]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_pool.c
Merge branch 'kstat'
[mirror_zfs.git] / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26 #include <sys/dsl_pool.h>
27 #include <sys/dsl_dataset.h>
28 #include <sys/dsl_prop.h>
29 #include <sys/dsl_dir.h>
30 #include <sys/dsl_synctask.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/arc.h>
36 #include <sys/zap.h>
37 #include <sys/zio.h>
38 #include <sys/zfs_context.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/zfs_znode.h>
41 #include <sys/spa_impl.h>
42 #include <sys/dsl_deadlist.h>
43 #include <sys/bptree.h>
44 #include <sys/zfeature.h>
45 #include <sys/zil_impl.h>
46 #include <sys/dsl_userhold.h>
47
48 int zfs_no_write_throttle = 0;
49 int zfs_write_limit_shift = 3; /* 1/8th of physical memory */
50 int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */
51
52 unsigned long zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */
53 unsigned long zfs_write_limit_max = 0; /* max data payload per txg */
54 unsigned long zfs_write_limit_inflated = 0;
55 unsigned long zfs_write_limit_override = 0;
56
57 kmutex_t zfs_write_limit_lock;
58
59 static pgcnt_t old_physmem = 0;
60
61 int
62 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
63 {
64 uint64_t obj;
65 int err;
66
67 err = zap_lookup(dp->dp_meta_objset,
68 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
69 name, sizeof (obj), 1, &obj);
70 if (err)
71 return (err);
72
73 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
74 }
75
76 static dsl_pool_t *
77 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
78 {
79 dsl_pool_t *dp;
80 blkptr_t *bp = spa_get_rootblkptr(spa);
81
82 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
83 dp->dp_spa = spa;
84 dp->dp_meta_rootbp = *bp;
85 rrw_init(&dp->dp_config_rwlock, B_TRUE);
86 dp->dp_write_limit = zfs_write_limit_min;
87 txg_init(dp, txg);
88
89 txg_list_create(&dp->dp_dirty_datasets,
90 offsetof(dsl_dataset_t, ds_dirty_link));
91 txg_list_create(&dp->dp_dirty_zilogs,
92 offsetof(zilog_t, zl_dirty_link));
93 txg_list_create(&dp->dp_dirty_dirs,
94 offsetof(dsl_dir_t, dd_dirty_link));
95 txg_list_create(&dp->dp_sync_tasks,
96 offsetof(dsl_sync_task_t, dst_node));
97
98 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
99
100 dp->dp_iput_taskq = taskq_create("zfs_iput_taskq", 1, minclsyspri,
101 1, 4, 0);
102
103 return (dp);
104 }
105
106 int
107 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
108 {
109 int err;
110 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
111
112 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
113 &dp->dp_meta_objset);
114 if (err != 0)
115 dsl_pool_close(dp);
116 else
117 *dpp = dp;
118
119 return (err);
120 }
121
122 int
123 dsl_pool_open(dsl_pool_t *dp)
124 {
125 int err;
126 dsl_dir_t *dd;
127 dsl_dataset_t *ds;
128 uint64_t obj;
129
130 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
131 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
132 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
133 &dp->dp_root_dir_obj);
134 if (err)
135 goto out;
136
137 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
138 NULL, dp, &dp->dp_root_dir);
139 if (err)
140 goto out;
141
142 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
143 if (err)
144 goto out;
145
146 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
147 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
148 if (err)
149 goto out;
150 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
151 FTAG, &ds);
152 if (err == 0) {
153 err = dsl_dataset_hold_obj(dp,
154 ds->ds_phys->ds_prev_snap_obj, dp,
155 &dp->dp_origin_snap);
156 dsl_dataset_rele(ds, FTAG);
157 }
158 dsl_dir_rele(dd, dp);
159 if (err)
160 goto out;
161 }
162
163 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
164 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
165 &dp->dp_free_dir);
166 if (err)
167 goto out;
168
169 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
170 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
171 if (err)
172 goto out;
173 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
174 dp->dp_meta_objset, obj));
175 }
176
177 if (spa_feature_is_active(dp->dp_spa,
178 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
179 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
180 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
181 &dp->dp_bptree_obj);
182 if (err != 0)
183 goto out;
184 }
185
186 if (spa_feature_is_active(dp->dp_spa,
187 &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {
188 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
189 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
190 &dp->dp_empty_bpobj);
191 if (err != 0)
192 goto out;
193 }
194
195 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
196 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
197 &dp->dp_tmp_userrefs_obj);
198 if (err == ENOENT)
199 err = 0;
200 if (err)
201 goto out;
202
203 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
204
205 out:
206 rrw_exit(&dp->dp_config_rwlock, FTAG);
207 return (err);
208 }
209
210 void
211 dsl_pool_close(dsl_pool_t *dp)
212 {
213 /* drop our references from dsl_pool_open() */
214
215 /*
216 * Since we held the origin_snap from "syncing" context (which
217 * includes pool-opening context), it actually only got a "ref"
218 * and not a hold, so just drop that here.
