]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_dir.c
Illumos 5056 - ZFS deadlock on db_mtx and dn_holds
[mirror_zfs.git] / module / zfs / dsl_dir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/dmu.h>
30 #include <sys/dmu_objset.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dsl_deleg.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/spa.h>
39 #include <sys/metaslab.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/arc.h>
43 #include <sys/sunddi.h>
44 #include <sys/zfeature.h>
45 #include <sys/policy.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/zvol.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50
51 /*
52 * Filesystem and Snapshot Limits
53 * ------------------------------
54 *
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
60 *
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
66 *
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
76 *
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
89 *
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
100 *
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
112 *
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
117 *
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
121 *
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
124 */
125
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
127
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
129
130 static void
131 dsl_dir_evict(void *dbu)
132 {
133 dsl_dir_t *dd = dbu;
134 int t;
135 ASSERTV(dsl_pool_t *dp = dd->dd_pool);
136
137 dd->dd_dbuf = NULL;
138
139 for (t = 0; t < TXG_SIZE; t++) {
140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 ASSERT(dd->dd_tempreserved[t] == 0);
142 ASSERT(dd->dd_space_towrite[t] == 0);
143 }
144
145 if (dd->dd_parent)
146 dsl_dir_async_rele(dd->dd_parent, dd);
147
148 spa_async_close(dd->dd_pool->dp_spa, dd);
149
150 /*
151 * The props callback list should have been cleaned up by
152 * objset_evict().
153 */
154 list_destroy(&dd->dd_prop_cbs);
155 mutex_destroy(&dd->dd_lock);
156 kmem_free(dd, sizeof (dsl_dir_t));
157 }
158
159 int
160 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
161 const char *tail, void *tag, dsl_dir_t **ddp)
162 {
163 dmu_buf_t *dbuf;
164 dsl_dir_t *dd;
165 int err;
166
167 ASSERT(dsl_pool_config_held(dp));
168
169 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
170 if (err != 0)
171 return (err);
172 dd = dmu_buf_get_user(dbuf);
173 #ifdef ZFS_DEBUG
174 {
175 dmu_object_info_t doi;
176 dmu_object_info_from_db(dbuf, &doi);
177 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
178 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
179 }
180 #endif
181 if (dd == NULL) {
182 dsl_dir_t *winner;
183
184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
185 dd->dd_object = ddobj;
186 dd->dd_dbuf = dbuf;
187 dd->dd_pool = dp;
188 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
189
190 list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t),
191 offsetof(dsl_prop_cb_record_t, cbr_node));
192
193 dsl_dir_snap_cmtime_update(dd);
194
195 if (dsl_dir_phys(dd)->dd_parent_obj) {
196 err = dsl_dir_hold_obj(dp,
197 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
198 &dd->dd_parent);
199 if (err != 0)
200 goto errout;
201 if (tail) {
202 #ifdef ZFS_DEBUG
203 uint64_t foundobj;
204
205 err = zap_lookup(dp->dp_meta_objset,
206 dsl_dir_phys(dd->dd_parent)->
207 dd_child_dir_zapobj, tail,
208 sizeof (foundobj), 1, &foundobj);
209 ASSERT(err || foundobj == ddobj);
210 #endif
211 (void) strcpy(dd->dd_myname, tail);
212 } else {
213 err = zap_value_search(dp->dp_meta_objset,
214 dsl_dir_phys(dd->dd_parent)->
215 dd_child_dir_zapobj,
216 ddobj, 0, dd->dd_myname);
217 }
218 if (err != 0)
219 goto errout;
220 } else {
221 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
222 }
223
224 if (dsl_dir_is_clone(dd)) {
225 dmu_buf_t *origin_bonus;
226 dsl_dataset_phys_t *origin_phys;
227
228 /*
229 * We can't open the origin dataset, because
230 * that would require opening this dsl_dir.
231 * Just look at its phys directly instead.
232 */
233 err = dmu_bonus_hold(dp->dp_meta_objset,
234 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
235 &origin_bonus);
236 if (err != 0)
237 goto errout;
238 origin_phys = origin_bonus->db_data;
239 dd->dd_origin_txg =
240 origin_phys->ds_creation_txg;
241 dmu_buf_rele(origin_bonus, FTAG);
242 }
243
244 dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf);
245 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
246 if (winner != NULL) {
247 if (dd->dd_parent)
248 dsl_dir_rele(dd->dd_parent, dd);
249 mutex_destroy(&dd->dd_lock);
250 kmem_free(dd, sizeof (dsl_dir_t));
251 dd = winner;
252 } else {
253 spa_open_ref(dp->dp_spa, dd);
254 }
255 }
256
257 /*
258 * The dsl_dir_t has both open-to-close and instantiate-to-evict
259 * holds on the spa. We need the open-to-close holds because
260 * otherwise the spa_refcnt wouldn't change when we open a
261 * dir which the spa also has open, so we could incorrectly
262 * think it was OK to unload/export/destroy the pool. We need
263 * the instantiate-to-evict hold because the dsl_dir_t has a
264 * pointer to the dd_pool, which has a pointer to the spa_t.
265 */
266 spa_open_ref(dp->dp_spa, tag);
267 ASSERT3P(dd->dd_pool, ==, dp);
268 ASSERT3U(dd->dd_object, ==, ddobj);
269 ASSERT3P(dd->dd_dbuf, ==, dbuf);
270 *ddp = dd;
271 return (0);
272
273 errout:
274 if (dd->dd_parent)
275 dsl_dir_rele(dd->dd_parent, dd);
276 mutex_destroy(&dd->dd_lock);
277 kmem_free(dd, sizeof (dsl_dir_t));
278 dmu_buf_rele(dbuf, tag);
279 return (err);
280 }
281
282 void
283 dsl_dir_rele(dsl_dir_t *dd, void *tag)
284 {
285 dprintf_dd(dd, "%s\n", "");
286 spa_close(dd->dd_pool->dp_spa, tag);
287 dmu_buf_rele(dd->dd_dbuf, tag);
288 }
289
290 /*
291 * Remove a reference to the given dsl dir that is being asynchronously
292 * released. Async releases occur from a taskq performing eviction of
293 * dsl datasets and dirs. This process is identical to a normal release
294 * with the exception of using the async API for releasing the reference on
295 * the spa.
