]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_scan.c
Teach zpool scrub to scrub only blocks in error log
[mirror_zfs.git] / module / zfs / dsl_scan.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
28 */
29
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61
62 /*
63 * Grand theory statement on scan queue sorting
64 *
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
73 *
74 * Queue management:
75 *
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
85 *
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
95 *
96 * Implementation Notes
97 *
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104 * algorithm.
105 *
106 * Backwards compatibility
107 *
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
116 */
117
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119 const zbookmark_phys_t *);
120
121 static scan_cb_t dsl_scan_scrub_cb;
122
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128 uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137
138 /*
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
144 */
145 static uint_t zfs_scan_report_txgs = 0;
146
147 /*
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
151 * block.
152 */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154
155 /*
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
162 */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164
165 static uint_t zfs_scan_issue_strategy = 0;
166
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170
171 /*
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
175 */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
182
183
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214
215 /*
216 * We wait a few txgs after importing a pool to begin scanning so that
217 * the import / mounting code isn't held up by scrub / resilver IO.
218 * Unfortunately, it is a bit difficult to determine exactly how long
219 * this will take since userspace will trigger fs mounts asynchronously
220 * and the kernel will create zvol minors asynchronously. As a result,
221 * the value provided here is a bit arbitrary, but represents a
222 * reasonable estimate of how many txgs it will take to finish fully
223 * importing a pool
224 */
225 #define SCAN_IMPORT_WAIT_TXGS 5
226
227 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230
231 /*
232 * Enable/disable the processing of the free_bpobj object.
233 */
234 static int zfs_free_bpobj_enabled = 1;
235
236 /* Error blocks to be scrubbed in one txg. */
237 unsigned long zfs_scrub_error_blocks_per_txg = 1 << 12;
238
239 /* the order has to match pool_scan_type */
240 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
241 NULL,
242 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
243 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
244 };
245
246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
247 typedef struct {
248 uint64_t sds_dsobj;
249 uint64_t sds_txg;
250 avl_node_t sds_node;
251 } scan_ds_t;
252
253 /*
254 * This controls what conditions are placed on dsl_scan_sync_state():
255 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258 * write out the scn_phys_cached version.
259 * See dsl_scan_sync_state for details.
260 */
261 typedef enum {
262 SYNC_OPTIONAL,
263 SYNC_MANDATORY,
264 SYNC_CACHED
265 } state_sync_type_t;
266
267 /*
268 * This struct represents the minimum information needed to reconstruct a
269 * zio for sequential scanning. This is useful because many of these will
270 * accumulate in the sequential IO queues before being issued, so saving
271 * memory matters here.
272 */
273 typedef struct scan_io {
274 /* fields from blkptr_t */
275 uint64_t sio_blk_prop;
276 uint64_t sio_phys_birth;
277 uint64_t sio_birth;
278 zio_cksum_t sio_cksum;
279 uint32_t sio_nr_dvas;
280
281 /* fields from zio_t */
282 uint32_t sio_flags;
283 zbookmark_phys_t sio_zb;
284
285 /* members for queue sorting */
286 union {
287 avl_node_t sio_addr_node; /* link into issuing queue */
288 list_node_t sio_list_node; /* link for issuing to disk */
289 } sio_nodes;
290
291 /*
292 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293 * depending on how many were in the original bp. Only the
294 * first DVA is really used for sorting and issuing purposes.
295 * The other DVAs (if provided) simply exist so that the zio
296 * layer can find additional copies to repair from in the
297 * event of an error. This array must go at the end of the
298 * struct to allow this for the variable number of elements.
299 */
300 dva_t sio_dva[];
301 } scan_io_t;
302
303 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
306 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
307 #define SIO_GET_END_OFFSET(sio) \
308 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309 #define SIO_GET_MUSED(sio) \
310 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
311
312 struct dsl_scan_io_queue {
313 dsl_scan_t *q_scn; /* associated dsl_scan_t */
314 vdev_t *q_vd; /* top-level vdev that this queue represents */
315 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
316
317 /* trees used for sorting I/Os and extents of I/Os */
318 range_tree_t *q_exts_by_addr;
319 zfs_btree_t q_exts_by_size;
320 avl_tree_t q_sios_by_addr;
321 uint64_t q_sio_memused;
322 uint64_t q_last_ext_addr;
323
324 /* members for zio rate limiting */
325 uint64_t q_maxinflight_bytes;
326 uint64_t q_inflight_bytes;
327 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
328
329 /* per txg statistics */
330 uint64_t q_total_seg_size_this_txg;
331 uint64_t q_segs_this_txg;
332 uint64_t q_total_zio_size_this_txg;
333 uint64_t q_zios_this_txg;
334 };
335
336 /* private data for dsl_scan_prefetch_cb() */
337 typedef struct scan_prefetch_ctx {
338 zfs_refcount_t spc_refcnt; /* refcount for memory management */
339 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
340 boolean_t spc_root; /* is this prefetch for an objset? */
341 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
342 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
343 } scan_prefetch_ctx_t;
344
345 /* private data for dsl_scan_prefetch() */
346 typedef struct scan_prefetch_issue_ctx {
347 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
348 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
349 blkptr_t spic_bp; /* bp to prefetch */
350 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
351 } scan_prefetch_issue_ctx_t;
352
353 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
354 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
356 scan_io_t *sio);
357
358 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
359 static void scan_io_queues_destroy(dsl_scan_t *scn);
360
361 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
362
363 /* sio->sio_nr_dvas must be set so we know which cache to free from */
364 static void
365 sio_free(scan_io_t *sio)
366 {
367 ASSERT3U(sio->sio_nr_dvas, >, 0);
368 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
369
370 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
371 }
372
373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
374 static scan_io_t *
375 sio_alloc(unsigned short nr_dvas)
376 {
377 ASSERT3U(nr_dvas, >, 0);
378 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
379
380 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
381 }
382
383 void
384 scan_init(void)
385 {
386 /*
387 * This is used in ext_size_compare() to weight segments
388 * based on how sparse they are. This cannot be changed
389 * mid-scan and the tree comparison functions don't currently
390 * have a mechanism for passing additional context to the
391 * compare functions. Thus we store this value globally and
392 * we only allow it to be set at module initialization time
393 */
394 fill_weight = zfs_scan_fill_weight;
395
396 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
397 char name[36];
398
399 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
400 sio_cache[i] = kmem_cache_create(name,
401 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
402 0, NULL, NULL, NULL, NULL, NULL, 0);
403 }
404 }
405
406 void
407 scan_fini(void)
408 {
409 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
410 kmem_cache_destroy(sio_cache[i]);
411 }
412 }
413
414 static inline boolean_t
415 dsl_scan_is_running(const dsl_scan_t *scn)
416 {
417 return (scn->scn_phys.scn_state == DSS_SCANNING);
418 }
419
420 boolean_t
421 dsl_scan_resilvering(dsl_pool_t *dp)
422 {
423 return (dsl_scan_is_running(dp->dp_scan) &&
424 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
425 }
426
427 static inline void
428 sio2bp(const scan_io_t *sio, blkptr_t *bp)
429 {
430 memset(bp, 0, sizeof (*bp));
431 bp->blk_prop = sio->sio_blk_prop;
432 bp->blk_phys_birth = sio->sio_phys_birth;
433 bp->blk_birth = sio->sio_birth;
434 bp->blk_fill = 1; /* we always only work with data pointers */
435 bp->blk_cksum = sio->sio_cksum;
436
437 ASSERT3U(sio->sio_nr_dvas, >, 0);
438 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
439
440 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
441 }
442
443 static inline void
444 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
445 {
446 sio->sio_blk_prop = bp->blk_prop;
447 sio->sio_phys_birth = bp->blk_phys_birth;
448 sio->sio_birth = bp->blk_birth;
449 sio->sio_cksum = bp->blk_cksum;
450 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
451
452 /*
453 * Copy the DVAs to the sio. We need all copies of the block so
454 * that the self healing code can use the alternate copies if the
455 * first is corrupted. We want the DVA at index dva_i to be first
456 * in the sio since this is the primary one that we want to issue.
457 */
458 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
459 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
460 }
461 }
462
463 int
464 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
465 {
466 int err;
467 dsl_scan_t *scn;
468 spa_t *spa = dp->dp_spa;
469 uint64_t f;
470
471 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
472 scn->scn_dp = dp;
473
474 /*
475 * It's possible that we're resuming a scan after a reboot so
476 * make sure that the scan_async_destroying flag is initialized
477 * appropriately.
478 */
479 ASSERT(!scn->scn_async_destroying);
480 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
481 SPA_FEATURE_ASYNC_DESTROY);
482
483 /*
484 * Calculate the max number of in-flight bytes for pool-wide
485 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486 * Limits for the issuing phase are done per top-level vdev and
487 * are handled separately.
488 */
489 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
490 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
491
492 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
493 offsetof(scan_ds_t, sds_node));
494 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
495 sizeof (scan_prefetch_issue_ctx_t),
496 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
497
498 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
499 "scrub_func", sizeof (uint64_t), 1, &f);
500 if (err == 0) {
501 /*
502 * There was an old-style scrub in progress. Restart a
503 * new-style scrub from the beginning.
504 */
505 scn->scn_restart_txg = txg;
506 zfs_dbgmsg("old-style scrub was in progress for %s; "
507 "restarting new-style scrub in txg %llu",
508 spa->spa_name,
509 (longlong_t)scn->scn_restart_txg);
510
511 /*
512 * Load the queue obj from the old location so that it
513 * can be freed by dsl_scan_done().
514 */
515 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
516 "scrub_queue", sizeof (uint64_t), 1,
517 &scn->scn_phys.scn_queue_obj);
518 } else {
519 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
520 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
521 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
522
523 if (err != 0 && err != ENOENT)
524 return (err);
525
526 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
528 &scn->scn_phys);
529
530 /*
531 * Detect if the pool contains the signature of #2094. If it
532 * does properly update the scn->scn_phys structure and notify
533 * the administrator by setting an errata for the pool.
534 */
535 if (err == EOVERFLOW) {
536 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
537 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
538 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
539 (23 * sizeof (uint64_t)));
540
541 err = zap_lookup(dp->dp_meta_objset,
542 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
543 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
544 if (err == 0) {
545 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
546
547 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
548 scn->scn_async_destroying) {
549 spa->spa_errata =
550 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
551 return (EOVERFLOW);
552 }
553
554 memcpy(&scn->scn_phys, zaptmp,
555 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
556 scn->scn_phys.scn_flags = overflow;
557
558 /* Required scrub already in progress. */
559 if (scn->scn_phys.scn_state == DSS_FINISHED ||
560 scn->scn_phys.scn_state == DSS_CANCELED)
561 spa->spa_errata =
562 ZPOOL_ERRATA_ZOL_2094_SCRUB;
563 }
564 }
565
566 if (err == ENOENT)
567 return (0);
568 else if (err)
569 return (err);
570
571 /*
572 * We might be restarting after a reboot, so jump the issued
573 * counter to how far we've scanned. We know we're consistent
574 * up to here.
575 */
576 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
577
578 if (dsl_scan_is_running(scn) &&
579 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
580 /*
581 * A new-type scrub was in progress on an old
582 * pool, and the pool was accessed by old
583 * software. Restart from the beginning, since
584 * the old software may have changed the pool in
585 * the meantime.
586 */
587 scn->scn_restart_txg = txg;
588 zfs_dbgmsg("new-style scrub for %s was modified "
589 "by old software; restarting in txg %llu",
590 spa->spa_name,
591 (longlong_t)scn->scn_restart_txg);
592 } else if (dsl_scan_resilvering(dp)) {
593 /*
594 * If a resilver is in progress and there are already
595 * errors, restart it instead of finishing this scan and
596 * then restarting it. If there haven't been any errors
597 * then remember that the incore DTL is valid.
598 */
599 if (scn->scn_phys.scn_errors > 0) {
600 scn->scn_restart_txg = txg;
601 zfs_dbgmsg("resilver can't excise DTL_MISSING "
602 "when finished; restarting on %s in txg "
603 "%llu",
604 spa->spa_name,
605 (u_longlong_t)scn->scn_restart_txg);
606 } else {
607 /* it's safe to excise DTL when finished */
608 spa->spa_scrub_started = B_TRUE;
609 }
610 }
611 }
612
613 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
614
615 /* reload the queue into the in-core state */
616 if (scn->scn_phys.scn_queue_obj != 0) {
617 zap_cursor_t zc;
618 zap_attribute_t za;
619
620 for (zap_cursor_init(&zc, dp->dp_meta_objset,
621 scn->scn_phys.scn_queue_obj);
622 zap_cursor_retrieve(&zc, &za) == 0;
623 (void) zap_cursor_advance(&zc)) {
624 scan_ds_queue_insert(scn,
625 zfs_strtonum(za.za_name, NULL),
626 za.za_first_integer);
627 }
628 zap_cursor_fini(&zc);
629 }
630
631 spa_scan_stat_init(spa);
632 vdev_scan_stat_init(spa->spa_root_vdev);
633
634 return (0);
635 }
636
637 void
638 dsl_scan_fini(dsl_pool_t *dp)
639 {
640 if (dp->dp_scan != NULL) {
641 dsl_scan_t *scn = dp->dp_scan;
642
643 if (scn->scn_taskq != NULL)
644 taskq_destroy(scn->scn_taskq);
645
646 scan_ds_queue_clear(scn);
647 avl_destroy(&scn->scn_queue);
648 scan_ds_prefetch_queue_clear(scn);
649 avl_destroy(&scn->scn_prefetch_queue);
650
651 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
652 dp->dp_scan = NULL;
653 }
654 }
655
656 static boolean_t
657 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
658 {
659 return (scn->scn_restart_txg != 0 &&
660 scn->scn_restart_txg <= tx->tx_txg);
661 }
662
663 boolean_t
664 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
665 {
666 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
667 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
668 }
669
670 boolean_t
671 dsl_scan_scrubbing(const dsl_pool_t *dp)
672 {
673 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
674
675 return (scn_phys->scn_state == DSS_SCANNING &&
676 scn_phys->scn_func == POOL_SCAN_SCRUB);
677 }
678
679 boolean_t
680 dsl_errorscrubbing(const dsl_pool_t *dp)
681 {
682 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
683
684 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
685 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
686 }
687
688 boolean_t
689 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
690 {
691 return (dsl_errorscrubbing(scn->scn_dp) &&
692 scn->errorscrub_phys.dep_paused_flags);
693 }
694
695 boolean_t
696 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
697 {
698 return (dsl_scan_scrubbing(scn->scn_dp) &&
699 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
700 }
701
702 static void
703 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
704 {
705 scn->errorscrub_phys.dep_cursor =
706 zap_cursor_serialize(&scn->errorscrub_cursor);
707
708 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
709 DMU_POOL_DIRECTORY_OBJECT,
710 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
711 &scn->errorscrub_phys, tx));
712 }
713
714 static void
715 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
716 {
717 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
718 pool_scan_func_t *funcp = arg;
719 dsl_pool_t *dp = scn->scn_dp;
720 spa_t *spa = dp->dp_spa;
721
722 ASSERT(!dsl_scan_is_running(scn));
723 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
724 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
725
726 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
727 scn->errorscrub_phys.dep_func = *funcp;
728 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
729 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
730 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
731 scn->errorscrub_phys.dep_examined = 0;
732 scn->errorscrub_phys.dep_errors = 0;
733 scn->errorscrub_phys.dep_cursor = 0;
734 zap_cursor_init_serialized(&scn->errorscrub_cursor,
735 spa->spa_meta_objset, spa->spa_errlog_last,
736 scn->errorscrub_phys.dep_cursor);
737
738 vdev_config_dirty(spa->spa_root_vdev);
739 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
740
741 dsl_errorscrub_sync_state(scn, tx);
742
743 spa_history_log_internal(spa, "error scrub setup", tx,
744 "func=%u mintxg=%u maxtxg=%llu",
745 *funcp, 0, (u_longlong_t)tx->tx_txg);
746 }
747
748 static int
749 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
750 {
751 (void) arg;
752 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
753
754 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
755 return (SET_ERROR(EBUSY));
756 }
757
758 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
759 return (ECANCELED);
760 }
761 return (0);
762 }
763
764 /*
765 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
766 * Because we can be running in the block sorting algorithm, we do not always
767 * want to write out the record, only when it is "safe" to do so. This safety
768 * condition is achieved by making sure that the sorting queues are empty
769 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
770 * is inconsistent with how much actual scanning progress has been made. The
771 * kind of sync to be performed is specified by the sync_type argument. If the
772 * sync is optional, we only sync if the queues are empty. If the sync is
773 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
774 * third possible state is a "cached" sync. This is done in response to:
775 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
776 * destroyed, so we wouldn't be able to restart scanning from it.
777 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
778 * superseded by a newer snapshot.
779 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
780 * swapped with its clone.
781 * In all cases, a cached sync simply rewrites the last record we've written,
782 * just slightly modified. For the modifications that are performed to the
783 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
784 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
785 */
786 static void
787 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
788 {
789 int i;
790 spa_t *spa = scn->scn_dp->dp_spa;
791
792 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
793 if (scn->scn_queues_pending == 0) {
794 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
795 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
796 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
797
798 if (q == NULL)
799 continue;
800
801 mutex_enter(&vd->vdev_scan_io_queue_lock);
802 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
803 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
804 NULL);
805 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
806 mutex_exit(&vd->vdev_scan_io_queue_lock);
807 }
808
809 if (scn->scn_phys.scn_queue_obj != 0)
810 scan_ds_queue_sync(scn, tx);
811 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
812 DMU_POOL_DIRECTORY_OBJECT,
813 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
814 &scn->scn_phys, tx));
815 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
816 sizeof (scn->scn_phys));
817
818 if (scn->scn_checkpointing)
819 zfs_dbgmsg("finish scan checkpoint for %s",
820 spa->spa_name);
821
822 scn->scn_checkpointing = B_FALSE;
823 scn->scn_last_checkpoint = ddi_get_lbolt();
824 } else if (sync_type == SYNC_CACHED) {
825 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
826 DMU_POOL_DIRECTORY_OBJECT,
827 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
828 &scn->scn_phys_cached, tx));
829 }
830 }
831
832 int
833 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
834 {
835 (void) arg;
836 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
837 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
838
839 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
840 dsl_errorscrubbing(scn->scn_dp))
841 return (SET_ERROR(EBUSY));
842
843 return (0);
844 }
845
846 void
847 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
848 {
849 (void) arg;
850 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
851 pool_scan_func_t *funcp = arg;
852 dmu_object_type_t ot = 0;
853 dsl_pool_t *dp = scn->scn_dp;
854 spa_t *spa = dp->dp_spa;
855
856 ASSERT(!dsl_scan_is_running(scn));
857 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
858 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
859
860 /*
861 * If we are starting a fresh scrub, we erase the error scrub
862 * information from disk.
