]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_pool.c
Illumos 5314 - Remove "dbuf phys" db->db_data pointer aliases in ZFS
[mirror_zfs.git] / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27 #include <sys/dsl_pool.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/dnode.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_context.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/zfs_znode.h>
42 #include <sys/spa_impl.h>
43 #include <sys/dsl_deadlist.h>
44 #include <sys/bptree.h>
45 #include <sys/zfeature.h>
46 #include <sys/zil_impl.h>
47 #include <sys/dsl_userhold.h>
48 #include <sys/trace_txg.h>
49
50 /*
51 * ZFS Write Throttle
52 * ------------------
53 *
54 * ZFS must limit the rate of incoming writes to the rate at which it is able
55 * to sync data modifications to the backend storage. Throttling by too much
56 * creates an artificial limit; throttling by too little can only be sustained
57 * for short periods and would lead to highly lumpy performance. On a per-pool
58 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
59 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
60 * of dirty data decreases. When the amount of dirty data exceeds a
61 * predetermined threshold further modifications are blocked until the amount
62 * of dirty data decreases (as data is synced out).
63 *
64 * The limit on dirty data is tunable, and should be adjusted according to
65 * both the IO capacity and available memory of the system. The larger the
66 * window, the more ZFS is able to aggregate and amortize metadata (and data)
67 * changes. However, memory is a limited resource, and allowing for more dirty
68 * data comes at the cost of keeping other useful data in memory (for example
69 * ZFS data cached by the ARC).
70 *
71 * Implementation
72 *
73 * As buffers are modified dsl_pool_willuse_space() increments both the per-
74 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
75 * dirty space used; dsl_pool_dirty_space() decrements those values as data
76 * is synced out from dsl_pool_sync(). While only the poolwide value is
77 * relevant, the per-txg value is useful for debugging. The tunable
78 * zfs_dirty_data_max determines the dirty space limit. Once that value is
79 * exceeded, new writes are halted until space frees up.
80 *
81 * The zfs_dirty_data_sync tunable dictates the threshold at which we
82 * ensure that there is a txg syncing (see the comment in txg.c for a full
83 * description of transaction group stages).
84 *
85 * The IO scheduler uses both the dirty space limit and current amount of
86 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
87 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
88 *
89 * The delay is also calculated based on the amount of dirty data. See the
90 * comment above dmu_tx_delay() for details.
91 */
92
93 /*
94 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
95 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
96 * parameter.
97 */
98 unsigned long zfs_dirty_data_max = 0;
99 unsigned long zfs_dirty_data_max_max = 0;
100 int zfs_dirty_data_max_percent = 10;
101 int zfs_dirty_data_max_max_percent = 25;
102
103 /*
104 * If there is at least this much dirty data, push out a txg.
105 */
106 unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
107
108 /*
109 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110 * and delay each transaction.
111 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112 */
113 int zfs_delay_min_dirty_percent = 60;
114
115 /*
116 * This controls how quickly the delay approaches infinity.
117 * Larger values cause it to delay more for a given amount of dirty data.
118 * Therefore larger values will cause there to be less dirty data for a
119 * given throughput.
120 *
121 * For the smoothest delay, this value should be about 1 billion divided
122 * by the maximum number of operations per second. This will smoothly
123 * handle between 10x and 1/10th this number.
124 *
125 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126 * multiply in dmu_tx_delay().
