]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_scan.c
Add device rebuild feature
[mirror_zfs.git] / module / zfs / dsl_scan.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright 2019 Joyent, Inc.
27 */
28
29 #include <sys/dsl_scan.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/zil_impl.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/ddt.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/zfeature.h>
52 #include <sys/abd.h>
53 #include <sys/range_tree.h>
54 #ifdef _KERNEL
55 #include <sys/zfs_vfsops.h>
56 #endif
57
58 /*
59 * Grand theory statement on scan queue sorting
60 *
61 * Scanning is implemented by recursively traversing all indirection levels
62 * in an object and reading all blocks referenced from said objects. This
63 * results in us approximately traversing the object from lowest logical
64 * offset to the highest. For best performance, we would want the logical
65 * blocks to be physically contiguous. However, this is frequently not the
66 * case with pools given the allocation patterns of copy-on-write filesystems.
67 * So instead, we put the I/Os into a reordering queue and issue them in a
68 * way that will most benefit physical disks (LBA-order).
69 *
70 * Queue management:
71 *
72 * Ideally, we would want to scan all metadata and queue up all block I/O
73 * prior to starting to issue it, because that allows us to do an optimal
74 * sorting job. This can however consume large amounts of memory. Therefore
75 * we continuously monitor the size of the queues and constrain them to 5%
76 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
77 * limit, we clear out a few of the largest extents at the head of the queues
78 * to make room for more scanning. Hopefully, these extents will be fairly
79 * large and contiguous, allowing us to approach sequential I/O throughput
80 * even without a fully sorted tree.
81 *
82 * Metadata scanning takes place in dsl_scan_visit(), which is called from
83 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
84 * metadata on the pool, or we need to make room in memory because our
85 * queues are too large, dsl_scan_visit() is postponed and
86 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
87 * that metadata scanning and queued I/O issuing are mutually exclusive. This
88 * allows us to provide maximum sequential I/O throughput for the majority of
89 * I/O's issued since sequential I/O performance is significantly negatively
90 * impacted if it is interleaved with random I/O.
91 *
92 * Implementation Notes
93 *
94 * One side effect of the queued scanning algorithm is that the scanning code
95 * needs to be notified whenever a block is freed. This is needed to allow
96 * the scanning code to remove these I/Os from the issuing queue. Additionally,
97 * we do not attempt to queue gang blocks to be issued sequentially since this
98 * is very hard to do and would have an extremely limited performance benefit.
99 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
100 * algorithm.
101 *
102 * Backwards compatibility
103 *
104 * This new algorithm is backwards compatible with the legacy on-disk data
105 * structures (and therefore does not require a new feature flag).
106 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
107 * will stop scanning metadata (in logical order) and wait for all outstanding
108 * sorted I/O to complete. Once this is done, we write out a checkpoint
109 * bookmark, indicating that we have scanned everything logically before it.
110 * If the pool is imported on a machine without the new sorting algorithm,
111 * the scan simply resumes from the last checkpoint using the legacy algorithm.
112 */
113
114 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
115 const zbookmark_phys_t *);
116
117 static scan_cb_t dsl_scan_scrub_cb;
118
119 static int scan_ds_queue_compare(const void *a, const void *b);
120 static int scan_prefetch_queue_compare(const void *a, const void *b);
121 static void scan_ds_queue_clear(dsl_scan_t *scn);
122 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124 uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 static uint64_t dsl_scan_count_leaves(vdev_t *vd);
129
130 extern int zfs_vdev_async_write_active_min_dirty_percent;
131
132 /*
133 * By default zfs will check to ensure it is not over the hard memory
134 * limit before each txg. If finer-grained control of this is needed
135 * this value can be set to 1 to enable checking before scanning each
136 * block.
137 */
138 int zfs_scan_strict_mem_lim = B_FALSE;
139
140 /*
141 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
142 * to strike a balance here between keeping the vdev queues full of I/Os
143 * at all times and not overflowing the queues to cause long latency,
144 * which would cause long txg sync times. No matter what, we will not
145 * overload the drives with I/O, since that is protected by
146 * zfs_vdev_scrub_max_active.
147 */
148 unsigned long zfs_scan_vdev_limit = 4 << 20;
149
150 int zfs_scan_issue_strategy = 0;
151 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
152 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
153
154 /*
155 * fill_weight is non-tunable at runtime, so we copy it at module init from
156 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
157 * break queue sorting.
158 */
159 int zfs_scan_fill_weight = 3;
160 static uint64_t fill_weight;
161
162 /* See dsl_scan_should_clear() for details on the memory limit tunables */
163 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
164 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
165 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
166 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
167
168 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
169 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
170 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
171 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
172 int zfs_scan_checkpoint_intval = 7200; /* in seconds */
173 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
174 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
175 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
176 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
177 /* max number of blocks to free in a single TXG */
178 unsigned long zfs_async_block_max_blocks = ULONG_MAX;
179 /* max number of dedup blocks to free in a single TXG */
180 unsigned long zfs_max_async_dedup_frees = 100000;
181
182 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
183
184 /*
185 * We wait a few txgs after importing a pool to begin scanning so that
186 * the import / mounting code isn't held up by scrub / resilver IO.
187 * Unfortunately, it is a bit difficult to determine exactly how long
188 * this will take since userspace will trigger fs mounts asynchronously
189 * and the kernel will create zvol minors asynchronously. As a result,
190 * the value provided here is a bit arbitrary, but represents a
191 * reasonable estimate of how many txgs it will take to finish fully
192 * importing a pool
193 */
194 #define SCAN_IMPORT_WAIT_TXGS 5
195
196 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
197 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
198 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
199
200 /*
201 * Enable/disable the processing of the free_bpobj object.
202 */
203 int zfs_free_bpobj_enabled = 1;
204
205 /* the order has to match pool_scan_type */
206 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
207 NULL,
208 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
209 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
210 };
211
212 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
213 typedef struct {
214 uint64_t sds_dsobj;
215 uint64_t sds_txg;
216 avl_node_t sds_node;
217 } scan_ds_t;
218
219 /*
220 * This controls what conditions are placed on dsl_scan_sync_state():
221 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
222 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
223 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
224 * write out the scn_phys_cached version.
225 * See dsl_scan_sync_state for details.
226 */
227 typedef enum {
228 SYNC_OPTIONAL,
229 SYNC_MANDATORY,
230 SYNC_CACHED
231 } state_sync_type_t;
232
233 /*
234 * This struct represents the minimum information needed to reconstruct a
235 * zio for sequential scanning. This is useful because many of these will
236 * accumulate in the sequential IO queues before being issued, so saving
237 * memory matters here.
238 */
239 typedef struct scan_io {
240 /* fields from blkptr_t */
241 uint64_t sio_blk_prop;
242 uint64_t sio_phys_birth;
243 uint64_t sio_birth;
244 zio_cksum_t sio_cksum;
245 uint32_t sio_nr_dvas;
246
247 /* fields from zio_t */
248 uint32_t sio_flags;
249 zbookmark_phys_t sio_zb;
250
251 /* members for queue sorting */
252 union {
253 avl_node_t sio_addr_node; /* link into issuing queue */
254 list_node_t sio_list_node; /* link for issuing to disk */
255 } sio_nodes;
256
257 /*
258 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
259 * depending on how many were in the original bp. Only the
260 * first DVA is really used for sorting and issuing purposes.
261 * The other DVAs (if provided) simply exist so that the zio
262 * layer can find additional copies to repair from in the
263 * event of an error. This array must go at the end of the
264 * struct to allow this for the variable number of elements.
265 */
266 dva_t sio_dva[0];
267 } scan_io_t;
268
269 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
270 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
271 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
272 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
273 #define SIO_GET_END_OFFSET(sio) \
274 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
275 #define SIO_GET_MUSED(sio) \
276 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
277
278 struct dsl_scan_io_queue {
279 dsl_scan_t *q_scn; /* associated dsl_scan_t */
280 vdev_t *q_vd; /* top-level vdev that this queue represents */
281
282 /* trees used for sorting I/Os and extents of I/Os */
283 range_tree_t *q_exts_by_addr;
284 zfs_btree_t q_exts_by_size;
285 avl_tree_t q_sios_by_addr;
286 uint64_t q_sio_memused;
287
288 /* members for zio rate limiting */
289 uint64_t q_maxinflight_bytes;
290 uint64_t q_inflight_bytes;
291 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
292
293 /* per txg statistics */
294 uint64_t q_total_seg_size_this_txg;
295 uint64_t q_segs_this_txg;
296 uint64_t q_total_zio_size_this_txg;
297 uint64_t q_zios_this_txg;
298 };
299
300 /* private data for dsl_scan_prefetch_cb() */
301 typedef struct scan_prefetch_ctx {
302 zfs_refcount_t spc_refcnt; /* refcount for memory management */
303 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
304 boolean_t spc_root; /* is this prefetch for an objset? */
305 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
306 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
307 } scan_prefetch_ctx_t;
308
309 /* private data for dsl_scan_prefetch() */
310 typedef struct scan_prefetch_issue_ctx {
311 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
312 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
313 blkptr_t spic_bp; /* bp to prefetch */
314 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
315 } scan_prefetch_issue_ctx_t;
316
317 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
318 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
319 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
320 scan_io_t *sio);
321
322 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
323 static void scan_io_queues_destroy(dsl_scan_t *scn);
324
325 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
326
327 /* sio->sio_nr_dvas must be set so we know which cache to free from */
328 static void
329 sio_free(scan_io_t *sio)
330 {
331 ASSERT3U(sio->sio_nr_dvas, >, 0);
332 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
333
334 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
335 }
336
337 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
338 static scan_io_t *
339 sio_alloc(unsigned short nr_dvas)
340 {
341 ASSERT3U(nr_dvas, >, 0);
342 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
343
344 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
345 }
346
347 void
348 scan_init(void)
349 {
350 /*
351 * This is used in ext_size_compare() to weight segments
352 * based on how sparse they are. This cannot be changed
353 * mid-scan and the tree comparison functions don't currently
354 * have a mechanism for passing additional context to the
355 * compare functions. Thus we store this value globally and
356 * we only allow it to be set at module initialization time
357 */
358 fill_weight = zfs_scan_fill_weight;
359
360 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
361 char name[36];
362
363 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
364 sio_cache[i] = kmem_cache_create(name,
365 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
366 0, NULL, NULL, NULL, NULL, NULL, 0);
367 }
368 }
369
370 void
371 scan_fini(void)
372 {
373 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
374 kmem_cache_destroy(sio_cache[i]);
375 }
376 }
377
378 static inline boolean_t
379 dsl_scan_is_running(const dsl_scan_t *scn)
380 {
381 return (scn->scn_phys.scn_state == DSS_SCANNING);
382 }
383
384 boolean_t
385 dsl_scan_resilvering(dsl_pool_t *dp)
386 {
387 return (dsl_scan_is_running(dp->dp_scan) &&
388 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
389 }
390
391 static inline void
392 sio2bp(const scan_io_t *sio, blkptr_t *bp)
393 {
394 bzero(bp, sizeof (*bp));
395 bp->blk_prop = sio->sio_blk_prop;
396 bp->blk_phys_birth = sio->sio_phys_birth;
397 bp->blk_birth = sio->sio_birth;
398 bp->blk_fill = 1; /* we always only work with data pointers */
399 bp->blk_cksum = sio->sio_cksum;
400
401 ASSERT3U(sio->sio_nr_dvas, >, 0);
402 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
403
404 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
405 }
406
407 static inline void
408 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
409 {
410 sio->sio_blk_prop = bp->blk_prop;
411 sio->sio_phys_birth = bp->blk_phys_birth;
412 sio->sio_birth = bp->blk_birth;
413 sio->sio_cksum = bp->blk_cksum;
414 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
415
416 /*
417 * Copy the DVAs to the sio. We need all copies of the block so
418 * that the self healing code can use the alternate copies if the
419 * first is corrupted. We want the DVA at index dva_i to be first
420 * in the sio since this is the primary one that we want to issue.
421 */
422 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
423 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
424 }
425 }
426
427 int
428 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
429 {
430 int err;
431 dsl_scan_t *scn;
432 spa_t *spa = dp->dp_spa;
433 uint64_t f;
434
435 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
436 scn->scn_dp = dp;
437
438 /*
439 * It's possible that we're resuming a scan after a reboot so
440 * make sure that the scan_async_destroying flag is initialized
441 * appropriately.
442 */
443 ASSERT(!scn->scn_async_destroying);
444 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
445 SPA_FEATURE_ASYNC_DESTROY);
446
447 /*
448 * Calculate the max number of in-flight bytes for pool-wide
449 * scanning operations (minimum 1MB). Limits for the issuing
450 * phase are done per top-level vdev and are handled separately.
451 */
452 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
453 dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);
454
455 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
456 offsetof(scan_ds_t, sds_node));
457 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
458 sizeof (scan_prefetch_issue_ctx_t),
459 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
460
461 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
462 "scrub_func", sizeof (uint64_t), 1, &f);
463 if (err == 0) {
464 /*
465 * There was an old-style scrub in progress. Restart a
466 * new-style scrub from the beginning.
467 */
468 scn->scn_restart_txg = txg;
469 zfs_dbgmsg("old-style scrub was in progress; "
470 "restarting new-style scrub in txg %llu",
471 (longlong_t)scn->scn_restart_txg);
472
473 /*
474 * Load the queue obj from the old location so that it
475 * can be freed by dsl_scan_done().
476 */
477 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
478 "scrub_queue", sizeof (uint64_t), 1,
479 &scn->scn_phys.scn_queue_obj);
480 } else {
481 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
482 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
483 &scn->scn_phys);
484 /*
485 * Detect if the pool contains the signature of #2094. If it
486 * does properly update the scn->scn_phys structure and notify
487 * the administrator by setting an errata for the pool.
488 */
489 if (err == EOVERFLOW) {
490 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
491 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
492 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
493 (23 * sizeof (uint64_t)));
494
495 err = zap_lookup(dp->dp_meta_objset,
496 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
497 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
498 if (err == 0) {
499 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
500
501 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
502 scn->scn_async_destroying) {
503 spa->spa_errata =
504 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
505 return (EOVERFLOW);
506 }
507
508 bcopy(zaptmp, &scn->scn_phys,
509 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
510 scn->scn_phys.scn_flags = overflow;
511
512 /* Required scrub already in progress. */
513 if (scn->scn_phys.scn_state == DSS_FINISHED ||
514 scn->scn_phys.scn_state == DSS_CANCELED)
515 spa->spa_errata =
516 ZPOOL_ERRATA_ZOL_2094_SCRUB;
517 }
518 }
519
520 if (err == ENOENT)
521 return (0);
522 else if (err)
523 return (err);
524
525 /*
526 * We might be restarting after a reboot, so jump the issued
527 * counter to how far we've scanned. We know we're consistent
528 * up to here.
529 */
530 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
531
532 if (dsl_scan_is_running(scn) &&
533 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
534 /*
535 * A new-type scrub was in progress on an old
536 * pool, and the pool was accessed by old
537 * software. Restart from the beginning, since
538 * the old software may have changed the pool in
539 * the meantime.
540 */
541 scn->scn_restart_txg = txg;
542 zfs_dbgmsg("new-style scrub was modified "
543 "by old software; restarting in txg %llu",
544 (longlong_t)scn->scn_restart_txg);
545 } else if (dsl_scan_resilvering(dp)) {
546 /*
547 * If a resilver is in progress and there are already
548 * errors, restart it instead of finishing this scan and
549 * then restarting it. If there haven't been any errors
550 * then remember that the incore DTL is valid.