219 */
220 if (dp->dp_origin_snap)
221 dsl_dataset_rele(dp->dp_origin_snap, dp);
222 if (dp->dp_mos_dir)
223 dsl_dir_rele(dp->dp_mos_dir, dp);
224 if (dp->dp_free_dir)
225 dsl_dir_rele(dp->dp_free_dir, dp);
226 if (dp->dp_root_dir)
227 dsl_dir_rele(dp->dp_root_dir, dp);
228
229 bpobj_close(&dp->dp_free_bpobj);
230
231 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
232 if (dp->dp_meta_objset)
233 dmu_objset_evict(dp->dp_meta_objset);
234
235 txg_list_destroy(&dp->dp_dirty_datasets);
236 txg_list_destroy(&dp->dp_dirty_zilogs);
237 txg_list_destroy(&dp->dp_sync_tasks);
238 txg_list_destroy(&dp->dp_dirty_dirs);
239
240 arc_flush(dp->dp_spa);
241 txg_fini(dp);
242 dsl_scan_fini(dp);
243 rrw_destroy(&dp->dp_config_rwlock);
244 mutex_destroy(&dp->dp_lock);
245 taskq_destroy(dp->dp_iput_taskq);
246 if (dp->dp_blkstats)
247 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
248 kmem_free(dp, sizeof (dsl_pool_t));
249 }
250
251 dsl_pool_t *
252 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
253 {
254 int err;
255 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
256 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
257 objset_t *os;
258 dsl_dataset_t *ds;
259 uint64_t obj;
260
261 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
262
263 /* create and open the MOS (meta-objset) */
264 dp->dp_meta_objset = dmu_objset_create_impl(spa,
265 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
266
267 /* create the pool directory */
268 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
269 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
270 ASSERT0(err);
271
272 /* Initialize scan structures */
273 VERIFY0(dsl_scan_init(dp, txg));
274
275 /* create and open the root dir */
276 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
277 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
278 NULL, dp, &dp->dp_root_dir));
279
280 /* create and open the meta-objset dir */
281 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
282 VERIFY0(dsl_pool_open_special_dir(dp,
283 MOS_DIR_NAME, &dp->dp_mos_dir));
284
285 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
286 /* create and open the free dir */
287 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
288 FREE_DIR_NAME, tx);
289 VERIFY0(dsl_pool_open_special_dir(dp,
290 FREE_DIR_NAME, &dp->dp_free_dir));
291
292 /* create and open the free_bplist */
293 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
294 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
295 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
296 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
297 dp->dp_meta_objset, obj));
298 }
299
300 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
301 dsl_pool_create_origin(dp, tx);
302
303 /* create the root dataset */
304 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
305
306 /* create the root objset */
307 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
308 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
309 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
310 #ifdef _KERNEL
311 zfs_create_fs(os, kcred, zplprops, tx);
312 #endif
313 dsl_dataset_rele(ds, FTAG);
314
315 dmu_tx_commit(tx);
316
317 rrw_exit(&dp->dp_config_rwlock, FTAG);
318
319 return (dp);
320 }
321
322 /*
323 * Account for the meta-objset space in its placeholder dsl_dir.
