULL) {
1660 dsl_dir_diduse_transfer_space(dd->dd_parent,
1661 accounted_delta, compressed, uncompressed,
1662 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1663 }
1664 }
1665
1666 typedef struct dsl_dir_set_qr_arg {
1667 const char *ddsqra_name;
1668 zprop_source_t ddsqra_source;
1669 uint64_t ddsqra_value;
1670 } dsl_dir_set_qr_arg_t;
1671
1672 static int
1673 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1674 {
1675 dsl_dir_set_qr_arg_t *ddsqra = arg;
1676 dsl_pool_t *dp = dmu_tx_pool(tx);
1677 dsl_dataset_t *ds;
1678 int error;
1679 uint64_t towrite, newval;
1680
1681 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1682 if (error != 0)
1683 return (error);
1684
1685 error = dsl_prop_predict(ds->ds_dir, "quota",
1686 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1687 if (error != 0) {
1688 dsl_dataset_rele(ds, FTAG);
1689 return (error);
1690 }
1691
1692 if (newval == 0) {
1693 dsl_dataset_rele(ds, FTAG);
1694 return (0);
1695 }
1696
1697 mutex_enter(&ds->ds_dir->dd_lock);
1698 /*
1699 * If we are doing the preliminary check in open context, and
1700 * there are pending changes, then don't fail it, since the
1701 * pending changes could under-estimate the amount of space to be
1702 * freed up.
1703 */
1704 towrite = dsl_dir_space_towrite(ds->ds_dir);
1705 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1706 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1707 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1708 error = SET_ERROR(ENOSPC);
1709 }
1710 mutex_exit(&ds->ds_dir->dd_lock);
1711 dsl_dataset_rele(ds, FTAG);
1712 return (error);
1713 }
1714
1715 static void
1716 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1717 {
1718 dsl_dir_set_qr_arg_t *ddsqra = arg;
1719 dsl_pool_t *dp = dmu_tx_pool(tx);
1720 dsl_dataset_t *ds;
1721 uint64_t newval;
1722
1723 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1724
1725 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1726 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1727 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1728 &ddsqra->ddsqra_value, tx);
1729
1730 VERIFY0(dsl_prop_get_int_ds(ds,
1731 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1732 } else {
1733 newval = ddsqra->ddsqra_value;
1734 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1735 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1736 }
1737
1738 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1739 mutex_enter(&ds->ds_dir->dd_lock);
1740 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1741 mutex_exit(&ds->ds_dir->dd_lock);
1742 dsl_dataset_rele(ds, FTAG);
1743 }
1744
1745 int
1746 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1747 {
1748 dsl_dir_set_qr_arg_t ddsqra;
1749
1750 ddsqra.ddsqra_name = ddname;
1751 ddsqra.ddsqra_source = source;
1752 ddsqra.ddsqra_value = quota;
1753
1754 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1755 dsl_dir_set_quota_sync, &ddsqra, 0,
1756 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1757 }
1758
1759 static int
1760 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1761 {
1762 dsl_dir_set_qr_arg_t *ddsqra = arg;
1763 dsl_pool_t *dp = dmu_tx_pool(tx);
1764 dsl_dataset_t *ds;
1765 dsl_dir_t *dd;
1766 uint64_t newval, used, avail;
1767 int error;
1768
1769 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1770 if (error != 0)
1771 return (error);
1772 dd = ds->ds_dir;
1773
1774 /*
1775 * If we are doing the preliminary check in open context, the
1776 * space estimates may be inaccurate.
