]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_scan.c
OpenZFS 9166 - zfs storage pool checkpoint
[mirror_zfs.git] / module / zfs / dsl_scan.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017 Datto Inc.
26 * Copyright 2017 Joyent, Inc.
27 */
28
29 #include <sys/dsl_scan.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/zil_impl.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/ddt.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/zfeature.h>
52 #include <sys/abd.h>
53 #include <sys/range_tree.h>
54 #ifdef _KERNEL
55 #include <sys/zfs_vfsops.h>
56 #endif
57
58 /*
59 * Grand theory statement on scan queue sorting
60 *
61 * Scanning is implemented by recursively traversing all indirection levels
62 * in an object and reading all blocks referenced from said objects. This
63 * results in us approximately traversing the object from lowest logical
64 * offset to the highest. For best performance, we would want the logical
65 * blocks to be physically contiguous. However, this is frequently not the
66 * case with pools given the allocation patterns of copy-on-write filesystems.
67 * So instead, we put the I/Os into a reordering queue and issue them in a
68 * way that will most benefit physical disks (LBA-order).
69 *
70 * Queue management:
71 *
72 * Ideally, we would want to scan all metadata and queue up all block I/O
73 * prior to starting to issue it, because that allows us to do an optimal
74 * sorting job. This can however consume large amounts of memory. Therefore
75 * we continuously monitor the size of the queues and constrain them to 5%
76 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
77 * limit, we clear out a few of the largest extents at the head of the queues
78 * to make room for more scanning. Hopefully, these extents will be fairly
79 * large and contiguous, allowing us to approach sequential I/O throughput
80 * even without a fully sorted tree.
81 *
82 * Metadata scanning takes place in dsl_scan_visit(), which is called from
83 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
84 * metadata on the pool, or we need to make room in memory because our
85 * queues are too large, dsl_scan_visit() is postponed and
86 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
87 * that metadata scanning and queued I/O issuing are mutually exclusive. This
88 * allows us to provide maximum sequential I/O throughput for the majority of
89 * I/O's issued since sequential I/O performance is significantly negatively
90 * impacted if it is interleaved with random I/O.
91 *
92 * Implementation Notes
93 *
94 * One side effect of the queued scanning algorithm is that the scanning code
95 * needs to be notified whenever a block is freed. This is needed to allow
96 * the scanning code to remove these I/Os from the issuing queue. Additionally,
97 * we do not attempt to queue gang blocks to be issued sequentially since this
98 * is very hard to do and would have an extremely limited performance benefit.
99 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
100 * algorithm.
101 *
102 * Backwards compatibility
103 *
104 * This new algorithm is backwards compatible with the legacy on-disk data
105 * structures (and therefore does not require a new feature flag).
106 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
107 * will stop scanning metadata (in logical order) and wait for all outstanding
108 * sorted I/O to complete. Once this is done, we write out a checkpoint
109 * bookmark, indicating that we have scanned everything logically before it.
110 * If the pool is imported on a machine without the new sorting algorithm,
111 * the scan simply resumes from the last checkpoint using the legacy algorithm.
112 */
113
114 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
115 const zbookmark_phys_t *);
116
117 static scan_cb_t dsl_scan_scrub_cb;
118
119 static int scan_ds_queue_compare(const void *a, const void *b);
120 static int scan_prefetch_queue_compare(const void *a, const void *b);
121 static void scan_ds_queue_clear(dsl_scan_t *scn);
122 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
123 uint64_t *txg);
124 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
125 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
126 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
127 static uint64_t dsl_scan_count_leaves(vdev_t *vd);
128
129 extern int zfs_vdev_async_write_active_min_dirty_percent;
130
131 /*
132 * By default zfs will check to ensure it is not over the hard memory
133 * limit before each txg. If finer-grained control of this is needed
134 * this value can be set to 1 to enable checking before scanning each
135 * block.
136 */
137 int zfs_scan_strict_mem_lim = B_FALSE;
138
139 /*
140 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
141 * to strike a balance here between keeping the vdev queues full of I/Os
142 * at all times and not overflowing the queues to cause long latency,
143 * which would cause long txg sync times. No matter what, we will not
144 * overload the drives with I/O, since that is protected by
145 * zfs_vdev_scrub_max_active.
146 */
147 unsigned long zfs_scan_vdev_limit = 4 << 20;
148
149 int zfs_scan_issue_strategy = 0;
150 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
151 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
152
153 /*
154 * fill_weight is non-tunable at runtime, so we copy it at module init from
155 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
156 * break queue sorting.
157 */
158 int zfs_scan_fill_weight = 3;
159 static uint64_t fill_weight;
160
161 /* See dsl_scan_should_clear() for details on the memory limit tunables */
162 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
163 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
164 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
165 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
166
167 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
168 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
169 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
170 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
171 int zfs_scan_checkpoint_intval = 7200; /* in seconds */
172 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
173 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
174 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
175 /* max number of blocks to free in a single TXG */
176 unsigned long zfs_async_block_max_blocks = 100000;
177
178 /*
179 * We wait a few txgs after importing a pool to begin scanning so that
180 * the import / mounting code isn't held up by scrub / resilver IO.
181 * Unfortunately, it is a bit difficult to determine exactly how long
182 * this will take since userspace will trigger fs mounts asynchronously
183 * and the kernel will create zvol minors asynchronously. As a result,
184 * the value provided here is a bit arbitrary, but represents a
185 * reasonable estimate of how many txgs it will take to finish fully
186 * importing a pool
187 */
188 #define SCAN_IMPORT_WAIT_TXGS 5
189
190 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
191 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
192 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
193
194 /*
195 * Enable/disable the processing of the free_bpobj object.
196 */
197 int zfs_free_bpobj_enabled = 1;
198
199 /* the order has to match pool_scan_type */
200 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
201 NULL,
202 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
203 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
204 };
205
206 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
207 typedef struct {
208 uint64_t sds_dsobj;
209 uint64_t sds_txg;
210 avl_node_t sds_node;
211 } scan_ds_t;
212
213 /*
214 * This controls what conditions are placed on dsl_scan_sync_state():
215 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
216 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
217 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
218 * write out the scn_phys_cached version.
219 * See dsl_scan_sync_state for details.
220 */
221 typedef enum {
222 SYNC_OPTIONAL,
223 SYNC_MANDATORY,
224 SYNC_CACHED
225 } state_sync_type_t;
226
227 /*
228 * This struct represents the minimum information needed to reconstruct a
229 * zio for sequential scanning. This is useful because many of these will
230 * accumulate in the sequential IO queues before being issued, so saving
231 * memory matters here.
232 */
233 typedef struct scan_io {
234 /* fields from blkptr_t */
235 uint64_t sio_offset;
236 uint64_t sio_blk_prop;
237 uint64_t sio_phys_birth;
238 uint64_t sio_birth;
239 zio_cksum_t sio_cksum;
240 uint32_t sio_asize;
241
242 /* fields from zio_t */
243 int sio_flags;
244 zbookmark_phys_t sio_zb;
245
246 /* members for queue sorting */
247 union {
248 avl_node_t sio_addr_node; /* link into issueing queue */
249 list_node_t sio_list_node; /* link for issuing to disk */
250 } sio_nodes;
251 } scan_io_t;
252
253 struct dsl_scan_io_queue {
254 dsl_scan_t *q_scn; /* associated dsl_scan_t */
255 vdev_t *q_vd; /* top-level vdev that this queue represents */
256
257 /* trees used for sorting I/Os and extents of I/Os */
258 range_tree_t *q_exts_by_addr;
259 avl_tree_t q_exts_by_size;
260 avl_tree_t q_sios_by_addr;
261
262 /* members for zio rate limiting */
263 uint64_t q_maxinflight_bytes;
264 uint64_t q_inflight_bytes;
265 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
266
267 /* per txg statistics */
268 uint64_t q_total_seg_size_this_txg;
269 uint64_t q_segs_this_txg;
270 uint64_t q_total_zio_size_this_txg;
271 uint64_t q_zios_this_txg;
272 };
273
274 /* private data for dsl_scan_prefetch_cb() */
275 typedef struct scan_prefetch_ctx {
276 refcount_t spc_refcnt; /* refcount for memory management */
277 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
278 boolean_t spc_root; /* is this prefetch for an objset? */
279 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
280 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
281 } scan_prefetch_ctx_t;
282
283 /* private data for dsl_scan_prefetch() */
284 typedef struct scan_prefetch_issue_ctx {
285 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
286 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
287 blkptr_t spic_bp; /* bp to prefetch */
288 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
289 } scan_prefetch_issue_ctx_t;
290
291 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
292 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
293 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
294 scan_io_t *sio);
295
296 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
297 static void scan_io_queues_destroy(dsl_scan_t *scn);
298
299 static kmem_cache_t *sio_cache;
300
301 void
302 scan_init(void)
303 {
304 /*
305 * This is used in ext_size_compare() to weight segments
306 * based on how sparse they are. This cannot be changed
307 * mid-scan and the tree comparison functions don't currently
308 * have a mechanism for passing additional context to the
309 * compare functions. Thus we store this value globally and
310 * we only allow it to be set at module initialization time
311 */
312 fill_weight = zfs_scan_fill_weight;
313
314 sio_cache = kmem_cache_create("sio_cache",
315 sizeof (scan_io_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
316 }
317
318 void
319 scan_fini(void)
320 {
321 kmem_cache_destroy(sio_cache);
322 }
323
324 static inline boolean_t
325 dsl_scan_is_running(const dsl_scan_t *scn)
326 {
327 return (scn->scn_phys.scn_state == DSS_SCANNING);
328 }
329
330 boolean_t
331 dsl_scan_resilvering(dsl_pool_t *dp)
332 {
333 return (dsl_scan_is_running(dp->dp_scan) &&
334 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
335 }
336
337 static inline void
338 sio2bp(const scan_io_t *sio, blkptr_t *bp, uint64_t vdev_id)
339 {
340 bzero(bp, sizeof (*bp));
341 DVA_SET_ASIZE(&bp->blk_dva[0], sio->sio_asize);
342 DVA_SET_VDEV(&bp->blk_dva[0], vdev_id);
343 DVA_SET_OFFSET(&bp->blk_dva[0], sio->sio_offset);
344 bp->blk_prop = sio->sio_blk_prop;
345 bp->blk_phys_birth = sio->sio_phys_birth;
346 bp->blk_birth = sio->sio_birth;
347 bp->blk_fill = 1; /* we always only work with data pointers */
348 bp->blk_cksum = sio->sio_cksum;
349 }
350
351 static inline void
352 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
353 {
354 /* we discard the vdev id, since we can deduce it from the queue */
355 sio->sio_offset = DVA_GET_OFFSET(&bp->blk_dva[dva_i]);
356 sio->sio_asize = DVA_GET_ASIZE(&bp->blk_dva[dva_i]);
357 sio->sio_blk_prop = bp->blk_prop;
358 sio->sio_phys_birth = bp->blk_phys_birth;
359 sio->sio_birth = bp->blk_birth;
360 sio->sio_cksum = bp->blk_cksum;
361 }
362
363 int
364 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
365 {
366 int err;
367 dsl_scan_t *scn;
368 spa_t *spa = dp->dp_spa;
369 uint64_t f;
370
371 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
372 scn->scn_dp = dp;
373
374 /*
375 * It's possible that we're resuming a scan after a reboot so
376 * make sure that the scan_async_destroying flag is initialized
377 * appropriately.
378 */
379 ASSERT(!scn->scn_async_destroying);
380 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
381 SPA_FEATURE_ASYNC_DESTROY);
382
383 /*
384 * Calculate the max number of in-flight bytes for pool-wide
385 * scanning operations (minimum 1MB). Limits for the issuing
386 * phase are done per top-level vdev and are handled separately.
387 */
388 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
389 dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);
390
391 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
392 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
393 offsetof(scan_ds_t, sds_node));
394 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
395 sizeof (scan_prefetch_issue_ctx_t),
396 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
397
398 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
399 "scrub_func", sizeof (uint64_t), 1, &f);
400 if (err == 0) {
401 /*
402 * There was an old-style scrub in progress. Restart a
403 * new-style scrub from the beginning.
404 */
405 scn->scn_restart_txg = txg;
406 zfs_dbgmsg("old-style scrub was in progress; "
407 "restarting new-style scrub in txg %llu",
408 (longlong_t)scn->scn_restart_txg);
409
410 /*
411 * Load the queue obj from the old location so that it
412 * can be freed by dsl_scan_done().
413 */
414 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
415 "scrub_queue", sizeof (uint64_t), 1,
416 &scn->scn_phys.scn_queue_obj);
417 } else {
418 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
419 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
420 &scn->scn_phys);
421 /*
422 * Detect if the pool contains the signature of #2094. If it
423 * does properly update the scn->scn_phys structure and notify
424 * the administrator by setting an errata for the pool.
425 */
426 if (err == EOVERFLOW) {
427 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
428 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
429 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
430 (23 * sizeof (uint64_t)));
431
432 err = zap_lookup(dp->dp_meta_objset,
433 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
434 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
435 if (err == 0) {
436 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
437
438 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
439 scn->scn_async_destroying) {
440 spa->spa_errata =
441 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
442 return (EOVERFLOW);
443 }
444
445 bcopy(zaptmp, &scn->scn_phys,
446 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
447 scn->scn_phys.scn_flags = overflow;
448
449 /* Required scrub already in progress. */
450 if (scn->scn_phys.scn_state == DSS_FINISHED ||
451 scn->scn_phys.scn_state == DSS_CANCELED)
452 spa->spa_errata =
453 ZPOOL_ERRATA_ZOL_2094_SCRUB;
454 }
455 }
456
457 if (err == ENOENT)
458 return (0);
459 else if (err)
460 return (err);
461
462 /*
463 * We might be restarting after a reboot, so jump the issued
464 * counter to how far we've scanned. We know we're consistent
465 * up to here.
466 */
467 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
468
469 if (dsl_scan_is_running(scn) &&
470 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
471 /*
472 * A new-type scrub was in progress on an old
473 * pool, and the pool was accessed by old
474 * software. Restart from the beginning, since
475 * the old software may have changed the pool in
476 * the meantime.
477 */
478 scn->scn_restart_txg = txg;
479 zfs_dbgmsg("new-style scrub was modified "
480 "by old software; restarting in txg %llu",
481 (longlong_t)scn->scn_restart_txg);
482 }
483 }
484
485 /* reload the queue into the in-core state */
486 if (scn->scn_phys.scn_queue_obj != 0) {
487 zap_cursor_t zc;
488 zap_attribute_t za;
489
490 for (zap_cursor_init(&zc, dp->dp_meta_objset,
491 scn->scn_phys.scn_queue_obj);
492 zap_cursor_retrieve(&zc, &za) == 0;
493 (void) zap_cursor_advance(&zc)) {
494 scan_ds_queue_insert(scn,
495 zfs_strtonum(za.za_name, NULL),
496 za.za_first_integer);
497 }
498 zap_cursor_fini(&zc);
499 }
500
501 spa_scan_stat_init(spa);
502 return (0);
503 }
504
505 void
506 dsl_scan_fini(dsl_pool_t *dp)
507 {
508 if (dp->dp_scan != NULL) {
509 dsl_scan_t *scn = dp->dp_scan;
510
511 if (scn->scn_taskq != NULL)
512 taskq_destroy(scn->scn_taskq);
513 scan_ds_queue_clear(scn);
514 avl_destroy(&scn->scn_queue);
515 avl_destroy(&scn->scn_prefetch_queue);
516
517 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
518 dp->dp_scan = NULL;
519 }
520 }
521
522 static boolean_t
523 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
524 {
525 return (scn->scn_restart_txg != 0 &&
526 scn->scn_restart_txg <= tx->tx_txg);
527 }
528
529 boolean_t
530 dsl_scan_scrubbing(const dsl_pool_t *dp)
531 {
532 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
533
534 return (scn_phys->scn_state == DSS_SCANNING &&
535 scn_phys->scn_func == POOL_SCAN_SCRUB);
536 }
537
538 boolean_t
539 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
540 {
541 return (dsl_scan_scrubbing(scn->scn_dp) &&
542 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
543 }
544
545 /*
546 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
547 * Because we can be running in the block sorting algorithm, we do not always
548 * want to write out the record, only when it is "safe" to do so. This safety
549 * condition is achieved by making sure that the sorting queues are empty
550 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
551 * is inconsistent with how much actual scanning progress has been made. The
552 * kind of sync to be performed is specified by the sync_type argument. If the
553 * sync is optional, we only sync if the queues are empty. If the sync is
554 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
555 * third possible state is a "cached" sync. This is done in response to:
556 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
557 * destroyed, so we wouldn't be able to restart scanning from it.