324 */
325 void
326 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
327 int64_t used, int64_t comp, int64_t uncomp)
328 {
329 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
330 mutex_enter(&dp->dp_lock);
331 dp->dp_mos_used_delta += used;
332 dp->dp_mos_compressed_delta += comp;
333 dp->dp_mos_uncompressed_delta += uncomp;
334 mutex_exit(&dp->dp_lock);
335 }
336
337 static int
338 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
339 {
340 dsl_deadlist_t *dl = arg;
341 dsl_deadlist_insert(dl, bp, tx);
342 return (0);
343 }
344
345 void
346 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
347 {
348 zio_t *zio;
349 dmu_tx_t *tx;
350 dsl_dir_t *dd;
351 dsl_dataset_t *ds;
352 objset_t *mos = dp->dp_meta_objset;
353 hrtime_t start, write_time;
354 uint64_t data_written;
355 int err;
356 list_t synced_datasets;
357
358 list_create(&synced_datasets, sizeof (dsl_dataset_t),
359 offsetof(dsl_dataset_t, ds_synced_link));
360
361 /*
362 * We need to copy dp_space_towrite() before doing
363 * dsl_sync_task_sync(), because
364 * dsl_dataset_snapshot_reserve_space() will increase
365 * dp_space_towrite but not actually write anything.
366 */
367 data_written = dp->dp_space_towrite[txg & TXG_MASK];
368
369 tx = dmu_tx_create_assigned(dp, txg);
370
371 dp->dp_read_overhead = 0;
372 start = gethrtime();
373
374 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
375 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg))) {
376 /*
377 * We must not sync any non-MOS datasets twice, because
378 * we may have taken a snapshot of them. However, we
379 * may sync newly-created datasets on pass 2.
380 */
381 ASSERT(!list_link_active(&ds->ds_synced_link));
382 list_insert_tail(&synced_datasets, ds);
383 dsl_dataset_sync(ds, zio, tx);
384 }
385 DTRACE_PROBE(pool_sync__1setup);
386 err = zio_wait(zio);
387
388 write_time = gethrtime() - start;
389 ASSERT(err == 0);
390 DTRACE_PROBE(pool_sync__2rootzio);
391
392 /*
393 * After the data blocks have been written (ensured by the zio_wait()
394 * above), update the user/group space accounting.
395 */
396 for (ds = list_head(&synced_datasets); ds;
397 ds = list_next(&synced_datasets, ds))
398 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
399
400 /*
401 * Sync the datasets again to push out the changes due to
402 * userspace updates. This must be done before we process the
403 * sync tasks, so that any snapshots will have the correct
404 * user accounting information (and we won't get confused
405 * about which blocks are part of the snapshot).
406 */
407 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
408 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg))) {
409 ASSERT(list_link_active(&ds->ds_synced_link));
410 dmu_buf_rele(ds->ds_dbuf, ds);
411 dsl_dataset_sync(ds, zio, tx);
412 }
413 err = zio_wait(zio);
414
415 /*
416 * Now that the datasets have been completely synced, we can
417 * clean up our in-memory structures accumulated while syncing:
418 *
419 * - move dead blocks from the pending deadlist to the on-disk deadlist
420 * - clean up zil records
421 * - release hold from dsl_dataset_dirty()
422 */
423 while ((ds = list_remove_head(&synced_datasets))) {
424 ASSERTV(objset_t *os = ds->ds_objset);
425 bplist_iterate(&ds->ds_pending_deadlist,
426 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
427 ASSERT(!dmu_objset_is_dirty(os, txg));
428 dmu_buf_rele(ds->ds_dbuf, ds);
429 }
430
431 start = gethrtime();
432 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)))
433 dsl_dir_sync(dd, tx);
434 write_time += gethrtime() - start;
435
436 /*
437 * The MOS's space is accounted for in the pool/$MOS
438 * (dp_mos_dir). We can't modify the mos while we're syncing
439 * it, so we remember the deltas and apply them here.
440 */
441 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
442 dp->dp_mos_uncompressed_delta != 0) {
443 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
444 dp->dp_mos_used_delta,
445 dp->dp_mos_compressed_delta,
446 dp->dp_mos_uncompressed_delta, tx);
447 dp->dp_mos_used_delta = 0;
448 dp->dp_mos_compressed_delta = 0;
449 dp->dp_mos_uncompressed_delta = 0;
450 }
451
452 start = gethrtime();
453 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
454 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
455 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
456 dmu_objset_sync(mos, zio, tx);
457 err = zio_wait(zio);
458 ASSERT(err == 0);
459 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
460 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
461 }
462 write_time += gethrtime() - start;
463 DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
464 hrtime_t, dp->dp_read_overhead);
465 write_time -= dp->dp_read_overhead;
466
467 /*
468 * If we modify a dataset in the same txg that we want to destroy it,
469 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
470 * dsl_dir_destroy_check() will fail if there are unexpected holds.
