]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_scan.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / dsl_scan.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
28 */
29
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58
59 /*
60 * Grand theory statement on scan queue sorting
61 *
62 * Scanning is implemented by recursively traversing all indirection levels
63 * in an object and reading all blocks referenced from said objects. This
64 * results in us approximately traversing the object from lowest logical
65 * offset to the highest. For best performance, we would want the logical
66 * blocks to be physically contiguous. However, this is frequently not the
67 * case with pools given the allocation patterns of copy-on-write filesystems.
68 * So instead, we put the I/Os into a reordering queue and issue them in a
69 * way that will most benefit physical disks (LBA-order).
70 *
71 * Queue management:
72 *
73 * Ideally, we would want to scan all metadata and queue up all block I/O
74 * prior to starting to issue it, because that allows us to do an optimal
75 * sorting job. This can however consume large amounts of memory. Therefore
76 * we continuously monitor the size of the queues and constrain them to 5%
77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78 * limit, we clear out a few of the largest extents at the head of the queues
79 * to make room for more scanning. Hopefully, these extents will be fairly
80 * large and contiguous, allowing us to approach sequential I/O throughput
81 * even without a fully sorted tree.
82 *
83 * Metadata scanning takes place in dsl_scan_visit(), which is called from
84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85 * metadata on the pool, or we need to make room in memory because our
86 * queues are too large, dsl_scan_visit() is postponed and
87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88 * that metadata scanning and queued I/O issuing are mutually exclusive. This
89 * allows us to provide maximum sequential I/O throughput for the majority of
90 * I/O's issued since sequential I/O performance is significantly negatively
91 * impacted if it is interleaved with random I/O.
92 *
93 * Implementation Notes
94 *
95 * One side effect of the queued scanning algorithm is that the scanning code
96 * needs to be notified whenever a block is freed. This is needed to allow
97 * the scanning code to remove these I/Os from the issuing queue. Additionally,
98 * we do not attempt to queue gang blocks to be issued sequentially since this
99 * is very hard to do and would have an extremely limited performance benefit.
100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101 * algorithm.
102 *
103 * Backwards compatibility
104 *
105 * This new algorithm is backwards compatible with the legacy on-disk data
106 * structures (and therefore does not require a new feature flag).
107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108 * will stop scanning metadata (in logical order) and wait for all outstanding
109 * sorted I/O to complete. Once this is done, we write out a checkpoint
110 * bookmark, indicating that we have scanned everything logically before it.
111 * If the pool is imported on a machine without the new sorting algorithm,
112 * the scan simply resumes from the last checkpoint using the legacy algorithm.
113 */
114
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116 const zbookmark_phys_t *);
117
118 static scan_cb_t dsl_scan_scrub_cb;
119
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
125 uint64_t *txg);
126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd);
130
131 extern int zfs_vdev_async_write_active_min_dirty_percent;
132
133 /*
134 * By default zfs will check to ensure it is not over the hard memory
135 * limit before each txg. If finer-grained control of this is needed
136 * this value can be set to 1 to enable checking before scanning each
137 * block.
138 */
139 static int zfs_scan_strict_mem_lim = B_FALSE;
140
141 /*
142 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
143 * to strike a balance here between keeping the vdev queues full of I/Os
144 * at all times and not overflowing the queues to cause long latency,
145 * which would cause long txg sync times. No matter what, we will not
146 * overload the drives with I/O, since that is protected by
147 * zfs_vdev_scrub_max_active.
148 */
149 static unsigned long zfs_scan_vdev_limit = 4 << 20;
150
151 static int zfs_scan_issue_strategy = 0;
152 static int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
153 static unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
154
155 /*
156 * fill_weight is non-tunable at runtime, so we copy it at module init from
157 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
158 * break queue sorting.
159 */
160 static int zfs_scan_fill_weight = 3;
161 static uint64_t fill_weight;
162
163 /* See dsl_scan_should_clear() for details on the memory limit tunables */
164 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
165 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
166 static int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
167 static int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
168
169 static int zfs_scrub_min_time_ms = 1000; /* min millis to scrub per txg */
170 static int zfs_obsolete_min_time_ms = 500; /* min millis to obsolete per txg */
171 static int zfs_free_min_time_ms = 1000; /* min millis to free per txg */
172 static int zfs_resilver_min_time_ms = 3000; /* min millis to resilver per txg */
173 static int zfs_scan_checkpoint_intval = 7200; /* in seconds */
174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
175 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
176 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
177 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
178 /* max number of blocks to free in a single TXG */
179 static unsigned long zfs_async_block_max_blocks = ULONG_MAX;
180 /* max number of dedup blocks to free in a single TXG */
181 static unsigned long zfs_max_async_dedup_frees = 100000;
182
183 /* set to disable resilver deferring */
184 static int zfs_resilver_disable_defer = B_FALSE;
185
186 /*
187 * We wait a few txgs after importing a pool to begin scanning so that
188 * the import / mounting code isn't held up by scrub / resilver IO.
189 * Unfortunately, it is a bit difficult to determine exactly how long
190 * this will take since userspace will trigger fs mounts asynchronously
191 * and the kernel will create zvol minors asynchronously. As a result,
192 * the value provided here is a bit arbitrary, but represents a
193 * reasonable estimate of how many txgs it will take to finish fully
194 * importing a pool
195 */
196 #define SCAN_IMPORT_WAIT_TXGS 5
197
198 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
199 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
200 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
201
202 /*
203 * Enable/disable the processing of the free_bpobj object.
204 */
205 static int zfs_free_bpobj_enabled = 1;
206
207 /* the order has to match pool_scan_type */
208 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
209 NULL,
210 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
211 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
212 };
213
214 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
215 typedef struct {
216 uint64_t sds_dsobj;
217 uint64_t sds_txg;
218 avl_node_t sds_node;
219 } scan_ds_t;
220
221 /*
222 * This controls what conditions are placed on dsl_scan_sync_state():
223 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
224 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
225 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
226 * write out the scn_phys_cached version.
227 * See dsl_scan_sync_state for details.
228 */
229 typedef enum {
230 SYNC_OPTIONAL,
231 SYNC_MANDATORY,
232 SYNC_CACHED
233 } state_sync_type_t;
234
235 /*
236 * This struct represents the minimum information needed to reconstruct a
237 * zio for sequential scanning. This is useful because many of these will
238 * accumulate in the sequential IO queues before being issued, so saving
239 * memory matters here.
240 */
241 typedef struct scan_io {
242 /* fields from blkptr_t */
243 uint64_t sio_blk_prop;
244 uint64_t sio_phys_birth;
245 uint64_t sio_birth;
246 zio_cksum_t sio_cksum;
247 uint32_t sio_nr_dvas;
248
249 /* fields from zio_t */
250 uint32_t sio_flags;
251 zbookmark_phys_t sio_zb;
252
253 /* members for queue sorting */
254 union {
255 avl_node_t sio_addr_node; /* link into issuing queue */
256 list_node_t sio_list_node; /* link for issuing to disk */
257 } sio_nodes;
258
259 /*
260 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
261 * depending on how many were in the original bp. Only the
262 * first DVA is really used for sorting and issuing purposes.
263 * The other DVAs (if provided) simply exist so that the zio
264 * layer can find additional copies to repair from in the
265 * event of an error. This array must go at the end of the
266 * struct to allow this for the variable number of elements.
267 */
268 dva_t sio_dva[0];
269 } scan_io_t;
270
271 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
272 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
273 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
274 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
275 #define SIO_GET_END_OFFSET(sio) \
276 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
277 #define SIO_GET_MUSED(sio) \
278 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
279
280 struct dsl_scan_io_queue {
281 dsl_scan_t *q_scn; /* associated dsl_scan_t */
282 vdev_t *q_vd; /* top-level vdev that this queue represents */
283
284 /* trees used for sorting I/Os and extents of I/Os */
285 range_tree_t *q_exts_by_addr;
286 zfs_btree_t q_exts_by_size;
287 avl_tree_t q_sios_by_addr;
288 uint64_t q_sio_memused;
289
290 /* members for zio rate limiting */
291 uint64_t q_maxinflight_bytes;
292 uint64_t q_inflight_bytes;
293 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
294
295 /* per txg statistics */
296 uint64_t q_total_seg_size_this_txg;
297 uint64_t q_segs_this_txg;
298 uint64_t q_total_zio_size_this_txg;
299 uint64_t q_zios_this_txg;
300 };
301
302 /* private data for dsl_scan_prefetch_cb() */
303 typedef struct scan_prefetch_ctx {
304 zfs_refcount_t spc_refcnt; /* refcount for memory management */
305 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
306 boolean_t spc_root; /* is this prefetch for an objset? */
307 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
308 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
309 } scan_prefetch_ctx_t;
310
311 /* private data for dsl_scan_prefetch() */
312 typedef struct scan_prefetch_issue_ctx {
313 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
314 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
315 blkptr_t spic_bp; /* bp to prefetch */
316 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
317 } scan_prefetch_issue_ctx_t;
318
319 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
320 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
321 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
322 scan_io_t *sio);
323
324 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
325 static void scan_io_queues_destroy(dsl_scan_t *scn);
326
327 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
328
329 /* sio->sio_nr_dvas must be set so we know which cache to free from */
330 static void
331 sio_free(scan_io_t *sio)
332 {
333 ASSERT3U(sio->sio_nr_dvas, >, 0);
334 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
335
336 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
337 }
338
339 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
340 static scan_io_t *
341 sio_alloc(unsigned short nr_dvas)
342 {
343 ASSERT3U(nr_dvas, >, 0);
344 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
345
346 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
347 }
348
349 void
350 scan_init(void)
351 {
352 /*
353 * This is used in ext_size_compare() to weight segments
354 * based on how sparse they are. This cannot be changed
355 * mid-scan and the tree comparison functions don't currently
356 * have a mechanism for passing additional context to the
357 * compare functions. Thus we store this value globally and
358 * we only allow it to be set at module initialization time
359 */
360 fill_weight = zfs_scan_fill_weight;
361
362 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
363 char name[36];
364
365 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
366 sio_cache[i] = kmem_cache_create(name,
367 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
368 0, NULL, NULL, NULL, NULL, NULL, 0);
369 }
370 }
371
372 void
373 scan_fini(void)
374 {
375 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
376 kmem_cache_destroy(sio_cache[i]);
377 }
378 }
379
380 static inline boolean_t
381 dsl_scan_is_running(const dsl_scan_t *scn)
382 {
383 return (scn->scn_phys.scn_state == DSS_SCANNING);
384 }
385
386 boolean_t
387 dsl_scan_resilvering(dsl_pool_t *dp)
388 {
389 return (dsl_scan_is_running(dp->dp_scan) &&
390 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
391 }
392
393 static inline void
394 sio2bp(const scan_io_t *sio, blkptr_t *bp)
395 {
396 memset(bp, 0, sizeof (*bp));
397 bp->blk_prop = sio->sio_blk_prop;
398 bp->blk_phys_birth = sio->sio_phys_birth;
399 bp->blk_birth = sio->sio_birth;
400 bp->blk_fill = 1; /* we always only work with data pointers */
401 bp->blk_cksum = sio->sio_cksum;
402
403 ASSERT3U(sio->sio_nr_dvas, >, 0);
404 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
405
406 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
407 }
408
409 static inline void
410 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
411 {
412 sio->sio_blk_prop = bp->blk_prop;
413 sio->sio_phys_birth = bp->blk_phys_birth;
414 sio->sio_birth = bp->blk_birth;
415 sio->sio_cksum = bp->blk_cksum;
416 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
417
418 /*
419 * Copy the DVAs to the sio. We need all copies of the block so
420 * that the self healing code can use the alternate copies if the
421 * first is corrupted. We want the DVA at index dva_i to be first
422 * in the sio since this is the primary one that we want to issue.
423 */
424 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
425 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
426 }
427 }
428
429 int
430 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
431 {
432 int err;
433 dsl_scan_t *scn;
434 spa_t *spa = dp->dp_spa;
435 uint64_t f;
436
437 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
438 scn->scn_dp = dp;
439
440 /*
441 * It's possible that we're resuming a scan after a reboot so
442 * make sure that the scan_async_destroying flag is initialized
443 * appropriately.
444 */
445 ASSERT(!scn->scn_async_destroying);
446 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
447 SPA_FEATURE_ASYNC_DESTROY);
448
449 /*
450 * Calculate the max number of in-flight bytes for pool-wide
451 * scanning operations (minimum 1MB). Limits for the issuing
452 * phase are done per top-level vdev and are handled separately.
453 */
454 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
455 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
456
457 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
458 offsetof(scan_ds_t, sds_node));
459 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
460 sizeof (scan_prefetch_issue_ctx_t),
461 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
462
463 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
464 "scrub_func", sizeof (uint64_t), 1, &f);
465 if (err == 0) {
466 /*
467 * There was an old-style scrub in progress. Restart a
468 * new-style scrub from the beginning.
469 */
470 scn->scn_restart_txg = txg;
471 zfs_dbgmsg("old-style scrub was in progress for %s; "
472 "restarting new-style scrub in txg %llu",
473 spa->spa_name,
474 (longlong_t)scn->scn_restart_txg);
475
476 /*
477 * Load the queue obj from the old location so that it
478 * can be freed by dsl_scan_done().
479 */
480 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
481 "scrub_queue", sizeof (uint64_t), 1,
482 &scn->scn_phys.scn_queue_obj);
483 } else {
484 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
485 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
486 &scn->scn_phys);
487 /*
488 * Detect if the pool contains the signature of #2094. If it
489 * does properly update the scn->scn_phys structure and notify
490 * the administrator by setting an errata for the pool.
491 */
492 if (err == EOVERFLOW) {
493 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
494 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
495 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
496 (23 * sizeof (uint64_t)));
497
498 err = zap_lookup(dp->dp_meta_objset,
499 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
500 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
501 if (err == 0) {
502 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
503
504 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
505 scn->scn_async_destroying) {
506 spa->spa_errata =
507 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
508 return (EOVERFLOW);
509 }
510
511 memcpy(&scn->scn_phys, zaptmp,
512 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
513 scn->scn_phys.scn_flags = overflow;
514
515 /* Required scrub already in progress. */
516 if (scn->scn_phys.scn_state == DSS_FINISHED ||
517 scn->scn_phys.scn_state == DSS_CANCELED)
518 spa->spa_errata =
519 ZPOOL_ERRATA_ZOL_2094_SCRUB;
520 }
521 }
522
523 if (err == ENOENT)
524 return (0);
525 else if (err)
526 return (err);
527
528 /*
529 * We might be restarting after a reboot, so jump the issued
530 * counter to how far we've scanned. We know we're consistent
531 * up to here.
532 */
533 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
534
535 if (dsl_scan_is_running(scn) &&
536 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
537 /*
538 * A new-type scrub was in progress on an old
539 * pool, and the pool was accessed by old
540 * software. Restart from the beginning, since
541 * the old software may have changed the pool in
542 * the meantime.
543 */
544 scn->scn_restart_txg = txg;
545 zfs_dbgmsg("new-style scrub for %s was modified "
546 "by old software; restarting in txg %llu",
547 spa->spa_name,
548 (longlong_t)scn->scn_restart_txg);
549 } else if (dsl_scan_resilvering(dp)) {
550 /*
551 * If a resilver is in progress and there are already
552 * errors, restart it instead of finishing this scan and
553 * then restarting it. If there haven't been any errors
554 * then remember that the incore DTL is valid.