296 */
297 void
298 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
299 {
300 dprintf_dd(dd, "%s\n", "");
301 spa_async_close(dd->dd_pool->dp_spa, tag);
302 dmu_buf_rele(dd->dd_dbuf, tag);
303 }
304
305 /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */
306 void
307 dsl_dir_name(dsl_dir_t *dd, char *buf)
308 {
309 if (dd->dd_parent) {
310 dsl_dir_name(dd->dd_parent, buf);
311 (void) strcat(buf, "/");
312 } else {
313 buf[0] = '\0';
314 }
315 if (!MUTEX_HELD(&dd->dd_lock)) {
316 /*
317 * recursive mutex so that we can use
318 * dprintf_dd() with dd_lock held
319 */
320 mutex_enter(&dd->dd_lock);
321 (void) strcat(buf, dd->dd_myname);
322 mutex_exit(&dd->dd_lock);
323 } else {
324 (void) strcat(buf, dd->dd_myname);
325 }
326 }
327
328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
329 int
330 dsl_dir_namelen(dsl_dir_t *dd)
331 {
332 int result = 0;
333
334 if (dd->dd_parent) {
335 /* parent's name + 1 for the "/" */
336 result = dsl_dir_namelen(dd->dd_parent) + 1;
337 }
338
339 if (!MUTEX_HELD(&dd->dd_lock)) {
340 /* see dsl_dir_name */
341 mutex_enter(&dd->dd_lock);
342 result += strlen(dd->dd_myname);
343 mutex_exit(&dd->dd_lock);
344 } else {
345 result += strlen(dd->dd_myname);
346 }
347
348 return (result);
349 }
350
351 static int
352 getcomponent(const char *path, char *component, const char **nextp)
353 {
354 char *p;
355
356 if ((path == NULL) || (path[0] == '\0'))
357 return (SET_ERROR(ENOENT));
358 /* This would be a good place to reserve some namespace... */
359 p = strpbrk(path, "/@");
360 if (p && (p[1] == '/' || p[1] == '@')) {
361 /* two separators in a row */
362 return (SET_ERROR(EINVAL));
363 }
364 if (p == NULL || p == path) {
365 /*
366 * if the first thing is an @ or /, it had better be an
367 * @ and it had better not have any more ats or slashes,
368 * and it had better have something after the @.
369 */
370 if (p != NULL &&
371 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
372 return (SET_ERROR(EINVAL));
373 if (strlen(path) >= MAXNAMELEN)
374 return (SET_ERROR(ENAMETOOLONG));
375 (void) strcpy(component, path);
376 p = NULL;
377 } else if (p[0] == '/') {
378 if (p - path >= MAXNAMELEN)
379 return (SET_ERROR(ENAMETOOLONG));
380 (void) strncpy(component, path, p - path);
381 component[p - path] = '\0';
382 p++;
383 } else if (p[0] == '@') {
384 /*
385 * if the next separator is an @, there better not be
386 * any more slashes.
387 */
388 if (strchr(path, '/'))
389 return (SET_ERROR(EINVAL));
390 if (p - path >= MAXNAMELEN)
391 return (SET_ERROR(ENAMETOOLONG));
392 (void) strncpy(component, path, p - path);
393 component[p - path] = '\0';
394 } else {
395 panic("invalid p=%p", (void *)p);
396 }
397 *nextp = p;
398 return (0);
399 }
400
401 /*
402 * Return the dsl_dir_t, and possibly the last component which couldn't
403 * be found in *tail. The name must be in the specified dsl_pool_t. This
404 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
405 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
406 * (*tail)[0] == '@' means that the last component is a snapshot.
407 */
408 int
409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
410 dsl_dir_t **ddp, const char **tailp)
411 {
412 char *buf;
413 const char *spaname, *next, *nextnext = NULL;
414 int err;
415 dsl_dir_t *dd;
416 uint64_t ddobj;
417
418 buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
419 err = getcomponent(name, buf, &next);
420 if (err != 0)
421 goto error;
422
423 /* Make sure the name is in the specified pool. */
424 spaname = spa_name(dp->dp_spa);
425 if (strcmp(buf, spaname) != 0) {
426 err = SET_ERROR(EXDEV);
427 goto error;
428 }
429
430 ASSERT(dsl_pool_config_held(dp));
431
432 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
433 if (err != 0) {
434 goto error;
435 }
436
437 while (next != NULL) {
438 dsl_dir_t *child_dd;
439 err = getcomponent(next, buf, &nextnext);
440 if (err != 0)
441 break;
442 ASSERT(next[0] != '\0');
443 if (next[0] == '@')
444 break;
445 dprintf("looking up %s in obj%lld\n",
446 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
447
448 err = zap_lookup(dp->dp_meta_objset,
449 dsl_dir_phys(dd)->dd_child_dir_zapobj,
450 buf, sizeof (ddobj), 1, &ddobj);
451 if (err != 0) {
452 if (err == ENOENT)
453 err = 0;
454 break;
455 }
456
457 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
458 if (err != 0)
459 break;
460 dsl_dir_rele(dd, tag);
461 dd = child_dd;
462 next = nextnext;
463 }
464
465 if (err != 0) {
466 dsl_dir_rele(dd, tag);
467 goto error;
468 }
469
470 /*
471 * It's an error if there's more than one component left, or
472 * tailp==NULL and there's any component left.
473 */
474 if (next != NULL &&
475 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
476 /* bad path name */
477 dsl_dir_rele(dd, tag);
478 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
479 err = SET_ERROR(ENOENT);
480 }
481 if (tailp != NULL)
482 *tailp = next;
483 *ddp = dd;
484 error:
485 kmem_free(buf, MAXNAMELEN);
486 return (err);
487 }
488
489 /*
490 * If the counts are already initialized for this filesystem and its
491 * descendants then do nothing, otherwise initialize the counts.
492 *
493 * The counts on this filesystem, and those below, may be uninitialized due to
494 * either the use of a pre-existing pool which did not support the
495 * filesystem/snapshot limit feature, or one in which the feature had not yet
496 * been enabled.
497 *
498 * Recursively descend the filesystem tree and update the filesystem/snapshot
499 * counts on each filesystem below, then update the cumulative count on the
500 * current filesystem. If the filesystem already has a count set on it,
501 * then we know that its counts, and the counts on the filesystems below it,
502 * are already correct, so we don't have to update this filesystem.
503 */
504 static void
505 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
506 {
507 uint64_t my_fs_cnt = 0;
508 uint64_t my_ss_cnt = 0;
509 dsl_pool_t *dp = dd->dd_pool;
510 objset_t *os = dp->dp_meta_objset;
511 zap_cursor_t *zc;
512 zap_attribute_t *za;
513 dsl_dataset_t *ds;
514
515 ASSERT(spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
516 ASSERT(dsl_pool_config_held(dp));
517 ASSERT(dmu_tx_is_syncing(tx));
518
519 dsl_dir_zapify(dd, tx);
520
521 /*
522 * If the filesystem count has already been initialized then we
523 * don't need to recurse down any further.
524 */
525 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
526 return;
527
528 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
529 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
530
531 /* Iterate my child dirs */
532 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
533 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
534 dsl_dir_t *chld_dd;
535 uint64_t count;
536
537 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
538 &chld_dd));
539
540 /*
541 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
542 * temporary datasets.
