]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_scan.c
Make zfs_async_block_max_blocks handle zero correctly
[mirror_zfs.git] / module / zfs / dsl_scan.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017 Datto Inc.
26 * Copyright 2017 Joyent, Inc.
27 */
28
29 #include <sys/dsl_scan.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/zil_impl.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/ddt.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/zfeature.h>
52 #include <sys/abd.h>
53 #include <sys/range_tree.h>
54 #ifdef _KERNEL
55 #include <sys/zfs_vfsops.h>
56 #endif
57
58 /*
59 * Grand theory statement on scan queue sorting
60 *
61 * Scanning is implemented by recursively traversing all indirection levels
62 * in an object and reading all blocks referenced from said objects. This
63 * results in us approximately traversing the object from lowest logical
64 * offset to the highest. For best performance, we would want the logical
65 * blocks to be physically contiguous. However, this is frequently not the
66 * case with pools given the allocation patterns of copy-on-write filesystems.
67 * So instead, we put the I/Os into a reordering queue and issue them in a
68 * way that will most benefit physical disks (LBA-order).
69 *
70 * Queue management:
71 *
72 * Ideally, we would want to scan all metadata and queue up all block I/O
73 * prior to starting to issue it, because that allows us to do an optimal
74 * sorting job. This can however consume large amounts of memory. Therefore
75 * we continuously monitor the size of the queues and constrain them to 5%
76 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
77 * limit, we clear out a few of the largest extents at the head of the queues
78 * to make room for more scanning. Hopefully, these extents will be fairly
79 * large and contiguous, allowing us to approach sequential I/O throughput
80 * even without a fully sorted tree.
81 *
82 * Metadata scanning takes place in dsl_scan_visit(), which is called from
83 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
84 * metadata on the pool, or we need to make room in memory because our
85 * queues are too large, dsl_scan_visit() is postponed and
86 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
87 * that metadata scanning and queued I/O issuing are mutually exclusive. This
88 * allows us to provide maximum sequential I/O throughput for the majority of
89 * I/O's issued since sequential I/O performance is significantly negatively
90 * impacted if it is interleaved with random I/O.
91 *
92 * Implementation Notes
93 *
94 * One side effect of the queued scanning algorithm is that the scanning code
95 * needs to be notified whenever a block is freed. This is needed to allow
96 * the scanning code to remove these I/Os from the issuing queue. Additionally,
97 * we do not attempt to queue gang blocks to be issued sequentially since this
98 * is very hard to do and would have an extremely limited performance benefit.
99 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
100 * algorithm.
101 *
102 * Backwards compatibility
103 *
104 * This new algorithm is backwards compatible with the legacy on-disk data
105 * structures (and therefore does not require a new feature flag).
106 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
107 * will stop scanning metadata (in logical order) and wait for all outstanding
108 * sorted I/O to complete. Once this is done, we write out a checkpoint
109 * bookmark, indicating that we have scanned everything logically before it.
110 * If the pool is imported on a machine without the new sorting algorithm,
111 * the scan simply resumes from the last checkpoint using the legacy algorithm.
112 */
113
114 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
115 const zbookmark_phys_t *);
116
117 static scan_cb_t dsl_scan_scrub_cb;
118
119 static int scan_ds_queue_compare(const void *a, const void *b);
120 static int scan_prefetch_queue_compare(const void *a, const void *b);
121 static void scan_ds_queue_clear(dsl_scan_t *scn);
122 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124 uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 static uint64_t dsl_scan_count_leaves(vdev_t *vd);
129
130 extern int zfs_vdev_async_write_active_min_dirty_percent;
131
132 /*
133 * By default zfs will check to ensure it is not over the hard memory
134 * limit before each txg. If finer-grained control of this is needed
135 * this value can be set to 1 to enable checking before scanning each
136 * block.
137 */
138 int zfs_scan_strict_mem_lim = B_FALSE;
139
140 /*
141 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
142 * to strike a balance here between keeping the vdev queues full of I/Os
143 * at all times and not overflowing the queues to cause long latency,
144 * which would cause long txg sync times. No matter what, we will not
145 * overload the drives with I/O, since that is protected by
146 * zfs_vdev_scrub_max_active.
147 */
148 unsigned long zfs_scan_vdev_limit = 4 << 20;
149
150 int zfs_scan_issue_strategy = 0;
151 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
152 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
153
154 /*
155 * fill_weight is non-tunable at runtime, so we copy it at module init from
156 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
157 * break queue sorting.
158 */
159 int zfs_scan_fill_weight = 3;
160 static uint64_t fill_weight;
161
162 /* See dsl_scan_should_clear() for details on the memory limit tunables */
163 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
164 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
165 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
166 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
167
168 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
169 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
170 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
171 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
172 int zfs_scan_checkpoint_intval = 7200; /* in seconds */
173 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
174 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
175 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
176 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
177 /* max number of blocks to free in a single TXG */
178 unsigned long zfs_async_block_max_blocks = 100000;
179
180 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
181
182 /*
183 * We wait a few txgs after importing a pool to begin scanning so that
184 * the import / mounting code isn't held up by scrub / resilver IO.
185 * Unfortunately, it is a bit difficult to determine exactly how long
186 * this will take since userspace will trigger fs mounts asynchronously
187 * and the kernel will create zvol minors asynchronously. As a result,
188 * the value provided here is a bit arbitrary, but represents a
189 * reasonable estimate of how many txgs it will take to finish fully
190 * importing a pool
191 */
192 #define SCAN_IMPORT_WAIT_TXGS 5
193
194 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
195 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
196 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
197
198 /*
199 * Enable/disable the processing of the free_bpobj object.
200 */
201 int zfs_free_bpobj_enabled = 1;
202
203 /* the order has to match pool_scan_type */
204 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
205 NULL,
206 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
207 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
208 };
209
210 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
211 typedef struct {
212 uint64_t sds_dsobj;
213 uint64_t sds_txg;
214 avl_node_t sds_node;
215 } scan_ds_t;
216
217 /*
218 * This controls what conditions are placed on dsl_scan_sync_state():
219 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
220 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
221 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
222 * write out the scn_phys_cached version.
223 * See dsl_scan_sync_state for details.
224 */
225 typedef enum {
226 SYNC_OPTIONAL,
227 SYNC_MANDATORY,
228 SYNC_CACHED
229 } state_sync_type_t;
230
231 /*
232 * This struct represents the minimum information needed to reconstruct a
233 * zio for sequential scanning. This is useful because many of these will
234 * accumulate in the sequential IO queues before being issued, so saving
235 * memory matters here.
236 */
237 typedef struct scan_io {
238 /* fields from blkptr_t */
239 uint64_t sio_blk_prop;
240 uint64_t sio_phys_birth;
241 uint64_t sio_birth;
242 zio_cksum_t sio_cksum;
243 uint32_t sio_nr_dvas;
244
245 /* fields from zio_t */
246 uint32_t sio_flags;
247 zbookmark_phys_t sio_zb;
248
249 /* members for queue sorting */
250 union {
251 avl_node_t sio_addr_node; /* link into issuing queue */
252 list_node_t sio_list_node; /* link for issuing to disk */
253 } sio_nodes;
254
255 /*
256 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
257 * depending on how many were in the original bp. Only the
258 * first DVA is really used for sorting and issuing purposes.
259 * The other DVAs (if provided) simply exist so that the zio
260 * layer can find additional copies to repair from in the
261 * event of an error. This array must go at the end of the
262 * struct to allow this for the variable number of elements.