127 */
128 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
129
130 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
131 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
132
133 int
134 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
135 {
136 uint64_t obj;
137 int err;
138
139 err = zap_lookup(dp->dp_meta_objset,
140 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
141 name, sizeof (obj), 1, &obj);
142 if (err)
143 return (err);
144
145 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
146 }
147
148 static dsl_pool_t *
149 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
150 {
151 dsl_pool_t *dp;
152 blkptr_t *bp = spa_get_rootblkptr(spa);
153
154 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
155 dp->dp_spa = spa;
156 dp->dp_meta_rootbp = *bp;
157 rrw_init(&dp->dp_config_rwlock, B_TRUE);
158 txg_init(dp, txg);
159
160 txg_list_create(&dp->dp_dirty_datasets,
161 offsetof(dsl_dataset_t, ds_dirty_link));
162 txg_list_create(&dp->dp_dirty_zilogs,
163 offsetof(zilog_t, zl_dirty_link));
164 txg_list_create(&dp->dp_dirty_dirs,
165 offsetof(dsl_dir_t, dd_dirty_link));
166 txg_list_create(&dp->dp_sync_tasks,
167 offsetof(dsl_sync_task_t, dst_node));
168
169 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
170 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
171
172 dp->dp_iput_taskq = taskq_create("zfs_iput_taskq", 1, minclsyspri,
173 1, 4, 0);
174
175 return (dp);
176 }
177
178 int
179 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
180 {
181 int err;
182 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
183
184 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
185 &dp->dp_meta_objset);
186 if (err != 0)
187 dsl_pool_close(dp);
188 else
189 *dpp = dp;
190
191 return (err);
192 }
193
194 int
195 dsl_pool_open(dsl_pool_t *dp)
196 {
197 int err;
198 dsl_dir_t *dd;
199 dsl_dataset_t *ds;
200 uint64_t obj;
201
202 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
203 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
204 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
205 &dp->dp_root_dir_obj);
206 if (err)
207 goto out;
208
209 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
210 NULL, dp, &dp->dp_root_dir);
211 if (err)
212 goto out;
213
214 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
215 if (err)
216 goto out;
217
218 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
219 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
220 if (err)
221 goto out;
222 err = dsl_dataset_hold_obj(dp,
223 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
224 if (err == 0) {
225 err = dsl_dataset_hold_obj(dp,
226 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
227 &dp->dp_origin_snap);
228 dsl_dataset_rele(ds, FTAG);
229 }
230 dsl_dir_rele(dd, dp);
231 if (err)
232 goto out;
233 }
234
235 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
236 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
237 &dp->dp_free_dir);
238 if (err)
239 goto out;
240
241 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
242 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
243 if (err)
244 goto out;
245 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
246 dp->dp_meta_objset, obj));
247 }
248
249 /*
250 * Note: errors ignored, because the leak dir will not exist if we
251 * have not encountered a leak yet.
252 */
253 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
254 &dp->dp_leak_dir);
255
256 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
259 &dp->dp_bptree_obj);
260 if (err != 0)
261 goto out;
262 }
263
264 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
265 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
266 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
267 &dp->dp_empty_bpobj);
268 if (err != 0)
269 goto out;
270 }
271
272 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
273 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
274 &dp->dp_tmp_userrefs_obj);
275 if (err == ENOENT)
276 err = 0;
277 if (err)
278 goto out;
279
280 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
281
282 out:
283 rrw_exit(&dp->dp_config_rwlock, FTAG);
284 return (err);
285 }
286
287 void
288 dsl_pool_close(dsl_pool_t *dp)
289 {
290 /*
291 * Drop our references from dsl_pool_open().
292 *
293 * Since we held the origin_snap from "syncing" context (which
294 * includes pool-opening context), it actually only got a "ref"
295 * and not a hold, so just drop that here.
296 */
297 if (dp->dp_origin_snap)
298 dsl_dataset_rele(dp->dp_origin_snap, dp);
299 if (dp->dp_mos_dir)
300 dsl_dir_rele(dp->dp_mos_dir, dp);
301 if (dp->dp_free_dir)
302 dsl_dir_rele(dp->dp_free_dir, dp);
303 if (dp->dp_leak_dir)
304 dsl_dir_rele(dp->dp_leak_dir, dp);
305 if (dp->dp_root_dir)
306 dsl_dir_rele(dp->dp_root_dir, dp);
307
308 bpobj_close(&dp->dp_free_bpobj);
309
310 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
311 if (dp->dp_meta_objset)
312 dmu_objset_evict(dp->dp_meta_objset);
313