543 */
544 if (chld_dd->dd_myname[0] == '$' ||
545 chld_dd->dd_myname[0] == '%') {
546 dsl_dir_rele(chld_dd, FTAG);
547 continue;
548 }
549
550 my_fs_cnt++; /* count this child */
551
552 dsl_dir_init_fs_ss_count(chld_dd, tx);
553
554 VERIFY0(zap_lookup(os, chld_dd->dd_object,
555 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
556 my_fs_cnt += count;
557 VERIFY0(zap_lookup(os, chld_dd->dd_object,
558 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
559 my_ss_cnt += count;
560
561 dsl_dir_rele(chld_dd, FTAG);
562 }
563 zap_cursor_fini(zc);
564 /* Count my snapshots (we counted children's snapshots above) */
565 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
566 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
567
568 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
569 zap_cursor_retrieve(zc, za) == 0;
570 zap_cursor_advance(zc)) {
571 /* Don't count temporary snapshots */
572 if (za->za_name[0] != '%')
573 my_ss_cnt++;
574 }
575 zap_cursor_fini(zc);
576
577 dsl_dataset_rele(ds, FTAG);
578
579 kmem_free(zc, sizeof (zap_cursor_t));
580 kmem_free(za, sizeof (zap_attribute_t));
581
582 /* we're in a sync task, update counts */
583 dmu_buf_will_dirty(dd->dd_dbuf, tx);
584 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
585 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
586 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
587 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
588 }
589
590 static int
591 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
592 {
593 char *ddname = (char *)arg;
594 dsl_pool_t *dp = dmu_tx_pool(tx);
595 dsl_dataset_t *ds;
596 dsl_dir_t *dd;
597 int error;
598
599 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
600 if (error != 0)
601 return (error);
602
603 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
604 dsl_dataset_rele(ds, FTAG);
605 return (SET_ERROR(ENOTSUP));
606 }
607
608 dd = ds->ds_dir;
609 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
610 dsl_dir_is_zapified(dd) &&
611 zap_contains(dp->dp_meta_objset, dd->dd_object,
612 DD_FIELD_FILESYSTEM_COUNT) == 0) {
613 dsl_dataset_rele(ds, FTAG);
614 return (SET_ERROR(EALREADY));
615 }
616
617 dsl_dataset_rele(ds, FTAG);
618 return (0);
619 }
620
621 static void
622 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
623 {
624 char *ddname = (char *)arg;
625 dsl_pool_t *dp = dmu_tx_pool(tx);
626 dsl_dataset_t *ds;
627 spa_t *spa;
628
629 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
630
631 spa = dsl_dataset_get_spa(ds);
632
633 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
634 /*
635 * Since the feature was not active and we're now setting a
636 * limit, increment the feature-active counter so that the
637 * feature becomes active for the first time.
638 *
639 * We are already in a sync task so we can update the MOS.
640 */
641 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
642 }
643
644 /*
645 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
646 * we need to ensure the counts are correct. Descend down the tree from
647 * this point and update all of the counts to be accurate.
648 */
649 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
650
651 dsl_dataset_rele(ds, FTAG);
652 }
653
654 /*
655 * Make sure the feature is enabled and activate it if necessary.
656 * Since we're setting a limit, ensure the on-disk counts are valid.
657 * This is only called by the ioctl path when setting a limit value.
658 *
659 * We do not need to validate the new limit, since users who can change the
660 * limit are also allowed to exceed the limit.
661 */
662 int
663 dsl_dir_activate_fs_ss_limit(const char *ddname)
664 {
665 int error;
666
667 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
668 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0);
669
670 if (error == EALREADY)
671 error = 0;
672
673 return (error);
674 }
675
676 /*
677 * Used to determine if the filesystem_limit or snapshot_limit should be
678 * enforced. We allow the limit to be exceeded if the user has permission to
679 * write the property value. We pass in the creds that we got in the open
680 * context since we will always be the GZ root in syncing context. We also have
681 * to handle the case where we are allowed to change the limit on the current
682 * dataset, but there may be another limit in the tree above.
683 *
684 * We can never modify these two properties within a non-global zone. In
685 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
686 * can't use that function since we are already holding the dp_config_rwlock.
687 * In addition, we already have the dd and dealing with snapshots is simplified
688 * in this code.
689 */
690
691 typedef enum {
692 ENFORCE_ALWAYS,
693 ENFORCE_NEVER,
694 ENFORCE_ABOVE
695 } enforce_res_t;
696
697 static enforce_res_t
698 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
699 {
700 enforce_res_t enforce = ENFORCE_ALWAYS;
701 uint64_t obj;
702 dsl_dataset_t *ds;
703 uint64_t zoned;
704
705 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
706 prop == ZFS_PROP_SNAPSHOT_LIMIT);
707
708 #ifdef _KERNEL
709 if (crgetzoneid(cr) != GLOBAL_ZONEID)
710 return (ENFORCE_ALWAYS);
711
712 if (secpolicy_zfs(cr) == 0)
713 return (ENFORCE_NEVER);
714 #endif
715
716 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
717 return (ENFORCE_ALWAYS);
718
719 ASSERT(dsl_pool_config_held(dd->dd_pool));
720
721 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
722 return (ENFORCE_ALWAYS);
723
724 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
725 /* Only root can access zoned fs's from the GZ */
726 enforce = ENFORCE_ALWAYS;
727 } else {
728 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
729 enforce = ENFORCE_ABOVE;
730 }
731
732 dsl_dataset_rele(ds, FTAG);
733 return (enforce);
734 }
735
736 /*
737 * Check if adding additional child filesystem(s) would exceed any filesystem
738 * limits or adding additional snapshot(s) would exceed any snapshot limits.
739 * The prop argument indicates which limit to check.
740 *
741 * Note that all filesystem limits up to the root (or the highest
742 * initialized) filesystem or the given ancestor must be satisfied.
743 */
744 int
745 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
746 dsl_dir_t *ancestor, cred_t *cr)
747 {
748 objset_t *os = dd->dd_pool->dp_meta_objset;
749 uint64_t limit, count;
750 char *count_prop;
751 enforce_res_t enforce;
752 int err = 0;
753
754 ASSERT(dsl_pool_config_held(dd->dd_pool));
755 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
756 prop == ZFS_PROP_SNAPSHOT_LIMIT);
757
758 /*
759 * If we're allowed to change the limit, don't enforce the limit
760 * e.g. this can happen if a snapshot is taken by an administrative
761 * user in the global zone (i.e. a recursive snapshot by root).
762 * However, we must handle the case of delegated permissions where we
763 * are allowed to change the limit on the current dataset, but there
764 * is another limit in the tree above.
765 */
766 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
767 if (enforce == ENFORCE_NEVER)
768 return (0);
769
770 /*
771 * e.g. if renaming a dataset with no snapshots, count adjustment
772 * is 0.
773 */
774 if (delta == 0)
775 return (0);
776
777 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
778 /*
779 * We don't enforce the limit for temporary snapshots. This is
780 * indicated by a NULL cred_t argument.
781 */
782 if (cr == NULL)
783 return (0);
784
785 count_prop = DD_FIELD_SNAPSHOT_COUNT;
786 } else {
787 count_prop = DD_FIELD_FILESYSTEM_COUNT;
788 }
789
790 /*
791 * If an ancestor has been provided, stop checking the limit once we
792 * hit that dir. We need this during rename so that we don't overcount
793 * the check once we recurse up to the common ancestor.
794 */
795 if (ancestor == dd)
796 return (0);
797
798 /*
799 * If we hit an uninitialized node while recursing up the tree, we can
800 * stop since we know there is no limit here (or above). The counts are
801 * not valid on this node and we know we won't touch this node's counts.