263 */
264 dva_t sio_dva[0];
265 } scan_io_t;
266
267 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
268 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
269 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
270 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
271 #define SIO_GET_END_OFFSET(sio) \
272 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
273 #define SIO_GET_MUSED(sio) \
274 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
275
276 struct dsl_scan_io_queue {
277 dsl_scan_t *q_scn; /* associated dsl_scan_t */
278 vdev_t *q_vd; /* top-level vdev that this queue represents */
279
280 /* trees used for sorting I/Os and extents of I/Os */
281 range_tree_t *q_exts_by_addr;
282 avl_tree_t q_exts_by_size;
283 avl_tree_t q_sios_by_addr;
284 uint64_t q_sio_memused;
285
286 /* members for zio rate limiting */
287 uint64_t q_maxinflight_bytes;
288 uint64_t q_inflight_bytes;
289 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
290
291 /* per txg statistics */
292 uint64_t q_total_seg_size_this_txg;
293 uint64_t q_segs_this_txg;
294 uint64_t q_total_zio_size_this_txg;
295 uint64_t q_zios_this_txg;
296 };
297
298 /* private data for dsl_scan_prefetch_cb() */
299 typedef struct scan_prefetch_ctx {
300 zfs_refcount_t spc_refcnt; /* refcount for memory management */
301 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
302 boolean_t spc_root; /* is this prefetch for an objset? */
303 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
304 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
305 } scan_prefetch_ctx_t;
306
307 /* private data for dsl_scan_prefetch() */
308 typedef struct scan_prefetch_issue_ctx {
309 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
310 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
311 blkptr_t spic_bp; /* bp to prefetch */
312 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
313 } scan_prefetch_issue_ctx_t;
314
315 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
316 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
317 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
318 scan_io_t *sio);
319
320 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
321 static void scan_io_queues_destroy(dsl_scan_t *scn);
322
323 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
324
325 /* sio->sio_nr_dvas must be set so we know which cache to free from */
326 static void
327 sio_free(scan_io_t *sio)
328 {
329 ASSERT3U(sio->sio_nr_dvas, >, 0);
330 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
331
332 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
333 }
334
335 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
336 static scan_io_t *
337 sio_alloc(unsigned short nr_dvas)
338 {
339 ASSERT3U(nr_dvas, >, 0);
340 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
341
342 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
343 }
344
345 void
346 scan_init(void)
347 {
348 /*
349 * This is used in ext_size_compare() to weight segments
350 * based on how sparse they are. This cannot be changed
351 * mid-scan and the tree comparison functions don't currently
352 * have a mechanism for passing additional context to the
353 * compare functions. Thus we store this value globally and
354 * we only allow it to be set at module initialization time
355 */
356 fill_weight = zfs_scan_fill_weight;
357
358 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
359 char name[36];
360
361 (void) sprintf(name, "sio_cache_%d", i);
362 sio_cache[i] = kmem_cache_create(name,
363 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
364 0, NULL, NULL, NULL, NULL, NULL, 0);
365 }
366 }
367
368 void
369 scan_fini(void)
370 {
371 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
372 kmem_cache_destroy(sio_cache[i]);
373 }
374 }
375
376 static inline boolean_t
377 dsl_scan_is_running(const dsl_scan_t *scn)
378 {
379 return (scn->scn_phys.scn_state == DSS_SCANNING);
380 }
381
382 boolean_t
383 dsl_scan_resilvering(dsl_pool_t *dp)
384 {
385 return (dsl_scan_is_running(dp->dp_scan) &&
386 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
387 }
388
389 static inline void
390 sio2bp(const scan_io_t *sio, blkptr_t *bp)
391 {
392 bzero(bp, sizeof (*bp));
393 bp->blk_prop = sio->sio_blk_prop;
394 bp->blk_phys_birth = sio->sio_phys_birth;
395 bp->blk_birth = sio->sio_birth;
396 bp->blk_fill = 1; /* we always only work with data pointers */
397 bp->blk_cksum = sio->sio_cksum;
398
399 ASSERT3U(sio->sio_nr_dvas, >, 0);
400 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
401
402 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
403 }
404
405 static inline void
406 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
407 {
408 sio->sio_blk_prop = bp->blk_prop;
409 sio->sio_phys_birth = bp->blk_phys_birth;
410 sio->sio_birth = bp->blk_birth;
411 sio->sio_cksum = bp->blk_cksum;
412 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
413
414 /*
415 * Copy the DVAs to the sio. We need all copies of the block so
416 * that the self healing code can use the alternate copies if the
417 * first is corrupted. We want the DVA at index dva_i to be first
418 * in the sio since this is the primary one that we want to issue.
419 */
420 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
421 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
422 }
423 }
424
425 int
426 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
427 {
428 int err;
429 dsl_scan_t *scn;
430 spa_t *spa = dp->dp_spa;
431 uint64_t f;
432
433 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
434 scn->scn_dp = dp;
435
436 /*
437 * It's possible that we're resuming a scan after a reboot so
438 * make sure that the scan_async_destroying flag is initialized
439 * appropriately.
440 */
441 ASSERT(!scn->scn_async_destroying);
442 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
443 SPA_FEATURE_ASYNC_DESTROY);
444
445 /*
446 * Calculate the max number of in-flight bytes for pool-wide
447 * scanning operations (minimum 1MB). Limits for the issuing
448 * phase are done per top-level vdev and are handled separately.
449 */
450 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
451 dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);
452
453 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
454 offsetof(scan_ds_t, sds_node));
455 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
456 sizeof (scan_prefetch_issue_ctx_t),
457 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
458
459 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
460 "scrub_func", sizeof (uint64_t), 1, &f);
461 if (err == 0) {
462 /*
463 * There was an old-style scrub in progress. Restart a
464 * new-style scrub from the beginning.
465 */
466 scn->scn_restart_txg = txg;
467 zfs_dbgmsg("old-style scrub was in progress; "
468 "restarting new-style scrub in txg %llu",
469 (longlong_t)scn->scn_restart_txg);
470
471 /*
472 * Load the queue obj from the old location so that it
473 * can be freed by dsl_scan_done().
474 */
475 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
476 "scrub_queue", sizeof (uint64_t), 1,
477 &scn->scn_phys.scn_queue_obj);
478 } else {
479 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
480 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
481 &scn->scn_phys);
482 /*
483 * Detect if the pool contains the signature of #2094. If it
484 * does properly update the scn->scn_phys structure and notify
485 * the administrator by setting an errata for the pool.
486 */
487 if (err == EOVERFLOW) {
488 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
489 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
490 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
491 (23 * sizeof (uint64_t)));
492
493 err = zap_lookup(dp->dp_meta_objset,
494 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
495 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
496 if (err == 0) {
497 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
498
499 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
500 scn->scn_async_destroying) {
501 spa->spa_errata =
502 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
503 return (EOVERFLOW);
504 }
505
506 bcopy(zaptmp, &scn->scn_phys,
507 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
508 scn->scn_phys.scn_flags = overflow;
509
510 /* Required scrub already in progress. */
511 if (scn->scn_phys.scn_state == DSS_FINISHED ||
512 scn->scn_phys.scn_state == DSS_CANCELED)
513 spa->spa_errata =
514 ZPOOL_ERRATA_ZOL_2094_SCRUB;
515 }
516 }
517
518 if (err == ENOENT)
519 return (0);
520 else if (err)
521 return (err);
522
523 /*
524 * We might be restarting after a reboot, so jump the issued
525 * counter to how far we've scanned. We know we're consistent
526 * up to here.
527 */
528 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
529
530 if (dsl_scan_is_running(scn) &&
531 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
532 /*
533 * A new-type scrub was in progress on an old
534 * pool, and the pool was accessed by old
535 * software. Restart from the beginning, since
536 * the old software may have changed the pool in
537 * the meantime.