471 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
472 * and clearing the hold on it) before we process the sync_tasks.
473 * The MOS data dirtied by the sync_tasks will be synced on the next
474 * pass.
475 */
476 DTRACE_PROBE(pool_sync__3task);
477 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
478 dsl_sync_task_t *dst;
479 /*
480 * No more sync tasks should have been added while we
481 * were syncing.
482 */
483 ASSERT(spa_sync_pass(dp->dp_spa) == 1);
484 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)))
485 dsl_sync_task_sync(dst, tx);
486 }
487
488 dmu_tx_commit(tx);
489
490 dp->dp_space_towrite[txg & TXG_MASK] = 0;
491 ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
492
493 /*
494 * If the write limit max has not been explicitly set, set it
495 * to a fraction of available physical memory (default 1/8th).
496 * Note that we must inflate the limit because the spa
497 * inflates write sizes to account for data replication.
498 * Check this each sync phase to catch changing memory size.
499 */
500 if (physmem != old_physmem && zfs_write_limit_shift) {
501 mutex_enter(&zfs_write_limit_lock);
502 old_physmem = physmem;
503 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
504 zfs_write_limit_inflated = MAX(zfs_write_limit_min,
505 spa_get_asize(dp->dp_spa, zfs_write_limit_max));
506 mutex_exit(&zfs_write_limit_lock);
507 }
508
509 /*
510 * Attempt to keep the sync time consistent by adjusting the
511 * amount of write traffic allowed into each transaction group.
512 * Weight the throughput calculation towards the current value:
513 * thru = 3/4 old_thru + 1/4 new_thru
514 *
515 * Note: write_time is in nanosecs, so write_time/MICROSEC
516 * yields millisecs
517 */
518 ASSERT(zfs_write_limit_min > 0);
519 if (data_written > zfs_write_limit_min / 8 && write_time > MICROSEC) {
520 uint64_t throughput = data_written / (write_time / MICROSEC);
521
522 if (dp->dp_throughput)
523 dp->dp_throughput = throughput / 4 +
524 3 * dp->dp_throughput / 4;
525 else
526 dp->dp_throughput = throughput;
527 dp->dp_write_limit = MIN(zfs_write_limit_inflated,
528 MAX(zfs_write_limit_min,
529 dp->dp_throughput * zfs_txg_synctime_ms));
530 }
531 }
532
533 void
534 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
535 {
536 zilog_t *zilog;
537 dsl_dataset_t *ds;
538
539 while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) {
540 ds = dmu_objset_ds(zilog->zl_os);
541 zil_clean(zilog, txg);
542 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
543 dmu_buf_rele(ds->ds_dbuf, zilog);
544 }
545 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
546 }
547
548 /*
549 * TRUE if the current thread is the tx_sync_thread or if we
550 * are being called from SPA context during pool initialization.
551 */
552 int
553 dsl_pool_sync_context(dsl_pool_t *dp)
554 {
555 return (curthread == dp->dp_tx.tx_sync_thread ||
556 spa_is_initializing(dp->dp_spa));
557 }
558
559 uint64_t
560 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
561 {
562 uint64_t space, resv;
563
564 /*
565 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
566 * efficiency.
567 * XXX The intent log is not accounted for, so it must fit
568 * within this slop.
569 *
570 * If we're trying to assess whether it's OK to do a free,
571 * cut the reservation in half to allow forward progress
572 * (e.g. make it possible to rm(1) files from a full pool).
573 */
574 space = spa_get_dspace(dp->dp_spa);
575 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
576 if (netfree)
577 resv >>= 1;
578
579 return (space - resv);
580 }
581
582 int
583 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
584 {
585 uint64_t reserved = 0;
586 uint64_t write_limit = (zfs_write_limit_override ?
587 zfs_write_limit_override : dp->dp_write_limit);
588
589 if (zfs_no_write_throttle) {
590 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
591 space);
592 return (0);
593 }
594
595 /*
596 * Check to see if we have exceeded the maximum allowed IO for
597 * this transaction group. We can do this without locks since
598 * a little slop here is ok. Note that we do the reserved check
599 * with only half the requested reserve: this is because the
600 * reserve requests are worst-case, and we really don't want to
601 * throttle based off of worst-case estimates.
