]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_scan.c
vdev_disk: reorganise vdev_disk_io_start
[mirror_zfs.git] / module / zfs / dsl_scan.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
28 */
29
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61
62 /*
63 * Grand theory statement on scan queue sorting
64 *
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
73 *
74 * Queue management:
75 *
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
85 *
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
95 *
96 * Implementation Notes
97 *
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104 * algorithm.
105 *
106 * Backwards compatibility
107 *
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
116 */
117
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119 const zbookmark_phys_t *);
120
121 static scan_cb_t dsl_scan_scrub_cb;
122
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128 uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137
138 /*
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
144 */
145 static uint_t zfs_scan_report_txgs = 0;
146
147 /*
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
151 * block.
152 */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154
155 /*
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
162 */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164
165 static uint_t zfs_scan_issue_strategy = 0;
166
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170
171 /*
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
175 */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
182
183
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214
215 /*
216 * We wait a few txgs after importing a pool to begin scanning so that
217 * the import / mounting code isn't held up by scrub / resilver IO.
218 * Unfortunately, it is a bit difficult to determine exactly how long
219 * this will take since userspace will trigger fs mounts asynchronously
220 * and the kernel will create zvol minors asynchronously. As a result,
221 * the value provided here is a bit arbitrary, but represents a
222 * reasonable estimate of how many txgs it will take to finish fully
223 * importing a pool
224 */
225 #define SCAN_IMPORT_WAIT_TXGS 5
226
227 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230
231 /*
232 * Enable/disable the processing of the free_bpobj object.
233 */
234 static int zfs_free_bpobj_enabled = 1;
235
236 /* Error blocks to be scrubbed in one txg. */
237 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
238
239 /* the order has to match pool_scan_type */
240 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
241 NULL,
242 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
243 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
244 };
245
246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
247 typedef struct {
248 uint64_t sds_dsobj;
249 uint64_t sds_txg;
250 avl_node_t sds_node;
251 } scan_ds_t;
252
253 /*
254 * This controls what conditions are placed on dsl_scan_sync_state():
255 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258 * write out the scn_phys_cached version.
259 * See dsl_scan_sync_state for details.
260 */
261 typedef enum {
262 SYNC_OPTIONAL,
263 SYNC_MANDATORY,
264 SYNC_CACHED
265 } state_sync_type_t;
266
267 /*
268 * This struct represents the minimum information needed to reconstruct a
269 * zio for sequential scanning. This is useful because many of these will
270 * accumulate in the sequential IO queues before being issued, so saving
271 * memory matters here.
272 */
273 typedef struct scan_io {
274 /* fields from blkptr_t */
275 uint64_t sio_blk_prop;
276 uint64_t sio_phys_birth;
277 uint64_t sio_birth;
278 zio_cksum_t sio_cksum;
279 uint32_t sio_nr_dvas;
280
281 /* fields from zio_t */
282 uint32_t sio_flags;
283 zbookmark_phys_t sio_zb;
284
285 /* members for queue sorting */
286 union {
287 avl_node_t sio_addr_node; /* link into issuing queue */
288 list_node_t sio_list_node; /* link for issuing to disk */
289 } sio_nodes;
290
291 /*
292 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293 * depending on how many were in the original bp. Only the
294 * first DVA is really used for sorting and issuing purposes.
295 * The other DVAs (if provided) simply exist so that the zio
296 * layer can find additional copies to repair from in the
297 * event of an error. This array must go at the end of the
298 * struct to allow this for the variable number of elements.
299 */
300 dva_t sio_dva[];
301 } scan_io_t;
302
303 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
306 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
307 #define SIO_GET_END_OFFSET(sio) \
308 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309 #define SIO_GET_MUSED(sio) \
310 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
311
312 struct dsl_scan_io_queue {
313 dsl_scan_t *q_scn; /* associated dsl_scan_t */
314 vdev_t *q_vd; /* top-level vdev that this queue represents */
315 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
316
317 /* trees used for sorting I/Os and extents of I/Os */
318 range_tree_t *q_exts_by_addr;
319 zfs_btree_t q_exts_by_size;
320 avl_tree_t q_sios_by_addr;
321 uint64_t q_sio_memused;
322 uint64_t q_last_ext_addr;
323
324 /* members for zio rate limiting */
325 uint64_t q_maxinflight_bytes;
326 uint64_t q_inflight_bytes;
327 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
328
329 /* per txg statistics */
330 uint64_t q_total_seg_size_this_txg;
331 uint64_t q_segs_this_txg;
332 uint64_t q_total_zio_size_this_txg;
333 uint64_t q_zios_this_txg;
334 };
335
336 /* private data for dsl_scan_prefetch_cb() */
337 typedef struct scan_prefetch_ctx {
338 zfs_refcount_t spc_refcnt; /* refcount for memory management */
339 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
340 boolean_t spc_root; /* is this prefetch for an objset? */
341 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
342 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
343 } scan_prefetch_ctx_t;
344
345 /* private data for dsl_scan_prefetch() */
346 typedef struct scan_prefetch_issue_ctx {
347 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
348 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
349 blkptr_t spic_bp; /* bp to prefetch */
350 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
351 } scan_prefetch_issue_ctx_t;
352
353 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
354 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
356 scan_io_t *sio);
357
358 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
359 static void scan_io_queues_destroy(dsl_scan_t *scn);
360
361 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
362
363 /* sio->sio_nr_dvas must be set so we know which cache to free from */
364 static void
365 sio_free(scan_io_t *sio)
366 {
367 ASSERT3U(sio->sio_nr_dvas, >, 0);
368 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
369
370 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
371 }
372
373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
374 static scan_io_t *
375 sio_alloc(unsigned short nr_dvas)
376 {
377 ASSERT3U(nr_dvas, >, 0);
378 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
379
380 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
381 }
382
383 void
384 scan_init(void)
385 {
386 /*
387 * This is used in ext_size_compare() to weight segments
388 * based on how sparse they are. This cannot be changed
389 * mid-scan and the tree comparison functions don't currently
390 * have a mechanism for passing additional context to the
391 * compare functions. Thus we store this value globally and
392 * we only allow it to be set at module initialization time
393 */
394 fill_weight = zfs_scan_fill_weight;
395
396 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
397 char name[36];
398
399 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
400 sio_cache[i] = kmem_cache_create(name,
401 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
402 0, NULL, NULL, NULL, NULL, NULL, 0);
403 }
404 }
405
406 void
407 scan_fini(void)
408 {
409 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
410 kmem_cache_destroy(sio_cache[i]);
411 }
412 }
413
414 static inline boolean_t
415 dsl_scan_is_running(const dsl_scan_t *scn)
416 {
417 return (scn->scn_phys.scn_state == DSS_SCANNING);
418 }
419
420 boolean_t
421 dsl_scan_resilvering(dsl_pool_t *dp)
422 {
423 return (dsl_scan_is_running(dp->dp_scan) &&
424 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
425 }
426
427 static inline void
428 sio2bp(const scan_io_t *sio, blkptr_t *bp)
429 {
430 memset(bp, 0, sizeof (*bp));
431 bp->blk_prop = sio->sio_blk_prop;
432 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
433 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
434 bp->blk_fill = 1; /* we always only work with data pointers */
435 bp->blk_cksum = sio->sio_cksum;
436
437 ASSERT3U(sio->sio_nr_dvas, >, 0);
438 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
439
440 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
441 }
442
443 static inline void
444 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
445 {
446 sio->sio_blk_prop = bp->blk_prop;
447 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
448 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
449 sio->sio_cksum = bp->blk_cksum;
450 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
451
452 /*
453 * Copy the DVAs to the sio. We need all copies of the block so
454 * that the self healing code can use the alternate copies if the
455 * first is corrupted. We want the DVA at index dva_i to be first
456 * in the sio since this is the primary one that we want to issue.
457 */
458 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
459 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
460 }
461 }
462
463 int
464 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
465 {
466 int err;
467 dsl_scan_t *scn;
468 spa_t *spa = dp->dp_spa;
469 uint64_t f;
470
471 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
472 scn->scn_dp = dp;
473
474 /*
475 * It's possible that we're resuming a scan after a reboot so
476 * make sure that the scan_async_destroying flag is initialized
477 * appropriately.
478 */
479 ASSERT(!scn->scn_async_destroying);
480 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
481 SPA_FEATURE_ASYNC_DESTROY);
482
483 /*
484 * Calculate the max number of in-flight bytes for pool-wide
485 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486 * Limits for the issuing phase are done per top-level vdev and
487 * are handled separately.
488 */
489 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
490 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
491
492 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
493 offsetof(scan_ds_t, sds_node));
494 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
495 sizeof (scan_prefetch_issue_ctx_t),
496 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
497
498 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
499 "scrub_func", sizeof (uint64_t), 1, &f);
500 if (err == 0) {
501 /*
502 * There was an old-style scrub in progress. Restart a
503 * new-style scrub from the beginning.
504 */
505 scn->scn_restart_txg = txg;
506 zfs_dbgmsg("old-style scrub was in progress for %s; "
507 "restarting new-style scrub in txg %llu",
508 spa->spa_name,
509 (longlong_t)scn->scn_restart_txg);
510
511 /*
512 * Load the queue obj from the old location so that it
513 * can be freed by dsl_scan_done().
514 */
515 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
516 "scrub_queue", sizeof (uint64_t), 1,
517 &scn->scn_phys.scn_queue_obj);
518 } else {
519 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
520 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
521 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
522
523 if (err != 0 && err != ENOENT)
524 return (err);
525
526 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
528 &scn->scn_phys);
529
530 /*
531 * Detect if the pool contains the signature of #2094. If it
532 * does properly update the scn->scn_phys structure and notify
533 * the administrator by setting an errata for the pool.
534 */
535 if (err == EOVERFLOW) {
536 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
537 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
538 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
539 (23 * sizeof (uint64_t)));
540
541 err = zap_lookup(dp->dp_meta_objset,
542 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
543 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
544 if (err == 0) {
545 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
546
547 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
548 scn->scn_async_destroying) {
549 spa->spa_errata =
550 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
551 return (EOVERFLOW);
552 }
553
554 memcpy(&scn->scn_phys, zaptmp,
555 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
556 scn->scn_phys.scn_flags = overflow;
557
558 /* Required scrub already in progress. */
559 if (scn->scn_phys.scn_state == DSS_FINISHED ||
560 scn->scn_phys.scn_state == DSS_CANCELED)
561 spa->spa_errata =
562 ZPOOL_ERRATA_ZOL_2094_SCRUB;
563 }
564 }
565
566 if (err == ENOENT)
567 return (0);
568 else if (err)
569 return (err);
570
571 /*
572 * We might be restarting after a reboot, so jump the issued
573 * counter to how far we've scanned. We know we're consistent
574 * up to here.
575 */
576 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
577 scn->scn_phys.scn_skipped;
578
579 if (dsl_scan_is_running(scn) &&
580 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
581 /*
582 * A new-type scrub was in progress on an old
583 * pool, and the pool was accessed by old
584 * software. Restart from the beginning, since
585 * the old software may have changed the pool in
586 * the meantime.
587 */
588 scn->scn_restart_txg = txg;
589 zfs_dbgmsg("new-style scrub for %s was modified "
590 "by old software; restarting in txg %llu",
591 spa->spa_name,
592 (longlong_t)scn->scn_restart_txg);
593 } else if (dsl_scan_resilvering(dp)) {
594 /*
595 * If a resilver is in progress and there are already
596 * errors, restart it instead of finishing this scan and
597 * then restarting it. If there haven't been any errors
598 * then remember that the incore DTL is valid.
599 */
600 if (scn->scn_phys.scn_errors > 0) {
601 scn->scn_restart_txg = txg;
602 zfs_dbgmsg("resilver can't excise DTL_MISSING "
603 "when finished; restarting on %s in txg "
604 "%llu",
605 spa->spa_name,
606 (u_longlong_t)scn->scn_restart_txg);
607 } else {
608 /* it's safe to excise DTL when finished */
609 spa->spa_scrub_started = B_TRUE;
610 }
611 }
612 }
613
614 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
615
616 /* reload the queue into the in-core state */
617 if (scn->scn_phys.scn_queue_obj != 0) {
618 zap_cursor_t zc;
619 zap_attribute_t za;
620
621 for (zap_cursor_init(&zc, dp->dp_meta_objset,
622 scn->scn_phys.scn_queue_obj);
623 zap_cursor_retrieve(&zc, &za) == 0;
624 (void) zap_cursor_advance(&zc)) {
625 scan_ds_queue_insert(scn,
626 zfs_strtonum(za.za_name, NULL),
627 za.za_first_integer);
628 }
629 zap_cursor_fini(&zc);
630 }
631
632 spa_scan_stat_init(spa);
633 vdev_scan_stat_init(spa->spa_root_vdev);
634
635 return (0);
636 }
637
638 void
639 dsl_scan_fini(dsl_pool_t *dp)
640 {
641 if (dp->dp_scan != NULL) {
642 dsl_scan_t *scn = dp->dp_scan;
643
644 if (scn->scn_taskq != NULL)
645 taskq_destroy(scn->scn_taskq);
646
647 scan_ds_queue_clear(scn);
648 avl_destroy(&scn->scn_queue);
649 scan_ds_prefetch_queue_clear(scn);
650 avl_destroy(&scn->scn_prefetch_queue);
651
652 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
653 dp->dp_scan = NULL;
654 }
655 }
656
657 static boolean_t
658 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
659 {
660 return (scn->scn_restart_txg != 0 &&
661 scn->scn_restart_txg <= tx->tx_txg);
662 }
663
664 boolean_t
665 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
666 {
667 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
668 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
669 }
670
671 boolean_t
672 dsl_scan_scrubbing(const dsl_pool_t *dp)
673 {
674 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
675
676 return (scn_phys->scn_state == DSS_SCANNING &&
677 scn_phys->scn_func == POOL_SCAN_SCRUB);
678 }
679
680 boolean_t
681 dsl_errorscrubbing(const dsl_pool_t *dp)
682 {
683 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
684
685 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
686 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
687 }
688
689 boolean_t
690 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
691 {
692 return (dsl_errorscrubbing(scn->scn_dp) &&
693 scn->errorscrub_phys.dep_paused_flags);
694 }
695
696 boolean_t
697 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
698 {
699 return (dsl_scan_scrubbing(scn->scn_dp) &&
700 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
701 }
702
703 static void
704 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
705 {
706 scn->errorscrub_phys.dep_cursor =
707 zap_cursor_serialize(&scn->errorscrub_cursor);
708
709 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
710 DMU_POOL_DIRECTORY_OBJECT,
711 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
712 &scn->errorscrub_phys, tx));
713 }
714
715 static void
716 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
717 {
718 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
719 pool_scan_func_t *funcp = arg;
720 dsl_pool_t *dp = scn->scn_dp;
721 spa_t *spa = dp->dp_spa;
722
723 ASSERT(!dsl_scan_is_running(scn));
724 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
725 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
726
727 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
728 scn->errorscrub_phys.dep_func = *funcp;
729 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
730 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
731 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
732 scn->errorscrub_phys.dep_examined = 0;
733 scn->errorscrub_phys.dep_errors = 0;
734 scn->errorscrub_phys.dep_cursor = 0;
735 zap_cursor_init_serialized(&scn->errorscrub_cursor,
736 spa->spa_meta_objset, spa->spa_errlog_last,
737 scn->errorscrub_phys.dep_cursor);
738
739 vdev_config_dirty(spa->spa_root_vdev);
740 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
741
742 dsl_errorscrub_sync_state(scn, tx);
743
744 spa_history_log_internal(spa, "error scrub setup", tx,
745 "func=%u mintxg=%u maxtxg=%llu",
746 *funcp, 0, (u_longlong_t)tx->tx_txg);
747 }
748
749 static int
750 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
751 {
752 (void) arg;
753 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
754
755 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
756 return (SET_ERROR(EBUSY));
757 }
758
759 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
760 return (ECANCELED);
761 }
762 return (0);
763 }
764
765 /*
766 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
767 * Because we can be running in the block sorting algorithm, we do not always
768 * want to write out the record, only when it is "safe" to do so. This safety
769 * condition is achieved by making sure that the sorting queues are empty
770 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
771 * is inconsistent with how much actual scanning progress has been made. The
772 * kind of sync to be performed is specified by the sync_type argument. If the
773 * sync is optional, we only sync if the queues are empty. If the sync is
774 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
775 * third possible state is a "cached" sync. This is done in response to:
776 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
777 * destroyed, so we wouldn't be able to restart scanning from it.
778 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
779 * superseded by a newer snapshot.
780 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
781 * swapped with its clone.
782 * In all cases, a cached sync simply rewrites the last record we've written,
783 * just slightly modified. For the modifications that are performed to the
784 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
785 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
786 */
787 static void
788 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
789 {
790 int i;
791 spa_t *spa = scn->scn_dp->dp_spa;
792
793 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
794 if (scn->scn_queues_pending == 0) {
795 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
796 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
797 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
798
799 if (q == NULL)
800 continue;
801
802 mutex_enter(&vd->vdev_scan_io_queue_lock);
803 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
804 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
805 NULL);
806 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
807 mutex_exit(&vd->vdev_scan_io_queue_lock);
808 }
809
810 if (scn->scn_phys.scn_queue_obj != 0)
811 scan_ds_queue_sync(scn, tx);
812 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
813 DMU_POOL_DIRECTORY_OBJECT,
814 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
815 &scn->scn_phys, tx));
816 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
817 sizeof (scn->scn_phys));
818
819 if (scn->scn_checkpointing)
820 zfs_dbgmsg("finish scan checkpoint for %s",
821 spa->spa_name);
822
823 scn->scn_checkpointing = B_FALSE;
824 scn->scn_last_checkpoint = ddi_get_lbolt();
825 } else if (sync_type == SYNC_CACHED) {
826 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
827 DMU_POOL_DIRECTORY_OBJECT,
828 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
829 &scn->scn_phys_cached, tx));
830 }
831 }
832
833 int
834 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
835 {
836 (void) arg;
837 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
838 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
839
840 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
841 dsl_errorscrubbing(scn->scn_dp))
842 return (SET_ERROR(EBUSY));
843
844 return (0);
845 }
846
847 void
848 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
849 {
850 (void) arg;
851 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
852 pool_scan_func_t *funcp = arg;
853 dmu_object_type_t ot = 0;
854 dsl_pool_t *dp = scn->scn_dp;
855 spa_t *spa = dp->dp_spa;
856
857 ASSERT(!dsl_scan_is_running(scn));
858 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
859 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
860
861 /*
862 * If we are starting a fresh scrub, we erase the error scrub
863 * information from disk.