551 */
552 if (scn->scn_phys.scn_errors > 0) {
553 scn->scn_restart_txg = txg;
554 zfs_dbgmsg("resilver can't excise DTL_MISSING "
555 "when finished; restarting in txg %llu",
556 (u_longlong_t)scn->scn_restart_txg);
557 } else {
558 /* it's safe to excise DTL when finished */
559 spa->spa_scrub_started = B_TRUE;
560 }
561 }
562 }
563
564 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
565
566 /* reload the queue into the in-core state */
567 if (scn->scn_phys.scn_queue_obj != 0) {
568 zap_cursor_t zc;
569 zap_attribute_t za;
570
571 for (zap_cursor_init(&zc, dp->dp_meta_objset,
572 scn->scn_phys.scn_queue_obj);
573 zap_cursor_retrieve(&zc, &za) == 0;
574 (void) zap_cursor_advance(&zc)) {
575 scan_ds_queue_insert(scn,
576 zfs_strtonum(za.za_name, NULL),
577 za.za_first_integer);
578 }
579 zap_cursor_fini(&zc);
580 }
581
582 spa_scan_stat_init(spa);
583 return (0);
584 }
585
586 void
587 dsl_scan_fini(dsl_pool_t *dp)
588 {
589 if (dp->dp_scan != NULL) {
590 dsl_scan_t *scn = dp->dp_scan;
591
592 if (scn->scn_taskq != NULL)
593 taskq_destroy(scn->scn_taskq);
594
595 scan_ds_queue_clear(scn);
596 avl_destroy(&scn->scn_queue);
597 scan_ds_prefetch_queue_clear(scn);
598 avl_destroy(&scn->scn_prefetch_queue);
599
600 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
601 dp->dp_scan = NULL;
602 }
603 }
604
605 static boolean_t
606 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
607 {
608 return (scn->scn_restart_txg != 0 &&
609 scn->scn_restart_txg <= tx->tx_txg);
610 }
611
612 boolean_t
613 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
614 {
615 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
616 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
617 }
618
619 boolean_t
620 dsl_scan_scrubbing(const dsl_pool_t *dp)
621 {
622 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
623
624 return (scn_phys->scn_state == DSS_SCANNING &&
625 scn_phys->scn_func == POOL_SCAN_SCRUB);
626 }
627
628 boolean_t
629 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
630 {
631 return (dsl_scan_scrubbing(scn->scn_dp) &&
632 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
633 }
634
635 /*
636 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
637 * Because we can be running in the block sorting algorithm, we do not always
638 * want to write out the record, only when it is "safe" to do so. This safety
639 * condition is achieved by making sure that the sorting queues are empty
640 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
641 * is inconsistent with how much actual scanning progress has been made. The
642 * kind of sync to be performed is specified by the sync_type argument. If the
643 * sync is optional, we only sync if the queues are empty. If the sync is
644 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
645 * third possible state is a "cached" sync. This is done in response to:
646 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
647 * destroyed, so we wouldn't be able to restart scanning from it.
648 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
649 * superseded by a newer snapshot.
650 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
651 * swapped with its clone.
652 * In all cases, a cached sync simply rewrites the last record we've written,
653 * just slightly modified. For the modifications that are performed to the
654 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
655 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
656 */
657 static void
658 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
659 {
660 int i;
661 spa_t *spa = scn->scn_dp->dp_spa;
662
663 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
664 if (scn->scn_bytes_pending == 0) {
665 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
666 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
667 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
668
669 if (q == NULL)
670 continue;
671
672 mutex_enter(&vd->vdev_scan_io_queue_lock);
673 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
674 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
675 NULL);
676 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
677 mutex_exit(&vd->vdev_scan_io_queue_lock);
678 }
679
680 if (scn->scn_phys.scn_queue_obj != 0)
681 scan_ds_queue_sync(scn, tx);
682 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
683 DMU_POOL_DIRECTORY_OBJECT,
684 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
685 &scn->scn_phys, tx));
686 bcopy(&scn->scn_phys, &scn->scn_phys_cached,
687 sizeof (scn->scn_phys));
688
689 if (scn->scn_checkpointing)
690 zfs_dbgmsg("finish scan checkpoint");
691
692 scn->scn_checkpointing = B_FALSE;
693 scn->scn_last_checkpoint = ddi_get_lbolt();
694 } else if (sync_type == SYNC_CACHED) {
695 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
696 DMU_POOL_DIRECTORY_OBJECT,
697 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
698 &scn->scn_phys_cached, tx));
699 }
700 }
701
702 /* ARGSUSED */
703 static int
704 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
705 {
706 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
707 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
708
709 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
710 return (SET_ERROR(EBUSY));
711
712 return (0);
713 }
714
715 static void
716 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
717 {
718 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
719 pool_scan_func_t *funcp = arg;
720 dmu_object_type_t ot = 0;
721 dsl_pool_t *dp = scn->scn_dp;
722 spa_t *spa = dp->dp_spa;
723
724 ASSERT(!dsl_scan_is_running(scn));
725 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
726 bzero(&scn->scn_phys, sizeof (scn->scn_phys));
727 scn->scn_phys.scn_func = *funcp;
728 scn->scn_phys.scn_state = DSS_SCANNING;
729 scn->scn_phys.scn_min_txg = 0;
730 scn->scn_phys.scn_max_txg = tx->tx_txg;
731 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
732 scn->scn_phys.scn_start_time = gethrestime_sec();
733 scn->scn_phys.scn_errors = 0;
734 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
735 scn->scn_issued_before_pass = 0;
736 scn->scn_restart_txg = 0;
737 scn->scn_done_txg = 0;
738 scn->scn_last_checkpoint = 0;
739 scn->scn_checkpointing = B_FALSE;
740 spa_scan_stat_init(spa);
741
742 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
743 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
744
745 /* rewrite all disk labels */
746 vdev_config_dirty(spa->spa_root_vdev);
747
748 if (vdev_resilver_needed(spa->spa_root_vdev,
749 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
750 nvlist_t *aux = fnvlist_alloc();
751 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
752 "healing");
753 spa_event_notify(spa, NULL, aux,
754 ESC_ZFS_RESILVER_START);
755 nvlist_free(aux);
756 } else {
757 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
758 }
759
760 spa->spa_scrub_started = B_TRUE;
761 /*
762 * If this is an incremental scrub, limit the DDT scrub phase
763 * to just the auto-ditto class (for correctness); the rest
764 * of the scrub should go faster using top-down pruning.
765 */
766 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
767 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
768
769 /*
770 * When starting a resilver clear any existing rebuild state.
771 * This is required to prevent stale rebuild status from
772 * being reported when a rebuild is run, then a resilver and
773 * finally a scrub. In which case only the scrub status
774 * should be reported by 'zpool status'.
775 */
776 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
777 vdev_t *rvd = spa->spa_root_vdev;
778 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
779 vdev_t *vd = rvd->vdev_child[i];
780 vdev_rebuild_clear_sync(
781 (void *)(uintptr_t)vd->vdev_id, tx);
782 }
783 }
784 }
785
786 /* back to the generic stuff */
787
788 if (dp->dp_blkstats == NULL) {
789 dp->dp_blkstats =
790 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
791 mutex_init(&dp->dp_blkstats->zab_lock, NULL,
792 MUTEX_DEFAULT, NULL);
793 }
794 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
795
796 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
797 ot = DMU_OT_ZAP_OTHER;
798
799 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
800 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
801
802 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
803
804 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
805
806 spa_history_log_internal(spa, "scan setup", tx,
807 "func=%u mintxg=%llu maxtxg=%llu",
808 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
809 (u_longlong_t)scn->scn_phys.scn_max_txg);
810 }
811
812 /*
813 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
814 * Can also be called to resume a paused scrub.
815 */
816 int
817 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
818 {
819 spa_t *spa = dp->dp_spa;
820 dsl_scan_t *scn = dp->dp_scan;
821
822 /*
823 * Purge all vdev caches and probe all devices. We do this here
824 * rather than in sync context because this requires a writer lock
825 * on the spa_config lock, which we can't do from sync context. The
826 * spa_scrub_reopen flag indicates that vdev_open() should not
827 * attempt to start another scrub.
828 */
829 spa_vdev_state_enter(spa, SCL_NONE);
830 spa->spa_scrub_reopen = B_TRUE;
831 vdev_reopen(spa->spa_root_vdev);
832 spa->spa_scrub_reopen = B_FALSE;
833 (void) spa_vdev_state_exit(spa, NULL, 0);
834
835 if (func == POOL_SCAN_RESILVER) {
836 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
837 return (0);
838 }
839
840 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
841 /* got scrub start cmd, resume paused scrub */
842 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
843 POOL_SCRUB_NORMAL);
844 if (err == 0) {
845 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
846 return (SET_ERROR(ECANCELED));
847 }
848
849 return (SET_ERROR(err));
850 }
851
852 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
853 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
854 }
855
856 /* ARGSUSED */
857 static void
858 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
859 {
860 static const char *old_names[] = {
861 "scrub_bookmark",
862 "scrub_ddt_bookmark",
863 "scrub_ddt_class_max",
864 "scrub_queue",
865 "scrub_min_txg",
866 "scrub_max_txg",
867 "scrub_func",
868 "scrub_errors",
869 NULL
870 };
871
872 dsl_pool_t *dp = scn->scn_dp;
873 spa_t *spa = dp->dp_spa;
874 int i;
875
876 /* Remove any remnants of an old-style scrub. */
877 for (i = 0; old_names[i]; i++) {
878 (void) zap_remove(dp->dp_meta_objset,
879 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
880 }
881
882 if (scn->scn_phys.scn_queue_obj != 0) {
883 VERIFY0(dmu_object_free(dp->dp_meta_objset,
884 scn->scn_phys.scn_queue_obj, tx));
885 scn->scn_phys.scn_queue_obj = 0;
886 }
887 scan_ds_queue_clear(scn);
888 scan_ds_prefetch_queue_clear(scn);
889
890 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
891
892 /*
893 * If we were "restarted" from a stopped state, don't bother
894 * with anything else.
895 */
896 if (!dsl_scan_is_running(scn)) {
897 ASSERT(!scn->scn_is_sorted);
898 return;
899 }
900
901 if (scn->scn_is_sorted) {
902 scan_io_queues_destroy(scn);
903 scn->scn_is_sorted = B_FALSE;
904
905 if (scn->scn_taskq != NULL) {
906 taskq_destroy(scn->scn_taskq);
907 scn->scn_taskq = NULL;
908 }
909 }
910
911 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
912
913 spa_notify_waiters(spa);
914
915 if (dsl_scan_restarting(scn, tx))
916 spa_history_log_internal(spa, "scan aborted, restarting", tx,
917 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
918 else if (!complete)
919 spa_history_log_internal(spa, "scan cancelled", tx,
920 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
921 else
922 spa_history_log_internal(spa, "scan done", tx,
923 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
924
925 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
926 spa->spa_scrub_active = B_FALSE;
927
928 /*
929 * If the scrub/resilver completed, update all DTLs to
930 * reflect this. Whether it succeeded or not, vacate
931 * all temporary scrub DTLs.
932 *
933 * As the scrub does not currently support traversing
934 * data that have been freed but are part of a checkpoint,
935 * we don't mark the scrub as done in the DTLs as faults
936 * may still exist in those vdevs.
937 */
938 if (complete &&
939 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
940 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
941 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
942
943 if (scn->scn_phys.scn_min_txg) {
944 nvlist_t *aux = fnvlist_alloc();
945 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
946 "healing");
947 spa_event_notify(spa, NULL, aux,
948 ESC_ZFS_RESILVER_FINISH);
949 nvlist_free(aux);
950 } else {
951 spa_event_notify(spa, NULL, NULL,
952 ESC_ZFS_SCRUB_FINISH);
953 }
954 } else {
955 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
956 0, B_TRUE, B_FALSE);
957 }
958 spa_errlog_rotate(spa);
959
960 /*
961 * Don't clear flag until after vdev_dtl_reassess to ensure that
962 * DTL_MISSING will get updated when possible.
963 */
964 spa->spa_scrub_started = B_FALSE;
965
966 /*
967 * We may have finished replacing a device.
968 * Let the async thread assess this and handle the detach.
969 */
970 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
971
972 /*
973 * Clear any resilver_deferred flags in the config.
974 * If there are drives that need resilvering, kick
975 * off an asynchronous request to start resilver.
976 * vdev_clear_resilver_deferred() may update the config
977 * before the resilver can restart. In the event of
978 * a crash during this period, the spa loading code
979 * will find the drives that need to be resilvered
980 * and start the resilver then.
981 */
982 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
983 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
984 spa_history_log_internal(spa,
985 "starting deferred resilver", tx, "errors=%llu",
986 (u_longlong_t)spa_get_errlog_size(spa));
987 spa_async_request(spa, SPA_ASYNC_RESILVER);
988 }
989 }
990
991 scn->scn_phys.scn_end_time = gethrestime_sec();
992
993 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
994 spa->spa_errata = 0;
995
996 ASSERT(!dsl_scan_is_running(scn));
997 }
998
999 /* ARGSUSED */
1000 static int
1001 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1002 {
1003 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1004
1005 if (!dsl_scan_is_running(scn))
1006 return (SET_ERROR(ENOENT));
1007 return (0);
1008 }
1009
1010 /* ARGSUSED */
1011 static void
1012 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1013 {
1014 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1015
1016 dsl_scan_done(scn, B_FALSE, tx);
1017 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1018 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1019 }
1020
1021 int
1022 dsl_scan_cancel(dsl_pool_t *dp)
1023 {
1024 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1025 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1026 }
1027
1028 static int
1029 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1030 {
1031 pool_scrub_cmd_t *cmd = arg;
1032 dsl_pool_t *dp = dmu_tx_pool(tx);
1033 dsl_scan_t *scn = dp->dp_scan;
1034
1035 if (*cmd == POOL_SCRUB_PAUSE) {
1036 /* can't pause a scrub when there is no in-progress scrub */
1037 if (!dsl_scan_scrubbing(dp))
1038 return (SET_ERROR(ENOENT));
1039
1040 /* can't pause a paused scrub */
1041 if (dsl_scan_is_paused_scrub(scn))
1042 return (SET_ERROR(EBUSY));
1043 } else if (*cmd != POOL_SCRUB_NORMAL) {
1044 return (SET_ERROR(ENOTSUP));
1045 }
1046
1047 return (0);
1048 }
1049
1050 static void
1051 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1052 {
1053 pool_scrub_cmd_t *cmd = arg;
1054 dsl_pool_t *dp = dmu_tx_pool(tx);
1055 spa_t *spa = dp->dp_spa;
1056 dsl_scan_t *scn = dp->dp_scan;
1057
1058 if (*cmd == POOL_SCRUB_PAUSE) {
1059 /* can't pause a scrub when there is no in-progress scrub */
1060 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1061 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1062 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1063 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1064 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1065 spa_notify_waiters(spa);
1066 } else {
1067 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1068 if (dsl_scan_is_paused_scrub(scn)) {
1069 /*
1070 * We need to keep track of how much time we spend
1071 * paused per pass so that we can adjust the scrub rate
1072 * shown in the output of 'zpool status'
1073 */
1074 spa->spa_scan_pass_scrub_spent_paused +=
1075 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1076 spa->spa_scan_pass_scrub_pause = 0;
1077 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1078 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1079 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1080 }
1081 }
1082 }
1083
1084 /*
1085 * Set scrub pause/resume state if it makes sense to do so
1086 */
1087 int
1088 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1089 {
1090 return (dsl_sync_task(spa_name(dp->dp_spa),
1091 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1092 ZFS_SPACE_CHECK_RESERVED));
1093 }
1094
1095
1096 /* start a new scan, or restart an existing one. */
1097 void
1098 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1099 {
1100 if (txg == 0) {
1101 dmu_tx_t *tx;
1102 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1103 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1104
1105 txg = dmu_tx_get_txg(tx);
1106 dp->dp_scan->scn_restart_txg = txg;
1107 dmu_tx_commit(tx);
1108 } else {
1109 dp->dp_scan->scn_restart_txg = txg;
1110 }
1111 zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
1112 }
1113
1114 void
1115 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1116 {
1117 zio_free(dp->dp_spa, txg, bp);
1118 }
1119
1120 void
1121 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1122 {
1123 ASSERT(dsl_pool_sync_context(dp));
1124 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1125 }
1126
1127 static int
1128 scan_ds_queue_compare(const void *a, const void *b)
1129 {
1130 const scan_ds_t *sds_a = a, *sds_b = b;
1131
1132 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1133 return (-1);
1134 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1135 return (0);
1136 return (1);
1137 }
1138
1139 static void
1140 scan_ds_queue_clear(dsl_scan_t *scn)
1141 {
1142 void *cookie = NULL;
1143 scan_ds_t *sds;
1144 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1145 kmem_free(sds, sizeof (*sds));
1146 }
1147 }
1148
1149 static boolean_t
1150 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1151 {
1152 scan_ds_t srch, *sds;
1153
1154 srch.sds_dsobj = dsobj;
1155 sds = avl_find(&scn->scn_queue, &srch, NULL);
1156 if (sds != NULL && txg != NULL)
1157 *txg = sds->sds_txg;
1158 return (sds != NULL);
1159 }
1160
1161 static void
1162 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1163 {
1164 scan_ds_t *sds;
1165 avl_index_t where;
1166
1167 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1168 sds->sds_dsobj = dsobj;
1169 sds->sds_txg = txg;
1170
1171 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1172 avl_insert(&scn->scn_queue, sds, where);
1173 }
1174
1175 static void
1176 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1177 {
1178 scan_ds_t srch, *sds;
1179
1180 srch.sds_dsobj = dsobj;
1181
1182 sds = avl_find(&scn->scn_queue, &srch, NULL);
1183 VERIFY(sds != NULL);
1184 avl_remove(&scn->scn_queue, sds);
1185 kmem_free(sds, sizeof (*sds));
1186 }
1187
1188 static void
1189 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1190 {
1191 dsl_pool_t *dp = scn->scn_dp;
1192 spa_t *spa = dp->dp_spa;
1193 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1194 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1195
1196 ASSERT0(scn->scn_bytes_pending);
1197 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1198
1199 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1200 scn->scn_phys.scn_queue_obj, tx));
1201 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1202 DMU_OT_NONE, 0, tx);
1203 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1204 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1205 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1206 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1207 sds->sds_txg, tx));
1208 }
1209 }
1210
1211 /*
1212 * Computes the memory limit state that we're currently in. A sorted scan
1213 * needs quite a bit of memory to hold the sorting queue, so we need to
1214 * reasonably constrain the size so it doesn't impact overall system
1215 * performance. We compute two limits:
1216 * 1) Hard memory limit: if the amount of memory used by the sorting
1217 * queues on a pool gets above this value, we stop the metadata
1218 * scanning portion and start issuing the queued up and sorted
1219 * I/Os to reduce memory usage.