602 */
603 if (write_limit > 0) {
604 reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
605 + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
606
607 if (reserved && reserved > write_limit) {
608 DMU_TX_STAT_BUMP(dmu_tx_write_limit);
609 return (ERESTART);
610 }
611 }
612
613 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
614
615 /*
616 * If this transaction group is over 7/8ths capacity, delay
617 * the caller 1 clock tick. This will slow down the "fill"
618 * rate until the sync process can catch up with us.
619 */
620 if (reserved && reserved > (write_limit - (write_limit >> 3)))
621 txg_delay(dp, tx->tx_txg, 1);
622
623 return (0);
624 }
625
626 void
627 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
628 {
629 ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
630 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
631 }
632
633 void
634 dsl_pool_memory_pressure(dsl_pool_t *dp)
635 {
636 uint64_t space_inuse = 0;
637 int i;
638
639 if (dp->dp_write_limit == zfs_write_limit_min)
640 return;
641
642 for (i = 0; i < TXG_SIZE; i++) {
643 space_inuse += dp->dp_space_towrite[i];
644 space_inuse += dp->dp_tempreserved[i];
645 }
646 dp->dp_write_limit = MAX(zfs_write_limit_min,
647 MIN(dp->dp_write_limit, space_inuse / 4));
648 }
649
650 void
651 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
652 {
653 if (space > 0) {
654 mutex_enter(&dp->dp_lock);
655 dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
656 mutex_exit(&dp->dp_lock);
657 }
658 }
659
660 /* ARGSUSED */
661 static int
662 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
663 {
664 dmu_tx_t *tx = arg;
665 dsl_dataset_t *ds, *prev = NULL;
666 int err;
667
668 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
669 if (err)
670 return (err);
671
672 while (ds->ds_phys->ds_prev_snap_obj != 0) {
673 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
674 FTAG, &prev);
675 if (err) {
676 dsl_dataset_rele(ds, FTAG);
677 return (err);
678 }
679
680 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
681 break;
682 dsl_dataset_rele(ds, FTAG);
683 ds = prev;
684 prev = NULL;
685 }
686
687 if (prev == NULL) {
688 prev = dp->dp_origin_snap;
689
690 /*
691 * The $ORIGIN can't have any data, or the accounting
692 * will be wrong.
693 */
694 ASSERT0(prev->ds_phys->ds_bp.blk_birth);
695
696 /* The origin doesn't get attached to itself */
697 if (ds->ds_object == prev->ds_object) {
698 dsl_dataset_rele(ds, FTAG);
699 return (0);
700 }
701
702 dmu_buf_will_dirty(ds->ds_dbuf, tx);
703 ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
704 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
705
706 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
707 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
708
709 dmu_buf_will_dirty(prev->ds_dbuf, tx);
710 prev->ds_phys->ds_num_children++;
711
712 if (ds->ds_phys->ds_next_snap_obj == 0) {
713 ASSERT(ds->ds_prev == NULL);
714 VERIFY0(dsl_dataset_hold_obj(dp,
715 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
716 }
717 }
718
719 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
720 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
721
722 if (prev->ds_phys->ds_next_clones_obj == 0) {
723 dmu_buf_will_dirty(prev->ds_dbuf, tx);
724 prev->ds_phys->ds_next_clones_obj =
725 zap_create(dp->dp_meta_objset,
726 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
727 }
728 VERIFY0(zap_add_int(dp->dp_meta_objset,
729 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
730
731 dsl_dataset_rele(ds, FTAG);
732 if (prev != dp->dp_origin_snap)
733 dsl_dataset_rele(prev, FTAG);
734 return (0);
735 }
736
737 void
738 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
739 {
740 ASSERT(dmu_tx_is_syncing(tx));
741 ASSERT(dp->dp_origin_snap != NULL);
742
743 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
744 tx, DS_FIND_CHILDREN));
745 }
746
747 /* ARGSUSED */
748 static int
749 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
750 {
751 dmu_tx_t *tx = arg;
752 objset_t *mos = dp->dp_meta_objset;
753
754 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
755 dsl_dataset_t *origin;
756
757 VERIFY0(dsl_dataset_hold_obj(dp,
758 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
759
760 if (origin->ds_dir->dd_phys->dd_clones == 0) {
761 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
762 origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
763 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
764 }
765
766 VERIFY0(zap_add_int(dp->dp_meta_objset,
767 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
768
769 dsl_dataset_rele(origin, FTAG);
770 }
771 return (0);
772 }
773
774 void
775 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
776 {
777 uint64_t obj;
778
779 ASSERT(dmu_tx_is_syncing(tx));
780
781 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
782 VERIFY0(dsl_pool_open_special_dir(dp,
783 FREE_DIR_NAME, &dp->dp_free_dir));
784
785 /*
786 * We can't use bpobj_alloc(), because spa_version() still
787 * returns the old version, and we need a new-version bpobj with
788 * subobj support. So call dmu_object_alloc() directly.