1777 */
1778 if (!dmu_tx_is_syncing(tx)) {
1779 dsl_dataset_rele(ds, FTAG);
1780 return (0);
1781 }
1782
1783 error = dsl_prop_predict(ds->ds_dir,
1784 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1785 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1786 if (error != 0) {
1787 dsl_dataset_rele(ds, FTAG);
1788 return (error);
1789 }
1790
1791 mutex_enter(&dd->dd_lock);
1792 used = dsl_dir_phys(dd)->dd_used_bytes;
1793 mutex_exit(&dd->dd_lock);
1794
1795 if (dd->dd_parent) {
1796 avail = dsl_dir_space_available(dd->dd_parent,
1797 NULL, 0, FALSE);
1798 } else {
1799 avail = dsl_pool_adjustedsize(dd->dd_pool,
1800 ZFS_SPACE_CHECK_NORMAL) - used;
1801 }
1802
1803 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1804 uint64_t delta = MAX(used, newval) -
1805 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1806
1807 if (delta > avail ||
1808 (dsl_dir_phys(dd)->dd_quota > 0 &&
1809 newval > dsl_dir_phys(dd)->dd_quota))
1810 error = SET_ERROR(ENOSPC);
1811 }
1812
1813 dsl_dataset_rele(ds, FTAG);
1814 return (error);
1815 }
1816
1817 void
1818 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1819 {
1820 uint64_t used;
1821 int64_t delta;
1822
1823 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1824
1825 mutex_enter(&dd->dd_lock);
1826 used = dsl_dir_phys(dd)->dd_used_bytes;
1827 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1828 dsl_dir_phys(dd)->dd_reserved = value;
1829
1830 if (dd->dd_parent != NULL) {
1831 /* Roll up this additional usage into our ancestors */
1832 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1833 delta, 0, 0, tx);
1834 }
1835 mutex_exit(&dd->dd_lock);
1836 }
1837
1838 static void
1839 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1840 {
1841 dsl_dir_set_qr_arg_t *ddsqra = arg;
1842 dsl_pool_t *dp = dmu_tx_pool(tx);
1843 dsl_dataset_t *ds;
1844 uint64_t newval;
1845
1846 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1847
1848 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1849 dsl_prop_set_sync_impl(ds,
1850 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1851 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1852 &ddsqra->ddsqra_value, tx);
1853
1854 VERIFY0(dsl_prop_get_int_ds(ds,
1855 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1856 } else {
1857 newval = ddsqra->ddsqra_value;
1858 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1859 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1860 (longlong_t)newval);
1861 }
1862
1863 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1864 dsl_dataset_rele(ds, FTAG);
1865 }
1866
1867 int
1868 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1869 uint64_t reservation)
1870 {
1871 dsl_dir_set_qr_arg_t ddsqra;
1872
1873 ddsqra.ddsqra_name = ddname;
1874 ddsqra.ddsqra_source = source;
1875 ddsqra.ddsqra_value = reservation;
1876
1877 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1878 dsl_dir_set_reservation_sync, &ddsqra, 0,
1879 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1880 }
1881
1882 static dsl_dir_t *
1883 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1884 {
1885 for (; ds1; ds1 = ds1->dd_parent) {
1886 dsl_dir_t *dd;
1887 for (dd = ds2; dd; dd = dd->dd_parent) {
1888 if (ds1 == dd)
1889 return (dd);
1890 }
1891 }
1892 return (NULL);
1893 }
1894
1895 /*
1896 * If delta is applied to dd, how much of that delta would be applied to
1897 * ancestor? Syncing context only.
1898 */
1899 static int64_t
1900 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1901 {
1902 if (dd == ancestor)
1903 return (delta);
1904
1905 mutex_enter(&dd->dd_lock);
1906 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1907 mutex_exit(&dd->dd_lock);
1908 return (would_change(dd->dd_parent, delta, ancestor));
1909 }
1910
1911 typedef struct dsl_dir_rename_arg {
1912 const char *ddra_oldname;
1913 const char *ddra_newname;
1914 cred_t *ddra_cred;
1915 proc_t *ddra_proc;
1916 } dsl_dir_rename_arg_t;
1917
1918 typedef struct dsl_valid_rename_arg {
1919 int char_delta;
1920 int nest_delta;
1921 } dsl_valid_rename_arg_t;
1922
1923 static int
1924 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1925 {
1926 (void) dp;
1927 dsl_valid_rename_arg_t *dvra = arg;