314 txg_list_destroy(&dp->dp_dirty_datasets);
315 txg_list_destroy(&dp->dp_dirty_zilogs);
316 txg_list_destroy(&dp->dp_sync_tasks);
317 txg_list_destroy(&dp->dp_dirty_dirs);
318
319 arc_flush(dp->dp_spa);
320 txg_fini(dp);
321 dsl_scan_fini(dp);
322 rrw_destroy(&dp->dp_config_rwlock);
323 mutex_destroy(&dp->dp_lock);
324 taskq_destroy(dp->dp_iput_taskq);
325 if (dp->dp_blkstats)
326 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
327 kmem_free(dp, sizeof (dsl_pool_t));
328 }
329
330 dsl_pool_t *
331 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
332 {
333 int err;
334 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
335 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
336 objset_t *os;
337 dsl_dataset_t *ds;
338 uint64_t obj;
339
340 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
341
342 /* create and open the MOS (meta-objset) */
343 dp->dp_meta_objset = dmu_objset_create_impl(spa,
344 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
345
346 /* create the pool directory */
347 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
348 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
349 ASSERT0(err);
350
351 /* Initialize scan structures */
352 VERIFY0(dsl_scan_init(dp, txg));
353
354 /* create and open the root dir */
355 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
356 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
357 NULL, dp, &dp->dp_root_dir));
358
359 /* create and open the meta-objset dir */
360 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
361 VERIFY0(dsl_pool_open_special_dir(dp,
362 MOS_DIR_NAME, &dp->dp_mos_dir));
363
364 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
365 /* create and open the free dir */
366 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
367 FREE_DIR_NAME, tx);
368 VERIFY0(dsl_pool_open_special_dir(dp,
369 FREE_DIR_NAME, &dp->dp_free_dir));
370
371 /* create and open the free_bplist */
372 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
373 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
374 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
375 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
376 dp->dp_meta_objset, obj));
377 }
378
379 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
380 dsl_pool_create_origin(dp, tx);
381
382 /* create the root dataset */
383 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
384
385 /* create the root objset */
386 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
387 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
388 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
389 #ifdef _KERNEL
390 zfs_create_fs(os, kcred, zplprops, tx);
391 #endif
392 dsl_dataset_rele(ds, FTAG);
393
394 dmu_tx_commit(tx);
395
396 rrw_exit(&dp->dp_config_rwlock, FTAG);
397
398 return (dp);
399 }
400
401 /*
402 * Account for the meta-objset space in its placeholder dsl_dir.
403 */
404 void
405 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
406 int64_t used, int64_t comp, int64_t uncomp)
407 {
408 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
409 mutex_enter(&dp->dp_lock);
410 dp->dp_mos_used_delta += used;
411 dp->dp_mos_compressed_delta += comp;
412 dp->dp_mos_uncompressed_delta += uncomp;
413 mutex_exit(&dp->dp_lock);
414 }
415
416 static int
417 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
418 {
419 dsl_deadlist_t *dl = arg;
420 dsl_deadlist_insert(dl, bp, tx);
421 return (0);
422 }
423
424 static void
425 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
426 {
427 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
428 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
429 VERIFY0(zio_wait(zio));
430 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
431 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
432 }
433
434 static void
435 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
436 {
437 ASSERT(MUTEX_HELD(&dp->dp_lock));
438
439 if (delta < 0)
440 ASSERT3U(-delta, <=, dp->dp_dirty_total);
441
442 dp->dp_dirty_total += delta;
443
444 /*
445 * Note: we signal even when increasing dp_dirty_total.
446 * This ensures forward progress -- each thread wakes the next waiter.
447 */
448 if (dp->dp_dirty_total <= zfs_dirty_data_max)
449 cv_signal(&dp->dp_spaceavail_cv);
450 }
451
452 void
453 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
454 {
455 zio_t *zio;
456 dmu_tx_t *tx;
457 dsl_dir_t *dd;
458 dsl_dataset_t *ds;
459 objset_t *mos = dp->dp_meta_objset;
460 list_t synced_datasets;
461
462 list_create(&synced_datasets, sizeof (dsl_dataset_t),
463 offsetof(dsl_dataset_t, ds_synced_link));
464
465 tx = dmu_tx_create_assigned(dp, txg);
466
467 /*
468 * Write out all dirty blocks of dirty datasets.
469 */
470 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
471 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
472 /*
473 * We must not sync any non-MOS datasets twice, because
474 * we may have taken a snapshot of them. However, we
475 * may sync newly-created datasets on pass 2.