1220 * This limit is calculated as a fraction of physmem (by default 5%).
1221 * We constrain the lower bound of the hard limit to an absolute
1222 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1223 * the upper bound to 5% of the total pool size - no chance we'll
1224 * ever need that much memory, but just to keep the value in check.
1225 * 2) Soft memory limit: once we hit the hard memory limit, we start
1226 * issuing I/O to reduce queue memory usage, but we don't want to
1227 * completely empty out the queues, since we might be able to find I/Os
1228 * that will fill in the gaps of our non-sequential IOs at some point
1229 * in the future. So we stop the issuing of I/Os once the amount of
1230 * memory used drops below the soft limit (at which point we stop issuing
1231 * I/O and start scanning metadata again).
1232 *
1233 * This limit is calculated by subtracting a fraction of the hard
1234 * limit from the hard limit. By default this fraction is 5%, so
1235 * the soft limit is 95% of the hard limit. We cap the size of the
1236 * difference between the hard and soft limits at an absolute
1237 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1238 * sufficient to not cause too frequent switching between the
1239 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1240 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1241 * that should take at least a decent fraction of a second).
1242 */
1243 static boolean_t
1244 dsl_scan_should_clear(dsl_scan_t *scn)
1245 {
1246 spa_t *spa = scn->scn_dp->dp_spa;
1247 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1248 uint64_t alloc, mlim_hard, mlim_soft, mused;
1249
1250 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1251 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1252 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1253
1254 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1255 zfs_scan_mem_lim_min);
1256 mlim_hard = MIN(mlim_hard, alloc / 20);
1257 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1258 zfs_scan_mem_lim_soft_max);
1259 mused = 0;
1260 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1261 vdev_t *tvd = rvd->vdev_child[i];
1262 dsl_scan_io_queue_t *queue;
1263
1264 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1265 queue = tvd->vdev_scan_io_queue;
1266 if (queue != NULL) {
1267 /* # extents in exts_by_size = # in exts_by_addr */
1268 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1269 sizeof (range_seg_gap_t) + queue->q_sio_memused;
1270 }
1271 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1272 }
1273
1274 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1275
1276 if (mused == 0)
1277 ASSERT0(scn->scn_bytes_pending);
1278
1279 /*
1280 * If we are above our hard limit, we need to clear out memory.
1281 * If we are below our soft limit, we need to accumulate sequential IOs.
1282 * Otherwise, we should keep doing whatever we are currently doing.
1283 */
1284 if (mused >= mlim_hard)
1285 return (B_TRUE);
1286 else if (mused < mlim_soft)
1287 return (B_FALSE);
1288 else
1289 return (scn->scn_clearing);
1290 }
1291
1292 static boolean_t
1293 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1294 {
1295 /* we never skip user/group accounting objects */
1296 if (zb && (int64_t)zb->zb_object < 0)
1297 return (B_FALSE);
1298
1299 if (scn->scn_suspending)
1300 return (B_TRUE); /* we're already suspending */
1301
1302 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1303 return (B_FALSE); /* we're resuming */
1304
1305 /* We only know how to resume from level-0 and objset blocks. */
1306 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1307 return (B_FALSE);
1308
1309 /*
1310 * We suspend if:
1311 * - we have scanned for at least the minimum time (default 1 sec
1312 * for scrub, 3 sec for resilver), and either we have sufficient
1313 * dirty data that we are starting to write more quickly
1314 * (default 30%), someone is explicitly waiting for this txg
1315 * to complete, or we have used up all of the time in the txg
1316 * timeout (default 5 sec).
1317 * or
1318 * - the spa is shutting down because this pool is being exported
1319 * or the machine is rebooting.
1320 * or
1321 * - the scan queue has reached its memory use limit
1322 */
1323 uint64_t curr_time_ns = gethrtime();
1324 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1325 uint64_t sync_time_ns = curr_time_ns -
1326 scn->scn_dp->dp_spa->spa_sync_starttime;
1327 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1328 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1329 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1330
1331 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1332 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1333 txg_sync_waiting(scn->scn_dp) ||
1334 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1335 spa_shutting_down(scn->scn_dp->dp_spa) ||
1336 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1337 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1338 dprintf("suspending at first available bookmark "
1339 "%llx/%llx/%llx/%llx\n",
1340 (longlong_t)zb->zb_objset,
1341 (longlong_t)zb->zb_object,
1342 (longlong_t)zb->zb_level,
1343 (longlong_t)zb->zb_blkid);
1344 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1345 zb->zb_objset, 0, 0, 0);
1346 } else if (zb != NULL) {
1347 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1348 (longlong_t)zb->zb_objset,
1349 (longlong_t)zb->zb_object,
1350 (longlong_t)zb->zb_level,
1351 (longlong_t)zb->zb_blkid);
1352 scn->scn_phys.scn_bookmark = *zb;
1353 } else {
1354 #ifdef ZFS_DEBUG
1355 dsl_scan_phys_t *scnp = &scn->scn_phys;
1356 dprintf("suspending at at DDT bookmark "
1357 "%llx/%llx/%llx/%llx\n",
1358 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1359 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1360 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1361 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1362 #endif
1363 }
1364 scn->scn_suspending = B_TRUE;
1365 return (B_TRUE);
1366 }
1367 return (B_FALSE);
1368 }
1369
1370 typedef struct zil_scan_arg {
1371 dsl_pool_t *zsa_dp;
1372 zil_header_t *zsa_zh;
1373 } zil_scan_arg_t;
1374
1375 /* ARGSUSED */
1376 static int
1377 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1378 {
1379 zil_scan_arg_t *zsa = arg;
1380 dsl_pool_t *dp = zsa->zsa_dp;
1381 dsl_scan_t *scn = dp->dp_scan;
1382 zil_header_t *zh = zsa->zsa_zh;
1383 zbookmark_phys_t zb;
1384
1385 ASSERT(!BP_IS_REDACTED(bp));
1386 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1387 return (0);
1388
1389 /*
1390 * One block ("stubby") can be allocated a long time ago; we
1391 * want to visit that one because it has been allocated
1392 * (on-disk) even if it hasn't been claimed (even though for
1393 * scrub there's nothing to do to it).
1394 */
1395 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1396 return (0);
1397
1398 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1399 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1400
1401 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1402 return (0);
1403 }
1404
1405 /* ARGSUSED */
1406 static int
1407 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1408 {
1409 if (lrc->lrc_txtype == TX_WRITE) {
1410 zil_scan_arg_t *zsa = arg;
1411 dsl_pool_t *dp = zsa->zsa_dp;
1412 dsl_scan_t *scn = dp->dp_scan;
1413 zil_header_t *zh = zsa->zsa_zh;
1414 lr_write_t *lr = (lr_write_t *)lrc;
1415 blkptr_t *bp = &lr->lr_blkptr;
1416 zbookmark_phys_t zb;
1417
1418 ASSERT(!BP_IS_REDACTED(bp));
1419 if (BP_IS_HOLE(bp) ||
1420 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1421 return (0);
1422
1423 /*
1424 * birth can be < claim_txg if this record's txg is
1425 * already txg sync'ed (but this log block contains
1426 * other records that are not synced)
1427 */
1428 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1429 return (0);
1430
1431 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1432 lr->lr_foid, ZB_ZIL_LEVEL,
1433 lr->lr_offset / BP_GET_LSIZE(bp));
1434
1435 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1436 }
1437 return (0);
1438 }
1439
1440 static void
1441 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1442 {
1443 uint64_t claim_txg = zh->zh_claim_txg;
1444 zil_scan_arg_t zsa = { dp, zh };
1445 zilog_t *zilog;
1446
1447 ASSERT(spa_writeable(dp->dp_spa));
1448
1449 /*
1450 * We only want to visit blocks that have been claimed but not yet
1451 * replayed (or, in read-only mode, blocks that *would* be claimed).
1452 */
1453 if (claim_txg == 0)
1454 return;
1455
1456 zilog = zil_alloc(dp->dp_meta_objset, zh);
1457
1458 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1459 claim_txg, B_FALSE);
1460
1461 zil_free(zilog);
1462 }
1463
1464 /*
1465 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1466 * here is to sort the AVL tree by the order each block will be needed.
1467 */
1468 static int
1469 scan_prefetch_queue_compare(const void *a, const void *b)
1470 {
1471 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1472 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1473 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1474
1475 return (zbookmark_compare(spc_a->spc_datablkszsec,
1476 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1477 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1478 }
1479
1480 static void
1481 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1482 {
1483 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1484 zfs_refcount_destroy(&spc->spc_refcnt);
1485 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1486 }
1487 }
1488
1489 static scan_prefetch_ctx_t *
1490 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1491 {
1492 scan_prefetch_ctx_t *spc;
1493
1494 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1495 zfs_refcount_create(&spc->spc_refcnt);
1496 zfs_refcount_add(&spc->spc_refcnt, tag);
1497 spc->spc_scn = scn;
1498 if (dnp != NULL) {
1499 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1500 spc->spc_indblkshift = dnp->dn_indblkshift;
1501 spc->spc_root = B_FALSE;
1502 } else {
1503 spc->spc_datablkszsec = 0;
1504 spc->spc_indblkshift = 0;
1505 spc->spc_root = B_TRUE;
1506 }
1507
1508 return (spc);
1509 }
1510
1511 static void
1512 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1513 {
1514 zfs_refcount_add(&spc->spc_refcnt, tag);
1515 }
1516
1517 static void
1518 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1519 {
1520 spa_t *spa = scn->scn_dp->dp_spa;
1521 void *cookie = NULL;
1522 scan_prefetch_issue_ctx_t *spic = NULL;
1523
1524 mutex_enter(&spa->spa_scrub_lock);
1525 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1526 &cookie)) != NULL) {
1527 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1528 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1529 }
1530 mutex_exit(&spa->spa_scrub_lock);
1531 }
1532
1533 static boolean_t
1534 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1535 const zbookmark_phys_t *zb)
1536 {
1537 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1538 dnode_phys_t tmp_dnp;
1539 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1540
1541 if (zb->zb_objset != last_zb->zb_objset)
1542 return (B_TRUE);
1543 if ((int64_t)zb->zb_object < 0)
1544 return (B_FALSE);
1545
1546 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1547 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1548
1549 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1550 return (B_TRUE);
1551
1552 return (B_FALSE);
1553 }
1554
1555 static void
1556 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1557 {
1558 avl_index_t idx;
1559 dsl_scan_t *scn = spc->spc_scn;
1560 spa_t *spa = scn->scn_dp->dp_spa;
1561 scan_prefetch_issue_ctx_t *spic;
1562
1563 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1564 return;
1565
1566 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1567 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1568 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1569 return;
1570
1571 if (dsl_scan_check_prefetch_resume(spc, zb))
1572 return;
1573
1574 scan_prefetch_ctx_add_ref(spc, scn);
1575 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1576 spic->spic_spc = spc;
1577 spic->spic_bp = *bp;
1578 spic->spic_zb = *zb;
1579
1580 /*
1581 * Add the IO to the queue of blocks to prefetch. This allows us to
1582 * prioritize blocks that we will need first for the main traversal
1583 * thread.
1584 */
1585 mutex_enter(&spa->spa_scrub_lock);
1586 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1587 /* this block is already queued for prefetch */
1588 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1589 scan_prefetch_ctx_rele(spc, scn);
1590 mutex_exit(&spa->spa_scrub_lock);
1591 return;
1592 }
1593
1594 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1595 cv_broadcast(&spa->spa_scrub_io_cv);
1596 mutex_exit(&spa->spa_scrub_lock);
1597 }
1598
1599 static void
1600 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1601 uint64_t objset, uint64_t object)
1602 {
1603 int i;
1604 zbookmark_phys_t zb;
1605 scan_prefetch_ctx_t *spc;
1606
1607 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1608 return;
1609
1610 SET_BOOKMARK(&zb, objset, object, 0, 0);
1611
1612 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1613
1614 for (i = 0; i < dnp->dn_nblkptr; i++) {
1615 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1616 zb.zb_blkid = i;
1617 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1618 }
1619
1620 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1621 zb.zb_level = 0;
1622 zb.zb_blkid = DMU_SPILL_BLKID;
1623 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1624 }
1625
1626 scan_prefetch_ctx_rele(spc, FTAG);
1627 }
1628
1629 static void
1630 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1631 arc_buf_t *buf, void *private)
1632 {
1633 scan_prefetch_ctx_t *spc = private;
1634 dsl_scan_t *scn = spc->spc_scn;
1635 spa_t *spa = scn->scn_dp->dp_spa;
1636
1637 /* broadcast that the IO has completed for rate limiting purposes */
1638 mutex_enter(&spa->spa_scrub_lock);
1639 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1640 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1641 cv_broadcast(&spa->spa_scrub_io_cv);
1642 mutex_exit(&spa->spa_scrub_lock);
1643
1644 /* if there was an error or we are done prefetching, just cleanup */
1645 if (buf == NULL || scn->scn_prefetch_stop)
1646 goto out;
1647
1648 if (BP_GET_LEVEL(bp) > 0) {
1649 int i;
1650 blkptr_t *cbp;
1651 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1652 zbookmark_phys_t czb;
1653
1654 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1655 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1656 zb->zb_level - 1, zb->zb_blkid * epb + i);
1657 dsl_scan_prefetch(spc, cbp, &czb);
1658 }
1659 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1660 dnode_phys_t *cdnp;
1661 int i;
1662 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1663
1664 for (i = 0, cdnp = buf->b_data; i < epb;
1665 i += cdnp->dn_extra_slots + 1,
1666 cdnp += cdnp->dn_extra_slots + 1) {
1667 dsl_scan_prefetch_dnode(scn, cdnp,
1668 zb->zb_objset, zb->zb_blkid * epb + i);
1669 }
1670 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1671 objset_phys_t *osp = buf->b_data;
1672
1673 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1674 zb->zb_objset, DMU_META_DNODE_OBJECT);
1675
1676 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1677 dsl_scan_prefetch_dnode(scn,
1678 &osp->os_groupused_dnode, zb->zb_objset,
1679 DMU_GROUPUSED_OBJECT);
1680 dsl_scan_prefetch_dnode(scn,
1681 &osp->os_userused_dnode, zb->zb_objset,
1682 DMU_USERUSED_OBJECT);
1683 }
1684 }
1685
1686 out:
1687 if (buf != NULL)
1688 arc_buf_destroy(buf, private);
1689 scan_prefetch_ctx_rele(spc, scn);
1690 }
1691
1692 /* ARGSUSED */
1693 static void
1694 dsl_scan_prefetch_thread(void *arg)
1695 {
1696 dsl_scan_t *scn = arg;
1697 spa_t *spa = scn->scn_dp->dp_spa;
1698 scan_prefetch_issue_ctx_t *spic;
1699
1700 /* loop until we are told to stop */
1701 while (!scn->scn_prefetch_stop) {
1702 arc_flags_t flags = ARC_FLAG_NOWAIT |
1703 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1704 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1705
1706 mutex_enter(&spa->spa_scrub_lock);
1707
1708 /*
1709 * Wait until we have an IO to issue and are not above our
1710 * maximum in flight limit.