802 */
803 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
804 count_prop, sizeof (count), 1, &count) == ENOENT)
805 return (0);
806
807 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
808 B_FALSE);
809 if (err != 0)
810 return (err);
811
812 /* Is there a limit which we've hit? */
813 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
814 return (SET_ERROR(EDQUOT));
815
816 if (dd->dd_parent != NULL)
817 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
818 ancestor, cr);
819
820 return (err);
821 }
822
823 /*
824 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
825 * parents. When a new filesystem/snapshot is created, increment the count on
826 * all parents, and when a filesystem/snapshot is destroyed, decrement the
827 * count.
828 */
829 void
830 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
831 dmu_tx_t *tx)
832 {
833 int err;
834 objset_t *os = dd->dd_pool->dp_meta_objset;
835 uint64_t count;
836
837 ASSERT(dsl_pool_config_held(dd->dd_pool));
838 ASSERT(dmu_tx_is_syncing(tx));
839 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
840 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
841
842 /*
843 * When we receive an incremental stream into a filesystem that already
844 * exists, a temporary clone is created. We don't count this temporary
845 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
846 * $MOS & $ORIGIN) objsets.
847 */
848 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
849 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
850 return;
851
852 /*
853 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
854 */
855 if (delta == 0)
856 return;
857
858 /*
859 * If we hit an uninitialized node while recursing up the tree, we can
860 * stop since we know the counts are not valid on this node and we
861 * know we shouldn't touch this node's counts. An uninitialized count
862 * on the node indicates that either the feature has not yet been
863 * activated or there are no limits on this part of the tree.
864 */
865 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
866 prop, sizeof (count), 1, &count)) == ENOENT)
867 return;
868 VERIFY0(err);
869
870 count += delta;
871 /* Use a signed verify to make sure we're not neg. */
872 VERIFY3S(count, >=, 0);
873
874 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
875 tx));
876
877 /* Roll up this additional count into our ancestors */
878 if (dd->dd_parent != NULL)
879 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
880 }
881
882 uint64_t
883 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
884 dmu_tx_t *tx)
885 {
886 objset_t *mos = dp->dp_meta_objset;
887 uint64_t ddobj;
888 dsl_dir_phys_t *ddphys;
889 dmu_buf_t *dbuf;
890
891 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
892 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
893 if (pds) {
894 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
895 name, sizeof (uint64_t), 1, &ddobj, tx));
896 } else {
897 /* it's the root dir */
898 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
899 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
900 }
901 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
902 dmu_buf_will_dirty(dbuf, tx);
903 ddphys = dbuf->db_data;
904
905 ddphys->dd_creation_time = gethrestime_sec();
906 if (pds) {
907 ddphys->dd_parent_obj = pds->dd_object;
908
909 /* update the filesystem counts */
910 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
911 }
912 ddphys->dd_props_zapobj = zap_create(mos,
913 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
914 ddphys->dd_child_dir_zapobj = zap_create(mos,
915 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
916 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
917 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
918 dmu_buf_rele(dbuf, FTAG);
919
920 return (ddobj);
921 }
922
923 boolean_t
924 dsl_dir_is_clone(dsl_dir_t *dd)
925 {
926 return (dsl_dir_phys(dd)->dd_origin_obj &&
927 (dd->dd_pool->dp_origin_snap == NULL ||
928 dsl_dir_phys(dd)->dd_origin_obj !=
929 dd->dd_pool->dp_origin_snap->ds_object));
930 }
931
932 void
933 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
934 {
935 mutex_enter(&dd->dd_lock);
936 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
937 dsl_dir_phys(dd)->dd_used_bytes);
938 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
939 dsl_dir_phys(dd)->dd_quota);
940 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
941 dsl_dir_phys(dd)->dd_reserved);
942 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
943 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
944 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
945 dsl_dir_phys(dd)->dd_compressed_bytes));
946 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
947 dsl_dir_phys(dd)->dd_uncompressed_bytes);
948 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
950 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
951 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
952 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
953 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
954 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
955 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
956 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
957 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
958 }
959 mutex_exit(&dd->dd_lock);
960
961 if (dsl_dir_is_zapified(dd)) {
962 uint64_t count;
963 objset_t *os = dd->dd_pool->dp_meta_objset;
964
965 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
966 sizeof (count), 1, &count) == 0) {
967 dsl_prop_nvlist_add_uint64(nv,
968 ZFS_PROP_FILESYSTEM_COUNT, count);
969 }
970 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
971 sizeof (count), 1, &count) == 0) {
972 dsl_prop_nvlist_add_uint64(nv,
973 ZFS_PROP_SNAPSHOT_COUNT, count);
974 }
975 }
976
977 if (dsl_dir_is_clone(dd)) {
978 dsl_dataset_t *ds;
979 char buf[MAXNAMELEN];
980
981 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
982 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
983 dsl_dataset_name(ds, buf);
984 dsl_dataset_rele(ds, FTAG);
985 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
986 }
987 }
988
989 void
990 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
991 {
992 dsl_pool_t *dp = dd->dd_pool;
993
994 ASSERT(dsl_dir_phys(dd));
995
996 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
997 /* up the hold count until we can be written out */
998 dmu_buf_add_ref(dd->dd_dbuf, dd);
999 }
1000 }
1001
1002 static int64_t
1003 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1004 {
1005 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1006 uint64_t new_accounted =
1007 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1008 return (new_accounted - old_accounted);
1009 }
1010
1011 void
1012 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1013 {
1014 ASSERT(dmu_tx_is_syncing(tx));
1015
1016 mutex_enter(&dd->dd_lock);
1017 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1018 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1019 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1020 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1021 mutex_exit(&dd->dd_lock);
1022
1023 /* release the hold from dsl_dir_dirty */
1024 dmu_buf_rele(dd->dd_dbuf, dd);
1025 }
1026
1027 static uint64_t
1028 dsl_dir_space_towrite(dsl_dir_t *dd)
1029 {
1030 uint64_t space = 0;
1031 int i;
1032
1033 ASSERT(MUTEX_HELD(&dd->dd_lock));
1034
1035 for (i = 0; i < TXG_SIZE; i++) {
1036 space += dd->dd_space_towrite[i&TXG_MASK];
1037 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1038 }
1039 return (space);
1040 }
1041
1042 /*
1043 * How much space would dd have available if ancestor had delta applied
1044 * to it? If ondiskonly is set, we're only interested in what's
1045 * on-disk, not estimated pending changes.
1046 */
1047 uint64_t
1048 dsl_dir_space_available(dsl_dir_t *dd,
1049 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1050 {
1051 uint64_t parentspace, myspace, quota, used;
1052
1053 /*
1054 * If there are no restrictions otherwise, assume we have
1055 * unlimited space available.