476 */
477 ASSERT(!list_link_active(&ds->ds_synced_link));
478 list_insert_tail(&synced_datasets, ds);
479 dsl_dataset_sync(ds, zio, tx);
480 }
481 VERIFY0(zio_wait(zio));
482
483 /*
484 * We have written all of the accounted dirty data, so our
485 * dp_space_towrite should now be zero. However, some seldom-used
486 * code paths do not adhere to this (e.g. dbuf_undirty(), also
487 * rounding error in dbuf_write_physdone).
488 * Shore up the accounting of any dirtied space now.
489 */
490 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
491
492 /*
493 * After the data blocks have been written (ensured by the zio_wait()
494 * above), update the user/group space accounting.
495 */
496 for (ds = list_head(&synced_datasets); ds != NULL;
497 ds = list_next(&synced_datasets, ds)) {
498 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
499 }
500
501 /*
502 * Sync the datasets again to push out the changes due to
503 * userspace updates. This must be done before we process the
504 * sync tasks, so that any snapshots will have the correct
505 * user accounting information (and we won't get confused
506 * about which blocks are part of the snapshot).
507 */
508 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
509 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
510 ASSERT(list_link_active(&ds->ds_synced_link));
511 dmu_buf_rele(ds->ds_dbuf, ds);
512 dsl_dataset_sync(ds, zio, tx);
513 }
514 VERIFY0(zio_wait(zio));
515
516 /*
517 * Now that the datasets have been completely synced, we can
518 * clean up our in-memory structures accumulated while syncing:
519 *
520 * - move dead blocks from the pending deadlist to the on-disk deadlist
521 * - release hold from dsl_dataset_dirty()
522 */
523 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
524 ASSERTV(objset_t *os = ds->ds_objset);
525 bplist_iterate(&ds->ds_pending_deadlist,
526 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
527 ASSERT(!dmu_objset_is_dirty(os, txg));
528 dmu_buf_rele(ds->ds_dbuf, ds);
529 }
530
531 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
532 dsl_dir_sync(dd, tx);
533 }
534
535 /*
536 * The MOS's space is accounted for in the pool/$MOS
537 * (dp_mos_dir). We can't modify the mos while we're syncing
538 * it, so we remember the deltas and apply them here.
539 */
540 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
541 dp->dp_mos_uncompressed_delta != 0) {
542 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
543 dp->dp_mos_used_delta,
544 dp->dp_mos_compressed_delta,
545 dp->dp_mos_uncompressed_delta, tx);
546 dp->dp_mos_used_delta = 0;
547 dp->dp_mos_compressed_delta = 0;
548 dp->dp_mos_uncompressed_delta = 0;
549 }
550
551 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
552 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
553 dsl_pool_sync_mos(dp, tx);
554 }
555
556 /*
557 * If we modify a dataset in the same txg that we want to destroy it,
558 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
559 * dsl_dir_destroy_check() will fail if there are unexpected holds.
560 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
561 * and clearing the hold on it) before we process the sync_tasks.
562 * The MOS data dirtied by the sync_tasks will be synced on the next
563 * pass.
564 */
565 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
566 dsl_sync_task_t *dst;
567 /*
568 * No more sync tasks should have been added while we
569 * were syncing.
570 */
571 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
572 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
573 dsl_sync_task_sync(dst, tx);
574 }
575
576 dmu_tx_commit(tx);
577
578 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
579 }
580
581 void
582 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
583 {
584 zilog_t *zilog;
585
586 while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) {
587 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
588 zil_clean(zilog, txg);
589 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
590 dmu_buf_rele(ds->ds_dbuf, zilog);
591 }
592 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
593 }
594
595 /*
596 * TRUE if the current thread is the tx_sync_thread or if we
597 * are being called from SPA context during pool initialization.
598 */
599 int
600 dsl_pool_sync_context(dsl_pool_t *dp)
601 {
602 return (curthread == dp->dp_tx.tx_sync_thread ||
603 spa_is_initializing(dp->dp_spa));
604 }
605
606 uint64_t
607 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
608 {
609 uint64_t space, resv;
610
611 /*
612 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
613 * efficiency.
614 * XXX The intent log is not accounted for, so it must fit
615 * within this slop.
616 *
617 * If we're trying to assess whether it's OK to do a free,
618 * cut the reservation in half to allow forward progress
619 * (e.g. make it possible to rm(1) files from a full pool).