538 */
539 scn->scn_restart_txg = txg;
540 zfs_dbgmsg("new-style scrub was modified "
541 "by old software; restarting in txg %llu",
542 (longlong_t)scn->scn_restart_txg);
543 }
544 }
545
546 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
547
548 /* reload the queue into the in-core state */
549 if (scn->scn_phys.scn_queue_obj != 0) {
550 zap_cursor_t zc;
551 zap_attribute_t za;
552
553 for (zap_cursor_init(&zc, dp->dp_meta_objset,
554 scn->scn_phys.scn_queue_obj);
555 zap_cursor_retrieve(&zc, &za) == 0;
556 (void) zap_cursor_advance(&zc)) {
557 scan_ds_queue_insert(scn,
558 zfs_strtonum(za.za_name, NULL),
559 za.za_first_integer);
560 }
561 zap_cursor_fini(&zc);
562 }
563
564 spa_scan_stat_init(spa);
565 return (0);
566 }
567
568 void
569 dsl_scan_fini(dsl_pool_t *dp)
570 {
571 if (dp->dp_scan != NULL) {
572 dsl_scan_t *scn = dp->dp_scan;
573
574 if (scn->scn_taskq != NULL)
575 taskq_destroy(scn->scn_taskq);
576
577 scan_ds_queue_clear(scn);
578 avl_destroy(&scn->scn_queue);
579 scan_ds_prefetch_queue_clear(scn);
580 avl_destroy(&scn->scn_prefetch_queue);
581
582 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
583 dp->dp_scan = NULL;
584 }
585 }
586
587 static boolean_t
588 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
589 {
590 return (scn->scn_restart_txg != 0 &&
591 scn->scn_restart_txg <= tx->tx_txg);
592 }
593
594 boolean_t
595 dsl_scan_scrubbing(const dsl_pool_t *dp)
596 {
597 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
598
599 return (scn_phys->scn_state == DSS_SCANNING &&
600 scn_phys->scn_func == POOL_SCAN_SCRUB);
601 }
602
603 boolean_t
604 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
605 {
606 return (dsl_scan_scrubbing(scn->scn_dp) &&
607 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
608 }
609
610 /*
611 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
612 * Because we can be running in the block sorting algorithm, we do not always
613 * want to write out the record, only when it is "safe" to do so. This safety
614 * condition is achieved by making sure that the sorting queues are empty
615 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
616 * is inconsistent with how much actual scanning progress has been made. The
617 * kind of sync to be performed is specified by the sync_type argument. If the
618 * sync is optional, we only sync if the queues are empty. If the sync is
619 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
620 * third possible state is a "cached" sync. This is done in response to:
621 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
622 * destroyed, so we wouldn't be able to restart scanning from it.
623 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
624 * superseded by a newer snapshot.
625 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
626 * swapped with its clone.
627 * In all cases, a cached sync simply rewrites the last record we've written,
628 * just slightly modified. For the modifications that are performed to the
629 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
630 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
631 */
632 static void
633 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
634 {
635 int i;
636 spa_t *spa = scn->scn_dp->dp_spa;
637
638 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
639 if (scn->scn_bytes_pending == 0) {
640 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
641 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
642 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
643
644 if (q == NULL)
645 continue;
646
647 mutex_enter(&vd->vdev_scan_io_queue_lock);
648 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
649 ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL);
650 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
651 mutex_exit(&vd->vdev_scan_io_queue_lock);
652 }
653
654 if (scn->scn_phys.scn_queue_obj != 0)
655 scan_ds_queue_sync(scn, tx);
656 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
657 DMU_POOL_DIRECTORY_OBJECT,
658 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
659 &scn->scn_phys, tx));
660 bcopy(&scn->scn_phys, &scn->scn_phys_cached,
661 sizeof (scn->scn_phys));
662
663 if (scn->scn_checkpointing)
664 zfs_dbgmsg("finish scan checkpoint");
665
666 scn->scn_checkpointing = B_FALSE;
667 scn->scn_last_checkpoint = ddi_get_lbolt();
668 } else if (sync_type == SYNC_CACHED) {
669 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
670 DMU_POOL_DIRECTORY_OBJECT,
671 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
672 &scn->scn_phys_cached, tx));
673 }
674 }
675
676 /* ARGSUSED */
677 static int
678 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
679 {
680 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
681
682 if (dsl_scan_is_running(scn))
683 return (SET_ERROR(EBUSY));
684
685 return (0);
686 }
687
688 static void
689 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
690 {
691 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
692 pool_scan_func_t *funcp = arg;
693 dmu_object_type_t ot = 0;
694 dsl_pool_t *dp = scn->scn_dp;
695 spa_t *spa = dp->dp_spa;
696
697 ASSERT(!dsl_scan_is_running(scn));
698 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
699 bzero(&scn->scn_phys, sizeof (scn->scn_phys));
700 scn->scn_phys.scn_func = *funcp;
701 scn->scn_phys.scn_state = DSS_SCANNING;
702 scn->scn_phys.scn_min_txg = 0;
703 scn->scn_phys.scn_max_txg = tx->tx_txg;
704 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
705 scn->scn_phys.scn_start_time = gethrestime_sec();
706 scn->scn_phys.scn_errors = 0;
707 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
708 scn->scn_issued_before_pass = 0;
709 scn->scn_restart_txg = 0;
710 scn->scn_done_txg = 0;
711 scn->scn_last_checkpoint = 0;
712 scn->scn_checkpointing = B_FALSE;
713 spa_scan_stat_init(spa);
714
715 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
716 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
717
718 /* rewrite all disk labels */
719 vdev_config_dirty(spa->spa_root_vdev);
720
721 if (vdev_resilver_needed(spa->spa_root_vdev,
722 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
723 spa_event_notify(spa, NULL, NULL,
724 ESC_ZFS_RESILVER_START);
725 } else {
726 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
727 }
728
729 spa->spa_scrub_started = B_TRUE;
730 /*
731 * If this is an incremental scrub, limit the DDT scrub phase
732 * to just the auto-ditto class (for correctness); the rest
733 * of the scrub should go faster using top-down pruning.
734 */
735 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
736 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
737
738 }
739
740 /* back to the generic stuff */
741
742 if (dp->dp_blkstats == NULL) {
743 dp->dp_blkstats =
744 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
745 mutex_init(&dp->dp_blkstats->zab_lock, NULL,
746 MUTEX_DEFAULT, NULL);
747 }
748 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
749
750 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
751 ot = DMU_OT_ZAP_OTHER;
752
753 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
754 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
755
756 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
757
758 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
759
760 spa_history_log_internal(spa, "scan setup", tx,
761 "func=%u mintxg=%llu maxtxg=%llu",
762 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
763 }
764
765 /*
766 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
767 * Can also be called to resume a paused scrub.
768 */
769 int
770 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
771 {
772 spa_t *spa = dp->dp_spa;
773 dsl_scan_t *scn = dp->dp_scan;
774
775 /*
776 * Purge all vdev caches and probe all devices. We do this here
777 * rather than in sync context because this requires a writer lock
778 * on the spa_config lock, which we can't do from sync context. The
779 * spa_scrub_reopen flag indicates that vdev_open() should not
780 * attempt to start another scrub.
781 */
782 spa_vdev_state_enter(spa, SCL_NONE);
783 spa->spa_scrub_reopen = B_TRUE;
784 vdev_reopen(spa->spa_root_vdev);
785 spa->spa_scrub_reopen = B_FALSE;
786 (void) spa_vdev_state_exit(spa, NULL, 0);
787
788 if (func == POOL_SCAN_RESILVER) {
789 dsl_resilver_restart(spa->spa_dsl_pool, 0);
790 return (0);
791 }
792
793 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
794 /* got scrub start cmd, resume paused scrub */
795 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
796 POOL_SCRUB_NORMAL);
797 if (err == 0) {
798 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
799 return (ECANCELED);
800 }
801
802 return (SET_ERROR(err));
803 }
804
805 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
806 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
807 }
808
809 /*
810 * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns
811 * B_TRUE if we have devices that need to be resilvered and are available to
812 * accept resilver I/Os.