789 */
790 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
791 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
792 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
793 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
794 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
795
796 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
797 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
798 }
799
800 void
801 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
802 {
803 uint64_t dsobj;
804 dsl_dataset_t *ds;
805
806 ASSERT(dmu_tx_is_syncing(tx));
807 ASSERT(dp->dp_origin_snap == NULL);
808 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
809
810 /* create the origin dir, ds, & snap-ds */
811 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
812 NULL, 0, kcred, tx);
813 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
814 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
815 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
816 dp, &dp->dp_origin_snap));
817 dsl_dataset_rele(ds, FTAG);
818 }
819
820 taskq_t *
821 dsl_pool_iput_taskq(dsl_pool_t *dp)
822 {
823 return (dp->dp_iput_taskq);
824 }
825
826 /*
827 * Walk through the pool-wide zap object of temporary snapshot user holds
828 * and release them.
829 */
830 void
831 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
832 {
833 zap_attribute_t za;
834 zap_cursor_t zc;
835 objset_t *mos = dp->dp_meta_objset;
836 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
837
838 if (zapobj == 0)
839 return;
840 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
841
842 for (zap_cursor_init(&zc, mos, zapobj);
843 zap_cursor_retrieve(&zc, &za) == 0;
844 zap_cursor_advance(&zc)) {
845 char *htag;
846 uint64_t dsobj;
847
848 htag = strchr(za.za_name, '-');
849 *htag = '\0';
850 ++htag;
851 dsobj = strtonum(za.za_name, NULL);
852 dsl_dataset_user_release_tmp(dp, dsobj, htag);
853 }
854 zap_cursor_fini(&zc);
855 }
856
857 /*
858 * Create the pool-wide zap object for storing temporary snapshot holds.
859 */
860 void
861 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
862 {
863 objset_t *mos = dp->dp_meta_objset;
864
865 ASSERT(dp->dp_tmp_userrefs_obj == 0);
866 ASSERT(dmu_tx_is_syncing(tx));
867
868 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
869 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
870 }
871
872 static int
873 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
874 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
875 {
876 objset_t *mos = dp->dp_meta_objset;
877 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
878 char *name;
879 int error;
880
881 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
882 ASSERT(dmu_tx_is_syncing(tx));
883
884 /*
885 * If the pool was created prior to SPA_VERSION_USERREFS, the
886 * zap object for temporary holds might not exist yet.
887 */
888 if (zapobj == 0) {
889 if (holding) {
890 dsl_pool_user_hold_create_obj(dp, tx);
891 zapobj = dp->dp_tmp_userrefs_obj;
892 } else {
893 return (ENOENT);
894 }
895 }
896
897 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
898 if (holding)
899 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
900 else
901 error = zap_remove(mos, zapobj, name, tx);
902 strfree(name);
903
904 return (error);
905 }
906
907 /*
908 * Add a temporary hold for the given dataset object and tag.
909 */
910 int
911 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
912 uint64_t now, dmu_tx_t *tx)
913 {
914 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
915 }
916
917 /*
918 * Release a temporary hold for the given dataset object and tag.
919 */
920 int
921 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
922 dmu_tx_t *tx)
923 {
924 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
925 tx, B_FALSE));
926 }
927
928 /*
929 * DSL Pool Configuration Lock
930 *
931 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
932 * creation / destruction / rename / property setting). It must be held for
933 * read to hold a dataset or dsl_dir. I.e. you must call
934 * dsl_pool_config_enter() or dsl_pool_hold() before calling
935 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
936 * must be held continuously until all datasets and dsl_dirs are released.