863 */
864 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
865 dsl_errorscrub_sync_state(scn, tx);
866
867 scn->scn_phys.scn_func = *funcp;
868 scn->scn_phys.scn_state = DSS_SCANNING;
869 scn->scn_phys.scn_min_txg = 0;
870 scn->scn_phys.scn_max_txg = tx->tx_txg;
871 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
872 scn->scn_phys.scn_start_time = gethrestime_sec();
873 scn->scn_phys.scn_errors = 0;
874 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
875 scn->scn_issued_before_pass = 0;
876 scn->scn_restart_txg = 0;
877 scn->scn_done_txg = 0;
878 scn->scn_last_checkpoint = 0;
879 scn->scn_checkpointing = B_FALSE;
880 spa_scan_stat_init(spa);
881 vdev_scan_stat_init(spa->spa_root_vdev);
882
883 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
884 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
885
886 /* rewrite all disk labels */
887 vdev_config_dirty(spa->spa_root_vdev);
888
889 if (vdev_resilver_needed(spa->spa_root_vdev,
890 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
891 nvlist_t *aux = fnvlist_alloc();
892 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
893 "healing");
894 spa_event_notify(spa, NULL, aux,
895 ESC_ZFS_RESILVER_START);
896 nvlist_free(aux);
897 } else {
898 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
899 }
900
901 spa->spa_scrub_started = B_TRUE;
902 /*
903 * If this is an incremental scrub, limit the DDT scrub phase
904 * to just the auto-ditto class (for correctness); the rest
905 * of the scrub should go faster using top-down pruning.
906 */
907 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
908 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
909
910 /*
911 * When starting a resilver clear any existing rebuild state.
912 * This is required to prevent stale rebuild status from
913 * being reported when a rebuild is run, then a resilver and
914 * finally a scrub. In which case only the scrub status
915 * should be reported by 'zpool status'.
916 */
917 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
918 vdev_t *rvd = spa->spa_root_vdev;
919 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
920 vdev_t *vd = rvd->vdev_child[i];
921 vdev_rebuild_clear_sync(
922 (void *)(uintptr_t)vd->vdev_id, tx);
923 }
924 }
925 }
926
927 /* back to the generic stuff */
928
929 if (zfs_scan_blkstats) {
930 if (dp->dp_blkstats == NULL) {
931 dp->dp_blkstats =
932 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
933 }
934 memset(&dp->dp_blkstats->zab_type, 0,
935 sizeof (dp->dp_blkstats->zab_type));
936 } else {
937 if (dp->dp_blkstats) {
938 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
939 dp->dp_blkstats = NULL;
940 }
941 }
942
943 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
944 ot = DMU_OT_ZAP_OTHER;
945
946 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
947 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
948
949 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
950
951 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
952
953 spa_history_log_internal(spa, "scan setup", tx,
954 "func=%u mintxg=%llu maxtxg=%llu",
955 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
956 (u_longlong_t)scn->scn_phys.scn_max_txg);
957 }
958
959 /*
960 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
961 * error scrub or resilver. Can also be called to resume a paused scrub or
962 * error scrub.
963 */
964 int
965 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
966 {
967 spa_t *spa = dp->dp_spa;
968 dsl_scan_t *scn = dp->dp_scan;
969
970 /*
971 * Purge all vdev caches and probe all devices. We do this here
972 * rather than in sync context because this requires a writer lock
973 * on the spa_config lock, which we can't do from sync context. The
974 * spa_scrub_reopen flag indicates that vdev_open() should not
975 * attempt to start another scrub.
976 */
977 spa_vdev_state_enter(spa, SCL_NONE);
978 spa->spa_scrub_reopen = B_TRUE;
979 vdev_reopen(spa->spa_root_vdev);
980 spa->spa_scrub_reopen = B_FALSE;
981 (void) spa_vdev_state_exit(spa, NULL, 0);
982
983 if (func == POOL_SCAN_RESILVER) {
984 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
985 return (0);
986 }
987
988 if (func == POOL_SCAN_ERRORSCRUB) {
989 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
990 /*
991 * got error scrub start cmd, resume paused error scrub.
992 */
993 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
994 POOL_SCRUB_NORMAL);
995 if (err == 0) {
996 spa_event_notify(spa, NULL, NULL,
997 ESC_ZFS_ERRORSCRUB_RESUME);
998 return (ECANCELED);
999 }
1000 return (SET_ERROR(err));
1001 }
1002
1003 return (dsl_sync_task(spa_name(dp->dp_spa),
1004 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1005 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1006 }
1007
1008 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1009 /* got scrub start cmd, resume paused scrub */
1010 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1011 POOL_SCRUB_NORMAL);
1012 if (err == 0) {
1013 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1014 return (SET_ERROR(ECANCELED));
1015 }
1016 return (SET_ERROR(err));
1017 }
1018
1019 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1020 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1021 }
1022
1023 static void
1024 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1025 {
1026 dsl_pool_t *dp = scn->scn_dp;
1027 spa_t *spa = dp->dp_spa;
1028
1029 if (complete) {
1030 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1031 spa_history_log_internal(spa, "error scrub done", tx,
1032 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1033 } else {
1034 spa_history_log_internal(spa, "error scrub canceled", tx,
1035 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1036 }
1037
1038 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1039 spa->spa_scrub_active = B_FALSE;
1040 spa_errlog_rotate(spa);
1041 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1042 zap_cursor_fini(&scn->errorscrub_cursor);
1043
1044 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1045 spa->spa_errata = 0;
1046
1047 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1048 }
1049
1050 static void
1051 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1052 {
1053 static const char *old_names[] = {
1054 "scrub_bookmark",
1055 "scrub_ddt_bookmark",
1056 "scrub_ddt_class_max",
1057 "scrub_queue",
1058 "scrub_min_txg",
1059 "scrub_max_txg",
1060 "scrub_func",
1061 "scrub_errors",
1062 NULL
1063 };
1064
1065 dsl_pool_t *dp = scn->scn_dp;
1066 spa_t *spa = dp->dp_spa;
1067 int i;
1068
1069 /* Remove any remnants of an old-style scrub. */
1070 for (i = 0; old_names[i]; i++) {
1071 (void) zap_remove(dp->dp_meta_objset,
1072 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1073 }
1074
1075 if (scn->scn_phys.scn_queue_obj != 0) {
1076 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1077 scn->scn_phys.scn_queue_obj, tx));
1078 scn->scn_phys.scn_queue_obj = 0;
1079 }
1080 scan_ds_queue_clear(scn);
1081 scan_ds_prefetch_queue_clear(scn);
1082
1083 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1084
1085 /*
1086 * If we were "restarted" from a stopped state, don't bother
1087 * with anything else.
1088 */
1089 if (!dsl_scan_is_running(scn)) {
1090 ASSERT(!scn->scn_is_sorted);
1091 return;
1092 }
1093
1094 if (scn->scn_is_sorted) {
1095 scan_io_queues_destroy(scn);
1096 scn->scn_is_sorted = B_FALSE;
1097
1098 if (scn->scn_taskq != NULL) {
1099 taskq_destroy(scn->scn_taskq);
1100 scn->scn_taskq = NULL;
1101 }
1102 }
1103
1104 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1105
1106 spa_notify_waiters(spa);
1107
1108 if (dsl_scan_restarting(scn, tx))
1109 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1110 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1111 else if (!complete)
1112 spa_history_log_internal(spa, "scan cancelled", tx,
1113 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1114 else
1115 spa_history_log_internal(spa, "scan done", tx,
1116 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1117
1118 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1119 spa->spa_scrub_active = B_FALSE;
1120
1121 /*
1122 * If the scrub/resilver completed, update all DTLs to
1123 * reflect this. Whether it succeeded or not, vacate
1124 * all temporary scrub DTLs.
1125 *
1126 * As the scrub does not currently support traversing
1127 * data that have been freed but are part of a checkpoint,
1128 * we don't mark the scrub as done in the DTLs as faults
1129 * may still exist in those vdevs.
1130 */
1131 if (complete &&
1132 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1133 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1134 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1135
1136 if (scn->scn_phys.scn_min_txg) {
1137 nvlist_t *aux = fnvlist_alloc();
1138 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1139 "healing");
1140 spa_event_notify(spa, NULL, aux,
1141 ESC_ZFS_RESILVER_FINISH);
1142 nvlist_free(aux);
1143 } else {
1144 spa_event_notify(spa, NULL, NULL,
1145 ESC_ZFS_SCRUB_FINISH);
1146 }
1147 } else {
1148 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1149 0, B_TRUE, B_FALSE);
1150 }
1151 spa_errlog_rotate(spa);
1152
1153 /*
1154 * Don't clear flag until after vdev_dtl_reassess to ensure that
1155 * DTL_MISSING will get updated when possible.
1156 */
1157 spa->spa_scrub_started = B_FALSE;
1158
1159 /*
1160 * We may have finished replacing a device.
1161 * Let the async thread assess this and handle the detach.
1162 */
1163 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1164
1165 /*
1166 * Clear any resilver_deferred flags in the config.
1167 * If there are drives that need resilvering, kick
1168 * off an asynchronous request to start resilver.
1169 * vdev_clear_resilver_deferred() may update the config
1170 * before the resilver can restart. In the event of
1171 * a crash during this period, the spa loading code
1172 * will find the drives that need to be resilvered
1173 * and start the resilver then.
1174 */
1175 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1176 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1177 spa_history_log_internal(spa,
1178 "starting deferred resilver", tx, "errors=%llu",
1179 (u_longlong_t)spa_approx_errlog_size(spa));
1180 spa_async_request(spa, SPA_ASYNC_RESILVER);
1181 }
1182
1183 /* Clear recent error events (i.e. duplicate events tracking) */
1184 if (complete)
1185 zfs_ereport_clear(spa, NULL);
1186 }
1187
1188 scn->scn_phys.scn_end_time = gethrestime_sec();
1189
1190 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1191 spa->spa_errata = 0;
1192
1193 ASSERT(!dsl_scan_is_running(scn));
1194 }
1195
1196 static int
1197 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1198 {
1199 pool_scrub_cmd_t *cmd = arg;
1200 dsl_pool_t *dp = dmu_tx_pool(tx);
1201 dsl_scan_t *scn = dp->dp_scan;
1202
1203 if (*cmd == POOL_SCRUB_PAUSE) {
1204 /*
1205 * can't pause a error scrub when there is no in-progress
1206 * error scrub.
1207 */
1208 if (!dsl_errorscrubbing(dp))
1209 return (SET_ERROR(ENOENT));
1210
1211 /* can't pause a paused error scrub */
1212 if (dsl_errorscrub_is_paused(scn))
1213 return (SET_ERROR(EBUSY));
1214 } else if (*cmd != POOL_SCRUB_NORMAL) {
1215 return (SET_ERROR(ENOTSUP));
1216 }
1217
1218 return (0);
1219 }
1220
1221 static void
1222 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1223 {
1224 pool_scrub_cmd_t *cmd = arg;
1225 dsl_pool_t *dp = dmu_tx_pool(tx);
1226 spa_t *spa = dp->dp_spa;
1227 dsl_scan_t *scn = dp->dp_scan;
1228
1229 if (*cmd == POOL_SCRUB_PAUSE) {
1230 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1231 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1232 dsl_errorscrub_sync_state(scn, tx);
1233 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1234 } else {
1235 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1236 if (dsl_errorscrub_is_paused(scn)) {
1237 /*
1238 * We need to keep track of how much time we spend
1239 * paused per pass so that we can adjust the error scrub
1240 * rate shown in the output of 'zpool status'.
1241 */
1242 spa->spa_scan_pass_errorscrub_spent_paused +=
1243 gethrestime_sec() -
1244 spa->spa_scan_pass_errorscrub_pause;
1245
1246 spa->spa_scan_pass_errorscrub_pause = 0;
1247 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1248
1249 zap_cursor_init_serialized(
1250 &scn->errorscrub_cursor,
1251 spa->spa_meta_objset, spa->spa_errlog_last,
1252 scn->errorscrub_phys.dep_cursor);
1253
1254 dsl_errorscrub_sync_state(scn, tx);
1255 }
1256 }
1257 }
1258
1259 static int
1260 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1261 {
1262 (void) arg;
1263 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1264 /* can't cancel a error scrub when there is no one in-progress */
1265 if (!dsl_errorscrubbing(scn->scn_dp))
1266 return (SET_ERROR(ENOENT));
1267 return (0);
1268 }
1269
1270 static void
1271 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1272 {
1273 (void) arg;
1274 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1275
1276 dsl_errorscrub_done(scn, B_FALSE, tx);
1277 dsl_errorscrub_sync_state(scn, tx);
1278 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1279 ESC_ZFS_ERRORSCRUB_ABORT);
1280 }
1281
1282 static int
1283 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1284 {
1285 (void) arg;
1286 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1287
1288 if (!dsl_scan_is_running(scn))
1289 return (SET_ERROR(ENOENT));
1290 return (0);
1291 }
1292
1293 static void
1294 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1295 {
1296 (void) arg;
1297 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1298
1299 dsl_scan_done(scn, B_FALSE, tx);
1300 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1301 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1302 }
1303
1304 int
1305 dsl_scan_cancel(dsl_pool_t *dp)
1306 {
1307 if (dsl_errorscrubbing(dp)) {
1308 return (dsl_sync_task(spa_name(dp->dp_spa),
1309 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1310 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1311 }
1312 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1313 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1314 }
1315
1316 static int
1317 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1318 {
1319 pool_scrub_cmd_t *cmd = arg;
1320 dsl_pool_t *dp = dmu_tx_pool(tx);
1321 dsl_scan_t *scn = dp->dp_scan;
1322
1323 if (*cmd == POOL_SCRUB_PAUSE) {
1324 /* can't pause a scrub when there is no in-progress scrub */
1325 if (!dsl_scan_scrubbing(dp))
1326 return (SET_ERROR(ENOENT));
1327
1328 /* can't pause a paused scrub */
1329 if (dsl_scan_is_paused_scrub(scn))
1330 return (SET_ERROR(EBUSY));
1331 } else if (*cmd != POOL_SCRUB_NORMAL) {
1332 return (SET_ERROR(ENOTSUP));
1333 }
1334
1335 return (0);
1336 }
1337
1338 static void
1339 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1340 {
1341 pool_scrub_cmd_t *cmd = arg;
1342 dsl_pool_t *dp = dmu_tx_pool(tx);
1343 spa_t *spa = dp->dp_spa;
1344 dsl_scan_t *scn = dp->dp_scan;
1345
1346 if (*cmd == POOL_SCRUB_PAUSE) {
1347 /* can't pause a scrub when there is no in-progress scrub */
1348 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1349 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1350 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1351 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1352 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1353 spa_notify_waiters(spa);
1354 } else {
1355 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1356 if (dsl_scan_is_paused_scrub(scn)) {
1357 /*
1358 * We need to keep track of how much time we spend
1359 * paused per pass so that we can adjust the scrub rate
1360 * shown in the output of 'zpool status'
1361 */
1362 spa->spa_scan_pass_scrub_spent_paused +=
1363 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1364 spa->spa_scan_pass_scrub_pause = 0;
1365 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1366 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1367 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1368 }
1369 }
1370 }
1371
1372 /*
1373 * Set scrub pause/resume state if it makes sense to do so
1374 */
1375 int
1376 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1377 {
1378 if (dsl_errorscrubbing(dp)) {
1379 return (dsl_sync_task(spa_name(dp->dp_spa),
1380 dsl_errorscrub_pause_resume_check,
1381 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1382 ZFS_SPACE_CHECK_RESERVED));
1383 }
1384 return (dsl_sync_task(spa_name(dp->dp_spa),
1385 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1386 ZFS_SPACE_CHECK_RESERVED));
1387 }
1388
1389
1390 /* start a new scan, or restart an existing one. */
1391 void
1392 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1393 {
1394 if (txg == 0) {
1395 dmu_tx_t *tx;
1396 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1397 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1398
1399 txg = dmu_tx_get_txg(tx);
1400 dp->dp_scan->scn_restart_txg = txg;
1401 dmu_tx_commit(tx);
1402 } else {
1403 dp->dp_scan->scn_restart_txg = txg;
1404 }
1405 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1406 dp->dp_spa->spa_name, (longlong_t)txg);
1407 }
1408
1409 void
1410 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1411 {
1412 zio_free(dp->dp_spa, txg, bp);
1413 }
1414
1415 void
1416 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1417 {
1418 ASSERT(dsl_pool_sync_context(dp));
1419 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1420 }
1421
1422 static int
1423 scan_ds_queue_compare(const void *a, const void *b)
1424 {
1425 const scan_ds_t *sds_a = a, *sds_b = b;
1426
1427 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1428 return (-1);
1429 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1430 return (0);
1431 return (1);
1432 }
1433
1434 static void
1435 scan_ds_queue_clear(dsl_scan_t *scn)
1436 {
1437 void *cookie = NULL;
1438 scan_ds_t *sds;
1439 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1440 kmem_free(sds, sizeof (*sds));
1441 }
1442 }
1443
1444 static boolean_t
1445 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1446 {
1447 scan_ds_t srch, *sds;
1448
1449 srch.sds_dsobj = dsobj;
1450 sds = avl_find(&scn->scn_queue, &srch, NULL);
1451 if (sds != NULL && txg != NULL)
1452 *txg = sds->sds_txg;
1453 return (sds != NULL);
1454 }
1455
1456 static void
1457 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1458 {
1459 scan_ds_t *sds;
1460 avl_index_t where;
1461
1462 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1463 sds->sds_dsobj = dsobj;
1464 sds->sds_txg = txg;
1465
1466 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1467 avl_insert(&scn->scn_queue, sds, where);
1468 }
1469
1470 static void
1471 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1472 {
1473 scan_ds_t srch, *sds;
1474
1475 srch.sds_dsobj = dsobj;
1476
1477 sds = avl_find(&scn->scn_queue, &srch, NULL);
1478 VERIFY(sds != NULL);
1479 avl_remove(&scn->scn_queue, sds);
1480 kmem_free(sds, sizeof (*sds));
1481 }
1482
1483 static void
1484 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1485 {
1486 dsl_pool_t *dp = scn->scn_dp;
1487 spa_t *spa = dp->dp_spa;
1488 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1489 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1490
1491 ASSERT0(scn->scn_queues_pending);
1492 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1493
1494 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1495 scn->scn_phys.scn_queue_obj, tx));
1496 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1497 DMU_OT_NONE, 0, tx);
1498 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1499 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1500 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1501 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1502 sds->sds_txg, tx));
1503 }
1504 }
1505
1506 /*
1507 * Computes the memory limit state that we're currently in. A sorted scan
1508 * needs quite a bit of memory to hold the sorting queue, so we need to
1509 * reasonably constrain the size so it doesn't impact overall system
1510 * performance. We compute two limits:
1511 * 1) Hard memory limit: if the amount of memory used by the sorting
1512 * queues on a pool gets above this value, we stop the metadata
1513 * scanning portion and start issuing the queued up and sorted
1514 * I/Os to reduce memory usage.
1515 * This limit is calculated as a fraction of physmem (by default 5%).
1516 * We constrain the lower bound of the hard limit to an absolute
1517 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1518 * the upper bound to 5% of the total pool size - no chance we'll
1519 * ever need that much memory, but just to keep the value in check.