813 */
814 static boolean_t
815 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx)
816 {
817 boolean_t resilver_needed = B_FALSE;
818 spa_t *spa = vd->vdev_spa;
819
820 for (int c = 0; c < vd->vdev_children; c++) {
821 resilver_needed |=
822 dsl_scan_clear_deferred(vd->vdev_child[c], tx);
823 }
824
825 if (vd == spa->spa_root_vdev &&
826 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
827 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
828 vdev_config_dirty(vd);
829 spa->spa_resilver_deferred = B_FALSE;
830 return (resilver_needed);
831 }
832
833 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
834 !vd->vdev_ops->vdev_op_leaf)
835 return (resilver_needed);
836
837 if (vd->vdev_resilver_deferred)
838 vd->vdev_resilver_deferred = B_FALSE;
839
840 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
841 vdev_resilver_needed(vd, NULL, NULL));
842 }
843
844 /* ARGSUSED */
845 static void
846 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
847 {
848 static const char *old_names[] = {
849 "scrub_bookmark",
850 "scrub_ddt_bookmark",
851 "scrub_ddt_class_max",
852 "scrub_queue",
853 "scrub_min_txg",
854 "scrub_max_txg",
855 "scrub_func",
856 "scrub_errors",
857 NULL
858 };
859
860 dsl_pool_t *dp = scn->scn_dp;
861 spa_t *spa = dp->dp_spa;
862 int i;
863
864 /* Remove any remnants of an old-style scrub. */
865 for (i = 0; old_names[i]; i++) {
866 (void) zap_remove(dp->dp_meta_objset,
867 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
868 }
869
870 if (scn->scn_phys.scn_queue_obj != 0) {
871 VERIFY0(dmu_object_free(dp->dp_meta_objset,
872 scn->scn_phys.scn_queue_obj, tx));
873 scn->scn_phys.scn_queue_obj = 0;
874 }
875 scan_ds_queue_clear(scn);
876 scan_ds_prefetch_queue_clear(scn);
877
878 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
879
880 /*
881 * If we were "restarted" from a stopped state, don't bother
882 * with anything else.
883 */
884 if (!dsl_scan_is_running(scn)) {
885 ASSERT(!scn->scn_is_sorted);
886 return;
887 }
888
889 if (scn->scn_is_sorted) {
890 scan_io_queues_destroy(scn);
891 scn->scn_is_sorted = B_FALSE;
892
893 if (scn->scn_taskq != NULL) {
894 taskq_destroy(scn->scn_taskq);
895 scn->scn_taskq = NULL;
896 }
897 }
898
899 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
900
901 if (dsl_scan_restarting(scn, tx))
902 spa_history_log_internal(spa, "scan aborted, restarting", tx,
903 "errors=%llu", spa_get_errlog_size(spa));
904 else if (!complete)
905 spa_history_log_internal(spa, "scan cancelled", tx,
906 "errors=%llu", spa_get_errlog_size(spa));
907 else
908 spa_history_log_internal(spa, "scan done", tx,
909 "errors=%llu", spa_get_errlog_size(spa));
910
911 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
912 spa->spa_scrub_started = B_FALSE;
913 spa->spa_scrub_active = B_FALSE;
914
915 /*
916 * If the scrub/resilver completed, update all DTLs to
917 * reflect this. Whether it succeeded or not, vacate
918 * all temporary scrub DTLs.
919 *
920 * As the scrub does not currently support traversing
921 * data that have been freed but are part of a checkpoint,
922 * we don't mark the scrub as done in the DTLs as faults
923 * may still exist in those vdevs.
924 */
925 if (complete &&
926 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
927 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
928 scn->scn_phys.scn_max_txg, B_TRUE);
929
930 spa_event_notify(spa, NULL, NULL,
931 scn->scn_phys.scn_min_txg ?
932 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
933 } else {
934 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
935 0, B_TRUE);
936 }
937 spa_errlog_rotate(spa);
938
939 /*
940 * We may have finished replacing a device.
941 * Let the async thread assess this and handle the detach.
942 */
943 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
944
945 /*
946 * Clear any deferred_resilver flags in the config.
947 * If there are drives that need resilvering, kick
948 * off an asynchronous request to start resilver.
949 * dsl_scan_clear_deferred() may update the config
950 * before the resilver can restart. In the event of
951 * a crash during this period, the spa loading code
952 * will find the drives that need to be resilvered
953 * when the machine reboots and start the resilver then.
954 */
955 boolean_t resilver_needed =
956 dsl_scan_clear_deferred(spa->spa_root_vdev, tx);
957 if (resilver_needed) {
958 spa_history_log_internal(spa,
959 "starting deferred resilver", tx,
960 "errors=%llu", spa_get_errlog_size(spa));
961 spa_async_request(spa, SPA_ASYNC_RESILVER);
962 }
963 }
964
965 scn->scn_phys.scn_end_time = gethrestime_sec();
966
967 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
968 spa->spa_errata = 0;
969
970 ASSERT(!dsl_scan_is_running(scn));
971 }
972
973 /* ARGSUSED */
974 static int
975 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
976 {
977 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
978
979 if (!dsl_scan_is_running(scn))
980 return (SET_ERROR(ENOENT));
981 return (0);
982 }
983
984 /* ARGSUSED */
985 static void
986 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
987 {
988 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
989
990 dsl_scan_done(scn, B_FALSE, tx);
991 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
992 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
993 }
994
995 int
996 dsl_scan_cancel(dsl_pool_t *dp)
997 {
998 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
999 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1000 }
1001
1002 static int
1003 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1004 {
1005 pool_scrub_cmd_t *cmd = arg;
1006 dsl_pool_t *dp = dmu_tx_pool(tx);
1007 dsl_scan_t *scn = dp->dp_scan;
1008
1009 if (*cmd == POOL_SCRUB_PAUSE) {
1010 /* can't pause a scrub when there is no in-progress scrub */
1011 if (!dsl_scan_scrubbing(dp))
1012 return (SET_ERROR(ENOENT));
1013
1014 /* can't pause a paused scrub */
1015 if (dsl_scan_is_paused_scrub(scn))
1016 return (SET_ERROR(EBUSY));
1017 } else if (*cmd != POOL_SCRUB_NORMAL) {
1018 return (SET_ERROR(ENOTSUP));
1019 }
1020
1021 return (0);
1022 }
1023
1024 static void
1025 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1026 {
1027 pool_scrub_cmd_t *cmd = arg;
1028 dsl_pool_t *dp = dmu_tx_pool(tx);
1029 spa_t *spa = dp->dp_spa;
1030 dsl_scan_t *scn = dp->dp_scan;
1031
1032 if (*cmd == POOL_SCRUB_PAUSE) {
1033 /* can't pause a scrub when there is no in-progress scrub */
1034 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1035 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1036 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1037 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1038 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1039 } else {
1040 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1041 if (dsl_scan_is_paused_scrub(scn)) {
1042 /*
1043 * We need to keep track of how much time we spend
1044 * paused per pass so that we can adjust the scrub rate
1045 * shown in the output of 'zpool status'
1046 */
1047 spa->spa_scan_pass_scrub_spent_paused +=
1048 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1049 spa->spa_scan_pass_scrub_pause = 0;
1050 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1051 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1052 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1053 }
1054 }
1055 }
1056
1057 /*
1058 * Set scrub pause/resume state if it makes sense to do so
1059 */
1060 int
1061 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1062 {
1063 return (dsl_sync_task(spa_name(dp->dp_spa),
1064 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1065 ZFS_SPACE_CHECK_RESERVED));
1066 }
1067
1068
1069 /* start a new scan, or restart an existing one. */
1070 void
1071 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
1072 {
1073 if (txg == 0) {
1074 dmu_tx_t *tx;
1075 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1076 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1077
1078 txg = dmu_tx_get_txg(tx);
1079 dp->dp_scan->scn_restart_txg = txg;
1080 dmu_tx_commit(tx);
1081 } else {
1082 dp->dp_scan->scn_restart_txg = txg;
1083 }
1084 zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
1085 }
1086
1087 void
1088 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1089 {
1090 zio_free(dp->dp_spa, txg, bp);
1091 }
1092
1093 void
1094 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1095 {
1096 ASSERT(dsl_pool_sync_context(dp));
1097 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1098 }
1099
1100 static int
1101 scan_ds_queue_compare(const void *a, const void *b)
1102 {
1103 const scan_ds_t *sds_a = a, *sds_b = b;
1104
1105 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1106 return (-1);
1107 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1108 return (0);
1109 return (1);
1110 }
1111
1112 static void
1113 scan_ds_queue_clear(dsl_scan_t *scn)
1114 {
1115 void *cookie = NULL;
1116 scan_ds_t *sds;
1117 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1118 kmem_free(sds, sizeof (*sds));
1119 }
1120 }
1121
1122 static boolean_t
1123 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1124 {
1125 scan_ds_t srch, *sds;
1126
1127 srch.sds_dsobj = dsobj;
1128 sds = avl_find(&scn->scn_queue, &srch, NULL);
1129 if (sds != NULL && txg != NULL)
1130 *txg = sds->sds_txg;
1131 return (sds != NULL);
1132 }
1133
1134 static void
1135 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1136 {
1137 scan_ds_t *sds;
1138 avl_index_t where;
1139
1140 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1141 sds->sds_dsobj = dsobj;
1142 sds->sds_txg = txg;
1143
1144 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1145 avl_insert(&scn->scn_queue, sds, where);
1146 }
1147
1148 static void
1149 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1150 {
1151 scan_ds_t srch, *sds;
1152
1153 srch.sds_dsobj = dsobj;
1154
1155 sds = avl_find(&scn->scn_queue, &srch, NULL);
1156 VERIFY(sds != NULL);
1157 avl_remove(&scn->scn_queue, sds);
1158 kmem_free(sds, sizeof (*sds));
1159 }
1160
1161 static void
1162 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1163 {
1164 dsl_pool_t *dp = scn->scn_dp;
1165 spa_t *spa = dp->dp_spa;
1166 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1167 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1168
1169 ASSERT0(scn->scn_bytes_pending);
1170 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1171
1172 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1173 scn->scn_phys.scn_queue_obj, tx));
1174 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1175 DMU_OT_NONE, 0, tx);
1176 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1177 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1178 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1179 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1180 sds->sds_txg, tx));
1181 }
1182 }
1183
1184 /*
1185 * Computes the memory limit state that we're currently in. A sorted scan
1186 * needs quite a bit of memory to hold the sorting queue, so we need to
1187 * reasonably constrain the size so it doesn't impact overall system
1188 * performance. We compute two limits:
1189 * 1) Hard memory limit: if the amount of memory used by the sorting
1190 * queues on a pool gets above this value, we stop the metadata
1191 * scanning portion and start issuing the queued up and sorted
1192 * I/Os to reduce memory usage.