1928 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1929
1930 dsl_dataset_name(ds, namebuf);
1931
1932 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1933 <, ZFS_MAX_DATASET_NAME_LEN);
1934 int namelen = strlen(namebuf) + dvra->char_delta;
1935 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1936
1937 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1938 return (SET_ERROR(ENAMETOOLONG));
1939 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1940 return (SET_ERROR(ENAMETOOLONG));
1941 return (0);
1942 }
1943
1944 static int
1945 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1946 {
1947 dsl_dir_rename_arg_t *ddra = arg;
1948 dsl_pool_t *dp = dmu_tx_pool(tx);
1949 dsl_dir_t *dd, *newparent;
1950 dsl_valid_rename_arg_t dvra;
1951 dsl_dataset_t *parentds;
1952 objset_t *parentos;
1953 const char *mynewname;
1954 int error;
1955
1956 /* target dir should exist */
1957 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1958 if (error != 0)
1959 return (error);
1960
1961 /* new parent should exist */
1962 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1963 &newparent, &mynewname);
1964 if (error != 0) {
1965 dsl_dir_rele(dd, FTAG);
1966 return (error);
1967 }
1968
1969 /* can't rename to different pool */
1970 if (dd->dd_pool != newparent->dd_pool) {
1971 dsl_dir_rele(newparent, FTAG);
1972 dsl_dir_rele(dd, FTAG);
1973 return (SET_ERROR(EXDEV));
1974 }
1975
1976 /* new name should not already exist */
1977 if (mynewname == NULL) {
1978 dsl_dir_rele(newparent, FTAG);
1979 dsl_dir_rele(dd, FTAG);
1980 return (SET_ERROR(EEXIST));
1981 }
1982
1983 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1984 error = dsl_dataset_hold_obj(newparent->dd_pool,
1985 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1986 if (error != 0) {
1987 dsl_dir_rele(newparent, FTAG);
1988 dsl_dir_rele(dd, FTAG);
1989 return (error);
1990 }
1991 error = dmu_objset_from_ds(parentds, &parentos);
1992 if (error != 0) {
1993 dsl_dataset_rele(parentds, FTAG);
1994 dsl_dir_rele(newparent, FTAG);
1995 dsl_dir_rele(dd, FTAG);
1996 return (error);
1997 }
1998 if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1999 dsl_dataset_rele(parentds, FTAG);
2000 dsl_dir_rele(newparent, FTAG);
2001 dsl_dir_rele(dd, FTAG);
2002 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
2003 }
2004 dsl_dataset_rele(parentds, FTAG);
2005
2006 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2007 <, ZFS_MAX_DATASET_NAME_LEN);
2008 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2009 <, ZFS_MAX_DATASET_NAME_LEN);
2010 dvra.char_delta = strlen(ddra->ddra_newname)
2011 - strlen(ddra->ddra_oldname);
2012 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2013 - get_dataset_depth(ddra->ddra_oldname);
2014
2015 /* if the name length is growing, validate child name lengths */
2016 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2017 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2018 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2019 if (error != 0) {
2020 dsl_dir_rele(newparent, FTAG);
2021 dsl_dir_rele(dd, FTAG);
2022 return (error);
2023 }
2024 }
2025
2026 if (dmu_tx_is_syncing(tx)) {
2027 if (spa_feature_is_active(dp->dp_spa,
2028 SPA_FEATURE_FS_SS_LIMIT)) {
2029 /*
2030 * Although this is the check function and we don't
2031 * normally make on-disk changes in check functions,
2032 * we need to do that here.
2033 *
2034 * Ensure this portion of the tree's counts have been
2035 * initialized in case the new parent has limits set.
2036 */
2037 dsl_dir_init_fs_ss_count(dd, tx);
2038 }
2039 }
2040
2041 if (newparent != dd->dd_parent) {
2042 /* is there enough space? */
2043 uint64_t myspace =
2044 MAX(dsl_dir_phys(dd)->dd_used_bytes,
2045 dsl_dir_phys(dd)->dd_reserved);
2046 objset_t *os = dd->dd_pool->dp_meta_objset;
2047 uint64_t fs_cnt = 0;
2048 uint64_t ss_cnt = 0;
2049
2050 if (dsl_dir_is_zapified(dd)) {
2051 int err;
2052
2053 err = zap_lookup(os, dd->dd_object,
2054 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2055 &fs_cnt);
2056 if (err != ENOENT && err != 0) {
2057 dsl_dir_rele(newparent, FTAG);
2058 dsl_dir_rele(dd, FTAG);
2059 return (err);
2060 }
2061
2062 /*