558 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
559 * superseded by a newer snapshot.
560 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
561 * swapped with its clone.
562 * In all cases, a cached sync simply rewrites the last record we've written,
563 * just slightly modified. For the modifications that are performed to the
564 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
565 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
566 */
567 static void
568 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
569 {
570 int i;
571 spa_t *spa = scn->scn_dp->dp_spa;
572
573 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
574 if (scn->scn_bytes_pending == 0) {
575 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
576 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
577 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
578
579 if (q == NULL)
580 continue;
581
582 mutex_enter(&vd->vdev_scan_io_queue_lock);
583 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
584 ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL);
585 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
586 mutex_exit(&vd->vdev_scan_io_queue_lock);
587 }
588
589 if (scn->scn_phys.scn_queue_obj != 0)
590 scan_ds_queue_sync(scn, tx);
591 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
592 DMU_POOL_DIRECTORY_OBJECT,
593 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
594 &scn->scn_phys, tx));
595 bcopy(&scn->scn_phys, &scn->scn_phys_cached,
596 sizeof (scn->scn_phys));
597
598 if (scn->scn_checkpointing)
599 zfs_dbgmsg("finish scan checkpoint");
600
601 scn->scn_checkpointing = B_FALSE;
602 scn->scn_last_checkpoint = ddi_get_lbolt();
603 } else if (sync_type == SYNC_CACHED) {
604 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
605 DMU_POOL_DIRECTORY_OBJECT,
606 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
607 &scn->scn_phys_cached, tx));
608 }
609 }
610
611 /* ARGSUSED */
612 static int
613 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
614 {
615 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
616
617 if (dsl_scan_is_running(scn))
618 return (SET_ERROR(EBUSY));
619
620 return (0);
621 }
622
623 static void
624 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
625 {
626 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
627 pool_scan_func_t *funcp = arg;
628 dmu_object_type_t ot = 0;
629 dsl_pool_t *dp = scn->scn_dp;
630 spa_t *spa = dp->dp_spa;
631
632 ASSERT(!dsl_scan_is_running(scn));
633 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
634 bzero(&scn->scn_phys, sizeof (scn->scn_phys));
635 scn->scn_phys.scn_func = *funcp;
636 scn->scn_phys.scn_state = DSS_SCANNING;
637 scn->scn_phys.scn_min_txg = 0;
638 scn->scn_phys.scn_max_txg = tx->tx_txg;
639 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
640 scn->scn_phys.scn_start_time = gethrestime_sec();
641 scn->scn_phys.scn_errors = 0;
642 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
643 scn->scn_issued_before_pass = 0;
644 scn->scn_restart_txg = 0;
645 scn->scn_done_txg = 0;
646 scn->scn_last_checkpoint = 0;
647 scn->scn_checkpointing = B_FALSE;
648 spa_scan_stat_init(spa);
649
650 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
651 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
652
653 /* rewrite all disk labels */
654 vdev_config_dirty(spa->spa_root_vdev);
655
656 if (vdev_resilver_needed(spa->spa_root_vdev,
657 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
658 spa_event_notify(spa, NULL, NULL,
659 ESC_ZFS_RESILVER_START);
660 } else {
661 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
662 }
663
664 spa->spa_scrub_started = B_TRUE;
665 /*
666 * If this is an incremental scrub, limit the DDT scrub phase
667 * to just the auto-ditto class (for correctness); the rest
668 * of the scrub should go faster using top-down pruning.
669 */
670 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
671 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
672
673 }
674
675 /* back to the generic stuff */
676
677 if (dp->dp_blkstats == NULL) {
678 dp->dp_blkstats =
679 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
680 mutex_init(&dp->dp_blkstats->zab_lock, NULL,
681 MUTEX_DEFAULT, NULL);
682 }
683 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
684
685 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
686 ot = DMU_OT_ZAP_OTHER;
687
688 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
689 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
690
691 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
692
693 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
694
695 spa_history_log_internal(spa, "scan setup", tx,
696 "func=%u mintxg=%llu maxtxg=%llu",
697 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
698 }
699
700 /*
701 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
702 * Can also be called to resume a paused scrub.
703 */
704 int
705 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
706 {
707 spa_t *spa = dp->dp_spa;
708 dsl_scan_t *scn = dp->dp_scan;
709
710 /*
711 * Purge all vdev caches and probe all devices. We do this here
712 * rather than in sync context because this requires a writer lock
713 * on the spa_config lock, which we can't do from sync context. The
714 * spa_scrub_reopen flag indicates that vdev_open() should not
715 * attempt to start another scrub.
716 */
717 spa_vdev_state_enter(spa, SCL_NONE);
718 spa->spa_scrub_reopen = B_TRUE;
719 vdev_reopen(spa->spa_root_vdev);
720 spa->spa_scrub_reopen = B_FALSE;
721 (void) spa_vdev_state_exit(spa, NULL, 0);
722
723 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
724 /* got scrub start cmd, resume paused scrub */
725 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
726 POOL_SCRUB_NORMAL);
727 if (err == 0) {
728 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
729 return (ECANCELED);
730 }
731
732 return (SET_ERROR(err));
733 }
734
735 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
736 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
737 }
738
739 /* ARGSUSED */
740 static void
741 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
742 {
743 static const char *old_names[] = {
744 "scrub_bookmark",
745 "scrub_ddt_bookmark",
746 "scrub_ddt_class_max",
747 "scrub_queue",
748 "scrub_min_txg",
749 "scrub_max_txg",
750 "scrub_func",
751 "scrub_errors",
752 NULL
753 };
754
755 dsl_pool_t *dp = scn->scn_dp;
756 spa_t *spa = dp->dp_spa;
757 int i;
758
759 /* Remove any remnants of an old-style scrub. */
760 for (i = 0; old_names[i]; i++) {
761 (void) zap_remove(dp->dp_meta_objset,
762 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
763 }
764
765 if (scn->scn_phys.scn_queue_obj != 0) {
766 VERIFY0(dmu_object_free(dp->dp_meta_objset,
767 scn->scn_phys.scn_queue_obj, tx));
768 scn->scn_phys.scn_queue_obj = 0;
769 }
770 scan_ds_queue_clear(scn);
771
772 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
773
774 /*
775 * If we were "restarted" from a stopped state, don't bother
776 * with anything else.
777 */
778 if (!dsl_scan_is_running(scn)) {
779 ASSERT(!scn->scn_is_sorted);
780 return;
781 }
782
783 if (scn->scn_is_sorted) {
784 scan_io_queues_destroy(scn);
785 scn->scn_is_sorted = B_FALSE;
786
787 if (scn->scn_taskq != NULL) {
788 taskq_destroy(scn->scn_taskq);
789 scn->scn_taskq = NULL;
790 }
791 }
792
793 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
794
795 if (dsl_scan_restarting(scn, tx))
796 spa_history_log_internal(spa, "scan aborted, restarting", tx,
797 "errors=%llu", spa_get_errlog_size(spa));
798 else if (!complete)
799 spa_history_log_internal(spa, "scan cancelled", tx,
800 "errors=%llu", spa_get_errlog_size(spa));
801 else
802 spa_history_log_internal(spa, "scan done", tx,
803 "errors=%llu", spa_get_errlog_size(spa));
804
805 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
806 spa->spa_scrub_started = B_FALSE;
807 spa->spa_scrub_active = B_FALSE;
808
809 /*
810 * If the scrub/resilver completed, update all DTLs to
811 * reflect this. Whether it succeeded or not, vacate
812 * all temporary scrub DTLs.
813 *
814 * As the scrub does not currently support traversing
815 * data that have been freed but are part of a checkpoint,
816 * we don't mark the scrub as done in the DTLs as faults
817 * may still exist in those vdevs.
818 */
819 if (complete &&
820 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
821 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
822 scn->scn_phys.scn_max_txg, B_TRUE);
823
824 spa_event_notify(spa, NULL, NULL,
825 scn->scn_phys.scn_min_txg ?
826 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
827 } else {
828 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
829 0, B_TRUE);
830 }
831 spa_errlog_rotate(spa);
832
833 /*
834 * We may have finished replacing a device.
835 * Let the async thread assess this and handle the detach.
836 */
837 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
838 }
839
840 scn->scn_phys.scn_end_time = gethrestime_sec();
841
842 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
843 spa->spa_errata = 0;
844
845 ASSERT(!dsl_scan_is_running(scn));
846 }
847
848 /* ARGSUSED */
849 static int
850 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
851 {
852 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
853
854 if (!dsl_scan_is_running(scn))
855 return (SET_ERROR(ENOENT));
856 return (0);
857 }
858
859 /* ARGSUSED */
860 static void
861 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
862 {
863 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
864
865 dsl_scan_done(scn, B_FALSE, tx);
866 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
867 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
868 }
869
870 int
871 dsl_scan_cancel(dsl_pool_t *dp)
872 {
873 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
874 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
875 }
876
877 static int
878 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
879 {
880 pool_scrub_cmd_t *cmd = arg;
881 dsl_pool_t *dp = dmu_tx_pool(tx);
882 dsl_scan_t *scn = dp->dp_scan;
883
884 if (*cmd == POOL_SCRUB_PAUSE) {
885 /* can't pause a scrub when there is no in-progress scrub */
886 if (!dsl_scan_scrubbing(dp))
887 return (SET_ERROR(ENOENT));
888
889 /* can't pause a paused scrub */
890 if (dsl_scan_is_paused_scrub(scn))
891 return (SET_ERROR(EBUSY));
892 } else if (*cmd != POOL_SCRUB_NORMAL) {
893 return (SET_ERROR(ENOTSUP));
894 }
895
896 return (0);
897 }
898
899 static void
900 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
901 {
902 pool_scrub_cmd_t *cmd = arg;
903 dsl_pool_t *dp = dmu_tx_pool(tx);
904 spa_t *spa = dp->dp_spa;
905 dsl_scan_t *scn = dp->dp_scan;
906
907 if (*cmd == POOL_SCRUB_PAUSE) {
908 /* can't pause a scrub when there is no in-progress scrub */
909 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
910 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
911 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
912 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
913 } else {
914 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
915 if (dsl_scan_is_paused_scrub(scn)) {
916 /*
917 * We need to keep track of how much time we spend
918 * paused per pass so that we can adjust the scrub rate
919 * shown in the output of 'zpool status'
920 */
921 spa->spa_scan_pass_scrub_spent_paused +=
922 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
923 spa->spa_scan_pass_scrub_pause = 0;
924 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
925 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
926 }
927 }
928 }
929
930 /*
931 * Set scrub pause/resume state if it makes sense to do so
932 */
933 int
934 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
935 {
936 return (dsl_sync_task(spa_name(dp->dp_spa),
937 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
938 ZFS_SPACE_CHECK_RESERVED));
939 }
940
941
942 /* start a new scan, or restart an existing one. */
943 void
944 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
945 {
946 if (txg == 0) {
947 dmu_tx_t *tx;
948 tx = dmu_tx_create_dd(dp->dp_mos_dir);
949 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
950
951 txg = dmu_tx_get_txg(tx);
952 dp->dp_scan->scn_restart_txg = txg;
953 dmu_tx_commit(tx);
954 } else {
955 dp->dp_scan->scn_restart_txg = txg;
956 }
957 zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
958 }
959
960 void
961 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
962 {
963 zio_free(dp->dp_spa, txg, bp);
964 }
965
966 void
967 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
968 {
969 ASSERT(dsl_pool_sync_context(dp));
970 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
971 }
972
973 static int
974 scan_ds_queue_compare(const void *a, const void *b)
975 {
976 const scan_ds_t *sds_a = a, *sds_b = b;
977
978 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
979 return (-1);
980 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
981 return (0);
982 return (1);
983 }
984
985 static void
986 scan_ds_queue_clear(dsl_scan_t *scn)
987 {
988 void *cookie = NULL;
989 scan_ds_t *sds;
990 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
991 kmem_free(sds, sizeof (*sds));
992 }
993 }
994
995 static boolean_t
996 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
997 {
998 scan_ds_t srch, *sds;
999
1000 srch.sds_dsobj = dsobj;
1001 sds = avl_find(&scn->scn_queue, &srch, NULL);
1002 if (sds != NULL && txg != NULL)
1003 *txg = sds->sds_txg;
1004 return (sds != NULL);
1005 }
1006
1007 static void
1008 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1009 {
1010 scan_ds_t *sds;
1011 avl_index_t where;
1012
1013 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1014 sds->sds_dsobj = dsobj;
1015 sds->sds_txg = txg;
1016
1017 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1018 avl_insert(&scn->scn_queue, sds, where);
1019 }
1020
1021 static void
1022 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1023 {
1024 scan_ds_t srch, *sds;
1025
1026 srch.sds_dsobj = dsobj;
1027
1028 sds = avl_find(&scn->scn_queue, &srch, NULL);
1029 VERIFY(sds != NULL);
1030 avl_remove(&scn->scn_queue, sds);
1031 kmem_free(sds, sizeof (*sds));
1032 }
1033
1034 static void
1035 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1036 {
1037 dsl_pool_t *dp = scn->scn_dp;
1038 spa_t *spa = dp->dp_spa;
1039 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1040 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1041
1042 ASSERT0(scn->scn_bytes_pending);
1043 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1044
1045 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1046 scn->scn_phys.scn_queue_obj, tx));
1047 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1048 DMU_OT_NONE, 0, tx);
1049 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1050 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1051 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1052 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1053 sds->sds_txg, tx));
1054 }
1055 }
1056
1057 /*
1058 * Computes the memory limit state that we're currently in. A sorted scan
1059 * needs quite a bit of memory to hold the sorting queue, so we need to
1060 * reasonably constrain the size so it doesn't impact overall system
1061 * performance. We compute two limits:
1062 * 1) Hard memory limit: if the amount of memory used by the sorting
1063 * queues on a pool gets above this value, we stop the metadata
1064 * scanning portion and start issuing the queued up and sorted
1065 * I/Os to reduce memory usage.
1066 * This limit is calculated as a fraction of physmem (by default 5%).
1067 * We constrain the lower bound of the hard limit to an absolute
1068 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1069 * the upper bound to 5% of the total pool size - no chance we'll
1070 * ever need that much memory, but just to keep the value in check.
1071 * 2) Soft memory limit: once we hit the hard memory limit, we start
1072 * issuing I/O to reduce queue memory usage, but we don't want to
1073 * completely empty out the queues, since we might be able to find I/Os
1074 * that will fill in the gaps of our non-sequential IOs at some point
1075 * in the future. So we stop the issuing of I/Os once the amount of
1076 * memory used drops below the soft limit (at which point we stop issuing
1077 * I/O and start scanning metadata again).