1520 * 2) Soft memory limit: once we hit the hard memory limit, we start
1521 * issuing I/O to reduce queue memory usage, but we don't want to
1522 * completely empty out the queues, since we might be able to find I/Os
1523 * that will fill in the gaps of our non-sequential IOs at some point
1524 * in the future. So we stop the issuing of I/Os once the amount of
1525 * memory used drops below the soft limit (at which point we stop issuing
1526 * I/O and start scanning metadata again).
1527 *
1528 * This limit is calculated by subtracting a fraction of the hard
1529 * limit from the hard limit. By default this fraction is 5%, so
1530 * the soft limit is 95% of the hard limit. We cap the size of the
1531 * difference between the hard and soft limits at an absolute
1532 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1533 * sufficient to not cause too frequent switching between the
1534 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1535 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1536 * that should take at least a decent fraction of a second).
1537 */
1538 static boolean_t
1539 dsl_scan_should_clear(dsl_scan_t *scn)
1540 {
1541 spa_t *spa = scn->scn_dp->dp_spa;
1542 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1543 uint64_t alloc, mlim_hard, mlim_soft, mused;
1544
1545 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1546 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1547 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1548
1549 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1550 zfs_scan_mem_lim_min);
1551 mlim_hard = MIN(mlim_hard, alloc / 20);
1552 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1553 zfs_scan_mem_lim_soft_max);
1554 mused = 0;
1555 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1556 vdev_t *tvd = rvd->vdev_child[i];
1557 dsl_scan_io_queue_t *queue;
1558
1559 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1560 queue = tvd->vdev_scan_io_queue;
1561 if (queue != NULL) {
1562 /*
1563 * # of extents in exts_by_addr = # in exts_by_size.
1564 * B-tree efficiency is ~75%, but can be as low as 50%.
1565 */
1566 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1567 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1568 3 / 2) + queue->q_sio_memused;
1569 }
1570 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1571 }
1572
1573 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1574
1575 if (mused == 0)
1576 ASSERT0(scn->scn_queues_pending);
1577
1578 /*
1579 * If we are above our hard limit, we need to clear out memory.
1580 * If we are below our soft limit, we need to accumulate sequential IOs.
1581 * Otherwise, we should keep doing whatever we are currently doing.
1582 */
1583 if (mused >= mlim_hard)
1584 return (B_TRUE);
1585 else if (mused < mlim_soft)
1586 return (B_FALSE);
1587 else
1588 return (scn->scn_clearing);
1589 }
1590
1591 static boolean_t
1592 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1593 {
1594 /* we never skip user/group accounting objects */
1595 if (zb && (int64_t)zb->zb_object < 0)
1596 return (B_FALSE);
1597
1598 if (scn->scn_suspending)
1599 return (B_TRUE); /* we're already suspending */
1600
1601 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1602 return (B_FALSE); /* we're resuming */
1603
1604 /* We only know how to resume from level-0 and objset blocks. */
1605 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1606 return (B_FALSE);
1607
1608 /*
1609 * We suspend if:
1610 * - we have scanned for at least the minimum time (default 1 sec
1611 * for scrub, 3 sec for resilver), and either we have sufficient
1612 * dirty data that we are starting to write more quickly
1613 * (default 30%), someone is explicitly waiting for this txg
1614 * to complete, or we have used up all of the time in the txg
1615 * timeout (default 5 sec).
1616 * or
1617 * - the spa is shutting down because this pool is being exported
1618 * or the machine is rebooting.
1619 * or
1620 * - the scan queue has reached its memory use limit
1621 */
1622 uint64_t curr_time_ns = gethrtime();
1623 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1624 uint64_t sync_time_ns = curr_time_ns -
1625 scn->scn_dp->dp_spa->spa_sync_starttime;
1626 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1627 zfs_vdev_async_write_active_min_dirty_percent / 100;
1628 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1629 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1630
1631 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1632 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1633 txg_sync_waiting(scn->scn_dp) ||
1634 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1635 spa_shutting_down(scn->scn_dp->dp_spa) ||
1636 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1637 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1638 dprintf("suspending at first available bookmark "
1639 "%llx/%llx/%llx/%llx\n",
1640 (longlong_t)zb->zb_objset,
1641 (longlong_t)zb->zb_object,
1642 (longlong_t)zb->zb_level,
1643 (longlong_t)zb->zb_blkid);
1644 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1645 zb->zb_objset, 0, 0, 0);
1646 } else if (zb != NULL) {
1647 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1648 (longlong_t)zb->zb_objset,
1649 (longlong_t)zb->zb_object,
1650 (longlong_t)zb->zb_level,
1651 (longlong_t)zb->zb_blkid);
1652 scn->scn_phys.scn_bookmark = *zb;
1653 } else {
1654 #ifdef ZFS_DEBUG
1655 dsl_scan_phys_t *scnp = &scn->scn_phys;
1656 dprintf("suspending at at DDT bookmark "
1657 "%llx/%llx/%llx/%llx\n",
1658 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1659 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1660 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1661 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1662 #endif
1663 }
1664 scn->scn_suspending = B_TRUE;
1665 return (B_TRUE);
1666 }
1667 return (B_FALSE);
1668 }
1669
1670 static boolean_t
1671 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1672 {
1673 /*
1674 * We suspend if:
1675 * - we have scrubbed for at least the minimum time (default 1 sec
1676 * for error scrub), someone is explicitly waiting for this txg
1677 * to complete, or we have used up all of the time in the txg
1678 * timeout (default 5 sec).
1679 * or
1680 * - the spa is shutting down because this pool is being exported
1681 * or the machine is rebooting.
1682 */
1683 uint64_t curr_time_ns = gethrtime();
1684 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1685 uint64_t sync_time_ns = curr_time_ns -
1686 scn->scn_dp->dp_spa->spa_sync_starttime;
1687 int mintime = zfs_scrub_min_time_ms;
1688
1689 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1690 (txg_sync_waiting(scn->scn_dp) ||
1691 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1692 spa_shutting_down(scn->scn_dp->dp_spa)) {
1693 if (zb) {
1694 dprintf("error scrub suspending at bookmark "
1695 "%llx/%llx/%llx/%llx\n",
1696 (longlong_t)zb->zb_objset,
1697 (longlong_t)zb->zb_object,
1698 (longlong_t)zb->zb_level,
1699 (longlong_t)zb->zb_blkid);
1700 }
1701 return (B_TRUE);
1702 }
1703 return (B_FALSE);
1704 }
1705
1706 typedef struct zil_scan_arg {
1707 dsl_pool_t *zsa_dp;
1708 zil_header_t *zsa_zh;
1709 } zil_scan_arg_t;
1710
1711 static int
1712 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1713 uint64_t claim_txg)
1714 {
1715 (void) zilog;
1716 zil_scan_arg_t *zsa = arg;
1717 dsl_pool_t *dp = zsa->zsa_dp;
1718 dsl_scan_t *scn = dp->dp_scan;
1719 zil_header_t *zh = zsa->zsa_zh;
1720 zbookmark_phys_t zb;
1721
1722 ASSERT(!BP_IS_REDACTED(bp));
1723 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1724 return (0);
1725
1726 /*
1727 * One block ("stubby") can be allocated a long time ago; we
1728 * want to visit that one because it has been allocated
1729 * (on-disk) even if it hasn't been claimed (even though for
1730 * scrub there's nothing to do to it).
1731 */
1732 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1733 return (0);
1734
1735 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1736 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1737
1738 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1739 return (0);
1740 }
1741
1742 static int
1743 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1744 uint64_t claim_txg)
1745 {
1746 (void) zilog;
1747 if (lrc->lrc_txtype == TX_WRITE) {
1748 zil_scan_arg_t *zsa = arg;
1749 dsl_pool_t *dp = zsa->zsa_dp;
1750 dsl_scan_t *scn = dp->dp_scan;
1751 zil_header_t *zh = zsa->zsa_zh;
1752 const lr_write_t *lr = (const lr_write_t *)lrc;
1753 const blkptr_t *bp = &lr->lr_blkptr;
1754 zbookmark_phys_t zb;
1755
1756 ASSERT(!BP_IS_REDACTED(bp));
1757 if (BP_IS_HOLE(bp) ||
1758 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1759 return (0);
1760
1761 /*
1762 * birth can be < claim_txg if this record's txg is
1763 * already txg sync'ed (but this log block contains
1764 * other records that are not synced)
1765 */
1766 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1767 return (0);
1768
1769 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1770 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1771 lr->lr_foid, ZB_ZIL_LEVEL,
1772 lr->lr_offset / BP_GET_LSIZE(bp));
1773
1774 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1775 }
1776 return (0);
1777 }
1778
1779 static void
1780 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1781 {
1782 uint64_t claim_txg = zh->zh_claim_txg;
1783 zil_scan_arg_t zsa = { dp, zh };
1784 zilog_t *zilog;
1785
1786 ASSERT(spa_writeable(dp->dp_spa));
1787
1788 /*
1789 * We only want to visit blocks that have been claimed but not yet
1790 * replayed (or, in read-only mode, blocks that *would* be claimed).
1791 */
1792 if (claim_txg == 0)
1793 return;
1794
1795 zilog = zil_alloc(dp->dp_meta_objset, zh);
1796
1797 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1798 claim_txg, B_FALSE);
1799
1800 zil_free(zilog);
1801 }
1802
1803 /*
1804 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1805 * here is to sort the AVL tree by the order each block will be needed.
1806 */
1807 static int
1808 scan_prefetch_queue_compare(const void *a, const void *b)
1809 {
1810 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1811 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1812 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1813
1814 return (zbookmark_compare(spc_a->spc_datablkszsec,
1815 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1816 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1817 }
1818
1819 static void
1820 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1821 {
1822 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1823 zfs_refcount_destroy(&spc->spc_refcnt);
1824 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1825 }
1826 }
1827
1828 static scan_prefetch_ctx_t *
1829 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1830 {
1831 scan_prefetch_ctx_t *spc;
1832
1833 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1834 zfs_refcount_create(&spc->spc_refcnt);
1835 zfs_refcount_add(&spc->spc_refcnt, tag);
1836 spc->spc_scn = scn;
1837 if (dnp != NULL) {
1838 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1839 spc->spc_indblkshift = dnp->dn_indblkshift;
1840 spc->spc_root = B_FALSE;
1841 } else {
1842 spc->spc_datablkszsec = 0;
1843 spc->spc_indblkshift = 0;
1844 spc->spc_root = B_TRUE;
1845 }
1846
1847 return (spc);
1848 }
1849
1850 static void
1851 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1852 {
1853 zfs_refcount_add(&spc->spc_refcnt, tag);
1854 }
1855
1856 static void
1857 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1858 {
1859 spa_t *spa = scn->scn_dp->dp_spa;
1860 void *cookie = NULL;
1861 scan_prefetch_issue_ctx_t *spic = NULL;
1862
1863 mutex_enter(&spa->spa_scrub_lock);
1864 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1865 &cookie)) != NULL) {
1866 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1867 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1868 }
1869 mutex_exit(&spa->spa_scrub_lock);
1870 }
1871
1872 static boolean_t
1873 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1874 const zbookmark_phys_t *zb)
1875 {
1876 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1877 dnode_phys_t tmp_dnp;
1878 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1879
1880 if (zb->zb_objset != last_zb->zb_objset)
1881 return (B_TRUE);
1882 if ((int64_t)zb->zb_object < 0)
1883 return (B_FALSE);
1884
1885 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1886 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1887
1888 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1889 return (B_TRUE);
1890
1891 return (B_FALSE);
1892 }
1893
1894 static void
1895 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1896 {
1897 avl_index_t idx;
1898 dsl_scan_t *scn = spc->spc_scn;
1899 spa_t *spa = scn->scn_dp->dp_spa;
1900 scan_prefetch_issue_ctx_t *spic;
1901
1902 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1903 return;
1904
1905 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1906 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1907 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1908 return;
1909
1910 if (dsl_scan_check_prefetch_resume(spc, zb))
1911 return;
1912
1913 scan_prefetch_ctx_add_ref(spc, scn);
1914 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1915 spic->spic_spc = spc;
1916 spic->spic_bp = *bp;
1917 spic->spic_zb = *zb;
1918
1919 /*
1920 * Add the IO to the queue of blocks to prefetch. This allows us to
1921 * prioritize blocks that we will need first for the main traversal
1922 * thread.
1923 */
1924 mutex_enter(&spa->spa_scrub_lock);
1925 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1926 /* this block is already queued for prefetch */
1927 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1928 scan_prefetch_ctx_rele(spc, scn);
1929 mutex_exit(&spa->spa_scrub_lock);
1930 return;
1931 }
1932
1933 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1934 cv_broadcast(&spa->spa_scrub_io_cv);
1935 mutex_exit(&spa->spa_scrub_lock);
1936 }
1937
1938 static void
1939 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1940 uint64_t objset, uint64_t object)
1941 {
1942 int i;
1943 zbookmark_phys_t zb;
1944 scan_prefetch_ctx_t *spc;
1945
1946 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1947 return;
1948
1949 SET_BOOKMARK(&zb, objset, object, 0, 0);
1950
1951 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1952
1953 for (i = 0; i < dnp->dn_nblkptr; i++) {
1954 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1955 zb.zb_blkid = i;
1956 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1957 }
1958
1959 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1960 zb.zb_level = 0;
1961 zb.zb_blkid = DMU_SPILL_BLKID;
1962 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1963 }
1964
1965 scan_prefetch_ctx_rele(spc, FTAG);
1966 }
1967
1968 static void
1969 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1970 arc_buf_t *buf, void *private)
1971 {
1972 (void) zio;
1973 scan_prefetch_ctx_t *spc = private;
1974 dsl_scan_t *scn = spc->spc_scn;
1975 spa_t *spa = scn->scn_dp->dp_spa;
1976
1977 /* broadcast that the IO has completed for rate limiting purposes */
1978 mutex_enter(&spa->spa_scrub_lock);
1979 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1980 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1981 cv_broadcast(&spa->spa_scrub_io_cv);
1982 mutex_exit(&spa->spa_scrub_lock);
1983
1984 /* if there was an error or we are done prefetching, just cleanup */
1985 if (buf == NULL || scn->scn_prefetch_stop)
1986 goto out;
1987
1988 if (BP_GET_LEVEL(bp) > 0) {
1989 int i;
1990 blkptr_t *cbp;
1991 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1992 zbookmark_phys_t czb;
1993
1994 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1995 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1996 zb->zb_level - 1, zb->zb_blkid * epb + i);
1997 dsl_scan_prefetch(spc, cbp, &czb);
1998 }
1999 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2000 dnode_phys_t *cdnp;
2001 int i;
2002 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2003
2004 for (i = 0, cdnp = buf->b_data; i < epb;
2005 i += cdnp->dn_extra_slots + 1,
2006 cdnp += cdnp->dn_extra_slots + 1) {
2007 dsl_scan_prefetch_dnode(scn, cdnp,
2008 zb->zb_objset, zb->zb_blkid * epb + i);
2009 }
2010 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2011 objset_phys_t *osp = buf->b_data;
2012
2013 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2014 zb->zb_objset, DMU_META_DNODE_OBJECT);
2015
2016 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2017 dsl_scan_prefetch_dnode(scn,
2018 &osp->os_groupused_dnode, zb->zb_objset,
2019 DMU_GROUPUSED_OBJECT);
2020 dsl_scan_prefetch_dnode(scn,
2021 &osp->os_userused_dnode, zb->zb_objset,
2022 DMU_USERUSED_OBJECT);
2023 }
2024 }
2025
2026 out:
2027 if (buf != NULL)
2028 arc_buf_destroy(buf, private);
2029 scan_prefetch_ctx_rele(spc, scn);
2030 }
2031
2032 static void
2033 dsl_scan_prefetch_thread(void *arg)
2034 {
2035 dsl_scan_t *scn = arg;
2036 spa_t *spa = scn->scn_dp->dp_spa;
2037 scan_prefetch_issue_ctx_t *spic;
2038
2039 /* loop until we are told to stop */
2040 while (!scn->scn_prefetch_stop) {
2041 arc_flags_t flags = ARC_FLAG_NOWAIT |
2042 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2043 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2044
2045 mutex_enter(&spa->spa_scrub_lock);
2046
2047 /*
2048 * Wait until we have an IO to issue and are not above our
2049 * maximum in flight limit.
2050 */
2051 while (!scn->scn_prefetch_stop &&
2052 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2053 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2054 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2055 }
2056
2057 /* recheck if we should stop since we waited for the cv */
2058 if (scn->scn_prefetch_stop) {
2059 mutex_exit(&spa->spa_scrub_lock);
2060 break;
2061 }
2062
2063 /* remove the prefetch IO from the tree */
2064 spic = avl_first(&scn->scn_prefetch_queue);
2065 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2066 avl_remove(&scn->scn_prefetch_queue, spic);
2067
2068 mutex_exit(&spa->spa_scrub_lock);
2069
2070 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2071 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2072 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2073 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2074 zio_flags |= ZIO_FLAG_RAW;
2075 }
2076
2077 /* issue the prefetch asynchronously */
2078 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
2079 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
2080 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
2081
2082 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2083 }
2084
2085 ASSERT(scn->scn_prefetch_stop);
2086
2087 /* free any prefetches we didn't get to complete */
2088 mutex_enter(&spa->spa_scrub_lock);
2089 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2090 avl_remove(&scn->scn_prefetch_queue, spic);
2091 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2092 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2093 }
2094 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2095 mutex_exit(&spa->spa_scrub_lock);
2096 }
2097
2098 static boolean_t
2099 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2100 const zbookmark_phys_t *zb)
2101 {
2102 /*
2103 * We never skip over user/group accounting objects (obj<0)
2104 */
2105 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2106 (int64_t)zb->zb_object >= 0) {
2107 /*
2108 * If we already visited this bp & everything below (in
2109 * a prior txg sync), don't bother doing it again.
2110 */
2111 if (zbookmark_subtree_completed(dnp, zb,
2112 &scn->scn_phys.scn_bookmark))
2113 return (B_TRUE);
2114
2115 /*
2116 * If we found the block we're trying to resume from, or
2117 * we went past it, zero it out to indicate that it's OK
2118 * to start checking for suspending again.
2119 */
2120 if (zbookmark_subtree_tbd(dnp, zb,
2121 &scn->scn_phys.scn_bookmark)) {
2122 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2123 (longlong_t)zb->zb_objset,
2124 (longlong_t)zb->zb_object,
2125 (longlong_t)zb->zb_level,
2126 (longlong_t)zb->zb_blkid);
2127 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2128 }
2129 }
2130 return (B_FALSE);
2131 }
2132
2133 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
2134 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2135 dmu_objset_type_t ostype, dmu_tx_t *tx);
2136 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2137 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2138 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2139
2140 /*
2141 * Return nonzero on i/o error.
2142 * Return new buf to write out in *bufp.