1056 */
1057 quota = UINT64_MAX;
1058 parentspace = UINT64_MAX;
1059
1060 if (dd->dd_parent != NULL) {
1061 parentspace = dsl_dir_space_available(dd->dd_parent,
1062 ancestor, delta, ondiskonly);
1063 }
1064
1065 mutex_enter(&dd->dd_lock);
1066 if (dsl_dir_phys(dd)->dd_quota != 0)
1067 quota = dsl_dir_phys(dd)->dd_quota;
1068 used = dsl_dir_phys(dd)->dd_used_bytes;
1069 if (!ondiskonly)
1070 used += dsl_dir_space_towrite(dd);
1071
1072 if (dd->dd_parent == NULL) {
1073 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1074 quota = MIN(quota, poolsize);
1075 }
1076
1077 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1078 /*
1079 * We have some space reserved, in addition to what our
1080 * parent gave us.
1081 */
1082 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1083 }
1084
1085 if (dd == ancestor) {
1086 ASSERT(delta <= 0);
1087 ASSERT(used >= -delta);
1088 used += delta;
1089 if (parentspace != UINT64_MAX)
1090 parentspace -= delta;
1091 }
1092
1093 if (used > quota) {
1094 /* over quota */
1095 myspace = 0;
1096 } else {
1097 /*
1098 * the lesser of the space provided by our parent and
1099 * the space left in our quota
1100 */
1101 myspace = MIN(parentspace, quota - used);
1102 }
1103
1104 mutex_exit(&dd->dd_lock);
1105
1106 return (myspace);
1107 }
1108
1109 struct tempreserve {
1110 list_node_t tr_node;
1111 dsl_dir_t *tr_ds;
1112 uint64_t tr_size;
1113 };
1114
1115 static int
1116 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1117 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1118 dmu_tx_t *tx, boolean_t first)
1119 {
1120 uint64_t txg = tx->tx_txg;
1121 uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1122 uint64_t deferred = 0;
1123 struct tempreserve *tr;
1124 int retval = EDQUOT;
1125 int txgidx = txg & TXG_MASK;
1126 int i;
1127 uint64_t ref_rsrv = 0;
1128
1129 ASSERT3U(txg, !=, 0);
1130 ASSERT3S(asize, >, 0);
1131
1132 mutex_enter(&dd->dd_lock);
1133
1134 /*
1135 * Check against the dsl_dir's quota. We don't add in the delta
1136 * when checking for over-quota because they get one free hit.
1137 */
1138 est_inflight = dsl_dir_space_towrite(dd);
1139 for (i = 0; i < TXG_SIZE; i++)
1140 est_inflight += dd->dd_tempreserved[i];
1141 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1142
1143 /*
1144 * On the first iteration, fetch the dataset's used-on-disk and
1145 * refreservation values. Also, if checkrefquota is set, test if
1146 * allocating this space would exceed the dataset's refquota.
1147 */
1148 if (first && tx->tx_objset) {
1149 int error;
1150 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1151
1152 error = dsl_dataset_check_quota(ds, checkrefquota,
1153 asize, est_inflight, &used_on_disk, &ref_rsrv);
1154 if (error) {
1155 mutex_exit(&dd->dd_lock);
1156 DMU_TX_STAT_BUMP(dmu_tx_quota);
1157 return (error);
1158 }
1159 }
1160
1161 /*
1162 * If this transaction will result in a net free of space,
1163 * we want to let it through.
1164 */
1165 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1166 quota = UINT64_MAX;
1167 else
1168 quota = dsl_dir_phys(dd)->dd_quota;
1169
1170 /*
1171 * Adjust the quota against the actual pool size at the root
1172 * minus any outstanding deferred frees.
1173 * To ensure that it's possible to remove files from a full
1174 * pool without inducing transient overcommits, we throttle
1175 * netfree transactions against a quota that is slightly larger,
1176 * but still within the pool's allocation slop. In cases where
1177 * we're very close to full, this will allow a steady trickle of
1178 * removes to get through.
1179 */
1180 if (dd->dd_parent == NULL) {
1181 spa_t *spa = dd->dd_pool->dp_spa;
1182 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1183 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1184 if (poolsize - deferred < quota) {
1185 quota = poolsize - deferred;
1186 retval = ENOSPC;
1187 }
1188 }
1189
1190 /*
1191 * If they are requesting more space, and our current estimate
1192 * is over quota, they get to try again unless the actual
1193 * on-disk is over quota and there are no pending changes (which
1194 * may free up space for us).
1195 */
1196 if (used_on_disk + est_inflight >= quota) {
1197 if (est_inflight > 0 || used_on_disk < quota ||
1198 (retval == ENOSPC && used_on_disk < quota + deferred))
1199 retval = ERESTART;
1200 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1201 "quota=%lluK tr=%lluK err=%d\n",
1202 used_on_disk>>10, est_inflight>>10,
1203 quota>>10, asize>>10, retval);
1204 mutex_exit(&dd->dd_lock);
1205 DMU_TX_STAT_BUMP(dmu_tx_quota);
1206 return (SET_ERROR(retval));
1207 }
1208
1209 /* We need to up our estimated delta before dropping dd_lock */
1210 dd->dd_tempreserved[txgidx] += asize;
1211
1212 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1213 asize - ref_rsrv);
1214 mutex_exit(&dd->dd_lock);
1215
1216 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1217 tr->tr_ds = dd;
1218 tr->tr_size = asize;
1219 list_insert_tail(tr_list, tr);
1220
1221 /* see if it's OK with our parent */
1222 if (dd->dd_parent && parent_rsrv) {
1223 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1224
1225 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1226 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1227 } else {
1228 return (0);
1229 }
1230 }
1231
1232 /*
1233 * Reserve space in this dsl_dir, to be used in this tx's txg.
1234 * After the space has been dirtied (and dsl_dir_willuse_space()
1235 * has been called), the reservation should be canceled, using
1236 * dsl_dir_tempreserve_clear().
1237 */
1238 int
1239 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1240 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1241 {
1242 int err;
1243 list_t *tr_list;
1244
1245 if (asize == 0) {
1246 *tr_cookiep = NULL;
1247 return (0);
1248 }
1249
1250 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1251 list_create(tr_list, sizeof (struct tempreserve),
1252 offsetof(struct tempreserve, tr_node));
1253 ASSERT3S(asize, >, 0);
1254 ASSERT3S(fsize, >=, 0);
1255
1256 err = arc_tempreserve_space(lsize, tx->tx_txg);
1257 if (err == 0) {
1258 struct tempreserve *tr;
1259
1260 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1261 tr->tr_size = lsize;
1262 list_insert_tail(tr_list, tr);
1263 } else {
1264 if (err == EAGAIN) {
1265 /*
1266 * If arc_memory_throttle() detected that pageout
1267 * is running and we are low on memory, we delay new
1268 * non-pageout transactions to give pageout an
1269 * advantage.
1270 *
1271 * It is unfortunate to be delaying while the caller's
1272 * locks are held.
1273 */
1274 txg_delay(dd->dd_pool, tx->tx_txg,
1275 MSEC2NSEC(10), MSEC2NSEC(10));
1276 err = SET_ERROR(ERESTART);
1277 }
1278 }
1279
1280 if (err == 0) {
1281 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1282 FALSE, asize > usize, tr_list, tx, TRUE);
1283 }
1284
1285 if (err != 0)
1286 dsl_dir_tempreserve_clear(tr_list, tx);
1287 else
1288 *tr_cookiep = tr_list;
1289
1290 return (err);
1291 }
1292
1293 /*
1294 * Clear a temporary reservation that we previously made with
1295 * dsl_dir_tempreserve_space().