864 */
865 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
866 dsl_errorscrub_sync_state(scn, tx);
867
868 scn->scn_phys.scn_func = *funcp;
869 scn->scn_phys.scn_state = DSS_SCANNING;
870 scn->scn_phys.scn_min_txg = 0;
871 scn->scn_phys.scn_max_txg = tx->tx_txg;
872 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
873 scn->scn_phys.scn_start_time = gethrestime_sec();
874 scn->scn_phys.scn_errors = 0;
875 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
876 scn->scn_issued_before_pass = 0;
877 scn->scn_restart_txg = 0;
878 scn->scn_done_txg = 0;
879 scn->scn_last_checkpoint = 0;
880 scn->scn_checkpointing = B_FALSE;
881 spa_scan_stat_init(spa);
882 vdev_scan_stat_init(spa->spa_root_vdev);
883
884 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
885 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
886
887 /* rewrite all disk labels */
888 vdev_config_dirty(spa->spa_root_vdev);
889
890 if (vdev_resilver_needed(spa->spa_root_vdev,
891 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
892 nvlist_t *aux = fnvlist_alloc();
893 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
894 "healing");
895 spa_event_notify(spa, NULL, aux,
896 ESC_ZFS_RESILVER_START);
897 nvlist_free(aux);
898 } else {
899 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
900 }
901
902 spa->spa_scrub_started = B_TRUE;
903 /*
904 * If this is an incremental scrub, limit the DDT scrub phase
905 * to just the auto-ditto class (for correctness); the rest
906 * of the scrub should go faster using top-down pruning.
907 */
908 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
909 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
910
911 /*
912 * When starting a resilver clear any existing rebuild state.
913 * This is required to prevent stale rebuild status from
914 * being reported when a rebuild is run, then a resilver and
915 * finally a scrub. In which case only the scrub status
916 * should be reported by 'zpool status'.
917 */
918 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
919 vdev_t *rvd = spa->spa_root_vdev;
920 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
921 vdev_t *vd = rvd->vdev_child[i];
922 vdev_rebuild_clear_sync(
923 (void *)(uintptr_t)vd->vdev_id, tx);
924 }
925 }
926 }
927
928 /* back to the generic stuff */
929
930 if (zfs_scan_blkstats) {
931 if (dp->dp_blkstats == NULL) {
932 dp->dp_blkstats =
933 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
934 }
935 memset(&dp->dp_blkstats->zab_type, 0,
936 sizeof (dp->dp_blkstats->zab_type));
937 } else {
938 if (dp->dp_blkstats) {
939 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
940 dp->dp_blkstats = NULL;
941 }
942 }
943
944 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
945 ot = DMU_OT_ZAP_OTHER;
946
947 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
948 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
949
950 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
951
952 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
953
954 spa_history_log_internal(spa, "scan setup", tx,
955 "func=%u mintxg=%llu maxtxg=%llu",
956 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
957 (u_longlong_t)scn->scn_phys.scn_max_txg);
958 }
959
960 /*
961 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
962 * error scrub or resilver. Can also be called to resume a paused scrub or
963 * error scrub.
964 */
965 int
966 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
967 {
968 spa_t *spa = dp->dp_spa;
969 dsl_scan_t *scn = dp->dp_scan;
970
971 /*
972 * Purge all vdev caches and probe all devices. We do this here
973 * rather than in sync context because this requires a writer lock
974 * on the spa_config lock, which we can't do from sync context. The
975 * spa_scrub_reopen flag indicates that vdev_open() should not
976 * attempt to start another scrub.
977 */
978 spa_vdev_state_enter(spa, SCL_NONE);
979 spa->spa_scrub_reopen = B_TRUE;
980 vdev_reopen(spa->spa_root_vdev);
981 spa->spa_scrub_reopen = B_FALSE;
982 (void) spa_vdev_state_exit(spa, NULL, 0);
983
984 if (func == POOL_SCAN_RESILVER) {
985 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
986 return (0);
987 }
988
989 if (func == POOL_SCAN_ERRORSCRUB) {
990 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
991 /*
992 * got error scrub start cmd, resume paused error scrub.
993 */
994 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
995 POOL_SCRUB_NORMAL);
996 if (err == 0) {
997 spa_event_notify(spa, NULL, NULL,
998 ESC_ZFS_ERRORSCRUB_RESUME);
999 return (ECANCELED);
1000 }
1001 return (SET_ERROR(err));
1002 }
1003
1004 return (dsl_sync_task(spa_name(dp->dp_spa),
1005 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1006 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1007 }
1008
1009 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1010 /* got scrub start cmd, resume paused scrub */
1011 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1012 POOL_SCRUB_NORMAL);
1013 if (err == 0) {
1014 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1015 return (SET_ERROR(ECANCELED));
1016 }
1017 return (SET_ERROR(err));
1018 }
1019
1020 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1021 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1022 }
1023
1024 static void
1025 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1026 {
1027 dsl_pool_t *dp = scn->scn_dp;
1028 spa_t *spa = dp->dp_spa;
1029
1030 if (complete) {
1031 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1032 spa_history_log_internal(spa, "error scrub done", tx,
1033 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1034 } else {
1035 spa_history_log_internal(spa, "error scrub canceled", tx,
1036 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1037 }
1038
1039 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1040 spa->spa_scrub_active = B_FALSE;
1041 spa_errlog_rotate(spa);
1042 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1043 zap_cursor_fini(&scn->errorscrub_cursor);
1044
1045 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1046 spa->spa_errata = 0;
1047
1048 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1049 }
1050
1051 static void
1052 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1053 {
1054 static const char *old_names[] = {
1055 "scrub_bookmark",
1056 "scrub_ddt_bookmark",
1057 "scrub_ddt_class_max",
1058 "scrub_queue",
1059 "scrub_min_txg",
1060 "scrub_max_txg",
1061 "scrub_func",
1062 "scrub_errors",
1063 NULL
1064 };
1065
1066 dsl_pool_t *dp = scn->scn_dp;
1067 spa_t *spa = dp->dp_spa;
1068 int i;
1069
1070 /* Remove any remnants of an old-style scrub. */
1071 for (i = 0; old_names[i]; i++) {
1072 (void) zap_remove(dp->dp_meta_objset,
1073 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1074 }
1075
1076 if (scn->scn_phys.scn_queue_obj != 0) {
1077 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1078 scn->scn_phys.scn_queue_obj, tx));
1079 scn->scn_phys.scn_queue_obj = 0;
1080 }
1081 scan_ds_queue_clear(scn);
1082 scan_ds_prefetch_queue_clear(scn);
1083
1084 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1085
1086 /*
1087 * If we were "restarted" from a stopped state, don't bother
1088 * with anything else.
1089 */
1090 if (!dsl_scan_is_running(scn)) {
1091 ASSERT(!scn->scn_is_sorted);
1092 return;
1093 }
1094
1095 if (scn->scn_is_sorted) {
1096 scan_io_queues_destroy(scn);
1097 scn->scn_is_sorted = B_FALSE;
1098
1099 if (scn->scn_taskq != NULL) {
1100 taskq_destroy(scn->scn_taskq);
1101 scn->scn_taskq = NULL;
1102 }
1103 }
1104
1105 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1106
1107 spa_notify_waiters(spa);
1108
1109 if (dsl_scan_restarting(scn, tx))
1110 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1111 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1112 else if (!complete)
1113 spa_history_log_internal(spa, "scan cancelled", tx,
1114 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1115 else
1116 spa_history_log_internal(spa, "scan done", tx,
1117 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1118
1119 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1120 spa->spa_scrub_active = B_FALSE;
1121
1122 /*
1123 * If the scrub/resilver completed, update all DTLs to
1124 * reflect this. Whether it succeeded or not, vacate
1125 * all temporary scrub DTLs.
1126 *
1127 * As the scrub does not currently support traversing
1128 * data that have been freed but are part of a checkpoint,
1129 * we don't mark the scrub as done in the DTLs as faults
1130 * may still exist in those vdevs.
1131 */
1132 if (complete &&
1133 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1134 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1135 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1136
1137 if (scn->scn_phys.scn_min_txg) {
1138 nvlist_t *aux = fnvlist_alloc();
1139 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1140 "healing");
1141 spa_event_notify(spa, NULL, aux,
1142 ESC_ZFS_RESILVER_FINISH);
1143 nvlist_free(aux);
1144 } else {
1145 spa_event_notify(spa, NULL, NULL,
1146 ESC_ZFS_SCRUB_FINISH);
1147 }
1148 } else {
1149 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1150 0, B_TRUE, B_FALSE);
1151 }
1152 spa_errlog_rotate(spa);
1153
1154 /*
1155 * Don't clear flag until after vdev_dtl_reassess to ensure that
1156 * DTL_MISSING will get updated when possible.
1157 */
1158 spa->spa_scrub_started = B_FALSE;
1159
1160 /*
1161 * We may have finished replacing a device.
1162 * Let the async thread assess this and handle the detach.
1163 */
1164 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1165
1166 /*
1167 * Clear any resilver_deferred flags in the config.
1168 * If there are drives that need resilvering, kick
1169 * off an asynchronous request to start resilver.
1170 * vdev_clear_resilver_deferred() may update the config
1171 * before the resilver can restart. In the event of
1172 * a crash during this period, the spa loading code
1173 * will find the drives that need to be resilvered
1174 * and start the resilver then.
1175 */
1176 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1177 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1178 spa_history_log_internal(spa,
1179 "starting deferred resilver", tx, "errors=%llu",
1180 (u_longlong_t)spa_approx_errlog_size(spa));
1181 spa_async_request(spa, SPA_ASYNC_RESILVER);
1182 }
1183
1184 /* Clear recent error events (i.e. duplicate events tracking) */
1185 if (complete)
1186 zfs_ereport_clear(spa, NULL);
1187 }
1188
1189 scn->scn_phys.scn_end_time = gethrestime_sec();
1190
1191 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1192 spa->spa_errata = 0;
1193
1194 ASSERT(!dsl_scan_is_running(scn));
1195 }
1196
1197 static int
1198 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1199 {
1200 pool_scrub_cmd_t *cmd = arg;
1201 dsl_pool_t *dp = dmu_tx_pool(tx);
1202 dsl_scan_t *scn = dp->dp_scan;
1203
1204 if (*cmd == POOL_SCRUB_PAUSE) {
1205 /*
1206 * can't pause a error scrub when there is no in-progress
1207 * error scrub.
1208 */
1209 if (!dsl_errorscrubbing(dp))
1210 return (SET_ERROR(ENOENT));
1211
1212 /* can't pause a paused error scrub */
1213 if (dsl_errorscrub_is_paused(scn))
1214 return (SET_ERROR(EBUSY));
1215 } else if (*cmd != POOL_SCRUB_NORMAL) {
1216 return (SET_ERROR(ENOTSUP));
1217 }
1218
1219 return (0);
1220 }
1221
1222 static void
1223 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1224 {
1225 pool_scrub_cmd_t *cmd = arg;
1226 dsl_pool_t *dp = dmu_tx_pool(tx);
1227 spa_t *spa = dp->dp_spa;
1228 dsl_scan_t *scn = dp->dp_scan;
1229
1230 if (*cmd == POOL_SCRUB_PAUSE) {
1231 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1232 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1233 dsl_errorscrub_sync_state(scn, tx);
1234 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1235 } else {
1236 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1237 if (dsl_errorscrub_is_paused(scn)) {
1238 /*
1239 * We need to keep track of how much time we spend
1240 * paused per pass so that we can adjust the error scrub
1241 * rate shown in the output of 'zpool status'.
1242 */
1243 spa->spa_scan_pass_errorscrub_spent_paused +=
1244 gethrestime_sec() -
1245 spa->spa_scan_pass_errorscrub_pause;
1246
1247 spa->spa_scan_pass_errorscrub_pause = 0;
1248 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1249
1250 zap_cursor_init_serialized(
1251 &scn->errorscrub_cursor,
1252 spa->spa_meta_objset, spa->spa_errlog_last,
1253 scn->errorscrub_phys.dep_cursor);
1254
1255 dsl_errorscrub_sync_state(scn, tx);
1256 }
1257 }
1258 }
1259
1260 static int
1261 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1262 {
1263 (void) arg;
1264 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1265 /* can't cancel a error scrub when there is no one in-progress */
1266 if (!dsl_errorscrubbing(scn->scn_dp))
1267 return (SET_ERROR(ENOENT));
1268 return (0);
1269 }
1270
1271 static void
1272 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1273 {
1274 (void) arg;
1275 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1276
1277 dsl_errorscrub_done(scn, B_FALSE, tx);
1278 dsl_errorscrub_sync_state(scn, tx);
1279 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1280 ESC_ZFS_ERRORSCRUB_ABORT);
1281 }
1282
1283 static int
1284 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1285 {
1286 (void) arg;
1287 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1288
1289 if (!dsl_scan_is_running(scn))
1290 return (SET_ERROR(ENOENT));
1291 return (0);
1292 }
1293
1294 static void
1295 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1296 {
1297 (void) arg;
1298 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1299
1300 dsl_scan_done(scn, B_FALSE, tx);
1301 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1302 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1303 }
1304
1305 int
1306 dsl_scan_cancel(dsl_pool_t *dp)
1307 {
1308 if (dsl_errorscrubbing(dp)) {
1309 return (dsl_sync_task(spa_name(dp->dp_spa),
1310 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1311 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1312 }
1313 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1314 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1315 }
1316
1317 static int
1318 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1319 {
1320 pool_scrub_cmd_t *cmd = arg;
1321 dsl_pool_t *dp = dmu_tx_pool(tx);
1322 dsl_scan_t *scn = dp->dp_scan;
1323
1324 if (*cmd == POOL_SCRUB_PAUSE) {
1325 /* can't pause a scrub when there is no in-progress scrub */
1326 if (!dsl_scan_scrubbing(dp))
1327 return (SET_ERROR(ENOENT));
1328
1329 /* can't pause a paused scrub */
1330 if (dsl_scan_is_paused_scrub(scn))
1331 return (SET_ERROR(EBUSY));
1332 } else if (*cmd != POOL_SCRUB_NORMAL) {
1333 return (SET_ERROR(ENOTSUP));
1334 }
1335
1336 return (0);
1337 }
1338
1339 static void
1340 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1341 {
1342 pool_scrub_cmd_t *cmd = arg;
1343 dsl_pool_t *dp = dmu_tx_pool(tx);
1344 spa_t *spa = dp->dp_spa;
1345 dsl_scan_t *scn = dp->dp_scan;
1346
1347 if (*cmd == POOL_SCRUB_PAUSE) {
1348 /* can't pause a scrub when there is no in-progress scrub */
1349 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1350 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1351 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1352 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1353 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1354 spa_notify_waiters(spa);
1355 } else {
1356 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1357 if (dsl_scan_is_paused_scrub(scn)) {
1358 /*
1359 * We need to keep track of how much time we spend
1360 * paused per pass so that we can adjust the scrub rate
1361 * shown in the output of 'zpool status'
1362 */
1363 spa->spa_scan_pass_scrub_spent_paused +=
1364 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1365 spa->spa_scan_pass_scrub_pause = 0;
1366 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1367 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1368 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1369 }
1370 }
1371 }
1372
1373 /*
1374 * Set scrub pause/resume state if it makes sense to do so
1375 */
1376 int
1377 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1378 {
1379 if (dsl_errorscrubbing(dp)) {
1380 return (dsl_sync_task(spa_name(dp->dp_spa),
1381 dsl_errorscrub_pause_resume_check,
1382 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1383 ZFS_SPACE_CHECK_RESERVED));
1384 }
1385 return (dsl_sync_task(spa_name(dp->dp_spa),
1386 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1387 ZFS_SPACE_CHECK_RESERVED));
1388 }
1389
1390
1391 /* start a new scan, or restart an existing one. */
1392 void
1393 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1394 {
1395 if (txg == 0) {
1396 dmu_tx_t *tx;
1397 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1398 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1399
1400 txg = dmu_tx_get_txg(tx);
1401 dp->dp_scan->scn_restart_txg = txg;
1402 dmu_tx_commit(tx);
1403 } else {
1404 dp->dp_scan->scn_restart_txg = txg;
1405 }
1406 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1407 dp->dp_spa->spa_name, (longlong_t)txg);
1408 }
1409
1410 void
1411 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1412 {
1413 zio_free(dp->dp_spa, txg, bp);
1414 }
1415
1416 void
1417 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1418 {
1419 ASSERT(dsl_pool_sync_context(dp));
1420 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1421 }
1422
1423 static int
1424 scan_ds_queue_compare(const void *a, const void *b)
1425 {
1426 const scan_ds_t *sds_a = a, *sds_b = b;
1427
1428 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1429 return (-1);
1430 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1431 return (0);
1432 return (1);
1433 }
1434
1435 static void
1436 scan_ds_queue_clear(dsl_scan_t *scn)
1437 {
1438 void *cookie = NULL;
1439 scan_ds_t *sds;
1440 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1441 kmem_free(sds, sizeof (*sds));
1442 }
1443 }
1444
1445 static boolean_t
1446 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1447 {
1448 scan_ds_t srch, *sds;
1449
1450 srch.sds_dsobj = dsobj;
1451 sds = avl_find(&scn->scn_queue, &srch, NULL);
1452 if (sds != NULL && txg != NULL)
1453 *txg = sds->sds_txg;
1454 return (sds != NULL);
1455 }
1456
1457 static void
1458 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1459 {
1460 scan_ds_t *sds;
1461 avl_index_t where;
1462
1463 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1464 sds->sds_dsobj = dsobj;
1465 sds->sds_txg = txg;
1466
1467 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1468 avl_insert(&scn->scn_queue, sds, where);
1469 }
1470
1471 static void
1472 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1473 {
1474 scan_ds_t srch, *sds;
1475
1476 srch.sds_dsobj = dsobj;
1477
1478 sds = avl_find(&scn->scn_queue, &srch, NULL);
1479 VERIFY(sds != NULL);
1480 avl_remove(&scn->scn_queue, sds);
1481 kmem_free(sds, sizeof (*sds));
1482 }
1483
1484 static void
1485 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1486 {
1487 dsl_pool_t *dp = scn->scn_dp;
1488 spa_t *spa = dp->dp_spa;
1489 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1490 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1491
1492 ASSERT0(scn->scn_queues_pending);
1493 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1494
1495 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1496 scn->scn_phys.scn_queue_obj, tx));
1497 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1498 DMU_OT_NONE, 0, tx);
1499 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1500 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1501 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1502 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1503 sds->sds_txg, tx));
1504 }
1505 }
1506
1507 /*
1508 * Computes the memory limit state that we're currently in. A sorted scan
1509 * needs quite a bit of memory to hold the sorting queue, so we need to
1510 * reasonably constrain the size so it doesn't impact overall system
1511 * performance. We compute two limits:
1512 * 1) Hard memory limit: if the amount of memory used by the sorting
1513 * queues on a pool gets above this value, we stop the metadata
1514 * scanning portion and start issuing the queued up and sorted
1515 * I/Os to reduce memory usage.
1516 * This limit is calculated as a fraction of physmem (by default 5%).
1517 * We constrain the lower bound of the hard limit to an absolute
1518 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1519 * the upper bound to 5% of the total pool size - no chance we'll
1520 * ever need that much memory, but just to keep the value in check.
1521 * 2) Soft memory limit: once we hit the hard memory limit, we start
1522 * issuing I/O to reduce queue memory usage, but we don't want to
1523 * completely empty out the queues, since we might be able to find I/Os
1524 * that will fill in the gaps of our non-sequential IOs at some point
1525 * in the future. So we stop the issuing of I/Os once the amount of
1526 * memory used drops below the soft limit (at which point we stop issuing
1527 * I/O and start scanning metadata again).