2143 */
2144 inline __attribute__((always_inline)) static int
2145 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2146 dnode_phys_t *dnp, const blkptr_t *bp,
2147 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2148 {
2149 dsl_pool_t *dp = scn->scn_dp;
2150 spa_t *spa = dp->dp_spa;
2151 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2152 int err;
2153
2154 ASSERT(!BP_IS_REDACTED(bp));
2155
2156 /*
2157 * There is an unlikely case of encountering dnodes with contradicting
2158 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2159 * or modified before commit 4254acb was merged. As it is not possible
2160 * to know which of the two is correct, report an error.
2161 */
2162 if (dnp != NULL &&
2163 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2164 scn->scn_phys.scn_errors++;
2165 spa_log_error(spa, zb, &bp->blk_birth);
2166 return (SET_ERROR(EINVAL));
2167 }
2168
2169 if (BP_GET_LEVEL(bp) > 0) {
2170 arc_flags_t flags = ARC_FLAG_WAIT;
2171 int i;
2172 blkptr_t *cbp;
2173 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2174 arc_buf_t *buf;
2175
2176 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2177 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2178 if (err) {
2179 scn->scn_phys.scn_errors++;
2180 return (err);
2181 }
2182 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2183 zbookmark_phys_t czb;
2184
2185 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2186 zb->zb_level - 1,
2187 zb->zb_blkid * epb + i);
2188 dsl_scan_visitbp(cbp, &czb, dnp,
2189 ds, scn, ostype, tx);
2190 }
2191 arc_buf_destroy(buf, &buf);
2192 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2193 arc_flags_t flags = ARC_FLAG_WAIT;
2194 dnode_phys_t *cdnp;
2195 int i;
2196 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2197 arc_buf_t *buf;
2198
2199 if (BP_IS_PROTECTED(bp)) {
2200 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2201 zio_flags |= ZIO_FLAG_RAW;
2202 }
2203
2204 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2205 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2206 if (err) {
2207 scn->scn_phys.scn_errors++;
2208 return (err);
2209 }
2210 for (i = 0, cdnp = buf->b_data; i < epb;
2211 i += cdnp->dn_extra_slots + 1,
2212 cdnp += cdnp->dn_extra_slots + 1) {
2213 dsl_scan_visitdnode(scn, ds, ostype,
2214 cdnp, zb->zb_blkid * epb + i, tx);
2215 }
2216
2217 arc_buf_destroy(buf, &buf);
2218 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2219 arc_flags_t flags = ARC_FLAG_WAIT;
2220 objset_phys_t *osp;
2221 arc_buf_t *buf;
2222
2223 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2224 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2225 if (err) {
2226 scn->scn_phys.scn_errors++;
2227 return (err);
2228 }
2229
2230 osp = buf->b_data;
2231
2232 dsl_scan_visitdnode(scn, ds, osp->os_type,
2233 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2234
2235 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2236 /*
2237 * We also always visit user/group/project accounting
2238 * objects, and never skip them, even if we are
2239 * suspending. This is necessary so that the
2240 * space deltas from this txg get integrated.
2241 */
2242 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2243 dsl_scan_visitdnode(scn, ds, osp->os_type,
2244 &osp->os_projectused_dnode,
2245 DMU_PROJECTUSED_OBJECT, tx);
2246 dsl_scan_visitdnode(scn, ds, osp->os_type,
2247 &osp->os_groupused_dnode,
2248 DMU_GROUPUSED_OBJECT, tx);
2249 dsl_scan_visitdnode(scn, ds, osp->os_type,
2250 &osp->os_userused_dnode,
2251 DMU_USERUSED_OBJECT, tx);
2252 }
2253 arc_buf_destroy(buf, &buf);
2254 } else if (!zfs_blkptr_verify(spa, bp,
2255 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2256 /*
2257 * Sanity check the block pointer contents, this is handled
2258 * by arc_read() for the cases above.
2259 */
2260 scn->scn_phys.scn_errors++;
2261 spa_log_error(spa, zb, &bp->blk_birth);
2262 return (SET_ERROR(EINVAL));
2263 }
2264
2265 return (0);
2266 }
2267
2268 inline __attribute__((always_inline)) static void
2269 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2270 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2271 uint64_t object, dmu_tx_t *tx)
2272 {
2273 int j;
2274
2275 for (j = 0; j < dnp->dn_nblkptr; j++) {
2276 zbookmark_phys_t czb;
2277
2278 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2279 dnp->dn_nlevels - 1, j);
2280 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2281 &czb, dnp, ds, scn, ostype, tx);
2282 }
2283
2284 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2285 zbookmark_phys_t czb;
2286 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2287 0, DMU_SPILL_BLKID);
2288 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2289 &czb, dnp, ds, scn, ostype, tx);
2290 }
2291 }
2292
2293 /*
2294 * The arguments are in this order because mdb can only print the
2295 * first 5; we want them to be useful.
2296 */
2297 static void
2298 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
2299 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2300 dmu_objset_type_t ostype, dmu_tx_t *tx)
2301 {
2302 dsl_pool_t *dp = scn->scn_dp;
2303 blkptr_t *bp_toread = NULL;
2304
2305 if (dsl_scan_check_suspend(scn, zb))
2306 return;
2307
2308 if (dsl_scan_check_resume(scn, dnp, zb))
2309 return;
2310
2311 scn->scn_visited_this_txg++;
2312
2313 if (BP_IS_HOLE(bp)) {
2314 scn->scn_holes_this_txg++;
2315 return;
2316 }
2317
2318 if (BP_IS_REDACTED(bp)) {
2319 ASSERT(dsl_dataset_feature_is_active(ds,
2320 SPA_FEATURE_REDACTED_DATASETS));
2321 return;
2322 }
2323
2324 /*
2325 * Check if this block contradicts any filesystem flags.
2326 */
2327 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2328 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2329 ASSERT(dsl_dataset_feature_is_active(ds, f));
2330
2331 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2332 if (f != SPA_FEATURE_NONE)
2333 ASSERT(dsl_dataset_feature_is_active(ds, f));
2334
2335 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2336 if (f != SPA_FEATURE_NONE)
2337 ASSERT(dsl_dataset_feature_is_active(ds, f));
2338
2339 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
2340 scn->scn_lt_min_this_txg++;
2341 return;
2342 }
2343
2344 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
2345 *bp_toread = *bp;
2346
2347 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
2348 goto out;
2349
2350 /*
2351 * If dsl_scan_ddt() has already visited this block, it will have
2352 * already done any translations or scrubbing, so don't call the
2353 * callback again.
2354 */
2355 if (ddt_class_contains(dp->dp_spa,
2356 scn->scn_phys.scn_ddt_class_max, bp)) {
2357 scn->scn_ddt_contained_this_txg++;
2358 goto out;
2359 }
2360
2361 /*
2362 * If this block is from the future (after cur_max_txg), then we
2363 * are doing this on behalf of a deleted snapshot, and we will
2364 * revisit the future block on the next pass of this dataset.
2365 * Don't scan it now unless we need to because something
2366 * under it was modified.
2367 */
2368 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2369 scn->scn_gt_max_this_txg++;
2370 goto out;
2371 }
2372
2373 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2374
2375 out:
2376 kmem_free(bp_toread, sizeof (blkptr_t));
2377 }
2378
2379 static void
2380 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2381 dmu_tx_t *tx)
2382 {
2383 zbookmark_phys_t zb;
2384 scan_prefetch_ctx_t *spc;
2385
2386 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2387 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2388
2389 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2390 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2391 zb.zb_objset, 0, 0, 0);
2392 } else {
2393 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2394 }
2395
2396 scn->scn_objsets_visited_this_txg++;
2397
2398 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2399 dsl_scan_prefetch(spc, bp, &zb);
2400 scan_prefetch_ctx_rele(spc, FTAG);
2401
2402 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2403
2404 dprintf_ds(ds, "finished scan%s", "");
2405 }
2406
2407 static void
2408 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2409 {
2410 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2411 if (ds->ds_is_snapshot) {
2412 /*
2413 * Note:
2414 * - scn_cur_{min,max}_txg stays the same.
2415 * - Setting the flag is not really necessary if
2416 * scn_cur_max_txg == scn_max_txg, because there
2417 * is nothing after this snapshot that we care
2418 * about. However, we set it anyway and then
2419 * ignore it when we retraverse it in
2420 * dsl_scan_visitds().
2421 */
2422 scn_phys->scn_bookmark.zb_objset =
2423 dsl_dataset_phys(ds)->ds_next_snap_obj;
2424 zfs_dbgmsg("destroying ds %llu on %s; currently "
2425 "traversing; reset zb_objset to %llu",
2426 (u_longlong_t)ds->ds_object,
2427 ds->ds_dir->dd_pool->dp_spa->spa_name,
2428 (u_longlong_t)dsl_dataset_phys(ds)->
2429 ds_next_snap_obj);
2430 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2431 } else {
2432 SET_BOOKMARK(&scn_phys->scn_bookmark,
2433 ZB_DESTROYED_OBJSET, 0, 0, 0);
2434 zfs_dbgmsg("destroying ds %llu on %s; currently "
2435 "traversing; reset bookmark to -1,0,0,0",
2436 (u_longlong_t)ds->ds_object,
2437 ds->ds_dir->dd_pool->dp_spa->spa_name);
2438 }
2439 }
2440 }
2441
2442 /*
2443 * Invoked when a dataset is destroyed. We need to make sure that:
2444 *
2445 * 1) If it is the dataset that was currently being scanned, we write
2446 * a new dsl_scan_phys_t and marking the objset reference in it
2447 * as destroyed.
2448 * 2) Remove it from the work queue, if it was present.
2449 *
2450 * If the dataset was actually a snapshot, instead of marking the dataset
2451 * as destroyed, we instead substitute the next snapshot in line.
2452 */
2453 void
2454 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2455 {
2456 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2457 dsl_scan_t *scn = dp->dp_scan;
2458 uint64_t mintxg;
2459
2460 if (!dsl_scan_is_running(scn))
2461 return;
2462
2463 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2464 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2465
2466 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2467 scan_ds_queue_remove(scn, ds->ds_object);
2468 if (ds->ds_is_snapshot)
2469 scan_ds_queue_insert(scn,
2470 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2471 }
2472
2473 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2474 ds->ds_object, &mintxg) == 0) {
2475 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2476 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2477 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2478 if (ds->ds_is_snapshot) {
2479 /*
2480 * We keep the same mintxg; it could be >
2481 * ds_creation_txg if the previous snapshot was
2482 * deleted too.
2483 */
2484 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2485 scn->scn_phys.scn_queue_obj,
2486 dsl_dataset_phys(ds)->ds_next_snap_obj,
2487 mintxg, tx) == 0);
2488 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2489 "replacing with %llu",
2490 (u_longlong_t)ds->ds_object,
2491 dp->dp_spa->spa_name,
2492 (u_longlong_t)dsl_dataset_phys(ds)->
2493 ds_next_snap_obj);
2494 } else {
2495 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2496 "removing",
2497 (u_longlong_t)ds->ds_object,
2498 dp->dp_spa->spa_name);
2499 }
2500 }
2501
2502 /*
2503 * dsl_scan_sync() should be called after this, and should sync
2504 * out our changed state, but just to be safe, do it here.
2505 */
2506 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2507 }
2508
2509 static void
2510 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2511 {
2512 if (scn_bookmark->zb_objset == ds->ds_object) {
2513 scn_bookmark->zb_objset =
2514 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2515 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2516 "reset zb_objset to %llu",
2517 (u_longlong_t)ds->ds_object,
2518 ds->ds_dir->dd_pool->dp_spa->spa_name,
2519 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2520 }
2521 }
2522
2523 /*
2524 * Called when a dataset is snapshotted. If we were currently traversing
2525 * this snapshot, we reset our bookmark to point at the newly created
2526 * snapshot. We also modify our work queue to remove the old snapshot and
2527 * replace with the new one.
2528 */
2529 void
2530 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2531 {
2532 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2533 dsl_scan_t *scn = dp->dp_scan;
2534 uint64_t mintxg;
2535
2536 if (!dsl_scan_is_running(scn))
2537 return;
2538
2539 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2540
2541 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2542 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2543
2544 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2545 scan_ds_queue_remove(scn, ds->ds_object);
2546 scan_ds_queue_insert(scn,
2547 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2548 }
2549
2550 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2551 ds->ds_object, &mintxg) == 0) {
2552 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2553 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2554 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2555 scn->scn_phys.scn_queue_obj,
2556 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2557 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2558 "replacing with %llu",
2559 (u_longlong_t)ds->ds_object,
2560 dp->dp_spa->spa_name,
2561 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2562 }
2563
2564 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2565 }
2566
2567 static void
2568 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2569 zbookmark_phys_t *scn_bookmark)
2570 {
2571 if (scn_bookmark->zb_objset == ds1->ds_object) {
2572 scn_bookmark->zb_objset = ds2->ds_object;
2573 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2574 "reset zb_objset to %llu",
2575 (u_longlong_t)ds1->ds_object,
2576 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2577 (u_longlong_t)ds2->ds_object);
2578 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2579 scn_bookmark->zb_objset = ds1->ds_object;
2580 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2581 "reset zb_objset to %llu",
2582 (u_longlong_t)ds2->ds_object,
2583 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2584 (u_longlong_t)ds1->ds_object);
2585 }
2586 }
2587
2588 /*
2589 * Called when an origin dataset and its clone are swapped. If we were
2590 * currently traversing the dataset, we need to switch to traversing the
2591 * newly promoted clone.
2592 */
2593 void
2594 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2595 {
2596 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2597 dsl_scan_t *scn = dp->dp_scan;
2598 uint64_t mintxg1, mintxg2;
2599 boolean_t ds1_queued, ds2_queued;
2600
2601 if (!dsl_scan_is_running(scn))
2602 return;
2603
2604 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2605 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2606
2607 /*
2608 * Handle the in-memory scan queue.
2609 */
2610 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2611 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2612
2613 /* Sanity checking. */
2614 if (ds1_queued) {
2615 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2616 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2617 }
2618 if (ds2_queued) {
2619 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2620 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2621 }
2622
2623 if (ds1_queued && ds2_queued) {
2624 /*
2625 * If both are queued, we don't need to do anything.
2626 * The swapping code below would not handle this case correctly,
2627 * since we can't insert ds2 if it is already there. That's
2628 * because scan_ds_queue_insert() prohibits a duplicate insert
2629 * and panics.
2630 */
2631 } else if (ds1_queued) {
2632 scan_ds_queue_remove(scn, ds1->ds_object);
2633 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2634 } else if (ds2_queued) {
2635 scan_ds_queue_remove(scn, ds2->ds_object);
2636 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2637 }
2638
2639 /*
2640 * Handle the on-disk scan queue.
2641 * The on-disk state is an out-of-date version of the in-memory state,
2642 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2643 * be different. Therefore we need to apply the swap logic to the
2644 * on-disk state independently of the in-memory state.
2645 */
2646 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2647 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2648 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2649 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2650
2651 /* Sanity checking. */
2652 if (ds1_queued) {
2653 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2654 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2655 }
2656 if (ds2_queued) {
2657 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2658 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2659 }
2660
2661 if (ds1_queued && ds2_queued) {
2662 /*
2663 * If both are queued, we don't need to do anything.
2664 * Alternatively, we could check for EEXIST from
2665 * zap_add_int_key() and back out to the original state, but
2666 * that would be more work than checking for this case upfront.
2667 */
2668 } else if (ds1_queued) {
2669 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2670 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2671 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2672 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2673 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2674 "replacing with %llu",
2675 (u_longlong_t)ds1->ds_object,
2676 dp->dp_spa->spa_name,
2677 (u_longlong_t)ds2->ds_object);
2678 } else if (ds2_queued) {
2679 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2680 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2681 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2682 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2683 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2684 "replacing with %llu",
2685 (u_longlong_t)ds2->ds_object,
2686 dp->dp_spa->spa_name,
2687 (u_longlong_t)ds1->ds_object);
2688 }
2689
2690 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2691 }
2692
2693 static int
2694 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2695 {
2696 uint64_t originobj = *(uint64_t *)arg;
2697 dsl_dataset_t *ds;
2698 int err;
2699 dsl_scan_t *scn = dp->dp_scan;
2700
2701 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2702 return (0);
2703
2704 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2705 if (err)
2706 return (err);
2707
2708 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2709 dsl_dataset_t *prev;
2710 err = dsl_dataset_hold_obj(dp,
2711 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2712
2713 dsl_dataset_rele(ds, FTAG);
2714 if (err)
2715 return (err);
2716 ds = prev;
2717 }
2718 scan_ds_queue_insert(scn, ds->ds_object,
2719 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2720 dsl_dataset_rele(ds, FTAG);
2721 return (0);
2722 }
2723
2724 static void
2725 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2726 {
2727 dsl_pool_t *dp = scn->scn_dp;
2728 dsl_dataset_t *ds;
2729
2730 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2731
2732 if (scn->scn_phys.scn_cur_min_txg >=
2733 scn->scn_phys.scn_max_txg) {
2734 /*
2735 * This can happen if this snapshot was created after the
2736 * scan started, and we already completed a previous snapshot
2737 * that was created after the scan started. This snapshot
2738 * only references blocks with:
2739 *
2740 * birth < our ds_creation_txg
2741 * cur_min_txg is no less than ds_creation_txg.
2742 * We have already visited these blocks.
2743 * or
2744 * birth > scn_max_txg
2745 * The scan requested not to visit these blocks.
2746 *
2747 * Subsequent snapshots (and clones) can reference our
2748 * blocks, or blocks with even higher birth times.
2749 * Therefore we do not need to visit them either,
2750 * so we do not add them to the work queue.
2751 *
2752 * Note that checking for cur_min_txg >= cur_max_txg
2753 * is not sufficient, because in that case we may need to
2754 * visit subsequent snapshots. This happens when min_txg > 0,
2755 * which raises cur_min_txg. In this case we will visit
2756 * this dataset but skip all of its blocks, because the
2757 * rootbp's birth time is < cur_min_txg. Then we will
2758 * add the next snapshots/clones to the work queue.
2759 */
2760 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2761 dsl_dataset_name(ds, dsname);
2762 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2763 "cur_min_txg (%llu) >= max_txg (%llu)",
2764 (longlong_t)dsobj, dsname,
2765 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2766 (longlong_t)scn->scn_phys.scn_max_txg);
2767 kmem_free(dsname, MAXNAMELEN);
2768
2769 goto out;
2770 }
2771
2772 /*
2773 * Only the ZIL in the head (non-snapshot) is valid. Even though
2774 * snapshots can have ZIL block pointers (which may be the same
2775 * BP as in the head), they must be ignored. In addition, $ORIGIN
2776 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2777 * need to look for a ZIL in it either. So we traverse the ZIL here,
2778 * rather than in scan_recurse(), because the regular snapshot
2779 * block-sharing rules don't apply to it.
2780 */
2781 if (!dsl_dataset_is_snapshot(ds) &&
2782 (dp->dp_origin_snap == NULL ||
2783 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2784 objset_t *os;
2785 if (dmu_objset_from_ds(ds, &os) != 0) {
2786 goto out;
2787 }
2788 dsl_scan_zil(dp, &os->os_zil_header);
2789 }
2790
2791 /*
2792 * Iterate over the bps in this ds.