555 */
556 if (scn->scn_phys.scn_errors > 0) {
557 scn->scn_restart_txg = txg;
558 zfs_dbgmsg("resilver can't excise DTL_MISSING "
559 "when finished; restarting on %s in txg "
560 "%llu",
561 spa->spa_name,
562 (u_longlong_t)scn->scn_restart_txg);
563 } else {
564 /* it's safe to excise DTL when finished */
565 spa->spa_scrub_started = B_TRUE;
566 }
567 }
568 }
569
570 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
571
572 /* reload the queue into the in-core state */
573 if (scn->scn_phys.scn_queue_obj != 0) {
574 zap_cursor_t zc;
575 zap_attribute_t za;
576
577 for (zap_cursor_init(&zc, dp->dp_meta_objset,
578 scn->scn_phys.scn_queue_obj);
579 zap_cursor_retrieve(&zc, &za) == 0;
580 (void) zap_cursor_advance(&zc)) {
581 scan_ds_queue_insert(scn,
582 zfs_strtonum(za.za_name, NULL),
583 za.za_first_integer);
584 }
585 zap_cursor_fini(&zc);
586 }
587
588 spa_scan_stat_init(spa);
589 return (0);
590 }
591
592 void
593 dsl_scan_fini(dsl_pool_t *dp)
594 {
595 if (dp->dp_scan != NULL) {
596 dsl_scan_t *scn = dp->dp_scan;
597
598 if (scn->scn_taskq != NULL)
599 taskq_destroy(scn->scn_taskq);
600
601 scan_ds_queue_clear(scn);
602 avl_destroy(&scn->scn_queue);
603 scan_ds_prefetch_queue_clear(scn);
604 avl_destroy(&scn->scn_prefetch_queue);
605
606 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
607 dp->dp_scan = NULL;
608 }
609 }
610
611 static boolean_t
612 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
613 {
614 return (scn->scn_restart_txg != 0 &&
615 scn->scn_restart_txg <= tx->tx_txg);
616 }
617
618 boolean_t
619 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
620 {
621 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
622 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
623 }
624
625 boolean_t
626 dsl_scan_scrubbing(const dsl_pool_t *dp)
627 {
628 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
629
630 return (scn_phys->scn_state == DSS_SCANNING &&
631 scn_phys->scn_func == POOL_SCAN_SCRUB);
632 }
633
634 boolean_t
635 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
636 {
637 return (dsl_scan_scrubbing(scn->scn_dp) &&
638 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
639 }
640
641 /*
642 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
643 * Because we can be running in the block sorting algorithm, we do not always
644 * want to write out the record, only when it is "safe" to do so. This safety
645 * condition is achieved by making sure that the sorting queues are empty
646 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
647 * is inconsistent with how much actual scanning progress has been made. The
648 * kind of sync to be performed is specified by the sync_type argument. If the
649 * sync is optional, we only sync if the queues are empty. If the sync is
650 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
651 * third possible state is a "cached" sync. This is done in response to:
652 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
653 * destroyed, so we wouldn't be able to restart scanning from it.
654 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
655 * superseded by a newer snapshot.
656 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
657 * swapped with its clone.
658 * In all cases, a cached sync simply rewrites the last record we've written,
659 * just slightly modified. For the modifications that are performed to the
660 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
661 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
662 */
663 static void
664 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
665 {
666 int i;
667 spa_t *spa = scn->scn_dp->dp_spa;
668
669 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
670 if (scn->scn_bytes_pending == 0) {
671 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
672 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
673 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
674
675 if (q == NULL)
676 continue;
677
678 mutex_enter(&vd->vdev_scan_io_queue_lock);
679 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
680 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
681 NULL);
682 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
683 mutex_exit(&vd->vdev_scan_io_queue_lock);
684 }
685
686 if (scn->scn_phys.scn_queue_obj != 0)
687 scan_ds_queue_sync(scn, tx);
688 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
689 DMU_POOL_DIRECTORY_OBJECT,
690 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
691 &scn->scn_phys, tx));
692 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
693 sizeof (scn->scn_phys));
694
695 if (scn->scn_checkpointing)
696 zfs_dbgmsg("finish scan checkpoint for %s",
697 spa->spa_name);
698
699 scn->scn_checkpointing = B_FALSE;
700 scn->scn_last_checkpoint = ddi_get_lbolt();
701 } else if (sync_type == SYNC_CACHED) {
702 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
703 DMU_POOL_DIRECTORY_OBJECT,
704 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
705 &scn->scn_phys_cached, tx));
706 }
707 }
708
709 int
710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
711 {
712 (void) arg;
713 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
714 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
715
716 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
717 return (SET_ERROR(EBUSY));
718
719 return (0);
720 }
721
722 void
723 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
724 {
725 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
726 pool_scan_func_t *funcp = arg;
727 dmu_object_type_t ot = 0;
728 dsl_pool_t *dp = scn->scn_dp;
729 spa_t *spa = dp->dp_spa;
730
731 ASSERT(!dsl_scan_is_running(scn));
732 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
733 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
734 scn->scn_phys.scn_func = *funcp;
735 scn->scn_phys.scn_state = DSS_SCANNING;
736 scn->scn_phys.scn_min_txg = 0;
737 scn->scn_phys.scn_max_txg = tx->tx_txg;
738 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
739 scn->scn_phys.scn_start_time = gethrestime_sec();
740 scn->scn_phys.scn_errors = 0;
741 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
742 scn->scn_issued_before_pass = 0;
743 scn->scn_restart_txg = 0;
744 scn->scn_done_txg = 0;
745 scn->scn_last_checkpoint = 0;
746 scn->scn_checkpointing = B_FALSE;
747 spa_scan_stat_init(spa);
748
749 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
750 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
751
752 /* rewrite all disk labels */
753 vdev_config_dirty(spa->spa_root_vdev);
754
755 if (vdev_resilver_needed(spa->spa_root_vdev,
756 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
757 nvlist_t *aux = fnvlist_alloc();
758 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
759 "healing");
760 spa_event_notify(spa, NULL, aux,
761 ESC_ZFS_RESILVER_START);
762 nvlist_free(aux);
763 } else {
764 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
765 }
766
767 spa->spa_scrub_started = B_TRUE;
768 /*
769 * If this is an incremental scrub, limit the DDT scrub phase
770 * to just the auto-ditto class (for correctness); the rest
771 * of the scrub should go faster using top-down pruning.
772 */
773 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
774 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
775
776 /*
777 * When starting a resilver clear any existing rebuild state.
778 * This is required to prevent stale rebuild status from
779 * being reported when a rebuild is run, then a resilver and
780 * finally a scrub. In which case only the scrub status
781 * should be reported by 'zpool status'.
782 */
783 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
784 vdev_t *rvd = spa->spa_root_vdev;
785 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
786 vdev_t *vd = rvd->vdev_child[i];
787 vdev_rebuild_clear_sync(
788 (void *)(uintptr_t)vd->vdev_id, tx);
789 }
790 }
791 }
792
793 /* back to the generic stuff */
794
795 if (dp->dp_blkstats == NULL) {
796 dp->dp_blkstats =
797 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
798 mutex_init(&dp->dp_blkstats->zab_lock, NULL,
799 MUTEX_DEFAULT, NULL);
800 }
801 memset(&dp->dp_blkstats->zab_type, 0,
802 sizeof (dp->dp_blkstats->zab_type));
803
804 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
805 ot = DMU_OT_ZAP_OTHER;
806
807 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
808 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
809
810 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
811
812 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
813
814 spa_history_log_internal(spa, "scan setup", tx,
815 "func=%u mintxg=%llu maxtxg=%llu",
816 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
817 (u_longlong_t)scn->scn_phys.scn_max_txg);
818 }
819
820 /*
821 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
822 * Can also be called to resume a paused scrub.
823 */
824 int
825 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
826 {
827 spa_t *spa = dp->dp_spa;
828 dsl_scan_t *scn = dp->dp_scan;
829
830 /*
831 * Purge all vdev caches and probe all devices. We do this here
832 * rather than in sync context because this requires a writer lock
833 * on the spa_config lock, which we can't do from sync context. The
834 * spa_scrub_reopen flag indicates that vdev_open() should not
835 * attempt to start another scrub.
836 */
837 spa_vdev_state_enter(spa, SCL_NONE);
838 spa->spa_scrub_reopen = B_TRUE;
839 vdev_reopen(spa->spa_root_vdev);
840 spa->spa_scrub_reopen = B_FALSE;
841 (void) spa_vdev_state_exit(spa, NULL, 0);
842
843 if (func == POOL_SCAN_RESILVER) {
844 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
845 return (0);
846 }
847
848 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
849 /* got scrub start cmd, resume paused scrub */
850 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
851 POOL_SCRUB_NORMAL);
852 if (err == 0) {
853 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
854 return (SET_ERROR(ECANCELED));
855 }
856
857 return (SET_ERROR(err));
858 }
859
860 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
861 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
862 }
863
864 static void
865 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
866 {
867 static const char *old_names[] = {
868 "scrub_bookmark",
869 "scrub_ddt_bookmark",
870 "scrub_ddt_class_max",
871 "scrub_queue",
872 "scrub_min_txg",
873 "scrub_max_txg",
874 "scrub_func",
875 "scrub_errors",
876 NULL
877 };
878
879 dsl_pool_t *dp = scn->scn_dp;
880 spa_t *spa = dp->dp_spa;
881 int i;
882
883 /* Remove any remnants of an old-style scrub. */
884 for (i = 0; old_names[i]; i++) {
885 (void) zap_remove(dp->dp_meta_objset,
886 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
887 }
888
889 if (scn->scn_phys.scn_queue_obj != 0) {
890 VERIFY0(dmu_object_free(dp->dp_meta_objset,
891 scn->scn_phys.scn_queue_obj, tx));
892 scn->scn_phys.scn_queue_obj = 0;
893 }
894 scan_ds_queue_clear(scn);
895 scan_ds_prefetch_queue_clear(scn);
896
897 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
898
899 /*
900 * If we were "restarted" from a stopped state, don't bother
901 * with anything else.
902 */
903 if (!dsl_scan_is_running(scn)) {
904 ASSERT(!scn->scn_is_sorted);
905 return;
906 }
907
908 if (scn->scn_is_sorted) {
909 scan_io_queues_destroy(scn);
910 scn->scn_is_sorted = B_FALSE;
911
912 if (scn->scn_taskq != NULL) {
913 taskq_destroy(scn->scn_taskq);
914 scn->scn_taskq = NULL;
915 }
916 }
917
918 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
919
920 spa_notify_waiters(spa);
921
922 if (dsl_scan_restarting(scn, tx))
923 spa_history_log_internal(spa, "scan aborted, restarting", tx,
924 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
925 else if (!complete)
926 spa_history_log_internal(spa, "scan cancelled", tx,
927 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
928 else
929 spa_history_log_internal(spa, "scan done", tx,
930 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
931
932 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
933 spa->spa_scrub_active = B_FALSE;
934
935 /*
936 * If the scrub/resilver completed, update all DTLs to
937 * reflect this. Whether it succeeded or not, vacate
938 * all temporary scrub DTLs.
939 *
940 * As the scrub does not currently support traversing
941 * data that have been freed but are part of a checkpoint,
942 * we don't mark the scrub as done in the DTLs as faults
943 * may still exist in those vdevs.
944 */
945 if (complete &&
946 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
947 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
948 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
949
950 if (scn->scn_phys.scn_min_txg) {
951 nvlist_t *aux = fnvlist_alloc();
952 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
953 "healing");
954 spa_event_notify(spa, NULL, aux,
955 ESC_ZFS_RESILVER_FINISH);
956 nvlist_free(aux);
957 } else {
958 spa_event_notify(spa, NULL, NULL,
959 ESC_ZFS_SCRUB_FINISH);
960 }
961 } else {
962 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
963 0, B_TRUE, B_FALSE);
964 }
965 spa_errlog_rotate(spa);
966
967 /*
968 * Don't clear flag until after vdev_dtl_reassess to ensure that
969 * DTL_MISSING will get updated when possible.
970 */
971 spa->spa_scrub_started = B_FALSE;
972
973 /*
974 * We may have finished replacing a device.
975 * Let the async thread assess this and handle the detach.
976 */
977 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
978
979 /*
980 * Clear any resilver_deferred flags in the config.
981 * If there are drives that need resilvering, kick
982 * off an asynchronous request to start resilver.
983 * vdev_clear_resilver_deferred() may update the config
984 * before the resilver can restart. In the event of
985 * a crash during this period, the spa loading code
986 * will find the drives that need to be resilvered
987 * and start the resilver then.
988 */
989 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
990 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
991 spa_history_log_internal(spa,
992 "starting deferred resilver", tx, "errors=%llu",
993 (u_longlong_t)spa_get_errlog_size(spa));
994 spa_async_request(spa, SPA_ASYNC_RESILVER);
995 }
996
997 /* Clear recent error events (i.e. duplicate events tracking) */
998 if (complete)
999 zfs_ereport_clear(spa, NULL);
1000 }
1001
1002 scn->scn_phys.scn_end_time = gethrestime_sec();
1003
1004 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1005 spa->spa_errata = 0;
1006
1007 ASSERT(!dsl_scan_is_running(scn));
1008 }
1009
1010 static int
1011 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1012 {
1013 (void) arg;
1014 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1015
1016 if (!dsl_scan_is_running(scn))
1017 return (SET_ERROR(ENOENT));
1018 return (0);
1019 }
1020
1021 static void
1022 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1023 {
1024 (void) arg;
1025 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1026
1027 dsl_scan_done(scn, B_FALSE, tx);
1028 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1029 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1030 }
1031
1032 int
1033 dsl_scan_cancel(dsl_pool_t *dp)
1034 {
1035 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1036 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1037 }
1038
1039 static int
1040 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1041 {
1042 pool_scrub_cmd_t *cmd = arg;
1043 dsl_pool_t *dp = dmu_tx_pool(tx);
1044 dsl_scan_t *scn = dp->dp_scan;
1045
1046 if (*cmd == POOL_SCRUB_PAUSE) {
1047 /* can't pause a scrub when there is no in-progress scrub */
1048 if (!dsl_scan_scrubbing(dp))
1049 return (SET_ERROR(ENOENT));
1050
1051 /* can't pause a paused scrub */
1052 if (dsl_scan_is_paused_scrub(scn))
1053 return (SET_ERROR(EBUSY));
1054 } else if (*cmd != POOL_SCRUB_NORMAL) {
1055 return (SET_ERROR(ENOTSUP));
1056 }
1057
1058 return (0);
1059 }
1060
1061 static void
1062 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1063 {
1064 pool_scrub_cmd_t *cmd = arg;
1065 dsl_pool_t *dp = dmu_tx_pool(tx);
1066 spa_t *spa = dp->dp_spa;
1067 dsl_scan_t *scn = dp->dp_scan;
1068
1069 if (*cmd == POOL_SCRUB_PAUSE) {
1070 /* can't pause a scrub when there is no in-progress scrub */
1071 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1072 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1073 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1074 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1075 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1076 spa_notify_waiters(spa);
1077 } else {
1078 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1079 if (dsl_scan_is_paused_scrub(scn)) {
1080 /*
1081 * We need to keep track of how much time we spend
1082 * paused per pass so that we can adjust the scrub rate
1083 * shown in the output of 'zpool status'
1084 */
1085 spa->spa_scan_pass_scrub_spent_paused +=
1086 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1087 spa->spa_scan_pass_scrub_pause = 0;
1088 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1089 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1090 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1091 }
1092 }
1093 }
1094
1095 /*
1096 * Set scrub pause/resume state if it makes sense to do so
1097 */
1098 int
1099 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1100 {
1101 return (dsl_sync_task(spa_name(dp->dp_spa),
1102 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1103 ZFS_SPACE_CHECK_RESERVED));
1104 }
1105
1106
1107 /* start a new scan, or restart an existing one. */
1108 void
1109 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1110 {
1111 if (txg == 0) {
1112 dmu_tx_t *tx;
1113 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1114 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1115
1116 txg = dmu_tx_get_txg(tx);
1117 dp->dp_scan->scn_restart_txg = txg;
1118 dmu_tx_commit(tx);
1119 } else {
1120 dp->dp_scan->scn_restart_txg = txg;
1121 }
1122 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1123 dp->dp_spa->spa_name, (longlong_t)txg);
1124 }
1125
1126 void
1127 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1128 {
1129 zio_free(dp->dp_spa, txg, bp);
1130 }
1131
1132 void
1133 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1134 {
1135 ASSERT(dsl_pool_sync_context(dp));
1136 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1137 }
1138
1139 static int
1140 scan_ds_queue_compare(const void *a, const void *b)
1141 {
1142 const scan_ds_t *sds_a = a, *sds_b = b;
1143
1144 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1145 return (-1);
1146 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1147 return (0);
1148 return (1);
1149 }
1150
1151 static void
1152 scan_ds_queue_clear(dsl_scan_t *scn)
1153 {
1154 void *cookie = NULL;
1155 scan_ds_t *sds;
1156 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1157 kmem_free(sds, sizeof (*sds));
1158 }
1159 }
1160
1161 static boolean_t
1162 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1163 {
1164 scan_ds_t srch, *sds;
1165
1166 srch.sds_dsobj = dsobj;
1167 sds = avl_find(&scn->scn_queue, &srch, NULL);
1168 if (sds != NULL && txg != NULL)
1169 *txg = sds->sds_txg;
1170 return (sds != NULL);
1171 }
1172
1173 static void
1174 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1175 {
1176 scan_ds_t *sds;
1177 avl_index_t where;
1178
1179 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1180 sds->sds_dsobj = dsobj;
1181 sds->sds_txg = txg;
1182
1183 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1184 avl_insert(&scn->scn_queue, sds, where);
1185 }
1186
1187 static void
1188 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1189 {
1190 scan_ds_t srch, *sds;
1191
1192 srch.sds_dsobj = dsobj;
1193
1194 sds = avl_find(&scn->scn_queue, &srch, NULL);
1195 VERIFY(sds != NULL);
1196 avl_remove(&scn->scn_queue, sds);
1197 kmem_free(sds, sizeof (*sds));
1198 }
1199
1200 static void
1201 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1202 {
1203 dsl_pool_t *dp = scn->scn_dp;
1204 spa_t *spa = dp->dp_spa;
1205 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1206 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1207
1208 ASSERT0(scn->scn_bytes_pending);
1209 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1210
1211 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1212 scn->scn_phys.scn_queue_obj, tx));
1213 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1214 DMU_OT_NONE, 0, tx);
1215 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1216 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1217 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1218 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1219 sds->sds_txg, tx));
1220 }
1221 }
1222
1223 /*
1224 * Computes the memory limit state that we're currently in. A sorted scan
1225 * needs quite a bit of memory to hold the sorting queue, so we need to
1226 * reasonably constrain the size so it doesn't impact overall system
1227 * performance. We compute two limits:
1228 * 1) Hard memory limit: if the amount of memory used by the sorting
1229 * queues on a pool gets above this value, we stop the metadata
1230 * scanning portion and start issuing the queued up and sorted
1231 * I/Os to reduce memory usage.