1193 * This limit is calculated as a fraction of physmem (by default 5%).
1194 * We constrain the lower bound of the hard limit to an absolute
1195 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1196 * the upper bound to 5% of the total pool size - no chance we'll
1197 * ever need that much memory, but just to keep the value in check.
1198 * 2) Soft memory limit: once we hit the hard memory limit, we start
1199 * issuing I/O to reduce queue memory usage, but we don't want to
1200 * completely empty out the queues, since we might be able to find I/Os
1201 * that will fill in the gaps of our non-sequential IOs at some point
1202 * in the future. So we stop the issuing of I/Os once the amount of
1203 * memory used drops below the soft limit (at which point we stop issuing
1204 * I/O and start scanning metadata again).
1205 *
1206 * This limit is calculated by subtracting a fraction of the hard
1207 * limit from the hard limit. By default this fraction is 5%, so
1208 * the soft limit is 95% of the hard limit. We cap the size of the
1209 * difference between the hard and soft limits at an absolute
1210 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1211 * sufficient to not cause too frequent switching between the
1212 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1213 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1214 * that should take at least a decent fraction of a second).
1215 */
1216 static boolean_t
1217 dsl_scan_should_clear(dsl_scan_t *scn)
1218 {
1219 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1220 uint64_t mlim_hard, mlim_soft, mused;
1221 uint64_t alloc = metaslab_class_get_alloc(spa_normal_class(
1222 scn->scn_dp->dp_spa));
1223
1224 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1225 zfs_scan_mem_lim_min);
1226 mlim_hard = MIN(mlim_hard, alloc / 20);
1227 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1228 zfs_scan_mem_lim_soft_max);
1229 mused = 0;
1230 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1231 vdev_t *tvd = rvd->vdev_child[i];
1232 dsl_scan_io_queue_t *queue;
1233
1234 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1235 queue = tvd->vdev_scan_io_queue;
1236 if (queue != NULL) {
1237 /* # extents in exts_by_size = # in exts_by_addr */
1238 mused += avl_numnodes(&queue->q_exts_by_size) *
1239 sizeof (range_seg_t) + queue->q_sio_memused;
1240 }
1241 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1242 }
1243
1244 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1245
1246 if (mused == 0)
1247 ASSERT0(scn->scn_bytes_pending);
1248
1249 /*
1250 * If we are above our hard limit, we need to clear out memory.
1251 * If we are below our soft limit, we need to accumulate sequential IOs.
1252 * Otherwise, we should keep doing whatever we are currently doing.
1253 */
1254 if (mused >= mlim_hard)
1255 return (B_TRUE);
1256 else if (mused < mlim_soft)
1257 return (B_FALSE);
1258 else
1259 return (scn->scn_clearing);
1260 }
1261
1262 static boolean_t
1263 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1264 {
1265 /* we never skip user/group accounting objects */
1266 if (zb && (int64_t)zb->zb_object < 0)
1267 return (B_FALSE);
1268
1269 if (scn->scn_suspending)
1270 return (B_TRUE); /* we're already suspending */
1271
1272 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1273 return (B_FALSE); /* we're resuming */
1274
1275 /* We only know how to resume from level-0 blocks. */
1276 if (zb && zb->zb_level != 0)
1277 return (B_FALSE);
1278
1279 /*
1280 * We suspend if:
1281 * - we have scanned for at least the minimum time (default 1 sec
1282 * for scrub, 3 sec for resilver), and either we have sufficient
1283 * dirty data that we are starting to write more quickly
1284 * (default 30%), someone is explicitly waiting for this txg
1285 * to complete, or we have used up all of the time in the txg
1286 * timeout (default 5 sec).
1287 * or
1288 * - the spa is shutting down because this pool is being exported
1289 * or the machine is rebooting.
1290 * or
1291 * - the scan queue has reached its memory use limit
1292 */
1293 uint64_t curr_time_ns = gethrtime();
1294 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1295 uint64_t sync_time_ns = curr_time_ns -
1296 scn->scn_dp->dp_spa->spa_sync_starttime;
1297 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1298 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1299 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1300
1301 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1302 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1303 txg_sync_waiting(scn->scn_dp) ||
1304 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1305 spa_shutting_down(scn->scn_dp->dp_spa) ||
1306 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1307 if (zb) {
1308 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1309 (longlong_t)zb->zb_objset,
1310 (longlong_t)zb->zb_object,
1311 (longlong_t)zb->zb_level,
1312 (longlong_t)zb->zb_blkid);
1313 scn->scn_phys.scn_bookmark = *zb;
1314 } else {
1315 #ifdef ZFS_DEBUG
1316 dsl_scan_phys_t *scnp = &scn->scn_phys;
1317 dprintf("suspending at at DDT bookmark "
1318 "%llx/%llx/%llx/%llx\n",
1319 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1320 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1321 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1322 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1323 #endif
1324 }
1325 scn->scn_suspending = B_TRUE;
1326 return (B_TRUE);
1327 }
1328 return (B_FALSE);
1329 }
1330
1331 typedef struct zil_scan_arg {
1332 dsl_pool_t *zsa_dp;
1333 zil_header_t *zsa_zh;
1334 } zil_scan_arg_t;
1335
1336 /* ARGSUSED */
1337 static int
1338 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1339 {
1340 zil_scan_arg_t *zsa = arg;
1341 dsl_pool_t *dp = zsa->zsa_dp;
1342 dsl_scan_t *scn = dp->dp_scan;
1343 zil_header_t *zh = zsa->zsa_zh;
1344 zbookmark_phys_t zb;
1345
1346 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1347 return (0);
1348
1349 /*
1350 * One block ("stubby") can be allocated a long time ago; we
1351 * want to visit that one because it has been allocated
1352 * (on-disk) even if it hasn't been claimed (even though for
1353 * scrub there's nothing to do to it).