2793 */
2794 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2795 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2796 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2797 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2798
2799 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2800 dsl_dataset_name(ds, dsname);
2801 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2802 "suspending=%u",
2803 (longlong_t)dsobj, dsname,
2804 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2805 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2806 (int)scn->scn_suspending);
2807 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2808
2809 if (scn->scn_suspending)
2810 goto out;
2811
2812 /*
2813 * We've finished this pass over this dataset.
2814 */
2815
2816 /*
2817 * If we did not completely visit this dataset, do another pass.
2818 */
2819 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2820 zfs_dbgmsg("incomplete pass on %s; visiting again",
2821 dp->dp_spa->spa_name);
2822 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2823 scan_ds_queue_insert(scn, ds->ds_object,
2824 scn->scn_phys.scn_cur_max_txg);
2825 goto out;
2826 }
2827
2828 /*
2829 * Add descendant datasets to work queue.
2830 */
2831 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2832 scan_ds_queue_insert(scn,
2833 dsl_dataset_phys(ds)->ds_next_snap_obj,
2834 dsl_dataset_phys(ds)->ds_creation_txg);
2835 }
2836 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2837 boolean_t usenext = B_FALSE;
2838 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2839 uint64_t count;
2840 /*
2841 * A bug in a previous version of the code could
2842 * cause upgrade_clones_cb() to not set
2843 * ds_next_snap_obj when it should, leading to a
2844 * missing entry. Therefore we can only use the
2845 * next_clones_obj when its count is correct.
2846 */
2847 int err = zap_count(dp->dp_meta_objset,
2848 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2849 if (err == 0 &&
2850 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2851 usenext = B_TRUE;
2852 }
2853
2854 if (usenext) {
2855 zap_cursor_t zc;
2856 zap_attribute_t za;
2857 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2858 dsl_dataset_phys(ds)->ds_next_clones_obj);
2859 zap_cursor_retrieve(&zc, &za) == 0;
2860 (void) zap_cursor_advance(&zc)) {
2861 scan_ds_queue_insert(scn,
2862 zfs_strtonum(za.za_name, NULL),
2863 dsl_dataset_phys(ds)->ds_creation_txg);
2864 }
2865 zap_cursor_fini(&zc);
2866 } else {
2867 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2868 enqueue_clones_cb, &ds->ds_object,
2869 DS_FIND_CHILDREN));
2870 }
2871 }
2872
2873 out:
2874 dsl_dataset_rele(ds, FTAG);
2875 }
2876
2877 static int
2878 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2879 {
2880 (void) arg;
2881 dsl_dataset_t *ds;
2882 int err;
2883 dsl_scan_t *scn = dp->dp_scan;
2884
2885 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2886 if (err)
2887 return (err);
2888
2889 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2890 dsl_dataset_t *prev;
2891 err = dsl_dataset_hold_obj(dp,
2892 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2893 if (err) {
2894 dsl_dataset_rele(ds, FTAG);
2895 return (err);
2896 }
2897
2898 /*
2899 * If this is a clone, we don't need to worry about it for now.
2900 */
2901 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2902 dsl_dataset_rele(ds, FTAG);
2903 dsl_dataset_rele(prev, FTAG);
2904 return (0);
2905 }
2906 dsl_dataset_rele(ds, FTAG);
2907 ds = prev;
2908 }
2909
2910 scan_ds_queue_insert(scn, ds->ds_object,
2911 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2912 dsl_dataset_rele(ds, FTAG);
2913 return (0);
2914 }
2915
2916 void
2917 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2918 ddt_entry_t *dde, dmu_tx_t *tx)
2919 {
2920 (void) tx;
2921 const ddt_key_t *ddk = &dde->dde_key;
2922 ddt_phys_t *ddp = dde->dde_phys;
2923 blkptr_t bp;
2924 zbookmark_phys_t zb = { 0 };
2925
2926 if (!dsl_scan_is_running(scn))
2927 return;
2928
2929 /*
2930 * This function is special because it is the only thing
2931 * that can add scan_io_t's to the vdev scan queues from
2932 * outside dsl_scan_sync(). For the most part this is ok
2933 * as long as it is called from within syncing context.
2934 * However, dsl_scan_sync() expects that no new sio's will
2935 * be added between when all the work for a scan is done
2936 * and the next txg when the scan is actually marked as
2937 * completed. This check ensures we do not issue new sio's
2938 * during this period.
2939 */
2940 if (scn->scn_done_txg != 0)
2941 return;
2942
2943 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2944 if (ddp->ddp_phys_birth == 0 ||
2945 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2946 continue;
2947 ddt_bp_create(checksum, ddk, ddp, &bp);
2948
2949 scn->scn_visited_this_txg++;
2950 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2951 }
2952 }
2953
2954 /*
2955 * Scrub/dedup interaction.
2956 *
2957 * If there are N references to a deduped block, we don't want to scrub it
2958 * N times -- ideally, we should scrub it exactly once.
2959 *
2960 * We leverage the fact that the dde's replication class (enum ddt_class)
2961 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2962 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2963 *
2964 * To prevent excess scrubbing, the scrub begins by walking the DDT
2965 * to find all blocks with refcnt > 1, and scrubs each of these once.
2966 * Since there are two replication classes which contain blocks with
2967 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2968 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2969 *
2970 * There would be nothing more to say if a block's refcnt couldn't change
2971 * during a scrub, but of course it can so we must account for changes
2972 * in a block's replication class.
2973 *
2974 * Here's an example of what can occur:
2975 *
2976 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2977 * when visited during the top-down scrub phase, it will be scrubbed twice.
2978 * This negates our scrub optimization, but is otherwise harmless.
2979 *
2980 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2981 * on each visit during the top-down scrub phase, it will never be scrubbed.
2982 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2983 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2984 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2985 * while a scrub is in progress, it scrubs the block right then.
2986 */
2987 static void
2988 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2989 {
2990 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2991 ddt_entry_t dde = {{{{0}}}};
2992 int error;
2993 uint64_t n = 0;
2994
2995 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2996 ddt_t *ddt;
2997
2998 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2999 break;
3000 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3001 (longlong_t)ddb->ddb_class,
3002 (longlong_t)ddb->ddb_type,
3003 (longlong_t)ddb->ddb_checksum,
3004 (longlong_t)ddb->ddb_cursor);
3005
3006 /* There should be no pending changes to the dedup table */
3007 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3008 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3009
3010 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
3011 n++;
3012
3013 if (dsl_scan_check_suspend(scn, NULL))
3014 break;
3015 }
3016
3017 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3018 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
3019 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
3020
3021 ASSERT(error == 0 || error == ENOENT);
3022 ASSERT(error != ENOENT ||
3023 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3024 }
3025
3026 static uint64_t
3027 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3028 {
3029 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3030 if (ds->ds_is_snapshot)
3031 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3032 return (smt);
3033 }
3034
3035 static void
3036 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3037 {
3038 scan_ds_t *sds;
3039 dsl_pool_t *dp = scn->scn_dp;
3040
3041 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3042 scn->scn_phys.scn_ddt_class_max) {
3043 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3044 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3045 dsl_scan_ddt(scn, tx);
3046 if (scn->scn_suspending)
3047 return;
3048 }
3049
3050 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3051 /* First do the MOS & ORIGIN */
3052
3053 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3054 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3055 dsl_scan_visit_rootbp(scn, NULL,
3056 &dp->dp_meta_rootbp, tx);
3057 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
3058 if (scn->scn_suspending)
3059 return;
3060
3061 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3062 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3063 enqueue_cb, NULL, DS_FIND_CHILDREN));
3064 } else {
3065 dsl_scan_visitds(scn,
3066 dp->dp_origin_snap->ds_object, tx);
3067 }
3068 ASSERT(!scn->scn_suspending);
3069 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3070 ZB_DESTROYED_OBJSET) {
3071 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3072 /*
3073 * If we were suspended, continue from here. Note if the
3074 * ds we were suspended on was deleted, the zb_objset may
3075 * be -1, so we will skip this and find a new objset
3076 * below.
3077 */
3078 dsl_scan_visitds(scn, dsobj, tx);
3079 if (scn->scn_suspending)
3080 return;
3081 }
3082
3083 /*
3084 * In case we suspended right at the end of the ds, zero the
3085 * bookmark so we don't think that we're still trying to resume.
3086 */
3087 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3088
3089 /*
3090 * Keep pulling things out of the dataset avl queue. Updates to the
3091 * persistent zap-object-as-queue happen only at checkpoints.
3092 */
3093 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3094 dsl_dataset_t *ds;
3095 uint64_t dsobj = sds->sds_dsobj;
3096 uint64_t txg = sds->sds_txg;
3097
3098 /* dequeue and free the ds from the queue */
3099 scan_ds_queue_remove(scn, dsobj);
3100 sds = NULL;
3101
3102 /* set up min / max txg */
3103 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3104 if (txg != 0) {
3105 scn->scn_phys.scn_cur_min_txg =
3106 MAX(scn->scn_phys.scn_min_txg, txg);
3107 } else {
3108 scn->scn_phys.scn_cur_min_txg =
3109 MAX(scn->scn_phys.scn_min_txg,
3110 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3111 }
3112 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3113 dsl_dataset_rele(ds, FTAG);
3114
3115 dsl_scan_visitds(scn, dsobj, tx);
3116 if (scn->scn_suspending)
3117 return;
3118 }
3119
3120 /* No more objsets to fetch, we're done */
3121 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3122 ASSERT0(scn->scn_suspending);
3123 }
3124
3125 static uint64_t
3126 dsl_scan_count_data_disks(spa_t *spa)
3127 {
3128 vdev_t *rvd = spa->spa_root_vdev;
3129 uint64_t i, leaves = 0;
3130
3131 for (i = 0; i < rvd->vdev_children; i++) {
3132 vdev_t *vd = rvd->vdev_child[i];
3133 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3134 continue;
3135 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3136 }
3137 return (leaves);
3138 }
3139
3140 static void
3141 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3142 {
3143 int i;
3144 uint64_t cur_size = 0;
3145
3146 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3147 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3148 }
3149
3150 q->q_total_zio_size_this_txg += cur_size;
3151 q->q_zios_this_txg++;
3152 }
3153
3154 static void
3155 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3156 uint64_t end)
3157 {
3158 q->q_total_seg_size_this_txg += end - start;
3159 q->q_segs_this_txg++;
3160 }
3161
3162 static boolean_t
3163 scan_io_queue_check_suspend(dsl_scan_t *scn)
3164 {
3165 /* See comment in dsl_scan_check_suspend() */
3166 uint64_t curr_time_ns = gethrtime();
3167 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3168 uint64_t sync_time_ns = curr_time_ns -
3169 scn->scn_dp->dp_spa->spa_sync_starttime;
3170 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3171 zfs_vdev_async_write_active_min_dirty_percent / 100;
3172 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3173 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3174
3175 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3176 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3177 txg_sync_waiting(scn->scn_dp) ||
3178 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3179 spa_shutting_down(scn->scn_dp->dp_spa));
3180 }
3181
3182 /*
3183 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3184 * disk. This consumes the io_list and frees the scan_io_t's. This is
3185 * called when emptying queues, either when we're up against the memory
3186 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3187 * processing the list before we finished. Any sios that were not issued
3188 * will remain in the io_list.
3189 */
3190 static boolean_t
3191 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3192 {
3193 dsl_scan_t *scn = queue->q_scn;
3194 scan_io_t *sio;
3195 boolean_t suspended = B_FALSE;
3196
3197 while ((sio = list_head(io_list)) != NULL) {
3198 blkptr_t bp;
3199
3200 if (scan_io_queue_check_suspend(scn)) {
3201 suspended = B_TRUE;
3202 break;
3203 }
3204
3205 sio2bp(sio, &bp);
3206 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3207 &sio->sio_zb, queue);
3208 (void) list_remove_head(io_list);
3209 scan_io_queues_update_zio_stats(queue, &bp);
3210 sio_free(sio);
3211 }
3212 return (suspended);
3213 }
3214
3215 /*
3216 * This function removes sios from an IO queue which reside within a given
3217 * range_seg_t and inserts them (in offset order) into a list. Note that
3218 * we only ever return a maximum of 32 sios at once. If there are more sios
3219 * to process within this segment that did not make it onto the list we
3220 * return B_TRUE and otherwise B_FALSE.
3221 */
3222 static boolean_t
3223 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3224 {
3225 scan_io_t *srch_sio, *sio, *next_sio;
3226 avl_index_t idx;
3227 uint_t num_sios = 0;
3228 int64_t bytes_issued = 0;
3229
3230 ASSERT(rs != NULL);
3231 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3232
3233 srch_sio = sio_alloc(1);
3234 srch_sio->sio_nr_dvas = 1;
3235 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3236
3237 /*
3238 * The exact start of the extent might not contain any matching zios,
3239 * so if that's the case, examine the next one in the tree.
3240 */
3241 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3242 sio_free(srch_sio);
3243
3244 if (sio == NULL)
3245 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3246
3247 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3248 queue->q_exts_by_addr) && num_sios <= 32) {
3249 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3250 queue->q_exts_by_addr));
3251 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3252 queue->q_exts_by_addr));
3253
3254 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3255 avl_remove(&queue->q_sios_by_addr, sio);
3256 if (avl_is_empty(&queue->q_sios_by_addr))
3257 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3258 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3259
3260 bytes_issued += SIO_GET_ASIZE(sio);
3261 num_sios++;
3262 list_insert_tail(list, sio);
3263 sio = next_sio;
3264 }
3265
3266 /*
3267 * We limit the number of sios we process at once to 32 to avoid
3268 * biting off more than we can chew. If we didn't take everything
3269 * in the segment we update it to reflect the work we were able to
3270 * complete. Otherwise, we remove it from the range tree entirely.
3271 */
3272 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3273 queue->q_exts_by_addr)) {
3274 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3275 -bytes_issued);
3276 range_tree_resize_segment(queue->q_exts_by_addr, rs,
3277 SIO_GET_OFFSET(sio), rs_get_end(rs,
3278 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3279 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3280 return (B_TRUE);
3281 } else {
3282 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3283 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3284 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3285 queue->q_last_ext_addr = -1;
3286 return (B_FALSE);
3287 }
3288 }
3289
3290 /*
3291 * This is called from the queue emptying thread and selects the next
3292 * extent from which we are to issue I/Os. The behavior of this function
3293 * depends on the state of the scan, the current memory consumption and
3294 * whether or not we are performing a scan shutdown.
3295 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3296 * needs to perform a checkpoint
3297 * 2) We select the largest available extent if we are up against the
3298 * memory limit.
3299 * 3) Otherwise we don't select any extents.
3300 */
3301 static range_seg_t *
3302 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3303 {
3304 dsl_scan_t *scn = queue->q_scn;
3305 range_tree_t *rt = queue->q_exts_by_addr;
3306
3307 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3308 ASSERT(scn->scn_is_sorted);
3309
3310 if (!scn->scn_checkpointing && !scn->scn_clearing)
3311 return (NULL);
3312
3313 /*
3314 * During normal clearing, we want to issue our largest segments
3315 * first, keeping IO as sequential as possible, and leaving the
3316 * smaller extents for later with the hope that they might eventually
3317 * grow to larger sequential segments. However, when the scan is
3318 * checkpointing, no new extents will be added to the sorting queue,
3319 * so the way we are sorted now is as good as it will ever get.
3320 * In this case, we instead switch to issuing extents in LBA order.
3321 */
3322 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3323 zfs_scan_issue_strategy == 1)
3324 return (range_tree_first(rt));
3325
3326 /*
3327 * Try to continue previous extent if it is not completed yet. After
3328 * shrink in scan_io_queue_gather() it may no longer be the best, but
3329 * otherwise we leave shorter remnant every txg.
3330 */
3331 uint64_t start;
3332 uint64_t size = 1ULL << rt->rt_shift;
3333 range_seg_t *addr_rs;
3334 if (queue->q_last_ext_addr != -1) {
3335 start = queue->q_last_ext_addr;
3336 addr_rs = range_tree_find(rt, start, size);
3337 if (addr_rs != NULL)
3338 return (addr_rs);
3339 }
3340
3341 /*
3342 * Nothing to continue, so find new best extent.
3343 */
3344 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3345 if (v == NULL)
3346 return (NULL);
3347 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3348
3349 /*
3350 * We need to get the original entry in the by_addr tree so we can
3351 * modify it.
3352 */
3353 addr_rs = range_tree_find(rt, start, size);
3354 ASSERT3P(addr_rs, !=, NULL);
3355 ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3356 ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3357 return (addr_rs);
3358 }
3359
3360 static void
3361 scan_io_queues_run_one(void *arg)
3362 {
3363 dsl_scan_io_queue_t *queue = arg;
3364 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3365 boolean_t suspended = B_FALSE;
3366 range_seg_t *rs;
3367 scan_io_t *sio;
3368 zio_t *zio;
3369 list_t sio_list;
3370
3371 ASSERT(queue->q_scn->scn_is_sorted);
3372
3373 list_create(&sio_list, sizeof (scan_io_t),
3374 offsetof(scan_io_t, sio_nodes.sio_list_node));
3375 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3376 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3377 mutex_enter(q_lock);
3378 queue->q_zio = zio;
3379
3380 /* Calculate maximum in-flight bytes for this vdev. */
3381 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3382 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3383
3384 /* reset per-queue scan statistics for this txg */
3385 queue->q_total_seg_size_this_txg = 0;
3386 queue->q_segs_this_txg = 0;
3387 queue->q_total_zio_size_this_txg = 0;
3388 queue->q_zios_this_txg = 0;
3389
3390 /* loop until we run out of time or sios */
3391 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3392 uint64_t seg_start = 0, seg_end = 0;
3393 boolean_t more_left;
3394
3395 ASSERT(list_is_empty(&sio_list));
3396
3397 /* loop while we still have sios left to process in this rs */
3398 do {
3399 scan_io_t *first_sio, *last_sio;
3400
3401 /*
3402 * We have selected which extent needs to be
3403 * processed next. Gather up the corresponding sios.
3404 */
3405 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3406 ASSERT(!list_is_empty(&sio_list));
3407 first_sio = list_head(&sio_list);
3408 last_sio = list_tail(&sio_list);
3409
3410 seg_end = SIO_GET_END_OFFSET(last_sio);
3411 if (seg_start == 0)
3412 seg_start = SIO_GET_OFFSET(first_sio);
3413
3414 /*
3415 * Issuing sios can take a long time so drop the
3416 * queue lock. The sio queue won't be updated by
3417 * other threads since we're in syncing context so
3418 * we can be sure that our trees will remain exactly
3419 * as we left them.
3420 */
3421 mutex_exit(q_lock);
3422 suspended = scan_io_queue_issue(queue, &sio_list);
3423 mutex_enter(q_lock);
3424
3425 if (suspended)
3426 break;
3427 } while (more_left);
3428
3429 /* update statistics for debugging purposes */
3430 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3431
3432 if (suspended)
3433 break;
3434 }
3435
3436 /*
3437 * If we were suspended in the middle of processing,
3438 * requeue any unfinished sios and exit.