1528 *
1529 * This limit is calculated by subtracting a fraction of the hard
1530 * limit from the hard limit. By default this fraction is 5%, so
1531 * the soft limit is 95% of the hard limit. We cap the size of the
1532 * difference between the hard and soft limits at an absolute
1533 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1534 * sufficient to not cause too frequent switching between the
1535 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1536 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1537 * that should take at least a decent fraction of a second).
1538 */
1539 static boolean_t
1540 dsl_scan_should_clear(dsl_scan_t *scn)
1541 {
1542 spa_t *spa = scn->scn_dp->dp_spa;
1543 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1544 uint64_t alloc, mlim_hard, mlim_soft, mused;
1545
1546 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1547 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1548 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1549
1550 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1551 zfs_scan_mem_lim_min);
1552 mlim_hard = MIN(mlim_hard, alloc / 20);
1553 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1554 zfs_scan_mem_lim_soft_max);
1555 mused = 0;
1556 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1557 vdev_t *tvd = rvd->vdev_child[i];
1558 dsl_scan_io_queue_t *queue;
1559
1560 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1561 queue = tvd->vdev_scan_io_queue;
1562 if (queue != NULL) {
1563 /*
1564 * # of extents in exts_by_addr = # in exts_by_size.
1565 * B-tree efficiency is ~75%, but can be as low as 50%.
1566 */
1567 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1568 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1569 3 / 2) + queue->q_sio_memused;
1570 }
1571 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1572 }
1573
1574 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1575
1576 if (mused == 0)
1577 ASSERT0(scn->scn_queues_pending);
1578
1579 /*
1580 * If we are above our hard limit, we need to clear out memory.
1581 * If we are below our soft limit, we need to accumulate sequential IOs.
1582 * Otherwise, we should keep doing whatever we are currently doing.
1583 */
1584 if (mused >= mlim_hard)
1585 return (B_TRUE);
1586 else if (mused < mlim_soft)
1587 return (B_FALSE);
1588 else
1589 return (scn->scn_clearing);
1590 }
1591
1592 static boolean_t
1593 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1594 {
1595 /* we never skip user/group accounting objects */
1596 if (zb && (int64_t)zb->zb_object < 0)
1597 return (B_FALSE);
1598
1599 if (scn->scn_suspending)
1600 return (B_TRUE); /* we're already suspending */
1601
1602 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1603 return (B_FALSE); /* we're resuming */
1604
1605 /* We only know how to resume from level-0 and objset blocks. */
1606 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1607 return (B_FALSE);
1608
1609 /*
1610 * We suspend if:
1611 * - we have scanned for at least the minimum time (default 1 sec
1612 * for scrub, 3 sec for resilver), and either we have sufficient
1613 * dirty data that we are starting to write more quickly
1614 * (default 30%), someone is explicitly waiting for this txg
1615 * to complete, or we have used up all of the time in the txg
1616 * timeout (default 5 sec).
1617 * or
1618 * - the spa is shutting down because this pool is being exported
1619 * or the machine is rebooting.
1620 * or
1621 * - the scan queue has reached its memory use limit
1622 */
1623 uint64_t curr_time_ns = gethrtime();
1624 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1625 uint64_t sync_time_ns = curr_time_ns -
1626 scn->scn_dp->dp_spa->spa_sync_starttime;
1627 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1628 zfs_vdev_async_write_active_min_dirty_percent / 100;
1629 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1630 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1631
1632 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1633 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1634 txg_sync_waiting(scn->scn_dp) ||
1635 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1636 spa_shutting_down(scn->scn_dp->dp_spa) ||
1637 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1638 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1639 dprintf("suspending at first available bookmark "
1640 "%llx/%llx/%llx/%llx\n",
1641 (longlong_t)zb->zb_objset,
1642 (longlong_t)zb->zb_object,
1643 (longlong_t)zb->zb_level,
1644 (longlong_t)zb->zb_blkid);
1645 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1646 zb->zb_objset, 0, 0, 0);
1647 } else if (zb != NULL) {
1648 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1649 (longlong_t)zb->zb_objset,
1650 (longlong_t)zb->zb_object,
1651 (longlong_t)zb->zb_level,
1652 (longlong_t)zb->zb_blkid);
1653 scn->scn_phys.scn_bookmark = *zb;
1654 } else {
1655 #ifdef ZFS_DEBUG
1656 dsl_scan_phys_t *scnp = &scn->scn_phys;
1657 dprintf("suspending at at DDT bookmark "
1658 "%llx/%llx/%llx/%llx\n",
1659 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1660 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1661 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1662 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1663 #endif
1664 }
1665 scn->scn_suspending = B_TRUE;
1666 return (B_TRUE);
1667 }
1668 return (B_FALSE);
1669 }
1670
1671 static boolean_t
1672 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1673 {
1674 /*
1675 * We suspend if:
1676 * - we have scrubbed for at least the minimum time (default 1 sec
1677 * for error scrub), someone is explicitly waiting for this txg
1678 * to complete, or we have used up all of the time in the txg
1679 * timeout (default 5 sec).
1680 * or
1681 * - the spa is shutting down because this pool is being exported
1682 * or the machine is rebooting.
1683 */
1684 uint64_t curr_time_ns = gethrtime();
1685 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1686 uint64_t sync_time_ns = curr_time_ns -
1687 scn->scn_dp->dp_spa->spa_sync_starttime;
1688 int mintime = zfs_scrub_min_time_ms;
1689
1690 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1691 (txg_sync_waiting(scn->scn_dp) ||
1692 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1693 spa_shutting_down(scn->scn_dp->dp_spa)) {
1694 if (zb) {
1695 dprintf("error scrub suspending at bookmark "
1696 "%llx/%llx/%llx/%llx\n",
1697 (longlong_t)zb->zb_objset,
1698 (longlong_t)zb->zb_object,
1699 (longlong_t)zb->zb_level,
1700 (longlong_t)zb->zb_blkid);
1701 }
1702 return (B_TRUE);
1703 }
1704 return (B_FALSE);
1705 }
1706
1707 typedef struct zil_scan_arg {
1708 dsl_pool_t *zsa_dp;
1709 zil_header_t *zsa_zh;
1710 } zil_scan_arg_t;
1711
1712 static int
1713 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1714 uint64_t claim_txg)
1715 {
1716 (void) zilog;
1717 zil_scan_arg_t *zsa = arg;
1718 dsl_pool_t *dp = zsa->zsa_dp;
1719 dsl_scan_t *scn = dp->dp_scan;
1720 zil_header_t *zh = zsa->zsa_zh;
1721 zbookmark_phys_t zb;
1722
1723 ASSERT(!BP_IS_REDACTED(bp));
1724 if (BP_IS_HOLE(bp) ||
1725 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1726 return (0);
1727
1728 /*
1729 * One block ("stubby") can be allocated a long time ago; we
1730 * want to visit that one because it has been allocated
1731 * (on-disk) even if it hasn't been claimed (even though for
1732 * scrub there's nothing to do to it).
1733 */
1734 if (claim_txg == 0 &&
1735 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1736 return (0);
1737
1738 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1739 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1740
1741 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1742 return (0);
1743 }
1744
1745 static int
1746 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1747 uint64_t claim_txg)
1748 {
1749 (void) zilog;
1750 if (lrc->lrc_txtype == TX_WRITE) {
1751 zil_scan_arg_t *zsa = arg;
1752 dsl_pool_t *dp = zsa->zsa_dp;
1753 dsl_scan_t *scn = dp->dp_scan;
1754 zil_header_t *zh = zsa->zsa_zh;
1755 const lr_write_t *lr = (const lr_write_t *)lrc;
1756 const blkptr_t *bp = &lr->lr_blkptr;
1757 zbookmark_phys_t zb;
1758
1759 ASSERT(!BP_IS_REDACTED(bp));
1760 if (BP_IS_HOLE(bp) ||
1761 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1762 return (0);
1763
1764 /*
1765 * birth can be < claim_txg if this record's txg is
1766 * already txg sync'ed (but this log block contains
1767 * other records that are not synced)
1768 */
1769 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1770 return (0);
1771
1772 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1773 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1774 lr->lr_foid, ZB_ZIL_LEVEL,
1775 lr->lr_offset / BP_GET_LSIZE(bp));
1776
1777 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1778 }
1779 return (0);
1780 }
1781
1782 static void
1783 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1784 {
1785 uint64_t claim_txg = zh->zh_claim_txg;
1786 zil_scan_arg_t zsa = { dp, zh };
1787 zilog_t *zilog;
1788
1789 ASSERT(spa_writeable(dp->dp_spa));
1790
1791 /*
1792 * We only want to visit blocks that have been claimed but not yet
1793 * replayed (or, in read-only mode, blocks that *would* be claimed).
1794 */
1795 if (claim_txg == 0)
1796 return;
1797
1798 zilog = zil_alloc(dp->dp_meta_objset, zh);
1799
1800 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1801 claim_txg, B_FALSE);
1802
1803 zil_free(zilog);
1804 }
1805
1806 /*
1807 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1808 * here is to sort the AVL tree by the order each block will be needed.
1809 */
1810 static int
1811 scan_prefetch_queue_compare(const void *a, const void *b)
1812 {
1813 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1814 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1815 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1816
1817 return (zbookmark_compare(spc_a->spc_datablkszsec,
1818 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1819 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1820 }
1821
1822 static void
1823 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1824 {
1825 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1826 zfs_refcount_destroy(&spc->spc_refcnt);
1827 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1828 }
1829 }
1830
1831 static scan_prefetch_ctx_t *
1832 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1833 {
1834 scan_prefetch_ctx_t *spc;
1835
1836 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1837 zfs_refcount_create(&spc->spc_refcnt);
1838 zfs_refcount_add(&spc->spc_refcnt, tag);
1839 spc->spc_scn = scn;
1840 if (dnp != NULL) {
1841 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1842 spc->spc_indblkshift = dnp->dn_indblkshift;
1843 spc->spc_root = B_FALSE;
1844 } else {
1845 spc->spc_datablkszsec = 0;
1846 spc->spc_indblkshift = 0;
1847 spc->spc_root = B_TRUE;
1848 }
1849
1850 return (spc);
1851 }
1852
1853 static void
1854 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1855 {
1856 zfs_refcount_add(&spc->spc_refcnt, tag);
1857 }
1858
1859 static void
1860 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1861 {
1862 spa_t *spa = scn->scn_dp->dp_spa;
1863 void *cookie = NULL;
1864 scan_prefetch_issue_ctx_t *spic = NULL;
1865
1866 mutex_enter(&spa->spa_scrub_lock);
1867 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1868 &cookie)) != NULL) {
1869 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1870 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1871 }
1872 mutex_exit(&spa->spa_scrub_lock);
1873 }
1874
1875 static boolean_t
1876 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1877 const zbookmark_phys_t *zb)
1878 {
1879 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1880 dnode_phys_t tmp_dnp;
1881 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1882
1883 if (zb->zb_objset != last_zb->zb_objset)
1884 return (B_TRUE);
1885 if ((int64_t)zb->zb_object < 0)
1886 return (B_FALSE);
1887
1888 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1889 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1890
1891 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1892 return (B_TRUE);
1893
1894 return (B_FALSE);
1895 }
1896
1897 static void
1898 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1899 {
1900 avl_index_t idx;
1901 dsl_scan_t *scn = spc->spc_scn;
1902 spa_t *spa = scn->scn_dp->dp_spa;
1903 scan_prefetch_issue_ctx_t *spic;
1904
1905 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1906 return;
1907
1908 if (BP_IS_HOLE(bp) ||
1909 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1910 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1911 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1912 return;
1913
1914 if (dsl_scan_check_prefetch_resume(spc, zb))
1915 return;
1916
1917 scan_prefetch_ctx_add_ref(spc, scn);
1918 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1919 spic->spic_spc = spc;
1920 spic->spic_bp = *bp;
1921 spic->spic_zb = *zb;
1922
1923 /*
1924 * Add the IO to the queue of blocks to prefetch. This allows us to
1925 * prioritize blocks that we will need first for the main traversal
1926 * thread.
1927 */
1928 mutex_enter(&spa->spa_scrub_lock);
1929 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1930 /* this block is already queued for prefetch */
1931 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1932 scan_prefetch_ctx_rele(spc, scn);
1933 mutex_exit(&spa->spa_scrub_lock);
1934 return;
1935 }
1936
1937 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1938 cv_broadcast(&spa->spa_scrub_io_cv);
1939 mutex_exit(&spa->spa_scrub_lock);
1940 }
1941
1942 static void
1943 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1944 uint64_t objset, uint64_t object)
1945 {
1946 int i;
1947 zbookmark_phys_t zb;
1948 scan_prefetch_ctx_t *spc;
1949
1950 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1951 return;
1952
1953 SET_BOOKMARK(&zb, objset, object, 0, 0);
1954
1955 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1956
1957 for (i = 0; i < dnp->dn_nblkptr; i++) {
1958 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1959 zb.zb_blkid = i;
1960 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1961 }
1962
1963 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1964 zb.zb_level = 0;
1965 zb.zb_blkid = DMU_SPILL_BLKID;
1966 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1967 }
1968
1969 scan_prefetch_ctx_rele(spc, FTAG);
1970 }
1971
1972 static void
1973 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1974 arc_buf_t *buf, void *private)
1975 {
1976 (void) zio;
1977 scan_prefetch_ctx_t *spc = private;
1978 dsl_scan_t *scn = spc->spc_scn;
1979 spa_t *spa = scn->scn_dp->dp_spa;
1980
1981 /* broadcast that the IO has completed for rate limiting purposes */
1982 mutex_enter(&spa->spa_scrub_lock);
1983 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1984 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1985 cv_broadcast(&spa->spa_scrub_io_cv);
1986 mutex_exit(&spa->spa_scrub_lock);
1987
1988 /* if there was an error or we are done prefetching, just cleanup */
1989 if (buf == NULL || scn->scn_prefetch_stop)
1990 goto out;
1991
1992 if (BP_GET_LEVEL(bp) > 0) {
1993 int i;
1994 blkptr_t *cbp;
1995 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1996 zbookmark_phys_t czb;
1997
1998 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1999 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2000 zb->zb_level - 1, zb->zb_blkid * epb + i);
2001 dsl_scan_prefetch(spc, cbp, &czb);
2002 }
2003 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2004 dnode_phys_t *cdnp;
2005 int i;
2006 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2007
2008 for (i = 0, cdnp = buf->b_data; i < epb;
2009 i += cdnp->dn_extra_slots + 1,
2010 cdnp += cdnp->dn_extra_slots + 1) {
2011 dsl_scan_prefetch_dnode(scn, cdnp,
2012 zb->zb_objset, zb->zb_blkid * epb + i);
2013 }
2014 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2015 objset_phys_t *osp = buf->b_data;
2016
2017 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2018 zb->zb_objset, DMU_META_DNODE_OBJECT);
2019
2020 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2021 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2022 dsl_scan_prefetch_dnode(scn,
2023 &osp->os_projectused_dnode, zb->zb_objset,
2024 DMU_PROJECTUSED_OBJECT);
2025 }
2026 dsl_scan_prefetch_dnode(scn,
2027 &osp->os_groupused_dnode, zb->zb_objset,
2028 DMU_GROUPUSED_OBJECT);
2029 dsl_scan_prefetch_dnode(scn,
2030 &osp->os_userused_dnode, zb->zb_objset,
2031 DMU_USERUSED_OBJECT);
2032 }
2033 }
2034
2035 out:
2036 if (buf != NULL)
2037 arc_buf_destroy(buf, private);
2038 scan_prefetch_ctx_rele(spc, scn);
2039 }
2040
2041 static void
2042 dsl_scan_prefetch_thread(void *arg)
2043 {
2044 dsl_scan_t *scn = arg;
2045 spa_t *spa = scn->scn_dp->dp_spa;
2046 scan_prefetch_issue_ctx_t *spic;
2047
2048 /* loop until we are told to stop */
2049 while (!scn->scn_prefetch_stop) {
2050 arc_flags_t flags = ARC_FLAG_NOWAIT |
2051 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2052 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2053
2054 mutex_enter(&spa->spa_scrub_lock);
2055
2056 /*
2057 * Wait until we have an IO to issue and are not above our
2058 * maximum in flight limit.
2059 */
2060 while (!scn->scn_prefetch_stop &&
2061 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2062 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2063 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2064 }
2065
2066 /* recheck if we should stop since we waited for the cv */
2067 if (scn->scn_prefetch_stop) {
2068 mutex_exit(&spa->spa_scrub_lock);
2069 break;
2070 }
2071
2072 /* remove the prefetch IO from the tree */
2073 spic = avl_first(&scn->scn_prefetch_queue);
2074 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2075 avl_remove(&scn->scn_prefetch_queue, spic);
2076
2077 mutex_exit(&spa->spa_scrub_lock);
2078
2079 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2080 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2081 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2082 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2083 zio_flags |= ZIO_FLAG_RAW;
2084 }
2085
2086 /* We don't need data L1 buffer since we do not prefetch L0. */
2087 blkptr_t *bp = &spic->spic_bp;
2088 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2089 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2090 flags |= ARC_FLAG_NO_BUF;
2091
2092 /* issue the prefetch asynchronously */
2093 (void) arc_read(scn->scn_zio_root, spa, bp,
2094 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2095 zio_flags, &flags, &spic->spic_zb);
2096
2097 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2098 }
2099
2100 ASSERT(scn->scn_prefetch_stop);
2101
2102 /* free any prefetches we didn't get to complete */
2103 mutex_enter(&spa->spa_scrub_lock);
2104 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2105 avl_remove(&scn->scn_prefetch_queue, spic);
2106 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2107 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2108 }
2109 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2110 mutex_exit(&spa->spa_scrub_lock);
2111 }
2112
2113 static boolean_t
2114 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2115 const zbookmark_phys_t *zb)
2116 {
2117 /*
2118 * We never skip over user/group accounting objects (obj<0)
2119 */
2120 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2121 (int64_t)zb->zb_object >= 0) {
2122 /*
2123 * If we already visited this bp & everything below (in
2124 * a prior txg sync), don't bother doing it again.
2125 */
2126 if (zbookmark_subtree_completed(dnp, zb,
2127 &scn->scn_phys.scn_bookmark))
2128 return (B_TRUE);
2129
2130 /*
2131 * If we found the block we're trying to resume from, or
2132 * we went past it, zero it out to indicate that it's OK
2133 * to start checking for suspending again.
2134 */
2135 if (zbookmark_subtree_tbd(dnp, zb,
2136 &scn->scn_phys.scn_bookmark)) {
2137 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2138 (longlong_t)zb->zb_objset,
2139 (longlong_t)zb->zb_object,
2140 (longlong_t)zb->zb_level,
2141 (longlong_t)zb->zb_blkid);
2142 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2143 }
2144 }
2145 return (B_FALSE);
2146 }
2147
2148 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2149 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2150 dmu_objset_type_t ostype, dmu_tx_t *tx);
2151 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2152 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2153 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2154
2155 /*
2156 * Return nonzero on i/o error.