1078 *
1079 * This limit is calculated by subtracting a fraction of the hard
1080 * limit from the hard limit. By default this fraction is 5%, so
1081 * the soft limit is 95% of the hard limit. We cap the size of the
1082 * difference between the hard and soft limits at an absolute
1083 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1084 * sufficient to not cause too frequent switching between the
1085 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1086 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1087 * that should take at least a decent fraction of a second).
1088 */
1089 static boolean_t
1090 dsl_scan_should_clear(dsl_scan_t *scn)
1091 {
1092 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1093 uint64_t mlim_hard, mlim_soft, mused;
1094 uint64_t alloc = metaslab_class_get_alloc(spa_normal_class(
1095 scn->scn_dp->dp_spa));
1096
1097 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1098 zfs_scan_mem_lim_min);
1099 mlim_hard = MIN(mlim_hard, alloc / 20);
1100 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1101 zfs_scan_mem_lim_soft_max);
1102 mused = 0;
1103 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1104 vdev_t *tvd = rvd->vdev_child[i];
1105 dsl_scan_io_queue_t *queue;
1106
1107 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1108 queue = tvd->vdev_scan_io_queue;
1109 if (queue != NULL) {
1110 /* #extents in exts_by_size = # in exts_by_addr */
1111 mused += avl_numnodes(&queue->q_exts_by_size) *
1112 sizeof (range_seg_t) +
1113 avl_numnodes(&queue->q_sios_by_addr) *
1114 sizeof (scan_io_t);
1115 }
1116 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1117 }
1118
1119 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1120
1121 if (mused == 0)
1122 ASSERT0(scn->scn_bytes_pending);
1123
1124 /*
1125 * If we are above our hard limit, we need to clear out memory.
1126 * If we are below our soft limit, we need to accumulate sequential IOs.
1127 * Otherwise, we should keep doing whatever we are currently doing.
1128 */
1129 if (mused >= mlim_hard)
1130 return (B_TRUE);
1131 else if (mused < mlim_soft)
1132 return (B_FALSE);
1133 else
1134 return (scn->scn_clearing);
1135 }
1136
1137 static boolean_t
1138 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1139 {
1140 /* we never skip user/group accounting objects */
1141 if (zb && (int64_t)zb->zb_object < 0)
1142 return (B_FALSE);
1143
1144 if (scn->scn_suspending)
1145 return (B_TRUE); /* we're already suspending */
1146
1147 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1148 return (B_FALSE); /* we're resuming */
1149
1150 /* We only know how to resume from level-0 blocks. */
1151 if (zb && zb->zb_level != 0)
1152 return (B_FALSE);
1153
1154 /*
1155 * We suspend if:
1156 * - we have scanned for at least the minimum time (default 1 sec
1157 * for scrub, 3 sec for resilver), and either we have sufficient
1158 * dirty data that we are starting to write more quickly
1159 * (default 30%), someone is explicitly waiting for this txg
1160 * to complete, or we have used up all of the time in the txg
1161 * timeout (default 5 sec).
1162 * or
1163 * - the spa is shutting down because this pool is being exported
1164 * or the machine is rebooting.
1165 * or
1166 * - the scan queue has reached its memory use limit
1167 */
1168 uint64_t curr_time_ns = gethrtime();
1169 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1170 uint64_t sync_time_ns = curr_time_ns -
1171 scn->scn_dp->dp_spa->spa_sync_starttime;
1172 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1173 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1174 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1175
1176 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1177 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1178 txg_sync_waiting(scn->scn_dp) ||
1179 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1180 spa_shutting_down(scn->scn_dp->dp_spa) ||
1181 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1182 if (zb) {
1183 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1184 (longlong_t)zb->zb_objset,
1185 (longlong_t)zb->zb_object,
1186 (longlong_t)zb->zb_level,
1187 (longlong_t)zb->zb_blkid);
1188 scn->scn_phys.scn_bookmark = *zb;
1189 } else {
1190 #ifdef ZFS_DEBUG
1191 dsl_scan_phys_t *scnp = &scn->scn_phys;
1192 dprintf("suspending at at DDT bookmark "
1193 "%llx/%llx/%llx/%llx\n",
1194 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1195 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1196 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1197 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1198 #endif
1199 }
1200 scn->scn_suspending = B_TRUE;
1201 return (B_TRUE);
1202 }
1203 return (B_FALSE);
1204 }
1205
1206 typedef struct zil_scan_arg {
1207 dsl_pool_t *zsa_dp;
1208 zil_header_t *zsa_zh;
1209 } zil_scan_arg_t;
1210
1211 /* ARGSUSED */
1212 static int
1213 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1214 {
1215 zil_scan_arg_t *zsa = arg;
1216 dsl_pool_t *dp = zsa->zsa_dp;
1217 dsl_scan_t *scn = dp->dp_scan;
1218 zil_header_t *zh = zsa->zsa_zh;
1219 zbookmark_phys_t zb;
1220
1221 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1222 return (0);
1223
1224 /*
1225 * One block ("stubby") can be allocated a long time ago; we
1226 * want to visit that one because it has been allocated
1227 * (on-disk) even if it hasn't been claimed (even though for
1228 * scrub there's nothing to do to it).
1229 */
1230 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1231 return (0);
1232
1233 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1234 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1235
1236 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1237 return (0);
1238 }
1239
1240 /* ARGSUSED */
1241 static int
1242 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1243 {
1244 if (lrc->lrc_txtype == TX_WRITE) {
1245 zil_scan_arg_t *zsa = arg;
1246 dsl_pool_t *dp = zsa->zsa_dp;
1247 dsl_scan_t *scn = dp->dp_scan;
1248 zil_header_t *zh = zsa->zsa_zh;
1249 lr_write_t *lr = (lr_write_t *)lrc;
1250 blkptr_t *bp = &lr->lr_blkptr;
1251 zbookmark_phys_t zb;
1252
1253 if (BP_IS_HOLE(bp) ||
1254 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1255 return (0);
1256
1257 /*
1258 * birth can be < claim_txg if this record's txg is
1259 * already txg sync'ed (but this log block contains
1260 * other records that are not synced)
1261 */
1262 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1263 return (0);
1264
1265 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1266 lr->lr_foid, ZB_ZIL_LEVEL,
1267 lr->lr_offset / BP_GET_LSIZE(bp));
1268
1269 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1270 }
1271 return (0);
1272 }
1273
1274 static void
1275 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1276 {
1277 uint64_t claim_txg = zh->zh_claim_txg;
1278 zil_scan_arg_t zsa = { dp, zh };
1279 zilog_t *zilog;
1280
1281 ASSERT(spa_writeable(dp->dp_spa));
1282
1283 /*
1284 * We only want to visit blocks that have been claimed but not yet
1285 * replayed (or, in read-only mode, blocks that *would* be claimed).
1286 */
1287 if (claim_txg == 0)
1288 return;
1289
1290 zilog = zil_alloc(dp->dp_meta_objset, zh);
1291
1292 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1293 claim_txg, B_FALSE);
1294
1295 zil_free(zilog);
1296 }
1297
1298 /*
1299 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1300 * here is to sort the AVL tree by the order each block will be needed.
1301 */
1302 static int
1303 scan_prefetch_queue_compare(const void *a, const void *b)
1304 {
1305 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1306 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1307 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1308
1309 return (zbookmark_compare(spc_a->spc_datablkszsec,
1310 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1311 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1312 }
1313
1314 static void
1315 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1316 {
1317 if (refcount_remove(&spc->spc_refcnt, tag) == 0) {
1318 refcount_destroy(&spc->spc_refcnt);
1319 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1320 }
1321 }
1322
1323 static scan_prefetch_ctx_t *
1324 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1325 {
1326 scan_prefetch_ctx_t *spc;
1327
1328 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1329 refcount_create(&spc->spc_refcnt);
1330 refcount_add(&spc->spc_refcnt, tag);
1331 spc->spc_scn = scn;
1332 if (dnp != NULL) {
1333 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1334 spc->spc_indblkshift = dnp->dn_indblkshift;
1335 spc->spc_root = B_FALSE;
1336 } else {
1337 spc->spc_datablkszsec = 0;
1338 spc->spc_indblkshift = 0;
1339 spc->spc_root = B_TRUE;
1340 }
1341
1342 return (spc);
1343 }
1344
1345 static void
1346 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1347 {
1348 refcount_add(&spc->spc_refcnt, tag);
1349 }
1350
1351 static boolean_t
1352 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1353 const zbookmark_phys_t *zb)
1354 {
1355 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1356 dnode_phys_t tmp_dnp;
1357 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1358
1359 if (zb->zb_objset != last_zb->zb_objset)
1360 return (B_TRUE);
1361 if ((int64_t)zb->zb_object < 0)
1362 return (B_FALSE);
1363
1364 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1365 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1366
1367 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1368 return (B_TRUE);
1369
1370 return (B_FALSE);
1371 }
1372
1373 static void
1374 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1375 {
1376 avl_index_t idx;
1377 dsl_scan_t *scn = spc->spc_scn;
1378 spa_t *spa = scn->scn_dp->dp_spa;
1379 scan_prefetch_issue_ctx_t *spic;
1380
1381 if (zfs_no_scrub_prefetch)
1382 return;
1383
1384 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1385 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1386 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1387 return;
1388
1389 if (dsl_scan_check_prefetch_resume(spc, zb))
1390 return;
1391
1392 scan_prefetch_ctx_add_ref(spc, scn);
1393 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1394 spic->spic_spc = spc;
1395 spic->spic_bp = *bp;
1396 spic->spic_zb = *zb;
1397
1398 /*
1399 * Add the IO to the queue of blocks to prefetch. This allows us to
1400 * prioritize blocks that we will need first for the main traversal
1401 * thread.
1402 */
1403 mutex_enter(&spa->spa_scrub_lock);
1404 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1405 /* this block is already queued for prefetch */
1406 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1407 scan_prefetch_ctx_rele(spc, scn);
1408 mutex_exit(&spa->spa_scrub_lock);
1409 return;
1410 }
1411
1412 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1413 cv_broadcast(&spa->spa_scrub_io_cv);
1414 mutex_exit(&spa->spa_scrub_lock);
1415 }
1416
1417 static void
1418 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1419 uint64_t objset, uint64_t object)
1420 {
1421 int i;
1422 zbookmark_phys_t zb;
1423 scan_prefetch_ctx_t *spc;
1424
1425 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1426 return;
1427
1428 SET_BOOKMARK(&zb, objset, object, 0, 0);
1429
1430 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1431
1432 for (i = 0; i < dnp->dn_nblkptr; i++) {
1433 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1434 zb.zb_blkid = i;
1435 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1436 }
1437
1438 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1439 zb.zb_level = 0;
1440 zb.zb_blkid = DMU_SPILL_BLKID;
1441 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1442 }
1443
1444 scan_prefetch_ctx_rele(spc, FTAG);
1445 }
1446
1447 void
1448 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1449 arc_buf_t *buf, void *private)
1450 {
1451 scan_prefetch_ctx_t *spc = private;
1452 dsl_scan_t *scn = spc->spc_scn;
1453 spa_t *spa = scn->scn_dp->dp_spa;
1454
1455 /* broadcast that the IO has completed for rate limiting purposes */
1456 mutex_enter(&spa->spa_scrub_lock);
1457 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1458 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1459 cv_broadcast(&spa->spa_scrub_io_cv);
1460 mutex_exit(&spa->spa_scrub_lock);
1461
1462 /* if there was an error or we are done prefetching, just cleanup */
1463 if (buf == NULL || scn->scn_prefetch_stop)
1464 goto out;
1465
1466 if (BP_GET_LEVEL(bp) > 0) {
1467 int i;
1468 blkptr_t *cbp;
1469 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1470 zbookmark_phys_t czb;
1471
1472 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1473 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1474 zb->zb_level - 1, zb->zb_blkid * epb + i);
1475 dsl_scan_prefetch(spc, cbp, &czb);
1476 }
1477 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1478 dnode_phys_t *cdnp;
1479 int i;
1480 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1481
1482 for (i = 0, cdnp = buf->b_data; i < epb;
1483 i += cdnp->dn_extra_slots + 1,
1484 cdnp += cdnp->dn_extra_slots + 1) {
1485 dsl_scan_prefetch_dnode(scn, cdnp,
1486 zb->zb_objset, zb->zb_blkid * epb + i);
1487 }
1488 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1489 objset_phys_t *osp = buf->b_data;
1490
1491 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1492 zb->zb_objset, DMU_META_DNODE_OBJECT);
1493
1494 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1495 dsl_scan_prefetch_dnode(scn,
1496 &osp->os_groupused_dnode, zb->zb_objset,
1497 DMU_GROUPUSED_OBJECT);
1498 dsl_scan_prefetch_dnode(scn,
1499 &osp->os_userused_dnode, zb->zb_objset,
1500 DMU_USERUSED_OBJECT);
1501 }
1502 }
1503
1504 out:
1505 if (buf != NULL)
1506 arc_buf_destroy(buf, private);
1507 scan_prefetch_ctx_rele(spc, scn);
1508 }
1509
1510 /* ARGSUSED */
1511 static void
1512 dsl_scan_prefetch_thread(void *arg)
1513 {
1514 dsl_scan_t *scn = arg;
1515 spa_t *spa = scn->scn_dp->dp_spa;
1516 scan_prefetch_issue_ctx_t *spic;
1517
1518 /* loop until we are told to stop */
1519 while (!scn->scn_prefetch_stop) {
1520 arc_flags_t flags = ARC_FLAG_NOWAIT |
1521 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1522 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1523
1524 mutex_enter(&spa->spa_scrub_lock);
1525
1526 /*
1527 * Wait until we have an IO to issue and are not above our
1528 * maximum in flight limit.
1529 */
1530 while (!scn->scn_prefetch_stop &&
1531 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1532 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1533 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1534 }
1535
1536 /* recheck if we should stop since we waited for the cv */
1537 if (scn->scn_prefetch_stop) {
1538 mutex_exit(&spa->spa_scrub_lock);
1539 break;
1540 }
1541
1542 /* remove the prefetch IO from the tree */
1543 spic = avl_first(&scn->scn_prefetch_queue);
1544 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1545 avl_remove(&scn->scn_prefetch_queue, spic);
1546
1547 mutex_exit(&spa->spa_scrub_lock);
1548
1549 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1550 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1551 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1552 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1553 zio_flags |= ZIO_FLAG_RAW;
1554 }
1555
1556 /* issue the prefetch asynchronously */
1557 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1558 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1559 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1560
1561 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1562 }
1563
1564 ASSERT(scn->scn_prefetch_stop);
1565
1566 /* free any prefetches we didn't get to complete */
1567 mutex_enter(&spa->spa_scrub_lock);
1568 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1569 avl_remove(&scn->scn_prefetch_queue, spic);
1570 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1571 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1572 }
1573 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1574 mutex_exit(&spa->spa_scrub_lock);
1575 }
1576
1577 static boolean_t
1578 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1579 const zbookmark_phys_t *zb)
1580 {
1581 /*
1582 * We never skip over user/group accounting objects (obj<0)
1583 */
1584 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1585 (int64_t)zb->zb_object >= 0) {
1586 /*
1587 * If we already visited this bp & everything below (in
1588 * a prior txg sync), don't bother doing it again.
1589 */
1590 if (zbookmark_subtree_completed(dnp, zb,
1591 &scn->scn_phys.scn_bookmark))
1592 return (B_TRUE);
1593
1594 /*
1595 * If we found the block we're trying to resume from, or
1596 * we went past it to a different object, zero it out to
1597 * indicate that it's OK to start checking for suspending
1598 * again.
1599 */
1600 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1601 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1602 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1603 (longlong_t)zb->zb_objset,
1604 (longlong_t)zb->zb_object,
1605 (longlong_t)zb->zb_level,
1606 (longlong_t)zb->zb_blkid);
1607 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1608 }
1609 }
1610 return (B_FALSE);
1611 }
1612
1613 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1614 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1615 dmu_objset_type_t ostype, dmu_tx_t *tx);
1616 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1617 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1618 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1619
1620 /*
1621 * Return nonzero on i/o error.