1232 * This limit is calculated as a fraction of physmem (by default 5%).
1233 * We constrain the lower bound of the hard limit to an absolute
1234 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1235 * the upper bound to 5% of the total pool size - no chance we'll
1236 * ever need that much memory, but just to keep the value in check.
1237 * 2) Soft memory limit: once we hit the hard memory limit, we start
1238 * issuing I/O to reduce queue memory usage, but we don't want to
1239 * completely empty out the queues, since we might be able to find I/Os
1240 * that will fill in the gaps of our non-sequential IOs at some point
1241 * in the future. So we stop the issuing of I/Os once the amount of
1242 * memory used drops below the soft limit (at which point we stop issuing
1243 * I/O and start scanning metadata again).
1244 *
1245 * This limit is calculated by subtracting a fraction of the hard
1246 * limit from the hard limit. By default this fraction is 5%, so
1247 * the soft limit is 95% of the hard limit. We cap the size of the
1248 * difference between the hard and soft limits at an absolute
1249 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1250 * sufficient to not cause too frequent switching between the
1251 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1252 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1253 * that should take at least a decent fraction of a second).
1254 */
1255 static boolean_t
1256 dsl_scan_should_clear(dsl_scan_t *scn)
1257 {
1258 spa_t *spa = scn->scn_dp->dp_spa;
1259 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1260 uint64_t alloc, mlim_hard, mlim_soft, mused;
1261
1262 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1263 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1264 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1265
1266 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1267 zfs_scan_mem_lim_min);
1268 mlim_hard = MIN(mlim_hard, alloc / 20);
1269 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1270 zfs_scan_mem_lim_soft_max);
1271 mused = 0;
1272 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1273 vdev_t *tvd = rvd->vdev_child[i];
1274 dsl_scan_io_queue_t *queue;
1275
1276 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1277 queue = tvd->vdev_scan_io_queue;
1278 if (queue != NULL) {
1279 /* # extents in exts_by_size = # in exts_by_addr */
1280 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1281 sizeof (range_seg_gap_t) + queue->q_sio_memused;
1282 }
1283 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1284 }
1285
1286 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1287
1288 if (mused == 0)
1289 ASSERT0(scn->scn_bytes_pending);
1290
1291 /*
1292 * If we are above our hard limit, we need to clear out memory.
1293 * If we are below our soft limit, we need to accumulate sequential IOs.
1294 * Otherwise, we should keep doing whatever we are currently doing.
1295 */
1296 if (mused >= mlim_hard)
1297 return (B_TRUE);
1298 else if (mused < mlim_soft)
1299 return (B_FALSE);
1300 else
1301 return (scn->scn_clearing);
1302 }
1303
1304 static boolean_t
1305 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1306 {
1307 /* we never skip user/group accounting objects */
1308 if (zb && (int64_t)zb->zb_object < 0)
1309 return (B_FALSE);
1310
1311 if (scn->scn_suspending)
1312 return (B_TRUE); /* we're already suspending */
1313
1314 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1315 return (B_FALSE); /* we're resuming */
1316
1317 /* We only know how to resume from level-0 and objset blocks. */
1318 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1319 return (B_FALSE);
1320
1321 /*
1322 * We suspend if:
1323 * - we have scanned for at least the minimum time (default 1 sec
1324 * for scrub, 3 sec for resilver), and either we have sufficient
1325 * dirty data that we are starting to write more quickly
1326 * (default 30%), someone is explicitly waiting for this txg
1327 * to complete, or we have used up all of the time in the txg
1328 * timeout (default 5 sec).
1329 * or
1330 * - the spa is shutting down because this pool is being exported
1331 * or the machine is rebooting.
1332 * or
1333 * - the scan queue has reached its memory use limit
1334 */
1335 uint64_t curr_time_ns = gethrtime();
1336 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1337 uint64_t sync_time_ns = curr_time_ns -
1338 scn->scn_dp->dp_spa->spa_sync_starttime;
1339 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1340 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1341 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1342
1343 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1344 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1345 txg_sync_waiting(scn->scn_dp) ||
1346 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1347 spa_shutting_down(scn->scn_dp->dp_spa) ||
1348 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1349 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1350 dprintf("suspending at first available bookmark "
1351 "%llx/%llx/%llx/%llx\n",
1352 (longlong_t)zb->zb_objset,
1353 (longlong_t)zb->zb_object,
1354 (longlong_t)zb->zb_level,
1355 (longlong_t)zb->zb_blkid);
1356 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1357 zb->zb_objset, 0, 0, 0);
1358 } else if (zb != NULL) {
1359 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1360 (longlong_t)zb->zb_objset,
1361 (longlong_t)zb->zb_object,
1362 (longlong_t)zb->zb_level,
1363 (longlong_t)zb->zb_blkid);
1364 scn->scn_phys.scn_bookmark = *zb;
1365 } else {
1366 #ifdef ZFS_DEBUG
1367 dsl_scan_phys_t *scnp = &scn->scn_phys;
1368 dprintf("suspending at at DDT bookmark "
1369 "%llx/%llx/%llx/%llx\n",
1370 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1371 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1372 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1373 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1374 #endif
1375 }
1376 scn->scn_suspending = B_TRUE;
1377 return (B_TRUE);
1378 }
1379 return (B_FALSE);
1380 }
1381
1382 typedef struct zil_scan_arg {
1383 dsl_pool_t *zsa_dp;
1384 zil_header_t *zsa_zh;
1385 } zil_scan_arg_t;
1386
1387 static int
1388 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1389 uint64_t claim_txg)
1390 {
1391 (void) zilog;
1392 zil_scan_arg_t *zsa = arg;
1393 dsl_pool_t *dp = zsa->zsa_dp;
1394 dsl_scan_t *scn = dp->dp_scan;
1395 zil_header_t *zh = zsa->zsa_zh;
1396 zbookmark_phys_t zb;
1397
1398 ASSERT(!BP_IS_REDACTED(bp));
1399 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1400 return (0);
1401
1402 /*
1403 * One block ("stubby") can be allocated a long time ago; we
1404 * want to visit that one because it has been allocated
1405 * (on-disk) even if it hasn't been claimed (even though for
1406 * scrub there's nothing to do to it).
1407 */
1408 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1409 return (0);
1410
1411 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1412 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1413
1414 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1415 return (0);
1416 }
1417
1418 static int
1419 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1420 uint64_t claim_txg)
1421 {
1422 (void) zilog;
1423 if (lrc->lrc_txtype == TX_WRITE) {
1424 zil_scan_arg_t *zsa = arg;
1425 dsl_pool_t *dp = zsa->zsa_dp;
1426 dsl_scan_t *scn = dp->dp_scan;
1427 zil_header_t *zh = zsa->zsa_zh;
1428 const lr_write_t *lr = (const lr_write_t *)lrc;
1429 const blkptr_t *bp = &lr->lr_blkptr;
1430 zbookmark_phys_t zb;
1431
1432 ASSERT(!BP_IS_REDACTED(bp));
1433 if (BP_IS_HOLE(bp) ||
1434 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1435 return (0);
1436
1437 /*
1438 * birth can be < claim_txg if this record's txg is
1439 * already txg sync'ed (but this log block contains
1440 * other records that are not synced)
1441 */
1442 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1443 return (0);
1444
1445 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1446 lr->lr_foid, ZB_ZIL_LEVEL,
1447 lr->lr_offset / BP_GET_LSIZE(bp));
1448
1449 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1450 }
1451 return (0);
1452 }
1453
1454 static void
1455 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1456 {
1457 uint64_t claim_txg = zh->zh_claim_txg;
1458 zil_scan_arg_t zsa = { dp, zh };
1459 zilog_t *zilog;
1460
1461 ASSERT(spa_writeable(dp->dp_spa));
1462
1463 /*
1464 * We only want to visit blocks that have been claimed but not yet
1465 * replayed (or, in read-only mode, blocks that *would* be claimed).
1466 */
1467 if (claim_txg == 0)
1468 return;
1469
1470 zilog = zil_alloc(dp->dp_meta_objset, zh);
1471
1472 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1473 claim_txg, B_FALSE);
1474
1475 zil_free(zilog);
1476 }
1477
1478 /*
1479 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1480 * here is to sort the AVL tree by the order each block will be needed.
1481 */
1482 static int
1483 scan_prefetch_queue_compare(const void *a, const void *b)
1484 {
1485 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1486 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1487 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1488
1489 return (zbookmark_compare(spc_a->spc_datablkszsec,
1490 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1491 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1492 }
1493
1494 static void
1495 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1496 {
1497 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1498 zfs_refcount_destroy(&spc->spc_refcnt);
1499 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1500 }
1501 }
1502
1503 static scan_prefetch_ctx_t *
1504 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1505 {
1506 scan_prefetch_ctx_t *spc;
1507
1508 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1509 zfs_refcount_create(&spc->spc_refcnt);
1510 zfs_refcount_add(&spc->spc_refcnt, tag);
1511 spc->spc_scn = scn;
1512 if (dnp != NULL) {
1513 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1514 spc->spc_indblkshift = dnp->dn_indblkshift;
1515 spc->spc_root = B_FALSE;
1516 } else {
1517 spc->spc_datablkszsec = 0;
1518 spc->spc_indblkshift = 0;
1519 spc->spc_root = B_TRUE;
1520 }
1521
1522 return (spc);
1523 }
1524
1525 static void
1526 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1527 {
1528 zfs_refcount_add(&spc->spc_refcnt, tag);
1529 }
1530
1531 static void
1532 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1533 {
1534 spa_t *spa = scn->scn_dp->dp_spa;
1535 void *cookie = NULL;
1536 scan_prefetch_issue_ctx_t *spic = NULL;
1537
1538 mutex_enter(&spa->spa_scrub_lock);
1539 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1540 &cookie)) != NULL) {
1541 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1542 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1543 }
1544 mutex_exit(&spa->spa_scrub_lock);
1545 }
1546
1547 static boolean_t
1548 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1549 const zbookmark_phys_t *zb)
1550 {
1551 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1552 dnode_phys_t tmp_dnp;
1553 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1554
1555 if (zb->zb_objset != last_zb->zb_objset)
1556 return (B_TRUE);
1557 if ((int64_t)zb->zb_object < 0)
1558 return (B_FALSE);
1559
1560 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1561 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1562
1563 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1564 return (B_TRUE);
1565
1566 return (B_FALSE);
1567 }
1568
1569 static void
1570 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1571 {
1572 avl_index_t idx;
1573 dsl_scan_t *scn = spc->spc_scn;
1574 spa_t *spa = scn->scn_dp->dp_spa;
1575 scan_prefetch_issue_ctx_t *spic;
1576
1577 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1578 return;
1579
1580 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1581 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1582 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1583 return;
1584
1585 if (dsl_scan_check_prefetch_resume(spc, zb))
1586 return;
1587
1588 scan_prefetch_ctx_add_ref(spc, scn);
1589 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1590 spic->spic_spc = spc;
1591 spic->spic_bp = *bp;
1592 spic->spic_zb = *zb;
1593
1594 /*
1595 * Add the IO to the queue of blocks to prefetch. This allows us to
1596 * prioritize blocks that we will need first for the main traversal
1597 * thread.
1598 */
1599 mutex_enter(&spa->spa_scrub_lock);
1600 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1601 /* this block is already queued for prefetch */
1602 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1603 scan_prefetch_ctx_rele(spc, scn);
1604 mutex_exit(&spa->spa_scrub_lock);
1605 return;
1606 }
1607
1608 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1609 cv_broadcast(&spa->spa_scrub_io_cv);
1610 mutex_exit(&spa->spa_scrub_lock);
1611 }
1612
1613 static void
1614 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1615 uint64_t objset, uint64_t object)
1616 {
1617 int i;
1618 zbookmark_phys_t zb;
1619 scan_prefetch_ctx_t *spc;
1620
1621 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1622 return;
1623
1624 SET_BOOKMARK(&zb, objset, object, 0, 0);
1625
1626 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1627
1628 for (i = 0; i < dnp->dn_nblkptr; i++) {
1629 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1630 zb.zb_blkid = i;
1631 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1632 }
1633
1634 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1635 zb.zb_level = 0;
1636 zb.zb_blkid = DMU_SPILL_BLKID;
1637 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1638 }
1639
1640 scan_prefetch_ctx_rele(spc, FTAG);
1641 }
1642
1643 static void
1644 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1645 arc_buf_t *buf, void *private)
1646 {
1647 (void) zio;
1648 scan_prefetch_ctx_t *spc = private;
1649 dsl_scan_t *scn = spc->spc_scn;
1650 spa_t *spa = scn->scn_dp->dp_spa;
1651
1652 /* broadcast that the IO has completed for rate limiting purposes */
1653 mutex_enter(&spa->spa_scrub_lock);
1654 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1655 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1656 cv_broadcast(&spa->spa_scrub_io_cv);
1657 mutex_exit(&spa->spa_scrub_lock);
1658
1659 /* if there was an error or we are done prefetching, just cleanup */
1660 if (buf == NULL || scn->scn_prefetch_stop)
1661 goto out;
1662
1663 if (BP_GET_LEVEL(bp) > 0) {
1664 int i;
1665 blkptr_t *cbp;
1666 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1667 zbookmark_phys_t czb;
1668
1669 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1670 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1671 zb->zb_level - 1, zb->zb_blkid * epb + i);
1672 dsl_scan_prefetch(spc, cbp, &czb);
1673 }
1674 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1675 dnode_phys_t *cdnp;
1676 int i;
1677 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1678
1679 for (i = 0, cdnp = buf->b_data; i < epb;
1680 i += cdnp->dn_extra_slots + 1,
1681 cdnp += cdnp->dn_extra_slots + 1) {
1682 dsl_scan_prefetch_dnode(scn, cdnp,
1683 zb->zb_objset, zb->zb_blkid * epb + i);
1684 }
1685 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1686 objset_phys_t *osp = buf->b_data;
1687
1688 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1689 zb->zb_objset, DMU_META_DNODE_OBJECT);
1690
1691 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1692 dsl_scan_prefetch_dnode(scn,
1693 &osp->os_groupused_dnode, zb->zb_objset,
1694 DMU_GROUPUSED_OBJECT);
1695 dsl_scan_prefetch_dnode(scn,
1696 &osp->os_userused_dnode, zb->zb_objset,
1697 DMU_USERUSED_OBJECT);
1698 }
1699 }
1700
1701 out:
1702 if (buf != NULL)
1703 arc_buf_destroy(buf, private);
1704 scan_prefetch_ctx_rele(spc, scn);
1705 }
1706
1707 static void
1708 dsl_scan_prefetch_thread(void *arg)
1709 {
1710 dsl_scan_t *scn = arg;
1711 spa_t *spa = scn->scn_dp->dp_spa;
1712 scan_prefetch_issue_ctx_t *spic;
1713
1714 /* loop until we are told to stop */
1715 while (!scn->scn_prefetch_stop) {
1716 arc_flags_t flags = ARC_FLAG_NOWAIT |
1717 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1718 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1719
1720 mutex_enter(&spa->spa_scrub_lock);
1721
1722 /*
1723 * Wait until we have an IO to issue and are not above our
1724 * maximum in flight limit.