2157 * Return new buf to write out in *bufp.
2158 */
2159 inline __attribute__((always_inline)) static int
2160 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2161 dnode_phys_t *dnp, const blkptr_t *bp,
2162 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2163 {
2164 dsl_pool_t *dp = scn->scn_dp;
2165 spa_t *spa = dp->dp_spa;
2166 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2167 int err;
2168
2169 ASSERT(!BP_IS_REDACTED(bp));
2170
2171 /*
2172 * There is an unlikely case of encountering dnodes with contradicting
2173 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2174 * or modified before commit 4254acb was merged. As it is not possible
2175 * to know which of the two is correct, report an error.
2176 */
2177 if (dnp != NULL &&
2178 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2179 scn->scn_phys.scn_errors++;
2180 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2181 return (SET_ERROR(EINVAL));
2182 }
2183
2184 if (BP_GET_LEVEL(bp) > 0) {
2185 arc_flags_t flags = ARC_FLAG_WAIT;
2186 int i;
2187 blkptr_t *cbp;
2188 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2189 arc_buf_t *buf;
2190
2191 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2192 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2193 if (err) {
2194 scn->scn_phys.scn_errors++;
2195 return (err);
2196 }
2197 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2198 zbookmark_phys_t czb;
2199
2200 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2201 zb->zb_level - 1,
2202 zb->zb_blkid * epb + i);
2203 dsl_scan_visitbp(cbp, &czb, dnp,
2204 ds, scn, ostype, tx);
2205 }
2206 arc_buf_destroy(buf, &buf);
2207 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2208 arc_flags_t flags = ARC_FLAG_WAIT;
2209 dnode_phys_t *cdnp;
2210 int i;
2211 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2212 arc_buf_t *buf;
2213
2214 if (BP_IS_PROTECTED(bp)) {
2215 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2216 zio_flags |= ZIO_FLAG_RAW;
2217 }
2218
2219 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2220 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2221 if (err) {
2222 scn->scn_phys.scn_errors++;
2223 return (err);
2224 }
2225 for (i = 0, cdnp = buf->b_data; i < epb;
2226 i += cdnp->dn_extra_slots + 1,
2227 cdnp += cdnp->dn_extra_slots + 1) {
2228 dsl_scan_visitdnode(scn, ds, ostype,
2229 cdnp, zb->zb_blkid * epb + i, tx);
2230 }
2231
2232 arc_buf_destroy(buf, &buf);
2233 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2234 arc_flags_t flags = ARC_FLAG_WAIT;
2235 objset_phys_t *osp;
2236 arc_buf_t *buf;
2237
2238 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2239 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2240 if (err) {
2241 scn->scn_phys.scn_errors++;
2242 return (err);
2243 }
2244
2245 osp = buf->b_data;
2246
2247 dsl_scan_visitdnode(scn, ds, osp->os_type,
2248 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2249
2250 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2251 /*
2252 * We also always visit user/group/project accounting
2253 * objects, and never skip them, even if we are
2254 * suspending. This is necessary so that the
2255 * space deltas from this txg get integrated.
2256 */
2257 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2258 dsl_scan_visitdnode(scn, ds, osp->os_type,
2259 &osp->os_projectused_dnode,
2260 DMU_PROJECTUSED_OBJECT, tx);
2261 dsl_scan_visitdnode(scn, ds, osp->os_type,
2262 &osp->os_groupused_dnode,
2263 DMU_GROUPUSED_OBJECT, tx);
2264 dsl_scan_visitdnode(scn, ds, osp->os_type,
2265 &osp->os_userused_dnode,
2266 DMU_USERUSED_OBJECT, tx);
2267 }
2268 arc_buf_destroy(buf, &buf);
2269 } else if (!zfs_blkptr_verify(spa, bp,
2270 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2271 /*
2272 * Sanity check the block pointer contents, this is handled
2273 * by arc_read() for the cases above.
2274 */
2275 scn->scn_phys.scn_errors++;
2276 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2277 return (SET_ERROR(EINVAL));
2278 }
2279
2280 return (0);
2281 }
2282
2283 inline __attribute__((always_inline)) static void
2284 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2285 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2286 uint64_t object, dmu_tx_t *tx)
2287 {
2288 int j;
2289
2290 for (j = 0; j < dnp->dn_nblkptr; j++) {
2291 zbookmark_phys_t czb;
2292
2293 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2294 dnp->dn_nlevels - 1, j);
2295 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2296 &czb, dnp, ds, scn, ostype, tx);
2297 }
2298
2299 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2300 zbookmark_phys_t czb;
2301 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2302 0, DMU_SPILL_BLKID);
2303 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2304 &czb, dnp, ds, scn, ostype, tx);
2305 }
2306 }
2307
2308 /*
2309 * The arguments are in this order because mdb can only print the
2310 * first 5; we want them to be useful.
2311 */
2312 static void
2313 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2314 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2315 dmu_objset_type_t ostype, dmu_tx_t *tx)
2316 {
2317 dsl_pool_t *dp = scn->scn_dp;
2318
2319 if (dsl_scan_check_suspend(scn, zb))
2320 return;
2321
2322 if (dsl_scan_check_resume(scn, dnp, zb))
2323 return;
2324
2325 scn->scn_visited_this_txg++;
2326
2327 if (BP_IS_HOLE(bp)) {
2328 scn->scn_holes_this_txg++;
2329 return;
2330 }
2331
2332 if (BP_IS_REDACTED(bp)) {
2333 ASSERT(dsl_dataset_feature_is_active(ds,
2334 SPA_FEATURE_REDACTED_DATASETS));
2335 return;
2336 }
2337
2338 /*
2339 * Check if this block contradicts any filesystem flags.
2340 */
2341 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2342 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2343 ASSERT(dsl_dataset_feature_is_active(ds, f));
2344
2345 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2346 if (f != SPA_FEATURE_NONE)
2347 ASSERT(dsl_dataset_feature_is_active(ds, f));
2348
2349 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2350 if (f != SPA_FEATURE_NONE)
2351 ASSERT(dsl_dataset_feature_is_active(ds, f));
2352
2353 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2354 scn->scn_lt_min_this_txg++;
2355 return;
2356 }
2357
2358 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2359 return;
2360
2361 /*
2362 * If dsl_scan_ddt() has already visited this block, it will have
2363 * already done any translations or scrubbing, so don't call the
2364 * callback again.
2365 */
2366 if (ddt_class_contains(dp->dp_spa,
2367 scn->scn_phys.scn_ddt_class_max, bp)) {
2368 scn->scn_ddt_contained_this_txg++;
2369 return;
2370 }
2371
2372 /*
2373 * If this block is from the future (after cur_max_txg), then we
2374 * are doing this on behalf of a deleted snapshot, and we will
2375 * revisit the future block on the next pass of this dataset.
2376 * Don't scan it now unless we need to because something
2377 * under it was modified.
2378 */
2379 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2380 scn->scn_gt_max_this_txg++;
2381 return;
2382 }
2383
2384 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2385 }
2386
2387 static void
2388 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2389 dmu_tx_t *tx)
2390 {
2391 zbookmark_phys_t zb;
2392 scan_prefetch_ctx_t *spc;
2393
2394 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2395 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2396
2397 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2398 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2399 zb.zb_objset, 0, 0, 0);
2400 } else {
2401 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2402 }
2403
2404 scn->scn_objsets_visited_this_txg++;
2405
2406 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2407 dsl_scan_prefetch(spc, bp, &zb);
2408 scan_prefetch_ctx_rele(spc, FTAG);
2409
2410 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2411
2412 dprintf_ds(ds, "finished scan%s", "");
2413 }
2414
2415 static void
2416 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2417 {
2418 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2419 if (ds->ds_is_snapshot) {
2420 /*
2421 * Note:
2422 * - scn_cur_{min,max}_txg stays the same.
2423 * - Setting the flag is not really necessary if
2424 * scn_cur_max_txg == scn_max_txg, because there
2425 * is nothing after this snapshot that we care
2426 * about. However, we set it anyway and then
2427 * ignore it when we retraverse it in
2428 * dsl_scan_visitds().
2429 */
2430 scn_phys->scn_bookmark.zb_objset =
2431 dsl_dataset_phys(ds)->ds_next_snap_obj;
2432 zfs_dbgmsg("destroying ds %llu on %s; currently "
2433 "traversing; reset zb_objset to %llu",
2434 (u_longlong_t)ds->ds_object,
2435 ds->ds_dir->dd_pool->dp_spa->spa_name,
2436 (u_longlong_t)dsl_dataset_phys(ds)->
2437 ds_next_snap_obj);
2438 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2439 } else {
2440 SET_BOOKMARK(&scn_phys->scn_bookmark,
2441 ZB_DESTROYED_OBJSET, 0, 0, 0);
2442 zfs_dbgmsg("destroying ds %llu on %s; currently "
2443 "traversing; reset bookmark to -1,0,0,0",
2444 (u_longlong_t)ds->ds_object,
2445 ds->ds_dir->dd_pool->dp_spa->spa_name);
2446 }
2447 }
2448 }
2449
2450 /*
2451 * Invoked when a dataset is destroyed. We need to make sure that:
2452 *
2453 * 1) If it is the dataset that was currently being scanned, we write
2454 * a new dsl_scan_phys_t and marking the objset reference in it
2455 * as destroyed.
2456 * 2) Remove it from the work queue, if it was present.
2457 *
2458 * If the dataset was actually a snapshot, instead of marking the dataset
2459 * as destroyed, we instead substitute the next snapshot in line.
2460 */
2461 void
2462 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2463 {
2464 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2465 dsl_scan_t *scn = dp->dp_scan;
2466 uint64_t mintxg;
2467
2468 if (!dsl_scan_is_running(scn))
2469 return;
2470
2471 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2472 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2473
2474 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2475 scan_ds_queue_remove(scn, ds->ds_object);
2476 if (ds->ds_is_snapshot)
2477 scan_ds_queue_insert(scn,
2478 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2479 }
2480
2481 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2482 ds->ds_object, &mintxg) == 0) {
2483 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2484 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2485 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2486 if (ds->ds_is_snapshot) {
2487 /*
2488 * We keep the same mintxg; it could be >
2489 * ds_creation_txg if the previous snapshot was
2490 * deleted too.
2491 */
2492 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2493 scn->scn_phys.scn_queue_obj,
2494 dsl_dataset_phys(ds)->ds_next_snap_obj,
2495 mintxg, tx) == 0);
2496 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2497 "replacing with %llu",
2498 (u_longlong_t)ds->ds_object,
2499 dp->dp_spa->spa_name,
2500 (u_longlong_t)dsl_dataset_phys(ds)->
2501 ds_next_snap_obj);
2502 } else {
2503 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2504 "removing",
2505 (u_longlong_t)ds->ds_object,
2506 dp->dp_spa->spa_name);
2507 }
2508 }
2509
2510 /*
2511 * dsl_scan_sync() should be called after this, and should sync
2512 * out our changed state, but just to be safe, do it here.
2513 */
2514 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2515 }
2516
2517 static void
2518 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2519 {
2520 if (scn_bookmark->zb_objset == ds->ds_object) {
2521 scn_bookmark->zb_objset =
2522 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2523 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2524 "reset zb_objset to %llu",
2525 (u_longlong_t)ds->ds_object,
2526 ds->ds_dir->dd_pool->dp_spa->spa_name,
2527 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2528 }
2529 }
2530
2531 /*
2532 * Called when a dataset is snapshotted. If we were currently traversing
2533 * this snapshot, we reset our bookmark to point at the newly created
2534 * snapshot. We also modify our work queue to remove the old snapshot and
2535 * replace with the new one.
2536 */
2537 void
2538 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2539 {
2540 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2541 dsl_scan_t *scn = dp->dp_scan;
2542 uint64_t mintxg;
2543
2544 if (!dsl_scan_is_running(scn))
2545 return;
2546
2547 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2548
2549 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2550 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2551
2552 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2553 scan_ds_queue_remove(scn, ds->ds_object);
2554 scan_ds_queue_insert(scn,
2555 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2556 }
2557
2558 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2559 ds->ds_object, &mintxg) == 0) {
2560 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2561 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2562 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2563 scn->scn_phys.scn_queue_obj,
2564 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2565 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2566 "replacing with %llu",
2567 (u_longlong_t)ds->ds_object,
2568 dp->dp_spa->spa_name,
2569 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2570 }
2571
2572 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2573 }
2574
2575 static void
2576 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2577 zbookmark_phys_t *scn_bookmark)
2578 {
2579 if (scn_bookmark->zb_objset == ds1->ds_object) {
2580 scn_bookmark->zb_objset = ds2->ds_object;
2581 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2582 "reset zb_objset to %llu",
2583 (u_longlong_t)ds1->ds_object,
2584 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2585 (u_longlong_t)ds2->ds_object);
2586 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2587 scn_bookmark->zb_objset = ds1->ds_object;
2588 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2589 "reset zb_objset to %llu",
2590 (u_longlong_t)ds2->ds_object,
2591 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2592 (u_longlong_t)ds1->ds_object);
2593 }
2594 }
2595
2596 /*
2597 * Called when an origin dataset and its clone are swapped. If we were
2598 * currently traversing the dataset, we need to switch to traversing the
2599 * newly promoted clone.
2600 */
2601 void
2602 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2603 {
2604 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2605 dsl_scan_t *scn = dp->dp_scan;
2606 uint64_t mintxg1, mintxg2;
2607 boolean_t ds1_queued, ds2_queued;
2608
2609 if (!dsl_scan_is_running(scn))
2610 return;
2611
2612 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2613 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2614
2615 /*
2616 * Handle the in-memory scan queue.
2617 */
2618 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2619 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2620
2621 /* Sanity checking. */
2622 if (ds1_queued) {
2623 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2624 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2625 }
2626 if (ds2_queued) {
2627 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2628 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2629 }
2630
2631 if (ds1_queued && ds2_queued) {
2632 /*
2633 * If both are queued, we don't need to do anything.
2634 * The swapping code below would not handle this case correctly,
2635 * since we can't insert ds2 if it is already there. That's
2636 * because scan_ds_queue_insert() prohibits a duplicate insert
2637 * and panics.
2638 */
2639 } else if (ds1_queued) {
2640 scan_ds_queue_remove(scn, ds1->ds_object);
2641 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2642 } else if (ds2_queued) {
2643 scan_ds_queue_remove(scn, ds2->ds_object);
2644 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2645 }
2646
2647 /*
2648 * Handle the on-disk scan queue.
2649 * The on-disk state is an out-of-date version of the in-memory state,
2650 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2651 * be different. Therefore we need to apply the swap logic to the
2652 * on-disk state independently of the in-memory state.
2653 */
2654 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2655 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2656 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2657 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2658
2659 /* Sanity checking. */
2660 if (ds1_queued) {
2661 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2662 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2663 }
2664 if (ds2_queued) {
2665 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2666 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2667 }
2668
2669 if (ds1_queued && ds2_queued) {
2670 /*
2671 * If both are queued, we don't need to do anything.
2672 * Alternatively, we could check for EEXIST from
2673 * zap_add_int_key() and back out to the original state, but
2674 * that would be more work than checking for this case upfront.
2675 */
2676 } else if (ds1_queued) {
2677 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2678 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2679 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2680 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2681 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2682 "replacing with %llu",
2683 (u_longlong_t)ds1->ds_object,
2684 dp->dp_spa->spa_name,
2685 (u_longlong_t)ds2->ds_object);
2686 } else if (ds2_queued) {
2687 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2688 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2689 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2690 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2691 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2692 "replacing with %llu",
2693 (u_longlong_t)ds2->ds_object,
2694 dp->dp_spa->spa_name,
2695 (u_longlong_t)ds1->ds_object);
2696 }
2697
2698 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2699 }
2700
2701 static int
2702 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2703 {
2704 uint64_t originobj = *(uint64_t *)arg;
2705 dsl_dataset_t *ds;
2706 int err;
2707 dsl_scan_t *scn = dp->dp_scan;
2708
2709 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2710 return (0);
2711
2712 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2713 if (err)
2714 return (err);
2715
2716 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2717 dsl_dataset_t *prev;
2718 err = dsl_dataset_hold_obj(dp,
2719 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2720
2721 dsl_dataset_rele(ds, FTAG);
2722 if (err)
2723 return (err);
2724 ds = prev;
2725 }
2726 scan_ds_queue_insert(scn, ds->ds_object,
2727 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2728 dsl_dataset_rele(ds, FTAG);
2729 return (0);
2730 }
2731
2732 static void
2733 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2734 {
2735 dsl_pool_t *dp = scn->scn_dp;
2736 dsl_dataset_t *ds;
2737
2738 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2739
2740 if (scn->scn_phys.scn_cur_min_txg >=
2741 scn->scn_phys.scn_max_txg) {
2742 /*
2743 * This can happen if this snapshot was created after the
2744 * scan started, and we already completed a previous snapshot
2745 * that was created after the scan started. This snapshot
2746 * only references blocks with:
2747 *
2748 * birth < our ds_creation_txg
2749 * cur_min_txg is no less than ds_creation_txg.
2750 * We have already visited these blocks.
2751 * or
2752 * birth > scn_max_txg
2753 * The scan requested not to visit these blocks.
2754 *
2755 * Subsequent snapshots (and clones) can reference our
2756 * blocks, or blocks with even higher birth times.
2757 * Therefore we do not need to visit them either,
2758 * so we do not add them to the work queue.
2759 *
2760 * Note that checking for cur_min_txg >= cur_max_txg
2761 * is not sufficient, because in that case we may need to
2762 * visit subsequent snapshots. This happens when min_txg > 0,
2763 * which raises cur_min_txg. In this case we will visit
2764 * this dataset but skip all of its blocks, because the
2765 * rootbp's birth time is < cur_min_txg. Then we will
2766 * add the next snapshots/clones to the work queue.
2767 */
2768 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2769 dsl_dataset_name(ds, dsname);
2770 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2771 "cur_min_txg (%llu) >= max_txg (%llu)",
2772 (longlong_t)dsobj, dsname,
2773 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2774 (longlong_t)scn->scn_phys.scn_max_txg);
2775 kmem_free(dsname, MAXNAMELEN);
2776
2777 goto out;
2778 }
2779
2780 /*
2781 * Only the ZIL in the head (non-snapshot) is valid. Even though
2782 * snapshots can have ZIL block pointers (which may be the same
2783 * BP as in the head), they must be ignored. In addition, $ORIGIN
2784 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2785 * need to look for a ZIL in it either. So we traverse the ZIL here,
2786 * rather than in scan_recurse(), because the regular snapshot
2787 * block-sharing rules don't apply to it.
2788 */
2789 if (!dsl_dataset_is_snapshot(ds) &&
2790 (dp->dp_origin_snap == NULL ||
2791 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2792 objset_t *os;
2793 if (dmu_objset_from_ds(ds, &os) != 0) {
2794 goto out;
2795 }
2796 dsl_scan_zil(dp, &os->os_zil_header);
2797 }
2798
2799 /*
2800 * Iterate over the bps in this ds.