937 *
938 * The only exception to this rule is that if a "long hold" is placed on
939 * a dataset, then the dp_config_rwlock may be dropped while the dataset
940 * is still held. The long hold will prevent the dataset from being
941 * destroyed -- the destroy will fail with EBUSY. A long hold can be
942 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
943 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
944 *
945 * Legitimate long-holders (including owners) should be long-running, cancelable
946 * tasks that should cause "zfs destroy" to fail. This includes DMU
947 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
948 * "zfs send", and "zfs diff". There are several other long-holders whose
949 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
950 *
951 * The usual formula for long-holding would be:
952 * dsl_pool_hold()
953 * dsl_dataset_hold()
954 * ... perform checks ...
955 * dsl_dataset_long_hold()
956 * dsl_pool_rele()
957 * ... perform long-running task ...
958 * dsl_dataset_long_rele()
959 * dsl_dataset_rele()
960 *
961 * Note that when the long hold is released, the dataset is still held but
962 * the pool is not held. The dataset may change arbitrarily during this time
963 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
964 * dataset except release it.
965 *
966 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
967 * or modifying operations.
968 *
969 * Modifying operations should generally use dsl_sync_task(). The synctask
970 * infrastructure enforces proper locking strategy with respect to the
971 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
972 *
973 * Read-only operations will manually hold the pool, then the dataset, obtain
974 * information from the dataset, then release the pool and dataset.
975 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
976 * hold/rele.
977 */
978
979 int
980 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
981 {
982 spa_t *spa;
983 int error;
984
985 error = spa_open(name, &spa, tag);
986 if (error == 0) {
987 *dp = spa_get_dsl(spa);
988 dsl_pool_config_enter(*dp, tag);
989 }
990 return (error);
991 }
992
993 void
994 dsl_pool_rele(dsl_pool_t *dp, void *tag)
995 {
996 dsl_pool_config_exit(dp, tag);
997 spa_close(dp->dp_spa, tag);
998 }
999
1000 void
1001 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1002 {
1003 /*
1004 * We use a "reentrant" reader-writer lock, but not reentrantly.
1005 *
1006 * The rrwlock can (with the track_all flag) track all reading threads,
1007 * which is very useful for debugging which code path failed to release
1008 * the lock, and for verifying that the *current* thread does hold
1009 * the lock.
1010 *
1011 * (Unlike a rwlock, which knows that N threads hold it for
1012 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1013 * if any thread holds it for read, even if this thread doesn't).
1014 */
1015 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1016 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1017 }
1018
1019 void
1020 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1021 {
1022 rrw_exit(&dp->dp_config_rwlock, tag);
1023 }
1024
1025 boolean_t
1026 dsl_pool_config_held(dsl_pool_t *dp)
1027 {
1028 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1029 }
1030
1031 #if defined(_KERNEL) && defined(HAVE_SPL)
1032 EXPORT_SYMBOL(dsl_pool_config_enter);
1033 EXPORT_SYMBOL(dsl_pool_config_exit);
1034
1035 module_param(zfs_no_write_throttle, int, 0644);
1036 MODULE_PARM_DESC(zfs_no_write_throttle, "Disable write throttling");
1037
1038 module_param(zfs_write_limit_shift, int, 0444);
1039 MODULE_PARM_DESC(zfs_write_limit_shift, "log2(fraction of memory) per txg");
1040
1041 module_param(zfs_txg_synctime_ms, int, 0644);
1042 MODULE_PARM_DESC(zfs_txg_synctime_ms, "Target milliseconds between txg sync");
1043
1044 module_param(zfs_write_limit_min, ulong, 0444);
1045 MODULE_PARM_DESC(zfs_write_limit_min, "Min txg write limit");
1046
1047 module_param(zfs_write_limit_max, ulong, 0444);
1048 MODULE_PARM_DESC(zfs_write_limit_max, "Max txg write limit");
1049
1050 module_param(zfs_write_limit_inflated, ulong, 0444);
1051 MODULE_PARM_DESC(zfs_write_limit_inflated, "Inflated txg write limit");
1052
1053 module_param(zfs_write_limit_override, ulong, 0444);
1054 MODULE_PARM_DESC(zfs_write_limit_override, "Override txg write limit");
1055 #endif