1711 */
1712 while (!scn->scn_prefetch_stop &&
1713 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1714 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1715 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1716 }
1717
1718 /* recheck if we should stop since we waited for the cv */
1719 if (scn->scn_prefetch_stop) {
1720 mutex_exit(&spa->spa_scrub_lock);
1721 break;
1722 }
1723
1724 /* remove the prefetch IO from the tree */
1725 spic = avl_first(&scn->scn_prefetch_queue);
1726 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1727 avl_remove(&scn->scn_prefetch_queue, spic);
1728
1729 mutex_exit(&spa->spa_scrub_lock);
1730
1731 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1732 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1733 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1734 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1735 zio_flags |= ZIO_FLAG_RAW;
1736 }
1737
1738 /* issue the prefetch asynchronously */
1739 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1740 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1741 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1742
1743 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1744 }
1745
1746 ASSERT(scn->scn_prefetch_stop);
1747
1748 /* free any prefetches we didn't get to complete */
1749 mutex_enter(&spa->spa_scrub_lock);
1750 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1751 avl_remove(&scn->scn_prefetch_queue, spic);
1752 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1753 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1754 }
1755 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1756 mutex_exit(&spa->spa_scrub_lock);
1757 }
1758
1759 static boolean_t
1760 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1761 const zbookmark_phys_t *zb)
1762 {
1763 /*
1764 * We never skip over user/group accounting objects (obj<0)
1765 */
1766 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1767 (int64_t)zb->zb_object >= 0) {
1768 /*
1769 * If we already visited this bp & everything below (in
1770 * a prior txg sync), don't bother doing it again.
1771 */
1772 if (zbookmark_subtree_completed(dnp, zb,
1773 &scn->scn_phys.scn_bookmark))
1774 return (B_TRUE);
1775
1776 /*
1777 * If we found the block we're trying to resume from, or
1778 * we went past it to a different object, zero it out to
1779 * indicate that it's OK to start checking for suspending
1780 * again.
1781 */
1782 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1783 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1784 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1785 (longlong_t)zb->zb_objset,
1786 (longlong_t)zb->zb_object,
1787 (longlong_t)zb->zb_level,
1788 (longlong_t)zb->zb_blkid);
1789 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1790 }
1791 }
1792 return (B_FALSE);
1793 }
1794
1795 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1796 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1797 dmu_objset_type_t ostype, dmu_tx_t *tx);
1798 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1799 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1800 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1801
1802 /*
1803 * Return nonzero on i/o error.
1804 * Return new buf to write out in *bufp.
1805 */
1806 inline __attribute__((always_inline)) static int
1807 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1808 dnode_phys_t *dnp, const blkptr_t *bp,
1809 const zbookmark_phys_t *zb, dmu_tx_t *tx)
1810 {
1811 dsl_pool_t *dp = scn->scn_dp;
1812 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1813 int err;
1814
1815 ASSERT(!BP_IS_REDACTED(bp));
1816
1817 if (BP_GET_LEVEL(bp) > 0) {
1818 arc_flags_t flags = ARC_FLAG_WAIT;
1819 int i;
1820 blkptr_t *cbp;
1821 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1822 arc_buf_t *buf;
1823
1824 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1825 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1826 if (err) {
1827 scn->scn_phys.scn_errors++;
1828 return (err);
1829 }
1830 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1831 zbookmark_phys_t czb;
1832
1833 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1834 zb->zb_level - 1,
1835 zb->zb_blkid * epb + i);
1836 dsl_scan_visitbp(cbp, &czb, dnp,
1837 ds, scn, ostype, tx);
1838 }
1839 arc_buf_destroy(buf, &buf);
1840 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1841 arc_flags_t flags = ARC_FLAG_WAIT;
1842 dnode_phys_t *cdnp;
1843 int i;
1844 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1845 arc_buf_t *buf;
1846
1847 if (BP_IS_PROTECTED(bp)) {
1848 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1849 zio_flags |= ZIO_FLAG_RAW;
1850 }
1851
1852 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1853 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1854 if (err) {
1855 scn->scn_phys.scn_errors++;
1856 return (err);
1857 }
1858 for (i = 0, cdnp = buf->b_data; i < epb;
1859 i += cdnp->dn_extra_slots + 1,
1860 cdnp += cdnp->dn_extra_slots + 1) {
1861 dsl_scan_visitdnode(scn, ds, ostype,
1862 cdnp, zb->zb_blkid * epb + i, tx);
1863 }
1864
1865 arc_buf_destroy(buf, &buf);
1866 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1867 arc_flags_t flags = ARC_FLAG_WAIT;
1868 objset_phys_t *osp;
1869 arc_buf_t *buf;
1870
1871 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1872 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1873 if (err) {
1874 scn->scn_phys.scn_errors++;
1875 return (err);
1876 }
1877
1878 osp = buf->b_data;
1879
1880 dsl_scan_visitdnode(scn, ds, osp->os_type,
1881 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1882
1883 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1884 /*
1885 * We also always visit user/group/project accounting
1886 * objects, and never skip them, even if we are
1887 * suspending. This is necessary so that the
1888 * space deltas from this txg get integrated.
1889 */
1890 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1891 dsl_scan_visitdnode(scn, ds, osp->os_type,
1892 &osp->os_projectused_dnode,
1893 DMU_PROJECTUSED_OBJECT, tx);
1894 dsl_scan_visitdnode(scn, ds, osp->os_type,
1895 &osp->os_groupused_dnode,
1896 DMU_GROUPUSED_OBJECT, tx);
1897 dsl_scan_visitdnode(scn, ds, osp->os_type,
1898 &osp->os_userused_dnode,
1899 DMU_USERUSED_OBJECT, tx);
1900 }
1901 arc_buf_destroy(buf, &buf);
1902 }
1903
1904 return (0);
1905 }
1906
1907 inline __attribute__((always_inline)) static void
1908 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1909 dmu_objset_type_t ostype, dnode_phys_t *dnp,
1910 uint64_t object, dmu_tx_t *tx)
1911 {
1912 int j;
1913
1914 for (j = 0; j < dnp->dn_nblkptr; j++) {
1915 zbookmark_phys_t czb;
1916
1917 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1918 dnp->dn_nlevels - 1, j);
1919 dsl_scan_visitbp(&dnp->dn_blkptr[j],
1920 &czb, dnp, ds, scn, ostype, tx);
1921 }
1922
1923 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1924 zbookmark_phys_t czb;
1925 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1926 0, DMU_SPILL_BLKID);
1927 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1928 &czb, dnp, ds, scn, ostype, tx);
1929 }
1930 }
1931
1932 /*
1933 * The arguments are in this order because mdb can only print the
1934 * first 5; we want them to be useful.
1935 */
1936 static void
1937 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1938 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1939 dmu_objset_type_t ostype, dmu_tx_t *tx)
1940 {
1941 dsl_pool_t *dp = scn->scn_dp;
1942 blkptr_t *bp_toread = NULL;
1943
1944 if (dsl_scan_check_suspend(scn, zb))
1945 return;
1946
1947 if (dsl_scan_check_resume(scn, dnp, zb))
1948 return;
1949
1950 scn->scn_visited_this_txg++;
1951
1952 /*
1953 * This debugging is commented out to conserve stack space. This
1954 * function is called recursively and the debugging adds several
1955 * bytes to the stack for each call. It can be commented back in
1956 * if required to debug an issue in dsl_scan_visitbp().
1957 *
1958 * dprintf_bp(bp,
1959 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1960 * ds, ds ? ds->ds_object : 0,
1961 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1962 * bp);
1963 */
1964
1965 if (BP_IS_HOLE(bp)) {
1966 scn->scn_holes_this_txg++;
1967 return;
1968 }
1969
1970 if (BP_IS_REDACTED(bp)) {
1971 ASSERT(dsl_dataset_feature_is_active(ds,
1972 SPA_FEATURE_REDACTED_DATASETS));
1973 return;
1974 }
1975
1976 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1977 scn->scn_lt_min_this_txg++;
1978 return;
1979 }
1980
1981 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1982 *bp_toread = *bp;
1983
1984 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1985 goto out;
1986
1987 /*
1988 * If dsl_scan_ddt() has already visited this block, it will have
1989 * already done any translations or scrubbing, so don't call the
1990 * callback again.
1991 */
1992 if (ddt_class_contains(dp->dp_spa,
1993 scn->scn_phys.scn_ddt_class_max, bp)) {
1994 scn->scn_ddt_contained_this_txg++;
1995 goto out;
1996 }
1997
1998 /*
1999 * If this block is from the future (after cur_max_txg), then we
2000 * are doing this on behalf of a deleted snapshot, and we will
2001 * revisit the future block on the next pass of this dataset.
2002 * Don't scan it now unless we need to because something
2003 * under it was modified.
2004 */
2005 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2006 scn->scn_gt_max_this_txg++;
2007 goto out;
2008 }
2009
2010 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2011
2012 out:
2013 kmem_free(bp_toread, sizeof (blkptr_t));
2014 }
2015
2016 static void
2017 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2018 dmu_tx_t *tx)
2019 {
2020 zbookmark_phys_t zb;
2021 scan_prefetch_ctx_t *spc;
2022
2023 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2024 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2025
2026 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2027 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2028 zb.zb_objset, 0, 0, 0);
2029 } else {
2030 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2031 }
2032
2033 scn->scn_objsets_visited_this_txg++;
2034
2035 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2036 dsl_scan_prefetch(spc, bp, &zb);
2037 scan_prefetch_ctx_rele(spc, FTAG);
2038
2039 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2040
2041 dprintf_ds(ds, "finished scan%s", "");
2042 }
2043
2044 static void
2045 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2046 {
2047 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2048 if (ds->ds_is_snapshot) {
2049 /*
2050 * Note:
2051 * - scn_cur_{min,max}_txg stays the same.
2052 * - Setting the flag is not really necessary if
2053 * scn_cur_max_txg == scn_max_txg, because there
2054 * is nothing after this snapshot that we care
2055 * about. However, we set it anyway and then
2056 * ignore it when we retraverse it in
2057 * dsl_scan_visitds().
2058 */
2059 scn_phys->scn_bookmark.zb_objset =
2060 dsl_dataset_phys(ds)->ds_next_snap_obj;
2061 zfs_dbgmsg("destroying ds %llu; currently traversing; "
2062 "reset zb_objset to %llu",
2063 (u_longlong_t)ds->ds_object,
2064 (u_longlong_t)dsl_dataset_phys(ds)->
2065 ds_next_snap_obj);
2066 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2067 } else {
2068 SET_BOOKMARK(&scn_phys->scn_bookmark,
2069 ZB_DESTROYED_OBJSET, 0, 0, 0);
2070 zfs_dbgmsg("destroying ds %llu; currently traversing; "
2071 "reset bookmark to -1,0,0,0",
2072 (u_longlong_t)ds->ds_object);
2073 }
2074 }
2075 }
2076
2077 /*
2078 * Invoked when a dataset is destroyed. We need to make sure that:
2079 *
2080 * 1) If it is the dataset that was currently being scanned, we write
2081 * a new dsl_scan_phys_t and marking the objset reference in it
2082 * as destroyed.
2083 * 2) Remove it from the work queue, if it was present.
2084 *
2085 * If the dataset was actually a snapshot, instead of marking the dataset
2086 * as destroyed, we instead substitute the next snapshot in line.
2087 */
2088 void
2089 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2090 {
2091 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2092 dsl_scan_t *scn = dp->dp_scan;
2093 uint64_t mintxg;
2094
2095 if (!dsl_scan_is_running(scn))
2096 return;
2097
2098 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2099 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2100
2101 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2102 scan_ds_queue_remove(scn, ds->ds_object);
2103 if (ds->ds_is_snapshot)
2104 scan_ds_queue_insert(scn,
2105 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2106 }
2107
2108 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2109 ds->ds_object, &mintxg) == 0) {
2110 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2111 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2112 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2113 if (ds->ds_is_snapshot) {
2114 /*
2115 * We keep the same mintxg; it could be >
2116 * ds_creation_txg if the previous snapshot was
2117 * deleted too.
2118 */
2119 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2120 scn->scn_phys.scn_queue_obj,
2121 dsl_dataset_phys(ds)->ds_next_snap_obj,
2122 mintxg, tx) == 0);
2123 zfs_dbgmsg("destroying ds %llu; in queue; "
2124 "replacing with %llu",
2125 (u_longlong_t)ds->ds_object,
2126 (u_longlong_t)dsl_dataset_phys(ds)->
2127 ds_next_snap_obj);
2128 } else {
2129 zfs_dbgmsg("destroying ds %llu; in queue; removing",
2130 (u_longlong_t)ds->ds_object);
2131 }
2132 }
2133
2134 /*
2135 * dsl_scan_sync() should be called after this, and should sync
2136 * out our changed state, but just to be safe, do it here.
2137 */
2138 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2139 }
2140
2141 static void
2142 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2143 {
2144 if (scn_bookmark->zb_objset == ds->ds_object) {
2145 scn_bookmark->zb_objset =
2146 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2147 zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2148 "reset zb_objset to %llu",
2149 (u_longlong_t)ds->ds_object,
2150 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2151 }
2152 }
2153
2154 /*
2155 * Called when a dataset is snapshotted. If we were currently traversing
2156 * this snapshot, we reset our bookmark to point at the newly created
2157 * snapshot. We also modify our work queue to remove the old snapshot and
2158 * replace with the new one.
2159 */
2160 void
2161 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2162 {
2163 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2164 dsl_scan_t *scn = dp->dp_scan;
2165 uint64_t mintxg;
2166
2167 if (!dsl_scan_is_running(scn))
2168 return;
2169
2170 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2171
2172 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2173 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2174
2175 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2176 scan_ds_queue_remove(scn, ds->ds_object);
2177 scan_ds_queue_insert(scn,
2178 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2179 }
2180
2181 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2182 ds->ds_object, &mintxg) == 0) {
2183 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2184 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2185 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2186 scn->scn_phys.scn_queue_obj,
2187 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2188 zfs_dbgmsg("snapshotting ds %llu; in queue; "
2189 "replacing with %llu",
2190 (u_longlong_t)ds->ds_object,
2191 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2192 }
2193
2194 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2195 }
2196
2197 static void
2198 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2199 zbookmark_phys_t *scn_bookmark)
2200 {
2201 if (scn_bookmark->zb_objset == ds1->ds_object) {
2202 scn_bookmark->zb_objset = ds2->ds_object;
2203 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2204 "reset zb_objset to %llu",
2205 (u_longlong_t)ds1->ds_object,
2206 (u_longlong_t)ds2->ds_object);
2207 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2208 scn_bookmark->zb_objset = ds1->ds_object;
2209 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2210 "reset zb_objset to %llu",
2211 (u_longlong_t)ds2->ds_object,
2212 (u_longlong_t)ds1->ds_object);
2213 }
2214 }
2215
2216 /*
2217 * Called when an origin dataset and its clone are swapped. If we were
2218 * currently traversing the dataset, we need to switch to traversing the
2219 * newly promoted clone.
2220 */
2221 void
2222 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2223 {
2224 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2225 dsl_scan_t *scn = dp->dp_scan;
2226 uint64_t mintxg1, mintxg2;
2227 boolean_t ds1_queued, ds2_queued;
2228
2229 if (!dsl_scan_is_running(scn))
2230 return;
2231
2232 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2233 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2234
2235 /*
2236 * Handle the in-memory scan queue.
2237 */
2238 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2239 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2240
2241 /* Sanity checking. */
2242 if (ds1_queued) {
2243 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2244 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2245 }
2246 if (ds2_queued) {
2247 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2248 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2249 }
2250
2251 if (ds1_queued && ds2_queued) {
2252 /*
2253 * If both are queued, we don't need to do anything.
2254 * The swapping code below would not handle this case correctly,
2255 * since we can't insert ds2 if it is already there. That's
2256 * because scan_ds_queue_insert() prohibits a duplicate insert
2257 * and panics.
2258 */
2259 } else if (ds1_queued) {
2260 scan_ds_queue_remove(scn, ds1->ds_object);
2261 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2262 } else if (ds2_queued) {
2263 scan_ds_queue_remove(scn, ds2->ds_object);
2264 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2265 }
2266
2267 /*
2268 * Handle the on-disk scan queue.
2269 * The on-disk state is an out-of-date version of the in-memory state,
2270 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2271 * be different. Therefore we need to apply the swap logic to the
2272 * on-disk state independently of the in-memory state.
2273 */
2274 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2275 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2276 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2277 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2278
2279 /* Sanity checking. */
2280 if (ds1_queued) {
2281 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2282 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2283 }
2284 if (ds2_queued) {
2285 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2286 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2287 }
2288
2289 if (ds1_queued && ds2_queued) {
2290 /*
2291 * If both are queued, we don't need to do anything.
2292 * Alternatively, we could check for EEXIST from
2293 * zap_add_int_key() and back out to the original state, but
2294 * that would be more work than checking for this case upfront.