1725 */
1726 while (!scn->scn_prefetch_stop &&
1727 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1728 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1729 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1730 }
1731
1732 /* recheck if we should stop since we waited for the cv */
1733 if (scn->scn_prefetch_stop) {
1734 mutex_exit(&spa->spa_scrub_lock);
1735 break;
1736 }
1737
1738 /* remove the prefetch IO from the tree */
1739 spic = avl_first(&scn->scn_prefetch_queue);
1740 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1741 avl_remove(&scn->scn_prefetch_queue, spic);
1742
1743 mutex_exit(&spa->spa_scrub_lock);
1744
1745 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1746 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1747 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1748 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1749 zio_flags |= ZIO_FLAG_RAW;
1750 }
1751
1752 /* issue the prefetch asynchronously */
1753 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1754 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1755 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1756
1757 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1758 }
1759
1760 ASSERT(scn->scn_prefetch_stop);
1761
1762 /* free any prefetches we didn't get to complete */
1763 mutex_enter(&spa->spa_scrub_lock);
1764 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1765 avl_remove(&scn->scn_prefetch_queue, spic);
1766 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1767 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1768 }
1769 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1770 mutex_exit(&spa->spa_scrub_lock);
1771 }
1772
1773 static boolean_t
1774 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1775 const zbookmark_phys_t *zb)
1776 {
1777 /*
1778 * We never skip over user/group accounting objects (obj<0)
1779 */
1780 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1781 (int64_t)zb->zb_object >= 0) {
1782 /*
1783 * If we already visited this bp & everything below (in
1784 * a prior txg sync), don't bother doing it again.
1785 */
1786 if (zbookmark_subtree_completed(dnp, zb,
1787 &scn->scn_phys.scn_bookmark))
1788 return (B_TRUE);
1789
1790 /*
1791 * If we found the block we're trying to resume from, or
1792 * we went past it to a different object, zero it out to
1793 * indicate that it's OK to start checking for suspending
1794 * again.
1795 */
1796 if (memcmp(zb, &scn->scn_phys.scn_bookmark,
1797 sizeof (*zb)) == 0 ||
1798 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1799 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1800 (longlong_t)zb->zb_objset,
1801 (longlong_t)zb->zb_object,
1802 (longlong_t)zb->zb_level,
1803 (longlong_t)zb->zb_blkid);
1804 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
1805 }
1806 }
1807 return (B_FALSE);
1808 }
1809
1810 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1811 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1812 dmu_objset_type_t ostype, dmu_tx_t *tx);
1813 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1814 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1815 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1816
1817 /*
1818 * Return nonzero on i/o error.
1819 * Return new buf to write out in *bufp.
1820 */
1821 inline __attribute__((always_inline)) static int
1822 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1823 dnode_phys_t *dnp, const blkptr_t *bp,
1824 const zbookmark_phys_t *zb, dmu_tx_t *tx)
1825 {
1826 dsl_pool_t *dp = scn->scn_dp;
1827 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1828 int err;
1829
1830 ASSERT(!BP_IS_REDACTED(bp));
1831
1832 /*
1833 * There is an unlikely case of encountering dnodes with contradicting
1834 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
1835 * or modified before commit 4254acb was merged. As it is not possible
1836 * to know which of the two is correct, report an error.
1837 */
1838 if (dnp != NULL &&
1839 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
1840 scn->scn_phys.scn_errors++;
1841 spa_log_error(dp->dp_spa, zb);
1842 return (SET_ERROR(EINVAL));
1843 }
1844
1845 if (BP_GET_LEVEL(bp) > 0) {
1846 arc_flags_t flags = ARC_FLAG_WAIT;
1847 int i;
1848 blkptr_t *cbp;
1849 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1850 arc_buf_t *buf;
1851
1852 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1853 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1854 if (err) {
1855 scn->scn_phys.scn_errors++;
1856 return (err);
1857 }
1858 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1859 zbookmark_phys_t czb;
1860
1861 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1862 zb->zb_level - 1,
1863 zb->zb_blkid * epb + i);
1864 dsl_scan_visitbp(cbp, &czb, dnp,
1865 ds, scn, ostype, tx);
1866 }
1867 arc_buf_destroy(buf, &buf);
1868 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1869 arc_flags_t flags = ARC_FLAG_WAIT;
1870 dnode_phys_t *cdnp;
1871 int i;
1872 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1873 arc_buf_t *buf;
1874
1875 if (BP_IS_PROTECTED(bp)) {
1876 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1877 zio_flags |= ZIO_FLAG_RAW;
1878 }
1879
1880 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1881 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1882 if (err) {
1883 scn->scn_phys.scn_errors++;
1884 return (err);
1885 }
1886 for (i = 0, cdnp = buf->b_data; i < epb;
1887 i += cdnp->dn_extra_slots + 1,
1888 cdnp += cdnp->dn_extra_slots + 1) {
1889 dsl_scan_visitdnode(scn, ds, ostype,
1890 cdnp, zb->zb_blkid * epb + i, tx);
1891 }
1892
1893 arc_buf_destroy(buf, &buf);
1894 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1895 arc_flags_t flags = ARC_FLAG_WAIT;
1896 objset_phys_t *osp;
1897 arc_buf_t *buf;
1898
1899 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1900 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1901 if (err) {
1902 scn->scn_phys.scn_errors++;
1903 return (err);
1904 }
1905
1906 osp = buf->b_data;
1907
1908 dsl_scan_visitdnode(scn, ds, osp->os_type,
1909 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1910
1911 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1912 /*
1913 * We also always visit user/group/project accounting
1914 * objects, and never skip them, even if we are
1915 * suspending. This is necessary so that the
1916 * space deltas from this txg get integrated.
1917 */
1918 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1919 dsl_scan_visitdnode(scn, ds, osp->os_type,
1920 &osp->os_projectused_dnode,
1921 DMU_PROJECTUSED_OBJECT, tx);
1922 dsl_scan_visitdnode(scn, ds, osp->os_type,
1923 &osp->os_groupused_dnode,
1924 DMU_GROUPUSED_OBJECT, tx);
1925 dsl_scan_visitdnode(scn, ds, osp->os_type,
1926 &osp->os_userused_dnode,
1927 DMU_USERUSED_OBJECT, tx);
1928 }
1929 arc_buf_destroy(buf, &buf);
1930 }
1931
1932 return (0);
1933 }
1934
1935 inline __attribute__((always_inline)) static void
1936 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1937 dmu_objset_type_t ostype, dnode_phys_t *dnp,
1938 uint64_t object, dmu_tx_t *tx)
1939 {
1940 int j;
1941
1942 for (j = 0; j < dnp->dn_nblkptr; j++) {
1943 zbookmark_phys_t czb;
1944
1945 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1946 dnp->dn_nlevels - 1, j);
1947 dsl_scan_visitbp(&dnp->dn_blkptr[j],
1948 &czb, dnp, ds, scn, ostype, tx);
1949 }
1950
1951 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1952 zbookmark_phys_t czb;
1953 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1954 0, DMU_SPILL_BLKID);
1955 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1956 &czb, dnp, ds, scn, ostype, tx);
1957 }
1958 }
1959
1960 /*
1961 * The arguments are in this order because mdb can only print the
1962 * first 5; we want them to be useful.
1963 */
1964 static void
1965 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1966 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1967 dmu_objset_type_t ostype, dmu_tx_t *tx)
1968 {
1969 dsl_pool_t *dp = scn->scn_dp;
1970 blkptr_t *bp_toread = NULL;
1971
1972 if (dsl_scan_check_suspend(scn, zb))
1973 return;
1974
1975 if (dsl_scan_check_resume(scn, dnp, zb))
1976 return;
1977
1978 scn->scn_visited_this_txg++;
1979
1980 /*
1981 * This debugging is commented out to conserve stack space. This
1982 * function is called recursively and the debugging adds several
1983 * bytes to the stack for each call. It can be commented back in
1984 * if required to debug an issue in dsl_scan_visitbp().
1985 *
1986 * dprintf_bp(bp,
1987 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1988 * ds, ds ? ds->ds_object : 0,
1989 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1990 * bp);
1991 */
1992
1993 if (BP_IS_HOLE(bp)) {
1994 scn->scn_holes_this_txg++;
1995 return;
1996 }
1997
1998 if (BP_IS_REDACTED(bp)) {
1999 ASSERT(dsl_dataset_feature_is_active(ds,
2000 SPA_FEATURE_REDACTED_DATASETS));
2001 return;
2002 }
2003
2004 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
2005 scn->scn_lt_min_this_txg++;
2006 return;
2007 }
2008
2009 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
2010 *bp_toread = *bp;
2011
2012 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
2013 goto out;
2014
2015 /*
2016 * If dsl_scan_ddt() has already visited this block, it will have
2017 * already done any translations or scrubbing, so don't call the
2018 * callback again.
2019 */
2020 if (ddt_class_contains(dp->dp_spa,
2021 scn->scn_phys.scn_ddt_class_max, bp)) {
2022 scn->scn_ddt_contained_this_txg++;
2023 goto out;
2024 }
2025
2026 /*
2027 * If this block is from the future (after cur_max_txg), then we
2028 * are doing this on behalf of a deleted snapshot, and we will
2029 * revisit the future block on the next pass of this dataset.
2030 * Don't scan it now unless we need to because something
2031 * under it was modified.
2032 */
2033 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2034 scn->scn_gt_max_this_txg++;
2035 goto out;
2036 }
2037
2038 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2039
2040 out:
2041 kmem_free(bp_toread, sizeof (blkptr_t));
2042 }
2043
2044 static void
2045 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2046 dmu_tx_t *tx)
2047 {
2048 zbookmark_phys_t zb;
2049 scan_prefetch_ctx_t *spc;
2050
2051 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2052 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2053
2054 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2055 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2056 zb.zb_objset, 0, 0, 0);
2057 } else {
2058 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2059 }
2060
2061 scn->scn_objsets_visited_this_txg++;
2062
2063 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2064 dsl_scan_prefetch(spc, bp, &zb);
2065 scan_prefetch_ctx_rele(spc, FTAG);
2066
2067 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2068
2069 dprintf_ds(ds, "finished scan%s", "");
2070 }
2071
2072 static void
2073 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2074 {
2075 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2076 if (ds->ds_is_snapshot) {
2077 /*
2078 * Note:
2079 * - scn_cur_{min,max}_txg stays the same.
2080 * - Setting the flag is not really necessary if
2081 * scn_cur_max_txg == scn_max_txg, because there
2082 * is nothing after this snapshot that we care
2083 * about. However, we set it anyway and then
2084 * ignore it when we retraverse it in
2085 * dsl_scan_visitds().
2086 */
2087 scn_phys->scn_bookmark.zb_objset =
2088 dsl_dataset_phys(ds)->ds_next_snap_obj;
2089 zfs_dbgmsg("destroying ds %llu on %s; currently "
2090 "traversing; reset zb_objset to %llu",
2091 (u_longlong_t)ds->ds_object,
2092 ds->ds_dir->dd_pool->dp_spa->spa_name,
2093 (u_longlong_t)dsl_dataset_phys(ds)->
2094 ds_next_snap_obj);
2095 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2096 } else {
2097 SET_BOOKMARK(&scn_phys->scn_bookmark,
2098 ZB_DESTROYED_OBJSET, 0, 0, 0);
2099 zfs_dbgmsg("destroying ds %llu on %s; currently "
2100 "traversing; reset bookmark to -1,0,0,0",
2101 (u_longlong_t)ds->ds_object,
2102 ds->ds_dir->dd_pool->dp_spa->spa_name);
2103 }
2104 }
2105 }
2106
2107 /*
2108 * Invoked when a dataset is destroyed. We need to make sure that:
2109 *
2110 * 1) If it is the dataset that was currently being scanned, we write
2111 * a new dsl_scan_phys_t and marking the objset reference in it
2112 * as destroyed.
2113 * 2) Remove it from the work queue, if it was present.
2114 *
2115 * If the dataset was actually a snapshot, instead of marking the dataset
2116 * as destroyed, we instead substitute the next snapshot in line.
2117 */
2118 void
2119 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2120 {
2121 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2122 dsl_scan_t *scn = dp->dp_scan;
2123 uint64_t mintxg;
2124
2125 if (!dsl_scan_is_running(scn))
2126 return;
2127
2128 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2129 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2130
2131 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2132 scan_ds_queue_remove(scn, ds->ds_object);
2133 if (ds->ds_is_snapshot)
2134 scan_ds_queue_insert(scn,
2135 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2136 }
2137
2138 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2139 ds->ds_object, &mintxg) == 0) {
2140 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2141 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2142 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2143 if (ds->ds_is_snapshot) {
2144 /*
2145 * We keep the same mintxg; it could be >
2146 * ds_creation_txg if the previous snapshot was
2147 * deleted too.
2148 */
2149 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2150 scn->scn_phys.scn_queue_obj,
2151 dsl_dataset_phys(ds)->ds_next_snap_obj,
2152 mintxg, tx) == 0);
2153 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2154 "replacing with %llu",
2155 (u_longlong_t)ds->ds_object,
2156 dp->dp_spa->spa_name,
2157 (u_longlong_t)dsl_dataset_phys(ds)->
2158 ds_next_snap_obj);
2159 } else {
2160 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2161 "removing",
2162 (u_longlong_t)ds->ds_object,
2163 dp->dp_spa->spa_name);
2164 }
2165 }
2166
2167 /*
2168 * dsl_scan_sync() should be called after this, and should sync
2169 * out our changed state, but just to be safe, do it here.
2170 */
2171 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2172 }
2173
2174 static void
2175 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2176 {
2177 if (scn_bookmark->zb_objset == ds->ds_object) {
2178 scn_bookmark->zb_objset =
2179 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2180 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2181 "reset zb_objset to %llu",
2182 (u_longlong_t)ds->ds_object,
2183 ds->ds_dir->dd_pool->dp_spa->spa_name,
2184 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2185 }
2186 }
2187
2188 /*
2189 * Called when a dataset is snapshotted. If we were currently traversing
2190 * this snapshot, we reset our bookmark to point at the newly created
2191 * snapshot. We also modify our work queue to remove the old snapshot and
2192 * replace with the new one.
2193 */
2194 void
2195 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2196 {
2197 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2198 dsl_scan_t *scn = dp->dp_scan;
2199 uint64_t mintxg;
2200
2201 if (!dsl_scan_is_running(scn))
2202 return;
2203
2204 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2205
2206 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2207 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2208
2209 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2210 scan_ds_queue_remove(scn, ds->ds_object);
2211 scan_ds_queue_insert(scn,
2212 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2213 }
2214
2215 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2216 ds->ds_object, &mintxg) == 0) {
2217 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2218 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2219 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2220 scn->scn_phys.scn_queue_obj,
2221 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2222 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2223 "replacing with %llu",
2224 (u_longlong_t)ds->ds_object,
2225 dp->dp_spa->spa_name,
2226 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2227 }
2228
2229 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2230 }
2231
2232 static void
2233 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2234 zbookmark_phys_t *scn_bookmark)
2235 {
2236 if (scn_bookmark->zb_objset == ds1->ds_object) {
2237 scn_bookmark->zb_objset = ds2->ds_object;
2238 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2239 "reset zb_objset to %llu",
2240 (u_longlong_t)ds1->ds_object,
2241 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2242 (u_longlong_t)ds2->ds_object);
2243 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2244 scn_bookmark->zb_objset = ds1->ds_object;
2245 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2246 "reset zb_objset to %llu",
2247 (u_longlong_t)ds2->ds_object,
2248 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2249 (u_longlong_t)ds1->ds_object);
2250 }
2251 }
2252
2253 /*
2254 * Called when an origin dataset and its clone are swapped. If we were
2255 * currently traversing the dataset, we need to switch to traversing the
2256 * newly promoted clone.
2257 */
2258 void
2259 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2260 {
2261 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2262 dsl_scan_t *scn = dp->dp_scan;
2263 uint64_t mintxg1, mintxg2;
2264 boolean_t ds1_queued, ds2_queued;
2265
2266 if (!dsl_scan_is_running(scn))
2267 return;
2268
2269 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2270 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2271
2272 /*
2273 * Handle the in-memory scan queue.
2274 */
2275 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2276 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2277
2278 /* Sanity checking. */
2279 if (ds1_queued) {
2280 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2281 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2282 }
2283 if (ds2_queued) {
2284 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2285 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2286 }
2287
2288 if (ds1_queued && ds2_queued) {
2289 /*
2290 * If both are queued, we don't need to do anything.
2291 * The swapping code below would not handle this case correctly,
2292 * since we can't insert ds2 if it is already there. That's
2293 * because scan_ds_queue_insert() prohibits a duplicate insert
2294 * and panics.
2295 */
2296 } else if (ds1_queued) {
2297 scan_ds_queue_remove(scn, ds1->ds_object);
2298 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2299 } else if (ds2_queued) {
2300 scan_ds_queue_remove(scn, ds2->ds_object);
2301 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2302 }
2303
2304 /*
2305 * Handle the on-disk scan queue.
2306 * The on-disk state is an out-of-date version of the in-memory state,
2307 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2308 * be different. Therefore we need to apply the swap logic to the
2309 * on-disk state independently of the in-memory state.
2310 */
2311 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2312 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2313 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2314 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2315
2316 /* Sanity checking. */
2317 if (ds1_queued) {
2318 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2319 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2320 }
2321 if (ds2_queued) {
2322 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2323 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2324 }
2325
2326 if (ds1_queued && ds2_queued) {
2327 /*
2328 * If both are queued, we don't need to do anything.