1354 */
1355 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1356 return (0);
1357
1358 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1359 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1360
1361 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1362 return (0);
1363 }
1364
1365 /* ARGSUSED */
1366 static int
1367 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1368 {
1369 if (lrc->lrc_txtype == TX_WRITE) {
1370 zil_scan_arg_t *zsa = arg;
1371 dsl_pool_t *dp = zsa->zsa_dp;
1372 dsl_scan_t *scn = dp->dp_scan;
1373 zil_header_t *zh = zsa->zsa_zh;
1374 lr_write_t *lr = (lr_write_t *)lrc;
1375 blkptr_t *bp = &lr->lr_blkptr;
1376 zbookmark_phys_t zb;
1377
1378 if (BP_IS_HOLE(bp) ||
1379 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1380 return (0);
1381
1382 /*
1383 * birth can be < claim_txg if this record's txg is
1384 * already txg sync'ed (but this log block contains
1385 * other records that are not synced)
1386 */
1387 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1388 return (0);
1389
1390 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1391 lr->lr_foid, ZB_ZIL_LEVEL,
1392 lr->lr_offset / BP_GET_LSIZE(bp));
1393
1394 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1395 }
1396 return (0);
1397 }
1398
1399 static void
1400 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1401 {
1402 uint64_t claim_txg = zh->zh_claim_txg;
1403 zil_scan_arg_t zsa = { dp, zh };
1404 zilog_t *zilog;
1405
1406 ASSERT(spa_writeable(dp->dp_spa));
1407
1408 /*
1409 * We only want to visit blocks that have been claimed but not yet
1410 * replayed (or, in read-only mode, blocks that *would* be claimed).
1411 */
1412 if (claim_txg == 0)
1413 return;
1414
1415 zilog = zil_alloc(dp->dp_meta_objset, zh);
1416
1417 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1418 claim_txg, B_FALSE);
1419
1420 zil_free(zilog);
1421 }
1422
1423 /*
1424 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1425 * here is to sort the AVL tree by the order each block will be needed.
1426 */
1427 static int
1428 scan_prefetch_queue_compare(const void *a, const void *b)
1429 {
1430 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1431 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1432 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1433
1434 return (zbookmark_compare(spc_a->spc_datablkszsec,
1435 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1436 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1437 }
1438
1439 static void
1440 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1441 {
1442 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1443 zfs_refcount_destroy(&spc->spc_refcnt);
1444 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1445 }
1446 }
1447
1448 static scan_prefetch_ctx_t *
1449 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1450 {
1451 scan_prefetch_ctx_t *spc;
1452
1453 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1454 zfs_refcount_create(&spc->spc_refcnt);
1455 zfs_refcount_add(&spc->spc_refcnt, tag);
1456 spc->spc_scn = scn;
1457 if (dnp != NULL) {
1458 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1459 spc->spc_indblkshift = dnp->dn_indblkshift;
1460 spc->spc_root = B_FALSE;
1461 } else {
1462 spc->spc_datablkszsec = 0;
1463 spc->spc_indblkshift = 0;
1464 spc->spc_root = B_TRUE;
1465 }
1466
1467 return (spc);
1468 }
1469
1470 static void
1471 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1472 {
1473 zfs_refcount_add(&spc->spc_refcnt, tag);
1474 }
1475
1476 static void
1477 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1478 {
1479 spa_t *spa = scn->scn_dp->dp_spa;
1480 void *cookie = NULL;
1481 scan_prefetch_issue_ctx_t *spic = NULL;
1482
1483 mutex_enter(&spa->spa_scrub_lock);
1484 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1485 &cookie)) != NULL) {
1486 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1487 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1488 }
1489 mutex_exit(&spa->spa_scrub_lock);
1490 }
1491
1492 static boolean_t
1493 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1494 const zbookmark_phys_t *zb)
1495 {
1496 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1497 dnode_phys_t tmp_dnp;
1498 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1499
1500 if (zb->zb_objset != last_zb->zb_objset)
1501 return (B_TRUE);
1502 if ((int64_t)zb->zb_object < 0)
1503 return (B_FALSE);
1504
1505 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1506 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1507
1508 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1509 return (B_TRUE);
1510
1511 return (B_FALSE);
1512 }
1513
1514 static void
1515 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1516 {
1517 avl_index_t idx;
1518 dsl_scan_t *scn = spc->spc_scn;
1519 spa_t *spa = scn->scn_dp->dp_spa;
1520 scan_prefetch_issue_ctx_t *spic;
1521
1522 if (zfs_no_scrub_prefetch)
1523 return;
1524
1525 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1526 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1527 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1528 return;
1529
1530 if (dsl_scan_check_prefetch_resume(spc, zb))
1531 return;
1532
1533 scan_prefetch_ctx_add_ref(spc, scn);
1534 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1535 spic->spic_spc = spc;
1536 spic->spic_bp = *bp;
1537 spic->spic_zb = *zb;
1538
1539 /*
1540 * Add the IO to the queue of blocks to prefetch. This allows us to
1541 * prioritize blocks that we will need first for the main traversal
1542 * thread.
1543 */
1544 mutex_enter(&spa->spa_scrub_lock);
1545 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1546 /* this block is already queued for prefetch */
1547 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1548 scan_prefetch_ctx_rele(spc, scn);
1549 mutex_exit(&spa->spa_scrub_lock);
1550 return;
1551 }
1552
1553 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1554 cv_broadcast(&spa->spa_scrub_io_cv);
1555 mutex_exit(&spa->spa_scrub_lock);
1556 }
1557
1558 static void
1559 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1560 uint64_t objset, uint64_t object)
1561 {
1562 int i;
1563 zbookmark_phys_t zb;
1564 scan_prefetch_ctx_t *spc;
1565
1566 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1567 return;
1568
1569 SET_BOOKMARK(&zb, objset, object, 0, 0);
1570
1571 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1572
1573 for (i = 0; i < dnp->dn_nblkptr; i++) {
1574 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1575 zb.zb_blkid = i;
1576 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1577 }
1578
1579 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1580 zb.zb_level = 0;
1581 zb.zb_blkid = DMU_SPILL_BLKID;
1582 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1583 }
1584
1585 scan_prefetch_ctx_rele(spc, FTAG);
1586 }
1587
1588 void
1589 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1590 arc_buf_t *buf, void *private)
1591 {
1592 scan_prefetch_ctx_t *spc = private;
1593 dsl_scan_t *scn = spc->spc_scn;
1594 spa_t *spa = scn->scn_dp->dp_spa;
1595
1596 /* broadcast that the IO has completed for rate limiting purposes */
1597 mutex_enter(&spa->spa_scrub_lock);
1598 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1599 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1600 cv_broadcast(&spa->spa_scrub_io_cv);
1601 mutex_exit(&spa->spa_scrub_lock);
1602
1603 /* if there was an error or we are done prefetching, just cleanup */
1604 if (buf == NULL || scn->scn_prefetch_stop)
1605 goto out;
1606
1607 if (BP_GET_LEVEL(bp) > 0) {
1608 int i;
1609 blkptr_t *cbp;
1610 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1611 zbookmark_phys_t czb;
1612
1613 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1614 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1615 zb->zb_level - 1, zb->zb_blkid * epb + i);
1616 dsl_scan_prefetch(spc, cbp, &czb);
1617 }
1618 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1619 dnode_phys_t *cdnp;
1620 int i;
1621 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1622
1623 for (i = 0, cdnp = buf->b_data; i < epb;
1624 i += cdnp->dn_extra_slots + 1,
1625 cdnp += cdnp->dn_extra_slots + 1) {
1626 dsl_scan_prefetch_dnode(scn, cdnp,
1627 zb->zb_objset, zb->zb_blkid * epb + i);
1628 }
1629 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1630 objset_phys_t *osp = buf->b_data;
1631
1632 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1633 zb->zb_objset, DMU_META_DNODE_OBJECT);
1634
1635 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1636 dsl_scan_prefetch_dnode(scn,
1637 &osp->os_groupused_dnode, zb->zb_objset,
1638 DMU_GROUPUSED_OBJECT);
1639 dsl_scan_prefetch_dnode(scn,
1640 &osp->os_userused_dnode, zb->zb_objset,
1641 DMU_USERUSED_OBJECT);
1642 }
1643 }
1644
1645 out:
1646 if (buf != NULL)
1647 arc_buf_destroy(buf, private);
1648 scan_prefetch_ctx_rele(spc, scn);
1649 }
1650
1651 /* ARGSUSED */
1652 static void
1653 dsl_scan_prefetch_thread(void *arg)
1654 {
1655 dsl_scan_t *scn = arg;
1656 spa_t *spa = scn->scn_dp->dp_spa;
1657 scan_prefetch_issue_ctx_t *spic;
1658
1659 /* loop until we are told to stop */
1660 while (!scn->scn_prefetch_stop) {
1661 arc_flags_t flags = ARC_FLAG_NOWAIT |
1662 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1663 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1664
1665 mutex_enter(&spa->spa_scrub_lock);
1666
1667 /*
1668 * Wait until we have an IO to issue and are not above our
1669 * maximum in flight limit.