2801 */
2802 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2803 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2804 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2805 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2806
2807 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2808 dsl_dataset_name(ds, dsname);
2809 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2810 "suspending=%u",
2811 (longlong_t)dsobj, dsname,
2812 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2813 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2814 (int)scn->scn_suspending);
2815 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2816
2817 if (scn->scn_suspending)
2818 goto out;
2819
2820 /*
2821 * We've finished this pass over this dataset.
2822 */
2823
2824 /*
2825 * If we did not completely visit this dataset, do another pass.
2826 */
2827 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2828 zfs_dbgmsg("incomplete pass on %s; visiting again",
2829 dp->dp_spa->spa_name);
2830 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2831 scan_ds_queue_insert(scn, ds->ds_object,
2832 scn->scn_phys.scn_cur_max_txg);
2833 goto out;
2834 }
2835
2836 /*
2837 * Add descendant datasets to work queue.
2838 */
2839 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2840 scan_ds_queue_insert(scn,
2841 dsl_dataset_phys(ds)->ds_next_snap_obj,
2842 dsl_dataset_phys(ds)->ds_creation_txg);
2843 }
2844 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2845 boolean_t usenext = B_FALSE;
2846 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2847 uint64_t count;
2848 /*
2849 * A bug in a previous version of the code could
2850 * cause upgrade_clones_cb() to not set
2851 * ds_next_snap_obj when it should, leading to a
2852 * missing entry. Therefore we can only use the
2853 * next_clones_obj when its count is correct.
2854 */
2855 int err = zap_count(dp->dp_meta_objset,
2856 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2857 if (err == 0 &&
2858 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2859 usenext = B_TRUE;
2860 }
2861
2862 if (usenext) {
2863 zap_cursor_t zc;
2864 zap_attribute_t za;
2865 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2866 dsl_dataset_phys(ds)->ds_next_clones_obj);
2867 zap_cursor_retrieve(&zc, &za) == 0;
2868 (void) zap_cursor_advance(&zc)) {
2869 scan_ds_queue_insert(scn,
2870 zfs_strtonum(za.za_name, NULL),
2871 dsl_dataset_phys(ds)->ds_creation_txg);
2872 }
2873 zap_cursor_fini(&zc);
2874 } else {
2875 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2876 enqueue_clones_cb, &ds->ds_object,
2877 DS_FIND_CHILDREN));
2878 }
2879 }
2880
2881 out:
2882 dsl_dataset_rele(ds, FTAG);
2883 }
2884
2885 static int
2886 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2887 {
2888 (void) arg;
2889 dsl_dataset_t *ds;
2890 int err;
2891 dsl_scan_t *scn = dp->dp_scan;
2892
2893 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2894 if (err)
2895 return (err);
2896
2897 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2898 dsl_dataset_t *prev;
2899 err = dsl_dataset_hold_obj(dp,
2900 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2901 if (err) {
2902 dsl_dataset_rele(ds, FTAG);
2903 return (err);
2904 }
2905
2906 /*
2907 * If this is a clone, we don't need to worry about it for now.
2908 */
2909 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2910 dsl_dataset_rele(ds, FTAG);
2911 dsl_dataset_rele(prev, FTAG);
2912 return (0);
2913 }
2914 dsl_dataset_rele(ds, FTAG);
2915 ds = prev;
2916 }
2917
2918 scan_ds_queue_insert(scn, ds->ds_object,
2919 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2920 dsl_dataset_rele(ds, FTAG);
2921 return (0);
2922 }
2923
2924 void
2925 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2926 ddt_entry_t *dde, dmu_tx_t *tx)
2927 {
2928 (void) tx;
2929 const ddt_key_t *ddk = &dde->dde_key;
2930 ddt_phys_t *ddp = dde->dde_phys;
2931 blkptr_t bp;
2932 zbookmark_phys_t zb = { 0 };
2933
2934 if (!dsl_scan_is_running(scn))
2935 return;
2936
2937 /*
2938 * This function is special because it is the only thing
2939 * that can add scan_io_t's to the vdev scan queues from
2940 * outside dsl_scan_sync(). For the most part this is ok
2941 * as long as it is called from within syncing context.
2942 * However, dsl_scan_sync() expects that no new sio's will
2943 * be added between when all the work for a scan is done
2944 * and the next txg when the scan is actually marked as
2945 * completed. This check ensures we do not issue new sio's
2946 * during this period.
2947 */
2948 if (scn->scn_done_txg != 0)
2949 return;
2950
2951 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2952 if (ddp->ddp_phys_birth == 0 ||
2953 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2954 continue;
2955 ddt_bp_create(checksum, ddk, ddp, &bp);
2956
2957 scn->scn_visited_this_txg++;
2958 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2959 }
2960 }
2961
2962 /*
2963 * Scrub/dedup interaction.
2964 *
2965 * If there are N references to a deduped block, we don't want to scrub it
2966 * N times -- ideally, we should scrub it exactly once.
2967 *
2968 * We leverage the fact that the dde's replication class (ddt_class_t)
2969 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2970 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2971 *
2972 * To prevent excess scrubbing, the scrub begins by walking the DDT
2973 * to find all blocks with refcnt > 1, and scrubs each of these once.
2974 * Since there are two replication classes which contain blocks with
2975 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2976 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2977 *
2978 * There would be nothing more to say if a block's refcnt couldn't change
2979 * during a scrub, but of course it can so we must account for changes
2980 * in a block's replication class.
2981 *
2982 * Here's an example of what can occur:
2983 *
2984 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2985 * when visited during the top-down scrub phase, it will be scrubbed twice.
2986 * This negates our scrub optimization, but is otherwise harmless.
2987 *
2988 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2989 * on each visit during the top-down scrub phase, it will never be scrubbed.
2990 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2991 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2992 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2993 * while a scrub is in progress, it scrubs the block right then.
2994 */
2995 static void
2996 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2997 {
2998 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2999 ddt_entry_t dde = {{{{0}}}};
3000 int error;
3001 uint64_t n = 0;
3002
3003 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
3004 ddt_t *ddt;
3005
3006 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3007 break;
3008 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3009 (longlong_t)ddb->ddb_class,
3010 (longlong_t)ddb->ddb_type,
3011 (longlong_t)ddb->ddb_checksum,
3012 (longlong_t)ddb->ddb_cursor);
3013
3014 /* There should be no pending changes to the dedup table */
3015 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3016 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3017
3018 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
3019 n++;
3020
3021 if (dsl_scan_check_suspend(scn, NULL))
3022 break;
3023 }
3024
3025 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3026 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
3027 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
3028
3029 ASSERT(error == 0 || error == ENOENT);
3030 ASSERT(error != ENOENT ||
3031 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3032 }
3033
3034 static uint64_t
3035 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3036 {
3037 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3038 if (ds->ds_is_snapshot)
3039 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3040 return (smt);
3041 }
3042
3043 static void
3044 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3045 {
3046 scan_ds_t *sds;
3047 dsl_pool_t *dp = scn->scn_dp;
3048
3049 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3050 scn->scn_phys.scn_ddt_class_max) {
3051 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3052 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3053 dsl_scan_ddt(scn, tx);
3054 if (scn->scn_suspending)
3055 return;
3056 }
3057
3058 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3059 /* First do the MOS & ORIGIN */
3060
3061 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3062 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3063 dsl_scan_visit_rootbp(scn, NULL,
3064 &dp->dp_meta_rootbp, tx);
3065 if (scn->scn_suspending)
3066 return;
3067
3068 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3069 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3070 enqueue_cb, NULL, DS_FIND_CHILDREN));
3071 } else {
3072 dsl_scan_visitds(scn,
3073 dp->dp_origin_snap->ds_object, tx);
3074 }
3075 ASSERT(!scn->scn_suspending);
3076 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3077 ZB_DESTROYED_OBJSET) {
3078 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3079 /*
3080 * If we were suspended, continue from here. Note if the
3081 * ds we were suspended on was deleted, the zb_objset may
3082 * be -1, so we will skip this and find a new objset
3083 * below.
3084 */
3085 dsl_scan_visitds(scn, dsobj, tx);
3086 if (scn->scn_suspending)
3087 return;
3088 }
3089
3090 /*
3091 * In case we suspended right at the end of the ds, zero the
3092 * bookmark so we don't think that we're still trying to resume.
3093 */
3094 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3095
3096 /*
3097 * Keep pulling things out of the dataset avl queue. Updates to the
3098 * persistent zap-object-as-queue happen only at checkpoints.
3099 */
3100 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3101 dsl_dataset_t *ds;
3102 uint64_t dsobj = sds->sds_dsobj;
3103 uint64_t txg = sds->sds_txg;
3104
3105 /* dequeue and free the ds from the queue */
3106 scan_ds_queue_remove(scn, dsobj);
3107 sds = NULL;
3108
3109 /* set up min / max txg */
3110 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3111 if (txg != 0) {
3112 scn->scn_phys.scn_cur_min_txg =
3113 MAX(scn->scn_phys.scn_min_txg, txg);
3114 } else {
3115 scn->scn_phys.scn_cur_min_txg =
3116 MAX(scn->scn_phys.scn_min_txg,
3117 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3118 }
3119 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3120 dsl_dataset_rele(ds, FTAG);
3121
3122 dsl_scan_visitds(scn, dsobj, tx);
3123 if (scn->scn_suspending)
3124 return;
3125 }
3126
3127 /* No more objsets to fetch, we're done */
3128 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3129 ASSERT0(scn->scn_suspending);
3130 }
3131
3132 static uint64_t
3133 dsl_scan_count_data_disks(spa_t *spa)
3134 {
3135 vdev_t *rvd = spa->spa_root_vdev;
3136 uint64_t i, leaves = 0;
3137
3138 for (i = 0; i < rvd->vdev_children; i++) {
3139 vdev_t *vd = rvd->vdev_child[i];
3140 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3141 continue;
3142 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3143 }
3144 return (leaves);
3145 }
3146
3147 static void
3148 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3149 {
3150 int i;
3151 uint64_t cur_size = 0;
3152
3153 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3154 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3155 }
3156
3157 q->q_total_zio_size_this_txg += cur_size;
3158 q->q_zios_this_txg++;
3159 }
3160
3161 static void
3162 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3163 uint64_t end)
3164 {
3165 q->q_total_seg_size_this_txg += end - start;
3166 q->q_segs_this_txg++;
3167 }
3168
3169 static boolean_t
3170 scan_io_queue_check_suspend(dsl_scan_t *scn)
3171 {
3172 /* See comment in dsl_scan_check_suspend() */
3173 uint64_t curr_time_ns = gethrtime();
3174 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3175 uint64_t sync_time_ns = curr_time_ns -
3176 scn->scn_dp->dp_spa->spa_sync_starttime;
3177 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3178 zfs_vdev_async_write_active_min_dirty_percent / 100;
3179 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3180 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3181
3182 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3183 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3184 txg_sync_waiting(scn->scn_dp) ||
3185 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3186 spa_shutting_down(scn->scn_dp->dp_spa));
3187 }
3188
3189 /*
3190 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3191 * disk. This consumes the io_list and frees the scan_io_t's. This is
3192 * called when emptying queues, either when we're up against the memory
3193 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3194 * processing the list before we finished. Any sios that were not issued
3195 * will remain in the io_list.
3196 */
3197 static boolean_t
3198 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3199 {
3200 dsl_scan_t *scn = queue->q_scn;
3201 scan_io_t *sio;
3202 boolean_t suspended = B_FALSE;
3203
3204 while ((sio = list_head(io_list)) != NULL) {
3205 blkptr_t bp;
3206
3207 if (scan_io_queue_check_suspend(scn)) {
3208 suspended = B_TRUE;
3209 break;
3210 }
3211
3212 sio2bp(sio, &bp);
3213 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3214 &sio->sio_zb, queue);
3215 (void) list_remove_head(io_list);
3216 scan_io_queues_update_zio_stats(queue, &bp);
3217 sio_free(sio);
3218 }
3219 return (suspended);
3220 }
3221
3222 /*
3223 * This function removes sios from an IO queue which reside within a given
3224 * range_seg_t and inserts them (in offset order) into a list. Note that
3225 * we only ever return a maximum of 32 sios at once. If there are more sios
3226 * to process within this segment that did not make it onto the list we
3227 * return B_TRUE and otherwise B_FALSE.
3228 */
3229 static boolean_t
3230 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3231 {
3232 scan_io_t *srch_sio, *sio, *next_sio;
3233 avl_index_t idx;
3234 uint_t num_sios = 0;
3235 int64_t bytes_issued = 0;
3236
3237 ASSERT(rs != NULL);
3238 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3239
3240 srch_sio = sio_alloc(1);
3241 srch_sio->sio_nr_dvas = 1;
3242 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3243
3244 /*
3245 * The exact start of the extent might not contain any matching zios,
3246 * so if that's the case, examine the next one in the tree.
3247 */
3248 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3249 sio_free(srch_sio);
3250
3251 if (sio == NULL)
3252 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3253
3254 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3255 queue->q_exts_by_addr) && num_sios <= 32) {
3256 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3257 queue->q_exts_by_addr));
3258 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3259 queue->q_exts_by_addr));
3260
3261 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3262 avl_remove(&queue->q_sios_by_addr, sio);
3263 if (avl_is_empty(&queue->q_sios_by_addr))
3264 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3265 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3266
3267 bytes_issued += SIO_GET_ASIZE(sio);
3268 num_sios++;
3269 list_insert_tail(list, sio);
3270 sio = next_sio;
3271 }
3272
3273 /*
3274 * We limit the number of sios we process at once to 32 to avoid
3275 * biting off more than we can chew. If we didn't take everything
3276 * in the segment we update it to reflect the work we were able to
3277 * complete. Otherwise, we remove it from the range tree entirely.
3278 */
3279 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3280 queue->q_exts_by_addr)) {
3281 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3282 -bytes_issued);
3283 range_tree_resize_segment(queue->q_exts_by_addr, rs,
3284 SIO_GET_OFFSET(sio), rs_get_end(rs,
3285 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3286 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3287 return (B_TRUE);
3288 } else {
3289 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3290 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3291 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3292 queue->q_last_ext_addr = -1;
3293 return (B_FALSE);
3294 }
3295 }
3296
3297 /*
3298 * This is called from the queue emptying thread and selects the next
3299 * extent from which we are to issue I/Os. The behavior of this function
3300 * depends on the state of the scan, the current memory consumption and
3301 * whether or not we are performing a scan shutdown.
3302 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3303 * needs to perform a checkpoint
3304 * 2) We select the largest available extent if we are up against the
3305 * memory limit.
3306 * 3) Otherwise we don't select any extents.
3307 */
3308 static range_seg_t *
3309 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3310 {
3311 dsl_scan_t *scn = queue->q_scn;
3312 range_tree_t *rt = queue->q_exts_by_addr;
3313
3314 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3315 ASSERT(scn->scn_is_sorted);
3316
3317 if (!scn->scn_checkpointing && !scn->scn_clearing)
3318 return (NULL);
3319
3320 /*
3321 * During normal clearing, we want to issue our largest segments
3322 * first, keeping IO as sequential as possible, and leaving the
3323 * smaller extents for later with the hope that they might eventually
3324 * grow to larger sequential segments. However, when the scan is
3325 * checkpointing, no new extents will be added to the sorting queue,
3326 * so the way we are sorted now is as good as it will ever get.
3327 * In this case, we instead switch to issuing extents in LBA order.
3328 */
3329 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3330 zfs_scan_issue_strategy == 1)
3331 return (range_tree_first(rt));
3332
3333 /*
3334 * Try to continue previous extent if it is not completed yet. After
3335 * shrink in scan_io_queue_gather() it may no longer be the best, but
3336 * otherwise we leave shorter remnant every txg.
3337 */
3338 uint64_t start;
3339 uint64_t size = 1ULL << rt->rt_shift;
3340 range_seg_t *addr_rs;
3341 if (queue->q_last_ext_addr != -1) {
3342 start = queue->q_last_ext_addr;
3343 addr_rs = range_tree_find(rt, start, size);
3344 if (addr_rs != NULL)
3345 return (addr_rs);
3346 }
3347
3348 /*
3349 * Nothing to continue, so find new best extent.
3350 */
3351 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3352 if (v == NULL)
3353 return (NULL);
3354 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3355
3356 /*
3357 * We need to get the original entry in the by_addr tree so we can
3358 * modify it.
3359 */
3360 addr_rs = range_tree_find(rt, start, size);
3361 ASSERT3P(addr_rs, !=, NULL);
3362 ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3363 ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3364 return (addr_rs);
3365 }
3366
3367 static void
3368 scan_io_queues_run_one(void *arg)
3369 {
3370 dsl_scan_io_queue_t *queue = arg;
3371 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3372 boolean_t suspended = B_FALSE;
3373 range_seg_t *rs;
3374 scan_io_t *sio;
3375 zio_t *zio;
3376 list_t sio_list;
3377
3378 ASSERT(queue->q_scn->scn_is_sorted);
3379
3380 list_create(&sio_list, sizeof (scan_io_t),
3381 offsetof(scan_io_t, sio_nodes.sio_list_node));
3382 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3383 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3384 mutex_enter(q_lock);
3385 queue->q_zio = zio;
3386
3387 /* Calculate maximum in-flight bytes for this vdev. */
3388 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3389 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3390
3391 /* reset per-queue scan statistics for this txg */
3392 queue->q_total_seg_size_this_txg = 0;
3393 queue->q_segs_this_txg = 0;
3394 queue->q_total_zio_size_this_txg = 0;
3395 queue->q_zios_this_txg = 0;
3396
3397 /* loop until we run out of time or sios */
3398 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3399 uint64_t seg_start = 0, seg_end = 0;
3400 boolean_t more_left;
3401
3402 ASSERT(list_is_empty(&sio_list));
3403
3404 /* loop while we still have sios left to process in this rs */
3405 do {
3406 scan_io_t *first_sio, *last_sio;
3407
3408 /*
3409 * We have selected which extent needs to be
3410 * processed next. Gather up the corresponding sios.
3411 */
3412 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3413 ASSERT(!list_is_empty(&sio_list));
3414 first_sio = list_head(&sio_list);
3415 last_sio = list_tail(&sio_list);
3416
3417 seg_end = SIO_GET_END_OFFSET(last_sio);
3418 if (seg_start == 0)
3419 seg_start = SIO_GET_OFFSET(first_sio);
3420
3421 /*
3422 * Issuing sios can take a long time so drop the
3423 * queue lock. The sio queue won't be updated by
3424 * other threads since we're in syncing context so
3425 * we can be sure that our trees will remain exactly
3426 * as we left them.
3427 */
3428 mutex_exit(q_lock);
3429 suspended = scan_io_queue_issue(queue, &sio_list);
3430 mutex_enter(q_lock);
3431
3432 if (suspended)
3433 break;
3434 } while (more_left);
3435
3436 /* update statistics for debugging purposes */
3437 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3438
3439 if (suspended)
3440 break;
3441 }
3442
3443 /*
3444 * If we were suspended in the middle of processing,
3445 * requeue any unfinished sios and exit.