1622 * Return new buf to write out in *bufp.
1623 */
1624 inline __attribute__((always_inline)) static int
1625 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1626 dnode_phys_t *dnp, const blkptr_t *bp,
1627 const zbookmark_phys_t *zb, dmu_tx_t *tx)
1628 {
1629 dsl_pool_t *dp = scn->scn_dp;
1630 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1631 int err;
1632
1633 if (BP_GET_LEVEL(bp) > 0) {
1634 arc_flags_t flags = ARC_FLAG_WAIT;
1635 int i;
1636 blkptr_t *cbp;
1637 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1638 arc_buf_t *buf;
1639
1640 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1641 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1642 if (err) {
1643 scn->scn_phys.scn_errors++;
1644 return (err);
1645 }
1646 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1647 zbookmark_phys_t czb;
1648
1649 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1650 zb->zb_level - 1,
1651 zb->zb_blkid * epb + i);
1652 dsl_scan_visitbp(cbp, &czb, dnp,
1653 ds, scn, ostype, tx);
1654 }
1655 arc_buf_destroy(buf, &buf);
1656 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1657 arc_flags_t flags = ARC_FLAG_WAIT;
1658 dnode_phys_t *cdnp;
1659 int i;
1660 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1661 arc_buf_t *buf;
1662
1663 if (BP_IS_PROTECTED(bp)) {
1664 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1665 zio_flags |= ZIO_FLAG_RAW;
1666 }
1667
1668 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1669 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1670 if (err) {
1671 scn->scn_phys.scn_errors++;
1672 return (err);
1673 }
1674 for (i = 0, cdnp = buf->b_data; i < epb;
1675 i += cdnp->dn_extra_slots + 1,
1676 cdnp += cdnp->dn_extra_slots + 1) {
1677 dsl_scan_visitdnode(scn, ds, ostype,
1678 cdnp, zb->zb_blkid * epb + i, tx);
1679 }
1680
1681 arc_buf_destroy(buf, &buf);
1682 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1683 arc_flags_t flags = ARC_FLAG_WAIT;
1684 objset_phys_t *osp;
1685 arc_buf_t *buf;
1686
1687 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1688 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1689 if (err) {
1690 scn->scn_phys.scn_errors++;
1691 return (err);
1692 }
1693
1694 osp = buf->b_data;
1695
1696 dsl_scan_visitdnode(scn, ds, osp->os_type,
1697 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1698
1699 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1700 /*
1701 * We also always visit user/group/project accounting
1702 * objects, and never skip them, even if we are
1703 * suspending. This is necessary so that the
1704 * space deltas from this txg get integrated.
1705 */
1706 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1707 dsl_scan_visitdnode(scn, ds, osp->os_type,
1708 &osp->os_projectused_dnode,
1709 DMU_PROJECTUSED_OBJECT, tx);
1710 dsl_scan_visitdnode(scn, ds, osp->os_type,
1711 &osp->os_groupused_dnode,
1712 DMU_GROUPUSED_OBJECT, tx);
1713 dsl_scan_visitdnode(scn, ds, osp->os_type,
1714 &osp->os_userused_dnode,
1715 DMU_USERUSED_OBJECT, tx);
1716 }
1717 arc_buf_destroy(buf, &buf);
1718 }
1719
1720 return (0);
1721 }
1722
1723 inline __attribute__((always_inline)) static void
1724 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1725 dmu_objset_type_t ostype, dnode_phys_t *dnp,
1726 uint64_t object, dmu_tx_t *tx)
1727 {
1728 int j;
1729
1730 for (j = 0; j < dnp->dn_nblkptr; j++) {
1731 zbookmark_phys_t czb;
1732
1733 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1734 dnp->dn_nlevels - 1, j);
1735 dsl_scan_visitbp(&dnp->dn_blkptr[j],
1736 &czb, dnp, ds, scn, ostype, tx);
1737 }
1738
1739 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1740 zbookmark_phys_t czb;
1741 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1742 0, DMU_SPILL_BLKID);
1743 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1744 &czb, dnp, ds, scn, ostype, tx);
1745 }
1746 }
1747
1748 /*
1749 * The arguments are in this order because mdb can only print the
1750 * first 5; we want them to be useful.
1751 */
1752 static void
1753 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1754 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1755 dmu_objset_type_t ostype, dmu_tx_t *tx)
1756 {
1757 dsl_pool_t *dp = scn->scn_dp;
1758 blkptr_t *bp_toread = NULL;
1759
1760 if (dsl_scan_check_suspend(scn, zb))
1761 return;
1762
1763 if (dsl_scan_check_resume(scn, dnp, zb))
1764 return;
1765
1766 scn->scn_visited_this_txg++;
1767
1768 /*
1769 * This debugging is commented out to conserve stack space. This
1770 * function is called recursively and the debugging addes several
1771 * bytes to the stack for each call. It can be commented back in
1772 * if required to debug an issue in dsl_scan_visitbp().
1773 *
1774 * dprintf_bp(bp,
1775 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1776 * ds, ds ? ds->ds_object : 0,
1777 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1778 * bp);
1779 */
1780
1781 if (BP_IS_HOLE(bp)) {
1782 scn->scn_holes_this_txg++;
1783 return;
1784 }
1785
1786 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1787 scn->scn_lt_min_this_txg++;
1788 return;
1789 }
1790
1791 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1792 *bp_toread = *bp;
1793
1794 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1795 goto out;
1796
1797 /*
1798 * If dsl_scan_ddt() has already visited this block, it will have
1799 * already done any translations or scrubbing, so don't call the
1800 * callback again.
1801 */
1802 if (ddt_class_contains(dp->dp_spa,
1803 scn->scn_phys.scn_ddt_class_max, bp)) {
1804 scn->scn_ddt_contained_this_txg++;
1805 goto out;
1806 }
1807
1808 /*
1809 * If this block is from the future (after cur_max_txg), then we
1810 * are doing this on behalf of a deleted snapshot, and we will
1811 * revisit the future block on the next pass of this dataset.
1812 * Don't scan it now unless we need to because something
1813 * under it was modified.
1814 */
1815 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1816 scn->scn_gt_max_this_txg++;
1817 goto out;
1818 }
1819
1820 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1821
1822 out:
1823 kmem_free(bp_toread, sizeof (blkptr_t));
1824 }
1825
1826 static void
1827 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1828 dmu_tx_t *tx)
1829 {
1830 zbookmark_phys_t zb;
1831 scan_prefetch_ctx_t *spc;
1832
1833 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1834 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1835
1836 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1837 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1838 zb.zb_objset, 0, 0, 0);
1839 } else {
1840 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1841 }
1842
1843 scn->scn_objsets_visited_this_txg++;
1844
1845 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1846 dsl_scan_prefetch(spc, bp, &zb);
1847 scan_prefetch_ctx_rele(spc, FTAG);
1848
1849 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1850
1851 dprintf_ds(ds, "finished scan%s", "");
1852 }
1853
1854 static void
1855 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1856 {
1857 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1858 if (ds->ds_is_snapshot) {
1859 /*
1860 * Note:
1861 * - scn_cur_{min,max}_txg stays the same.
1862 * - Setting the flag is not really necessary if
1863 * scn_cur_max_txg == scn_max_txg, because there
1864 * is nothing after this snapshot that we care
1865 * about. However, we set it anyway and then
1866 * ignore it when we retraverse it in
1867 * dsl_scan_visitds().
1868 */
1869 scn_phys->scn_bookmark.zb_objset =
1870 dsl_dataset_phys(ds)->ds_next_snap_obj;
1871 zfs_dbgmsg("destroying ds %llu; currently traversing; "
1872 "reset zb_objset to %llu",
1873 (u_longlong_t)ds->ds_object,
1874 (u_longlong_t)dsl_dataset_phys(ds)->
1875 ds_next_snap_obj);
1876 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
1877 } else {
1878 SET_BOOKMARK(&scn_phys->scn_bookmark,
1879 ZB_DESTROYED_OBJSET, 0, 0, 0);
1880 zfs_dbgmsg("destroying ds %llu; currently traversing; "
1881 "reset bookmark to -1,0,0,0",
1882 (u_longlong_t)ds->ds_object);
1883 }
1884 }
1885 }
1886
1887 /*
1888 * Invoked when a dataset is destroyed. We need to make sure that:
1889 *
1890 * 1) If it is the dataset that was currently being scanned, we write
1891 * a new dsl_scan_phys_t and marking the objset reference in it
1892 * as destroyed.
1893 * 2) Remove it from the work queue, if it was present.
1894 *
1895 * If the dataset was actually a snapshot, instead of marking the dataset
1896 * as destroyed, we instead substitute the next snapshot in line.
1897 */
1898 void
1899 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
1900 {
1901 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1902 dsl_scan_t *scn = dp->dp_scan;
1903 uint64_t mintxg;
1904
1905 if (!dsl_scan_is_running(scn))
1906 return;
1907
1908 ds_destroyed_scn_phys(ds, &scn->scn_phys);
1909 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
1910
1911 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
1912 scan_ds_queue_remove(scn, ds->ds_object);
1913 if (ds->ds_is_snapshot)
1914 scan_ds_queue_insert(scn,
1915 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
1916 }
1917
1918 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
1919 ds->ds_object, &mintxg) == 0) {
1920 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
1921 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
1922 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
1923 if (ds->ds_is_snapshot) {
1924 /*
1925 * We keep the same mintxg; it could be >
1926 * ds_creation_txg if the previous snapshot was
1927 * deleted too.
1928 */
1929 VERIFY(zap_add_int_key(dp->dp_meta_objset,
1930 scn->scn_phys.scn_queue_obj,
1931 dsl_dataset_phys(ds)->ds_next_snap_obj,
1932 mintxg, tx) == 0);
1933 zfs_dbgmsg("destroying ds %llu; in queue; "
1934 "replacing with %llu",
1935 (u_longlong_t)ds->ds_object,
1936 (u_longlong_t)dsl_dataset_phys(ds)->
1937 ds_next_snap_obj);
1938 } else {
1939 zfs_dbgmsg("destroying ds %llu; in queue; removing",
1940 (u_longlong_t)ds->ds_object);
1941 }
1942 }
1943
1944 /*
1945 * dsl_scan_sync() should be called after this, and should sync
1946 * out our changed state, but just to be safe, do it here.
1947 */
1948 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1949 }
1950
1951 static void
1952 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
1953 {
1954 if (scn_bookmark->zb_objset == ds->ds_object) {
1955 scn_bookmark->zb_objset =
1956 dsl_dataset_phys(ds)->ds_prev_snap_obj;
1957 zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
1958 "reset zb_objset to %llu",
1959 (u_longlong_t)ds->ds_object,
1960 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
1961 }
1962 }
1963
1964 /*
1965 * Called when a dataset is snapshotted. If we were currently traversing
1966 * this snapshot, we reset our bookmark to point at the newly created
1967 * snapshot. We also modify our work queue to remove the old snapshot and
1968 * replace with the new one.
1969 */
1970 void
1971 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
1972 {
1973 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1974 dsl_scan_t *scn = dp->dp_scan;
1975 uint64_t mintxg;
1976
1977 if (!dsl_scan_is_running(scn))
1978 return;
1979
1980 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
1981
1982 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
1983 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
1984
1985 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
1986 scan_ds_queue_remove(scn, ds->ds_object);
1987 scan_ds_queue_insert(scn,
1988 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
1989 }
1990
1991 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
1992 ds->ds_object, &mintxg) == 0) {
1993 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
1994 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
1995 VERIFY(zap_add_int_key(dp->dp_meta_objset,
1996 scn->scn_phys.scn_queue_obj,
1997 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
1998 zfs_dbgmsg("snapshotting ds %llu; in queue; "
1999 "replacing with %llu",
2000 (u_longlong_t)ds->ds_object,
2001 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2002 }
2003
2004 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2005 }
2006
2007 static void
2008 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2009 zbookmark_phys_t *scn_bookmark)
2010 {
2011 if (scn_bookmark->zb_objset == ds1->ds_object) {
2012 scn_bookmark->zb_objset = ds2->ds_object;
2013 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2014 "reset zb_objset to %llu",
2015 (u_longlong_t)ds1->ds_object,
2016 (u_longlong_t)ds2->ds_object);
2017 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2018 scn_bookmark->zb_objset = ds1->ds_object;
2019 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2020 "reset zb_objset to %llu",
2021 (u_longlong_t)ds2->ds_object,
2022 (u_longlong_t)ds1->ds_object);
2023 }
2024 }
2025
2026 /*
2027 * Called when a parent dataset and its clone are swapped. If we were
2028 * currently traversing the dataset, we need to switch to traversing the
2029 * newly promoted parent.
2030 */
2031 void
2032 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2033 {
2034 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2035 dsl_scan_t *scn = dp->dp_scan;
2036 uint64_t mintxg;
2037
2038 if (!dsl_scan_is_running(scn))
2039 return;
2040
2041 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2042 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2043
2044 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2045 scan_ds_queue_remove(scn, ds1->ds_object);
2046 scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2047 }
2048 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2049 scan_ds_queue_remove(scn, ds2->ds_object);
2050 scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2051 }
2052
2053 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2054 ds1->ds_object, &mintxg) == 0) {
2055 int err;
2056 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2057 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2058 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2059 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2060 err = zap_add_int_key(dp->dp_meta_objset,
2061 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2062 VERIFY(err == 0 || err == EEXIST);
2063 if (err == EEXIST) {
2064 /* Both were there to begin with */
2065 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2066 scn->scn_phys.scn_queue_obj,
2067 ds1->ds_object, mintxg, tx));
2068 }
2069 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2070 "replacing with %llu",
2071 (u_longlong_t)ds1->ds_object,
2072 (u_longlong_t)ds2->ds_object);
2073 }
2074 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2075 ds2->ds_object, &mintxg) == 0) {
2076 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2077 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2078 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2079 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2080 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2081 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2082 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2083 "replacing with %llu",
2084 (u_longlong_t)ds2->ds_object,
2085 (u_longlong_t)ds1->ds_object);
2086 }
2087
2088 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2089 }
2090
2091 /* ARGSUSED */
2092 static int
2093 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2094 {
2095 uint64_t originobj = *(uint64_t *)arg;
2096 dsl_dataset_t *ds;
2097 int err;
2098 dsl_scan_t *scn = dp->dp_scan;
2099
2100 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2101 return (0);
2102
2103 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2104 if (err)
2105 return (err);
2106
2107 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2108 dsl_dataset_t *prev;
2109 err = dsl_dataset_hold_obj(dp,
2110 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2111
2112 dsl_dataset_rele(ds, FTAG);
2113 if (err)
2114 return (err);
2115 ds = prev;
2116 }
2117 scan_ds_queue_insert(scn, ds->ds_object,
2118 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2119 dsl_dataset_rele(ds, FTAG);
2120 return (0);
2121 }
2122
2123 static void
2124 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2125 {
2126 dsl_pool_t *dp = scn->scn_dp;
2127 dsl_dataset_t *ds;
2128
2129 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2130
2131 if (scn->scn_phys.scn_cur_min_txg >=
2132 scn->scn_phys.scn_max_txg) {
2133 /*
2134 * This can happen if this snapshot was created after the
2135 * scan started, and we already completed a previous snapshot
2136 * that was created after the scan started. This snapshot
2137 * only references blocks with:
2138 *
2139 * birth < our ds_creation_txg
2140 * cur_min_txg is no less than ds_creation_txg.
2141 * We have already visited these blocks.