2295 */
2296 } else if (ds1_queued) {
2297 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2298 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2299 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2300 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2301 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2302 "replacing with %llu",
2303 (u_longlong_t)ds1->ds_object,
2304 (u_longlong_t)ds2->ds_object);
2305 } else if (ds2_queued) {
2306 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2307 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2308 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2309 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2310 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2311 "replacing with %llu",
2312 (u_longlong_t)ds2->ds_object,
2313 (u_longlong_t)ds1->ds_object);
2314 }
2315
2316 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2317 }
2318
2319 /* ARGSUSED */
2320 static int
2321 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2322 {
2323 uint64_t originobj = *(uint64_t *)arg;
2324 dsl_dataset_t *ds;
2325 int err;
2326 dsl_scan_t *scn = dp->dp_scan;
2327
2328 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2329 return (0);
2330
2331 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2332 if (err)
2333 return (err);
2334
2335 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2336 dsl_dataset_t *prev;
2337 err = dsl_dataset_hold_obj(dp,
2338 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2339
2340 dsl_dataset_rele(ds, FTAG);
2341 if (err)
2342 return (err);
2343 ds = prev;
2344 }
2345 scan_ds_queue_insert(scn, ds->ds_object,
2346 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2347 dsl_dataset_rele(ds, FTAG);
2348 return (0);
2349 }
2350
2351 static void
2352 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2353 {
2354 dsl_pool_t *dp = scn->scn_dp;
2355 dsl_dataset_t *ds;
2356
2357 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2358
2359 if (scn->scn_phys.scn_cur_min_txg >=
2360 scn->scn_phys.scn_max_txg) {
2361 /*
2362 * This can happen if this snapshot was created after the
2363 * scan started, and we already completed a previous snapshot
2364 * that was created after the scan started. This snapshot
2365 * only references blocks with:
2366 *
2367 * birth < our ds_creation_txg
2368 * cur_min_txg is no less than ds_creation_txg.
2369 * We have already visited these blocks.
2370 * or
2371 * birth > scn_max_txg
2372 * The scan requested not to visit these blocks.
2373 *
2374 * Subsequent snapshots (and clones) can reference our
2375 * blocks, or blocks with even higher birth times.
2376 * Therefore we do not need to visit them either,
2377 * so we do not add them to the work queue.
2378 *
2379 * Note that checking for cur_min_txg >= cur_max_txg
2380 * is not sufficient, because in that case we may need to
2381 * visit subsequent snapshots. This happens when min_txg > 0,
2382 * which raises cur_min_txg. In this case we will visit
2383 * this dataset but skip all of its blocks, because the
2384 * rootbp's birth time is < cur_min_txg. Then we will
2385 * add the next snapshots/clones to the work queue.
2386 */
2387 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2388 dsl_dataset_name(ds, dsname);
2389 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2390 "cur_min_txg (%llu) >= max_txg (%llu)",
2391 (longlong_t)dsobj, dsname,
2392 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2393 (longlong_t)scn->scn_phys.scn_max_txg);
2394 kmem_free(dsname, MAXNAMELEN);
2395
2396 goto out;
2397 }
2398
2399 /*
2400 * Only the ZIL in the head (non-snapshot) is valid. Even though
2401 * snapshots can have ZIL block pointers (which may be the same
2402 * BP as in the head), they must be ignored. In addition, $ORIGIN
2403 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2404 * need to look for a ZIL in it either. So we traverse the ZIL here,
2405 * rather than in scan_recurse(), because the regular snapshot
2406 * block-sharing rules don't apply to it.
2407 */
2408 if (!dsl_dataset_is_snapshot(ds) &&
2409 (dp->dp_origin_snap == NULL ||
2410 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2411 objset_t *os;
2412 if (dmu_objset_from_ds(ds, &os) != 0) {
2413 goto out;
2414 }
2415 dsl_scan_zil(dp, &os->os_zil_header);
2416 }
2417
2418 /*
2419 * Iterate over the bps in this ds.
2420 */
2421 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2422 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2423 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2424 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2425
2426 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2427 dsl_dataset_name(ds, dsname);
2428 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2429 "suspending=%u",
2430 (longlong_t)dsobj, dsname,
2431 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2432 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2433 (int)scn->scn_suspending);
2434 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2435
2436 if (scn->scn_suspending)
2437 goto out;
2438
2439 /*
2440 * We've finished this pass over this dataset.
2441 */
2442
2443 /*
2444 * If we did not completely visit this dataset, do another pass.
2445 */
2446 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2447 zfs_dbgmsg("incomplete pass; visiting again");
2448 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2449 scan_ds_queue_insert(scn, ds->ds_object,
2450 scn->scn_phys.scn_cur_max_txg);
2451 goto out;
2452 }
2453
2454 /*
2455 * Add descendant datasets to work queue.
2456 */
2457 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2458 scan_ds_queue_insert(scn,
2459 dsl_dataset_phys(ds)->ds_next_snap_obj,
2460 dsl_dataset_phys(ds)->ds_creation_txg);
2461 }
2462 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2463 boolean_t usenext = B_FALSE;
2464 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2465 uint64_t count;
2466 /*
2467 * A bug in a previous version of the code could
2468 * cause upgrade_clones_cb() to not set
2469 * ds_next_snap_obj when it should, leading to a
2470 * missing entry. Therefore we can only use the
2471 * next_clones_obj when its count is correct.
2472 */
2473 int err = zap_count(dp->dp_meta_objset,
2474 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2475 if (err == 0 &&
2476 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2477 usenext = B_TRUE;
2478 }
2479
2480 if (usenext) {
2481 zap_cursor_t zc;
2482 zap_attribute_t za;
2483 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2484 dsl_dataset_phys(ds)->ds_next_clones_obj);
2485 zap_cursor_retrieve(&zc, &za) == 0;
2486 (void) zap_cursor_advance(&zc)) {
2487 scan_ds_queue_insert(scn,
2488 zfs_strtonum(za.za_name, NULL),
2489 dsl_dataset_phys(ds)->ds_creation_txg);
2490 }
2491 zap_cursor_fini(&zc);
2492 } else {
2493 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2494 enqueue_clones_cb, &ds->ds_object,
2495 DS_FIND_CHILDREN));
2496 }
2497 }
2498
2499 out:
2500 dsl_dataset_rele(ds, FTAG);
2501 }
2502
2503 /* ARGSUSED */
2504 static int
2505 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2506 {
2507 dsl_dataset_t *ds;
2508 int err;
2509 dsl_scan_t *scn = dp->dp_scan;
2510
2511 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2512 if (err)
2513 return (err);
2514
2515 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2516 dsl_dataset_t *prev;
2517 err = dsl_dataset_hold_obj(dp,
2518 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2519 if (err) {
2520 dsl_dataset_rele(ds, FTAG);
2521 return (err);
2522 }
2523
2524 /*
2525 * If this is a clone, we don't need to worry about it for now.
2526 */
2527 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2528 dsl_dataset_rele(ds, FTAG);
2529 dsl_dataset_rele(prev, FTAG);
2530 return (0);
2531 }
2532 dsl_dataset_rele(ds, FTAG);
2533 ds = prev;
2534 }
2535
2536 scan_ds_queue_insert(scn, ds->ds_object,
2537 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2538 dsl_dataset_rele(ds, FTAG);
2539 return (0);
2540 }
2541
2542 /* ARGSUSED */
2543 void
2544 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2545 ddt_entry_t *dde, dmu_tx_t *tx)
2546 {
2547 const ddt_key_t *ddk = &dde->dde_key;
2548 ddt_phys_t *ddp = dde->dde_phys;
2549 blkptr_t bp;
2550 zbookmark_phys_t zb = { 0 };
2551 int p;
2552
2553 if (!dsl_scan_is_running(scn))
2554 return;
2555
2556 /*
2557 * This function is special because it is the only thing
2558 * that can add scan_io_t's to the vdev scan queues from
2559 * outside dsl_scan_sync(). For the most part this is ok
2560 * as long as it is called from within syncing context.
2561 * However, dsl_scan_sync() expects that no new sio's will
2562 * be added between when all the work for a scan is done
2563 * and the next txg when the scan is actually marked as
2564 * completed. This check ensures we do not issue new sio's
2565 * during this period.
2566 */
2567 if (scn->scn_done_txg != 0)
2568 return;
2569
2570 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2571 if (ddp->ddp_phys_birth == 0 ||
2572 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2573 continue;
2574 ddt_bp_create(checksum, ddk, ddp, &bp);
2575
2576 scn->scn_visited_this_txg++;
2577 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2578 }
2579 }
2580
2581 /*
2582 * Scrub/dedup interaction.
2583 *
2584 * If there are N references to a deduped block, we don't want to scrub it
2585 * N times -- ideally, we should scrub it exactly once.
2586 *
2587 * We leverage the fact that the dde's replication class (enum ddt_class)
2588 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2589 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2590 *
2591 * To prevent excess scrubbing, the scrub begins by walking the DDT
2592 * to find all blocks with refcnt > 1, and scrubs each of these once.
2593 * Since there are two replication classes which contain blocks with
2594 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2595 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2596 *
2597 * There would be nothing more to say if a block's refcnt couldn't change
2598 * during a scrub, but of course it can so we must account for changes
2599 * in a block's replication class.
2600 *
2601 * Here's an example of what can occur:
2602 *
2603 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2604 * when visited during the top-down scrub phase, it will be scrubbed twice.
2605 * This negates our scrub optimization, but is otherwise harmless.
2606 *
2607 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2608 * on each visit during the top-down scrub phase, it will never be scrubbed.
2609 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2610 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2611 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2612 * while a scrub is in progress, it scrubs the block right then.
2613 */
2614 static void
2615 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2616 {
2617 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2618 ddt_entry_t dde;
2619 int error;
2620 uint64_t n = 0;
2621
2622 bzero(&dde, sizeof (ddt_entry_t));
2623
2624 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2625 ddt_t *ddt;
2626
2627 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2628 break;
2629 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2630 (longlong_t)ddb->ddb_class,
2631 (longlong_t)ddb->ddb_type,
2632 (longlong_t)ddb->ddb_checksum,
2633 (longlong_t)ddb->ddb_cursor);
2634
2635 /* There should be no pending changes to the dedup table */
2636 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2637 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2638
2639 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2640 n++;
2641
2642 if (dsl_scan_check_suspend(scn, NULL))
2643 break;
2644 }
2645
2646 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2647 "suspending=%u", (longlong_t)n,
2648 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2649
2650 ASSERT(error == 0 || error == ENOENT);
2651 ASSERT(error != ENOENT ||
2652 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2653 }
2654
2655 static uint64_t
2656 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2657 {
2658 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2659 if (ds->ds_is_snapshot)
2660 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2661 return (smt);
2662 }
2663
2664 static void
2665 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2666 {
2667 scan_ds_t *sds;
2668 dsl_pool_t *dp = scn->scn_dp;
2669
2670 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2671 scn->scn_phys.scn_ddt_class_max) {
2672 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2673 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2674 dsl_scan_ddt(scn, tx);
2675 if (scn->scn_suspending)
2676 return;
2677 }
2678
2679 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2680 /* First do the MOS & ORIGIN */
2681
2682 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2683 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2684 dsl_scan_visit_rootbp(scn, NULL,
2685 &dp->dp_meta_rootbp, tx);
2686 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2687 if (scn->scn_suspending)
2688 return;
2689
2690 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2691 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2692 enqueue_cb, NULL, DS_FIND_CHILDREN));
2693 } else {
2694 dsl_scan_visitds(scn,
2695 dp->dp_origin_snap->ds_object, tx);
2696 }
2697 ASSERT(!scn->scn_suspending);
2698 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2699 ZB_DESTROYED_OBJSET) {
2700 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2701 /*
2702 * If we were suspended, continue from here. Note if the
2703 * ds we were suspended on was deleted, the zb_objset may
2704 * be -1, so we will skip this and find a new objset
2705 * below.
2706 */
2707 dsl_scan_visitds(scn, dsobj, tx);
2708 if (scn->scn_suspending)
2709 return;
2710 }
2711
2712 /*
2713 * In case we suspended right at the end of the ds, zero the
2714 * bookmark so we don't think that we're still trying to resume.
2715 */
2716 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2717
2718 /*
2719 * Keep pulling things out of the dataset avl queue. Updates to the
2720 * persistent zap-object-as-queue happen only at checkpoints.
2721 */
2722 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2723 dsl_dataset_t *ds;
2724 uint64_t dsobj = sds->sds_dsobj;
2725 uint64_t txg = sds->sds_txg;
2726
2727 /* dequeue and free the ds from the queue */
2728 scan_ds_queue_remove(scn, dsobj);
2729 sds = NULL;
2730
2731 /* set up min / max txg */
2732 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2733 if (txg != 0) {
2734 scn->scn_phys.scn_cur_min_txg =
2735 MAX(scn->scn_phys.scn_min_txg, txg);
2736 } else {
2737 scn->scn_phys.scn_cur_min_txg =
2738 MAX(scn->scn_phys.scn_min_txg,
2739 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2740 }
2741 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2742 dsl_dataset_rele(ds, FTAG);
2743
2744 dsl_scan_visitds(scn, dsobj, tx);
2745 if (scn->scn_suspending)
2746 return;
2747 }
2748
2749 /* No more objsets to fetch, we're done */
2750 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2751 ASSERT0(scn->scn_suspending);
2752 }
2753
2754 static uint64_t
2755 dsl_scan_count_leaves(vdev_t *vd)
2756 {
2757 uint64_t i, leaves = 0;
2758
2759 /* we only count leaves that belong to the main pool and are readable */
2760 if (vd->vdev_islog || vd->vdev_isspare ||
2761 vd->vdev_isl2cache || !vdev_readable(vd))
2762 return (0);
2763
2764 if (vd->vdev_ops->vdev_op_leaf)
2765 return (1);
2766
2767 for (i = 0; i < vd->vdev_children; i++) {
2768 leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2769 }
2770
2771 return (leaves);
2772 }
2773
2774 static void
2775 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2776 {
2777 int i;
2778 uint64_t cur_size = 0;
2779
2780 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2781 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2782 }
2783
2784 q->q_total_zio_size_this_txg += cur_size;
2785 q->q_zios_this_txg++;
2786 }
2787
2788 static void
2789 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2790 uint64_t end)
2791 {
2792 q->q_total_seg_size_this_txg += end - start;
2793 q->q_segs_this_txg++;
2794 }
2795
2796 static boolean_t
2797 scan_io_queue_check_suspend(dsl_scan_t *scn)
2798 {
2799 /* See comment in dsl_scan_check_suspend() */
2800 uint64_t curr_time_ns = gethrtime();
2801 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2802 uint64_t sync_time_ns = curr_time_ns -
2803 scn->scn_dp->dp_spa->spa_sync_starttime;
2804 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2805 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2806 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2807
2808 return ((NSEC2MSEC(scan_time_ns) > mintime &&
2809 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2810 txg_sync_waiting(scn->scn_dp) ||
2811 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2812 spa_shutting_down(scn->scn_dp->dp_spa));
2813 }
2814
2815 /*
2816 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2817 * disk. This consumes the io_list and frees the scan_io_t's. This is
2818 * called when emptying queues, either when we're up against the memory
2819 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2820 * processing the list before we finished. Any sios that were not issued
2821 * will remain in the io_list.
2822 */
2823 static boolean_t
2824 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2825 {
2826 dsl_scan_t *scn = queue->q_scn;
2827 scan_io_t *sio;
2828 int64_t bytes_issued = 0;
2829 boolean_t suspended = B_FALSE;
2830
2831 while ((sio = list_head(io_list)) != NULL) {
2832 blkptr_t bp;
2833
2834 if (scan_io_queue_check_suspend(scn)) {
2835 suspended = B_TRUE;
2836 break;
2837 }
2838
2839 sio2bp(sio, &bp);
2840 bytes_issued += SIO_GET_ASIZE(sio);
2841 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2842 &sio->sio_zb, queue);
2843 (void) list_remove_head(io_list);
2844 scan_io_queues_update_zio_stats(queue, &bp);
2845 sio_free(sio);
2846 }
2847
2848 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2849
2850 return (suspended);
2851 }
2852
2853 /*
2854 * This function removes sios from an IO queue which reside within a given
2855 * range_seg_t and inserts them (in offset order) into a list. Note that
2856 * we only ever return a maximum of 32 sios at once. If there are more sios
2857 * to process within this segment that did not make it onto the list we
2858 * return B_TRUE and otherwise B_FALSE.
2859 */
2860 static boolean_t
2861 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2862 {
2863 scan_io_t *srch_sio, *sio, *next_sio;
2864 avl_index_t idx;
2865 uint_t num_sios = 0;
2866 int64_t bytes_issued = 0;
2867
2868 ASSERT(rs != NULL);
2869 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2870
2871 srch_sio = sio_alloc(1);
2872 srch_sio->sio_nr_dvas = 1;
2873 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2874
2875 /*
2876 * The exact start of the extent might not contain any matching zios,
2877 * so if that's the case, examine the next one in the tree.