1296 */
1297 void
1298 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1299 {
1300 int txgidx = tx->tx_txg & TXG_MASK;
1301 list_t *tr_list = tr_cookie;
1302 struct tempreserve *tr;
1303
1304 ASSERT3U(tx->tx_txg, !=, 0);
1305
1306 if (tr_cookie == NULL)
1307 return;
1308
1309 while ((tr = list_head(tr_list)) != NULL) {
1310 if (tr->tr_ds) {
1311 mutex_enter(&tr->tr_ds->dd_lock);
1312 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1313 tr->tr_size);
1314 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1315 mutex_exit(&tr->tr_ds->dd_lock);
1316 } else {
1317 arc_tempreserve_clear(tr->tr_size);
1318 }
1319 list_remove(tr_list, tr);
1320 kmem_free(tr, sizeof (struct tempreserve));
1321 }
1322
1323 kmem_free(tr_list, sizeof (list_t));
1324 }
1325
1326 /*
1327 * This should be called from open context when we think we're going to write
1328 * or free space, for example when dirtying data. Be conservative; it's okay
1329 * to write less space or free more, but we don't want to write more or free
1330 * less than the amount specified.
1331 *
1332 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1333 * version however it has been adjusted to use an iterative rather then
1334 * recursive algorithm to minimize stack usage.
1335 */
1336 void
1337 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1338 {
1339 int64_t parent_space;
1340 uint64_t est_used;
1341
1342 do {
1343 mutex_enter(&dd->dd_lock);
1344 if (space > 0)
1345 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1346
1347 est_used = dsl_dir_space_towrite(dd) +
1348 dsl_dir_phys(dd)->dd_used_bytes;
1349 parent_space = parent_delta(dd, est_used, space);
1350 mutex_exit(&dd->dd_lock);
1351
1352 /* Make sure that we clean up dd_space_to* */
1353 dsl_dir_dirty(dd, tx);
1354
1355 dd = dd->dd_parent;
1356 space = parent_space;
1357 } while (space && dd);
1358 }
1359
1360 /* call from syncing context when we actually write/free space for this dd */
1361 void
1362 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1363 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1364 {
1365 int64_t accounted_delta;
1366
1367 /*
1368 * dsl_dataset_set_refreservation_sync_impl() calls this with
1369 * dd_lock held, so that it can atomically update
1370 * ds->ds_reserved and the dsl_dir accounting, so that
1371 * dsl_dataset_check_quota() can see dataset and dir accounting
1372 * consistently.
1373 */
1374 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1375
1376 ASSERT(dmu_tx_is_syncing(tx));
1377 ASSERT(type < DD_USED_NUM);
1378
1379 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1380
1381 if (needlock)
1382 mutex_enter(&dd->dd_lock);
1383 accounted_delta =
1384 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1385 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1386 ASSERT(compressed >= 0 ||
1387 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1388 ASSERT(uncompressed >= 0 ||
1389 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1390 dsl_dir_phys(dd)->dd_used_bytes += used;
1391 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1392 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1393
1394 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1395 ASSERT(used > 0 ||
1396 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1397 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1398 #ifdef DEBUG
1399 {
1400 dd_used_t t;
1401 uint64_t u = 0;
1402 for (t = 0; t < DD_USED_NUM; t++)
1403 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1404 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1405 }
1406 #endif
1407 }
1408 if (needlock)
1409 mutex_exit(&dd->dd_lock);
1410
1411 if (dd->dd_parent != NULL) {
1412 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1413 accounted_delta, compressed, uncompressed, tx);
1414 dsl_dir_transfer_space(dd->dd_parent,
1415 used - accounted_delta,
1416 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1417 }
1418 }
1419
1420 void
1421 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1422 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1423 {
1424 ASSERT(dmu_tx_is_syncing(tx));
1425 ASSERT(oldtype < DD_USED_NUM);
1426 ASSERT(newtype < DD_USED_NUM);
1427
1428 if (delta == 0 ||
1429 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1430 return;
1431
1432 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1433 mutex_enter(&dd->dd_lock);
1434 ASSERT(delta > 0 ?
1435 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1436 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1437 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1438 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1439 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1440 mutex_exit(&dd->dd_lock);
1441 }
1442
1443 typedef struct dsl_dir_set_qr_arg {
1444 const char *ddsqra_name;
1445 zprop_source_t ddsqra_source;
1446 uint64_t ddsqra_value;
1447 } dsl_dir_set_qr_arg_t;
1448
1449 static int
1450 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1451 {
1452 dsl_dir_set_qr_arg_t *ddsqra = arg;
1453 dsl_pool_t *dp = dmu_tx_pool(tx);
1454 dsl_dataset_t *ds;
1455 int error;
1456 uint64_t towrite, newval;
1457
1458 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1459 if (error != 0)
1460 return (error);
1461
1462 error = dsl_prop_predict(ds->ds_dir, "quota",
1463 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1464 if (error != 0) {
1465 dsl_dataset_rele(ds, FTAG);
1466 return (error);
1467 }
1468
1469 if (newval == 0) {
1470 dsl_dataset_rele(ds, FTAG);
1471 return (0);
1472 }
1473
1474 mutex_enter(&ds->ds_dir->dd_lock);
1475 /*
1476 * If we are doing the preliminary check in open context, and
1477 * there are pending changes, then don't fail it, since the
1478 * pending changes could under-estimate the amount of space to be
1479 * freed up.
1480 */
1481 towrite = dsl_dir_space_towrite(ds->ds_dir);
1482 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1483 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1484 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1485 error = SET_ERROR(ENOSPC);
1486 }
1487 mutex_exit(&ds->ds_dir->dd_lock);
1488 dsl_dataset_rele(ds, FTAG);
1489 return (error);
1490 }
1491
1492 static void
1493 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1494 {
1495 dsl_dir_set_qr_arg_t *ddsqra = arg;
1496 dsl_pool_t *dp = dmu_tx_pool(tx);
1497 dsl_dataset_t *ds;
1498 uint64_t newval;
1499
1500 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1501
1502 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1503 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1504 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1505 &ddsqra->ddsqra_value, tx);
1506
1507 VERIFY0(dsl_prop_get_int_ds(ds,
1508 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1509 } else {
1510 newval = ddsqra->ddsqra_value;
1511 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1512 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1513 }
1514
1515 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1516 mutex_enter(&ds->ds_dir->dd_lock);
1517 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1518 mutex_exit(&ds->ds_dir->dd_lock);
1519 dsl_dataset_rele(ds, FTAG);
1520 }
1521
1522 int
1523 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1524 {
1525 dsl_dir_set_qr_arg_t ddsqra;
1526
1527 ddsqra.ddsqra_name = ddname;
1528 ddsqra.ddsqra_source = source;
1529 ddsqra.ddsqra_value = quota;
1530
1531 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1532 dsl_dir_set_quota_sync, &ddsqra, 0));
1533 }
1534
1535 int
1536 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1537 {
1538 dsl_dir_set_qr_arg_t *ddsqra = arg;
1539 dsl_pool_t *dp = dmu_tx_pool(tx);
1540 dsl_dataset_t *ds;
1541 dsl_dir_t *dd;
1542 uint64_t newval, used, avail;
1543 int error;
1544
1545 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1546 if (error != 0)
1547 return (error);
1548 dd = ds->ds_dir;
1549
1550 /*
1551 * If we are doing the preliminary check in open context, the
1552 * space estimates may be inaccurate.