3446 */
3447 while ((sio = list_remove_head(&sio_list)) != NULL)
3448 scan_io_queue_insert_impl(queue, sio);
3449
3450 queue->q_zio = NULL;
3451 mutex_exit(q_lock);
3452 zio_nowait(zio);
3453 list_destroy(&sio_list);
3454 }
3455
3456 /*
3457 * Performs an emptying run on all scan queues in the pool. This just
3458 * punches out one thread per top-level vdev, each of which processes
3459 * only that vdev's scan queue. We can parallelize the I/O here because
3460 * we know that each queue's I/Os only affect its own top-level vdev.
3461 *
3462 * This function waits for the queue runs to complete, and must be
3463 * called from dsl_scan_sync (or in general, syncing context).
3464 */
3465 static void
3466 scan_io_queues_run(dsl_scan_t *scn)
3467 {
3468 spa_t *spa = scn->scn_dp->dp_spa;
3469
3470 ASSERT(scn->scn_is_sorted);
3471 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3472
3473 if (scn->scn_queues_pending == 0)
3474 return;
3475
3476 if (scn->scn_taskq == NULL) {
3477 int nthreads = spa->spa_root_vdev->vdev_children;
3478
3479 /*
3480 * We need to make this taskq *always* execute as many
3481 * threads in parallel as we have top-level vdevs and no
3482 * less, otherwise strange serialization of the calls to
3483 * scan_io_queues_run_one can occur during spa_sync runs
3484 * and that significantly impacts performance.
3485 */
3486 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3487 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3488 }
3489
3490 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3491 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3492
3493 mutex_enter(&vd->vdev_scan_io_queue_lock);
3494 if (vd->vdev_scan_io_queue != NULL) {
3495 VERIFY(taskq_dispatch(scn->scn_taskq,
3496 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3497 TQ_SLEEP) != TASKQID_INVALID);
3498 }
3499 mutex_exit(&vd->vdev_scan_io_queue_lock);
3500 }
3501
3502 /*
3503 * Wait for the queues to finish issuing their IOs for this run
3504 * before we return. There may still be IOs in flight at this
3505 * point.
3506 */
3507 taskq_wait(scn->scn_taskq);
3508 }
3509
3510 static boolean_t
3511 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3512 {
3513 uint64_t elapsed_nanosecs;
3514
3515 if (zfs_recover)
3516 return (B_FALSE);
3517
3518 if (zfs_async_block_max_blocks != 0 &&
3519 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3520 return (B_TRUE);
3521 }
3522
3523 if (zfs_max_async_dedup_frees != 0 &&
3524 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3525 return (B_TRUE);
3526 }
3527
3528 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3529 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3530 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3531 txg_sync_waiting(scn->scn_dp)) ||
3532 spa_shutting_down(scn->scn_dp->dp_spa));
3533 }
3534
3535 static int
3536 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3537 {
3538 dsl_scan_t *scn = arg;
3539
3540 if (!scn->scn_is_bptree ||
3541 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3542 if (dsl_scan_async_block_should_pause(scn))
3543 return (SET_ERROR(ERESTART));
3544 }
3545
3546 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3547 dmu_tx_get_txg(tx), bp, 0));
3548 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3549 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3550 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3551 scn->scn_visited_this_txg++;
3552 if (BP_GET_DEDUP(bp))
3553 scn->scn_dedup_frees_this_txg++;
3554 return (0);
3555 }
3556
3557 static void
3558 dsl_scan_update_stats(dsl_scan_t *scn)
3559 {
3560 spa_t *spa = scn->scn_dp->dp_spa;
3561 uint64_t i;
3562 uint64_t seg_size_total = 0, zio_size_total = 0;
3563 uint64_t seg_count_total = 0, zio_count_total = 0;
3564
3565 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3566 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3567 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3568
3569 if (queue == NULL)
3570 continue;
3571
3572 seg_size_total += queue->q_total_seg_size_this_txg;
3573 zio_size_total += queue->q_total_zio_size_this_txg;
3574 seg_count_total += queue->q_segs_this_txg;
3575 zio_count_total += queue->q_zios_this_txg;
3576 }
3577
3578 if (seg_count_total == 0 || zio_count_total == 0) {
3579 scn->scn_avg_seg_size_this_txg = 0;
3580 scn->scn_avg_zio_size_this_txg = 0;
3581 scn->scn_segs_this_txg = 0;
3582 scn->scn_zios_this_txg = 0;
3583 return;
3584 }
3585
3586 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3587 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3588 scn->scn_segs_this_txg = seg_count_total;
3589 scn->scn_zios_this_txg = zio_count_total;
3590 }
3591
3592 static int
3593 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3594 dmu_tx_t *tx)
3595 {
3596 ASSERT(!bp_freed);
3597 return (dsl_scan_free_block_cb(arg, bp, tx));
3598 }
3599
3600 static int
3601 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3602 dmu_tx_t *tx)
3603 {
3604 ASSERT(!bp_freed);
3605 dsl_scan_t *scn = arg;
3606 const dva_t *dva = &bp->blk_dva[0];
3607
3608 if (dsl_scan_async_block_should_pause(scn))
3609 return (SET_ERROR(ERESTART));
3610
3611 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3612 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3613 DVA_GET_ASIZE(dva), tx);
3614 scn->scn_visited_this_txg++;
3615 return (0);
3616 }
3617
3618 boolean_t
3619 dsl_scan_active(dsl_scan_t *scn)
3620 {
3621 spa_t *spa = scn->scn_dp->dp_spa;
3622 uint64_t used = 0, comp, uncomp;
3623 boolean_t clones_left;
3624
3625 if (spa->spa_load_state != SPA_LOAD_NONE)
3626 return (B_FALSE);
3627 if (spa_shutting_down(spa))
3628 return (B_FALSE);
3629 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3630 (scn->scn_async_destroying && !scn->scn_async_stalled))
3631 return (B_TRUE);
3632
3633 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3634 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3635 &used, &comp, &uncomp);
3636 }
3637 clones_left = spa_livelist_delete_check(spa);
3638 return ((used != 0) || (clones_left));
3639 }
3640
3641 boolean_t
3642 dsl_errorscrub_active(dsl_scan_t *scn)
3643 {
3644 spa_t *spa = scn->scn_dp->dp_spa;
3645 if (spa->spa_load_state != SPA_LOAD_NONE)
3646 return (B_FALSE);
3647 if (spa_shutting_down(spa))
3648 return (B_FALSE);
3649 if (dsl_errorscrubbing(scn->scn_dp))
3650 return (B_TRUE);
3651 return (B_FALSE);
3652 }
3653
3654 static boolean_t
3655 dsl_scan_check_deferred(vdev_t *vd)
3656 {
3657 boolean_t need_resilver = B_FALSE;
3658
3659 for (int c = 0; c < vd->vdev_children; c++) {
3660 need_resilver |=
3661 dsl_scan_check_deferred(vd->vdev_child[c]);
3662 }
3663
3664 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3665 !vd->vdev_ops->vdev_op_leaf)
3666 return (need_resilver);
3667
3668 if (!vd->vdev_resilver_deferred)
3669 need_resilver = B_TRUE;
3670
3671 return (need_resilver);
3672 }
3673
3674 static boolean_t
3675 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3676 uint64_t phys_birth)
3677 {
3678 vdev_t *vd;
3679
3680 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3681
3682 if (vd->vdev_ops == &vdev_indirect_ops) {
3683 /*
3684 * The indirect vdev can point to multiple
3685 * vdevs. For simplicity, always create
3686 * the resilver zio_t. zio_vdev_io_start()
3687 * will bypass the child resilver i/o's if
3688 * they are on vdevs that don't have DTL's.
3689 */
3690 return (B_TRUE);
3691 }
3692
3693 if (DVA_GET_GANG(dva)) {
3694 /*
3695 * Gang members may be spread across multiple
3696 * vdevs, so the best estimate we have is the
3697 * scrub range, which has already been checked.
3698 * XXX -- it would be better to change our
3699 * allocation policy to ensure that all
3700 * gang members reside on the same vdev.
3701 */
3702 return (B_TRUE);
3703 }
3704
3705 /*
3706 * Check if the top-level vdev must resilver this offset.
3707 * When the offset does not intersect with a dirty leaf DTL
3708 * then it may be possible to skip the resilver IO. The psize
3709 * is provided instead of asize to simplify the check for RAIDZ.
3710 */
3711 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3712 return (B_FALSE);
3713
3714 /*
3715 * Check that this top-level vdev has a device under it which
3716 * is resilvering and is not deferred.
3717 */
3718 if (!dsl_scan_check_deferred(vd))
3719 return (B_FALSE);
3720
3721 return (B_TRUE);
3722 }
3723
3724 static int
3725 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3726 {
3727 dsl_scan_t *scn = dp->dp_scan;
3728 spa_t *spa = dp->dp_spa;
3729 int err = 0;
3730
3731 if (spa_suspend_async_destroy(spa))
3732 return (0);
3733
3734 if (zfs_free_bpobj_enabled &&
3735 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3736 scn->scn_is_bptree = B_FALSE;
3737 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3738 scn->scn_zio_root = zio_root(spa, NULL,
3739 NULL, ZIO_FLAG_MUSTSUCCEED);
3740 err = bpobj_iterate(&dp->dp_free_bpobj,
3741 bpobj_dsl_scan_free_block_cb, scn, tx);
3742 VERIFY0(zio_wait(scn->scn_zio_root));
3743 scn->scn_zio_root = NULL;
3744
3745 if (err != 0 && err != ERESTART)
3746 zfs_panic_recover("error %u from bpobj_iterate()", err);
3747 }
3748
3749 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3750 ASSERT(scn->scn_async_destroying);
3751 scn->scn_is_bptree = B_TRUE;
3752 scn->scn_zio_root = zio_root(spa, NULL,
3753 NULL, ZIO_FLAG_MUSTSUCCEED);
3754 err = bptree_iterate(dp->dp_meta_objset,
3755 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3756 VERIFY0(zio_wait(scn->scn_zio_root));
3757 scn->scn_zio_root = NULL;
3758
3759 if (err == EIO || err == ECKSUM) {
3760 err = 0;
3761 } else if (err != 0 && err != ERESTART) {
3762 zfs_panic_recover("error %u from "
3763 "traverse_dataset_destroyed()", err);
3764 }
3765
3766 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3767 /* finished; deactivate async destroy feature */
3768 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3769 ASSERT(!spa_feature_is_active(spa,
3770 SPA_FEATURE_ASYNC_DESTROY));
3771 VERIFY0(zap_remove(dp->dp_meta_objset,
3772 DMU_POOL_DIRECTORY_OBJECT,
3773 DMU_POOL_BPTREE_OBJ, tx));
3774 VERIFY0(bptree_free(dp->dp_meta_objset,
3775 dp->dp_bptree_obj, tx));
3776 dp->dp_bptree_obj = 0;
3777 scn->scn_async_destroying = B_FALSE;
3778 scn->scn_async_stalled = B_FALSE;
3779 } else {
3780 /*
3781 * If we didn't make progress, mark the async
3782 * destroy as stalled, so that we will not initiate
3783 * a spa_sync() on its behalf. Note that we only
3784 * check this if we are not finished, because if the
3785 * bptree had no blocks for us to visit, we can
3786 * finish without "making progress".
3787 */
3788 scn->scn_async_stalled =
3789 (scn->scn_visited_this_txg == 0);
3790 }
3791 }
3792 if (scn->scn_visited_this_txg) {
3793 zfs_dbgmsg("freed %llu blocks in %llums from "
3794 "free_bpobj/bptree on %s in txg %llu; err=%u",
3795 (longlong_t)scn->scn_visited_this_txg,
3796 (longlong_t)
3797 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3798 spa->spa_name, (longlong_t)tx->tx_txg, err);
3799 scn->scn_visited_this_txg = 0;
3800 scn->scn_dedup_frees_this_txg = 0;
3801
3802 /*
3803 * Write out changes to the DDT and the BRT that may be required
3804 * as a result of the blocks freed. This ensures that the DDT
3805 * and the BRT are clean when a scrub/resilver runs.
3806 */
3807 ddt_sync(spa, tx->tx_txg);
3808 brt_sync(spa, tx->tx_txg);
3809 }
3810 if (err != 0)
3811 return (err);
3812 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3813 zfs_free_leak_on_eio &&
3814 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3815 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3816 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3817 /*
3818 * We have finished background destroying, but there is still
3819 * some space left in the dp_free_dir. Transfer this leaked
3820 * space to the dp_leak_dir.
3821 */
3822 if (dp->dp_leak_dir == NULL) {
3823 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3824 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3825 LEAK_DIR_NAME, tx);
3826 VERIFY0(dsl_pool_open_special_dir(dp,
3827 LEAK_DIR_NAME, &dp->dp_leak_dir));
3828 rrw_exit(&dp->dp_config_rwlock, FTAG);
3829 }
3830 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3831 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3832 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3833 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3834 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3835 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3836 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3837 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3838 }
3839
3840 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3841 !spa_livelist_delete_check(spa)) {
3842 /* finished; verify that space accounting went to zero */
3843 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3844 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3845 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3846 }
3847
3848 spa_notify_waiters(spa);
3849
3850 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3851 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3852 DMU_POOL_OBSOLETE_BPOBJ));
3853 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3854 ASSERT(spa_feature_is_active(dp->dp_spa,
3855 SPA_FEATURE_OBSOLETE_COUNTS));
3856
3857 scn->scn_is_bptree = B_FALSE;
3858 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3859 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3860 dsl_scan_obsolete_block_cb, scn, tx);
3861 if (err != 0 && err != ERESTART)
3862 zfs_panic_recover("error %u from bpobj_iterate()", err);
3863
3864 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3865 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3866 }
3867 return (0);
3868 }
3869
3870 static void
3871 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3872 {
3873 zb->zb_objset = zfs_strtonum(buf, &buf);
3874 ASSERT(*buf == ':');
3875 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3876 ASSERT(*buf == ':');
3877 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3878 ASSERT(*buf == ':');
3879 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3880 ASSERT(*buf == '\0');
3881 }
3882
3883 static void
3884 name_to_object(char *buf, uint64_t *obj)
3885 {
3886 *obj = zfs_strtonum(buf, &buf);
3887 ASSERT(*buf == '\0');
3888 }
3889
3890 static void
3891 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3892 {
3893 dsl_pool_t *dp = scn->scn_dp;
3894 dsl_dataset_t *ds;
3895 objset_t *os;
3896 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3897 return;
3898
3899 if (dmu_objset_from_ds(ds, &os) != 0) {
3900 dsl_dataset_rele(ds, FTAG);
3901 return;
3902 }
3903
3904 /*
3905 * If the key is not loaded dbuf_dnode_findbp() will error out with
3906 * EACCES. However in that case dnode_hold() will eventually call
3907 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3908 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3909 * Avoid this by checking here if the keys are loaded, if not return.
3910 * If the keys are not loaded the head_errlog feature is meaningless
3911 * as we cannot figure out the birth txg of the block pointer.
3912 */
3913 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3914 ZFS_KEYSTATUS_UNAVAILABLE) {
3915 dsl_dataset_rele(ds, FTAG);
3916 return;
3917 }
3918
3919 dnode_t *dn;
3920 blkptr_t bp;
3921
3922 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3923 dsl_dataset_rele(ds, FTAG);
3924 return;
3925 }
3926
3927 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3928 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3929 NULL);
3930
3931 if (error) {
3932 rw_exit(&dn->dn_struct_rwlock);
3933 dnode_rele(dn, FTAG);
3934 dsl_dataset_rele(ds, FTAG);
3935 return;
3936 }
3937
3938 if (!error && BP_IS_HOLE(&bp)) {
3939 rw_exit(&dn->dn_struct_rwlock);
3940 dnode_rele(dn, FTAG);
3941 dsl_dataset_rele(ds, FTAG);
3942 return;
3943 }
3944
3945 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3946 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3947
3948 /* If it's an intent log block, failure is expected. */
3949 if (zb.zb_level == ZB_ZIL_LEVEL)
3950 zio_flags |= ZIO_FLAG_SPECULATIVE;
3951
3952 ASSERT(!BP_IS_EMBEDDED(&bp));
3953 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3954 rw_exit(&dn->dn_struct_rwlock);
3955 dnode_rele(dn, FTAG);
3956 dsl_dataset_rele(ds, FTAG);
3957 }
3958
3959 /*
3960 * We keep track of the scrubbed error blocks in "count". This will be used
3961 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3962 * function is modelled after check_filesystem().
3963 */
3964 static int
3965 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3966 int *count)
3967 {
3968 dsl_dataset_t *ds;
3969 dsl_pool_t *dp = spa->spa_dsl_pool;
3970 dsl_scan_t *scn = dp->dp_scan;
3971
3972 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
3973 if (error != 0)
3974 return (error);
3975
3976 uint64_t latest_txg;
3977 uint64_t txg_to_consider = spa->spa_syncing_txg;
3978 boolean_t check_snapshot = B_TRUE;
3979
3980 error = find_birth_txg(ds, zep, &latest_txg);
3981
3982 /*
3983 * If find_birth_txg() errors out, then err on the side of caution and
3984 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3985 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3986 * scrub all objects.
3987 */
3988 if (error == 0 && zep->zb_birth == latest_txg) {
3989 /* Block neither free nor re written. */
3990 zbookmark_phys_t zb;
3991 zep_to_zb(fs, zep, &zb);
3992 scn->scn_zio_root = zio_root(spa, NULL, NULL,
3993 ZIO_FLAG_CANFAIL);
3994 /* We have already acquired the config lock for spa */
3995 read_by_block_level(scn, zb);
3996
3997 (void) zio_wait(scn->scn_zio_root);
3998 scn->scn_zio_root = NULL;
3999
4000 scn->errorscrub_phys.dep_examined++;
4001 scn->errorscrub_phys.dep_to_examine--;
4002 (*count)++;
4003 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4004 dsl_error_scrub_check_suspend(scn, &zb)) {
4005 dsl_dataset_rele(ds, FTAG);
4006 return (SET_ERROR(EFAULT));
4007 }
4008
4009 check_snapshot = B_FALSE;
4010 } else if (error == 0) {
4011 txg_to_consider = latest_txg;
4012 }
4013
4014 /*
4015 * Retrieve the number of snapshots if the dataset is not a snapshot.
4016 */
4017 uint64_t snap_count = 0;
4018 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4019
4020 error = zap_count(spa->spa_meta_objset,
4021 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4022
4023 if (error != 0) {
4024 dsl_dataset_rele(ds, FTAG);
4025 return (error);
4026 }
4027 }
4028
4029 if (snap_count == 0) {
4030 /* Filesystem without snapshots. */
4031 dsl_dataset_rele(ds, FTAG);
4032 return (0);
4033 }
4034
4035 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4036 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4037
4038 dsl_dataset_rele(ds, FTAG);
4039
4040 /* Check only snapshots created from this file system. */
4041 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4042 snap_obj_txg <= txg_to_consider) {
4043
4044 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4045 if (error != 0)
4046 return (error);
4047
4048 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4049 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4050 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4051 dsl_dataset_rele(ds, FTAG);
4052 continue;
4053 }
4054
4055 boolean_t affected = B_TRUE;
4056 if (check_snapshot) {
4057 uint64_t blk_txg;
4058 error = find_birth_txg(ds, zep, &blk_txg);
4059
4060 /*
4061 * Scrub the snapshot also when zb_birth == 0 or when
4062 * find_birth_txg() returns an error.