2142 * or
2143 * birth > scn_max_txg
2144 * The scan requested not to visit these blocks.
2145 *
2146 * Subsequent snapshots (and clones) can reference our
2147 * blocks, or blocks with even higher birth times.
2148 * Therefore we do not need to visit them either,
2149 * so we do not add them to the work queue.
2150 *
2151 * Note that checking for cur_min_txg >= cur_max_txg
2152 * is not sufficient, because in that case we may need to
2153 * visit subsequent snapshots. This happens when min_txg > 0,
2154 * which raises cur_min_txg. In this case we will visit
2155 * this dataset but skip all of its blocks, because the
2156 * rootbp's birth time is < cur_min_txg. Then we will
2157 * add the next snapshots/clones to the work queue.
2158 */
2159 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2160 dsl_dataset_name(ds, dsname);
2161 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2162 "cur_min_txg (%llu) >= max_txg (%llu)",
2163 (longlong_t)dsobj, dsname,
2164 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2165 (longlong_t)scn->scn_phys.scn_max_txg);
2166 kmem_free(dsname, MAXNAMELEN);
2167
2168 goto out;
2169 }
2170
2171 /*
2172 * Only the ZIL in the head (non-snapshot) is valid. Even though
2173 * snapshots can have ZIL block pointers (which may be the same
2174 * BP as in the head), they must be ignored. In addition, $ORIGIN
2175 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2176 * need to look for a ZIL in it either. So we traverse the ZIL here,
2177 * rather than in scan_recurse(), because the regular snapshot
2178 * block-sharing rules don't apply to it.
2179 */
2180 if (!dsl_dataset_is_snapshot(ds) &&
2181 (dp->dp_origin_snap == NULL ||
2182 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2183 objset_t *os;
2184 if (dmu_objset_from_ds(ds, &os) != 0) {
2185 goto out;
2186 }
2187 dsl_scan_zil(dp, &os->os_zil_header);
2188 }
2189
2190 /*
2191 * Iterate over the bps in this ds.
2192 */
2193 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2194 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2195 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2196 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2197
2198 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2199 dsl_dataset_name(ds, dsname);
2200 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2201 "suspending=%u",
2202 (longlong_t)dsobj, dsname,
2203 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2204 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2205 (int)scn->scn_suspending);
2206 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2207
2208 if (scn->scn_suspending)
2209 goto out;
2210
2211 /*
2212 * We've finished this pass over this dataset.
2213 */
2214
2215 /*
2216 * If we did not completely visit this dataset, do another pass.
2217 */
2218 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2219 zfs_dbgmsg("incomplete pass; visiting again");
2220 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2221 scan_ds_queue_insert(scn, ds->ds_object,
2222 scn->scn_phys.scn_cur_max_txg);
2223 goto out;
2224 }
2225
2226 /*
2227 * Add descendant datasets to work queue.
2228 */
2229 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2230 scan_ds_queue_insert(scn,
2231 dsl_dataset_phys(ds)->ds_next_snap_obj,
2232 dsl_dataset_phys(ds)->ds_creation_txg);
2233 }
2234 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2235 boolean_t usenext = B_FALSE;
2236 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2237 uint64_t count;
2238 /*
2239 * A bug in a previous version of the code could
2240 * cause upgrade_clones_cb() to not set
2241 * ds_next_snap_obj when it should, leading to a
2242 * missing entry. Therefore we can only use the
2243 * next_clones_obj when its count is correct.
2244 */
2245 int err = zap_count(dp->dp_meta_objset,
2246 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2247 if (err == 0 &&
2248 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2249 usenext = B_TRUE;
2250 }
2251
2252 if (usenext) {
2253 zap_cursor_t zc;
2254 zap_attribute_t za;
2255 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2256 dsl_dataset_phys(ds)->ds_next_clones_obj);
2257 zap_cursor_retrieve(&zc, &za) == 0;
2258 (void) zap_cursor_advance(&zc)) {
2259 scan_ds_queue_insert(scn,
2260 zfs_strtonum(za.za_name, NULL),
2261 dsl_dataset_phys(ds)->ds_creation_txg);
2262 }
2263 zap_cursor_fini(&zc);
2264 } else {
2265 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2266 enqueue_clones_cb, &ds->ds_object,
2267 DS_FIND_CHILDREN));
2268 }
2269 }
2270
2271 out:
2272 dsl_dataset_rele(ds, FTAG);
2273 }
2274
2275 /* ARGSUSED */
2276 static int
2277 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2278 {
2279 dsl_dataset_t *ds;
2280 int err;
2281 dsl_scan_t *scn = dp->dp_scan;
2282
2283 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2284 if (err)
2285 return (err);
2286
2287 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2288 dsl_dataset_t *prev;
2289 err = dsl_dataset_hold_obj(dp,
2290 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2291 if (err) {
2292 dsl_dataset_rele(ds, FTAG);
2293 return (err);
2294 }
2295
2296 /*
2297 * If this is a clone, we don't need to worry about it for now.
2298 */
2299 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2300 dsl_dataset_rele(ds, FTAG);
2301 dsl_dataset_rele(prev, FTAG);
2302 return (0);
2303 }
2304 dsl_dataset_rele(ds, FTAG);
2305 ds = prev;
2306 }
2307
2308 scan_ds_queue_insert(scn, ds->ds_object,
2309 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2310 dsl_dataset_rele(ds, FTAG);
2311 return (0);
2312 }
2313
2314 /* ARGSUSED */
2315 void
2316 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2317 ddt_entry_t *dde, dmu_tx_t *tx)
2318 {
2319 const ddt_key_t *ddk = &dde->dde_key;
2320 ddt_phys_t *ddp = dde->dde_phys;
2321 blkptr_t bp;
2322 zbookmark_phys_t zb = { 0 };
2323 int p;
2324
2325 if (!dsl_scan_is_running(scn))
2326 return;
2327
2328 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2329 if (ddp->ddp_phys_birth == 0 ||
2330 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2331 continue;
2332 ddt_bp_create(checksum, ddk, ddp, &bp);
2333
2334 scn->scn_visited_this_txg++;
2335 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2336 }
2337 }
2338
2339 /*
2340 * Scrub/dedup interaction.
2341 *
2342 * If there are N references to a deduped block, we don't want to scrub it
2343 * N times -- ideally, we should scrub it exactly once.
2344 *
2345 * We leverage the fact that the dde's replication class (enum ddt_class)
2346 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2347 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2348 *
2349 * To prevent excess scrubbing, the scrub begins by walking the DDT
2350 * to find all blocks with refcnt > 1, and scrubs each of these once.
2351 * Since there are two replication classes which contain blocks with
2352 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2353 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2354 *
2355 * There would be nothing more to say if a block's refcnt couldn't change
2356 * during a scrub, but of course it can so we must account for changes
2357 * in a block's replication class.
2358 *
2359 * Here's an example of what can occur:
2360 *
2361 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2362 * when visited during the top-down scrub phase, it will be scrubbed twice.
2363 * This negates our scrub optimization, but is otherwise harmless.
2364 *
2365 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2366 * on each visit during the top-down scrub phase, it will never be scrubbed.
2367 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2368 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2369 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2370 * while a scrub is in progress, it scrubs the block right then.
2371 */
2372 static void
2373 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2374 {
2375 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2376 ddt_entry_t dde;
2377 int error;
2378 uint64_t n = 0;
2379
2380 bzero(&dde, sizeof (ddt_entry_t));
2381
2382 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2383 ddt_t *ddt;
2384
2385 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2386 break;
2387 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2388 (longlong_t)ddb->ddb_class,
2389 (longlong_t)ddb->ddb_type,
2390 (longlong_t)ddb->ddb_checksum,
2391 (longlong_t)ddb->ddb_cursor);
2392
2393 /* There should be no pending changes to the dedup table */
2394 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2395 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2396
2397 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2398 n++;
2399
2400 if (dsl_scan_check_suspend(scn, NULL))
2401 break;
2402 }
2403
2404 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2405 "suspending=%u", (longlong_t)n,
2406 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2407
2408 ASSERT(error == 0 || error == ENOENT);
2409 ASSERT(error != ENOENT ||
2410 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2411 }
2412
2413 static uint64_t
2414 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2415 {
2416 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2417 if (ds->ds_is_snapshot)
2418 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2419 return (smt);
2420 }
2421
2422 static void
2423 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2424 {
2425 scan_ds_t *sds;
2426 dsl_pool_t *dp = scn->scn_dp;
2427
2428 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2429 scn->scn_phys.scn_ddt_class_max) {
2430 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2431 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2432 dsl_scan_ddt(scn, tx);
2433 if (scn->scn_suspending)
2434 return;
2435 }
2436
2437 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2438 /* First do the MOS & ORIGIN */
2439
2440 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2441 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2442 dsl_scan_visit_rootbp(scn, NULL,
2443 &dp->dp_meta_rootbp, tx);
2444 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2445 if (scn->scn_suspending)
2446 return;
2447
2448 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2449 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2450 enqueue_cb, NULL, DS_FIND_CHILDREN));
2451 } else {
2452 dsl_scan_visitds(scn,
2453 dp->dp_origin_snap->ds_object, tx);
2454 }
2455 ASSERT(!scn->scn_suspending);
2456 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2457 ZB_DESTROYED_OBJSET) {
2458 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2459 /*
2460 * If we were suspended, continue from here. Note if the
2461 * ds we were suspended on was deleted, the zb_objset may
2462 * be -1, so we will skip this and find a new objset
2463 * below.
2464 */
2465 dsl_scan_visitds(scn, dsobj, tx);
2466 if (scn->scn_suspending)
2467 return;
2468 }
2469
2470 /*
2471 * In case we suspended right at the end of the ds, zero the
2472 * bookmark so we don't think that we're still trying to resume.
2473 */
2474 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2475
2476 /*
2477 * Keep pulling things out of the dataset avl queue. Updates to the
2478 * persistent zap-object-as-queue happen only at checkpoints.
2479 */
2480 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2481 dsl_dataset_t *ds;
2482 uint64_t dsobj = sds->sds_dsobj;
2483 uint64_t txg = sds->sds_txg;
2484
2485 /* dequeue and free the ds from the queue */
2486 scan_ds_queue_remove(scn, dsobj);
2487 sds = NULL;
2488
2489 /* set up min / max txg */
2490 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2491 if (txg != 0) {
2492 scn->scn_phys.scn_cur_min_txg =
2493 MAX(scn->scn_phys.scn_min_txg, txg);
2494 } else {
2495 scn->scn_phys.scn_cur_min_txg =
2496 MAX(scn->scn_phys.scn_min_txg,
2497 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2498 }
2499 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2500 dsl_dataset_rele(ds, FTAG);
2501
2502 dsl_scan_visitds(scn, dsobj, tx);
2503 if (scn->scn_suspending)
2504 return;
2505 }
2506
2507 /* No more objsets to fetch, we're done */
2508 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2509 ASSERT0(scn->scn_suspending);
2510 }
2511
2512 static uint64_t
2513 dsl_scan_count_leaves(vdev_t *vd)
2514 {
2515 uint64_t i, leaves = 0;
2516
2517 /* we only count leaves that belong to the main pool and are readable */
2518 if (vd->vdev_islog || vd->vdev_isspare ||
2519 vd->vdev_isl2cache || !vdev_readable(vd))
2520 return (0);
2521
2522 if (vd->vdev_ops->vdev_op_leaf)
2523 return (1);
2524
2525 for (i = 0; i < vd->vdev_children; i++) {
2526 leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2527 }
2528
2529 return (leaves);
2530 }
2531
2532 static void
2533 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2534 {
2535 int i;
2536 uint64_t cur_size = 0;
2537
2538 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2539 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2540 }
2541
2542 q->q_total_zio_size_this_txg += cur_size;
2543 q->q_zios_this_txg++;
2544 }
2545
2546 static void
2547 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2548 uint64_t end)
2549 {
2550 q->q_total_seg_size_this_txg += end - start;
2551 q->q_segs_this_txg++;
2552 }
2553
2554 static boolean_t
2555 scan_io_queue_check_suspend(dsl_scan_t *scn)
2556 {
2557 /* See comment in dsl_scan_check_suspend() */
2558 uint64_t curr_time_ns = gethrtime();
2559 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2560 uint64_t sync_time_ns = curr_time_ns -
2561 scn->scn_dp->dp_spa->spa_sync_starttime;
2562 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2563 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2564 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2565
2566 return ((NSEC2MSEC(scan_time_ns) > mintime &&
2567 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2568 txg_sync_waiting(scn->scn_dp) ||
2569 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2570 spa_shutting_down(scn->scn_dp->dp_spa));
2571 }
2572
2573 /*
2574 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2575 * disk. This consumes the io_list and frees the scan_io_t's. This is
2576 * called when emptying queues, either when we're up against the memory
2577 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2578 * processing the list before we finished. Any sios that were not issued
2579 * will remain in the io_list.
2580 */
2581 static boolean_t
2582 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2583 {
2584 dsl_scan_t *scn = queue->q_scn;
2585 scan_io_t *sio;
2586 int64_t bytes_issued = 0;
2587 boolean_t suspended = B_FALSE;
2588
2589 while ((sio = list_head(io_list)) != NULL) {
2590 blkptr_t bp;
2591
2592 if (scan_io_queue_check_suspend(scn)) {
2593 suspended = B_TRUE;
2594 break;
2595 }
2596
2597 sio2bp(sio, &bp, queue->q_vd->vdev_id);
2598 bytes_issued += sio->sio_asize;
2599 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2600 &sio->sio_zb, queue);
2601 (void) list_remove_head(io_list);
2602 scan_io_queues_update_zio_stats(queue, &bp);
2603 kmem_cache_free(sio_cache, sio);
2604 }
2605
2606 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2607
2608 return (suspended);
2609 }
2610
2611 /*
2612 * This function removes sios from an IO queue which reside within a given
2613 * range_seg_t and inserts them (in offset order) into a list. Note that
2614 * we only ever return a maximum of 32 sios at once. If there are more sios
2615 * to process within this segment that did not make it onto the list we
2616 * return B_TRUE and otherwise B_FALSE.
2617 */
2618 static boolean_t
2619 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2620 {
2621 scan_io_t srch_sio, *sio, *next_sio;
2622 avl_index_t idx;
2623 uint_t num_sios = 0;
2624 int64_t bytes_issued = 0;
2625
2626 ASSERT(rs != NULL);
2627 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2628
2629 srch_sio.sio_offset = rs->rs_start;
2630
2631 /*
2632 * The exact start of the extent might not contain any matching zios,
2633 * so if that's the case, examine the next one in the tree.
2634 */
2635 sio = avl_find(&queue->q_sios_by_addr, &srch_sio, &idx);
2636 if (sio == NULL)
2637 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2638
2639 while (sio != NULL && sio->sio_offset < rs->rs_end && num_sios <= 32) {
2640 ASSERT3U(sio->sio_offset, >=, rs->rs_start);
2641 ASSERT3U(sio->sio_offset + sio->sio_asize, <=, rs->rs_end);
2642
2643 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2644 avl_remove(&queue->q_sios_by_addr, sio);
2645
2646 bytes_issued += sio->sio_asize;
2647 num_sios++;
2648 list_insert_tail(list, sio);
2649 sio = next_sio;
2650 }
2651
2652 /*
2653 * We limit the number of sios we process at once to 32 to avoid
2654 * biting off more than we can chew. If we didn't take everything
2655 * in the segment we update it to reflect the work we were able to
2656 * complete. Otherwise, we remove it from the range tree entirely.