2329 * Alternatively, we could check for EEXIST from
2330 * zap_add_int_key() and back out to the original state, but
2331 * that would be more work than checking for this case upfront.
2332 */
2333 } else if (ds1_queued) {
2334 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2335 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2336 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2337 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2338 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2339 "replacing with %llu",
2340 (u_longlong_t)ds1->ds_object,
2341 dp->dp_spa->spa_name,
2342 (u_longlong_t)ds2->ds_object);
2343 } else if (ds2_queued) {
2344 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2345 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2346 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2347 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2348 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2349 "replacing with %llu",
2350 (u_longlong_t)ds2->ds_object,
2351 dp->dp_spa->spa_name,
2352 (u_longlong_t)ds1->ds_object);
2353 }
2354
2355 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2356 }
2357
2358 static int
2359 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2360 {
2361 uint64_t originobj = *(uint64_t *)arg;
2362 dsl_dataset_t *ds;
2363 int err;
2364 dsl_scan_t *scn = dp->dp_scan;
2365
2366 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2367 return (0);
2368
2369 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2370 if (err)
2371 return (err);
2372
2373 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2374 dsl_dataset_t *prev;
2375 err = dsl_dataset_hold_obj(dp,
2376 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2377
2378 dsl_dataset_rele(ds, FTAG);
2379 if (err)
2380 return (err);
2381 ds = prev;
2382 }
2383 scan_ds_queue_insert(scn, ds->ds_object,
2384 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2385 dsl_dataset_rele(ds, FTAG);
2386 return (0);
2387 }
2388
2389 static void
2390 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2391 {
2392 dsl_pool_t *dp = scn->scn_dp;
2393 dsl_dataset_t *ds;
2394
2395 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2396
2397 if (scn->scn_phys.scn_cur_min_txg >=
2398 scn->scn_phys.scn_max_txg) {
2399 /*
2400 * This can happen if this snapshot was created after the
2401 * scan started, and we already completed a previous snapshot
2402 * that was created after the scan started. This snapshot
2403 * only references blocks with:
2404 *
2405 * birth < our ds_creation_txg
2406 * cur_min_txg is no less than ds_creation_txg.
2407 * We have already visited these blocks.
2408 * or
2409 * birth > scn_max_txg
2410 * The scan requested not to visit these blocks.
2411 *
2412 * Subsequent snapshots (and clones) can reference our
2413 * blocks, or blocks with even higher birth times.
2414 * Therefore we do not need to visit them either,
2415 * so we do not add them to the work queue.
2416 *
2417 * Note that checking for cur_min_txg >= cur_max_txg
2418 * is not sufficient, because in that case we may need to
2419 * visit subsequent snapshots. This happens when min_txg > 0,
2420 * which raises cur_min_txg. In this case we will visit
2421 * this dataset but skip all of its blocks, because the
2422 * rootbp's birth time is < cur_min_txg. Then we will
2423 * add the next snapshots/clones to the work queue.
2424 */
2425 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2426 dsl_dataset_name(ds, dsname);
2427 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2428 "cur_min_txg (%llu) >= max_txg (%llu)",
2429 (longlong_t)dsobj, dsname,
2430 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2431 (longlong_t)scn->scn_phys.scn_max_txg);
2432 kmem_free(dsname, MAXNAMELEN);
2433
2434 goto out;
2435 }
2436
2437 /*
2438 * Only the ZIL in the head (non-snapshot) is valid. Even though
2439 * snapshots can have ZIL block pointers (which may be the same
2440 * BP as in the head), they must be ignored. In addition, $ORIGIN
2441 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2442 * need to look for a ZIL in it either. So we traverse the ZIL here,
2443 * rather than in scan_recurse(), because the regular snapshot
2444 * block-sharing rules don't apply to it.
2445 */
2446 if (!dsl_dataset_is_snapshot(ds) &&
2447 (dp->dp_origin_snap == NULL ||
2448 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2449 objset_t *os;
2450 if (dmu_objset_from_ds(ds, &os) != 0) {
2451 goto out;
2452 }
2453 dsl_scan_zil(dp, &os->os_zil_header);
2454 }
2455
2456 /*
2457 * Iterate over the bps in this ds.
2458 */
2459 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2460 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2461 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2462 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2463
2464 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2465 dsl_dataset_name(ds, dsname);
2466 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2467 "suspending=%u",
2468 (longlong_t)dsobj, dsname,
2469 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2470 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2471 (int)scn->scn_suspending);
2472 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2473
2474 if (scn->scn_suspending)
2475 goto out;
2476
2477 /*
2478 * We've finished this pass over this dataset.
2479 */
2480
2481 /*
2482 * If we did not completely visit this dataset, do another pass.
2483 */
2484 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2485 zfs_dbgmsg("incomplete pass on %s; visiting again",
2486 dp->dp_spa->spa_name);
2487 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2488 scan_ds_queue_insert(scn, ds->ds_object,
2489 scn->scn_phys.scn_cur_max_txg);
2490 goto out;
2491 }
2492
2493 /*
2494 * Add descendant datasets to work queue.
2495 */
2496 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2497 scan_ds_queue_insert(scn,
2498 dsl_dataset_phys(ds)->ds_next_snap_obj,
2499 dsl_dataset_phys(ds)->ds_creation_txg);
2500 }
2501 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2502 boolean_t usenext = B_FALSE;
2503 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2504 uint64_t count;
2505 /*
2506 * A bug in a previous version of the code could
2507 * cause upgrade_clones_cb() to not set
2508 * ds_next_snap_obj when it should, leading to a
2509 * missing entry. Therefore we can only use the
2510 * next_clones_obj when its count is correct.
2511 */
2512 int err = zap_count(dp->dp_meta_objset,
2513 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2514 if (err == 0 &&
2515 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2516 usenext = B_TRUE;
2517 }
2518
2519 if (usenext) {
2520 zap_cursor_t zc;
2521 zap_attribute_t za;
2522 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2523 dsl_dataset_phys(ds)->ds_next_clones_obj);
2524 zap_cursor_retrieve(&zc, &za) == 0;
2525 (void) zap_cursor_advance(&zc)) {
2526 scan_ds_queue_insert(scn,
2527 zfs_strtonum(za.za_name, NULL),
2528 dsl_dataset_phys(ds)->ds_creation_txg);
2529 }
2530 zap_cursor_fini(&zc);
2531 } else {
2532 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2533 enqueue_clones_cb, &ds->ds_object,
2534 DS_FIND_CHILDREN));
2535 }
2536 }
2537
2538 out:
2539 dsl_dataset_rele(ds, FTAG);
2540 }
2541
2542 static int
2543 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2544 {
2545 (void) arg;
2546 dsl_dataset_t *ds;
2547 int err;
2548 dsl_scan_t *scn = dp->dp_scan;
2549
2550 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2551 if (err)
2552 return (err);
2553
2554 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2555 dsl_dataset_t *prev;
2556 err = dsl_dataset_hold_obj(dp,
2557 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2558 if (err) {
2559 dsl_dataset_rele(ds, FTAG);
2560 return (err);
2561 }
2562
2563 /*
2564 * If this is a clone, we don't need to worry about it for now.
2565 */
2566 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2567 dsl_dataset_rele(ds, FTAG);
2568 dsl_dataset_rele(prev, FTAG);
2569 return (0);
2570 }
2571 dsl_dataset_rele(ds, FTAG);
2572 ds = prev;
2573 }
2574
2575 scan_ds_queue_insert(scn, ds->ds_object,
2576 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2577 dsl_dataset_rele(ds, FTAG);
2578 return (0);
2579 }
2580
2581 void
2582 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2583 ddt_entry_t *dde, dmu_tx_t *tx)
2584 {
2585 (void) tx;
2586 const ddt_key_t *ddk = &dde->dde_key;
2587 ddt_phys_t *ddp = dde->dde_phys;
2588 blkptr_t bp;
2589 zbookmark_phys_t zb = { 0 };
2590
2591 if (!dsl_scan_is_running(scn))
2592 return;
2593
2594 /*
2595 * This function is special because it is the only thing
2596 * that can add scan_io_t's to the vdev scan queues from
2597 * outside dsl_scan_sync(). For the most part this is ok
2598 * as long as it is called from within syncing context.
2599 * However, dsl_scan_sync() expects that no new sio's will
2600 * be added between when all the work for a scan is done
2601 * and the next txg when the scan is actually marked as
2602 * completed. This check ensures we do not issue new sio's
2603 * during this period.
2604 */
2605 if (scn->scn_done_txg != 0)
2606 return;
2607
2608 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2609 if (ddp->ddp_phys_birth == 0 ||
2610 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2611 continue;
2612 ddt_bp_create(checksum, ddk, ddp, &bp);
2613
2614 scn->scn_visited_this_txg++;
2615 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2616 }
2617 }
2618
2619 /*
2620 * Scrub/dedup interaction.
2621 *
2622 * If there are N references to a deduped block, we don't want to scrub it
2623 * N times -- ideally, we should scrub it exactly once.
2624 *
2625 * We leverage the fact that the dde's replication class (enum ddt_class)
2626 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2627 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2628 *
2629 * To prevent excess scrubbing, the scrub begins by walking the DDT
2630 * to find all blocks with refcnt > 1, and scrubs each of these once.
2631 * Since there are two replication classes which contain blocks with
2632 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2633 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2634 *
2635 * There would be nothing more to say if a block's refcnt couldn't change
2636 * during a scrub, but of course it can so we must account for changes
2637 * in a block's replication class.
2638 *
2639 * Here's an example of what can occur:
2640 *
2641 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2642 * when visited during the top-down scrub phase, it will be scrubbed twice.
2643 * This negates our scrub optimization, but is otherwise harmless.
2644 *
2645 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2646 * on each visit during the top-down scrub phase, it will never be scrubbed.
2647 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2648 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2649 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2650 * while a scrub is in progress, it scrubs the block right then.
2651 */
2652 static void
2653 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2654 {
2655 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2656 ddt_entry_t dde = {{{{0}}}};
2657 int error;
2658 uint64_t n = 0;
2659
2660 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2661 ddt_t *ddt;
2662
2663 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2664 break;
2665 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2666 (longlong_t)ddb->ddb_class,
2667 (longlong_t)ddb->ddb_type,
2668 (longlong_t)ddb->ddb_checksum,
2669 (longlong_t)ddb->ddb_cursor);
2670
2671 /* There should be no pending changes to the dedup table */
2672 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2673 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2674
2675 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2676 n++;
2677
2678 if (dsl_scan_check_suspend(scn, NULL))
2679 break;
2680 }
2681
2682 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
2683 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
2684 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2685
2686 ASSERT(error == 0 || error == ENOENT);
2687 ASSERT(error != ENOENT ||
2688 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2689 }
2690
2691 static uint64_t
2692 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2693 {
2694 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2695 if (ds->ds_is_snapshot)
2696 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2697 return (smt);
2698 }
2699
2700 static void
2701 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2702 {
2703 scan_ds_t *sds;
2704 dsl_pool_t *dp = scn->scn_dp;
2705
2706 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2707 scn->scn_phys.scn_ddt_class_max) {
2708 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2709 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2710 dsl_scan_ddt(scn, tx);
2711 if (scn->scn_suspending)
2712 return;
2713 }
2714
2715 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2716 /* First do the MOS & ORIGIN */
2717
2718 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2719 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2720 dsl_scan_visit_rootbp(scn, NULL,
2721 &dp->dp_meta_rootbp, tx);
2722 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2723 if (scn->scn_suspending)
2724 return;
2725
2726 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2727 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2728 enqueue_cb, NULL, DS_FIND_CHILDREN));
2729 } else {
2730 dsl_scan_visitds(scn,
2731 dp->dp_origin_snap->ds_object, tx);
2732 }
2733 ASSERT(!scn->scn_suspending);
2734 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2735 ZB_DESTROYED_OBJSET) {
2736 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2737 /*
2738 * If we were suspended, continue from here. Note if the
2739 * ds we were suspended on was deleted, the zb_objset may
2740 * be -1, so we will skip this and find a new objset
2741 * below.
2742 */
2743 dsl_scan_visitds(scn, dsobj, tx);
2744 if (scn->scn_suspending)
2745 return;
2746 }
2747
2748 /*
2749 * In case we suspended right at the end of the ds, zero the
2750 * bookmark so we don't think that we're still trying to resume.
2751 */
2752 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
2753
2754 /*
2755 * Keep pulling things out of the dataset avl queue. Updates to the
2756 * persistent zap-object-as-queue happen only at checkpoints.
2757 */
2758 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2759 dsl_dataset_t *ds;
2760 uint64_t dsobj = sds->sds_dsobj;
2761 uint64_t txg = sds->sds_txg;
2762
2763 /* dequeue and free the ds from the queue */
2764 scan_ds_queue_remove(scn, dsobj);
2765 sds = NULL;
2766
2767 /* set up min / max txg */
2768 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2769 if (txg != 0) {
2770 scn->scn_phys.scn_cur_min_txg =
2771 MAX(scn->scn_phys.scn_min_txg, txg);
2772 } else {
2773 scn->scn_phys.scn_cur_min_txg =
2774 MAX(scn->scn_phys.scn_min_txg,
2775 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2776 }
2777 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2778 dsl_dataset_rele(ds, FTAG);
2779
2780 dsl_scan_visitds(scn, dsobj, tx);
2781 if (scn->scn_suspending)
2782 return;
2783 }
2784
2785 /* No more objsets to fetch, we're done */
2786 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2787 ASSERT0(scn->scn_suspending);
2788 }
2789
2790 static uint64_t
2791 dsl_scan_count_data_disks(vdev_t *rvd)
2792 {
2793 uint64_t i, leaves = 0;
2794
2795 for (i = 0; i < rvd->vdev_children; i++) {
2796 vdev_t *vd = rvd->vdev_child[i];
2797 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
2798 continue;
2799 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
2800 }
2801 return (leaves);
2802 }
2803
2804 static void
2805 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2806 {
2807 int i;
2808 uint64_t cur_size = 0;
2809
2810 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2811 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2812 }
2813
2814 q->q_total_zio_size_this_txg += cur_size;
2815 q->q_zios_this_txg++;
2816 }
2817
2818 static void
2819 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2820 uint64_t end)
2821 {
2822 q->q_total_seg_size_this_txg += end - start;
2823 q->q_segs_this_txg++;
2824 }
2825
2826 static boolean_t
2827 scan_io_queue_check_suspend(dsl_scan_t *scn)
2828 {
2829 /* See comment in dsl_scan_check_suspend() */
2830 uint64_t curr_time_ns = gethrtime();
2831 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2832 uint64_t sync_time_ns = curr_time_ns -
2833 scn->scn_dp->dp_spa->spa_sync_starttime;
2834 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2835 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2836 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2837
2838 return ((NSEC2MSEC(scan_time_ns) > mintime &&
2839 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2840 txg_sync_waiting(scn->scn_dp) ||
2841 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2842 spa_shutting_down(scn->scn_dp->dp_spa));
2843 }
2844
2845 /*
2846 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2847 * disk. This consumes the io_list and frees the scan_io_t's. This is
2848 * called when emptying queues, either when we're up against the memory
2849 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2850 * processing the list before we finished. Any sios that were not issued
2851 * will remain in the io_list.
2852 */
2853 static boolean_t
2854 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2855 {
2856 dsl_scan_t *scn = queue->q_scn;
2857 scan_io_t *sio;
2858 int64_t bytes_issued = 0;
2859 boolean_t suspended = B_FALSE;
2860
2861 while ((sio = list_head(io_list)) != NULL) {
2862 blkptr_t bp;
2863
2864 if (scan_io_queue_check_suspend(scn)) {
2865 suspended = B_TRUE;
2866 break;
2867 }
2868
2869 sio2bp(sio, &bp);
2870 bytes_issued += SIO_GET_ASIZE(sio);
2871 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2872 &sio->sio_zb, queue);
2873 (void) list_remove_head(io_list);
2874 scan_io_queues_update_zio_stats(queue, &bp);
2875 sio_free(sio);
2876 }
2877
2878 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2879
2880 return (suspended);
2881 }
2882
2883 /*
2884 * This function removes sios from an IO queue which reside within a given
2885 * range_seg_t and inserts them (in offset order) into a list. Note that
2886 * we only ever return a maximum of 32 sios at once. If there are more sios
2887 * to process within this segment that did not make it onto the list we
2888 * return B_TRUE and otherwise B_FALSE.
2889 */
2890 static boolean_t
2891 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2892 {
2893 scan_io_t *srch_sio, *sio, *next_sio;
2894 avl_index_t idx;
2895 uint_t num_sios = 0;
2896 int64_t bytes_issued = 0;
2897
2898 ASSERT(rs != NULL);
2899 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2900
2901 srch_sio = sio_alloc(1);
2902 srch_sio->sio_nr_dvas = 1;
2903 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2904
2905 /*
2906 * The exact start of the extent might not contain any matching zios,
2907 * so if that's the case, examine the next one in the tree.