4063 */
4064 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4065 (error != 0) || (zep->zb_birth == 0);
4066 }
4067
4068 /* Scrub snapshots. */
4069 if (affected) {
4070 zbookmark_phys_t zb;
4071 zep_to_zb(snap_obj, zep, &zb);
4072 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4073 ZIO_FLAG_CANFAIL);
4074 /* We have already acquired the config lock for spa */
4075 read_by_block_level(scn, zb);
4076
4077 (void) zio_wait(scn->scn_zio_root);
4078 scn->scn_zio_root = NULL;
4079
4080 scn->errorscrub_phys.dep_examined++;
4081 scn->errorscrub_phys.dep_to_examine--;
4082 (*count)++;
4083 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4084 dsl_error_scrub_check_suspend(scn, &zb)) {
4085 dsl_dataset_rele(ds, FTAG);
4086 return (EFAULT);
4087 }
4088 }
4089 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4090 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4091 dsl_dataset_rele(ds, FTAG);
4092 }
4093 return (0);
4094 }
4095
4096 void
4097 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4098 {
4099 spa_t *spa = dp->dp_spa;
4100 dsl_scan_t *scn = dp->dp_scan;
4101
4102 /*
4103 * Only process scans in sync pass 1.
4104 */
4105
4106 if (spa_sync_pass(spa) > 1)
4107 return;
4108
4109 /*
4110 * If the spa is shutting down, then stop scanning. This will
4111 * ensure that the scan does not dirty any new data during the
4112 * shutdown phase.
4113 */
4114 if (spa_shutting_down(spa))
4115 return;
4116
4117 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4118 return;
4119 }
4120
4121 if (dsl_scan_resilvering(scn->scn_dp)) {
4122 /* cancel the error scrub if resilver started */
4123 dsl_scan_cancel(scn->scn_dp);
4124 return;
4125 }
4126
4127 spa->spa_scrub_active = B_TRUE;
4128 scn->scn_sync_start_time = gethrtime();
4129
4130 /*
4131 * zfs_scan_suspend_progress can be set to disable scrub progress.
4132 * See more detailed comment in dsl_scan_sync().
4133 */
4134 if (zfs_scan_suspend_progress) {
4135 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4136 int mintime = zfs_scrub_min_time_ms;
4137
4138 while (zfs_scan_suspend_progress &&
4139 !txg_sync_waiting(scn->scn_dp) &&
4140 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4141 NSEC2MSEC(scan_time_ns) < mintime) {
4142 delay(hz);
4143 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4144 }
4145 return;
4146 }
4147
4148 int i = 0;
4149 zap_attribute_t *za;
4150 zbookmark_phys_t *zb;
4151 boolean_t limit_exceeded = B_FALSE;
4152
4153 za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4154 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4155
4156 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4157 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4158 zap_cursor_advance(&scn->errorscrub_cursor)) {
4159 name_to_bookmark(za->za_name, zb);
4160
4161 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4162 NULL, ZIO_FLAG_CANFAIL);
4163 dsl_pool_config_enter(dp, FTAG);
4164 read_by_block_level(scn, *zb);
4165 dsl_pool_config_exit(dp, FTAG);
4166
4167 (void) zio_wait(scn->scn_zio_root);
4168 scn->scn_zio_root = NULL;
4169
4170 scn->errorscrub_phys.dep_examined += 1;
4171 scn->errorscrub_phys.dep_to_examine -= 1;
4172 i++;
4173 if (i == zfs_scrub_error_blocks_per_txg ||
4174 dsl_error_scrub_check_suspend(scn, zb)) {
4175 limit_exceeded = B_TRUE;
4176 break;
4177 }
4178 }
4179
4180 if (!limit_exceeded)
4181 dsl_errorscrub_done(scn, B_TRUE, tx);
4182
4183 dsl_errorscrub_sync_state(scn, tx);
4184 kmem_free(za, sizeof (*za));
4185 kmem_free(zb, sizeof (*zb));
4186 return;
4187 }
4188
4189 int error = 0;
4190 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4191 zap_cursor_advance(&scn->errorscrub_cursor)) {
4192
4193 zap_cursor_t *head_ds_cursor;
4194 zap_attribute_t *head_ds_attr;
4195 zbookmark_err_phys_t head_ds_block;
4196
4197 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4198 head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4199
4200 uint64_t head_ds_err_obj = za->za_first_integer;
4201 uint64_t head_ds;
4202 name_to_object(za->za_name, &head_ds);
4203 boolean_t config_held = B_FALSE;
4204 uint64_t top_affected_fs;
4205
4206 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4207 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4208 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4209
4210 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4211
4212 /*
4213 * In case we are called from spa_sync the pool
4214 * config is already held.
4215 */
4216 if (!dsl_pool_config_held(dp)) {
4217 dsl_pool_config_enter(dp, FTAG);
4218 config_held = B_TRUE;
4219 }
4220
4221 error = find_top_affected_fs(spa,
4222 head_ds, &head_ds_block, &top_affected_fs);
4223 if (error)
4224 break;
4225
4226 error = scrub_filesystem(spa, top_affected_fs,
4227 &head_ds_block, &i);
4228
4229 if (error == SET_ERROR(EFAULT)) {
4230 limit_exceeded = B_TRUE;
4231 break;
4232 }
4233 }
4234
4235 zap_cursor_fini(head_ds_cursor);
4236 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4237 kmem_free(head_ds_attr, sizeof (*head_ds_attr));
4238
4239 if (config_held)
4240 dsl_pool_config_exit(dp, FTAG);
4241 }
4242
4243 kmem_free(za, sizeof (*za));
4244 kmem_free(zb, sizeof (*zb));
4245 if (!limit_exceeded)
4246 dsl_errorscrub_done(scn, B_TRUE, tx);
4247
4248 dsl_errorscrub_sync_state(scn, tx);
4249 }
4250
4251 /*
4252 * This is the primary entry point for scans that is called from syncing
4253 * context. Scans must happen entirely during syncing context so that we
4254 * can guarantee that blocks we are currently scanning will not change out
4255 * from under us. While a scan is active, this function controls how quickly
4256 * transaction groups proceed, instead of the normal handling provided by
4257 * txg_sync_thread().
4258 */
4259 void
4260 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4261 {
4262 int err = 0;
4263 dsl_scan_t *scn = dp->dp_scan;
4264 spa_t *spa = dp->dp_spa;
4265 state_sync_type_t sync_type = SYNC_OPTIONAL;
4266
4267 if (spa->spa_resilver_deferred &&
4268 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4269 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4270
4271 /*
4272 * Check for scn_restart_txg before checking spa_load_state, so
4273 * that we can restart an old-style scan while the pool is being
4274 * imported (see dsl_scan_init). We also restart scans if there
4275 * is a deferred resilver and the user has manually disabled
4276 * deferred resilvers via the tunable.
4277 */
4278 if (dsl_scan_restarting(scn, tx) ||
4279 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
4280 pool_scan_func_t func = POOL_SCAN_SCRUB;
4281 dsl_scan_done(scn, B_FALSE, tx);
4282 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4283 func = POOL_SCAN_RESILVER;
4284 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4285 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
4286 dsl_scan_setup_sync(&func, tx);
4287 }
4288
4289 /*
4290 * Only process scans in sync pass 1.
4291 */
4292 if (spa_sync_pass(spa) > 1)
4293 return;
4294
4295 /*
4296 * If the spa is shutting down, then stop scanning. This will
4297 * ensure that the scan does not dirty any new data during the
4298 * shutdown phase.
4299 */
4300 if (spa_shutting_down(spa))
4301 return;
4302
4303 /*
4304 * If the scan is inactive due to a stalled async destroy, try again.
4305 */
4306 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4307 return;
4308
4309 /* reset scan statistics */
4310 scn->scn_visited_this_txg = 0;
4311 scn->scn_dedup_frees_this_txg = 0;
4312 scn->scn_holes_this_txg = 0;
4313 scn->scn_lt_min_this_txg = 0;
4314 scn->scn_gt_max_this_txg = 0;
4315 scn->scn_ddt_contained_this_txg = 0;
4316 scn->scn_objsets_visited_this_txg = 0;
4317 scn->scn_avg_seg_size_this_txg = 0;
4318 scn->scn_segs_this_txg = 0;
4319 scn->scn_avg_zio_size_this_txg = 0;
4320 scn->scn_zios_this_txg = 0;
4321 scn->scn_suspending = B_FALSE;
4322 scn->scn_sync_start_time = gethrtime();
4323 spa->spa_scrub_active = B_TRUE;
4324
4325 /*
4326 * First process the async destroys. If we suspend, don't do
4327 * any scrubbing or resilvering. This ensures that there are no
4328 * async destroys while we are scanning, so the scan code doesn't
4329 * have to worry about traversing it. It is also faster to free the
4330 * blocks than to scrub them.
4331 */
4332 err = dsl_process_async_destroys(dp, tx);
4333 if (err != 0)
4334 return;
4335
4336 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4337 return;
4338
4339 /*
4340 * Wait a few txgs after importing to begin scanning so that
4341 * we can get the pool imported quickly.
4342 */
4343 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4344 return;
4345
4346 /*
4347 * zfs_scan_suspend_progress can be set to disable scan progress.
4348 * We don't want to spin the txg_sync thread, so we add a delay
4349 * here to simulate the time spent doing a scan. This is mostly
4350 * useful for testing and debugging.
4351 */
4352 if (zfs_scan_suspend_progress) {
4353 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4354 uint_t mintime = (scn->scn_phys.scn_func ==
4355 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4356 zfs_scrub_min_time_ms;
4357
4358 while (zfs_scan_suspend_progress &&
4359 !txg_sync_waiting(scn->scn_dp) &&
4360 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4361 NSEC2MSEC(scan_time_ns) < mintime) {
4362 delay(hz);
4363 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4364 }
4365 return;
4366 }
4367
4368 /*
4369 * Disabled by default, set zfs_scan_report_txgs to report
4370 * average performance over the last zfs_scan_report_txgs TXGs.
4371 */
4372 if (zfs_scan_report_txgs != 0 &&
4373 tx->tx_txg % zfs_scan_report_txgs == 0) {
4374 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4375 spa_scan_stat_init(spa);
4376 }
4377
4378 /*
4379 * It is possible to switch from unsorted to sorted at any time,
4380 * but afterwards the scan will remain sorted unless reloaded from
4381 * a checkpoint after a reboot.
4382 */
4383 if (!zfs_scan_legacy) {
4384 scn->scn_is_sorted = B_TRUE;
4385 if (scn->scn_last_checkpoint == 0)
4386 scn->scn_last_checkpoint = ddi_get_lbolt();
4387 }
4388
4389 /*
4390 * For sorted scans, determine what kind of work we will be doing
4391 * this txg based on our memory limitations and whether or not we
4392 * need to perform a checkpoint.
4393 */
4394 if (scn->scn_is_sorted) {
4395 /*
4396 * If we are over our checkpoint interval, set scn_clearing
4397 * so that we can begin checkpointing immediately. The
4398 * checkpoint allows us to save a consistent bookmark
4399 * representing how much data we have scrubbed so far.
4400 * Otherwise, use the memory limit to determine if we should
4401 * scan for metadata or start issue scrub IOs. We accumulate
4402 * metadata until we hit our hard memory limit at which point
4403 * we issue scrub IOs until we are at our soft memory limit.
4404 */
4405 if (scn->scn_checkpointing ||
4406 ddi_get_lbolt() - scn->scn_last_checkpoint >
4407 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4408 if (!scn->scn_checkpointing)
4409 zfs_dbgmsg("begin scan checkpoint for %s",
4410 spa->spa_name);
4411
4412 scn->scn_checkpointing = B_TRUE;
4413 scn->scn_clearing = B_TRUE;
4414 } else {
4415 boolean_t should_clear = dsl_scan_should_clear(scn);
4416 if (should_clear && !scn->scn_clearing) {
4417 zfs_dbgmsg("begin scan clearing for %s",
4418 spa->spa_name);
4419 scn->scn_clearing = B_TRUE;
4420 } else if (!should_clear && scn->scn_clearing) {
4421 zfs_dbgmsg("finish scan clearing for %s",
4422 spa->spa_name);
4423 scn->scn_clearing = B_FALSE;
4424 }
4425 }
4426 } else {
4427 ASSERT0(scn->scn_checkpointing);
4428 ASSERT0(scn->scn_clearing);
4429 }
4430
4431 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4432 /* Need to scan metadata for more blocks to scrub */
4433 dsl_scan_phys_t *scnp = &scn->scn_phys;
4434 taskqid_t prefetch_tqid;
4435
4436 /*
4437 * Calculate the max number of in-flight bytes for pool-wide
4438 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4439 * Limits for the issuing phase are done per top-level vdev and
4440 * are handled separately.
4441 */
4442 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4443 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4444
4445 if (scnp->scn_ddt_bookmark.ddb_class <=
4446 scnp->scn_ddt_class_max) {
4447 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4448 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4449 "ddt bm=%llu/%llu/%llu/%llx",
4450 spa->spa_name,
4451 (longlong_t)tx->tx_txg,
4452 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4453 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4454 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4455 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4456 } else {
4457 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4458 "bm=%llu/%llu/%llu/%llu",
4459 spa->spa_name,
4460 (longlong_t)tx->tx_txg,
4461 (longlong_t)scnp->scn_bookmark.zb_objset,
4462 (longlong_t)scnp->scn_bookmark.zb_object,
4463 (longlong_t)scnp->scn_bookmark.zb_level,
4464 (longlong_t)scnp->scn_bookmark.zb_blkid);
4465 }
4466
4467 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4468 NULL, ZIO_FLAG_CANFAIL);
4469
4470 scn->scn_prefetch_stop = B_FALSE;
4471 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4472 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4473 ASSERT(prefetch_tqid != TASKQID_INVALID);
4474
4475 dsl_pool_config_enter(dp, FTAG);
4476 dsl_scan_visit(scn, tx);
4477 dsl_pool_config_exit(dp, FTAG);
4478
4479 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4480 scn->scn_prefetch_stop = B_TRUE;
4481 cv_broadcast(&spa->spa_scrub_io_cv);
4482 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4483
4484 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4485 (void) zio_wait(scn->scn_zio_root);
4486 scn->scn_zio_root = NULL;
4487
4488 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4489 "(%llu os's, %llu holes, %llu < mintxg, "
4490 "%llu in ddt, %llu > maxtxg)",
4491 (longlong_t)scn->scn_visited_this_txg,
4492 spa->spa_name,
4493 (longlong_t)NSEC2MSEC(gethrtime() -
4494 scn->scn_sync_start_time),
4495 (longlong_t)scn->scn_objsets_visited_this_txg,
4496 (longlong_t)scn->scn_holes_this_txg,
4497 (longlong_t)scn->scn_lt_min_this_txg,
4498 (longlong_t)scn->scn_ddt_contained_this_txg,
4499 (longlong_t)scn->scn_gt_max_this_txg);
4500
4501 if (!scn->scn_suspending) {
4502 ASSERT0(avl_numnodes(&scn->scn_queue));
4503 scn->scn_done_txg = tx->tx_txg + 1;
4504 if (scn->scn_is_sorted) {
4505 scn->scn_checkpointing = B_TRUE;
4506 scn->scn_clearing = B_TRUE;
4507 scn->scn_issued_before_pass +=
4508 spa->spa_scan_pass_issued;
4509 spa_scan_stat_init(spa);
4510 }
4511 zfs_dbgmsg("scan complete for %s txg %llu",
4512 spa->spa_name,
4513 (longlong_t)tx->tx_txg);
4514 }
4515 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4516 ASSERT(scn->scn_clearing);
4517
4518 /* need to issue scrubbing IOs from per-vdev queues */
4519 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4520 NULL, ZIO_FLAG_CANFAIL);
4521 scan_io_queues_run(scn);
4522 (void) zio_wait(scn->scn_zio_root);
4523 scn->scn_zio_root = NULL;
4524
4525 /* calculate and dprintf the current memory usage */
4526 (void) dsl_scan_should_clear(scn);
4527 dsl_scan_update_stats(scn);
4528
4529 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4530 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4531 (longlong_t)scn->scn_zios_this_txg,
4532 spa->spa_name,
4533 (longlong_t)scn->scn_segs_this_txg,
4534 (longlong_t)NSEC2MSEC(gethrtime() -
4535 scn->scn_sync_start_time),
4536 (longlong_t)scn->scn_avg_zio_size_this_txg,
4537 (longlong_t)scn->scn_avg_seg_size_this_txg);
4538 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4539 /* Finished with everything. Mark the scrub as complete */
4540 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4541 (longlong_t)tx->tx_txg,
4542 spa->spa_name);
4543 ASSERT3U(scn->scn_done_txg, !=, 0);
4544 ASSERT0(spa->spa_scrub_inflight);
4545 ASSERT0(scn->scn_queues_pending);
4546 dsl_scan_done(scn, B_TRUE, tx);
4547 sync_type = SYNC_MANDATORY;
4548 }
4549
4550 dsl_scan_sync_state(scn, tx, sync_type);
4551 }
4552
4553 static void
4554 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4555 {
4556 /*
4557 * Don't count embedded bp's, since we already did the work of
4558 * scanning these when we scanned the containing block.
4559 */
4560 if (BP_IS_EMBEDDED(bp))
4561 return;
4562
4563 /*
4564 * Update the spa's stats on how many bytes we have issued.
4565 * Sequential scrubs create a zio for each DVA of the bp. Each
4566 * of these will include all DVAs for repair purposes, but the
4567 * zio code will only try the first one unless there is an issue.
4568 * Therefore, we should only count the first DVA for these IOs.
4569 */
4570 atomic_add_64(&spa->spa_scan_pass_issued,
4571 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4572 }
4573
4574 static void
4575 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4576 {
4577 if (BP_IS_EMBEDDED(bp))
4578 return;
4579 atomic_add_64(&scn->scn_phys.scn_skipped,
4580 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4581 }
4582
4583 static void
4584 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4585 {
4586 /*
4587 * If we resume after a reboot, zab will be NULL; don't record
4588 * incomplete stats in that case.