620 */
621 space = spa_get_dspace(dp->dp_spa);
622 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
623 if (netfree)
624 resv >>= 1;
625
626 return (space - resv);
627 }
628
629 boolean_t
630 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
631 {
632 uint64_t delay_min_bytes =
633 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
634 boolean_t rv;
635
636 mutex_enter(&dp->dp_lock);
637 if (dp->dp_dirty_total > zfs_dirty_data_sync)
638 txg_kick(dp);
639 rv = (dp->dp_dirty_total > delay_min_bytes);
640 mutex_exit(&dp->dp_lock);
641 return (rv);
642 }
643
644 void
645 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
646 {
647 if (space > 0) {
648 mutex_enter(&dp->dp_lock);
649 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
650 dsl_pool_dirty_delta(dp, space);
651 mutex_exit(&dp->dp_lock);
652 }
653 }
654
655 void
656 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
657 {
658 ASSERT3S(space, >=, 0);
659 if (space == 0)
660 return;
661
662 mutex_enter(&dp->dp_lock);
663 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
664 /* XXX writing something we didn't dirty? */
665 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
666 }
667 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
668 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
669 ASSERT3U(dp->dp_dirty_total, >=, space);
670 dsl_pool_dirty_delta(dp, -space);
671 mutex_exit(&dp->dp_lock);
672 }
673
674 /* ARGSUSED */
675 static int
676 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
677 {
678 dmu_tx_t *tx = arg;
679 dsl_dataset_t *ds, *prev = NULL;
680 int err;
681
682 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
683 if (err)
684 return (err);
685
686 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
687 err = dsl_dataset_hold_obj(dp,
688 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
689 if (err) {
690 dsl_dataset_rele(ds, FTAG);
691 return (err);
692 }
693
694 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
695 break;
696 dsl_dataset_rele(ds, FTAG);
697 ds = prev;
698 prev = NULL;
699 }
700
701 if (prev == NULL) {
702 prev = dp->dp_origin_snap;
703
704 /*
705 * The $ORIGIN can't have any data, or the accounting
706 * will be wrong.
707 */
708 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
709
710 /* The origin doesn't get attached to itself */
711 if (ds->ds_object == prev->ds_object) {
712 dsl_dataset_rele(ds, FTAG);
713 return (0);
714 }
715
716 dmu_buf_will_dirty(ds->ds_dbuf, tx);
717 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
718 dsl_dataset_phys(ds)->ds_prev_snap_txg =
719 dsl_dataset_phys(prev)->ds_creation_txg;
720
721 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
722 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
723
724 dmu_buf_will_dirty(prev->ds_dbuf, tx);
725 dsl_dataset_phys(prev)->ds_num_children++;
726
727 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
728 ASSERT(ds->ds_prev == NULL);
729 VERIFY0(dsl_dataset_hold_obj(dp,
730 dsl_dataset_phys(ds)->ds_prev_snap_obj,
731 ds, &ds->ds_prev));
732 }
733 }
734
735 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
736 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
737
738 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
739 dmu_buf_will_dirty(prev->ds_dbuf, tx);
740 dsl_dataset_phys(prev)->ds_next_clones_obj =
741 zap_create(dp->dp_meta_objset,
742 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
743 }
744 VERIFY0(zap_add_int(dp->dp_meta_objset,
745 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
746
747 dsl_dataset_rele(ds, FTAG);
748 if (prev != dp->dp_origin_snap)
749 dsl_dataset_rele(prev, FTAG);
750 return (0);
751 }
752
753 void
754 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
755 {
756 ASSERT(dmu_tx_is_syncing(tx));
757 ASSERT(dp->dp_origin_snap != NULL);
758
759 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
760 tx, DS_FIND_CHILDREN));
761 }
762
763 /* ARGSUSED */
764 static int
765 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
766 {
767 dmu_tx_t *tx = arg;
768 objset_t *mos = dp->dp_meta_objset;
769
770 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
771 dsl_dataset_t *origin;
772
773 VERIFY0(dsl_dataset_hold_obj(dp,
774 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
775
776 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
777 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
778 dsl_dir_phys(origin->ds_dir)->dd_clones =
779 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
780 0, tx);
781 }
782
783 VERIFY0(zap_add_int(dp->dp_meta_objset,
784 dsl_dir_phys(origin->ds_dir)->dd_clones,
785 ds->ds_object, tx));
786
787 dsl_dataset_rele(origin, FTAG);
788 }
789 return (0);
790 }
791
792 void
793 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
794 {
795 uint64_t obj;
796
797 ASSERT(dmu_tx_is_syncing(tx));
798
799 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
800 VERIFY0(dsl_pool_open_special_dir(dp,
801 FREE_DIR_NAME, &dp->dp_free_dir));
802
803 /*
804 * We can't use bpobj_alloc(), because spa_version() still
805 * returns the old version, and we need a new-version bpobj with
806 * subobj support. So call dmu_object_alloc() directly.