2908 */
2909 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2910 sio_free(srch_sio);
2911
2912 if (sio == NULL)
2913 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2914
2915 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2916 queue->q_exts_by_addr) && num_sios <= 32) {
2917 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2918 queue->q_exts_by_addr));
2919 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2920 queue->q_exts_by_addr));
2921
2922 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2923 avl_remove(&queue->q_sios_by_addr, sio);
2924 queue->q_sio_memused -= SIO_GET_MUSED(sio);
2925
2926 bytes_issued += SIO_GET_ASIZE(sio);
2927 num_sios++;
2928 list_insert_tail(list, sio);
2929 sio = next_sio;
2930 }
2931
2932 /*
2933 * We limit the number of sios we process at once to 32 to avoid
2934 * biting off more than we can chew. If we didn't take everything
2935 * in the segment we update it to reflect the work we were able to
2936 * complete. Otherwise, we remove it from the range tree entirely.
2937 */
2938 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2939 queue->q_exts_by_addr)) {
2940 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2941 -bytes_issued);
2942 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2943 SIO_GET_OFFSET(sio), rs_get_end(rs,
2944 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2945
2946 return (B_TRUE);
2947 } else {
2948 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2949 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2950 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2951 return (B_FALSE);
2952 }
2953 }
2954
2955 /*
2956 * This is called from the queue emptying thread and selects the next
2957 * extent from which we are to issue I/Os. The behavior of this function
2958 * depends on the state of the scan, the current memory consumption and
2959 * whether or not we are performing a scan shutdown.
2960 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2961 * needs to perform a checkpoint
2962 * 2) We select the largest available extent if we are up against the
2963 * memory limit.
2964 * 3) Otherwise we don't select any extents.
2965 */
2966 static range_seg_t *
2967 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2968 {
2969 dsl_scan_t *scn = queue->q_scn;
2970 range_tree_t *rt = queue->q_exts_by_addr;
2971
2972 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2973 ASSERT(scn->scn_is_sorted);
2974
2975 /* handle tunable overrides */
2976 if (scn->scn_checkpointing || scn->scn_clearing) {
2977 if (zfs_scan_issue_strategy == 1) {
2978 return (range_tree_first(rt));
2979 } else if (zfs_scan_issue_strategy == 2) {
2980 /*
2981 * We need to get the original entry in the by_addr
2982 * tree so we can modify it.
2983 */
2984 range_seg_t *size_rs =
2985 zfs_btree_first(&queue->q_exts_by_size, NULL);
2986 if (size_rs == NULL)
2987 return (NULL);
2988 uint64_t start = rs_get_start(size_rs, rt);
2989 uint64_t size = rs_get_end(size_rs, rt) - start;
2990 range_seg_t *addr_rs = range_tree_find(rt, start,
2991 size);
2992 ASSERT3P(addr_rs, !=, NULL);
2993 ASSERT3U(rs_get_start(size_rs, rt), ==,
2994 rs_get_start(addr_rs, rt));
2995 ASSERT3U(rs_get_end(size_rs, rt), ==,
2996 rs_get_end(addr_rs, rt));
2997 return (addr_rs);
2998 }
2999 }
3000
3001 /*
3002 * During normal clearing, we want to issue our largest segments
3003 * first, keeping IO as sequential as possible, and leaving the
3004 * smaller extents for later with the hope that they might eventually
3005 * grow to larger sequential segments. However, when the scan is
3006 * checkpointing, no new extents will be added to the sorting queue,
3007 * so the way we are sorted now is as good as it will ever get.
3008 * In this case, we instead switch to issuing extents in LBA order.
3009 */
3010 if (scn->scn_checkpointing) {
3011 return (range_tree_first(rt));
3012 } else if (scn->scn_clearing) {
3013 /*
3014 * We need to get the original entry in the by_addr
3015 * tree so we can modify it.
3016 */
3017 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
3018 NULL);
3019 if (size_rs == NULL)
3020 return (NULL);
3021 uint64_t start = rs_get_start(size_rs, rt);
3022 uint64_t size = rs_get_end(size_rs, rt) - start;
3023 range_seg_t *addr_rs = range_tree_find(rt, start, size);
3024 ASSERT3P(addr_rs, !=, NULL);
3025 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
3026 rt));
3027 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
3028 return (addr_rs);
3029 } else {
3030 return (NULL);
3031 }
3032 }
3033
3034 static void
3035 scan_io_queues_run_one(void *arg)
3036 {
3037 dsl_scan_io_queue_t *queue = arg;
3038 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3039 boolean_t suspended = B_FALSE;
3040 range_seg_t *rs = NULL;
3041 scan_io_t *sio = NULL;
3042 list_t sio_list;
3043
3044 ASSERT(queue->q_scn->scn_is_sorted);
3045
3046 list_create(&sio_list, sizeof (scan_io_t),
3047 offsetof(scan_io_t, sio_nodes.sio_list_node));
3048 mutex_enter(q_lock);
3049
3050 /* Calculate maximum in-flight bytes for this vdev. */
3051 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3052 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3053
3054 /* reset per-queue scan statistics for this txg */
3055 queue->q_total_seg_size_this_txg = 0;
3056 queue->q_segs_this_txg = 0;
3057 queue->q_total_zio_size_this_txg = 0;
3058 queue->q_zios_this_txg = 0;
3059
3060 /* loop until we run out of time or sios */
3061 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3062 uint64_t seg_start = 0, seg_end = 0;
3063 boolean_t more_left = B_TRUE;
3064
3065 ASSERT(list_is_empty(&sio_list));
3066
3067 /* loop while we still have sios left to process in this rs */
3068 while (more_left) {
3069 scan_io_t *first_sio, *last_sio;
3070
3071 /*
3072 * We have selected which extent needs to be
3073 * processed next. Gather up the corresponding sios.
3074 */
3075 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3076 ASSERT(!list_is_empty(&sio_list));
3077 first_sio = list_head(&sio_list);
3078 last_sio = list_tail(&sio_list);
3079
3080 seg_end = SIO_GET_END_OFFSET(last_sio);
3081 if (seg_start == 0)
3082 seg_start = SIO_GET_OFFSET(first_sio);
3083
3084 /*
3085 * Issuing sios can take a long time so drop the
3086 * queue lock. The sio queue won't be updated by
3087 * other threads since we're in syncing context so
3088 * we can be sure that our trees will remain exactly
3089 * as we left them.
3090 */
3091 mutex_exit(q_lock);
3092 suspended = scan_io_queue_issue(queue, &sio_list);
3093 mutex_enter(q_lock);
3094
3095 if (suspended)
3096 break;
3097 }
3098
3099 /* update statistics for debugging purposes */
3100 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3101
3102 if (suspended)
3103 break;
3104 }
3105
3106 /*
3107 * If we were suspended in the middle of processing,
3108 * requeue any unfinished sios and exit.
3109 */
3110 while ((sio = list_head(&sio_list)) != NULL) {
3111 list_remove(&sio_list, sio);
3112 scan_io_queue_insert_impl(queue, sio);
3113 }
3114
3115 mutex_exit(q_lock);
3116 list_destroy(&sio_list);
3117 }
3118
3119 /*
3120 * Performs an emptying run on all scan queues in the pool. This just
3121 * punches out one thread per top-level vdev, each of which processes
3122 * only that vdev's scan queue. We can parallelize the I/O here because
3123 * we know that each queue's I/Os only affect its own top-level vdev.
3124 *
3125 * This function waits for the queue runs to complete, and must be
3126 * called from dsl_scan_sync (or in general, syncing context).
3127 */
3128 static void
3129 scan_io_queues_run(dsl_scan_t *scn)
3130 {
3131 spa_t *spa = scn->scn_dp->dp_spa;
3132
3133 ASSERT(scn->scn_is_sorted);
3134 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3135
3136 if (scn->scn_bytes_pending == 0)
3137 return;
3138
3139 if (scn->scn_taskq == NULL) {
3140 int nthreads = spa->spa_root_vdev->vdev_children;
3141
3142 /*
3143 * We need to make this taskq *always* execute as many
3144 * threads in parallel as we have top-level vdevs and no
3145 * less, otherwise strange serialization of the calls to
3146 * scan_io_queues_run_one can occur during spa_sync runs
3147 * and that significantly impacts performance.
3148 */
3149 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3150 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3151 }
3152
3153 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3154 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3155
3156 mutex_enter(&vd->vdev_scan_io_queue_lock);
3157 if (vd->vdev_scan_io_queue != NULL) {
3158 VERIFY(taskq_dispatch(scn->scn_taskq,
3159 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3160 TQ_SLEEP) != TASKQID_INVALID);
3161 }
3162 mutex_exit(&vd->vdev_scan_io_queue_lock);
3163 }
3164
3165 /*
3166 * Wait for the queues to finish issuing their IOs for this run
3167 * before we return. There may still be IOs in flight at this
3168 * point.
3169 */
3170 taskq_wait(scn->scn_taskq);
3171 }
3172
3173 static boolean_t
3174 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3175 {
3176 uint64_t elapsed_nanosecs;
3177
3178 if (zfs_recover)
3179 return (B_FALSE);
3180
3181 if (zfs_async_block_max_blocks != 0 &&
3182 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3183 return (B_TRUE);
3184 }
3185
3186 if (zfs_max_async_dedup_frees != 0 &&
3187 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3188 return (B_TRUE);
3189 }
3190
3191 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3192 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3193 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3194 txg_sync_waiting(scn->scn_dp)) ||
3195 spa_shutting_down(scn->scn_dp->dp_spa));
3196 }
3197
3198 static int
3199 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3200 {
3201 dsl_scan_t *scn = arg;
3202
3203 if (!scn->scn_is_bptree ||
3204 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3205 if (dsl_scan_async_block_should_pause(scn))
3206 return (SET_ERROR(ERESTART));
3207 }
3208
3209 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3210 dmu_tx_get_txg(tx), bp, 0));
3211 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3212 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3213 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3214 scn->scn_visited_this_txg++;
3215 if (BP_GET_DEDUP(bp))
3216 scn->scn_dedup_frees_this_txg++;
3217 return (0);
3218 }
3219
3220 static void
3221 dsl_scan_update_stats(dsl_scan_t *scn)
3222 {
3223 spa_t *spa = scn->scn_dp->dp_spa;
3224 uint64_t i;
3225 uint64_t seg_size_total = 0, zio_size_total = 0;
3226 uint64_t seg_count_total = 0, zio_count_total = 0;
3227
3228 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3229 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3230 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3231
3232 if (queue == NULL)
3233 continue;
3234
3235 seg_size_total += queue->q_total_seg_size_this_txg;
3236 zio_size_total += queue->q_total_zio_size_this_txg;
3237 seg_count_total += queue->q_segs_this_txg;
3238 zio_count_total += queue->q_zios_this_txg;
3239 }
3240
3241 if (seg_count_total == 0 || zio_count_total == 0) {
3242 scn->scn_avg_seg_size_this_txg = 0;
3243 scn->scn_avg_zio_size_this_txg = 0;
3244 scn->scn_segs_this_txg = 0;
3245 scn->scn_zios_this_txg = 0;
3246 return;
3247 }
3248
3249 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3250 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3251 scn->scn_segs_this_txg = seg_count_total;
3252 scn->scn_zios_this_txg = zio_count_total;
3253 }
3254
3255 static int
3256 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3257 dmu_tx_t *tx)
3258 {
3259 ASSERT(!bp_freed);
3260 return (dsl_scan_free_block_cb(arg, bp, tx));
3261 }
3262
3263 static int
3264 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3265 dmu_tx_t *tx)
3266 {
3267 ASSERT(!bp_freed);
3268 dsl_scan_t *scn = arg;
3269 const dva_t *dva = &bp->blk_dva[0];
3270
3271 if (dsl_scan_async_block_should_pause(scn))
3272 return (SET_ERROR(ERESTART));
3273
3274 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3275 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3276 DVA_GET_ASIZE(dva), tx);
3277 scn->scn_visited_this_txg++;
3278 return (0);
3279 }
3280
3281 boolean_t
3282 dsl_scan_active(dsl_scan_t *scn)
3283 {
3284 spa_t *spa = scn->scn_dp->dp_spa;
3285 uint64_t used = 0, comp, uncomp;
3286 boolean_t clones_left;
3287
3288 if (spa->spa_load_state != SPA_LOAD_NONE)
3289 return (B_FALSE);
3290 if (spa_shutting_down(spa))
3291 return (B_FALSE);
3292 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3293 (scn->scn_async_destroying && !scn->scn_async_stalled))
3294 return (B_TRUE);
3295
3296 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3297 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3298 &used, &comp, &uncomp);
3299 }
3300 clones_left = spa_livelist_delete_check(spa);
3301 return ((used != 0) || (clones_left));
3302 }
3303
3304 static boolean_t
3305 dsl_scan_check_deferred(vdev_t *vd)
3306 {
3307 boolean_t need_resilver = B_FALSE;
3308
3309 for (int c = 0; c < vd->vdev_children; c++) {
3310 need_resilver |=
3311 dsl_scan_check_deferred(vd->vdev_child[c]);
3312 }
3313
3314 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3315 !vd->vdev_ops->vdev_op_leaf)
3316 return (need_resilver);
3317
3318 if (!vd->vdev_resilver_deferred)
3319 need_resilver = B_TRUE;
3320
3321 return (need_resilver);
3322 }
3323
3324 static boolean_t
3325 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3326 uint64_t phys_birth)
3327 {
3328 vdev_t *vd;
3329
3330 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3331
3332 if (vd->vdev_ops == &vdev_indirect_ops) {
3333 /*
3334 * The indirect vdev can point to multiple
3335 * vdevs. For simplicity, always create
3336 * the resilver zio_t. zio_vdev_io_start()
3337 * will bypass the child resilver i/o's if
3338 * they are on vdevs that don't have DTL's.
3339 */
3340 return (B_TRUE);
3341 }
3342
3343 if (DVA_GET_GANG(dva)) {
3344 /*
3345 * Gang members may be spread across multiple
3346 * vdevs, so the best estimate we have is the
3347 * scrub range, which has already been checked.
3348 * XXX -- it would be better to change our
3349 * allocation policy to ensure that all
3350 * gang members reside on the same vdev.
3351 */
3352 return (B_TRUE);
3353 }
3354
3355 /*
3356 * Check if the top-level vdev must resilver this offset.
3357 * When the offset does not intersect with a dirty leaf DTL
3358 * then it may be possible to skip the resilver IO. The psize
3359 * is provided instead of asize to simplify the check for RAIDZ.
3360 */
3361 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3362 return (B_FALSE);
3363
3364 /*
3365 * Check that this top-level vdev has a device under it which
3366 * is resilvering and is not deferred.
3367 */
3368 if (!dsl_scan_check_deferred(vd))
3369 return (B_FALSE);
3370
3371 return (B_TRUE);
3372 }
3373
3374 static int
3375 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3376 {
3377 dsl_scan_t *scn = dp->dp_scan;
3378 spa_t *spa = dp->dp_spa;
3379 int err = 0;
3380
3381 if (spa_suspend_async_destroy(spa))
3382 return (0);
3383
3384 if (zfs_free_bpobj_enabled &&
3385 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3386 scn->scn_is_bptree = B_FALSE;
3387 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3388 scn->scn_zio_root = zio_root(spa, NULL,
3389 NULL, ZIO_FLAG_MUSTSUCCEED);
3390 err = bpobj_iterate(&dp->dp_free_bpobj,
3391 bpobj_dsl_scan_free_block_cb, scn, tx);
3392 VERIFY0(zio_wait(scn->scn_zio_root));
3393 scn->scn_zio_root = NULL;
3394
3395 if (err != 0 && err != ERESTART)
3396 zfs_panic_recover("error %u from bpobj_iterate()", err);
3397 }
3398
3399 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3400 ASSERT(scn->scn_async_destroying);
3401 scn->scn_is_bptree = B_TRUE;
3402 scn->scn_zio_root = zio_root(spa, NULL,
3403 NULL, ZIO_FLAG_MUSTSUCCEED);
3404 err = bptree_iterate(dp->dp_meta_objset,
3405 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3406 VERIFY0(zio_wait(scn->scn_zio_root));
3407 scn->scn_zio_root = NULL;
3408
3409 if (err == EIO || err == ECKSUM) {
3410 err = 0;
3411 } else if (err != 0 && err != ERESTART) {
3412 zfs_panic_recover("error %u from "
3413 "traverse_dataset_destroyed()", err);
3414 }
3415
3416 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3417 /* finished; deactivate async destroy feature */
3418 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3419 ASSERT(!spa_feature_is_active(spa,
3420 SPA_FEATURE_ASYNC_DESTROY));
3421 VERIFY0(zap_remove(dp->dp_meta_objset,
3422 DMU_POOL_DIRECTORY_OBJECT,
3423 DMU_POOL_BPTREE_OBJ, tx));
3424 VERIFY0(bptree_free(dp->dp_meta_objset,
3425 dp->dp_bptree_obj, tx));
3426 dp->dp_bptree_obj = 0;
3427 scn->scn_async_destroying = B_FALSE;
3428 scn->scn_async_stalled = B_FALSE;
3429 } else {
3430 /*
3431 * If we didn't make progress, mark the async
3432 * destroy as stalled, so that we will not initiate
3433 * a spa_sync() on its behalf. Note that we only
3434 * check this if we are not finished, because if the
3435 * bptree had no blocks for us to visit, we can
3436 * finish without "making progress".