2878 */
2879 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2880 sio_free(srch_sio);
2881
2882 if (sio == NULL)
2883 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2884
2885 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2886 queue->q_exts_by_addr) && num_sios <= 32) {
2887 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2888 queue->q_exts_by_addr));
2889 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2890 queue->q_exts_by_addr));
2891
2892 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2893 avl_remove(&queue->q_sios_by_addr, sio);
2894 queue->q_sio_memused -= SIO_GET_MUSED(sio);
2895
2896 bytes_issued += SIO_GET_ASIZE(sio);
2897 num_sios++;
2898 list_insert_tail(list, sio);
2899 sio = next_sio;
2900 }
2901
2902 /*
2903 * We limit the number of sios we process at once to 32 to avoid
2904 * biting off more than we can chew. If we didn't take everything
2905 * in the segment we update it to reflect the work we were able to
2906 * complete. Otherwise, we remove it from the range tree entirely.
2907 */
2908 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2909 queue->q_exts_by_addr)) {
2910 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2911 -bytes_issued);
2912 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2913 SIO_GET_OFFSET(sio), rs_get_end(rs,
2914 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2915
2916 return (B_TRUE);
2917 } else {
2918 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2919 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2920 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2921 return (B_FALSE);
2922 }
2923 }
2924
2925 /*
2926 * This is called from the queue emptying thread and selects the next
2927 * extent from which we are to issue I/Os. The behavior of this function
2928 * depends on the state of the scan, the current memory consumption and
2929 * whether or not we are performing a scan shutdown.
2930 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2931 * needs to perform a checkpoint
2932 * 2) We select the largest available extent if we are up against the
2933 * memory limit.
2934 * 3) Otherwise we don't select any extents.
2935 */
2936 static range_seg_t *
2937 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2938 {
2939 dsl_scan_t *scn = queue->q_scn;
2940 range_tree_t *rt = queue->q_exts_by_addr;
2941
2942 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2943 ASSERT(scn->scn_is_sorted);
2944
2945 /* handle tunable overrides */
2946 if (scn->scn_checkpointing || scn->scn_clearing) {
2947 if (zfs_scan_issue_strategy == 1) {
2948 return (range_tree_first(rt));
2949 } else if (zfs_scan_issue_strategy == 2) {
2950 /*
2951 * We need to get the original entry in the by_addr
2952 * tree so we can modify it.
2953 */
2954 range_seg_t *size_rs =
2955 zfs_btree_first(&queue->q_exts_by_size, NULL);
2956 if (size_rs == NULL)
2957 return (NULL);
2958 uint64_t start = rs_get_start(size_rs, rt);
2959 uint64_t size = rs_get_end(size_rs, rt) - start;
2960 range_seg_t *addr_rs = range_tree_find(rt, start,
2961 size);
2962 ASSERT3P(addr_rs, !=, NULL);
2963 ASSERT3U(rs_get_start(size_rs, rt), ==,
2964 rs_get_start(addr_rs, rt));
2965 ASSERT3U(rs_get_end(size_rs, rt), ==,
2966 rs_get_end(addr_rs, rt));
2967 return (addr_rs);
2968 }
2969 }
2970
2971 /*
2972 * During normal clearing, we want to issue our largest segments
2973 * first, keeping IO as sequential as possible, and leaving the
2974 * smaller extents for later with the hope that they might eventually
2975 * grow to larger sequential segments. However, when the scan is
2976 * checkpointing, no new extents will be added to the sorting queue,
2977 * so the way we are sorted now is as good as it will ever get.
2978 * In this case, we instead switch to issuing extents in LBA order.
2979 */
2980 if (scn->scn_checkpointing) {
2981 return (range_tree_first(rt));
2982 } else if (scn->scn_clearing) {
2983 /*
2984 * We need to get the original entry in the by_addr
2985 * tree so we can modify it.
2986 */
2987 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
2988 NULL);
2989 if (size_rs == NULL)
2990 return (NULL);
2991 uint64_t start = rs_get_start(size_rs, rt);
2992 uint64_t size = rs_get_end(size_rs, rt) - start;
2993 range_seg_t *addr_rs = range_tree_find(rt, start, size);
2994 ASSERT3P(addr_rs, !=, NULL);
2995 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
2996 rt));
2997 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
2998 return (addr_rs);
2999 } else {
3000 return (NULL);
3001 }
3002 }
3003
3004 static void
3005 scan_io_queues_run_one(void *arg)
3006 {
3007 dsl_scan_io_queue_t *queue = arg;
3008 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3009 boolean_t suspended = B_FALSE;
3010 range_seg_t *rs = NULL;
3011 scan_io_t *sio = NULL;
3012 list_t sio_list;
3013 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3014 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
3015
3016 ASSERT(queue->q_scn->scn_is_sorted);
3017
3018 list_create(&sio_list, sizeof (scan_io_t),
3019 offsetof(scan_io_t, sio_nodes.sio_list_node));
3020 mutex_enter(q_lock);
3021
3022 /* calculate maximum in-flight bytes for this txg (min 1MB) */
3023 queue->q_maxinflight_bytes =
3024 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3025
3026 /* reset per-queue scan statistics for this txg */
3027 queue->q_total_seg_size_this_txg = 0;
3028 queue->q_segs_this_txg = 0;
3029 queue->q_total_zio_size_this_txg = 0;
3030 queue->q_zios_this_txg = 0;
3031
3032 /* loop until we run out of time or sios */
3033 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3034 uint64_t seg_start = 0, seg_end = 0;
3035 boolean_t more_left = B_TRUE;
3036
3037 ASSERT(list_is_empty(&sio_list));
3038
3039 /* loop while we still have sios left to process in this rs */
3040 while (more_left) {
3041 scan_io_t *first_sio, *last_sio;
3042
3043 /*
3044 * We have selected which extent needs to be
3045 * processed next. Gather up the corresponding sios.
3046 */
3047 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3048 ASSERT(!list_is_empty(&sio_list));
3049 first_sio = list_head(&sio_list);
3050 last_sio = list_tail(&sio_list);
3051
3052 seg_end = SIO_GET_END_OFFSET(last_sio);
3053 if (seg_start == 0)
3054 seg_start = SIO_GET_OFFSET(first_sio);
3055
3056 /*
3057 * Issuing sios can take a long time so drop the
3058 * queue lock. The sio queue won't be updated by
3059 * other threads since we're in syncing context so
3060 * we can be sure that our trees will remain exactly
3061 * as we left them.
3062 */
3063 mutex_exit(q_lock);
3064 suspended = scan_io_queue_issue(queue, &sio_list);
3065 mutex_enter(q_lock);
3066
3067 if (suspended)
3068 break;
3069 }
3070
3071 /* update statistics for debugging purposes */
3072 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3073
3074 if (suspended)
3075 break;
3076 }
3077
3078 /*
3079 * If we were suspended in the middle of processing,
3080 * requeue any unfinished sios and exit.
3081 */
3082 while ((sio = list_head(&sio_list)) != NULL) {
3083 list_remove(&sio_list, sio);
3084 scan_io_queue_insert_impl(queue, sio);
3085 }
3086
3087 mutex_exit(q_lock);
3088 list_destroy(&sio_list);
3089 }
3090
3091 /*
3092 * Performs an emptying run on all scan queues in the pool. This just
3093 * punches out one thread per top-level vdev, each of which processes
3094 * only that vdev's scan queue. We can parallelize the I/O here because
3095 * we know that each queue's I/Os only affect its own top-level vdev.
3096 *
3097 * This function waits for the queue runs to complete, and must be
3098 * called from dsl_scan_sync (or in general, syncing context).
3099 */
3100 static void
3101 scan_io_queues_run(dsl_scan_t *scn)
3102 {
3103 spa_t *spa = scn->scn_dp->dp_spa;
3104
3105 ASSERT(scn->scn_is_sorted);
3106 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3107
3108 if (scn->scn_bytes_pending == 0)
3109 return;
3110
3111 if (scn->scn_taskq == NULL) {
3112 int nthreads = spa->spa_root_vdev->vdev_children;
3113
3114 /*
3115 * We need to make this taskq *always* execute as many
3116 * threads in parallel as we have top-level vdevs and no
3117 * less, otherwise strange serialization of the calls to
3118 * scan_io_queues_run_one can occur during spa_sync runs
3119 * and that significantly impacts performance.
3120 */
3121 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3122 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3123 }
3124
3125 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3126 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3127
3128 mutex_enter(&vd->vdev_scan_io_queue_lock);
3129 if (vd->vdev_scan_io_queue != NULL) {
3130 VERIFY(taskq_dispatch(scn->scn_taskq,
3131 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3132 TQ_SLEEP) != TASKQID_INVALID);
3133 }
3134 mutex_exit(&vd->vdev_scan_io_queue_lock);
3135 }
3136
3137 /*
3138 * Wait for the queues to finish issuing their IOs for this run
3139 * before we return. There may still be IOs in flight at this
3140 * point.
3141 */
3142 taskq_wait(scn->scn_taskq);
3143 }
3144
3145 static boolean_t
3146 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3147 {
3148 uint64_t elapsed_nanosecs;
3149
3150 if (zfs_recover)
3151 return (B_FALSE);
3152
3153 if (zfs_async_block_max_blocks != 0 &&
3154 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3155 return (B_TRUE);
3156 }
3157
3158 if (zfs_max_async_dedup_frees != 0 &&
3159 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3160 return (B_TRUE);
3161 }
3162
3163 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3164 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3165 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3166 txg_sync_waiting(scn->scn_dp)) ||
3167 spa_shutting_down(scn->scn_dp->dp_spa));
3168 }
3169
3170 static int
3171 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3172 {
3173 dsl_scan_t *scn = arg;
3174
3175 if (!scn->scn_is_bptree ||
3176 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3177 if (dsl_scan_async_block_should_pause(scn))
3178 return (SET_ERROR(ERESTART));
3179 }
3180
3181 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3182 dmu_tx_get_txg(tx), bp, 0));
3183 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3184 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3185 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3186 scn->scn_visited_this_txg++;
3187 if (BP_GET_DEDUP(bp))
3188 scn->scn_dedup_frees_this_txg++;
3189 return (0);
3190 }
3191
3192 static void
3193 dsl_scan_update_stats(dsl_scan_t *scn)
3194 {
3195 spa_t *spa = scn->scn_dp->dp_spa;
3196 uint64_t i;
3197 uint64_t seg_size_total = 0, zio_size_total = 0;
3198 uint64_t seg_count_total = 0, zio_count_total = 0;
3199
3200 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3201 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3202 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3203
3204 if (queue == NULL)
3205 continue;
3206
3207 seg_size_total += queue->q_total_seg_size_this_txg;
3208 zio_size_total += queue->q_total_zio_size_this_txg;
3209 seg_count_total += queue->q_segs_this_txg;
3210 zio_count_total += queue->q_zios_this_txg;
3211 }
3212
3213 if (seg_count_total == 0 || zio_count_total == 0) {
3214 scn->scn_avg_seg_size_this_txg = 0;
3215 scn->scn_avg_zio_size_this_txg = 0;
3216 scn->scn_segs_this_txg = 0;
3217 scn->scn_zios_this_txg = 0;
3218 return;
3219 }
3220
3221 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3222 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3223 scn->scn_segs_this_txg = seg_count_total;
3224 scn->scn_zios_this_txg = zio_count_total;
3225 }
3226
3227 static int
3228 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3229 dmu_tx_t *tx)
3230 {
3231 ASSERT(!bp_freed);
3232 return (dsl_scan_free_block_cb(arg, bp, tx));
3233 }
3234
3235 static int
3236 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3237 dmu_tx_t *tx)
3238 {
3239 ASSERT(!bp_freed);
3240 dsl_scan_t *scn = arg;
3241 const dva_t *dva = &bp->blk_dva[0];
3242
3243 if (dsl_scan_async_block_should_pause(scn))
3244 return (SET_ERROR(ERESTART));
3245
3246 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3247 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3248 DVA_GET_ASIZE(dva), tx);
3249 scn->scn_visited_this_txg++;
3250 return (0);
3251 }
3252
3253 boolean_t
3254 dsl_scan_active(dsl_scan_t *scn)
3255 {
3256 spa_t *spa = scn->scn_dp->dp_spa;
3257 uint64_t used = 0, comp, uncomp;
3258 boolean_t clones_left;
3259
3260 if (spa->spa_load_state != SPA_LOAD_NONE)
3261 return (B_FALSE);
3262 if (spa_shutting_down(spa))
3263 return (B_FALSE);
3264 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3265 (scn->scn_async_destroying && !scn->scn_async_stalled))
3266 return (B_TRUE);
3267
3268 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3269 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3270 &used, &comp, &uncomp);
3271 }
3272 clones_left = spa_livelist_delete_check(spa);
3273 return ((used != 0) || (clones_left));
3274 }
3275
3276 static boolean_t
3277 dsl_scan_check_deferred(vdev_t *vd)
3278 {
3279 boolean_t need_resilver = B_FALSE;
3280
3281 for (int c = 0; c < vd->vdev_children; c++) {
3282 need_resilver |=
3283 dsl_scan_check_deferred(vd->vdev_child[c]);
3284 }
3285
3286 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3287 !vd->vdev_ops->vdev_op_leaf)
3288 return (need_resilver);
3289
3290 if (!vd->vdev_resilver_deferred)
3291 need_resilver = B_TRUE;
3292
3293 return (need_resilver);
3294 }
3295
3296 static boolean_t
3297 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3298 uint64_t phys_birth)
3299 {
3300 vdev_t *vd;
3301
3302 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3303
3304 if (vd->vdev_ops == &vdev_indirect_ops) {
3305 /*
3306 * The indirect vdev can point to multiple
3307 * vdevs. For simplicity, always create
3308 * the resilver zio_t. zio_vdev_io_start()
3309 * will bypass the child resilver i/o's if
3310 * they are on vdevs that don't have DTL's.
3311 */
3312 return (B_TRUE);
3313 }
3314
3315 if (DVA_GET_GANG(dva)) {
3316 /*
3317 * Gang members may be spread across multiple
3318 * vdevs, so the best estimate we have is the
3319 * scrub range, which has already been checked.
3320 * XXX -- it would be better to change our
3321 * allocation policy to ensure that all
3322 * gang members reside on the same vdev.
3323 */
3324 return (B_TRUE);
3325 }
3326
3327 /*
3328 * Check if the txg falls within the range which must be
3329 * resilvered. DVAs outside this range can always be skipped.
3330 */
3331 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3332 return (B_FALSE);
3333
3334 /*
3335 * Check if the top-level vdev must resilver this offset.
3336 * When the offset does not intersect with a dirty leaf DTL
3337 * then it may be possible to skip the resilver IO. The psize
3338 * is provided instead of asize to simplify the check for RAIDZ.
3339 */
3340 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3341 return (B_FALSE);
3342
3343 /*
3344 * Check that this top-level vdev has a device under it which
3345 * is resilvering and is not deferred.
3346 */
3347 if (!dsl_scan_check_deferred(vd))
3348 return (B_FALSE);
3349
3350 return (B_TRUE);
3351 }
3352
3353 static int
3354 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3355 {
3356 dsl_scan_t *scn = dp->dp_scan;
3357 spa_t *spa = dp->dp_spa;
3358 int err = 0;
3359
3360 if (spa_suspend_async_destroy(spa))
3361 return (0);
3362
3363 if (zfs_free_bpobj_enabled &&
3364 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3365 scn->scn_is_bptree = B_FALSE;
3366 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3367 scn->scn_zio_root = zio_root(spa, NULL,
3368 NULL, ZIO_FLAG_MUSTSUCCEED);
3369 err = bpobj_iterate(&dp->dp_free_bpobj,
3370 bpobj_dsl_scan_free_block_cb, scn, tx);
3371 VERIFY0(zio_wait(scn->scn_zio_root));
3372 scn->scn_zio_root = NULL;
3373
3374 if (err != 0 && err != ERESTART)
3375 zfs_panic_recover("error %u from bpobj_iterate()", err);
3376 }
3377
3378 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3379 ASSERT(scn->scn_async_destroying);
3380 scn->scn_is_bptree = B_TRUE;
3381 scn->scn_zio_root = zio_root(spa, NULL,
3382 NULL, ZIO_FLAG_MUSTSUCCEED);
3383 err = bptree_iterate(dp->dp_meta_objset,
3384 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3385 VERIFY0(zio_wait(scn->scn_zio_root));
3386 scn->scn_zio_root = NULL;
3387
3388 if (err == EIO || err == ECKSUM) {
3389 err = 0;
3390 } else if (err != 0 && err != ERESTART) {
3391 zfs_panic_recover("error %u from "
3392 "traverse_dataset_destroyed()", err);
3393 }
3394
3395 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3396 /* finished; deactivate async destroy feature */
3397 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3398 ASSERT(!spa_feature_is_active(spa,
3399 SPA_FEATURE_ASYNC_DESTROY));
3400 VERIFY0(zap_remove(dp->dp_meta_objset,
3401 DMU_POOL_DIRECTORY_OBJECT,
3402 DMU_POOL_BPTREE_OBJ, tx));
3403 VERIFY0(bptree_free(dp->dp_meta_objset,
3404 dp->dp_bptree_obj, tx));
3405 dp->dp_bptree_obj = 0;
3406 scn->scn_async_destroying = B_FALSE;
3407 scn->scn_async_stalled = B_FALSE;
3408 } else {
3409 /*
3410 * If we didn't make progress, mark the async
3411 * destroy as stalled, so that we will not initiate
3412 * a spa_sync() on its behalf. Note that we only
3413 * check this if we are not finished, because if the
3414 * bptree had no blocks for us to visit, we can
3415 * finish without "making progress".