2063 * have to add 1 for the filesystem itself that we're
2064 * moving
2065 */
2066 fs_cnt++;
2067
2068 err = zap_lookup(os, dd->dd_object,
2069 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2070 &ss_cnt);
2071 if (err != ENOENT && err != 0) {
2072 dsl_dir_rele(newparent, FTAG);
2073 dsl_dir_rele(dd, FTAG);
2074 return (err);
2075 }
2076 }
2077
2078 /* check for encryption errors */
2079 error = dsl_dir_rename_crypt_check(dd, newparent);
2080 if (error != 0) {
2081 dsl_dir_rele(newparent, FTAG);
2082 dsl_dir_rele(dd, FTAG);
2083 return (SET_ERROR(EACCES));
2084 }
2085
2086 /* no rename into our descendant */
2087 if (closest_common_ancestor(dd, newparent) == dd) {
2088 dsl_dir_rele(newparent, FTAG);
2089 dsl_dir_rele(dd, FTAG);
2090 return (SET_ERROR(EINVAL));
2091 }
2092
2093 error = dsl_dir_transfer_possible(dd->dd_parent,
2094 newparent, fs_cnt, ss_cnt, myspace,
2095 ddra->ddra_cred, ddra->ddra_proc);
2096 if (error != 0) {
2097 dsl_dir_rele(newparent, FTAG);
2098 dsl_dir_rele(dd, FTAG);
2099 return (error);
2100 }
2101 }
2102
2103 dsl_dir_rele(newparent, FTAG);
2104 dsl_dir_rele(dd, FTAG);
2105 return (0);
2106 }
2107
2108 static void
2109 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2110 {
2111 dsl_dir_rename_arg_t *ddra = arg;
2112 dsl_pool_t *dp = dmu_tx_pool(tx);
2113 dsl_dir_t *dd, *newparent;
2114 const char *mynewname;
2115 objset_t *mos = dp->dp_meta_objset;
2116
2117 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2118 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2119 &mynewname));
2120
2121 ASSERT3P(mynewname, !=, NULL);
2122
2123 /* Log this before we change the name. */
2124 spa_history_log_internal_dd(dd, "rename", tx,
2125 "-> %s", ddra->ddra_newname);
2126
2127 if (newparent != dd->dd_parent) {
2128 objset_t *os = dd->dd_pool->dp_meta_objset;
2129 uint64_t fs_cnt = 0;
2130 uint64_t ss_cnt = 0;
2131
2132 /*
2133 * We already made sure the dd counts were initialized in the
2134 * check function.
2135 */
2136 if (spa_feature_is_active(dp->dp_spa,
2137 SPA_FEATURE_FS_SS_LIMIT)) {
2138 VERIFY0(zap_lookup(os, dd->dd_object,
2139 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2140 &fs_cnt));
2141 /* add 1 for the filesystem itself that we're moving */
2142 fs_cnt++;
2143
2144 VERIFY0(zap_lookup(os, dd->dd_object,
2145 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2146 &ss_cnt));
2147 }
2148
2149 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2150 DD_FIELD_FILESYSTEM_COUNT, tx);
2151 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2152 DD_FIELD_FILESYSTEM_COUNT, tx);
2153
2154 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2155 DD_FIELD_SNAPSHOT_COUNT, tx);
2156 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2157 DD_FIELD_SNAPSHOT_COUNT, tx);
2158
2159 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2160 -dsl_dir_phys(dd)->dd_used_bytes,
2161 -dsl_dir_phys(dd)->dd_compressed_bytes,
2162 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2163 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2164 dsl_dir_phys(dd)->dd_used_bytes,
2165 dsl_dir_phys(dd)->dd_compressed_bytes,
2166 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2167
2168 if (dsl_dir_phys(dd)->dd_reserved >
2169 dsl_dir_phys(dd)->dd_used_bytes) {
2170 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2171 dsl_dir_phys(dd)->dd_used_bytes;
2172
2173 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2174 -unused_rsrv, 0, 0, tx);
2175 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2176 unused_rsrv, 0, 0, tx);
2177 }
2178 }
2179
2180 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2181
2182 /* remove from old parent zapobj */
2183 VERIFY0(zap_remove(mos,
2184 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2185 dd->dd_myname, tx));
2186
2187 (void) strlcpy(dd->dd_myname, mynewname,
2188 sizeof (dd->dd_myname));
2189 dsl_dir_rele(dd->dd_parent, dd);
2190 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2191 VERIFY0(dsl_dir_hold_obj(dp,
2192 newparent->dd_object, NULL, dd, &dd->dd_parent));
2193
2194 /* add to new parent zapobj */
2195 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2196 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2197