1553 */
1554 if (!dmu_tx_is_syncing(tx)) {
1555 dsl_dataset_rele(ds, FTAG);
1556 return (0);
1557 }
1558
1559 error = dsl_prop_predict(ds->ds_dir,
1560 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1561 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1562 if (error != 0) {
1563 dsl_dataset_rele(ds, FTAG);
1564 return (error);
1565 }
1566
1567 mutex_enter(&dd->dd_lock);
1568 used = dsl_dir_phys(dd)->dd_used_bytes;
1569 mutex_exit(&dd->dd_lock);
1570
1571 if (dd->dd_parent) {
1572 avail = dsl_dir_space_available(dd->dd_parent,
1573 NULL, 0, FALSE);
1574 } else {
1575 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1576 }
1577
1578 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1579 uint64_t delta = MAX(used, newval) -
1580 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1581
1582 if (delta > avail ||
1583 (dsl_dir_phys(dd)->dd_quota > 0 &&
1584 newval > dsl_dir_phys(dd)->dd_quota))
1585 error = SET_ERROR(ENOSPC);
1586 }
1587
1588 dsl_dataset_rele(ds, FTAG);
1589 return (error);
1590 }
1591
1592 void
1593 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1594 {
1595 uint64_t used;
1596 int64_t delta;
1597
1598 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1599
1600 mutex_enter(&dd->dd_lock);
1601 used = dsl_dir_phys(dd)->dd_used_bytes;
1602 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1603 dsl_dir_phys(dd)->dd_reserved = value;
1604
1605 if (dd->dd_parent != NULL) {
1606 /* Roll up this additional usage into our ancestors */
1607 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1608 delta, 0, 0, tx);
1609 }
1610 mutex_exit(&dd->dd_lock);
1611 }
1612
1613 static void
1614 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1615 {
1616 dsl_dir_set_qr_arg_t *ddsqra = arg;
1617 dsl_pool_t *dp = dmu_tx_pool(tx);
1618 dsl_dataset_t *ds;
1619 uint64_t newval;
1620
1621 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1622
1623 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1624 dsl_prop_set_sync_impl(ds,
1625 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1626 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1627 &ddsqra->ddsqra_value, tx);
1628
1629 VERIFY0(dsl_prop_get_int_ds(ds,
1630 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1631 } else {
1632 newval = ddsqra->ddsqra_value;
1633 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1634 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1635 (longlong_t)newval);
1636 }
1637
1638 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1639 dsl_dataset_rele(ds, FTAG);
1640 }
1641
1642 int
1643 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1644 uint64_t reservation)
1645 {
1646 dsl_dir_set_qr_arg_t ddsqra;
1647
1648 ddsqra.ddsqra_name = ddname;
1649 ddsqra.ddsqra_source = source;
1650 ddsqra.ddsqra_value = reservation;
1651
1652 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1653 dsl_dir_set_reservation_sync, &ddsqra, 0));
1654 }
1655
1656 static dsl_dir_t *
1657 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1658 {
1659 for (; ds1; ds1 = ds1->dd_parent) {
1660 dsl_dir_t *dd;
1661 for (dd = ds2; dd; dd = dd->dd_parent) {
1662 if (ds1 == dd)
1663 return (dd);
1664 }
1665 }
1666 return (NULL);
1667 }
1668
1669 /*
1670 * If delta is applied to dd, how much of that delta would be applied to
1671 * ancestor? Syncing context only.
1672 */
1673 static int64_t
1674 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1675 {
1676 if (dd == ancestor)
1677 return (delta);
1678
1679 mutex_enter(&dd->dd_lock);
1680 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1681 mutex_exit(&dd->dd_lock);
1682 return (would_change(dd->dd_parent, delta, ancestor));
1683 }
1684
1685 typedef struct dsl_dir_rename_arg {
1686 const char *ddra_oldname;
1687 const char *ddra_newname;
1688 cred_t *ddra_cred;
1689 } dsl_dir_rename_arg_t;
1690
1691 /* ARGSUSED */
1692 static int
1693 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1694 {
1695 int *deltap = arg;
1696 char namebuf[MAXNAMELEN];
1697
1698 dsl_dataset_name(ds, namebuf);
1699
1700 if (strlen(namebuf) + *deltap >= MAXNAMELEN)
1701 return (SET_ERROR(ENAMETOOLONG));
1702 return (0);
1703 }
1704
1705 static int
1706 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1707 {
1708 dsl_dir_rename_arg_t *ddra = arg;
1709 dsl_pool_t *dp = dmu_tx_pool(tx);
1710 dsl_dir_t *dd, *newparent;
1711 const char *mynewname;
1712 int error;
1713 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1714
1715 /* target dir should exist */
1716 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1717 if (error != 0)
1718 return (error);
1719
1720 /* new parent should exist */
1721 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1722 &newparent, &mynewname);
1723 if (error != 0) {
1724 dsl_dir_rele(dd, FTAG);
1725 return (error);
1726 }
1727
1728 /* can't rename to different pool */
1729 if (dd->dd_pool != newparent->dd_pool) {
1730 dsl_dir_rele(newparent, FTAG);
1731 dsl_dir_rele(dd, FTAG);
1732 return (SET_ERROR(EXDEV));
1733 }
1734
1735 /* new name should not already exist */
1736 if (mynewname == NULL) {
1737 dsl_dir_rele(newparent, FTAG);
1738 dsl_dir_rele(dd, FTAG);
1739 return (SET_ERROR(EEXIST));
1740 }
1741
1742 /* if the name length is growing, validate child name lengths */
1743 if (delta > 0) {
1744 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1745 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1746 if (error != 0) {
1747 dsl_dir_rele(newparent, FTAG);
1748 dsl_dir_rele(dd, FTAG);
1749 return (error);
1750 }
1751 }
1752
1753 if (dmu_tx_is_syncing(tx)) {
1754 if (spa_feature_is_enabled(dp->dp_spa,
1755 SPA_FEATURE_FS_SS_LIMIT)) {
1756 /*
1757 * Although this is the check function and we don't
1758 * normally make on-disk changes in check functions,
1759 * we need to do that here.
1760 *
1761 * Ensure this portion of the tree's counts have been
1762 * initialized in case the new parent has limits set.