1670 */
1671 while (!scn->scn_prefetch_stop &&
1672 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1673 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1674 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1675 }
1676
1677 /* recheck if we should stop since we waited for the cv */
1678 if (scn->scn_prefetch_stop) {
1679 mutex_exit(&spa->spa_scrub_lock);
1680 break;
1681 }
1682
1683 /* remove the prefetch IO from the tree */
1684 spic = avl_first(&scn->scn_prefetch_queue);
1685 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1686 avl_remove(&scn->scn_prefetch_queue, spic);
1687
1688 mutex_exit(&spa->spa_scrub_lock);
1689
1690 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1691 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1692 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1693 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1694 zio_flags |= ZIO_FLAG_RAW;
1695 }
1696
1697 /* issue the prefetch asynchronously */
1698 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1699 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1700 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1701
1702 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1703 }
1704
1705 ASSERT(scn->scn_prefetch_stop);
1706
1707 /* free any prefetches we didn't get to complete */
1708 mutex_enter(&spa->spa_scrub_lock);
1709 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1710 avl_remove(&scn->scn_prefetch_queue, spic);
1711 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1712 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1713 }
1714 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1715 mutex_exit(&spa->spa_scrub_lock);
1716 }
1717
1718 static boolean_t
1719 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1720 const zbookmark_phys_t *zb)
1721 {
1722 /*
1723 * We never skip over user/group accounting objects (obj<0)
1724 */
1725 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1726 (int64_t)zb->zb_object >= 0) {
1727 /*
1728 * If we already visited this bp & everything below (in
1729 * a prior txg sync), don't bother doing it again.
1730 */
1731 if (zbookmark_subtree_completed(dnp, zb,
1732 &scn->scn_phys.scn_bookmark))
1733 return (B_TRUE);
1734
1735 /*
1736 * If we found the block we're trying to resume from, or
1737 * we went past it to a different object, zero it out to
1738 * indicate that it's OK to start checking for suspending
1739 * again.
1740 */
1741 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1742 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1743 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1744 (longlong_t)zb->zb_objset,
1745 (longlong_t)zb->zb_object,
1746 (longlong_t)zb->zb_level,
1747 (longlong_t)zb->zb_blkid);
1748 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1749 }
1750 }
1751 return (B_FALSE);
1752 }
1753
1754 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1755 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1756 dmu_objset_type_t ostype, dmu_tx_t *tx);
1757 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1758 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1759 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1760
1761 /*
1762 * Return nonzero on i/o error.
1763 * Return new buf to write out in *bufp.
1764 */
1765 inline __attribute__((always_inline)) static int
1766 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1767 dnode_phys_t *dnp, const blkptr_t *bp,
1768 const zbookmark_phys_t *zb, dmu_tx_t *tx)
1769 {
1770 dsl_pool_t *dp = scn->scn_dp;
1771 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1772 int err;
1773
1774 if (BP_GET_LEVEL(bp) > 0) {
1775 arc_flags_t flags = ARC_FLAG_WAIT;
1776 int i;
1777 blkptr_t *cbp;
1778 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1779 arc_buf_t *buf;
1780
1781 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1782 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1783 if (err) {
1784 scn->scn_phys.scn_errors++;
1785 return (err);
1786 }
1787 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1788 zbookmark_phys_t czb;
1789
1790 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1791 zb->zb_level - 1,
1792 zb->zb_blkid * epb + i);
1793 dsl_scan_visitbp(cbp, &czb, dnp,
1794 ds, scn, ostype, tx);
1795 }
1796 arc_buf_destroy(buf, &buf);
1797 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1798 arc_flags_t flags = ARC_FLAG_WAIT;
1799 dnode_phys_t *cdnp;
1800 int i;
1801 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1802 arc_buf_t *buf;
1803
1804 if (BP_IS_PROTECTED(bp)) {
1805 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1806 zio_flags |= ZIO_FLAG_RAW;
1807 }
1808
1809 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1810 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1811 if (err) {
1812 scn->scn_phys.scn_errors++;
1813 return (err);
1814 }
1815 for (i = 0, cdnp = buf->b_data; i < epb;
1816 i += cdnp->dn_extra_slots + 1,
1817 cdnp += cdnp->dn_extra_slots + 1) {
1818 dsl_scan_visitdnode(scn, ds, ostype,
1819 cdnp, zb->zb_blkid * epb + i, tx);
1820 }
1821
1822 arc_buf_destroy(buf, &buf);
1823 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1824 arc_flags_t flags = ARC_FLAG_WAIT;
1825 objset_phys_t *osp;
1826 arc_buf_t *buf;
1827
1828 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1829 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1830 if (err) {
1831 scn->scn_phys.scn_errors++;
1832 return (err);
1833 }
1834
1835 osp = buf->b_data;
1836
1837 dsl_scan_visitdnode(scn, ds, osp->os_type,
1838 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1839
1840 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1841 /*
1842 * We also always visit user/group/project accounting
1843 * objects, and never skip them, even if we are
1844 * suspending. This is necessary so that the
1845 * space deltas from this txg get integrated.
1846 */
1847 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1848 dsl_scan_visitdnode(scn, ds, osp->os_type,
1849 &osp->os_projectused_dnode,
1850 DMU_PROJECTUSED_OBJECT, tx);
1851 dsl_scan_visitdnode(scn, ds, osp->os_type,
1852 &osp->os_groupused_dnode,
1853 DMU_GROUPUSED_OBJECT, tx);
1854 dsl_scan_visitdnode(scn, ds, osp->os_type,
1855 &osp->os_userused_dnode,
1856 DMU_USERUSED_OBJECT, tx);
1857 }
1858 arc_buf_destroy(buf, &buf);
1859 }
1860
1861 return (0);
1862 }
1863
1864 inline __attribute__((always_inline)) static void
1865 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1866 dmu_objset_type_t ostype, dnode_phys_t *dnp,
1867 uint64_t object, dmu_tx_t *tx)
1868 {
1869 int j;
1870
1871 for (j = 0; j < dnp->dn_nblkptr; j++) {
1872 zbookmark_phys_t czb;
1873
1874 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1875 dnp->dn_nlevels - 1, j);
1876 dsl_scan_visitbp(&dnp->dn_blkptr[j],
1877 &czb, dnp, ds, scn, ostype, tx);
1878 }
1879
1880 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1881 zbookmark_phys_t czb;
1882 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1883 0, DMU_SPILL_BLKID);
1884 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1885 &czb, dnp, ds, scn, ostype, tx);
1886 }
1887 }
1888
1889 /*
1890 * The arguments are in this order because mdb can only print the
1891 * first 5; we want them to be useful.