2657 */
2658 if (sio != NULL && sio->sio_offset < rs->rs_end) {
2659 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2660 -bytes_issued);
2661 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2662 sio->sio_offset, rs->rs_end - sio->sio_offset);
2663
2664 return (B_TRUE);
2665 } else {
2666 range_tree_remove(queue->q_exts_by_addr, rs->rs_start,
2667 rs->rs_end - rs->rs_start);
2668 return (B_FALSE);
2669 }
2670 }
2671
2672 /*
2673 * This is called from the queue emptying thread and selects the next
2674 * extent from which we are to issue I/Os. The behavior of this function
2675 * depends on the state of the scan, the current memory consumption and
2676 * whether or not we are performing a scan shutdown.
2677 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2678 * needs to perform a checkpoint
2679 * 2) We select the largest available extent if we are up against the
2680 * memory limit.
2681 * 3) Otherwise we don't select any extents.
2682 */
2683 static range_seg_t *
2684 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2685 {
2686 dsl_scan_t *scn = queue->q_scn;
2687
2688 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2689 ASSERT(scn->scn_is_sorted);
2690
2691 /* handle tunable overrides */
2692 if (scn->scn_checkpointing || scn->scn_clearing) {
2693 if (zfs_scan_issue_strategy == 1) {
2694 return (range_tree_first(queue->q_exts_by_addr));
2695 } else if (zfs_scan_issue_strategy == 2) {
2696 return (avl_first(&queue->q_exts_by_size));
2697 }
2698 }
2699
2700 /*
2701 * During normal clearing, we want to issue our largest segments
2702 * first, keeping IO as sequential as possible, and leaving the
2703 * smaller extents for later with the hope that they might eventually
2704 * grow to larger sequential segments. However, when the scan is
2705 * checkpointing, no new extents will be added to the sorting queue,
2706 * so the way we are sorted now is as good as it will ever get.
2707 * In this case, we instead switch to issuing extents in LBA order.
2708 */
2709 if (scn->scn_checkpointing) {
2710 return (range_tree_first(queue->q_exts_by_addr));
2711 } else if (scn->scn_clearing) {
2712 return (avl_first(&queue->q_exts_by_size));
2713 } else {
2714 return (NULL);
2715 }
2716 }
2717
2718 static void
2719 scan_io_queues_run_one(void *arg)
2720 {
2721 dsl_scan_io_queue_t *queue = arg;
2722 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2723 boolean_t suspended = B_FALSE;
2724 range_seg_t *rs = NULL;
2725 scan_io_t *sio = NULL;
2726 list_t sio_list;
2727 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2728 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2729
2730 ASSERT(queue->q_scn->scn_is_sorted);
2731
2732 list_create(&sio_list, sizeof (scan_io_t),
2733 offsetof(scan_io_t, sio_nodes.sio_list_node));
2734 mutex_enter(q_lock);
2735
2736 /* calculate maximum in-flight bytes for this txg (min 1MB) */
2737 queue->q_maxinflight_bytes =
2738 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2739
2740 /* reset per-queue scan statistics for this txg */
2741 queue->q_total_seg_size_this_txg = 0;
2742 queue->q_segs_this_txg = 0;
2743 queue->q_total_zio_size_this_txg = 0;
2744 queue->q_zios_this_txg = 0;
2745
2746 /* loop until we run out of time or sios */
2747 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
2748 uint64_t seg_start = 0, seg_end = 0;
2749 boolean_t more_left = B_TRUE;
2750
2751 ASSERT(list_is_empty(&sio_list));
2752
2753 /* loop while we still have sios left to process in this rs */
2754 while (more_left) {
2755 scan_io_t *first_sio, *last_sio;
2756
2757 /*
2758 * We have selected which extent needs to be
2759 * processed next. Gather up the corresponding sios.
2760 */
2761 more_left = scan_io_queue_gather(queue, rs, &sio_list);
2762 ASSERT(!list_is_empty(&sio_list));
2763 first_sio = list_head(&sio_list);
2764 last_sio = list_tail(&sio_list);
2765
2766 seg_end = last_sio->sio_offset + last_sio->sio_asize;
2767 if (seg_start == 0)
2768 seg_start = first_sio->sio_offset;
2769
2770 /*
2771 * Issuing sios can take a long time so drop the
2772 * queue lock. The sio queue won't be updated by
2773 * other threads since we're in syncing context so
2774 * we can be sure that our trees will remain exactly
2775 * as we left them.
2776 */
2777 mutex_exit(q_lock);
2778 suspended = scan_io_queue_issue(queue, &sio_list);
2779 mutex_enter(q_lock);
2780
2781 if (suspended)
2782 break;
2783 }
2784
2785 /* update statistics for debugging purposes */
2786 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2787
2788 if (suspended)
2789 break;
2790 }
2791
2792 /*
2793 * If we were suspended in the middle of processing,
2794 * requeue any unfinished sios and exit.
2795 */
2796 while ((sio = list_head(&sio_list)) != NULL) {
2797 list_remove(&sio_list, sio);
2798 scan_io_queue_insert_impl(queue, sio);
2799 }
2800
2801 mutex_exit(q_lock);
2802 list_destroy(&sio_list);
2803 }
2804
2805 /*
2806 * Performs an emptying run on all scan queues in the pool. This just
2807 * punches out one thread per top-level vdev, each of which processes
2808 * only that vdev's scan queue. We can parallelize the I/O here because
2809 * we know that each queue's I/Os only affect its own top-level vdev.
2810 *
2811 * This function waits for the queue runs to complete, and must be
2812 * called from dsl_scan_sync (or in general, syncing context).
2813 */
2814 static void
2815 scan_io_queues_run(dsl_scan_t *scn)
2816 {
2817 spa_t *spa = scn->scn_dp->dp_spa;
2818
2819 ASSERT(scn->scn_is_sorted);
2820 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2821
2822 if (scn->scn_bytes_pending == 0)
2823 return;
2824
2825 if (scn->scn_taskq == NULL) {
2826 int nthreads = spa->spa_root_vdev->vdev_children;
2827
2828 /*
2829 * We need to make this taskq *always* execute as many
2830 * threads in parallel as we have top-level vdevs and no
2831 * less, otherwise strange serialization of the calls to
2832 * scan_io_queues_run_one can occur during spa_sync runs
2833 * and that significantly impacts performance.
2834 */
2835 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
2836 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
2837 }
2838
2839 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
2840 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
2841
2842 mutex_enter(&vd->vdev_scan_io_queue_lock);
2843 if (vd->vdev_scan_io_queue != NULL) {
2844 VERIFY(taskq_dispatch(scn->scn_taskq,
2845 scan_io_queues_run_one, vd->vdev_scan_io_queue,
2846 TQ_SLEEP) != TASKQID_INVALID);
2847 }
2848 mutex_exit(&vd->vdev_scan_io_queue_lock);
2849 }
2850
2851 /*
2852 * Wait for the queues to finish issuing their IOs for this run
2853 * before we return. There may still be IOs in flight at this
2854 * point.
2855 */
2856 taskq_wait(scn->scn_taskq);
2857 }
2858
2859 static boolean_t
2860 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
2861 {
2862 uint64_t elapsed_nanosecs;
2863
2864 if (zfs_recover)
2865 return (B_FALSE);
2866
2867 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
2868 return (B_TRUE);
2869
2870 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
2871 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
2872 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
2873 txg_sync_waiting(scn->scn_dp)) ||
2874 spa_shutting_down(scn->scn_dp->dp_spa));
2875 }
2876
2877 static int
2878 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2879 {
2880 dsl_scan_t *scn = arg;
2881
2882 if (!scn->scn_is_bptree ||
2883 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
2884 if (dsl_scan_async_block_should_pause(scn))
2885 return (SET_ERROR(ERESTART));
2886 }
2887
2888 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
2889 dmu_tx_get_txg(tx), bp, 0));
2890 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2891 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
2892 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2893 scn->scn_visited_this_txg++;
2894 return (0);
2895 }
2896
2897 static void
2898 dsl_scan_update_stats(dsl_scan_t *scn)
2899 {
2900 spa_t *spa = scn->scn_dp->dp_spa;
2901 uint64_t i;
2902 uint64_t seg_size_total = 0, zio_size_total = 0;
2903 uint64_t seg_count_total = 0, zio_count_total = 0;
2904
2905 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
2906 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
2907 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
2908
2909 if (queue == NULL)
2910 continue;
2911
2912 seg_size_total += queue->q_total_seg_size_this_txg;
2913 zio_size_total += queue->q_total_zio_size_this_txg;
2914 seg_count_total += queue->q_segs_this_txg;
2915 zio_count_total += queue->q_zios_this_txg;
2916 }
2917
2918 if (seg_count_total == 0 || zio_count_total == 0) {
2919 scn->scn_avg_seg_size_this_txg = 0;
2920 scn->scn_avg_zio_size_this_txg = 0;
2921 scn->scn_segs_this_txg = 0;
2922 scn->scn_zios_this_txg = 0;
2923 return;
2924 }
2925
2926 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
2927 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
2928 scn->scn_segs_this_txg = seg_count_total;
2929 scn->scn_zios_this_txg = zio_count_total;
2930 }
2931
2932 static int
2933 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2934 {
2935 dsl_scan_t *scn = arg;
2936 const dva_t *dva = &bp->blk_dva[0];
2937
2938 if (dsl_scan_async_block_should_pause(scn))
2939 return (SET_ERROR(ERESTART));
2940
2941 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
2942 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
2943 DVA_GET_ASIZE(dva), tx);
2944 scn->scn_visited_this_txg++;
2945 return (0);
2946 }
2947
2948 boolean_t
2949 dsl_scan_active(dsl_scan_t *scn)
2950 {
2951 spa_t *spa = scn->scn_dp->dp_spa;
2952 uint64_t used = 0, comp, uncomp;
2953
2954 if (spa->spa_load_state != SPA_LOAD_NONE)
2955 return (B_FALSE);
2956 if (spa_shutting_down(spa))
2957 return (B_FALSE);
2958 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
2959 (scn->scn_async_destroying && !scn->scn_async_stalled))
2960 return (B_TRUE);
2961
2962 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
2963 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
2964 &used, &comp, &uncomp);
2965 }
2966 return (used != 0);
2967 }
2968
2969 static boolean_t
2970 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
2971 uint64_t phys_birth)
2972 {
2973 vdev_t *vd;
2974
2975 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2976
2977 if (vd->vdev_ops == &vdev_indirect_ops) {
2978 /*
2979 * The indirect vdev can point to multiple
2980 * vdevs. For simplicity, always create
2981 * the resilver zio_t. zio_vdev_io_start()
2982 * will bypass the child resilver i/o's if
2983 * they are on vdevs that don't have DTL's.
2984 */
2985 return (B_TRUE);
2986 }
2987
2988 if (DVA_GET_GANG(dva)) {
2989 /*
2990 * Gang members may be spread across multiple
2991 * vdevs, so the best estimate we have is the
2992 * scrub range, which has already been checked.
2993 * XXX -- it would be better to change our
2994 * allocation policy to ensure that all
2995 * gang members reside on the same vdev.
2996 */
2997 return (B_TRUE);
2998 }
2999
3000 /*
3001 * Check if the txg falls within the range which must be
3002 * resilvered. DVAs outside this range can always be skipped.
3003 */
3004 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3005 return (B_FALSE);
3006
3007 /*
3008 * Check if the top-level vdev must resilver this offset.
3009 * When the offset does not intersect with a dirty leaf DTL
3010 * then it may be possible to skip the resilver IO. The psize
3011 * is provided instead of asize to simplify the check for RAIDZ.
3012 */
3013 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3014 return (B_FALSE);
3015
3016 return (B_TRUE);
3017 }
3018
3019 static int
3020 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3021 {
3022 dsl_scan_t *scn = dp->dp_scan;
3023 spa_t *spa = dp->dp_spa;
3024 int err = 0;
3025
3026 if (spa_suspend_async_destroy(spa))
3027 return (0);
3028
3029 if (zfs_free_bpobj_enabled &&
3030 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3031 scn->scn_is_bptree = B_FALSE;
3032 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3033 scn->scn_zio_root = zio_root(spa, NULL,
3034 NULL, ZIO_FLAG_MUSTSUCCEED);
3035 err = bpobj_iterate(&dp->dp_free_bpobj,
3036 dsl_scan_free_block_cb, scn, tx);
3037 VERIFY0(zio_wait(scn->scn_zio_root));
3038 scn->scn_zio_root = NULL;
3039
3040 if (err != 0 && err != ERESTART)
3041 zfs_panic_recover("error %u from bpobj_iterate()", err);
3042 }
3043
3044 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3045 ASSERT(scn->scn_async_destroying);
3046 scn->scn_is_bptree = B_TRUE;
3047 scn->scn_zio_root = zio_root(spa, NULL,
3048 NULL, ZIO_FLAG_MUSTSUCCEED);
3049 err = bptree_iterate(dp->dp_meta_objset,
3050 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3051 VERIFY0(zio_wait(scn->scn_zio_root));
3052 scn->scn_zio_root = NULL;
3053
3054 if (err == EIO || err == ECKSUM) {
3055 err = 0;
3056 } else if (err != 0 && err != ERESTART) {
3057 zfs_panic_recover("error %u from "
3058 "traverse_dataset_destroyed()", err);
3059 }
3060
3061 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3062 /* finished; deactivate async destroy feature */
3063 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3064 ASSERT(!spa_feature_is_active(spa,
3065 SPA_FEATURE_ASYNC_DESTROY));
3066 VERIFY0(zap_remove(dp->dp_meta_objset,
3067 DMU_POOL_DIRECTORY_OBJECT,
3068 DMU_POOL_BPTREE_OBJ, tx));
3069 VERIFY0(bptree_free(dp->dp_meta_objset,
3070 dp->dp_bptree_obj, tx));
3071 dp->dp_bptree_obj = 0;
3072 scn->scn_async_destroying = B_FALSE;
3073 scn->scn_async_stalled = B_FALSE;
3074 } else {
3075 /*
3076 * If we didn't make progress, mark the async
3077 * destroy as stalled, so that we will not initiate
3078 * a spa_sync() on its behalf. Note that we only
3079 * check this if we are not finished, because if the
3080 * bptree had no blocks for us to visit, we can
3081 * finish without "making progress".
3082 */
3083 scn->scn_async_stalled =
3084 (scn->scn_visited_this_txg == 0);
3085 }
3086 }
3087 if (scn->scn_visited_this_txg) {
3088 zfs_dbgmsg("freed %llu blocks in %llums from "
3089 "free_bpobj/bptree txg %llu; err=%u",
3090 (longlong_t)scn->scn_visited_this_txg,
3091 (longlong_t)
3092 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3093 (longlong_t)tx->tx_txg, err);
3094 scn->scn_visited_this_txg = 0;
3095
3096 /*
3097 * Write out changes to the DDT that may be required as a
3098 * result of the blocks freed. This ensures that the DDT
3099 * is clean when a scrub/resilver runs.
3100 */
3101 ddt_sync(spa, tx->tx_txg);
3102 }
3103 if (err != 0)
3104 return (err);
3105 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3106 zfs_free_leak_on_eio &&
3107 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3108 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3109 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3110 /*
3111 * We have finished background destroying, but there is still
3112 * some space left in the dp_free_dir. Transfer this leaked
3113 * space to the dp_leak_dir.