3437 */
3438 scn->scn_async_stalled =
3439 (scn->scn_visited_this_txg == 0);
3440 }
3441 }
3442 if (scn->scn_visited_this_txg) {
3443 zfs_dbgmsg("freed %llu blocks in %llums from "
3444 "free_bpobj/bptree on %s in txg %llu; err=%u",
3445 (longlong_t)scn->scn_visited_this_txg,
3446 (longlong_t)
3447 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3448 spa->spa_name, (longlong_t)tx->tx_txg, err);
3449 scn->scn_visited_this_txg = 0;
3450 scn->scn_dedup_frees_this_txg = 0;
3451
3452 /*
3453 * Write out changes to the DDT that may be required as a
3454 * result of the blocks freed. This ensures that the DDT
3455 * is clean when a scrub/resilver runs.
3456 */
3457 ddt_sync(spa, tx->tx_txg);
3458 }
3459 if (err != 0)
3460 return (err);
3461 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3462 zfs_free_leak_on_eio &&
3463 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3464 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3465 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3466 /*
3467 * We have finished background destroying, but there is still
3468 * some space left in the dp_free_dir. Transfer this leaked
3469 * space to the dp_leak_dir.
3470 */
3471 if (dp->dp_leak_dir == NULL) {
3472 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3473 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3474 LEAK_DIR_NAME, tx);
3475 VERIFY0(dsl_pool_open_special_dir(dp,
3476 LEAK_DIR_NAME, &dp->dp_leak_dir));
3477 rrw_exit(&dp->dp_config_rwlock, FTAG);
3478 }
3479 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3480 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3481 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3482 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3483 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3484 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3485 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3486 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3487 }
3488
3489 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3490 !spa_livelist_delete_check(spa)) {
3491 /* finished; verify that space accounting went to zero */
3492 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3493 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3494 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3495 }
3496
3497 spa_notify_waiters(spa);
3498
3499 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3500 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3501 DMU_POOL_OBSOLETE_BPOBJ));
3502 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3503 ASSERT(spa_feature_is_active(dp->dp_spa,
3504 SPA_FEATURE_OBSOLETE_COUNTS));
3505
3506 scn->scn_is_bptree = B_FALSE;
3507 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3508 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3509 dsl_scan_obsolete_block_cb, scn, tx);
3510 if (err != 0 && err != ERESTART)
3511 zfs_panic_recover("error %u from bpobj_iterate()", err);
3512
3513 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3514 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3515 }
3516 return (0);
3517 }
3518
3519 /*
3520 * This is the primary entry point for scans that is called from syncing
3521 * context. Scans must happen entirely during syncing context so that we
3522 * can guarantee that blocks we are currently scanning will not change out
3523 * from under us. While a scan is active, this function controls how quickly
3524 * transaction groups proceed, instead of the normal handling provided by
3525 * txg_sync_thread().
3526 */
3527 void
3528 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3529 {
3530 int err = 0;
3531 dsl_scan_t *scn = dp->dp_scan;
3532 spa_t *spa = dp->dp_spa;
3533 state_sync_type_t sync_type = SYNC_OPTIONAL;
3534
3535 if (spa->spa_resilver_deferred &&
3536 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3537 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3538
3539 /*
3540 * Check for scn_restart_txg before checking spa_load_state, so
3541 * that we can restart an old-style scan while the pool is being
3542 * imported (see dsl_scan_init). We also restart scans if there
3543 * is a deferred resilver and the user has manually disabled
3544 * deferred resilvers via the tunable.
3545 */
3546 if (dsl_scan_restarting(scn, tx) ||
3547 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3548 pool_scan_func_t func = POOL_SCAN_SCRUB;
3549 dsl_scan_done(scn, B_FALSE, tx);
3550 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3551 func = POOL_SCAN_RESILVER;
3552 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
3553 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
3554 dsl_scan_setup_sync(&func, tx);
3555 }
3556
3557 /*
3558 * Only process scans in sync pass 1.
3559 */
3560 if (spa_sync_pass(spa) > 1)
3561 return;
3562
3563 /*
3564 * If the spa is shutting down, then stop scanning. This will
3565 * ensure that the scan does not dirty any new data during the
3566 * shutdown phase.
3567 */
3568 if (spa_shutting_down(spa))
3569 return;
3570
3571 /*
3572 * If the scan is inactive due to a stalled async destroy, try again.
3573 */
3574 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3575 return;
3576
3577 /* reset scan statistics */
3578 scn->scn_visited_this_txg = 0;
3579 scn->scn_dedup_frees_this_txg = 0;
3580 scn->scn_holes_this_txg = 0;
3581 scn->scn_lt_min_this_txg = 0;
3582 scn->scn_gt_max_this_txg = 0;
3583 scn->scn_ddt_contained_this_txg = 0;
3584 scn->scn_objsets_visited_this_txg = 0;
3585 scn->scn_avg_seg_size_this_txg = 0;
3586 scn->scn_segs_this_txg = 0;
3587 scn->scn_avg_zio_size_this_txg = 0;
3588 scn->scn_zios_this_txg = 0;
3589 scn->scn_suspending = B_FALSE;
3590 scn->scn_sync_start_time = gethrtime();
3591 spa->spa_scrub_active = B_TRUE;
3592
3593 /*
3594 * First process the async destroys. If we suspend, don't do
3595 * any scrubbing or resilvering. This ensures that there are no
3596 * async destroys while we are scanning, so the scan code doesn't
3597 * have to worry about traversing it. It is also faster to free the
3598 * blocks than to scrub them.
3599 */
3600 err = dsl_process_async_destroys(dp, tx);
3601 if (err != 0)
3602 return;
3603
3604 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3605 return;
3606
3607 /*
3608 * Wait a few txgs after importing to begin scanning so that
3609 * we can get the pool imported quickly.
3610 */
3611 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3612 return;
3613
3614 /*
3615 * zfs_scan_suspend_progress can be set to disable scan progress.
3616 * We don't want to spin the txg_sync thread, so we add a delay
3617 * here to simulate the time spent doing a scan. This is mostly
3618 * useful for testing and debugging.
3619 */
3620 if (zfs_scan_suspend_progress) {
3621 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3622 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3623 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3624
3625 while (zfs_scan_suspend_progress &&
3626 !txg_sync_waiting(scn->scn_dp) &&
3627 !spa_shutting_down(scn->scn_dp->dp_spa) &&
3628 NSEC2MSEC(scan_time_ns) < mintime) {
3629 delay(hz);
3630 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3631 }
3632 return;
3633 }
3634
3635 /*
3636 * It is possible to switch from unsorted to sorted at any time,
3637 * but afterwards the scan will remain sorted unless reloaded from
3638 * a checkpoint after a reboot.
3639 */
3640 if (!zfs_scan_legacy) {
3641 scn->scn_is_sorted = B_TRUE;
3642 if (scn->scn_last_checkpoint == 0)
3643 scn->scn_last_checkpoint = ddi_get_lbolt();
3644 }
3645
3646 /*
3647 * For sorted scans, determine what kind of work we will be doing
3648 * this txg based on our memory limitations and whether or not we
3649 * need to perform a checkpoint.
3650 */
3651 if (scn->scn_is_sorted) {
3652 /*
3653 * If we are over our checkpoint interval, set scn_clearing
3654 * so that we can begin checkpointing immediately. The
3655 * checkpoint allows us to save a consistent bookmark
3656 * representing how much data we have scrubbed so far.
3657 * Otherwise, use the memory limit to determine if we should
3658 * scan for metadata or start issue scrub IOs. We accumulate
3659 * metadata until we hit our hard memory limit at which point
3660 * we issue scrub IOs until we are at our soft memory limit.
3661 */
3662 if (scn->scn_checkpointing ||
3663 ddi_get_lbolt() - scn->scn_last_checkpoint >
3664 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3665 if (!scn->scn_checkpointing)
3666 zfs_dbgmsg("begin scan checkpoint for %s",
3667 spa->spa_name);
3668
3669 scn->scn_checkpointing = B_TRUE;
3670 scn->scn_clearing = B_TRUE;
3671 } else {
3672 boolean_t should_clear = dsl_scan_should_clear(scn);
3673 if (should_clear && !scn->scn_clearing) {
3674 zfs_dbgmsg("begin scan clearing for %s",
3675 spa->spa_name);
3676 scn->scn_clearing = B_TRUE;
3677 } else if (!should_clear && scn->scn_clearing) {
3678 zfs_dbgmsg("finish scan clearing for %s",
3679 spa->spa_name);
3680 scn->scn_clearing = B_FALSE;
3681 }
3682 }
3683 } else {
3684 ASSERT0(scn->scn_checkpointing);
3685 ASSERT0(scn->scn_clearing);
3686 }
3687
3688 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3689 /* Need to scan metadata for more blocks to scrub */
3690 dsl_scan_phys_t *scnp = &scn->scn_phys;
3691 taskqid_t prefetch_tqid;
3692
3693 /*
3694 * Recalculate the max number of in-flight bytes for pool-wide
3695 * scanning operations (minimum 1MB). Limits for the issuing
3696 * phase are done per top-level vdev and are handled separately.
3697 */
3698 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
3699 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
3700
3701 if (scnp->scn_ddt_bookmark.ddb_class <=
3702 scnp->scn_ddt_class_max) {
3703 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3704 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3705 "ddt bm=%llu/%llu/%llu/%llx",
3706 spa->spa_name,
3707 (longlong_t)tx->tx_txg,
3708 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3709 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3710 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3711 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3712 } else {
3713 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3714 "bm=%llu/%llu/%llu/%llu",
3715 spa->spa_name,
3716 (longlong_t)tx->tx_txg,
3717 (longlong_t)scnp->scn_bookmark.zb_objset,
3718 (longlong_t)scnp->scn_bookmark.zb_object,
3719 (longlong_t)scnp->scn_bookmark.zb_level,
3720 (longlong_t)scnp->scn_bookmark.zb_blkid);
3721 }
3722
3723 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3724 NULL, ZIO_FLAG_CANFAIL);
3725
3726 scn->scn_prefetch_stop = B_FALSE;
3727 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3728 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3729 ASSERT(prefetch_tqid != TASKQID_INVALID);
3730
3731 dsl_pool_config_enter(dp, FTAG);
3732 dsl_scan_visit(scn, tx);
3733 dsl_pool_config_exit(dp, FTAG);
3734
3735 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3736 scn->scn_prefetch_stop = B_TRUE;
3737 cv_broadcast(&spa->spa_scrub_io_cv);
3738 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3739
3740 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3741 (void) zio_wait(scn->scn_zio_root);
3742 scn->scn_zio_root = NULL;
3743
3744 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
3745 "(%llu os's, %llu holes, %llu < mintxg, "
3746 "%llu in ddt, %llu > maxtxg)",
3747 (longlong_t)scn->scn_visited_this_txg,
3748 spa->spa_name,
3749 (longlong_t)NSEC2MSEC(gethrtime() -
3750 scn->scn_sync_start_time),
3751 (longlong_t)scn->scn_objsets_visited_this_txg,
3752 (longlong_t)scn->scn_holes_this_txg,
3753 (longlong_t)scn->scn_lt_min_this_txg,
3754 (longlong_t)scn->scn_ddt_contained_this_txg,
3755 (longlong_t)scn->scn_gt_max_this_txg);
3756
3757 if (!scn->scn_suspending) {
3758 ASSERT0(avl_numnodes(&scn->scn_queue));
3759 scn->scn_done_txg = tx->tx_txg + 1;
3760 if (scn->scn_is_sorted) {
3761 scn->scn_checkpointing = B_TRUE;
3762 scn->scn_clearing = B_TRUE;
3763 }
3764 zfs_dbgmsg("scan complete for %s txg %llu",
3765 spa->spa_name,
3766 (longlong_t)tx->tx_txg);
3767 }
3768 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3769 ASSERT(scn->scn_clearing);
3770
3771 /* need to issue scrubbing IOs from per-vdev queues */
3772 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3773 NULL, ZIO_FLAG_CANFAIL);
3774 scan_io_queues_run(scn);
3775 (void) zio_wait(scn->scn_zio_root);
3776 scn->scn_zio_root = NULL;
3777
3778 /* calculate and dprintf the current memory usage */
3779 (void) dsl_scan_should_clear(scn);
3780 dsl_scan_update_stats(scn);
3781
3782 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
3783 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
3784 (longlong_t)scn->scn_zios_this_txg,
3785 spa->spa_name,
3786 (longlong_t)scn->scn_segs_this_txg,
3787 (longlong_t)NSEC2MSEC(gethrtime() -
3788 scn->scn_sync_start_time),
3789 (longlong_t)scn->scn_avg_zio_size_this_txg,
3790 (longlong_t)scn->scn_avg_seg_size_this_txg);
3791 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3792 /* Finished with everything. Mark the scrub as complete */
3793 zfs_dbgmsg("scan issuing complete txg %llu for %s",
3794 (longlong_t)tx->tx_txg,
3795 spa->spa_name);
3796 ASSERT3U(scn->scn_done_txg, !=, 0);
3797 ASSERT0(spa->spa_scrub_inflight);
3798 ASSERT0(scn->scn_bytes_pending);
3799 dsl_scan_done(scn, B_TRUE, tx);
3800 sync_type = SYNC_MANDATORY;
3801 }
3802
3803 dsl_scan_sync_state(scn, tx, sync_type);
3804 }
3805
3806 static void
3807 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3808 {
3809 int i;
3810
3811 /*
3812 * Don't count embedded bp's, since we already did the work of
3813 * scanning these when we scanned the containing block.
3814 */
3815 if (BP_IS_EMBEDDED(bp))
3816 return;
3817
3818 /*
3819 * Update the spa's stats on how many bytes we have issued.
3820 * Sequential scrubs create a zio for each DVA of the bp. Each
3821 * of these will include all DVAs for repair purposes, but the
3822 * zio code will only try the first one unless there is an issue.
3823 * Therefore, we should only count the first DVA for these IOs.
3824 */
3825 if (scn->scn_is_sorted) {
3826 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3827 DVA_GET_ASIZE(&bp->blk_dva[0]));
3828 } else {
3829 spa_t *spa = scn->scn_dp->dp_spa;
3830
3831 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3832 atomic_add_64(&spa->spa_scan_pass_issued,
3833 DVA_GET_ASIZE(&bp->blk_dva[i]));
3834 }
3835 }
3836
3837 /*
3838 * If we resume after a reboot, zab will be NULL; don't record
3839 * incomplete stats in that case.
3840 */
3841 if (zab == NULL)
3842 return;
3843
3844 mutex_enter(&zab->zab_lock);
3845
3846 for (i = 0; i < 4; i++) {
3847 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3848 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3849
3850 if (t & DMU_OT_NEWTYPE)
3851 t = DMU_OT_OTHER;
3852 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3853 int equal;
3854
3855 zb->zb_count++;
3856 zb->zb_asize += BP_GET_ASIZE(bp);
3857 zb->zb_lsize += BP_GET_LSIZE(bp);
3858 zb->zb_psize += BP_GET_PSIZE(bp);
3859 zb->zb_gangs += BP_COUNT_GANG(bp);
3860
3861 switch (BP_GET_NDVAS(bp)) {
3862 case 2:
3863 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3864 DVA_GET_VDEV(&bp->blk_dva[1]))
3865 zb->zb_ditto_2_of_2_samevdev++;
3866 break;
3867 case 3:
3868 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3869 DVA_GET_VDEV(&bp->blk_dva[1])) +
3870 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3871 DVA_GET_VDEV(&bp->blk_dva[2])) +
3872 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3873 DVA_GET_VDEV(&bp->blk_dva[2]));
3874 if (equal == 1)
3875 zb->zb_ditto_2_of_3_samevdev++;
3876 else if (equal == 3)
3877 zb->zb_ditto_3_of_3_samevdev++;
3878 break;
3879 }
3880 }
3881
3882 mutex_exit(&zab->zab_lock);
3883 }
3884
3885 static void
3886 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3887 {
3888 avl_index_t idx;
3889 int64_t asize = SIO_GET_ASIZE(sio);
3890 dsl_scan_t *scn = queue->q_scn;
3891
3892 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3893
3894 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3895 /* block is already scheduled for reading */
3896 atomic_add_64(&scn->scn_bytes_pending, -asize);
3897 sio_free(sio);
3898 return;
3899 }
3900 avl_insert(&queue->q_sios_by_addr, sio, idx);
3901 queue->q_sio_memused += SIO_GET_MUSED(sio);
3902 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3903 }
3904
3905 /*
3906 * Given all the info we got from our metadata scanning process, we
3907 * construct a scan_io_t and insert it into the scan sorting queue. The
3908 * I/O must already be suitable for us to process. This is controlled
3909 * by dsl_scan_enqueue().