3439 */
3440 while ((sio = list_head(&sio_list)) != NULL) {
3441 list_remove(&sio_list, sio);
3442 scan_io_queue_insert_impl(queue, sio);
3443 }
3444
3445 queue->q_zio = NULL;
3446 mutex_exit(q_lock);
3447 zio_nowait(zio);
3448 list_destroy(&sio_list);
3449 }
3450
3451 /*
3452 * Performs an emptying run on all scan queues in the pool. This just
3453 * punches out one thread per top-level vdev, each of which processes
3454 * only that vdev's scan queue. We can parallelize the I/O here because
3455 * we know that each queue's I/Os only affect its own top-level vdev.
3456 *
3457 * This function waits for the queue runs to complete, and must be
3458 * called from dsl_scan_sync (or in general, syncing context).
3459 */
3460 static void
3461 scan_io_queues_run(dsl_scan_t *scn)
3462 {
3463 spa_t *spa = scn->scn_dp->dp_spa;
3464
3465 ASSERT(scn->scn_is_sorted);
3466 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3467
3468 if (scn->scn_queues_pending == 0)
3469 return;
3470
3471 if (scn->scn_taskq == NULL) {
3472 int nthreads = spa->spa_root_vdev->vdev_children;
3473
3474 /*
3475 * We need to make this taskq *always* execute as many
3476 * threads in parallel as we have top-level vdevs and no
3477 * less, otherwise strange serialization of the calls to
3478 * scan_io_queues_run_one can occur during spa_sync runs
3479 * and that significantly impacts performance.
3480 */
3481 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3482 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3483 }
3484
3485 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3486 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3487
3488 mutex_enter(&vd->vdev_scan_io_queue_lock);
3489 if (vd->vdev_scan_io_queue != NULL) {
3490 VERIFY(taskq_dispatch(scn->scn_taskq,
3491 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3492 TQ_SLEEP) != TASKQID_INVALID);
3493 }
3494 mutex_exit(&vd->vdev_scan_io_queue_lock);
3495 }
3496
3497 /*
3498 * Wait for the queues to finish issuing their IOs for this run
3499 * before we return. There may still be IOs in flight at this
3500 * point.
3501 */
3502 taskq_wait(scn->scn_taskq);
3503 }
3504
3505 static boolean_t
3506 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3507 {
3508 uint64_t elapsed_nanosecs;
3509
3510 if (zfs_recover)
3511 return (B_FALSE);
3512
3513 if (zfs_async_block_max_blocks != 0 &&
3514 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3515 return (B_TRUE);
3516 }
3517
3518 if (zfs_max_async_dedup_frees != 0 &&
3519 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3520 return (B_TRUE);
3521 }
3522
3523 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3524 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3525 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3526 txg_sync_waiting(scn->scn_dp)) ||
3527 spa_shutting_down(scn->scn_dp->dp_spa));
3528 }
3529
3530 static int
3531 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3532 {
3533 dsl_scan_t *scn = arg;
3534
3535 if (!scn->scn_is_bptree ||
3536 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3537 if (dsl_scan_async_block_should_pause(scn))
3538 return (SET_ERROR(ERESTART));
3539 }
3540
3541 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3542 dmu_tx_get_txg(tx), bp, 0));
3543 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3544 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3545 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3546 scn->scn_visited_this_txg++;
3547 if (BP_GET_DEDUP(bp))
3548 scn->scn_dedup_frees_this_txg++;
3549 return (0);
3550 }
3551
3552 static void
3553 dsl_scan_update_stats(dsl_scan_t *scn)
3554 {
3555 spa_t *spa = scn->scn_dp->dp_spa;
3556 uint64_t i;
3557 uint64_t seg_size_total = 0, zio_size_total = 0;
3558 uint64_t seg_count_total = 0, zio_count_total = 0;
3559
3560 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3561 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3562 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3563
3564 if (queue == NULL)
3565 continue;
3566
3567 seg_size_total += queue->q_total_seg_size_this_txg;
3568 zio_size_total += queue->q_total_zio_size_this_txg;
3569 seg_count_total += queue->q_segs_this_txg;
3570 zio_count_total += queue->q_zios_this_txg;
3571 }
3572
3573 if (seg_count_total == 0 || zio_count_total == 0) {
3574 scn->scn_avg_seg_size_this_txg = 0;
3575 scn->scn_avg_zio_size_this_txg = 0;
3576 scn->scn_segs_this_txg = 0;
3577 scn->scn_zios_this_txg = 0;
3578 return;
3579 }
3580
3581 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3582 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3583 scn->scn_segs_this_txg = seg_count_total;
3584 scn->scn_zios_this_txg = zio_count_total;
3585 }
3586
3587 static int
3588 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3589 dmu_tx_t *tx)
3590 {
3591 ASSERT(!bp_freed);
3592 return (dsl_scan_free_block_cb(arg, bp, tx));
3593 }
3594
3595 static int
3596 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3597 dmu_tx_t *tx)
3598 {
3599 ASSERT(!bp_freed);
3600 dsl_scan_t *scn = arg;
3601 const dva_t *dva = &bp->blk_dva[0];
3602
3603 if (dsl_scan_async_block_should_pause(scn))
3604 return (SET_ERROR(ERESTART));
3605
3606 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3607 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3608 DVA_GET_ASIZE(dva), tx);
3609 scn->scn_visited_this_txg++;
3610 return (0);
3611 }
3612
3613 boolean_t
3614 dsl_scan_active(dsl_scan_t *scn)
3615 {
3616 spa_t *spa = scn->scn_dp->dp_spa;
3617 uint64_t used = 0, comp, uncomp;
3618 boolean_t clones_left;
3619
3620 if (spa->spa_load_state != SPA_LOAD_NONE)
3621 return (B_FALSE);
3622 if (spa_shutting_down(spa))
3623 return (B_FALSE);
3624 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3625 (scn->scn_async_destroying && !scn->scn_async_stalled))
3626 return (B_TRUE);
3627
3628 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3629 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3630 &used, &comp, &uncomp);
3631 }
3632 clones_left = spa_livelist_delete_check(spa);
3633 return ((used != 0) || (clones_left));
3634 }
3635
3636 boolean_t
3637 dsl_errorscrub_active(dsl_scan_t *scn)
3638 {
3639 spa_t *spa = scn->scn_dp->dp_spa;
3640 if (spa->spa_load_state != SPA_LOAD_NONE)
3641 return (B_FALSE);
3642 if (spa_shutting_down(spa))
3643 return (B_FALSE);
3644 if (dsl_errorscrubbing(scn->scn_dp))
3645 return (B_TRUE);
3646 return (B_FALSE);
3647 }
3648
3649 static boolean_t
3650 dsl_scan_check_deferred(vdev_t *vd)
3651 {
3652 boolean_t need_resilver = B_FALSE;
3653
3654 for (int c = 0; c < vd->vdev_children; c++) {
3655 need_resilver |=
3656 dsl_scan_check_deferred(vd->vdev_child[c]);
3657 }
3658
3659 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3660 !vd->vdev_ops->vdev_op_leaf)
3661 return (need_resilver);
3662
3663 if (!vd->vdev_resilver_deferred)
3664 need_resilver = B_TRUE;
3665
3666 return (need_resilver);
3667 }
3668
3669 static boolean_t
3670 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3671 uint64_t phys_birth)
3672 {
3673 vdev_t *vd;
3674
3675 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3676
3677 if (vd->vdev_ops == &vdev_indirect_ops) {
3678 /*
3679 * The indirect vdev can point to multiple
3680 * vdevs. For simplicity, always create
3681 * the resilver zio_t. zio_vdev_io_start()
3682 * will bypass the child resilver i/o's if
3683 * they are on vdevs that don't have DTL's.
3684 */
3685 return (B_TRUE);
3686 }
3687
3688 if (DVA_GET_GANG(dva)) {
3689 /*
3690 * Gang members may be spread across multiple
3691 * vdevs, so the best estimate we have is the
3692 * scrub range, which has already been checked.
3693 * XXX -- it would be better to change our
3694 * allocation policy to ensure that all
3695 * gang members reside on the same vdev.
3696 */
3697 return (B_TRUE);
3698 }
3699
3700 /*
3701 * Check if the top-level vdev must resilver this offset.
3702 * When the offset does not intersect with a dirty leaf DTL
3703 * then it may be possible to skip the resilver IO. The psize
3704 * is provided instead of asize to simplify the check for RAIDZ.
3705 */
3706 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3707 return (B_FALSE);
3708
3709 /*
3710 * Check that this top-level vdev has a device under it which
3711 * is resilvering and is not deferred.
3712 */
3713 if (!dsl_scan_check_deferred(vd))
3714 return (B_FALSE);
3715
3716 return (B_TRUE);
3717 }
3718
3719 static int
3720 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3721 {
3722 dsl_scan_t *scn = dp->dp_scan;
3723 spa_t *spa = dp->dp_spa;
3724 int err = 0;
3725
3726 if (spa_suspend_async_destroy(spa))
3727 return (0);
3728
3729 if (zfs_free_bpobj_enabled &&
3730 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3731 scn->scn_is_bptree = B_FALSE;
3732 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3733 scn->scn_zio_root = zio_root(spa, NULL,
3734 NULL, ZIO_FLAG_MUSTSUCCEED);
3735 err = bpobj_iterate(&dp->dp_free_bpobj,
3736 bpobj_dsl_scan_free_block_cb, scn, tx);
3737 VERIFY0(zio_wait(scn->scn_zio_root));
3738 scn->scn_zio_root = NULL;
3739
3740 if (err != 0 && err != ERESTART)
3741 zfs_panic_recover("error %u from bpobj_iterate()", err);
3742 }
3743
3744 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3745 ASSERT(scn->scn_async_destroying);
3746 scn->scn_is_bptree = B_TRUE;
3747 scn->scn_zio_root = zio_root(spa, NULL,
3748 NULL, ZIO_FLAG_MUSTSUCCEED);
3749 err = bptree_iterate(dp->dp_meta_objset,
3750 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3751 VERIFY0(zio_wait(scn->scn_zio_root));
3752 scn->scn_zio_root = NULL;
3753
3754 if (err == EIO || err == ECKSUM) {
3755 err = 0;
3756 } else if (err != 0 && err != ERESTART) {
3757 zfs_panic_recover("error %u from "
3758 "traverse_dataset_destroyed()", err);
3759 }
3760
3761 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3762 /* finished; deactivate async destroy feature */
3763 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3764 ASSERT(!spa_feature_is_active(spa,
3765 SPA_FEATURE_ASYNC_DESTROY));
3766 VERIFY0(zap_remove(dp->dp_meta_objset,
3767 DMU_POOL_DIRECTORY_OBJECT,
3768 DMU_POOL_BPTREE_OBJ, tx));
3769 VERIFY0(bptree_free(dp->dp_meta_objset,
3770 dp->dp_bptree_obj, tx));
3771 dp->dp_bptree_obj = 0;
3772 scn->scn_async_destroying = B_FALSE;
3773 scn->scn_async_stalled = B_FALSE;
3774 } else {
3775 /*
3776 * If we didn't make progress, mark the async
3777 * destroy as stalled, so that we will not initiate
3778 * a spa_sync() on its behalf. Note that we only
3779 * check this if we are not finished, because if the
3780 * bptree had no blocks for us to visit, we can
3781 * finish without "making progress".
3782 */
3783 scn->scn_async_stalled =
3784 (scn->scn_visited_this_txg == 0);
3785 }
3786 }
3787 if (scn->scn_visited_this_txg) {
3788 zfs_dbgmsg("freed %llu blocks in %llums from "
3789 "free_bpobj/bptree on %s in txg %llu; err=%u",
3790 (longlong_t)scn->scn_visited_this_txg,
3791 (longlong_t)
3792 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3793 spa->spa_name, (longlong_t)tx->tx_txg, err);
3794 scn->scn_visited_this_txg = 0;
3795 scn->scn_dedup_frees_this_txg = 0;
3796
3797 /*
3798 * Write out changes to the DDT and the BRT that may be required
3799 * as a result of the blocks freed. This ensures that the DDT
3800 * and the BRT are clean when a scrub/resilver runs.
3801 */
3802 ddt_sync(spa, tx->tx_txg);
3803 brt_sync(spa, tx->tx_txg);
3804 }
3805 if (err != 0)
3806 return (err);
3807 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3808 zfs_free_leak_on_eio &&
3809 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3810 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3811 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3812 /*
3813 * We have finished background destroying, but there is still
3814 * some space left in the dp_free_dir. Transfer this leaked
3815 * space to the dp_leak_dir.
3816 */
3817 if (dp->dp_leak_dir == NULL) {
3818 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3819 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3820 LEAK_DIR_NAME, tx);
3821 VERIFY0(dsl_pool_open_special_dir(dp,
3822 LEAK_DIR_NAME, &dp->dp_leak_dir));
3823 rrw_exit(&dp->dp_config_rwlock, FTAG);
3824 }
3825 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3826 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3827 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3828 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3829 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3830 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3831 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3832 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3833 }
3834
3835 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3836 !spa_livelist_delete_check(spa)) {
3837 /* finished; verify that space accounting went to zero */
3838 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3839 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3840 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3841 }
3842
3843 spa_notify_waiters(spa);
3844
3845 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3846 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3847 DMU_POOL_OBSOLETE_BPOBJ));
3848 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3849 ASSERT(spa_feature_is_active(dp->dp_spa,
3850 SPA_FEATURE_OBSOLETE_COUNTS));
3851
3852 scn->scn_is_bptree = B_FALSE;
3853 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3854 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3855 dsl_scan_obsolete_block_cb, scn, tx);
3856 if (err != 0 && err != ERESTART)
3857 zfs_panic_recover("error %u from bpobj_iterate()", err);
3858
3859 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3860 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3861 }
3862 return (0);
3863 }
3864
3865 static void
3866 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3867 {
3868 zb->zb_objset = zfs_strtonum(buf, &buf);
3869 ASSERT(*buf == ':');
3870 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3871 ASSERT(*buf == ':');
3872 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3873 ASSERT(*buf == ':');
3874 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3875 ASSERT(*buf == '\0');
3876 }
3877
3878 static void
3879 name_to_object(char *buf, uint64_t *obj)
3880 {
3881 *obj = zfs_strtonum(buf, &buf);
3882 ASSERT(*buf == '\0');
3883 }
3884
3885 static void
3886 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3887 {
3888 dsl_pool_t *dp = scn->scn_dp;
3889 dsl_dataset_t *ds;
3890 objset_t *os;
3891 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3892 return;
3893
3894 if (dmu_objset_from_ds(ds, &os) != 0) {
3895 dsl_dataset_rele(ds, FTAG);
3896 return;
3897 }
3898
3899 /*
3900 * If the key is not loaded dbuf_dnode_findbp() will error out with
3901 * EACCES. However in that case dnode_hold() will eventually call
3902 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3903 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3904 * Avoid this by checking here if the keys are loaded, if not return.
3905 * If the keys are not loaded the head_errlog feature is meaningless
3906 * as we cannot figure out the birth txg of the block pointer.
3907 */
3908 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3909 ZFS_KEYSTATUS_UNAVAILABLE) {
3910 dsl_dataset_rele(ds, FTAG);
3911 return;
3912 }
3913
3914 dnode_t *dn;
3915 blkptr_t bp;
3916
3917 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3918 dsl_dataset_rele(ds, FTAG);
3919 return;
3920 }
3921
3922 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3923 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3924 NULL);
3925
3926 if (error) {
3927 rw_exit(&dn->dn_struct_rwlock);
3928 dnode_rele(dn, FTAG);
3929 dsl_dataset_rele(ds, FTAG);
3930 return;
3931 }
3932
3933 if (!error && BP_IS_HOLE(&bp)) {
3934 rw_exit(&dn->dn_struct_rwlock);
3935 dnode_rele(dn, FTAG);
3936 dsl_dataset_rele(ds, FTAG);
3937 return;
3938 }
3939
3940 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3941 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3942
3943 /* If it's an intent log block, failure is expected. */
3944 if (zb.zb_level == ZB_ZIL_LEVEL)
3945 zio_flags |= ZIO_FLAG_SPECULATIVE;
3946
3947 ASSERT(!BP_IS_EMBEDDED(&bp));
3948 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3949 rw_exit(&dn->dn_struct_rwlock);
3950 dnode_rele(dn, FTAG);
3951 dsl_dataset_rele(ds, FTAG);
3952 }
3953
3954 /*
3955 * We keep track of the scrubbed error blocks in "count". This will be used
3956 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3957 * function is modelled after check_filesystem().
3958 */
3959 static int
3960 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3961 int *count)
3962 {
3963 dsl_dataset_t *ds;
3964 dsl_pool_t *dp = spa->spa_dsl_pool;
3965 dsl_scan_t *scn = dp->dp_scan;
3966
3967 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
3968 if (error != 0)
3969 return (error);
3970
3971 uint64_t latest_txg;
3972 uint64_t txg_to_consider = spa->spa_syncing_txg;
3973 boolean_t check_snapshot = B_TRUE;
3974
3975 error = find_birth_txg(ds, zep, &latest_txg);
3976
3977 /*
3978 * If find_birth_txg() errors out, then err on the side of caution and
3979 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3980 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3981 * scrub all objects.
3982 */
3983 if (error == 0 && zep->zb_birth == latest_txg) {
3984 /* Block neither free nor re written. */
3985 zbookmark_phys_t zb;
3986 zep_to_zb(fs, zep, &zb);
3987 scn->scn_zio_root = zio_root(spa, NULL, NULL,
3988 ZIO_FLAG_CANFAIL);
3989 /* We have already acquired the config lock for spa */
3990 read_by_block_level(scn, zb);
3991
3992 (void) zio_wait(scn->scn_zio_root);
3993 scn->scn_zio_root = NULL;
3994
3995 scn->errorscrub_phys.dep_examined++;
3996 scn->errorscrub_phys.dep_to_examine--;
3997 (*count)++;
3998 if ((*count) == zfs_scrub_error_blocks_per_txg ||
3999 dsl_error_scrub_check_suspend(scn, &zb)) {
4000 dsl_dataset_rele(ds, FTAG);
4001 return (SET_ERROR(EFAULT));
4002 }
4003
4004 check_snapshot = B_FALSE;
4005 } else if (error == 0) {
4006 txg_to_consider = latest_txg;
4007 }
4008
4009 /*
4010 * Retrieve the number of snapshots if the dataset is not a snapshot.