4589 */
4590 if (zab == NULL)
4591 return;
4592
4593 for (int i = 0; i < 4; i++) {
4594 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4595 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4596
4597 if (t & DMU_OT_NEWTYPE)
4598 t = DMU_OT_OTHER;
4599 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4600 int equal;
4601
4602 zb->zb_count++;
4603 zb->zb_asize += BP_GET_ASIZE(bp);
4604 zb->zb_lsize += BP_GET_LSIZE(bp);
4605 zb->zb_psize += BP_GET_PSIZE(bp);
4606 zb->zb_gangs += BP_COUNT_GANG(bp);
4607
4608 switch (BP_GET_NDVAS(bp)) {
4609 case 2:
4610 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4611 DVA_GET_VDEV(&bp->blk_dva[1]))
4612 zb->zb_ditto_2_of_2_samevdev++;
4613 break;
4614 case 3:
4615 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4616 DVA_GET_VDEV(&bp->blk_dva[1])) +
4617 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4618 DVA_GET_VDEV(&bp->blk_dva[2])) +
4619 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4620 DVA_GET_VDEV(&bp->blk_dva[2]));
4621 if (equal == 1)
4622 zb->zb_ditto_2_of_3_samevdev++;
4623 else if (equal == 3)
4624 zb->zb_ditto_3_of_3_samevdev++;
4625 break;
4626 }
4627 }
4628 }
4629
4630 static void
4631 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4632 {
4633 avl_index_t idx;
4634 dsl_scan_t *scn = queue->q_scn;
4635
4636 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4637
4638 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4639 atomic_add_64(&scn->scn_queues_pending, 1);
4640 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4641 /* block is already scheduled for reading */
4642 sio_free(sio);
4643 return;
4644 }
4645 avl_insert(&queue->q_sios_by_addr, sio, idx);
4646 queue->q_sio_memused += SIO_GET_MUSED(sio);
4647 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4648 SIO_GET_ASIZE(sio));
4649 }
4650
4651 /*
4652 * Given all the info we got from our metadata scanning process, we
4653 * construct a scan_io_t and insert it into the scan sorting queue. The
4654 * I/O must already be suitable for us to process. This is controlled
4655 * by dsl_scan_enqueue().
4656 */
4657 static void
4658 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4659 int zio_flags, const zbookmark_phys_t *zb)
4660 {
4661 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4662
4663 ASSERT0(BP_IS_GANG(bp));
4664 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4665
4666 bp2sio(bp, sio, dva_i);
4667 sio->sio_flags = zio_flags;
4668 sio->sio_zb = *zb;
4669
4670 queue->q_last_ext_addr = -1;
4671 scan_io_queue_insert_impl(queue, sio);
4672 }
4673
4674 /*
4675 * Given a set of I/O parameters as discovered by the metadata traversal
4676 * process, attempts to place the I/O into the sorted queues (if allowed),
4677 * or immediately executes the I/O.
4678 */
4679 static void
4680 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4681 const zbookmark_phys_t *zb)
4682 {
4683 spa_t *spa = dp->dp_spa;
4684
4685 ASSERT(!BP_IS_EMBEDDED(bp));
4686
4687 /*
4688 * Gang blocks are hard to issue sequentially, so we just issue them
4689 * here immediately instead of queuing them.
4690 */
4691 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4692 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4693 return;
4694 }
4695
4696 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4697 dva_t dva;
4698 vdev_t *vdev;
4699
4700 dva = bp->blk_dva[i];
4701 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4702 ASSERT(vdev != NULL);
4703
4704 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4705 if (vdev->vdev_scan_io_queue == NULL)
4706 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4707 ASSERT(dp->dp_scan != NULL);
4708 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4709 i, zio_flags, zb);
4710 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4711 }
4712 }
4713
4714 static int
4715 dsl_scan_scrub_cb(dsl_pool_t *dp,
4716 const blkptr_t *bp, const zbookmark_phys_t *zb)
4717 {
4718 dsl_scan_t *scn = dp->dp_scan;
4719 spa_t *spa = dp->dp_spa;
4720 uint64_t phys_birth = BP_GET_BIRTH(bp);
4721 size_t psize = BP_GET_PSIZE(bp);
4722 boolean_t needs_io = B_FALSE;
4723 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4724
4725 count_block(dp->dp_blkstats, bp);
4726 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4727 phys_birth >= scn->scn_phys.scn_max_txg) {
4728 count_block_skipped(scn, bp, B_TRUE);
4729 return (0);
4730 }
4731
4732 /* Embedded BP's have phys_birth==0, so we reject them above. */
4733 ASSERT(!BP_IS_EMBEDDED(bp));
4734
4735 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4736 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4737 zio_flags |= ZIO_FLAG_SCRUB;
4738 needs_io = B_TRUE;
4739 } else {
4740 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4741 zio_flags |= ZIO_FLAG_RESILVER;
4742 needs_io = B_FALSE;
4743 }
4744
4745 /* If it's an intent log block, failure is expected. */
4746 if (zb->zb_level == ZB_ZIL_LEVEL)
4747 zio_flags |= ZIO_FLAG_SPECULATIVE;
4748
4749 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4750 const dva_t *dva = &bp->blk_dva[d];
4751
4752 /*
4753 * Keep track of how much data we've examined so that
4754 * zpool(8) status can make useful progress reports.
4755 */
4756 uint64_t asize = DVA_GET_ASIZE(dva);
4757 scn->scn_phys.scn_examined += asize;
4758 spa->spa_scan_pass_exam += asize;
4759
4760 /* if it's a resilver, this may not be in the target range */
4761 if (!needs_io)
4762 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4763 phys_birth);
4764 }
4765
4766 if (needs_io && !zfs_no_scrub_io) {
4767 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4768 } else {
4769 count_block_skipped(scn, bp, B_TRUE);
4770 }
4771
4772 /* do not relocate this block */
4773 return (0);
4774 }
4775
4776 static void
4777 dsl_scan_scrub_done(zio_t *zio)
4778 {
4779 spa_t *spa = zio->io_spa;
4780 blkptr_t *bp = zio->io_bp;
4781 dsl_scan_io_queue_t *queue = zio->io_private;
4782
4783 abd_free(zio->io_abd);
4784
4785 if (queue == NULL) {
4786 mutex_enter(&spa->spa_scrub_lock);
4787 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4788 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4789 cv_broadcast(&spa->spa_scrub_io_cv);
4790 mutex_exit(&spa->spa_scrub_lock);
4791 } else {
4792 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4793 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4794 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4795 cv_broadcast(&queue->q_zio_cv);
4796 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4797 }
4798
4799 if (zio->io_error && (zio->io_error != ECKSUM ||
4800 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4801 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4802 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4803 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4804 ->errorscrub_phys.dep_errors);
4805 } else {
4806 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4807 .scn_errors);
4808 }
4809 }
4810 }
4811
4812 /*
4813 * Given a scanning zio's information, executes the zio. The zio need
4814 * not necessarily be only sortable, this function simply executes the
4815 * zio, no matter what it is. The optional queue argument allows the
4816 * caller to specify that they want per top level vdev IO rate limiting
4817 * instead of the legacy global limiting.
4818 */
4819 static void
4820 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4821 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4822 {
4823 spa_t *spa = dp->dp_spa;
4824 dsl_scan_t *scn = dp->dp_scan;
4825 size_t size = BP_GET_PSIZE(bp);
4826 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4827 zio_t *pio;
4828
4829 if (queue == NULL) {
4830 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4831 mutex_enter(&spa->spa_scrub_lock);
4832 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4833 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4834 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4835 mutex_exit(&spa->spa_scrub_lock);
4836 pio = scn->scn_zio_root;
4837 } else {
4838 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4839
4840 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4841 mutex_enter(q_lock);
4842 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4843 cv_wait(&queue->q_zio_cv, q_lock);
4844 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4845 pio = queue->q_zio;
4846 mutex_exit(q_lock);
4847 }
4848
4849 ASSERT(pio != NULL);
4850 count_block_issued(spa, bp, queue == NULL);
4851 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4852 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4853 }
4854
4855 /*
4856 * This is the primary extent sorting algorithm. We balance two parameters:
4857 * 1) how many bytes of I/O are in an extent
4858 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4859 * Since we allow extents to have gaps between their constituent I/Os, it's
4860 * possible to have a fairly large extent that contains the same amount of
4861 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4862 * The algorithm sorts based on a score calculated from the extent's size,
4863 * the relative fill volume (in %) and a "fill weight" parameter that controls
4864 * the split between whether we prefer larger extents or more well populated
4865 * extents:
4866 *
4867 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4868 *
4869 * Example:
4870 * 1) assume extsz = 64 MiB
4871 * 2) assume fill = 32 MiB (extent is half full)
4872 * 3) assume fill_weight = 3
4873 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4874 * SCORE = 32M + (50 * 3 * 32M) / 100
4875 * SCORE = 32M + (4800M / 100)
4876 * SCORE = 32M + 48M
4877 * ^ ^
4878 * | +--- final total relative fill-based score
4879 * +--------- final total fill-based score
4880 * SCORE = 80M
4881 *
4882 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4883 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4884 * Note that as an optimization, we replace multiplication and division by
4885 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4886 *
4887 * Since we do not care if one extent is only few percent better than another,
4888 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4889 * put into otherwise unused due to ashift high bits of offset. This allows
4890 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4891 * with single operation. Plus it makes scrubs more sequential and reduces
4892 * chances that minor extent change move it within the B-tree.
4893 */
4894 __attribute__((always_inline)) inline
4895 static int
4896 ext_size_compare(const void *x, const void *y)
4897 {
4898 const uint64_t *a = x, *b = y;
4899
4900 return (TREE_CMP(*a, *b));
4901 }
4902
4903 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4904 ext_size_compare)
4905
4906 static void
4907 ext_size_create(range_tree_t *rt, void *arg)
4908 {
4909 (void) rt;
4910 zfs_btree_t *size_tree = arg;
4911
4912 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4913 sizeof (uint64_t));
4914 }
4915
4916 static void
4917 ext_size_destroy(range_tree_t *rt, void *arg)
4918 {
4919 (void) rt;
4920 zfs_btree_t *size_tree = arg;
4921 ASSERT0(zfs_btree_numnodes(size_tree));
4922
4923 zfs_btree_destroy(size_tree);
4924 }
4925
4926 static uint64_t
4927 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4928 {
4929 (void) rt;
4930 uint64_t size = rsg->rs_end - rsg->rs_start;
4931 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4932 fill_weight * rsg->rs_fill) >> 7);
4933 ASSERT3U(rt->rt_shift, >=, 8);
4934 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4935 }
4936
4937 static void
4938 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4939 {
4940 zfs_btree_t *size_tree = arg;
4941 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4942 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4943 zfs_btree_add(size_tree, &v);
4944 }
4945
4946 static void
4947 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4948 {
4949 zfs_btree_t *size_tree = arg;
4950 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4951 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4952 zfs_btree_remove(size_tree, &v);
4953 }
4954
4955 static void
4956 ext_size_vacate(range_tree_t *rt, void *arg)
4957 {
4958 zfs_btree_t *size_tree = arg;
4959 zfs_btree_clear(size_tree);
4960 zfs_btree_destroy(size_tree);
4961
4962 ext_size_create(rt, arg);
4963 }
4964
4965 static const range_tree_ops_t ext_size_ops = {
4966 .rtop_create = ext_size_create,
4967 .rtop_destroy = ext_size_destroy,
4968 .rtop_add = ext_size_add,
4969 .rtop_remove = ext_size_remove,
4970 .rtop_vacate = ext_size_vacate
4971 };
4972
4973 /*
4974 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4975 * based on LBA-order (from lowest to highest).
4976 */
4977 static int
4978 sio_addr_compare(const void *x, const void *y)
4979 {
4980 const scan_io_t *a = x, *b = y;
4981
4982 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4983 }
4984
4985 /* IO queues are created on demand when they are needed. */
4986 static dsl_scan_io_queue_t *
4987 scan_io_queue_create(vdev_t *vd)
4988 {
4989 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4990 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4991
4992 q->q_scn = scn;
4993 q->q_vd = vd;
4994 q->q_sio_memused = 0;
4995 q->q_last_ext_addr = -1;
4996 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4997 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
4998 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
4999 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5000 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5001
5002 return (q);
5003 }
5004
5005 /*
5006 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5007 * No further execution of I/O occurs, anything pending in the queue is
5008 * simply freed without being executed.
5009 */
5010 void
5011 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5012 {
5013 dsl_scan_t *scn = queue->q_scn;
5014 scan_io_t *sio;
5015 void *cookie = NULL;
5016
5017 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5018
5019 if (!avl_is_empty(&queue->q_sios_by_addr))
5020 atomic_add_64(&scn->scn_queues_pending, -1);
5021 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5022 NULL) {
5023 ASSERT(range_tree_contains(queue->q_exts_by_addr,
5024 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5025 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5026 sio_free(sio);
5027 }
5028
5029 ASSERT0(queue->q_sio_memused);
5030 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5031 range_tree_destroy(queue->q_exts_by_addr);
5032 avl_destroy(&queue->q_sios_by_addr);
5033 cv_destroy(&queue->q_zio_cv);
5034
5035 kmem_free(queue, sizeof (*queue));
5036 }
5037
5038 /*
5039 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5040 * called on behalf of vdev_top_transfer when creating or destroying
5041 * a mirror vdev due to zpool attach/detach.
5042 */
5043 void
5044 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5045 {
5046 mutex_enter(&svd->vdev_scan_io_queue_lock);
5047 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5048
5049 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5050 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5051 svd->vdev_scan_io_queue = NULL;
5052 if (tvd->vdev_scan_io_queue != NULL)
5053 tvd->vdev_scan_io_queue->q_vd = tvd;
5054
5055 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5056 mutex_exit(&svd->vdev_scan_io_queue_lock);
5057 }
5058
5059 static void
5060 scan_io_queues_destroy(dsl_scan_t *scn)
5061 {
5062 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5063
5064 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5065 vdev_t *tvd = rvd->vdev_child[i];
5066
5067 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5068 if (tvd->vdev_scan_io_queue != NULL)
5069 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5070 tvd->vdev_scan_io_queue = NULL;
5071 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5072 }
5073 }
5074
5075 static void
5076 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5077 {
5078 dsl_pool_t *dp = spa->spa_dsl_pool;
5079 dsl_scan_t *scn = dp->dp_scan;
5080 vdev_t *vdev;
5081 kmutex_t *q_lock;
5082 dsl_scan_io_queue_t *queue;
5083 scan_io_t *srch_sio, *sio;
5084 avl_index_t idx;
5085 uint64_t start, size;
5086
5087 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5088 ASSERT(vdev != NULL);
5089 q_lock = &vdev->vdev_scan_io_queue_lock;
5090 queue = vdev->vdev_scan_io_queue;
5091
5092 mutex_enter(q_lock);
5093 if (queue == NULL) {
5094 mutex_exit(q_lock);
5095 return;
5096 }
5097
5098 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5099 bp2sio(bp, srch_sio, dva_i);
5100 start = SIO_GET_OFFSET(srch_sio);
5101 size = SIO_GET_ASIZE(srch_sio);
5102
5103 /*
5104 * We can find the zio in two states:
5105 * 1) Cold, just sitting in the queue of zio's to be issued at
5106 * some point in the future. In this case, all we do is
5107 * remove the zio from the q_sios_by_addr tree, decrement
5108 * its data volume from the containing range_seg_t and
5109 * resort the q_exts_by_size tree to reflect that the
5110 * range_seg_t has lost some of its 'fill'. We don't shorten
5111 * the range_seg_t - this is usually rare enough not to be
5112 * worth the extra hassle of trying keep track of precise
5113 * extent boundaries.
5114 * 2) Hot, where the zio is currently in-flight in
5115 * dsl_scan_issue_ios. In this case, we can't simply
5116 * reach in and stop the in-flight zio's, so we instead
5117 * block the caller. Eventually, dsl_scan_issue_ios will
5118 * be done with issuing the zio's it gathered and will
5119 * signal us.
5120 */
5121 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5122 sio_free(srch_sio);
5123
5124 if (sio != NULL) {
5125 blkptr_t tmpbp;
5126
5127 /* Got it while it was cold in the queue */
5128 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5129 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5130 avl_remove(&queue->q_sios_by_addr, sio);
5131 if (avl_is_empty(&queue->q_sios_by_addr))
5132 atomic_add_64(&scn->scn_queues_pending, -1);
5133 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5134
5135 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5136 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5137
5138 /* count the block as though we skipped it */
5139 sio2bp(sio, &tmpbp);
5140 count_block_skipped(scn, &tmpbp, B_FALSE);
5141
5142 sio_free(sio);
5143 }
5144 mutex_exit(q_lock);
5145 }
5146
5147 /*
5148 * Callback invoked when a zio_free() zio is executing. This needs to be
5149 * intercepted to prevent the zio from deallocating a particular portion
5150 * of disk space and it then getting reallocated and written to, while we
5151 * still have it queued up for processing.
5152 */
5153 void
5154 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5155 {
5156 dsl_pool_t *dp = spa->spa_dsl_pool;
5157 dsl_scan_t *scn = dp->dp_scan;
5158
5159 ASSERT(!BP_IS_EMBEDDED(bp));
5160 ASSERT(scn != NULL);
5161 if (!dsl_scan_is_running(scn))
5162 return;
5163
5164 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5165 dsl_scan_freed_dva(spa, bp, i);
5166 }
5167
5168 /*
5169 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5170 * not started, start it. Otherwise, only restart if max txg in DTL range is
5171 * greater than the max txg in the current scan. If the DTL max is less than
5172 * the scan max, then the vdev has not missed any new data since the resilver
5173 * started, so a restart is not needed.
5174 */
5175 void
5176 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5177 {
5178 uint64_t min, max;
5179
5180 if (!vdev_resilver_needed(vd, &min, &max))
5181 return;
5182
5183 if (!dsl_scan_resilvering(dp)) {
5184 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5185 return;
5186 }
5187
5188 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5189 return;
5190
5191 /* restart is needed, check if it can be deferred */
5192 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5193 vdev_defer_resilver(vd);
5194 else
5195 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5196 }
5197
5198 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5199 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5200
5201 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5202 "Min millisecs to scrub per txg");
5203
5204 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5205 "Min millisecs to obsolete per txg");
5206
5207 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5208 "Min millisecs to free per txg");
5209
5210 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5211 "Min millisecs to resilver per txg");
5212
5213 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5214 "Set to prevent scans from progressing");
5215
5216 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5217 "Set to disable scrub I/O");
5218
5219 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5220 "Set to disable scrub prefetching");
5221
5222 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5223 "Max number of blocks freed in one txg");
5224
5225 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5226 "Max number of dedup blocks freed in one txg");
5227
5228 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5229 "Enable processing of the free_bpobj");
5230
5231 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5232 "Enable block statistics calculation during scrub");
5233
5234 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5235 "Fraction of RAM for scan hard limit");
5236
5237 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5238 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5239
5240 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5241 "Scrub using legacy non-sequential method");
5242
5243 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5244 "Scan progress on-disk checkpointing interval");
5245
5246 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5247 "Max gap in bytes between sequential scrub / resilver I/Os");
5248
5249 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5250 "Fraction of hard limit used as soft limit");
5251
5252 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5253 "Tunable to attempt to reduce lock contention");
5254
5255 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5256 "Tunable to adjust bias towards more filled segments during scans");
5257
5258 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5259 "Tunable to report resilver performance over the last N txgs");
5260
5261 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5262 "Process all resilvers immediately");
5263
5264 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5265 "Error blocks to be scrubbed in one txg");
5266 /* END CSTYLED */