3114 */
3115 if (dp->dp_leak_dir == NULL) {
3116 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3117 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3118 LEAK_DIR_NAME, tx);
3119 VERIFY0(dsl_pool_open_special_dir(dp,
3120 LEAK_DIR_NAME, &dp->dp_leak_dir));
3121 rrw_exit(&dp->dp_config_rwlock, FTAG);
3122 }
3123 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3124 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3125 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3126 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3127 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3128 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3129 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3130 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3131 }
3132
3133 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3134 /* finished; verify that space accounting went to zero */
3135 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3136 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3137 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3138 }
3139
3140 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3141 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3142 DMU_POOL_OBSOLETE_BPOBJ));
3143 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3144 ASSERT(spa_feature_is_active(dp->dp_spa,
3145 SPA_FEATURE_OBSOLETE_COUNTS));
3146
3147 scn->scn_is_bptree = B_FALSE;
3148 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3149 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3150 dsl_scan_obsolete_block_cb, scn, tx);
3151 if (err != 0 && err != ERESTART)
3152 zfs_panic_recover("error %u from bpobj_iterate()", err);
3153
3154 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3155 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3156 }
3157 return (0);
3158 }
3159
3160 /*
3161 * This is the primary entry point for scans that is called from syncing
3162 * context. Scans must happen entirely during syncing context so that we
3163 * cna guarantee that blocks we are currently scanning will not change out
3164 * from under us. While a scan is active, this function controls how quickly
3165 * transaction groups proceed, instead of the normal handling provided by
3166 * txg_sync_thread().
3167 */
3168 void
3169 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3170 {
3171 int err = 0;
3172 dsl_scan_t *scn = dp->dp_scan;
3173 spa_t *spa = dp->dp_spa;
3174 state_sync_type_t sync_type = SYNC_OPTIONAL;
3175
3176 /*
3177 * Check for scn_restart_txg before checking spa_load_state, so
3178 * that we can restart an old-style scan while the pool is being
3179 * imported (see dsl_scan_init).
3180 */
3181 if (dsl_scan_restarting(scn, tx)) {
3182 pool_scan_func_t func = POOL_SCAN_SCRUB;
3183 dsl_scan_done(scn, B_FALSE, tx);
3184 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3185 func = POOL_SCAN_RESILVER;
3186 zfs_dbgmsg("restarting scan func=%u txg=%llu",
3187 func, (longlong_t)tx->tx_txg);
3188 dsl_scan_setup_sync(&func, tx);
3189 }
3190
3191 /*
3192 * Only process scans in sync pass 1.
3193 */
3194 if (spa_sync_pass(spa) > 1)
3195 return;
3196
3197 /*
3198 * If the spa is shutting down, then stop scanning. This will
3199 * ensure that the scan does not dirty any new data during the
3200 * shutdown phase.
3201 */
3202 if (spa_shutting_down(spa))
3203 return;
3204
3205 /*
3206 * If the scan is inactive due to a stalled async destroy, try again.
3207 */
3208 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3209 return;
3210
3211 /* reset scan statistics */
3212 scn->scn_visited_this_txg = 0;
3213 scn->scn_holes_this_txg = 0;
3214 scn->scn_lt_min_this_txg = 0;
3215 scn->scn_gt_max_this_txg = 0;
3216 scn->scn_ddt_contained_this_txg = 0;
3217 scn->scn_objsets_visited_this_txg = 0;
3218 scn->scn_avg_seg_size_this_txg = 0;
3219 scn->scn_segs_this_txg = 0;
3220 scn->scn_avg_zio_size_this_txg = 0;
3221 scn->scn_zios_this_txg = 0;
3222 scn->scn_suspending = B_FALSE;
3223 scn->scn_sync_start_time = gethrtime();
3224 spa->spa_scrub_active = B_TRUE;
3225
3226 /*
3227 * First process the async destroys. If we suspend, don't do
3228 * any scrubbing or resilvering. This ensures that there are no
3229 * async destroys while we are scanning, so the scan code doesn't
3230 * have to worry about traversing it. It is also faster to free the
3231 * blocks than to scrub them.
3232 */
3233 err = dsl_process_async_destroys(dp, tx);
3234 if (err != 0)
3235 return;
3236
3237 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3238 return;
3239
3240 /*
3241 * Wait a few txgs after importing to begin scanning so that
3242 * we can get the pool imported quickly.
3243 */
3244 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3245 return;
3246
3247 /*
3248 * It is possible to switch from unsorted to sorted at any time,
3249 * but afterwards the scan will remain sorted unless reloaded from
3250 * a checkpoint after a reboot.
3251 */
3252 if (!zfs_scan_legacy) {
3253 scn->scn_is_sorted = B_TRUE;
3254 if (scn->scn_last_checkpoint == 0)
3255 scn->scn_last_checkpoint = ddi_get_lbolt();
3256 }
3257
3258 /*
3259 * For sorted scans, determine what kind of work we will be doing
3260 * this txg based on our memory limitations and whether or not we
3261 * need to perform a checkpoint.
3262 */
3263 if (scn->scn_is_sorted) {
3264 /*
3265 * If we are over our checkpoint interval, set scn_clearing
3266 * so that we can begin checkpointing immediately. The
3267 * checkpoint allows us to save a consistent bookmark
3268 * representing how much data we have scrubbed so far.
3269 * Otherwise, use the memory limit to determine if we should
3270 * scan for metadata or start issue scrub IOs. We accumulate
3271 * metadata until we hit our hard memory limit at which point
3272 * we issue scrub IOs until we are at our soft memory limit.
3273 */
3274 if (scn->scn_checkpointing ||
3275 ddi_get_lbolt() - scn->scn_last_checkpoint >
3276 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3277 if (!scn->scn_checkpointing)
3278 zfs_dbgmsg("begin scan checkpoint");
3279
3280 scn->scn_checkpointing = B_TRUE;
3281 scn->scn_clearing = B_TRUE;
3282 } else {
3283 boolean_t should_clear = dsl_scan_should_clear(scn);
3284 if (should_clear && !scn->scn_clearing) {
3285 zfs_dbgmsg("begin scan clearing");
3286 scn->scn_clearing = B_TRUE;
3287 } else if (!should_clear && scn->scn_clearing) {
3288 zfs_dbgmsg("finish scan clearing");
3289 scn->scn_clearing = B_FALSE;
3290 }
3291 }
3292 } else {
3293 ASSERT0(scn->scn_checkpointing);
3294 ASSERT0(scn->scn_clearing);
3295 }
3296
3297 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3298 /* Need to scan metadata for more blocks to scrub */
3299 dsl_scan_phys_t *scnp = &scn->scn_phys;
3300 taskqid_t prefetch_tqid;
3301 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3302 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3303
3304 /*
3305 * Recalculate the max number of in-flight bytes for pool-wide
3306 * scanning operations (minimum 1MB). Limits for the issuing
3307 * phase are done per top-level vdev and are handled separately.
3308 */
3309 scn->scn_maxinflight_bytes =
3310 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3311
3312 if (scnp->scn_ddt_bookmark.ddb_class <=
3313 scnp->scn_ddt_class_max) {
3314 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3315 zfs_dbgmsg("doing scan sync txg %llu; "
3316 "ddt bm=%llu/%llu/%llu/%llx",
3317 (longlong_t)tx->tx_txg,
3318 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3319 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3320 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3321 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3322 } else {
3323 zfs_dbgmsg("doing scan sync txg %llu; "
3324 "bm=%llu/%llu/%llu/%llu",
3325 (longlong_t)tx->tx_txg,
3326 (longlong_t)scnp->scn_bookmark.zb_objset,
3327 (longlong_t)scnp->scn_bookmark.zb_object,
3328 (longlong_t)scnp->scn_bookmark.zb_level,
3329 (longlong_t)scnp->scn_bookmark.zb_blkid);
3330 }
3331
3332 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3333 NULL, ZIO_FLAG_CANFAIL);
3334
3335 scn->scn_prefetch_stop = B_FALSE;
3336 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3337 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3338 ASSERT(prefetch_tqid != TASKQID_INVALID);
3339
3340 dsl_pool_config_enter(dp, FTAG);
3341 dsl_scan_visit(scn, tx);
3342 dsl_pool_config_exit(dp, FTAG);
3343
3344 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3345 scn->scn_prefetch_stop = B_TRUE;
3346 cv_broadcast(&spa->spa_scrub_io_cv);
3347 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3348
3349 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3350 (void) zio_wait(scn->scn_zio_root);
3351 scn->scn_zio_root = NULL;
3352
3353 zfs_dbgmsg("scan visited %llu blocks in %llums "
3354 "(%llu os's, %llu holes, %llu < mintxg, "
3355 "%llu in ddt, %llu > maxtxg)",
3356 (longlong_t)scn->scn_visited_this_txg,
3357 (longlong_t)NSEC2MSEC(gethrtime() -
3358 scn->scn_sync_start_time),
3359 (longlong_t)scn->scn_objsets_visited_this_txg,
3360 (longlong_t)scn->scn_holes_this_txg,
3361 (longlong_t)scn->scn_lt_min_this_txg,
3362 (longlong_t)scn->scn_ddt_contained_this_txg,
3363 (longlong_t)scn->scn_gt_max_this_txg);
3364
3365 if (!scn->scn_suspending) {
3366 ASSERT0(avl_numnodes(&scn->scn_queue));
3367 scn->scn_done_txg = tx->tx_txg + 1;
3368 if (scn->scn_is_sorted) {
3369 scn->scn_checkpointing = B_TRUE;
3370 scn->scn_clearing = B_TRUE;
3371 }
3372 zfs_dbgmsg("scan complete txg %llu",
3373 (longlong_t)tx->tx_txg);
3374 }
3375 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3376 /* need to issue scrubbing IOs from per-vdev queues */
3377 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3378 NULL, ZIO_FLAG_CANFAIL);
3379 scan_io_queues_run(scn);
3380 (void) zio_wait(scn->scn_zio_root);
3381 scn->scn_zio_root = NULL;
3382
3383 /* calculate and dprintf the current memory usage */
3384 (void) dsl_scan_should_clear(scn);
3385 dsl_scan_update_stats(scn);
3386
3387 zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
3388 "(avg_block_size = %llu, avg_seg_size = %llu)",
3389 (longlong_t)scn->scn_zios_this_txg,
3390 (longlong_t)scn->scn_segs_this_txg,
3391 (longlong_t)NSEC2MSEC(gethrtime() -
3392 scn->scn_sync_start_time),
3393 (longlong_t)scn->scn_avg_zio_size_this_txg,
3394 (longlong_t)scn->scn_avg_seg_size_this_txg);
3395 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3396 /* Finished with everything. Mark the scrub as complete */
3397 zfs_dbgmsg("scan issuing complete txg %llu",
3398 (longlong_t)tx->tx_txg);
3399 ASSERT3U(scn->scn_done_txg, !=, 0);
3400 ASSERT0(spa->spa_scrub_inflight);
3401 ASSERT0(scn->scn_bytes_pending);
3402 dsl_scan_done(scn, B_TRUE, tx);
3403 sync_type = SYNC_MANDATORY;
3404 }
3405
3406 dsl_scan_sync_state(scn, tx, sync_type);
3407 }
3408
3409 static void
3410 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3411 {
3412 int i;
3413
3414 /* update the spa's stats on how many bytes we have issued */
3415 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3416 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3417 DVA_GET_ASIZE(&bp->blk_dva[i]));
3418 }
3419
3420 /*
3421 * If we resume after a reboot, zab will be NULL; don't record
3422 * incomplete stats in that case.
3423 */
3424 if (zab == NULL)
3425 return;
3426
3427 mutex_enter(&zab->zab_lock);
3428
3429 for (i = 0; i < 4; i++) {
3430 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3431 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3432
3433 if (t & DMU_OT_NEWTYPE)
3434 t = DMU_OT_OTHER;
3435 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3436 int equal;
3437
3438 zb->zb_count++;
3439 zb->zb_asize += BP_GET_ASIZE(bp);
3440 zb->zb_lsize += BP_GET_LSIZE(bp);
3441 zb->zb_psize += BP_GET_PSIZE(bp);
3442 zb->zb_gangs += BP_COUNT_GANG(bp);
3443
3444 switch (BP_GET_NDVAS(bp)) {
3445 case 2:
3446 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3447 DVA_GET_VDEV(&bp->blk_dva[1]))
3448 zb->zb_ditto_2_of_2_samevdev++;
3449 break;
3450 case 3:
3451 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3452 DVA_GET_VDEV(&bp->blk_dva[1])) +
3453 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3454 DVA_GET_VDEV(&bp->blk_dva[2])) +
3455 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3456 DVA_GET_VDEV(&bp->blk_dva[2]));
3457 if (equal == 1)
3458 zb->zb_ditto_2_of_3_samevdev++;
3459 else if (equal == 3)
3460 zb->zb_ditto_3_of_3_samevdev++;
3461 break;
3462 }
3463 }
3464
3465 mutex_exit(&zab->zab_lock);
3466 }
3467
3468 static void
3469 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3470 {
3471 avl_index_t idx;
3472 int64_t asize = sio->sio_asize;
3473 dsl_scan_t *scn = queue->q_scn;
3474
3475 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3476
3477 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3478 /* block is already scheduled for reading */
3479 atomic_add_64(&scn->scn_bytes_pending, -asize);
3480 kmem_cache_free(sio_cache, sio);
3481 return;
3482 }
3483 avl_insert(&queue->q_sios_by_addr, sio, idx);
3484 range_tree_add(queue->q_exts_by_addr, sio->sio_offset, asize);
3485 }
3486
3487 /*
3488 * Given all the info we got from our metadata scanning process, we
3489 * construct a scan_io_t and insert it into the scan sorting queue. The
3490 * I/O must already be suitable for us to process. This is controlled
3491 * by dsl_scan_enqueue().
3492 */
3493 static void
3494 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3495 int zio_flags, const zbookmark_phys_t *zb)
3496 {
3497 dsl_scan_t *scn = queue->q_scn;
3498 scan_io_t *sio = kmem_cache_alloc(sio_cache, KM_SLEEP);
3499
3500 ASSERT0(BP_IS_GANG(bp));
3501 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3502
3503 bp2sio(bp, sio, dva_i);
3504 sio->sio_flags = zio_flags;
3505 sio->sio_zb = *zb;
3506
3507 /*
3508 * Increment the bytes pending counter now so that we can't
3509 * get an integer underflow in case the worker processes the
3510 * zio before we get to incrementing this counter.
3511 */
3512 atomic_add_64(&scn->scn_bytes_pending, sio->sio_asize);
3513
3514 scan_io_queue_insert_impl(queue, sio);
3515 }
3516
3517 /*
3518 * Given a set of I/O parameters as discovered by the metadata traversal
3519 * process, attempts to place the I/O into the sorted queues (if allowed),
3520 * or immediately executes the I/O.
3521 */
3522 static void
3523 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3524 const zbookmark_phys_t *zb)
3525 {
3526 spa_t *spa = dp->dp_spa;
3527
3528 ASSERT(!BP_IS_EMBEDDED(bp));
3529
3530 /*
3531 * Gang blocks are hard to issue sequentially, so we just issue them
3532 * here immediately instead of queuing them.
3533 */
3534 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3535 scan_exec_io(dp, bp, zio_flags, zb, NULL);
3536 return;
3537 }
3538
3539 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3540 dva_t dva;
3541 vdev_t *vdev;
3542
3543 dva = bp->blk_dva[i];
3544 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3545 ASSERT(vdev != NULL);
3546
3547 mutex_enter(&vdev->vdev_scan_io_queue_lock);
3548 if (vdev->vdev_scan_io_queue == NULL)
3549 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3550 ASSERT(dp->dp_scan != NULL);
3551 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3552 i, zio_flags, zb);
3553 mutex_exit(&vdev->vdev_scan_io_queue_lock);
3554 }
3555 }
3556
3557 static int
3558 dsl_scan_scrub_cb(dsl_pool_t *dp,
3559 const blkptr_t *bp, const zbookmark_phys_t *zb)
3560 {
3561 dsl_scan_t *scn = dp->dp_scan;
3562 spa_t *spa = dp->dp_spa;
3563 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3564 size_t psize = BP_GET_PSIZE(bp);
3565 boolean_t needs_io = B_FALSE;
3566 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3567
3568 if (phys_birth <= scn->scn_phys.scn_min_txg ||
3569 phys_birth >= scn->scn_phys.scn_max_txg)
3570 return (0);
3571
3572 if (BP_IS_EMBEDDED(bp)) {
3573 count_block(scn, dp->dp_blkstats, bp);
3574 return (0);
3575 }
3576
3577 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3578 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3579 zio_flags |= ZIO_FLAG_SCRUB;
3580 needs_io = B_TRUE;
3581 } else {
3582 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3583 zio_flags |= ZIO_FLAG_RESILVER;
3584 needs_io = B_FALSE;
3585 }
3586
3587 /* If it's an intent log block, failure is expected. */
3588 if (zb->zb_level == ZB_ZIL_LEVEL)
3589 zio_flags |= ZIO_FLAG_SPECULATIVE;
3590
3591 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
3592 const dva_t *dva = &bp->blk_dva[d];
3593
3594 /*
3595 * Keep track of how much data we've examined so that
3596 * zpool(1M) status can make useful progress reports.