2198 /* TODO: A rename callback to avoid these layering violations. */
2199 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2200 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2201 ddra->ddra_newname, B_TRUE);
2202
2203 dsl_prop_notify_all(dd);
2204
2205 dsl_dir_rele(newparent, FTAG);
2206 dsl_dir_rele(dd, FTAG);
2207 }
2208
2209 int
2210 dsl_dir_rename(const char *oldname, const char *newname)
2211 {
2212 dsl_dir_rename_arg_t ddra;
2213
2214 ddra.ddra_oldname = oldname;
2215 ddra.ddra_newname = newname;
2216 ddra.ddra_cred = CRED();
2217 ddra.ddra_proc = curproc;
2218
2219 return (dsl_sync_task(oldname,
2220 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2221 3, ZFS_SPACE_CHECK_RESERVED));
2222 }
2223
2224 int
2225 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2226 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2227 cred_t *cr, proc_t *proc)
2228 {
2229 dsl_dir_t *ancestor;
2230 int64_t adelta;
2231 uint64_t avail;
2232 int err;
2233
2234 ancestor = closest_common_ancestor(sdd, tdd);
2235 adelta = would_change(sdd, -space, ancestor);
2236 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2237 if (avail < space)
2238 return (SET_ERROR(ENOSPC));
2239
2240 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2241 ancestor, cr, proc);
2242 if (err != 0)
2243 return (err);
2244 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2245 ancestor, cr, proc);
2246 if (err != 0)
2247 return (err);
2248
2249 return (0);
2250 }
2251
2252 inode_timespec_t
2253 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2254 {
2255 inode_timespec_t t;
2256
2257 mutex_enter(&dd->dd_lock);
2258 t = dd->dd_snap_cmtime;
2259 mutex_exit(&dd->dd_lock);
2260
2261 return (t);
2262 }
2263
2264 void
2265 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2266 {
2267 dsl_pool_t *dp = dmu_tx_pool(tx);
2268 inode_timespec_t t;
2269 gethrestime(&t);
2270
2271 mutex_enter(&dd->dd_lock);
2272 dd->dd_snap_cmtime = t;
2273 if (spa_feature_is_enabled(dp->dp_spa,
2274 SPA_FEATURE_EXTENSIBLE_DATASET)) {
2275 objset_t *mos = dd->dd_pool->dp_meta_objset;
2276 uint64_t ddobj = dd->dd_object;
2277 dsl_dir_zapify(dd, tx);
2278 VERIFY0(zap_update(mos, ddobj,
2279 DD_FIELD_SNAPSHOTS_CHANGED,
2280 sizeof (uint64_t),
2281 sizeof (inode_timespec_t) / sizeof (uint64_t),
2282 &t, tx));
2283 }
2284 mutex_exit(&dd->dd_lock);
2285 }
2286
2287 void
2288 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2289 {
2290 objset_t *mos = dd->dd_pool->dp_meta_objset;
2291 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2292 }
2293
2294 boolean_t
2295 dsl_dir_is_zapified(dsl_dir_t *dd)
2296 {
2297 dmu_object_info_t doi;
2298
2299 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2300 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2301 }
2302
2303 void
2304 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2305 {
2306 objset_t *mos = dd->dd_pool->dp_meta_objset;
2307 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2308 SPA_FEATURE_LIVELIST));
2309 dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2310 bplist_create(&dd->dd_pending_allocs);
2311 bplist_create(&dd->dd_pending_frees);
2312 }
2313
2314 void
2315 dsl_dir_livelist_close(dsl_dir_t *dd)
2316 {
2317 dsl_deadlist_close(&dd->dd_livelist);
2318 bplist_destroy(&dd->dd_pending_allocs);
2319 bplist_destroy(&dd->dd_pending_frees);
2320 }
2321
2322 void
2323 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2324 {
2325 uint64_t obj;
2326 dsl_pool_t *dp = dmu_tx_pool(tx);
2327 spa_t *spa = dp->dp_spa;
2328 livelist_condense_entry_t to_condense = spa->spa_to_condense;
2329
2330 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2331 return;
2332
2333 /*
2334 * If the livelist being removed is set to be condensed, stop the
2335 * condense zthr and indicate the cancellation in the spa_to_condense
2336 * struct in case the condense no-wait synctask has already started
2337 */
2338 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2339 if (ll_condense_thread != NULL &&
2340 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2341 /*
2342 * We use zthr_wait_cycle_done instead of zthr_cancel
2343 * because we don't want to destroy the zthr, just have
2344 * it skip its current task.