4011 */
4012 uint64_t snap_count = 0;
4013 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4014
4015 error = zap_count(spa->spa_meta_objset,
4016 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4017
4018 if (error != 0) {
4019 dsl_dataset_rele(ds, FTAG);
4020 return (error);
4021 }
4022 }
4023
4024 if (snap_count == 0) {
4025 /* Filesystem without snapshots. */
4026 dsl_dataset_rele(ds, FTAG);
4027 return (0);
4028 }
4029
4030 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4031 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4032
4033 dsl_dataset_rele(ds, FTAG);
4034
4035 /* Check only snapshots created from this file system. */
4036 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4037 snap_obj_txg <= txg_to_consider) {
4038
4039 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4040 if (error != 0)
4041 return (error);
4042
4043 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4044 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4045 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4046 dsl_dataset_rele(ds, FTAG);
4047 continue;
4048 }
4049
4050 boolean_t affected = B_TRUE;
4051 if (check_snapshot) {
4052 uint64_t blk_txg;
4053 error = find_birth_txg(ds, zep, &blk_txg);
4054
4055 /*
4056 * Scrub the snapshot also when zb_birth == 0 or when
4057 * find_birth_txg() returns an error.
4058 */
4059 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4060 (error != 0) || (zep->zb_birth == 0);
4061 }
4062
4063 /* Scrub snapshots. */
4064 if (affected) {
4065 zbookmark_phys_t zb;
4066 zep_to_zb(snap_obj, zep, &zb);
4067 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4068 ZIO_FLAG_CANFAIL);
4069 /* We have already acquired the config lock for spa */
4070 read_by_block_level(scn, zb);
4071
4072 (void) zio_wait(scn->scn_zio_root);
4073 scn->scn_zio_root = NULL;
4074
4075 scn->errorscrub_phys.dep_examined++;
4076 scn->errorscrub_phys.dep_to_examine--;
4077 (*count)++;
4078 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4079 dsl_error_scrub_check_suspend(scn, &zb)) {
4080 dsl_dataset_rele(ds, FTAG);
4081 return (EFAULT);
4082 }
4083 }
4084 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4085 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4086 dsl_dataset_rele(ds, FTAG);
4087 }
4088 return (0);
4089 }
4090
4091 void
4092 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4093 {
4094 spa_t *spa = dp->dp_spa;
4095 dsl_scan_t *scn = dp->dp_scan;
4096
4097 /*
4098 * Only process scans in sync pass 1.
4099 */
4100
4101 if (spa_sync_pass(spa) > 1)
4102 return;
4103
4104 /*
4105 * If the spa is shutting down, then stop scanning. This will
4106 * ensure that the scan does not dirty any new data during the
4107 * shutdown phase.
4108 */
4109 if (spa_shutting_down(spa))
4110 return;
4111
4112 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4113 return;
4114 }
4115
4116 if (dsl_scan_resilvering(scn->scn_dp)) {
4117 /* cancel the error scrub if resilver started */
4118 dsl_scan_cancel(scn->scn_dp);
4119 return;
4120 }
4121
4122 spa->spa_scrub_active = B_TRUE;
4123 scn->scn_sync_start_time = gethrtime();
4124
4125 /*
4126 * zfs_scan_suspend_progress can be set to disable scrub progress.
4127 * See more detailed comment in dsl_scan_sync().
4128 */
4129 if (zfs_scan_suspend_progress) {
4130 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4131 int mintime = zfs_scrub_min_time_ms;
4132
4133 while (zfs_scan_suspend_progress &&
4134 !txg_sync_waiting(scn->scn_dp) &&
4135 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4136 NSEC2MSEC(scan_time_ns) < mintime) {
4137 delay(hz);
4138 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4139 }
4140 return;
4141 }
4142
4143 int i = 0;
4144 zap_attribute_t *za;
4145 zbookmark_phys_t *zb;
4146 boolean_t limit_exceeded = B_FALSE;
4147
4148 za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4149 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4150
4151 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4152 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4153 zap_cursor_advance(&scn->errorscrub_cursor)) {
4154 name_to_bookmark(za->za_name, zb);
4155
4156 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4157 NULL, ZIO_FLAG_CANFAIL);
4158 dsl_pool_config_enter(dp, FTAG);
4159 read_by_block_level(scn, *zb);
4160 dsl_pool_config_exit(dp, FTAG);
4161
4162 (void) zio_wait(scn->scn_zio_root);
4163 scn->scn_zio_root = NULL;
4164
4165 scn->errorscrub_phys.dep_examined += 1;
4166 scn->errorscrub_phys.dep_to_examine -= 1;
4167 i++;
4168 if (i == zfs_scrub_error_blocks_per_txg ||
4169 dsl_error_scrub_check_suspend(scn, zb)) {
4170 limit_exceeded = B_TRUE;
4171 break;
4172 }
4173 }
4174
4175 if (!limit_exceeded)
4176 dsl_errorscrub_done(scn, B_TRUE, tx);
4177
4178 dsl_errorscrub_sync_state(scn, tx);
4179 kmem_free(za, sizeof (*za));
4180 kmem_free(zb, sizeof (*zb));
4181 return;
4182 }
4183
4184 int error = 0;
4185 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4186 zap_cursor_advance(&scn->errorscrub_cursor)) {
4187
4188 zap_cursor_t *head_ds_cursor;
4189 zap_attribute_t *head_ds_attr;
4190 zbookmark_err_phys_t head_ds_block;
4191
4192 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4193 head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4194
4195 uint64_t head_ds_err_obj = za->za_first_integer;
4196 uint64_t head_ds;
4197 name_to_object(za->za_name, &head_ds);
4198 boolean_t config_held = B_FALSE;
4199 uint64_t top_affected_fs;
4200
4201 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4202 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4203 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4204
4205 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4206
4207 /*
4208 * In case we are called from spa_sync the pool
4209 * config is already held.
4210 */
4211 if (!dsl_pool_config_held(dp)) {
4212 dsl_pool_config_enter(dp, FTAG);
4213 config_held = B_TRUE;
4214 }
4215
4216 error = find_top_affected_fs(spa,
4217 head_ds, &head_ds_block, &top_affected_fs);
4218 if (error)
4219 break;
4220
4221 error = scrub_filesystem(spa, top_affected_fs,
4222 &head_ds_block, &i);
4223
4224 if (error == SET_ERROR(EFAULT)) {
4225 limit_exceeded = B_TRUE;
4226 break;
4227 }
4228 }
4229
4230 zap_cursor_fini(head_ds_cursor);
4231 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4232 kmem_free(head_ds_attr, sizeof (*head_ds_attr));
4233
4234 if (config_held)
4235 dsl_pool_config_exit(dp, FTAG);
4236 }
4237
4238 kmem_free(za, sizeof (*za));
4239 kmem_free(zb, sizeof (*zb));
4240 if (!limit_exceeded)
4241 dsl_errorscrub_done(scn, B_TRUE, tx);
4242
4243 dsl_errorscrub_sync_state(scn, tx);
4244 }
4245
4246 /*
4247 * This is the primary entry point for scans that is called from syncing
4248 * context. Scans must happen entirely during syncing context so that we
4249 * can guarantee that blocks we are currently scanning will not change out
4250 * from under us. While a scan is active, this function controls how quickly
4251 * transaction groups proceed, instead of the normal handling provided by
4252 * txg_sync_thread().
4253 */
4254 void
4255 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4256 {
4257 int err = 0;
4258 dsl_scan_t *scn = dp->dp_scan;
4259 spa_t *spa = dp->dp_spa;
4260 state_sync_type_t sync_type = SYNC_OPTIONAL;
4261
4262 if (spa->spa_resilver_deferred &&
4263 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4264 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4265
4266 /*
4267 * Check for scn_restart_txg before checking spa_load_state, so
4268 * that we can restart an old-style scan while the pool is being
4269 * imported (see dsl_scan_init). We also restart scans if there
4270 * is a deferred resilver and the user has manually disabled
4271 * deferred resilvers via the tunable.
4272 */
4273 if (dsl_scan_restarting(scn, tx) ||
4274 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
4275 pool_scan_func_t func = POOL_SCAN_SCRUB;
4276 dsl_scan_done(scn, B_FALSE, tx);
4277 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4278 func = POOL_SCAN_RESILVER;
4279 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4280 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
4281 dsl_scan_setup_sync(&func, tx);
4282 }
4283
4284 /*
4285 * Only process scans in sync pass 1.
4286 */
4287 if (spa_sync_pass(spa) > 1)
4288 return;
4289
4290 /*
4291 * If the spa is shutting down, then stop scanning. This will
4292 * ensure that the scan does not dirty any new data during the
4293 * shutdown phase.
4294 */
4295 if (spa_shutting_down(spa))
4296 return;
4297
4298 /*
4299 * If the scan is inactive due to a stalled async destroy, try again.
4300 */
4301 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4302 return;
4303
4304 /* reset scan statistics */
4305 scn->scn_visited_this_txg = 0;
4306 scn->scn_dedup_frees_this_txg = 0;
4307 scn->scn_holes_this_txg = 0;
4308 scn->scn_lt_min_this_txg = 0;
4309 scn->scn_gt_max_this_txg = 0;
4310 scn->scn_ddt_contained_this_txg = 0;
4311 scn->scn_objsets_visited_this_txg = 0;
4312 scn->scn_avg_seg_size_this_txg = 0;
4313 scn->scn_segs_this_txg = 0;
4314 scn->scn_avg_zio_size_this_txg = 0;
4315 scn->scn_zios_this_txg = 0;
4316 scn->scn_suspending = B_FALSE;
4317 scn->scn_sync_start_time = gethrtime();
4318 spa->spa_scrub_active = B_TRUE;
4319
4320 /*
4321 * First process the async destroys. If we suspend, don't do
4322 * any scrubbing or resilvering. This ensures that there are no
4323 * async destroys while we are scanning, so the scan code doesn't
4324 * have to worry about traversing it. It is also faster to free the
4325 * blocks than to scrub them.
4326 */
4327 err = dsl_process_async_destroys(dp, tx);
4328 if (err != 0)
4329 return;
4330
4331 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4332 return;
4333
4334 /*
4335 * Wait a few txgs after importing to begin scanning so that
4336 * we can get the pool imported quickly.
4337 */
4338 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4339 return;
4340
4341 /*
4342 * zfs_scan_suspend_progress can be set to disable scan progress.
4343 * We don't want to spin the txg_sync thread, so we add a delay
4344 * here to simulate the time spent doing a scan. This is mostly
4345 * useful for testing and debugging.
4346 */
4347 if (zfs_scan_suspend_progress) {
4348 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4349 uint_t mintime = (scn->scn_phys.scn_func ==
4350 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4351 zfs_scrub_min_time_ms;
4352
4353 while (zfs_scan_suspend_progress &&
4354 !txg_sync_waiting(scn->scn_dp) &&
4355 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4356 NSEC2MSEC(scan_time_ns) < mintime) {
4357 delay(hz);
4358 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4359 }
4360 return;
4361 }
4362
4363 /*
4364 * Disabled by default, set zfs_scan_report_txgs to report
4365 * average performance over the last zfs_scan_report_txgs TXGs.
4366 */
4367 if (!dsl_scan_is_paused_scrub(scn) && zfs_scan_report_txgs != 0 &&
4368 tx->tx_txg % zfs_scan_report_txgs == 0) {
4369 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4370 spa_scan_stat_init(spa);
4371 }
4372
4373 /*
4374 * It is possible to switch from unsorted to sorted at any time,
4375 * but afterwards the scan will remain sorted unless reloaded from
4376 * a checkpoint after a reboot.
4377 */
4378 if (!zfs_scan_legacy) {
4379 scn->scn_is_sorted = B_TRUE;
4380 if (scn->scn_last_checkpoint == 0)
4381 scn->scn_last_checkpoint = ddi_get_lbolt();
4382 }
4383
4384 /*
4385 * For sorted scans, determine what kind of work we will be doing
4386 * this txg based on our memory limitations and whether or not we
4387 * need to perform a checkpoint.
4388 */
4389 if (scn->scn_is_sorted) {
4390 /*
4391 * If we are over our checkpoint interval, set scn_clearing
4392 * so that we can begin checkpointing immediately. The
4393 * checkpoint allows us to save a consistent bookmark
4394 * representing how much data we have scrubbed so far.
4395 * Otherwise, use the memory limit to determine if we should
4396 * scan for metadata or start issue scrub IOs. We accumulate
4397 * metadata until we hit our hard memory limit at which point
4398 * we issue scrub IOs until we are at our soft memory limit.
4399 */
4400 if (scn->scn_checkpointing ||
4401 ddi_get_lbolt() - scn->scn_last_checkpoint >
4402 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4403 if (!scn->scn_checkpointing)
4404 zfs_dbgmsg("begin scan checkpoint for %s",
4405 spa->spa_name);
4406
4407 scn->scn_checkpointing = B_TRUE;
4408 scn->scn_clearing = B_TRUE;
4409 } else {
4410 boolean_t should_clear = dsl_scan_should_clear(scn);
4411 if (should_clear && !scn->scn_clearing) {
4412 zfs_dbgmsg("begin scan clearing for %s",
4413 spa->spa_name);
4414 scn->scn_clearing = B_TRUE;
4415 } else if (!should_clear && scn->scn_clearing) {
4416 zfs_dbgmsg("finish scan clearing for %s",
4417 spa->spa_name);
4418 scn->scn_clearing = B_FALSE;
4419 }
4420 }
4421 } else {
4422 ASSERT0(scn->scn_checkpointing);
4423 ASSERT0(scn->scn_clearing);
4424 }
4425
4426 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4427 /* Need to scan metadata for more blocks to scrub */
4428 dsl_scan_phys_t *scnp = &scn->scn_phys;
4429 taskqid_t prefetch_tqid;
4430
4431 /*
4432 * Calculate the max number of in-flight bytes for pool-wide
4433 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4434 * Limits for the issuing phase are done per top-level vdev and
4435 * are handled separately.
4436 */
4437 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4438 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4439
4440 if (scnp->scn_ddt_bookmark.ddb_class <=
4441 scnp->scn_ddt_class_max) {
4442 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4443 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4444 "ddt bm=%llu/%llu/%llu/%llx",
4445 spa->spa_name,
4446 (longlong_t)tx->tx_txg,
4447 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4448 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4449 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4450 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4451 } else {
4452 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4453 "bm=%llu/%llu/%llu/%llu",
4454 spa->spa_name,
4455 (longlong_t)tx->tx_txg,
4456 (longlong_t)scnp->scn_bookmark.zb_objset,
4457 (longlong_t)scnp->scn_bookmark.zb_object,
4458 (longlong_t)scnp->scn_bookmark.zb_level,
4459 (longlong_t)scnp->scn_bookmark.zb_blkid);
4460 }
4461
4462 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4463 NULL, ZIO_FLAG_CANFAIL);
4464
4465 scn->scn_prefetch_stop = B_FALSE;
4466 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4467 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4468 ASSERT(prefetch_tqid != TASKQID_INVALID);
4469
4470 dsl_pool_config_enter(dp, FTAG);
4471 dsl_scan_visit(scn, tx);
4472 dsl_pool_config_exit(dp, FTAG);
4473
4474 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4475 scn->scn_prefetch_stop = B_TRUE;
4476 cv_broadcast(&spa->spa_scrub_io_cv);
4477 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4478
4479 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4480 (void) zio_wait(scn->scn_zio_root);
4481 scn->scn_zio_root = NULL;
4482
4483 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4484 "(%llu os's, %llu holes, %llu < mintxg, "
4485 "%llu in ddt, %llu > maxtxg)",
4486 (longlong_t)scn->scn_visited_this_txg,
4487 spa->spa_name,
4488 (longlong_t)NSEC2MSEC(gethrtime() -
4489 scn->scn_sync_start_time),
4490 (longlong_t)scn->scn_objsets_visited_this_txg,
4491 (longlong_t)scn->scn_holes_this_txg,
4492 (longlong_t)scn->scn_lt_min_this_txg,
4493 (longlong_t)scn->scn_ddt_contained_this_txg,
4494 (longlong_t)scn->scn_gt_max_this_txg);
4495
4496 if (!scn->scn_suspending) {
4497 ASSERT0(avl_numnodes(&scn->scn_queue));
4498 scn->scn_done_txg = tx->tx_txg + 1;
4499 if (scn->scn_is_sorted) {
4500 scn->scn_checkpointing = B_TRUE;
4501 scn->scn_clearing = B_TRUE;
4502 scn->scn_issued_before_pass +=
4503 spa->spa_scan_pass_issued;
4504 spa_scan_stat_init(spa);
4505 }
4506 zfs_dbgmsg("scan complete for %s txg %llu",
4507 spa->spa_name,
4508 (longlong_t)tx->tx_txg);
4509 }
4510 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4511 ASSERT(scn->scn_clearing);
4512
4513 /* need to issue scrubbing IOs from per-vdev queues */
4514 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4515 NULL, ZIO_FLAG_CANFAIL);
4516 scan_io_queues_run(scn);
4517 (void) zio_wait(scn->scn_zio_root);
4518 scn->scn_zio_root = NULL;
4519
4520 /* calculate and dprintf the current memory usage */
4521 (void) dsl_scan_should_clear(scn);
4522 dsl_scan_update_stats(scn);
4523
4524 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4525 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4526 (longlong_t)scn->scn_zios_this_txg,
4527 spa->spa_name,
4528 (longlong_t)scn->scn_segs_this_txg,
4529 (longlong_t)NSEC2MSEC(gethrtime() -
4530 scn->scn_sync_start_time),
4531 (longlong_t)scn->scn_avg_zio_size_this_txg,
4532 (longlong_t)scn->scn_avg_seg_size_this_txg);
4533 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4534 /* Finished with everything. Mark the scrub as complete */
4535 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4536 (longlong_t)tx->tx_txg,
4537 spa->spa_name);
4538 ASSERT3U(scn->scn_done_txg, !=, 0);
4539 ASSERT0(spa->spa_scrub_inflight);
4540 ASSERT0(scn->scn_queues_pending);
4541 dsl_scan_done(scn, B_TRUE, tx);
4542 sync_type = SYNC_MANDATORY;
4543 }
4544
4545 dsl_scan_sync_state(scn, tx, sync_type);
4546 }
4547
4548 static void
4549 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4550 {
4551 /*
4552 * Don't count embedded bp's, since we already did the work of
4553 * scanning these when we scanned the containing block.
4554 */
4555 if (BP_IS_EMBEDDED(bp))
4556 return;
4557
4558 /*
4559 * Update the spa's stats on how many bytes we have issued.
4560 * Sequential scrubs create a zio for each DVA of the bp. Each
4561 * of these will include all DVAs for repair purposes, but the
4562 * zio code will only try the first one unless there is an issue.
4563 * Therefore, we should only count the first DVA for these IOs.
4564 */
4565 atomic_add_64(&spa->spa_scan_pass_issued,
4566 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4567 }
4568
4569 static void
4570 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4571 {
4572 /*
4573 * If we resume after a reboot, zab will be NULL; don't record
4574 * incomplete stats in that case.