1763 */
1764 dsl_dir_init_fs_ss_count(dd, tx);
1765 }
1766 }
1767
1768 if (newparent != dd->dd_parent) {
1769 /* is there enough space? */
1770 uint64_t myspace =
1771 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1772 dsl_dir_phys(dd)->dd_reserved);
1773 objset_t *os = dd->dd_pool->dp_meta_objset;
1774 uint64_t fs_cnt = 0;
1775 uint64_t ss_cnt = 0;
1776
1777 if (dsl_dir_is_zapified(dd)) {
1778 int err;
1779
1780 err = zap_lookup(os, dd->dd_object,
1781 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1782 &fs_cnt);
1783 if (err != ENOENT && err != 0)
1784 return (err);
1785
1786 /*
1787 * have to add 1 for the filesystem itself that we're
1788 * moving
1789 */
1790 fs_cnt++;
1791
1792 err = zap_lookup(os, dd->dd_object,
1793 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1794 &ss_cnt);
1795 if (err != ENOENT && err != 0)
1796 return (err);
1797 }
1798
1799 /* no rename into our descendant */
1800 if (closest_common_ancestor(dd, newparent) == dd) {
1801 dsl_dir_rele(newparent, FTAG);
1802 dsl_dir_rele(dd, FTAG);
1803 return (SET_ERROR(EINVAL));
1804 }
1805
1806 error = dsl_dir_transfer_possible(dd->dd_parent,
1807 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1808 if (error != 0) {
1809 dsl_dir_rele(newparent, FTAG);
1810 dsl_dir_rele(dd, FTAG);
1811 return (error);
1812 }
1813 }
1814
1815 dsl_dir_rele(newparent, FTAG);
1816 dsl_dir_rele(dd, FTAG);
1817 return (0);
1818 }
1819
1820 static void
1821 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1822 {
1823 dsl_dir_rename_arg_t *ddra = arg;
1824 dsl_pool_t *dp = dmu_tx_pool(tx);
1825 dsl_dir_t *dd, *newparent;
1826 const char *mynewname;
1827 int error;
1828 objset_t *mos = dp->dp_meta_objset;
1829
1830 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1831 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1832 &mynewname));
1833
1834 /* Log this before we change the name. */
1835 spa_history_log_internal_dd(dd, "rename", tx,
1836 "-> %s", ddra->ddra_newname);
1837
1838 if (newparent != dd->dd_parent) {
1839 objset_t *os = dd->dd_pool->dp_meta_objset;
1840 uint64_t fs_cnt = 0;
1841 uint64_t ss_cnt = 0;
1842
1843 /*
1844 * We already made sure the dd counts were initialized in the
1845 * check function.
1846 */
1847 if (spa_feature_is_enabled(dp->dp_spa,
1848 SPA_FEATURE_FS_SS_LIMIT)) {
1849 VERIFY0(zap_lookup(os, dd->dd_object,
1850 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1851 &fs_cnt));
1852 /* add 1 for the filesystem itself that we're moving */
1853 fs_cnt++;
1854
1855 VERIFY0(zap_lookup(os, dd->dd_object,
1856 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1857 &ss_cnt));
1858 }
1859
1860 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1861 DD_FIELD_FILESYSTEM_COUNT, tx);
1862 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1863 DD_FIELD_FILESYSTEM_COUNT, tx);
1864
1865 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1866 DD_FIELD_SNAPSHOT_COUNT, tx);
1867 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1868 DD_FIELD_SNAPSHOT_COUNT, tx);
1869
1870 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1871 -dsl_dir_phys(dd)->dd_used_bytes,
1872 -dsl_dir_phys(dd)->dd_compressed_bytes,
1873 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1874 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1875 dsl_dir_phys(dd)->dd_used_bytes,
1876 dsl_dir_phys(dd)->dd_compressed_bytes,
1877 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1878
1879 if (dsl_dir_phys(dd)->dd_reserved >
1880 dsl_dir_phys(dd)->dd_used_bytes) {
1881 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1882 dsl_dir_phys(dd)->dd_used_bytes;
1883
1884 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1885 -unused_rsrv, 0, 0, tx);
1886 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1887 unused_rsrv, 0, 0, tx);
1888 }
1889 }
1890
1891 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1892
1893 /* remove from old parent zapobj */
1894 error = zap_remove(mos,
1895 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1896 dd->dd_myname, tx);
1897 ASSERT0(error);
1898
1899 (void) strcpy(dd->dd_myname, mynewname);
1900 dsl_dir_rele(dd->dd_parent, dd);
1901 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1902 VERIFY0(dsl_dir_hold_obj(dp,
1903 newparent->dd_object, NULL, dd, &dd->dd_parent));
1904
1905 /* add to new parent zapobj */
1906 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1907 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1908
1909 #ifdef _KERNEL
1910 zvol_rename_minors(ddra->ddra_oldname, ddra->ddra_newname);
1911 #endif
1912
1913 dsl_prop_notify_all(dd);
1914
1915 dsl_dir_rele(newparent, FTAG);
1916 dsl_dir_rele(dd, FTAG);
1917 }
1918
1919 int
1920 dsl_dir_rename(const char *oldname, const char *newname)
1921 {
1922 dsl_dir_rename_arg_t ddra;
1923
1924 ddra.ddra_oldname = oldname;
1925 ddra.ddra_newname = newname;
1926 ddra.ddra_cred = CRED();
1927
1928 return (dsl_sync_task(oldname,
1929 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 3));
1930 }
1931
1932 int
1933 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1934 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1935 {
1936 dsl_dir_t *ancestor;
1937 int64_t adelta;
1938 uint64_t avail;
1939 int err;
1940
1941 ancestor = closest_common_ancestor(sdd, tdd);
1942 adelta = would_change(sdd, -space, ancestor);
1943 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1944 if (avail < space)
1945 return (SET_ERROR(ENOSPC));
1946
1947 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1948 ancestor, cr);
1949 if (err != 0)
1950 return (err);
1951 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1952 ancestor, cr);
1953 if (err != 0)
1954 return (err);
1955
1956 return (0);
1957 }
1958
1959 timestruc_t
1960 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1961 {
1962 timestruc_t t;
1963
1964 mutex_enter(&dd->dd_lock);
1965 t = dd->dd_snap_cmtime;
1966 mutex_exit(&dd->dd_lock);
1967
1968 return (t);
1969 }
1970
1971 void
1972 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1973 {
1974 timestruc_t t;
1975
1976 gethrestime(&t);
1977 mutex_enter(&dd->dd_lock);
1978 dd->dd_snap_cmtime = t;
1979 mutex_exit(&dd->dd_lock);
1980 }
1981
1982 void
1983 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1984 {
1985 objset_t *mos = dd->dd_pool->dp_meta_objset;
1986 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1987 }
1988
1989 boolean_t
1990 dsl_dir_is_zapified(dsl_dir_t *dd)
1991 {
1992 dmu_object_info_t doi;
1993
1994 dmu_object_info_from_db(dd->dd_dbuf, &doi);
1995 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
1996 }
1997
1998 #if defined(_KERNEL) && defined(HAVE_SPL)
1999 EXPORT_SYMBOL(dsl_dir_set_quota);
2000 EXPORT_SYMBOL(dsl_dir_set_reservation);
2001 #endif