3597 */
3598 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3599 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3600
3601 /* if it's a resilver, this may not be in the target range */
3602 if (!needs_io)
3603 needs_io = dsl_scan_need_resilver(spa, dva, psize,
3604 phys_birth);
3605 }
3606
3607 if (needs_io && !zfs_no_scrub_io) {
3608 dsl_scan_enqueue(dp, bp, zio_flags, zb);
3609 } else {
3610 count_block(scn, dp->dp_blkstats, bp);
3611 }
3612
3613 /* do not relocate this block */
3614 return (0);
3615 }
3616
3617 static void
3618 dsl_scan_scrub_done(zio_t *zio)
3619 {
3620 spa_t *spa = zio->io_spa;
3621 blkptr_t *bp = zio->io_bp;
3622 dsl_scan_io_queue_t *queue = zio->io_private;
3623
3624 abd_free(zio->io_abd);
3625
3626 if (queue == NULL) {
3627 mutex_enter(&spa->spa_scrub_lock);
3628 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3629 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3630 cv_broadcast(&spa->spa_scrub_io_cv);
3631 mutex_exit(&spa->spa_scrub_lock);
3632 } else {
3633 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3634 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3635 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3636 cv_broadcast(&queue->q_zio_cv);
3637 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3638 }
3639
3640 if (zio->io_error && (zio->io_error != ECKSUM ||
3641 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3642 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3643 }
3644 }
3645
3646 /*
3647 * Given a scanning zio's information, executes the zio. The zio need
3648 * not necessarily be only sortable, this function simply executes the
3649 * zio, no matter what it is. The optional queue argument allows the
3650 * caller to specify that they want per top level vdev IO rate limiting
3651 * instead of the legacy global limiting.
3652 */
3653 static void
3654 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3655 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3656 {
3657 spa_t *spa = dp->dp_spa;
3658 dsl_scan_t *scn = dp->dp_scan;
3659 size_t size = BP_GET_PSIZE(bp);
3660 abd_t *data = abd_alloc_for_io(size, B_FALSE);
3661
3662 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
3663
3664 if (queue == NULL) {
3665 mutex_enter(&spa->spa_scrub_lock);
3666 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3667 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3668 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3669 mutex_exit(&spa->spa_scrub_lock);
3670 } else {
3671 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3672
3673 mutex_enter(q_lock);
3674 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3675 cv_wait(&queue->q_zio_cv, q_lock);
3676 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3677 mutex_exit(q_lock);
3678 }
3679
3680 count_block(scn, dp->dp_blkstats, bp);
3681 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
3682 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3683 }
3684
3685 /*
3686 * This is the primary extent sorting algorithm. We balance two parameters:
3687 * 1) how many bytes of I/O are in an extent
3688 * 2) how well the extent is filled with I/O (as a fraction of its total size)
3689 * Since we allow extents to have gaps between their constituent I/Os, it's
3690 * possible to have a fairly large extent that contains the same amount of
3691 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3692 * The algorithm sorts based on a score calculated from the extent's size,
3693 * the relative fill volume (in %) and a "fill weight" parameter that controls
3694 * the split between whether we prefer larger extents or more well populated
3695 * extents:
3696 *
3697 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3698 *
3699 * Example:
3700 * 1) assume extsz = 64 MiB
3701 * 2) assume fill = 32 MiB (extent is half full)
3702 * 3) assume fill_weight = 3
3703 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3704 * SCORE = 32M + (50 * 3 * 32M) / 100
3705 * SCORE = 32M + (4800M / 100)
3706 * SCORE = 32M + 48M
3707 * ^ ^
3708 * | +--- final total relative fill-based score
3709 * +--------- final total fill-based score
3710 * SCORE = 80M
3711 *
3712 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3713 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3714 * Note that as an optimization, we replace multiplication and division by
3715 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3716 */
3717 static int
3718 ext_size_compare(const void *x, const void *y)
3719 {
3720 const range_seg_t *rsa = x, *rsb = y;
3721 uint64_t sa = rsa->rs_end - rsa->rs_start,
3722 sb = rsb->rs_end - rsb->rs_start;
3723 uint64_t score_a, score_b;
3724
3725 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3726 fill_weight * rsa->rs_fill) >> 7);
3727 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3728 fill_weight * rsb->rs_fill) >> 7);
3729
3730 if (score_a > score_b)
3731 return (-1);
3732 if (score_a == score_b) {
3733 if (rsa->rs_start < rsb->rs_start)
3734 return (-1);
3735 if (rsa->rs_start == rsb->rs_start)
3736 return (0);
3737 return (1);
3738 }
3739 return (1);
3740 }
3741
3742 /*
3743 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
3744 * based on LBA-order (from lowest to highest).
3745 */
3746 static int
3747 sio_addr_compare(const void *x, const void *y)
3748 {
3749 const scan_io_t *a = x, *b = y;
3750
3751 if (a->sio_offset < b->sio_offset)
3752 return (-1);
3753 if (a->sio_offset == b->sio_offset)
3754 return (0);
3755 return (1);
3756 }
3757
3758 /* IO queues are created on demand when they are needed. */
3759 static dsl_scan_io_queue_t *
3760 scan_io_queue_create(vdev_t *vd)
3761 {
3762 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3763 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
3764
3765 q->q_scn = scn;
3766 q->q_vd = vd;
3767 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
3768 q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops,
3769 &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap);
3770 avl_create(&q->q_sios_by_addr, sio_addr_compare,
3771 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
3772
3773 return (q);
3774 }
3775
3776 /*
3777 * Destroys a scan queue and all segments and scan_io_t's contained in it.
3778 * No further execution of I/O occurs, anything pending in the queue is
3779 * simply freed without being executed.
3780 */
3781 void
3782 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
3783 {
3784 dsl_scan_t *scn = queue->q_scn;
3785 scan_io_t *sio;
3786 void *cookie = NULL;
3787 int64_t bytes_dequeued = 0;
3788
3789 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3790
3791 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
3792 NULL) {
3793 ASSERT(range_tree_contains(queue->q_exts_by_addr,
3794 sio->sio_offset, sio->sio_asize));
3795 bytes_dequeued += sio->sio_asize;
3796 kmem_cache_free(sio_cache, sio);
3797 }
3798
3799 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
3800 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
3801 range_tree_destroy(queue->q_exts_by_addr);
3802 avl_destroy(&queue->q_sios_by_addr);
3803 cv_destroy(&queue->q_zio_cv);
3804
3805 kmem_free(queue, sizeof (*queue));
3806 }
3807
3808 /*
3809 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
3810 * called on behalf of vdev_top_transfer when creating or destroying
3811 * a mirror vdev due to zpool attach/detach.
3812 */
3813 void
3814 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
3815 {
3816 mutex_enter(&svd->vdev_scan_io_queue_lock);
3817 mutex_enter(&tvd->vdev_scan_io_queue_lock);
3818
3819 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
3820 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
3821 svd->vdev_scan_io_queue = NULL;
3822 if (tvd->vdev_scan_io_queue != NULL)
3823 tvd->vdev_scan_io_queue->q_vd = tvd;
3824
3825 mutex_exit(&tvd->vdev_scan_io_queue_lock);
3826 mutex_exit(&svd->vdev_scan_io_queue_lock);
3827 }
3828
3829 static void
3830 scan_io_queues_destroy(dsl_scan_t *scn)
3831 {
3832 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
3833
3834 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
3835 vdev_t *tvd = rvd->vdev_child[i];
3836
3837 mutex_enter(&tvd->vdev_scan_io_queue_lock);
3838 if (tvd->vdev_scan_io_queue != NULL)
3839 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
3840 tvd->vdev_scan_io_queue = NULL;
3841 mutex_exit(&tvd->vdev_scan_io_queue_lock);
3842 }
3843 }
3844
3845 static void
3846 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
3847 {
3848 dsl_pool_t *dp = spa->spa_dsl_pool;
3849 dsl_scan_t *scn = dp->dp_scan;
3850 vdev_t *vdev;
3851 kmutex_t *q_lock;
3852 dsl_scan_io_queue_t *queue;
3853 scan_io_t srch, *sio;
3854 avl_index_t idx;
3855 uint64_t start, size;
3856
3857 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
3858 ASSERT(vdev != NULL);
3859 q_lock = &vdev->vdev_scan_io_queue_lock;
3860 queue = vdev->vdev_scan_io_queue;
3861
3862 mutex_enter(q_lock);
3863 if (queue == NULL) {
3864 mutex_exit(q_lock);
3865 return;
3866 }
3867
3868 bp2sio(bp, &srch, dva_i);
3869 start = srch.sio_offset;
3870 size = srch.sio_asize;
3871
3872 /*
3873 * We can find the zio in two states:
3874 * 1) Cold, just sitting in the queue of zio's to be issued at
3875 * some point in the future. In this case, all we do is
3876 * remove the zio from the q_sios_by_addr tree, decrement
3877 * its data volume from the containing range_seg_t and
3878 * resort the q_exts_by_size tree to reflect that the
3879 * range_seg_t has lost some of its 'fill'. We don't shorten
3880 * the range_seg_t - this is usually rare enough not to be
3881 * worth the extra hassle of trying keep track of precise
3882 * extent boundaries.
3883 * 2) Hot, where the zio is currently in-flight in
3884 * dsl_scan_issue_ios. In this case, we can't simply
3885 * reach in and stop the in-flight zio's, so we instead
3886 * block the caller. Eventually, dsl_scan_issue_ios will
3887 * be done with issuing the zio's it gathered and will
3888 * signal us.
3889 */
3890 sio = avl_find(&queue->q_sios_by_addr, &srch, &idx);
3891 if (sio != NULL) {
3892 int64_t asize = sio->sio_asize;
3893 blkptr_t tmpbp;
3894
3895 /* Got it while it was cold in the queue */
3896 ASSERT3U(start, ==, sio->sio_offset);
3897 ASSERT3U(size, ==, asize);
3898 avl_remove(&queue->q_sios_by_addr, sio);
3899
3900 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
3901 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
3902
3903 /*
3904 * We only update scn_bytes_pending in the cold path,
3905 * otherwise it will already have been accounted for as
3906 * part of the zio's execution.
3907 */
3908 atomic_add_64(&scn->scn_bytes_pending, -asize);
3909
3910 /* count the block as though we issued it */
3911 sio2bp(sio, &tmpbp, dva_i);
3912 count_block(scn, dp->dp_blkstats, &tmpbp);
3913
3914 kmem_cache_free(sio_cache, sio);
3915 }
3916 mutex_exit(q_lock);
3917 }
3918
3919 /*
3920 * Callback invoked when a zio_free() zio is executing. This needs to be
3921 * intercepted to prevent the zio from deallocating a particular portion
3922 * of disk space and it then getting reallocated and written to, while we
3923 * still have it queued up for processing.
3924 */
3925 void
3926 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
3927 {
3928 dsl_pool_t *dp = spa->spa_dsl_pool;
3929 dsl_scan_t *scn = dp->dp_scan;
3930
3931 ASSERT(!BP_IS_EMBEDDED(bp));
3932 ASSERT(scn != NULL);
3933 if (!dsl_scan_is_running(scn))
3934 return;
3935
3936 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
3937 dsl_scan_freed_dva(spa, bp, i);
3938 }
3939
3940 #if defined(_KERNEL)
3941 /* CSTYLED */
3942 module_param(zfs_scan_vdev_limit, ulong, 0644);
3943 MODULE_PARM_DESC(zfs_scan_vdev_limit,
3944 "Max bytes in flight per leaf vdev for scrubs and resilvers");
3945
3946 module_param(zfs_scrub_min_time_ms, int, 0644);
3947 MODULE_PARM_DESC(zfs_scrub_min_time_ms, "Min millisecs to scrub per txg");
3948
3949 module_param(zfs_obsolete_min_time_ms, int, 0644);
3950 MODULE_PARM_DESC(zfs_obsolete_min_time_ms, "Min millisecs to obsolete per txg");
3951
3952 module_param(zfs_free_min_time_ms, int, 0644);
3953 MODULE_PARM_DESC(zfs_free_min_time_ms, "Min millisecs to free per txg");
3954
3955 module_param(zfs_resilver_min_time_ms, int, 0644);
3956 MODULE_PARM_DESC(zfs_resilver_min_time_ms, "Min millisecs to resilver per txg");
3957
3958 module_param(zfs_no_scrub_io, int, 0644);
3959 MODULE_PARM_DESC(zfs_no_scrub_io, "Set to disable scrub I/O");
3960
3961 module_param(zfs_no_scrub_prefetch, int, 0644);
3962 MODULE_PARM_DESC(zfs_no_scrub_prefetch, "Set to disable scrub prefetching");
3963
3964 /* CSTYLED */
3965 module_param(zfs_async_block_max_blocks, ulong, 0644);
3966 MODULE_PARM_DESC(zfs_async_block_max_blocks,
3967 "Max number of blocks freed in one txg");
3968
3969 module_param(zfs_free_bpobj_enabled, int, 0644);
3970 MODULE_PARM_DESC(zfs_free_bpobj_enabled, "Enable processing of the free_bpobj");
3971
3972 module_param(zfs_scan_mem_lim_fact, int, 0644);
3973 MODULE_PARM_DESC(zfs_scan_mem_lim_fact, "Fraction of RAM for scan hard limit");
3974
3975 module_param(zfs_scan_issue_strategy, int, 0644);
3976 MODULE_PARM_DESC(zfs_scan_issue_strategy,
3977 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
3978
3979 module_param(zfs_scan_legacy, int, 0644);
3980 MODULE_PARM_DESC(zfs_scan_legacy, "Scrub using legacy non-sequential method");
3981
3982 module_param(zfs_scan_checkpoint_intval, int, 0644);
3983 MODULE_PARM_DESC(zfs_scan_checkpoint_intval,
3984 "Scan progress on-disk checkpointing interval");
3985
3986 /* CSTYLED */
3987 module_param(zfs_scan_max_ext_gap, ulong, 0644);
3988 MODULE_PARM_DESC(zfs_scan_max_ext_gap,
3989 "Max gap in bytes between sequential scrub / resilver I/Os");
3990
3991 module_param(zfs_scan_mem_lim_soft_fact, int, 0644);
3992 MODULE_PARM_DESC(zfs_scan_mem_lim_soft_fact,
3993 "Fraction of hard limit used as soft limit");
3994
3995 module_param(zfs_scan_strict_mem_lim, int, 0644);
3996 MODULE_PARM_DESC(zfs_scan_strict_mem_lim,
3997 "Tunable to attempt to reduce lock contention");
3998
3999 module_param(zfs_scan_fill_weight, int, 0644);
4000 MODULE_PARM_DESC(zfs_scan_fill_weight,
4001 "Tunable to adjust bias towards more filled segments during scans");
4002 #endif