3910 */
3911 static void
3912 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3913 int zio_flags, const zbookmark_phys_t *zb)
3914 {
3915 dsl_scan_t *scn = queue->q_scn;
3916 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3917
3918 ASSERT0(BP_IS_GANG(bp));
3919 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3920
3921 bp2sio(bp, sio, dva_i);
3922 sio->sio_flags = zio_flags;
3923 sio->sio_zb = *zb;
3924
3925 /*
3926 * Increment the bytes pending counter now so that we can't
3927 * get an integer underflow in case the worker processes the
3928 * zio before we get to incrementing this counter.
3929 */
3930 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3931
3932 scan_io_queue_insert_impl(queue, sio);
3933 }
3934
3935 /*
3936 * Given a set of I/O parameters as discovered by the metadata traversal
3937 * process, attempts to place the I/O into the sorted queues (if allowed),
3938 * or immediately executes the I/O.
3939 */
3940 static void
3941 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3942 const zbookmark_phys_t *zb)
3943 {
3944 spa_t *spa = dp->dp_spa;
3945
3946 ASSERT(!BP_IS_EMBEDDED(bp));
3947
3948 /*
3949 * Gang blocks are hard to issue sequentially, so we just issue them
3950 * here immediately instead of queuing them.
3951 */
3952 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3953 scan_exec_io(dp, bp, zio_flags, zb, NULL);
3954 return;
3955 }
3956
3957 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3958 dva_t dva;
3959 vdev_t *vdev;
3960
3961 dva = bp->blk_dva[i];
3962 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3963 ASSERT(vdev != NULL);
3964
3965 mutex_enter(&vdev->vdev_scan_io_queue_lock);
3966 if (vdev->vdev_scan_io_queue == NULL)
3967 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3968 ASSERT(dp->dp_scan != NULL);
3969 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3970 i, zio_flags, zb);
3971 mutex_exit(&vdev->vdev_scan_io_queue_lock);
3972 }
3973 }
3974
3975 static int
3976 dsl_scan_scrub_cb(dsl_pool_t *dp,
3977 const blkptr_t *bp, const zbookmark_phys_t *zb)
3978 {
3979 dsl_scan_t *scn = dp->dp_scan;
3980 spa_t *spa = dp->dp_spa;
3981 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3982 size_t psize = BP_GET_PSIZE(bp);
3983 boolean_t needs_io = B_FALSE;
3984 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3985
3986
3987 if (phys_birth <= scn->scn_phys.scn_min_txg ||
3988 phys_birth >= scn->scn_phys.scn_max_txg) {
3989 count_block(scn, dp->dp_blkstats, bp);
3990 return (0);
3991 }
3992
3993 /* Embedded BP's have phys_birth==0, so we reject them above. */
3994 ASSERT(!BP_IS_EMBEDDED(bp));
3995
3996 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3997 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3998 zio_flags |= ZIO_FLAG_SCRUB;
3999 needs_io = B_TRUE;
4000 } else {
4001 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4002 zio_flags |= ZIO_FLAG_RESILVER;
4003 needs_io = B_FALSE;
4004 }
4005
4006 /* If it's an intent log block, failure is expected. */
4007 if (zb->zb_level == ZB_ZIL_LEVEL)
4008 zio_flags |= ZIO_FLAG_SPECULATIVE;
4009
4010 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4011 const dva_t *dva = &bp->blk_dva[d];
4012
4013 /*
4014 * Keep track of how much data we've examined so that
4015 * zpool(8) status can make useful progress reports.
4016 */
4017 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
4018 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
4019
4020 /* if it's a resilver, this may not be in the target range */
4021 if (!needs_io)
4022 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4023 phys_birth);
4024 }
4025
4026 if (needs_io && !zfs_no_scrub_io) {
4027 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4028 } else {
4029 count_block(scn, dp->dp_blkstats, bp);
4030 }
4031
4032 /* do not relocate this block */
4033 return (0);
4034 }
4035
4036 static void
4037 dsl_scan_scrub_done(zio_t *zio)
4038 {
4039 spa_t *spa = zio->io_spa;
4040 blkptr_t *bp = zio->io_bp;
4041 dsl_scan_io_queue_t *queue = zio->io_private;
4042
4043 abd_free(zio->io_abd);
4044
4045 if (queue == NULL) {
4046 mutex_enter(&spa->spa_scrub_lock);
4047 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4048 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4049 cv_broadcast(&spa->spa_scrub_io_cv);
4050 mutex_exit(&spa->spa_scrub_lock);
4051 } else {
4052 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4053 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4054 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4055 cv_broadcast(&queue->q_zio_cv);
4056 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4057 }
4058
4059 if (zio->io_error && (zio->io_error != ECKSUM ||
4060 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4061 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
4062 }
4063 }
4064
4065 /*
4066 * Given a scanning zio's information, executes the zio. The zio need
4067 * not necessarily be only sortable, this function simply executes the
4068 * zio, no matter what it is. The optional queue argument allows the
4069 * caller to specify that they want per top level vdev IO rate limiting
4070 * instead of the legacy global limiting.
4071 */
4072 static void
4073 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4074 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4075 {
4076 spa_t *spa = dp->dp_spa;
4077 dsl_scan_t *scn = dp->dp_scan;
4078 size_t size = BP_GET_PSIZE(bp);
4079 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4080
4081 if (queue == NULL) {
4082 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4083 mutex_enter(&spa->spa_scrub_lock);
4084 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4085 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4086 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4087 mutex_exit(&spa->spa_scrub_lock);
4088 } else {
4089 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4090
4091 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4092 mutex_enter(q_lock);
4093 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4094 cv_wait(&queue->q_zio_cv, q_lock);
4095 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4096 mutex_exit(q_lock);
4097 }
4098
4099 count_block(scn, dp->dp_blkstats, bp);
4100 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
4101 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4102 }
4103
4104 /*
4105 * This is the primary extent sorting algorithm. We balance two parameters:
4106 * 1) how many bytes of I/O are in an extent
4107 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4108 * Since we allow extents to have gaps between their constituent I/Os, it's
4109 * possible to have a fairly large extent that contains the same amount of
4110 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4111 * The algorithm sorts based on a score calculated from the extent's size,
4112 * the relative fill volume (in %) and a "fill weight" parameter that controls
4113 * the split between whether we prefer larger extents or more well populated
4114 * extents:
4115 *
4116 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4117 *
4118 * Example:
4119 * 1) assume extsz = 64 MiB
4120 * 2) assume fill = 32 MiB (extent is half full)
4121 * 3) assume fill_weight = 3
4122 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4123 * SCORE = 32M + (50 * 3 * 32M) / 100
4124 * SCORE = 32M + (4800M / 100)
4125 * SCORE = 32M + 48M
4126 * ^ ^
4127 * | +--- final total relative fill-based score
4128 * +--------- final total fill-based score
4129 * SCORE = 80M
4130 *
4131 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4132 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4133 * Note that as an optimization, we replace multiplication and division by
4134 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4135 */
4136 static int
4137 ext_size_compare(const void *x, const void *y)
4138 {
4139 const range_seg_gap_t *rsa = x, *rsb = y;
4140
4141 uint64_t sa = rsa->rs_end - rsa->rs_start;
4142 uint64_t sb = rsb->rs_end - rsb->rs_start;
4143 uint64_t score_a, score_b;
4144
4145 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
4146 fill_weight * rsa->rs_fill) >> 7);
4147 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
4148 fill_weight * rsb->rs_fill) >> 7);
4149
4150 if (score_a > score_b)
4151 return (-1);
4152 if (score_a == score_b) {
4153 if (rsa->rs_start < rsb->rs_start)
4154 return (-1);
4155 if (rsa->rs_start == rsb->rs_start)
4156 return (0);
4157 return (1);
4158 }
4159 return (1);
4160 }
4161
4162 /*
4163 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4164 * based on LBA-order (from lowest to highest).
4165 */
4166 static int
4167 sio_addr_compare(const void *x, const void *y)
4168 {
4169 const scan_io_t *a = x, *b = y;
4170
4171 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4172 }
4173
4174 /* IO queues are created on demand when they are needed. */
4175 static dsl_scan_io_queue_t *
4176 scan_io_queue_create(vdev_t *vd)
4177 {
4178 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4179 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4180
4181 q->q_scn = scn;
4182 q->q_vd = vd;
4183 q->q_sio_memused = 0;
4184 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4185 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4186 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4187 avl_create(&q->q_sios_by_addr, sio_addr_compare,
4188 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4189
4190 return (q);
4191 }
4192
4193 /*
4194 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4195 * No further execution of I/O occurs, anything pending in the queue is
4196 * simply freed without being executed.
4197 */
4198 void
4199 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4200 {
4201 dsl_scan_t *scn = queue->q_scn;
4202 scan_io_t *sio;
4203 void *cookie = NULL;
4204 int64_t bytes_dequeued = 0;
4205
4206 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4207
4208 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4209 NULL) {
4210 ASSERT(range_tree_contains(queue->q_exts_by_addr,
4211 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4212 bytes_dequeued += SIO_GET_ASIZE(sio);
4213 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4214 sio_free(sio);
4215 }
4216
4217 ASSERT0(queue->q_sio_memused);
4218 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4219 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4220 range_tree_destroy(queue->q_exts_by_addr);
4221 avl_destroy(&queue->q_sios_by_addr);
4222 cv_destroy(&queue->q_zio_cv);
4223
4224 kmem_free(queue, sizeof (*queue));
4225 }
4226
4227 /*
4228 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4229 * called on behalf of vdev_top_transfer when creating or destroying
4230 * a mirror vdev due to zpool attach/detach.
4231 */
4232 void
4233 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4234 {
4235 mutex_enter(&svd->vdev_scan_io_queue_lock);
4236 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4237
4238 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4239 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4240 svd->vdev_scan_io_queue = NULL;
4241 if (tvd->vdev_scan_io_queue != NULL)
4242 tvd->vdev_scan_io_queue->q_vd = tvd;
4243
4244 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4245 mutex_exit(&svd->vdev_scan_io_queue_lock);
4246 }
4247
4248 static void
4249 scan_io_queues_destroy(dsl_scan_t *scn)
4250 {
4251 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4252
4253 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4254 vdev_t *tvd = rvd->vdev_child[i];
4255
4256 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4257 if (tvd->vdev_scan_io_queue != NULL)
4258 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4259 tvd->vdev_scan_io_queue = NULL;
4260 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4261 }
4262 }
4263
4264 static void
4265 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4266 {
4267 dsl_pool_t *dp = spa->spa_dsl_pool;
4268 dsl_scan_t *scn = dp->dp_scan;
4269 vdev_t *vdev;
4270 kmutex_t *q_lock;
4271 dsl_scan_io_queue_t *queue;
4272 scan_io_t *srch_sio, *sio;
4273 avl_index_t idx;
4274 uint64_t start, size;
4275
4276 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4277 ASSERT(vdev != NULL);
4278 q_lock = &vdev->vdev_scan_io_queue_lock;
4279 queue = vdev->vdev_scan_io_queue;
4280
4281 mutex_enter(q_lock);
4282 if (queue == NULL) {
4283 mutex_exit(q_lock);
4284 return;
4285 }
4286
4287 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4288 bp2sio(bp, srch_sio, dva_i);
4289 start = SIO_GET_OFFSET(srch_sio);
4290 size = SIO_GET_ASIZE(srch_sio);
4291
4292 /*
4293 * We can find the zio in two states:
4294 * 1) Cold, just sitting in the queue of zio's to be issued at
4295 * some point in the future. In this case, all we do is
4296 * remove the zio from the q_sios_by_addr tree, decrement
4297 * its data volume from the containing range_seg_t and
4298 * resort the q_exts_by_size tree to reflect that the
4299 * range_seg_t has lost some of its 'fill'. We don't shorten
4300 * the range_seg_t - this is usually rare enough not to be
4301 * worth the extra hassle of trying keep track of precise
4302 * extent boundaries.
4303 * 2) Hot, where the zio is currently in-flight in
4304 * dsl_scan_issue_ios. In this case, we can't simply
4305 * reach in and stop the in-flight zio's, so we instead
4306 * block the caller. Eventually, dsl_scan_issue_ios will
4307 * be done with issuing the zio's it gathered and will
4308 * signal us.
4309 */
4310 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4311 sio_free(srch_sio);
4312
4313 if (sio != NULL) {
4314 int64_t asize = SIO_GET_ASIZE(sio);
4315 blkptr_t tmpbp;
4316
4317 /* Got it while it was cold in the queue */
4318 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4319 ASSERT3U(size, ==, asize);
4320 avl_remove(&queue->q_sios_by_addr, sio);
4321 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4322
4323 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4324 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4325
4326 /*
4327 * We only update scn_bytes_pending in the cold path,
4328 * otherwise it will already have been accounted for as
4329 * part of the zio's execution.
4330 */
4331 atomic_add_64(&scn->scn_bytes_pending, -asize);
4332
4333 /* count the block as though we issued it */
4334 sio2bp(sio, &tmpbp);
4335 count_block(scn, dp->dp_blkstats, &tmpbp);
4336
4337 sio_free(sio);
4338 }
4339 mutex_exit(q_lock);
4340 }
4341
4342 /*
4343 * Callback invoked when a zio_free() zio is executing. This needs to be
4344 * intercepted to prevent the zio from deallocating a particular portion
4345 * of disk space and it then getting reallocated and written to, while we
4346 * still have it queued up for processing.
4347 */
4348 void
4349 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4350 {
4351 dsl_pool_t *dp = spa->spa_dsl_pool;
4352 dsl_scan_t *scn = dp->dp_scan;
4353
4354 ASSERT(!BP_IS_EMBEDDED(bp));
4355 ASSERT(scn != NULL);
4356 if (!dsl_scan_is_running(scn))
4357 return;
4358
4359 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4360 dsl_scan_freed_dva(spa, bp, i);
4361 }
4362
4363 /*
4364 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4365 * not started, start it. Otherwise, only restart if max txg in DTL range is
4366 * greater than the max txg in the current scan. If the DTL max is less than
4367 * the scan max, then the vdev has not missed any new data since the resilver
4368 * started, so a restart is not needed.
4369 */
4370 void
4371 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4372 {
4373 uint64_t min, max;
4374
4375 if (!vdev_resilver_needed(vd, &min, &max))
4376 return;
4377
4378 if (!dsl_scan_resilvering(dp)) {
4379 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4380 return;
4381 }
4382
4383 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4384 return;
4385
4386 /* restart is needed, check if it can be deferred */
4387 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4388 vdev_defer_resilver(vd);
4389 else
4390 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4391 }
4392
4393 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
4394 "Max bytes in flight per leaf vdev for scrubs and resilvers");
4395
4396 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
4397 "Min millisecs to scrub per txg");
4398
4399 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
4400 "Min millisecs to obsolete per txg");
4401
4402 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
4403 "Min millisecs to free per txg");
4404
4405 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
4406 "Min millisecs to resilver per txg");
4407
4408 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
4409 "Set to prevent scans from progressing");
4410
4411 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
4412 "Set to disable scrub I/O");
4413
4414 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
4415 "Set to disable scrub prefetching");
4416
4417 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
4418 "Max number of blocks freed in one txg");
4419
4420 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
4421 "Max number of dedup blocks freed in one txg");
4422
4423 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
4424 "Enable processing of the free_bpobj");
4425
4426 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
4427 "Fraction of RAM for scan hard limit");
4428
4429 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
4430 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4431
4432 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
4433 "Scrub using legacy non-sequential method");
4434
4435 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
4436 "Scan progress on-disk checkpointing interval");
4437
4438 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
4439 "Max gap in bytes between sequential scrub / resilver I/Os");
4440
4441 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
4442 "Fraction of hard limit used as soft limit");
4443
4444 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
4445 "Tunable to attempt to reduce lock contention");
4446
4447 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
4448 "Tunable to adjust bias towards more filled segments during scans");
4449
4450 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
4451 "Process all resilvers immediately");