3416 */
3417 scn->scn_async_stalled =
3418 (scn->scn_visited_this_txg == 0);
3419 }
3420 }
3421 if (scn->scn_visited_this_txg) {
3422 zfs_dbgmsg("freed %llu blocks in %llums from "
3423 "free_bpobj/bptree txg %llu; err=%u",
3424 (longlong_t)scn->scn_visited_this_txg,
3425 (longlong_t)
3426 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3427 (longlong_t)tx->tx_txg, err);
3428 scn->scn_visited_this_txg = 0;
3429 scn->scn_dedup_frees_this_txg = 0;
3430
3431 /*
3432 * Write out changes to the DDT that may be required as a
3433 * result of the blocks freed. This ensures that the DDT
3434 * is clean when a scrub/resilver runs.
3435 */
3436 ddt_sync(spa, tx->tx_txg);
3437 }
3438 if (err != 0)
3439 return (err);
3440 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3441 zfs_free_leak_on_eio &&
3442 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3443 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3444 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3445 /*
3446 * We have finished background destroying, but there is still
3447 * some space left in the dp_free_dir. Transfer this leaked
3448 * space to the dp_leak_dir.
3449 */
3450 if (dp->dp_leak_dir == NULL) {
3451 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3452 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3453 LEAK_DIR_NAME, tx);
3454 VERIFY0(dsl_pool_open_special_dir(dp,
3455 LEAK_DIR_NAME, &dp->dp_leak_dir));
3456 rrw_exit(&dp->dp_config_rwlock, FTAG);
3457 }
3458 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3459 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3460 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3461 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3462 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3463 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3464 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3465 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3466 }
3467
3468 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3469 !spa_livelist_delete_check(spa)) {
3470 /* finished; verify that space accounting went to zero */
3471 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3472 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3473 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3474 }
3475
3476 spa_notify_waiters(spa);
3477
3478 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3479 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3480 DMU_POOL_OBSOLETE_BPOBJ));
3481 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3482 ASSERT(spa_feature_is_active(dp->dp_spa,
3483 SPA_FEATURE_OBSOLETE_COUNTS));
3484
3485 scn->scn_is_bptree = B_FALSE;
3486 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3487 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3488 dsl_scan_obsolete_block_cb, scn, tx);
3489 if (err != 0 && err != ERESTART)
3490 zfs_panic_recover("error %u from bpobj_iterate()", err);
3491
3492 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3493 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3494 }
3495 return (0);
3496 }
3497
3498 /*
3499 * This is the primary entry point for scans that is called from syncing
3500 * context. Scans must happen entirely during syncing context so that we
3501 * can guarantee that blocks we are currently scanning will not change out
3502 * from under us. While a scan is active, this function controls how quickly
3503 * transaction groups proceed, instead of the normal handling provided by
3504 * txg_sync_thread().
3505 */
3506 void
3507 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3508 {
3509 int err = 0;
3510 dsl_scan_t *scn = dp->dp_scan;
3511 spa_t *spa = dp->dp_spa;
3512 state_sync_type_t sync_type = SYNC_OPTIONAL;
3513
3514 if (spa->spa_resilver_deferred &&
3515 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3516 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3517
3518 /*
3519 * Check for scn_restart_txg before checking spa_load_state, so
3520 * that we can restart an old-style scan while the pool is being
3521 * imported (see dsl_scan_init). We also restart scans if there
3522 * is a deferred resilver and the user has manually disabled
3523 * deferred resilvers via the tunable.
3524 */
3525 if (dsl_scan_restarting(scn, tx) ||
3526 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3527 pool_scan_func_t func = POOL_SCAN_SCRUB;
3528 dsl_scan_done(scn, B_FALSE, tx);
3529 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3530 func = POOL_SCAN_RESILVER;
3531 zfs_dbgmsg("restarting scan func=%u txg=%llu",
3532 func, (longlong_t)tx->tx_txg);
3533 dsl_scan_setup_sync(&func, tx);
3534 }
3535
3536 /*
3537 * Only process scans in sync pass 1.
3538 */
3539 if (spa_sync_pass(spa) > 1)
3540 return;
3541
3542 /*
3543 * If the spa is shutting down, then stop scanning. This will
3544 * ensure that the scan does not dirty any new data during the
3545 * shutdown phase.
3546 */
3547 if (spa_shutting_down(spa))
3548 return;
3549
3550 /*
3551 * If the scan is inactive due to a stalled async destroy, try again.
3552 */
3553 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3554 return;
3555
3556 /* reset scan statistics */
3557 scn->scn_visited_this_txg = 0;
3558 scn->scn_dedup_frees_this_txg = 0;
3559 scn->scn_holes_this_txg = 0;
3560 scn->scn_lt_min_this_txg = 0;
3561 scn->scn_gt_max_this_txg = 0;
3562 scn->scn_ddt_contained_this_txg = 0;
3563 scn->scn_objsets_visited_this_txg = 0;
3564 scn->scn_avg_seg_size_this_txg = 0;
3565 scn->scn_segs_this_txg = 0;
3566 scn->scn_avg_zio_size_this_txg = 0;
3567 scn->scn_zios_this_txg = 0;
3568 scn->scn_suspending = B_FALSE;
3569 scn->scn_sync_start_time = gethrtime();
3570 spa->spa_scrub_active = B_TRUE;
3571
3572 /*
3573 * First process the async destroys. If we suspend, don't do
3574 * any scrubbing or resilvering. This ensures that there are no
3575 * async destroys while we are scanning, so the scan code doesn't
3576 * have to worry about traversing it. It is also faster to free the
3577 * blocks than to scrub them.
3578 */
3579 err = dsl_process_async_destroys(dp, tx);
3580 if (err != 0)
3581 return;
3582
3583 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3584 return;
3585
3586 /*
3587 * Wait a few txgs after importing to begin scanning so that
3588 * we can get the pool imported quickly.
3589 */
3590 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3591 return;
3592
3593 /*
3594 * zfs_scan_suspend_progress can be set to disable scan progress.
3595 * We don't want to spin the txg_sync thread, so we add a delay
3596 * here to simulate the time spent doing a scan. This is mostly
3597 * useful for testing and debugging.
3598 */
3599 if (zfs_scan_suspend_progress) {
3600 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3601 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3602 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3603
3604 while (zfs_scan_suspend_progress &&
3605 !txg_sync_waiting(scn->scn_dp) &&
3606 !spa_shutting_down(scn->scn_dp->dp_spa) &&
3607 NSEC2MSEC(scan_time_ns) < mintime) {
3608 delay(hz);
3609 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3610 }
3611 return;
3612 }
3613
3614 /*
3615 * It is possible to switch from unsorted to sorted at any time,
3616 * but afterwards the scan will remain sorted unless reloaded from
3617 * a checkpoint after a reboot.
3618 */
3619 if (!zfs_scan_legacy) {
3620 scn->scn_is_sorted = B_TRUE;
3621 if (scn->scn_last_checkpoint == 0)
3622 scn->scn_last_checkpoint = ddi_get_lbolt();
3623 }
3624
3625 /*
3626 * For sorted scans, determine what kind of work we will be doing
3627 * this txg based on our memory limitations and whether or not we
3628 * need to perform a checkpoint.
3629 */
3630 if (scn->scn_is_sorted) {
3631 /*
3632 * If we are over our checkpoint interval, set scn_clearing
3633 * so that we can begin checkpointing immediately. The
3634 * checkpoint allows us to save a consistent bookmark
3635 * representing how much data we have scrubbed so far.
3636 * Otherwise, use the memory limit to determine if we should
3637 * scan for metadata or start issue scrub IOs. We accumulate
3638 * metadata until we hit our hard memory limit at which point
3639 * we issue scrub IOs until we are at our soft memory limit.
3640 */
3641 if (scn->scn_checkpointing ||
3642 ddi_get_lbolt() - scn->scn_last_checkpoint >
3643 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3644 if (!scn->scn_checkpointing)
3645 zfs_dbgmsg("begin scan checkpoint");
3646
3647 scn->scn_checkpointing = B_TRUE;
3648 scn->scn_clearing = B_TRUE;
3649 } else {
3650 boolean_t should_clear = dsl_scan_should_clear(scn);
3651 if (should_clear && !scn->scn_clearing) {
3652 zfs_dbgmsg("begin scan clearing");
3653 scn->scn_clearing = B_TRUE;
3654 } else if (!should_clear && scn->scn_clearing) {
3655 zfs_dbgmsg("finish scan clearing");
3656 scn->scn_clearing = B_FALSE;
3657 }
3658 }
3659 } else {
3660 ASSERT0(scn->scn_checkpointing);
3661 ASSERT0(scn->scn_clearing);
3662 }
3663
3664 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3665 /* Need to scan metadata for more blocks to scrub */
3666 dsl_scan_phys_t *scnp = &scn->scn_phys;
3667 taskqid_t prefetch_tqid;
3668 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3669 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3670
3671 /*
3672 * Recalculate the max number of in-flight bytes for pool-wide
3673 * scanning operations (minimum 1MB). Limits for the issuing
3674 * phase are done per top-level vdev and are handled separately.
3675 */
3676 scn->scn_maxinflight_bytes =
3677 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3678
3679 if (scnp->scn_ddt_bookmark.ddb_class <=
3680 scnp->scn_ddt_class_max) {
3681 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3682 zfs_dbgmsg("doing scan sync txg %llu; "
3683 "ddt bm=%llu/%llu/%llu/%llx",
3684 (longlong_t)tx->tx_txg,
3685 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3686 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3687 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3688 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3689 } else {
3690 zfs_dbgmsg("doing scan sync txg %llu; "
3691 "bm=%llu/%llu/%llu/%llu",
3692 (longlong_t)tx->tx_txg,
3693 (longlong_t)scnp->scn_bookmark.zb_objset,
3694 (longlong_t)scnp->scn_bookmark.zb_object,
3695 (longlong_t)scnp->scn_bookmark.zb_level,
3696 (longlong_t)scnp->scn_bookmark.zb_blkid);
3697 }
3698
3699 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3700 NULL, ZIO_FLAG_CANFAIL);
3701
3702 scn->scn_prefetch_stop = B_FALSE;
3703 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3704 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3705 ASSERT(prefetch_tqid != TASKQID_INVALID);
3706
3707 dsl_pool_config_enter(dp, FTAG);
3708 dsl_scan_visit(scn, tx);
3709 dsl_pool_config_exit(dp, FTAG);
3710
3711 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3712 scn->scn_prefetch_stop = B_TRUE;
3713 cv_broadcast(&spa->spa_scrub_io_cv);
3714 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3715
3716 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3717 (void) zio_wait(scn->scn_zio_root);
3718 scn->scn_zio_root = NULL;
3719
3720 zfs_dbgmsg("scan visited %llu blocks in %llums "
3721 "(%llu os's, %llu holes, %llu < mintxg, "
3722 "%llu in ddt, %llu > maxtxg)",
3723 (longlong_t)scn->scn_visited_this_txg,
3724 (longlong_t)NSEC2MSEC(gethrtime() -
3725 scn->scn_sync_start_time),
3726 (longlong_t)scn->scn_objsets_visited_this_txg,
3727 (longlong_t)scn->scn_holes_this_txg,
3728 (longlong_t)scn->scn_lt_min_this_txg,
3729 (longlong_t)scn->scn_ddt_contained_this_txg,
3730 (longlong_t)scn->scn_gt_max_this_txg);
3731
3732 if (!scn->scn_suspending) {
3733 ASSERT0(avl_numnodes(&scn->scn_queue));
3734 scn->scn_done_txg = tx->tx_txg + 1;
3735 if (scn->scn_is_sorted) {
3736 scn->scn_checkpointing = B_TRUE;
3737 scn->scn_clearing = B_TRUE;
3738 }
3739 zfs_dbgmsg("scan complete txg %llu",
3740 (longlong_t)tx->tx_txg);
3741 }
3742 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3743 ASSERT(scn->scn_clearing);
3744
3745 /* need to issue scrubbing IOs from per-vdev queues */
3746 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3747 NULL, ZIO_FLAG_CANFAIL);
3748 scan_io_queues_run(scn);
3749 (void) zio_wait(scn->scn_zio_root);
3750 scn->scn_zio_root = NULL;
3751
3752 /* calculate and dprintf the current memory usage */
3753 (void) dsl_scan_should_clear(scn);
3754 dsl_scan_update_stats(scn);
3755
3756 zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
3757 "(avg_block_size = %llu, avg_seg_size = %llu)",
3758 (longlong_t)scn->scn_zios_this_txg,
3759 (longlong_t)scn->scn_segs_this_txg,
3760 (longlong_t)NSEC2MSEC(gethrtime() -
3761 scn->scn_sync_start_time),
3762 (longlong_t)scn->scn_avg_zio_size_this_txg,
3763 (longlong_t)scn->scn_avg_seg_size_this_txg);
3764 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3765 /* Finished with everything. Mark the scrub as complete */
3766 zfs_dbgmsg("scan issuing complete txg %llu",
3767 (longlong_t)tx->tx_txg);
3768 ASSERT3U(scn->scn_done_txg, !=, 0);
3769 ASSERT0(spa->spa_scrub_inflight);
3770 ASSERT0(scn->scn_bytes_pending);
3771 dsl_scan_done(scn, B_TRUE, tx);
3772 sync_type = SYNC_MANDATORY;
3773 }
3774
3775 dsl_scan_sync_state(scn, tx, sync_type);
3776 }
3777
3778 static void
3779 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3780 {
3781 int i;
3782
3783 /*
3784 * Don't count embedded bp's, since we already did the work of
3785 * scanning these when we scanned the containing block.
3786 */
3787 if (BP_IS_EMBEDDED(bp))
3788 return;
3789
3790 /*
3791 * Update the spa's stats on how many bytes we have issued.
3792 * Sequential scrubs create a zio for each DVA of the bp. Each
3793 * of these will include all DVAs for repair purposes, but the
3794 * zio code will only try the first one unless there is an issue.
3795 * Therefore, we should only count the first DVA for these IOs.
3796 */
3797 if (scn->scn_is_sorted) {
3798 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3799 DVA_GET_ASIZE(&bp->blk_dva[0]));
3800 } else {
3801 spa_t *spa = scn->scn_dp->dp_spa;
3802
3803 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3804 atomic_add_64(&spa->spa_scan_pass_issued,
3805 DVA_GET_ASIZE(&bp->blk_dva[i]));
3806 }
3807 }
3808
3809 /*
3810 * If we resume after a reboot, zab will be NULL; don't record
3811 * incomplete stats in that case.
3812 */
3813 if (zab == NULL)
3814 return;
3815
3816 mutex_enter(&zab->zab_lock);
3817
3818 for (i = 0; i < 4; i++) {
3819 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3820 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3821
3822 if (t & DMU_OT_NEWTYPE)
3823 t = DMU_OT_OTHER;
3824 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3825 int equal;
3826
3827 zb->zb_count++;
3828 zb->zb_asize += BP_GET_ASIZE(bp);
3829 zb->zb_lsize += BP_GET_LSIZE(bp);
3830 zb->zb_psize += BP_GET_PSIZE(bp);
3831 zb->zb_gangs += BP_COUNT_GANG(bp);
3832
3833 switch (BP_GET_NDVAS(bp)) {
3834 case 2:
3835 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3836 DVA_GET_VDEV(&bp->blk_dva[1]))
3837 zb->zb_ditto_2_of_2_samevdev++;
3838 break;
3839 case 3:
3840 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3841 DVA_GET_VDEV(&bp->blk_dva[1])) +
3842 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3843 DVA_GET_VDEV(&bp->blk_dva[2])) +
3844 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3845 DVA_GET_VDEV(&bp->blk_dva[2]));
3846 if (equal == 1)
3847 zb->zb_ditto_2_of_3_samevdev++;
3848 else if (equal == 3)
3849 zb->zb_ditto_3_of_3_samevdev++;
3850 break;
3851 }
3852 }
3853
3854 mutex_exit(&zab->zab_lock);
3855 }
3856
3857 static void
3858 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3859 {
3860 avl_index_t idx;
3861 int64_t asize = SIO_GET_ASIZE(sio);
3862 dsl_scan_t *scn = queue->q_scn;
3863
3864 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3865
3866 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3867 /* block is already scheduled for reading */
3868 atomic_add_64(&scn->scn_bytes_pending, -asize);
3869 sio_free(sio);
3870 return;
3871 }
3872 avl_insert(&queue->q_sios_by_addr, sio, idx);
3873 queue->q_sio_memused += SIO_GET_MUSED(sio);
3874 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3875 }
3876
3877 /*
3878 * Given all the info we got from our metadata scanning process, we
3879 * construct a scan_io_t and insert it into the scan sorting queue. The
3880 * I/O must already be suitable for us to process. This is controlled
3881 * by dsl_scan_enqueue().