807 */
808 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
809 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
810 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
811 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
812 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
813
814 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
815 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
816 }
817
818 void
819 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
820 {
821 uint64_t dsobj;
822 dsl_dataset_t *ds;
823
824 ASSERT(dmu_tx_is_syncing(tx));
825 ASSERT(dp->dp_origin_snap == NULL);
826 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
827
828 /* create the origin dir, ds, & snap-ds */
829 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
830 NULL, 0, kcred, tx);
831 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
832 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
833 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
834 dp, &dp->dp_origin_snap));
835 dsl_dataset_rele(ds, FTAG);
836 }
837
838 taskq_t *
839 dsl_pool_iput_taskq(dsl_pool_t *dp)
840 {
841 return (dp->dp_iput_taskq);
842 }
843
844 /*
845 * Walk through the pool-wide zap object of temporary snapshot user holds
846 * and release them.
847 */
848 void
849 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
850 {
851 zap_attribute_t za;
852 zap_cursor_t zc;
853 objset_t *mos = dp->dp_meta_objset;
854 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
855 nvlist_t *holds;
856
857 if (zapobj == 0)
858 return;
859 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
860
861 holds = fnvlist_alloc();
862
863 for (zap_cursor_init(&zc, mos, zapobj);
864 zap_cursor_retrieve(&zc, &za) == 0;
865 zap_cursor_advance(&zc)) {
866 char *htag;
867 nvlist_t *tags;
868
869 htag = strchr(za.za_name, '-');
870 *htag = '\0';
871 ++htag;
872 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
873 tags = fnvlist_alloc();
874 fnvlist_add_boolean(tags, htag);
875 fnvlist_add_nvlist(holds, za.za_name, tags);
876 fnvlist_free(tags);
877 } else {
878 fnvlist_add_boolean(tags, htag);
879 }
880 }
881 dsl_dataset_user_release_tmp(dp, holds);
882 fnvlist_free(holds);
883 zap_cursor_fini(&zc);
884 }
885
886 /*
887 * Create the pool-wide zap object for storing temporary snapshot holds.
888 */
889 void
890 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
891 {
892 objset_t *mos = dp->dp_meta_objset;
893
894 ASSERT(dp->dp_tmp_userrefs_obj == 0);
895 ASSERT(dmu_tx_is_syncing(tx));
896
897 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
898 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
899 }
900
901 static int
902 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
903 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
904 {
905 objset_t *mos = dp->dp_meta_objset;
906 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
907 char *name;
908 int error;
909
910 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
911 ASSERT(dmu_tx_is_syncing(tx));
912
913 /*
914 * If the pool was created prior to SPA_VERSION_USERREFS, the
915 * zap object for temporary holds might not exist yet.
916 */
917 if (zapobj == 0) {
918 if (holding) {
919 dsl_pool_user_hold_create_obj(dp, tx);
920 zapobj = dp->dp_tmp_userrefs_obj;
921 } else {
922 return (SET_ERROR(ENOENT));
923 }
924 }
925
926 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
927 if (holding)
928 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
929 else
930 error = zap_remove(mos, zapobj, name, tx);
931 strfree(name);
932
933 return (error);
934 }
935
936 /*
937 * Add a temporary hold for the given dataset object and tag.
938 */
939 int
940 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
941 uint64_t now, dmu_tx_t *tx)
942 {
943 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
944 }
945
946 /*
947 * Release a temporary hold for the given dataset object and tag.