2345 */
2346 spa->spa_to_condense.cancelled = B_TRUE;
2347 zthr_wait_cycle_done(ll_condense_thread);
2348 /*
2349 * If we've returned from zthr_wait_cycle_done without
2350 * clearing the to_condense data structure it's either
2351 * because the no-wait synctask has started (which is
2352 * indicated by 'syncing' field of to_condense) and we
2353 * can expect it to clear to_condense on its own.
2354 * Otherwise, we returned before the zthr ran. The
2355 * checkfunc will now fail as cancelled == B_TRUE so we
2356 * can safely NULL out ds, allowing a different dir's
2357 * livelist to be condensed.
2358 *
2359 * We can be sure that the to_condense struct will not
2360 * be repopulated at this stage because both this
2361 * function and dsl_livelist_try_condense execute in
2362 * syncing context.
2363 */
2364 if ((spa->spa_to_condense.ds != NULL) &&
2365 !spa->spa_to_condense.syncing) {
2366 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2367 spa);
2368 spa->spa_to_condense.ds = NULL;
2369 }
2370 }
2371
2372 dsl_dir_livelist_close(dd);
2373 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2374 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2375 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2376 DD_FIELD_LIVELIST, tx));
2377 if (total) {
2378 dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2379 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2380 }
2381 }
2382
2383 static int
2384 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2385 zfs_wait_activity_t activity, boolean_t *in_progress)
2386 {
2387 int error = 0;
2388
2389 ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2390
2391 switch (activity) {
2392 case ZFS_WAIT_DELETEQ: {
2393 #ifdef _KERNEL
2394 objset_t *os;
2395 error = dmu_objset_from_ds(ds, &os);
2396 if (error != 0)
2397 break;
2398
2399 mutex_enter(&os->os_user_ptr_lock);
2400 void *user = dmu_objset_get_user(os);
2401 mutex_exit(&os->os_user_ptr_lock);
2402 if (dmu_objset_type(os) != DMU_OST_ZFS ||
2403 user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2404 *in_progress = B_FALSE;
2405 return (0);
2406 }
2407
2408 uint64_t readonly = B_FALSE;
2409 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2410 NULL);
2411
2412 if (error != 0)
2413 break;
2414
2415 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2416 *in_progress = B_FALSE;
2417 return (0);
2418 }
2419
2420 uint64_t count, unlinked_obj;
2421 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2422 &unlinked_obj);
2423 if (error != 0) {
2424 dsl_dataset_rele(ds, FTAG);
2425 break;
2426 }
2427 error = zap_count(os, unlinked_obj, &count);
2428
2429 if (error == 0)
2430 *in_progress = (count != 0);
2431 break;
2432 #else
2433 /*
2434 * The delete queue is ZPL specific, and libzpool doesn't have
2435 * it. It doesn't make sense to wait for it.
2436 */
2437 (void) ds;
2438 *in_progress = B_FALSE;
2439 break;
2440 #endif
2441 }
2442 default:
2443 panic("unrecognized value for activity %d", activity);
2444 }
2445
2446 return (error);
2447 }
2448
2449 int
2450 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2451 boolean_t *waited)
2452 {
2453 int error = 0;
2454 boolean_t in_progress;
2455 dsl_pool_t *dp = dd->dd_pool;
2456 for (;;) {
2457 dsl_pool_config_enter(dp, FTAG);
2458 error = dsl_dir_activity_in_progress(dd, ds, activity,
2459 &in_progress);
2460 dsl_pool_config_exit(dp, FTAG);
2461 if (error != 0 || !in_progress)
2462 break;
2463
2464 *waited = B_TRUE;
2465
2466 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2467 0 || dd->dd_activity_cancelled) {
2468 error = SET_ERROR(EINTR);
2469 break;
2470 }
2471 }
2472 return (error);
2473 }
2474
2475 void
2476 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2477 {
2478 mutex_enter(&dd->dd_activity_lock);
2479 dd->dd_activity_cancelled = B_TRUE;
2480 cv_broadcast(&dd->dd_activity_cv);
2481 while (dd->dd_activity_waiters > 0)
2482 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2483 mutex_exit(&dd->dd_activity_lock);
2484 }
2485
2486 #if defined(_KERNEL)
2487 EXPORT_SYMBOL(dsl_dir_set_quota);
2488 EXPORT_SYMBOL(dsl_dir_set_reservation);
2489 #endif
2490
2491 /* CSTYLED */
2492 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2493 "Enable strict ZVOL quota enforcment");