3882 */
3883 static void
3884 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3885 int zio_flags, const zbookmark_phys_t *zb)
3886 {
3887 dsl_scan_t *scn = queue->q_scn;
3888 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3889
3890 ASSERT0(BP_IS_GANG(bp));
3891 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3892
3893 bp2sio(bp, sio, dva_i);
3894 sio->sio_flags = zio_flags;
3895 sio->sio_zb = *zb;
3896
3897 /*
3898 * Increment the bytes pending counter now so that we can't
3899 * get an integer underflow in case the worker processes the
3900 * zio before we get to incrementing this counter.
3901 */
3902 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3903
3904 scan_io_queue_insert_impl(queue, sio);
3905 }
3906
3907 /*
3908 * Given a set of I/O parameters as discovered by the metadata traversal
3909 * process, attempts to place the I/O into the sorted queues (if allowed),
3910 * or immediately executes the I/O.
3911 */
3912 static void
3913 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3914 const zbookmark_phys_t *zb)
3915 {
3916 spa_t *spa = dp->dp_spa;
3917
3918 ASSERT(!BP_IS_EMBEDDED(bp));
3919
3920 /*
3921 * Gang blocks are hard to issue sequentially, so we just issue them
3922 * here immediately instead of queuing them.
3923 */
3924 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3925 scan_exec_io(dp, bp, zio_flags, zb, NULL);
3926 return;
3927 }
3928
3929 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3930 dva_t dva;
3931 vdev_t *vdev;
3932
3933 dva = bp->blk_dva[i];
3934 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3935 ASSERT(vdev != NULL);
3936
3937 mutex_enter(&vdev->vdev_scan_io_queue_lock);
3938 if (vdev->vdev_scan_io_queue == NULL)
3939 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3940 ASSERT(dp->dp_scan != NULL);
3941 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3942 i, zio_flags, zb);
3943 mutex_exit(&vdev->vdev_scan_io_queue_lock);
3944 }
3945 }
3946
3947 static int
3948 dsl_scan_scrub_cb(dsl_pool_t *dp,
3949 const blkptr_t *bp, const zbookmark_phys_t *zb)
3950 {
3951 dsl_scan_t *scn = dp->dp_scan;
3952 spa_t *spa = dp->dp_spa;
3953 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3954 size_t psize = BP_GET_PSIZE(bp);
3955 boolean_t needs_io = B_FALSE;
3956 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3957
3958
3959 if (phys_birth <= scn->scn_phys.scn_min_txg ||
3960 phys_birth >= scn->scn_phys.scn_max_txg) {
3961 count_block(scn, dp->dp_blkstats, bp);
3962 return (0);
3963 }
3964
3965 /* Embedded BP's have phys_birth==0, so we reject them above. */
3966 ASSERT(!BP_IS_EMBEDDED(bp));
3967
3968 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3969 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3970 zio_flags |= ZIO_FLAG_SCRUB;
3971 needs_io = B_TRUE;
3972 } else {
3973 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3974 zio_flags |= ZIO_FLAG_RESILVER;
3975 needs_io = B_FALSE;
3976 }
3977
3978 /* If it's an intent log block, failure is expected. */
3979 if (zb->zb_level == ZB_ZIL_LEVEL)
3980 zio_flags |= ZIO_FLAG_SPECULATIVE;
3981
3982 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
3983 const dva_t *dva = &bp->blk_dva[d];
3984
3985 /*
3986 * Keep track of how much data we've examined so that
3987 * zpool(1M) status can make useful progress reports.
3988 */
3989 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3990 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3991
3992 /* if it's a resilver, this may not be in the target range */
3993 if (!needs_io)
3994 needs_io = dsl_scan_need_resilver(spa, dva, psize,
3995 phys_birth);
3996 }
3997
3998 if (needs_io && !zfs_no_scrub_io) {
3999 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4000 } else {
4001 count_block(scn, dp->dp_blkstats, bp);
4002 }
4003
4004 /* do not relocate this block */
4005 return (0);
4006 }
4007
4008 static void
4009 dsl_scan_scrub_done(zio_t *zio)
4010 {
4011 spa_t *spa = zio->io_spa;
4012 blkptr_t *bp = zio->io_bp;
4013 dsl_scan_io_queue_t *queue = zio->io_private;
4014
4015 abd_free(zio->io_abd);
4016
4017 if (queue == NULL) {
4018 mutex_enter(&spa->spa_scrub_lock);
4019 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4020 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4021 cv_broadcast(&spa->spa_scrub_io_cv);
4022 mutex_exit(&spa->spa_scrub_lock);
4023 } else {
4024 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4025 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4026 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4027 cv_broadcast(&queue->q_zio_cv);
4028 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4029 }
4030
4031 if (zio->io_error && (zio->io_error != ECKSUM ||
4032 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4033 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
4034 }
4035 }
4036
4037 /*
4038 * Given a scanning zio's information, executes the zio. The zio need
4039 * not necessarily be only sortable, this function simply executes the
4040 * zio, no matter what it is. The optional queue argument allows the
4041 * caller to specify that they want per top level vdev IO rate limiting
4042 * instead of the legacy global limiting.
4043 */
4044 static void
4045 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4046 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4047 {
4048 spa_t *spa = dp->dp_spa;
4049 dsl_scan_t *scn = dp->dp_scan;
4050 size_t size = BP_GET_PSIZE(bp);
4051 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4052
4053 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4054
4055 if (queue == NULL) {
4056 mutex_enter(&spa->spa_scrub_lock);
4057 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4058 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4059 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4060 mutex_exit(&spa->spa_scrub_lock);
4061 } else {
4062 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4063
4064 mutex_enter(q_lock);
4065 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4066 cv_wait(&queue->q_zio_cv, q_lock);
4067 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4068 mutex_exit(q_lock);
4069 }
4070
4071 count_block(scn, dp->dp_blkstats, bp);
4072 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
4073 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4074 }
4075
4076 /*
4077 * This is the primary extent sorting algorithm. We balance two parameters:
4078 * 1) how many bytes of I/O are in an extent
4079 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4080 * Since we allow extents to have gaps between their constituent I/Os, it's
4081 * possible to have a fairly large extent that contains the same amount of
4082 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4083 * The algorithm sorts based on a score calculated from the extent's size,
4084 * the relative fill volume (in %) and a "fill weight" parameter that controls
4085 * the split between whether we prefer larger extents or more well populated
4086 * extents:
4087 *
4088 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4089 *
4090 * Example:
4091 * 1) assume extsz = 64 MiB
4092 * 2) assume fill = 32 MiB (extent is half full)
4093 * 3) assume fill_weight = 3
4094 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4095 * SCORE = 32M + (50 * 3 * 32M) / 100
4096 * SCORE = 32M + (4800M / 100)
4097 * SCORE = 32M + 48M
4098 * ^ ^
4099 * | +--- final total relative fill-based score
4100 * +--------- final total fill-based score
4101 * SCORE = 80M
4102 *
4103 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4104 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4105 * Note that as an optimization, we replace multiplication and division by
4106 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4107 */
4108 static int
4109 ext_size_compare(const void *x, const void *y)
4110 {
4111 const range_seg_gap_t *rsa = x, *rsb = y;
4112
4113 uint64_t sa = rsa->rs_end - rsa->rs_start;
4114 uint64_t sb = rsb->rs_end - rsb->rs_start;
4115 uint64_t score_a, score_b;
4116
4117 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
4118 fill_weight * rsa->rs_fill) >> 7);
4119 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
4120 fill_weight * rsb->rs_fill) >> 7);
4121
4122 if (score_a > score_b)
4123 return (-1);
4124 if (score_a == score_b) {
4125 if (rsa->rs_start < rsb->rs_start)
4126 return (-1);
4127 if (rsa->rs_start == rsb->rs_start)
4128 return (0);
4129 return (1);
4130 }
4131 return (1);
4132 }
4133
4134 /*
4135 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4136 * based on LBA-order (from lowest to highest).
4137 */
4138 static int
4139 sio_addr_compare(const void *x, const void *y)
4140 {
4141 const scan_io_t *a = x, *b = y;
4142
4143 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4144 }
4145
4146 /* IO queues are created on demand when they are needed. */
4147 static dsl_scan_io_queue_t *
4148 scan_io_queue_create(vdev_t *vd)
4149 {
4150 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4151 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4152
4153 q->q_scn = scn;
4154 q->q_vd = vd;
4155 q->q_sio_memused = 0;
4156 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4157 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4158 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4159 avl_create(&q->q_sios_by_addr, sio_addr_compare,
4160 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4161
4162 return (q);
4163 }
4164
4165 /*
4166 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4167 * No further execution of I/O occurs, anything pending in the queue is
4168 * simply freed without being executed.
4169 */
4170 void
4171 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4172 {
4173 dsl_scan_t *scn = queue->q_scn;
4174 scan_io_t *sio;
4175 void *cookie = NULL;
4176 int64_t bytes_dequeued = 0;
4177
4178 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4179
4180 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4181 NULL) {
4182 ASSERT(range_tree_contains(queue->q_exts_by_addr,
4183 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4184 bytes_dequeued += SIO_GET_ASIZE(sio);
4185 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4186 sio_free(sio);
4187 }
4188
4189 ASSERT0(queue->q_sio_memused);
4190 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4191 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4192 range_tree_destroy(queue->q_exts_by_addr);
4193 avl_destroy(&queue->q_sios_by_addr);
4194 cv_destroy(&queue->q_zio_cv);
4195
4196 kmem_free(queue, sizeof (*queue));
4197 }
4198
4199 /*
4200 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4201 * called on behalf of vdev_top_transfer when creating or destroying
4202 * a mirror vdev due to zpool attach/detach.
4203 */
4204 void
4205 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4206 {
4207 mutex_enter(&svd->vdev_scan_io_queue_lock);
4208 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4209
4210 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4211 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4212 svd->vdev_scan_io_queue = NULL;
4213 if (tvd->vdev_scan_io_queue != NULL)
4214 tvd->vdev_scan_io_queue->q_vd = tvd;
4215
4216 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4217 mutex_exit(&svd->vdev_scan_io_queue_lock);
4218 }
4219
4220 static void
4221 scan_io_queues_destroy(dsl_scan_t *scn)
4222 {
4223 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4224
4225 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4226 vdev_t *tvd = rvd->vdev_child[i];
4227
4228 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4229 if (tvd->vdev_scan_io_queue != NULL)
4230 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4231 tvd->vdev_scan_io_queue = NULL;
4232 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4233 }
4234 }
4235
4236 static void
4237 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4238 {
4239 dsl_pool_t *dp = spa->spa_dsl_pool;
4240 dsl_scan_t *scn = dp->dp_scan;
4241 vdev_t *vdev;
4242 kmutex_t *q_lock;
4243 dsl_scan_io_queue_t *queue;
4244 scan_io_t *srch_sio, *sio;
4245 avl_index_t idx;
4246 uint64_t start, size;
4247
4248 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4249 ASSERT(vdev != NULL);
4250 q_lock = &vdev->vdev_scan_io_queue_lock;
4251 queue = vdev->vdev_scan_io_queue;
4252
4253 mutex_enter(q_lock);
4254 if (queue == NULL) {
4255 mutex_exit(q_lock);
4256 return;
4257 }
4258
4259 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4260 bp2sio(bp, srch_sio, dva_i);
4261 start = SIO_GET_OFFSET(srch_sio);
4262 size = SIO_GET_ASIZE(srch_sio);
4263
4264 /*
4265 * We can find the zio in two states:
4266 * 1) Cold, just sitting in the queue of zio's to be issued at
4267 * some point in the future. In this case, all we do is
4268 * remove the zio from the q_sios_by_addr tree, decrement
4269 * its data volume from the containing range_seg_t and
4270 * resort the q_exts_by_size tree to reflect that the
4271 * range_seg_t has lost some of its 'fill'. We don't shorten
4272 * the range_seg_t - this is usually rare enough not to be
4273 * worth the extra hassle of trying keep track of precise
4274 * extent boundaries.
4275 * 2) Hot, where the zio is currently in-flight in
4276 * dsl_scan_issue_ios. In this case, we can't simply
4277 * reach in and stop the in-flight zio's, so we instead
4278 * block the caller. Eventually, dsl_scan_issue_ios will
4279 * be done with issuing the zio's it gathered and will
4280 * signal us.
4281 */
4282 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4283 sio_free(srch_sio);
4284
4285 if (sio != NULL) {
4286 int64_t asize = SIO_GET_ASIZE(sio);
4287 blkptr_t tmpbp;
4288
4289 /* Got it while it was cold in the queue */
4290 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4291 ASSERT3U(size, ==, asize);
4292 avl_remove(&queue->q_sios_by_addr, sio);
4293 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4294
4295 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4296 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4297
4298 /*
4299 * We only update scn_bytes_pending in the cold path,
4300 * otherwise it will already have been accounted for as
4301 * part of the zio's execution.
4302 */
4303 atomic_add_64(&scn->scn_bytes_pending, -asize);
4304
4305 /* count the block as though we issued it */
4306 sio2bp(sio, &tmpbp);
4307 count_block(scn, dp->dp_blkstats, &tmpbp);
4308
4309 sio_free(sio);
4310 }
4311 mutex_exit(q_lock);
4312 }
4313
4314 /*
4315 * Callback invoked when a zio_free() zio is executing. This needs to be
4316 * intercepted to prevent the zio from deallocating a particular portion
4317 * of disk space and it then getting reallocated and written to, while we
4318 * still have it queued up for processing.
4319 */
4320 void
4321 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4322 {
4323 dsl_pool_t *dp = spa->spa_dsl_pool;
4324 dsl_scan_t *scn = dp->dp_scan;
4325
4326 ASSERT(!BP_IS_EMBEDDED(bp));
4327 ASSERT(scn != NULL);
4328 if (!dsl_scan_is_running(scn))
4329 return;
4330
4331 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4332 dsl_scan_freed_dva(spa, bp, i);
4333 }
4334
4335 /*
4336 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4337 * not started, start it. Otherwise, only restart if max txg in DTL range is
4338 * greater than the max txg in the current scan. If the DTL max is less than
4339 * the scan max, then the vdev has not missed any new data since the resilver
4340 * started, so a restart is not needed.
4341 */
4342 void
4343 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4344 {
4345 uint64_t min, max;
4346
4347 if (!vdev_resilver_needed(vd, &min, &max))
4348 return;
4349
4350 if (!dsl_scan_resilvering(dp)) {
4351 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4352 return;
4353 }
4354
4355 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4356 return;
4357
4358 /* restart is needed, check if it can be deferred */
4359 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4360 vdev_defer_resilver(vd);
4361 else
4362 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4363 }
4364
4365 /* BEGIN CSTYLED */
4366 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
4367 "Max bytes in flight per leaf vdev for scrubs and resilvers");
4368
4369 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
4370 "Min millisecs to scrub per txg");
4371
4372 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
4373 "Min millisecs to obsolete per txg");
4374
4375 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
4376 "Min millisecs to free per txg");
4377
4378 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
4379 "Min millisecs to resilver per txg");
4380
4381 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
4382 "Set to prevent scans from progressing");
4383
4384 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
4385 "Set to disable scrub I/O");
4386
4387 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
4388 "Set to disable scrub prefetching");
4389
4390 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
4391 "Max number of blocks freed in one txg");
4392
4393 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
4394 "Max number of dedup blocks freed in one txg");
4395
4396 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
4397 "Enable processing of the free_bpobj");
4398
4399 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
4400 "Fraction of RAM for scan hard limit");
4401
4402 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
4403 "IO issuing strategy during scrubbing. "
4404 "0 = default, 1 = LBA, 2 = size");
4405
4406 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
4407 "Scrub using legacy non-sequential method");
4408
4409 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
4410 "Scan progress on-disk checkpointing interval");
4411
4412 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
4413 "Max gap in bytes between sequential scrub / resilver I/Os");
4414
4415 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
4416 "Fraction of hard limit used as soft limit");
4417
4418 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
4419 "Tunable to attempt to reduce lock contention");
4420
4421 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
4422 "Tunable to adjust bias towards more filled segments during scans");
4423
4424 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
4425 "Process all resilvers immediately");
4426 /* END CSTYLED */