948 */
949 int
950 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
951 dmu_tx_t *tx)
952 {
953 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
954 tx, B_FALSE));
955 }
956
957 /*
958 * DSL Pool Configuration Lock
959 *
960 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
961 * creation / destruction / rename / property setting). It must be held for
962 * read to hold a dataset or dsl_dir. I.e. you must call
963 * dsl_pool_config_enter() or dsl_pool_hold() before calling
964 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
965 * must be held continuously until all datasets and dsl_dirs are released.
966 *
967 * The only exception to this rule is that if a "long hold" is placed on
968 * a dataset, then the dp_config_rwlock may be dropped while the dataset
969 * is still held. The long hold will prevent the dataset from being
970 * destroyed -- the destroy will fail with EBUSY. A long hold can be
971 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
972 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
973 *
974 * Legitimate long-holders (including owners) should be long-running, cancelable
975 * tasks that should cause "zfs destroy" to fail. This includes DMU
976 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
977 * "zfs send", and "zfs diff". There are several other long-holders whose
978 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
979 *
980 * The usual formula for long-holding would be:
981 * dsl_pool_hold()
982 * dsl_dataset_hold()
983 * ... perform checks ...
984 * dsl_dataset_long_hold()
985 * dsl_pool_rele()
986 * ... perform long-running task ...
987 * dsl_dataset_long_rele()
988 * dsl_dataset_rele()
989 *
990 * Note that when the long hold is released, the dataset is still held but
991 * the pool is not held. The dataset may change arbitrarily during this time
992 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
993 * dataset except release it.
994 *
995 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
996 * or modifying operations.
997 *
998 * Modifying operations should generally use dsl_sync_task(). The synctask
999 * infrastructure enforces proper locking strategy with respect to the
1000 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1001 *
1002 * Read-only operations will manually hold the pool, then the dataset, obtain
1003 * information from the dataset, then release the pool and dataset.
1004 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1005 * hold/rele.
1006 */
1007
1008 int
1009 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1010 {
1011 spa_t *spa;
1012 int error;
1013
1014 error = spa_open(name, &spa, tag);
1015 if (error == 0) {
1016 *dp = spa_get_dsl(spa);
1017 dsl_pool_config_enter(*dp, tag);
1018 }
1019 return (error);
1020 }
1021
1022 void
1023 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1024 {
1025 dsl_pool_config_exit(dp, tag);
1026 spa_close(dp->dp_spa, tag);
1027 }
1028
1029 void
1030 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1031 {
1032 /*
1033 * We use a "reentrant" reader-writer lock, but not reentrantly.
1034 *
1035 * The rrwlock can (with the track_all flag) track all reading threads,
1036 * which is very useful for debugging which code path failed to release
1037 * the lock, and for verifying that the *current* thread does hold
1038 * the lock.
1039 *
1040 * (Unlike a rwlock, which knows that N threads hold it for
1041 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1042 * if any thread holds it for read, even if this thread doesn't).
1043 */
1044 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1045 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1046 }
1047
1048 void
1049 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1050 {
1051 rrw_exit(&dp->dp_config_rwlock, tag);
1052 }
1053
1054 boolean_t
1055 dsl_pool_config_held(dsl_pool_t *dp)
1056 {
1057 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1058 }
1059
1060 #if defined(_KERNEL) && defined(HAVE_SPL)
1061 EXPORT_SYMBOL(dsl_pool_config_enter);
1062 EXPORT_SYMBOL(dsl_pool_config_exit);
1063
1064 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1065 module_param(zfs_dirty_data_max_percent, int, 0444);
1066 MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
1067
1068 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1069 module_param(zfs_dirty_data_max_max_percent, int, 0444);
1070 MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
1071 "zfs_dirty_data_max upper bound as % of RAM");
1072
1073 module_param(zfs_delay_min_dirty_percent, int, 0644);
1074 MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
1075
1076 module_param(zfs_dirty_data_max, ulong, 0644);
1077 MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
1078
1079 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1080 module_param(zfs_dirty_data_max_max, ulong, 0444);
1081 MODULE_PARM_DESC(zfs_dirty_data_max_max,
1082 "zfs_dirty_data_max upper bound in bytes");
1083
1084 module_param(zfs_dirty_data_sync, ulong, 0644);
1085 MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
1086
1087 module_param(zfs_delay_scale, ulong, 0644);
1088 MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
1089 #endif