4575 */
4576 if (zab == NULL)
4577 return;
4578
4579 for (int i = 0; i < 4; i++) {
4580 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4581 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4582
4583 if (t & DMU_OT_NEWTYPE)
4584 t = DMU_OT_OTHER;
4585 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4586 int equal;
4587
4588 zb->zb_count++;
4589 zb->zb_asize += BP_GET_ASIZE(bp);
4590 zb->zb_lsize += BP_GET_LSIZE(bp);
4591 zb->zb_psize += BP_GET_PSIZE(bp);
4592 zb->zb_gangs += BP_COUNT_GANG(bp);
4593
4594 switch (BP_GET_NDVAS(bp)) {
4595 case 2:
4596 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4597 DVA_GET_VDEV(&bp->blk_dva[1]))
4598 zb->zb_ditto_2_of_2_samevdev++;
4599 break;
4600 case 3:
4601 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4602 DVA_GET_VDEV(&bp->blk_dva[1])) +
4603 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4604 DVA_GET_VDEV(&bp->blk_dva[2])) +
4605 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4606 DVA_GET_VDEV(&bp->blk_dva[2]));
4607 if (equal == 1)
4608 zb->zb_ditto_2_of_3_samevdev++;
4609 else if (equal == 3)
4610 zb->zb_ditto_3_of_3_samevdev++;
4611 break;
4612 }
4613 }
4614 }
4615
4616 static void
4617 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4618 {
4619 avl_index_t idx;
4620 dsl_scan_t *scn = queue->q_scn;
4621
4622 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4623
4624 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4625 atomic_add_64(&scn->scn_queues_pending, 1);
4626 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4627 /* block is already scheduled for reading */
4628 sio_free(sio);
4629 return;
4630 }
4631 avl_insert(&queue->q_sios_by_addr, sio, idx);
4632 queue->q_sio_memused += SIO_GET_MUSED(sio);
4633 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4634 SIO_GET_ASIZE(sio));
4635 }
4636
4637 /*
4638 * Given all the info we got from our metadata scanning process, we
4639 * construct a scan_io_t and insert it into the scan sorting queue. The
4640 * I/O must already be suitable for us to process. This is controlled
4641 * by dsl_scan_enqueue().
4642 */
4643 static void
4644 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4645 int zio_flags, const zbookmark_phys_t *zb)
4646 {
4647 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4648
4649 ASSERT0(BP_IS_GANG(bp));
4650 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4651
4652 bp2sio(bp, sio, dva_i);
4653 sio->sio_flags = zio_flags;
4654 sio->sio_zb = *zb;
4655
4656 queue->q_last_ext_addr = -1;
4657 scan_io_queue_insert_impl(queue, sio);
4658 }
4659
4660 /*
4661 * Given a set of I/O parameters as discovered by the metadata traversal
4662 * process, attempts to place the I/O into the sorted queues (if allowed),
4663 * or immediately executes the I/O.
4664 */
4665 static void
4666 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4667 const zbookmark_phys_t *zb)
4668 {
4669 spa_t *spa = dp->dp_spa;
4670
4671 ASSERT(!BP_IS_EMBEDDED(bp));
4672
4673 /*
4674 * Gang blocks are hard to issue sequentially, so we just issue them
4675 * here immediately instead of queuing them.
4676 */
4677 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4678 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4679 return;
4680 }
4681
4682 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4683 dva_t dva;
4684 vdev_t *vdev;
4685
4686 dva = bp->blk_dva[i];
4687 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4688 ASSERT(vdev != NULL);
4689
4690 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4691 if (vdev->vdev_scan_io_queue == NULL)
4692 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4693 ASSERT(dp->dp_scan != NULL);
4694 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4695 i, zio_flags, zb);
4696 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4697 }
4698 }
4699
4700 static int
4701 dsl_scan_scrub_cb(dsl_pool_t *dp,
4702 const blkptr_t *bp, const zbookmark_phys_t *zb)
4703 {
4704 dsl_scan_t *scn = dp->dp_scan;
4705 spa_t *spa = dp->dp_spa;
4706 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
4707 size_t psize = BP_GET_PSIZE(bp);
4708 boolean_t needs_io = B_FALSE;
4709 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4710
4711 count_block(dp->dp_blkstats, bp);
4712 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4713 phys_birth >= scn->scn_phys.scn_max_txg) {
4714 count_block_issued(spa, bp, B_TRUE);
4715 return (0);
4716 }
4717
4718 /* Embedded BP's have phys_birth==0, so we reject them above. */
4719 ASSERT(!BP_IS_EMBEDDED(bp));
4720
4721 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4722 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4723 zio_flags |= ZIO_FLAG_SCRUB;
4724 needs_io = B_TRUE;
4725 } else {
4726 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4727 zio_flags |= ZIO_FLAG_RESILVER;
4728 needs_io = B_FALSE;
4729 }
4730
4731 /* If it's an intent log block, failure is expected. */
4732 if (zb->zb_level == ZB_ZIL_LEVEL)
4733 zio_flags |= ZIO_FLAG_SPECULATIVE;
4734
4735 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4736 const dva_t *dva = &bp->blk_dva[d];
4737
4738 /*
4739 * Keep track of how much data we've examined so that
4740 * zpool(8) status can make useful progress reports.
4741 */
4742 uint64_t asize = DVA_GET_ASIZE(dva);
4743 scn->scn_phys.scn_examined += asize;
4744 spa->spa_scan_pass_exam += asize;
4745
4746 /* if it's a resilver, this may not be in the target range */
4747 if (!needs_io)
4748 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4749 phys_birth);
4750 }
4751
4752 if (needs_io && !zfs_no_scrub_io) {
4753 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4754 } else {
4755 count_block_issued(spa, bp, B_TRUE);
4756 }
4757
4758 /* do not relocate this block */
4759 return (0);
4760 }
4761
4762 static void
4763 dsl_scan_scrub_done(zio_t *zio)
4764 {
4765 spa_t *spa = zio->io_spa;
4766 blkptr_t *bp = zio->io_bp;
4767 dsl_scan_io_queue_t *queue = zio->io_private;
4768
4769 abd_free(zio->io_abd);
4770
4771 if (queue == NULL) {
4772 mutex_enter(&spa->spa_scrub_lock);
4773 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4774 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4775 cv_broadcast(&spa->spa_scrub_io_cv);
4776 mutex_exit(&spa->spa_scrub_lock);
4777 } else {
4778 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4779 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4780 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4781 cv_broadcast(&queue->q_zio_cv);
4782 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4783 }
4784
4785 if (zio->io_error && (zio->io_error != ECKSUM ||
4786 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4787 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4788 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4789 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4790 ->errorscrub_phys.dep_errors);
4791 } else {
4792 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4793 .scn_errors);
4794 }
4795 }
4796 }
4797
4798 /*
4799 * Given a scanning zio's information, executes the zio. The zio need
4800 * not necessarily be only sortable, this function simply executes the
4801 * zio, no matter what it is. The optional queue argument allows the
4802 * caller to specify that they want per top level vdev IO rate limiting
4803 * instead of the legacy global limiting.
4804 */
4805 static void
4806 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4807 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4808 {
4809 spa_t *spa = dp->dp_spa;
4810 dsl_scan_t *scn = dp->dp_scan;
4811 size_t size = BP_GET_PSIZE(bp);
4812 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4813 zio_t *pio;
4814
4815 if (queue == NULL) {
4816 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4817 mutex_enter(&spa->spa_scrub_lock);
4818 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4819 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4820 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4821 mutex_exit(&spa->spa_scrub_lock);
4822 pio = scn->scn_zio_root;
4823 } else {
4824 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4825
4826 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4827 mutex_enter(q_lock);
4828 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4829 cv_wait(&queue->q_zio_cv, q_lock);
4830 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4831 pio = queue->q_zio;
4832 mutex_exit(q_lock);
4833 }
4834
4835 ASSERT(pio != NULL);
4836 count_block_issued(spa, bp, queue == NULL);
4837 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4838 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4839 }
4840
4841 /*
4842 * This is the primary extent sorting algorithm. We balance two parameters:
4843 * 1) how many bytes of I/O are in an extent
4844 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4845 * Since we allow extents to have gaps between their constituent I/Os, it's
4846 * possible to have a fairly large extent that contains the same amount of
4847 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4848 * The algorithm sorts based on a score calculated from the extent's size,
4849 * the relative fill volume (in %) and a "fill weight" parameter that controls
4850 * the split between whether we prefer larger extents or more well populated
4851 * extents:
4852 *
4853 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4854 *
4855 * Example:
4856 * 1) assume extsz = 64 MiB
4857 * 2) assume fill = 32 MiB (extent is half full)
4858 * 3) assume fill_weight = 3
4859 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4860 * SCORE = 32M + (50 * 3 * 32M) / 100
4861 * SCORE = 32M + (4800M / 100)
4862 * SCORE = 32M + 48M
4863 * ^ ^
4864 * | +--- final total relative fill-based score
4865 * +--------- final total fill-based score
4866 * SCORE = 80M
4867 *
4868 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4869 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4870 * Note that as an optimization, we replace multiplication and division by
4871 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4872 *
4873 * Since we do not care if one extent is only few percent better than another,
4874 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4875 * put into otherwise unused due to ashift high bits of offset. This allows
4876 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4877 * with single operation. Plus it makes scrubs more sequential and reduces
4878 * chances that minor extent change move it within the B-tree.
4879 */
4880 static int
4881 ext_size_compare(const void *x, const void *y)
4882 {
4883 const uint64_t *a = x, *b = y;
4884
4885 return (TREE_CMP(*a, *b));
4886 }
4887
4888 static void
4889 ext_size_create(range_tree_t *rt, void *arg)
4890 {
4891 (void) rt;
4892 zfs_btree_t *size_tree = arg;
4893
4894 zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t));
4895 }
4896
4897 static void
4898 ext_size_destroy(range_tree_t *rt, void *arg)
4899 {
4900 (void) rt;
4901 zfs_btree_t *size_tree = arg;
4902 ASSERT0(zfs_btree_numnodes(size_tree));
4903
4904 zfs_btree_destroy(size_tree);
4905 }
4906
4907 static uint64_t
4908 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4909 {
4910 (void) rt;
4911 uint64_t size = rsg->rs_end - rsg->rs_start;
4912 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4913 fill_weight * rsg->rs_fill) >> 7);
4914 ASSERT3U(rt->rt_shift, >=, 8);
4915 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4916 }
4917
4918 static void
4919 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4920 {
4921 zfs_btree_t *size_tree = arg;
4922 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4923 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4924 zfs_btree_add(size_tree, &v);
4925 }
4926
4927 static void
4928 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4929 {
4930 zfs_btree_t *size_tree = arg;
4931 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4932 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4933 zfs_btree_remove(size_tree, &v);
4934 }
4935
4936 static void
4937 ext_size_vacate(range_tree_t *rt, void *arg)
4938 {
4939 zfs_btree_t *size_tree = arg;
4940 zfs_btree_clear(size_tree);
4941 zfs_btree_destroy(size_tree);
4942
4943 ext_size_create(rt, arg);
4944 }
4945
4946 static const range_tree_ops_t ext_size_ops = {
4947 .rtop_create = ext_size_create,
4948 .rtop_destroy = ext_size_destroy,
4949 .rtop_add = ext_size_add,
4950 .rtop_remove = ext_size_remove,
4951 .rtop_vacate = ext_size_vacate
4952 };
4953
4954 /*
4955 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4956 * based on LBA-order (from lowest to highest).
4957 */
4958 static int
4959 sio_addr_compare(const void *x, const void *y)
4960 {
4961 const scan_io_t *a = x, *b = y;
4962
4963 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4964 }
4965
4966 /* IO queues are created on demand when they are needed. */
4967 static dsl_scan_io_queue_t *
4968 scan_io_queue_create(vdev_t *vd)
4969 {
4970 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4971 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4972
4973 q->q_scn = scn;
4974 q->q_vd = vd;
4975 q->q_sio_memused = 0;
4976 q->q_last_ext_addr = -1;
4977 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4978 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
4979 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
4980 avl_create(&q->q_sios_by_addr, sio_addr_compare,
4981 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4982
4983 return (q);
4984 }
4985
4986 /*
4987 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4988 * No further execution of I/O occurs, anything pending in the queue is
4989 * simply freed without being executed.
4990 */
4991 void
4992 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4993 {
4994 dsl_scan_t *scn = queue->q_scn;
4995 scan_io_t *sio;
4996 void *cookie = NULL;
4997
4998 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4999
5000 if (!avl_is_empty(&queue->q_sios_by_addr))
5001 atomic_add_64(&scn->scn_queues_pending, -1);
5002 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5003 NULL) {
5004 ASSERT(range_tree_contains(queue->q_exts_by_addr,
5005 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5006 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5007 sio_free(sio);
5008 }
5009
5010 ASSERT0(queue->q_sio_memused);
5011 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5012 range_tree_destroy(queue->q_exts_by_addr);
5013 avl_destroy(&queue->q_sios_by_addr);
5014 cv_destroy(&queue->q_zio_cv);
5015
5016 kmem_free(queue, sizeof (*queue));
5017 }
5018
5019 /*
5020 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5021 * called on behalf of vdev_top_transfer when creating or destroying
5022 * a mirror vdev due to zpool attach/detach.
5023 */
5024 void
5025 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5026 {
5027 mutex_enter(&svd->vdev_scan_io_queue_lock);
5028 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5029
5030 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5031 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5032 svd->vdev_scan_io_queue = NULL;
5033 if (tvd->vdev_scan_io_queue != NULL)
5034 tvd->vdev_scan_io_queue->q_vd = tvd;
5035
5036 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5037 mutex_exit(&svd->vdev_scan_io_queue_lock);
5038 }
5039
5040 static void
5041 scan_io_queues_destroy(dsl_scan_t *scn)
5042 {
5043 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5044
5045 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5046 vdev_t *tvd = rvd->vdev_child[i];
5047
5048 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5049 if (tvd->vdev_scan_io_queue != NULL)
5050 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5051 tvd->vdev_scan_io_queue = NULL;
5052 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5053 }
5054 }
5055
5056 static void
5057 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5058 {
5059 dsl_pool_t *dp = spa->spa_dsl_pool;
5060 dsl_scan_t *scn = dp->dp_scan;
5061 vdev_t *vdev;
5062 kmutex_t *q_lock;
5063 dsl_scan_io_queue_t *queue;
5064 scan_io_t *srch_sio, *sio;
5065 avl_index_t idx;
5066 uint64_t start, size;
5067
5068 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5069 ASSERT(vdev != NULL);
5070 q_lock = &vdev->vdev_scan_io_queue_lock;
5071 queue = vdev->vdev_scan_io_queue;
5072
5073 mutex_enter(q_lock);
5074 if (queue == NULL) {
5075 mutex_exit(q_lock);
5076 return;
5077 }
5078
5079 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5080 bp2sio(bp, srch_sio, dva_i);
5081 start = SIO_GET_OFFSET(srch_sio);
5082 size = SIO_GET_ASIZE(srch_sio);
5083
5084 /*
5085 * We can find the zio in two states:
5086 * 1) Cold, just sitting in the queue of zio's to be issued at
5087 * some point in the future. In this case, all we do is
5088 * remove the zio from the q_sios_by_addr tree, decrement
5089 * its data volume from the containing range_seg_t and
5090 * resort the q_exts_by_size tree to reflect that the
5091 * range_seg_t has lost some of its 'fill'. We don't shorten
5092 * the range_seg_t - this is usually rare enough not to be
5093 * worth the extra hassle of trying keep track of precise
5094 * extent boundaries.
5095 * 2) Hot, where the zio is currently in-flight in
5096 * dsl_scan_issue_ios. In this case, we can't simply
5097 * reach in and stop the in-flight zio's, so we instead
5098 * block the caller. Eventually, dsl_scan_issue_ios will
5099 * be done with issuing the zio's it gathered and will
5100 * signal us.
5101 */
5102 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5103 sio_free(srch_sio);
5104
5105 if (sio != NULL) {
5106 blkptr_t tmpbp;
5107
5108 /* Got it while it was cold in the queue */
5109 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5110 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5111 avl_remove(&queue->q_sios_by_addr, sio);
5112 if (avl_is_empty(&queue->q_sios_by_addr))
5113 atomic_add_64(&scn->scn_queues_pending, -1);
5114 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5115
5116 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5117 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5118
5119 /* count the block as though we issued it */
5120 sio2bp(sio, &tmpbp);
5121 count_block_issued(spa, &tmpbp, B_FALSE);
5122
5123 sio_free(sio);
5124 }
5125 mutex_exit(q_lock);
5126 }
5127
5128 /*
5129 * Callback invoked when a zio_free() zio is executing. This needs to be
5130 * intercepted to prevent the zio from deallocating a particular portion
5131 * of disk space and it then getting reallocated and written to, while we
5132 * still have it queued up for processing.
5133 */
5134 void
5135 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5136 {
5137 dsl_pool_t *dp = spa->spa_dsl_pool;
5138 dsl_scan_t *scn = dp->dp_scan;
5139
5140 ASSERT(!BP_IS_EMBEDDED(bp));
5141 ASSERT(scn != NULL);
5142 if (!dsl_scan_is_running(scn))
5143 return;
5144
5145 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5146 dsl_scan_freed_dva(spa, bp, i);
5147 }
5148
5149 /*
5150 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5151 * not started, start it. Otherwise, only restart if max txg in DTL range is
5152 * greater than the max txg in the current scan. If the DTL max is less than
5153 * the scan max, then the vdev has not missed any new data since the resilver
5154 * started, so a restart is not needed.
5155 */
5156 void
5157 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5158 {
5159 uint64_t min, max;
5160
5161 if (!vdev_resilver_needed(vd, &min, &max))
5162 return;
5163
5164 if (!dsl_scan_resilvering(dp)) {
5165 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5166 return;
5167 }
5168
5169 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5170 return;
5171
5172 /* restart is needed, check if it can be deferred */
5173 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5174 vdev_defer_resilver(vd);
5175 else
5176 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5177 }
5178
5179 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5180 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5181
5182 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5183 "Min millisecs to scrub per txg");
5184
5185 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5186 "Min millisecs to obsolete per txg");
5187
5188 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5189 "Min millisecs to free per txg");
5190
5191 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5192 "Min millisecs to resilver per txg");
5193
5194 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5195 "Set to prevent scans from progressing");
5196
5197 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5198 "Set to disable scrub I/O");
5199
5200 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5201 "Set to disable scrub prefetching");
5202
5203 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5204 "Max number of blocks freed in one txg");
5205
5206 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5207 "Max number of dedup blocks freed in one txg");
5208
5209 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5210 "Enable processing of the free_bpobj");
5211
5212 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5213 "Enable block statistics calculation during scrub");
5214
5215 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5216 "Fraction of RAM for scan hard limit");
5217
5218 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5219 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5220
5221 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5222 "Scrub using legacy non-sequential method");
5223
5224 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5225 "Scan progress on-disk checkpointing interval");
5226
5227 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5228 "Max gap in bytes between sequential scrub / resilver I/Os");
5229
5230 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5231 "Fraction of hard limit used as soft limit");
5232
5233 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5234 "Tunable to attempt to reduce lock contention");
5235
5236 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5237 "Tunable to adjust bias towards more filled segments during scans");
5238
5239 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5240 "Tunable to report resilver performance over the last N txgs");
5241
5242 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5243 "Process all resilvers immediately");
5244
5245 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, U64, ZMOD_RW,
5246 "Error blocks to be scrubbed in one txg");
5247 /* END CSTYLED */