1892 */
1893 static void
1894 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1895 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1896 dmu_objset_type_t ostype, dmu_tx_t *tx)
1897 {
1898 dsl_pool_t *dp = scn->scn_dp;
1899 blkptr_t *bp_toread = NULL;
1900
1901 if (dsl_scan_check_suspend(scn, zb))
1902 return;
1903
1904 if (dsl_scan_check_resume(scn, dnp, zb))
1905 return;
1906
1907 scn->scn_visited_this_txg++;
1908
1909 /*
1910 * This debugging is commented out to conserve stack space. This
1911 * function is called recursively and the debugging addes several
1912 * bytes to the stack for each call. It can be commented back in
1913 * if required to debug an issue in dsl_scan_visitbp().
1914 *
1915 * dprintf_bp(bp,
1916 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1917 * ds, ds ? ds->ds_object : 0,
1918 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1919 * bp);
1920 */
1921
1922 if (BP_IS_HOLE(bp)) {
1923 scn->scn_holes_this_txg++;
1924 return;
1925 }
1926
1927 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1928 scn->scn_lt_min_this_txg++;
1929 return;
1930 }
1931
1932 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1933 *bp_toread = *bp;
1934
1935 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1936 goto out;
1937
1938 /*
1939 * If dsl_scan_ddt() has already visited this block, it will have
1940 * already done any translations or scrubbing, so don't call the
1941 * callback again.
1942 */
1943 if (ddt_class_contains(dp->dp_spa,
1944 scn->scn_phys.scn_ddt_class_max, bp)) {
1945 scn->scn_ddt_contained_this_txg++;
1946 goto out;
1947 }
1948
1949 /*
1950 * If this block is from the future (after cur_max_txg), then we
1951 * are doing this on behalf of a deleted snapshot, and we will
1952 * revisit the future block on the next pass of this dataset.
1953 * Don't scan it now unless we need to because something
1954 * under it was modified.
1955 */
1956 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1957 scn->scn_gt_max_this_txg++;
1958 goto out;
1959 }
1960
1961 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1962
1963 out:
1964 kmem_free(bp_toread, sizeof (blkptr_t));
1965 }
1966
1967 static void
1968 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1969 dmu_tx_t *tx)
1970 {
1971 zbookmark_phys_t zb;
1972 scan_prefetch_ctx_t *spc;
1973
1974 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1975 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1976
1977 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1978 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1979 zb.zb_objset, 0, 0, 0);
1980 } else {
1981 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1982 }
1983
1984 scn->scn_objsets_visited_this_txg++;
1985
1986 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1987 dsl_scan_prefetch(spc, bp, &zb);
1988 scan_prefetch_ctx_rele(spc, FTAG);
1989
1990 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1991
1992 dprintf_ds(ds, "finished scan%s", "");
1993 }
1994
1995 static void
1996 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1997 {
1998 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1999 if (ds->ds_is_snapshot) {
2000 /*
2001 * Note:
2002 * - scn_cur_{min,max}_txg stays the same.
2003 * - Setting the flag is not really necessary if
2004 * scn_cur_max_txg == scn_max_txg, because there
2005 * is nothing after this snapshot that we care
2006 * about. However, we set it anyway and then
2007 * ignore it when we retraverse it in
2008 * dsl_scan_visitds().
2009 */
2010 scn_phys->scn_bookmark.zb_objset =
2011 dsl_dataset_phys(ds)->ds_next_snap_obj;
2012 zfs_dbgmsg("destroying ds %llu; currently traversing; "
2013 "reset zb_objset to %llu",
2014 (u_longlong_t)ds->ds_object,
2015 (u_longlong_t)dsl_dataset_phys(ds)->
2016 ds_next_snap_obj);
2017 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2018 } else {
2019 SET_BOOKMARK(&scn_phys->scn_bookmark,
2020 ZB_DESTROYED_OBJSET, 0, 0, 0);
2021 zfs_dbgmsg("destroying ds %llu; currently traversing; "
2022 "reset bookmark to -1,0,0,0",
2023 (u_longlong_t)ds->ds_object);
2024 }
2025 }
2026 }
2027
2028 /*
2029 * Invoked when a dataset is destroyed. We need to make sure that:
2030 *
2031 * 1) If it is the dataset that was currently being scanned, we write
2032 * a new dsl_scan_phys_t and marking the objset reference in it
2033 * as destroyed.
2034 * 2) Remove it from the work queue, if it was present.
2035 *
2036 * If the dataset was actually a snapshot, instead of marking the dataset
2037 * as destroyed, we instead substitute the next snapshot in line.
2038 */
2039 void
2040 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2041 {
2042 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2043 dsl_scan_t *scn = dp->dp_scan;
2044 uint64_t mintxg;
2045
2046 if (!dsl_scan_is_running(scn))
2047 return;
2048
2049 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2050 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2051
2052 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2053 scan_ds_queue_remove(scn, ds->ds_object);
2054 if (ds->ds_is_snapshot)
2055 scan_ds_queue_insert(scn,
2056 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2057 }
2058
2059 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2060 ds->ds_object, &mintxg) == 0) {
2061 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2062 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2063 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2064 if (ds->ds_is_snapshot) {
2065 /*
2066 * We keep the same mintxg; it could be >
2067 * ds_creation_txg if the previous snapshot was
2068 * deleted too.
2069 */
2070 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2071 scn->scn_phys.scn_queue_obj,
2072 dsl_dataset_phys(ds)->ds_next_snap_obj,
2073 mintxg, tx) == 0);
2074 zfs_dbgmsg("destroying ds %llu; in queue; "
2075 "replacing with %llu",
2076 (u_longlong_t)ds->ds_object,
2077 (u_longlong_t)dsl_dataset_phys(ds)->
2078 ds_next_snap_obj);
2079 } else {
2080 zfs_dbgmsg("destroying ds %llu; in queue; removing",
2081 (u_longlong_t)ds->ds_object);
2082 }
2083 }
2084
2085 /*
2086 * dsl_scan_sync() should be called after this, and should sync
2087 * out our changed state, but just to be safe, do it here.
2088 */
2089 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2090 }
2091
2092 static void
2093 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2094 {
2095 if (scn_bookmark->zb_objset == ds->ds_object) {
2096 scn_bookmark->zb_objset =
2097 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2098 zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2099 "reset zb_objset to %llu",
2100 (u_longlong_t)ds->ds_object,
2101 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2102 }
2103 }
2104
2105 /*
2106 * Called when a dataset is snapshotted. If we were currently traversing
2107 * this snapshot, we reset our bookmark to point at the newly created
2108 * snapshot. We also modify our work queue to remove the old snapshot and
2109 * replace with the new one.
2110 */
2111 void
2112 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2113 {
2114 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2115 dsl_scan_t *scn = dp->dp_scan;
2116 uint64_t mintxg;
2117
2118 if (!dsl_scan_is_running(scn))
2119 return;
2120
2121 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2122
2123 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2124 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2125
2126 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2127 scan_ds_queue_remove(scn, ds->ds_object);
2128 scan_ds_queue_insert(scn,
2129 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2130 }
2131
2132 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2133 ds->ds_object, &mintxg) == 0) {
2134 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2135 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2136 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2137 scn->scn_phys.scn_queue_obj,
2138 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2139 zfs_dbgmsg("snapshotting ds %llu; in queue; "
2140 "replacing with %llu",
2141 (u_longlong_t)ds->ds_object,
2142 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2143 }
2144
2145 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2146 }
2147
2148 static void
2149 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2150 zbookmark_phys_t *scn_bookmark)
2151 {
2152 if (scn_bookmark->zb_objset == ds1->ds_object) {
2153 scn_bookmark->zb_objset = ds2->ds_object;
2154 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2155 "reset zb_objset to %llu",
2156 (u_longlong_t)ds1->ds_object,
2157 (u_longlong_t)ds2->ds_object);
2158 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2159 scn_bookmark->zb_objset = ds1->ds_object;
2160 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2161 "reset zb_objset to %llu",
2162 (u_longlong_t)ds2->ds_object,
2163 (u_longlong_t)ds1->ds_object);
2164 }
2165 }
2166
2167 /*
2168 * Called when a parent dataset and its clone are swapped. If we were
2169 * currently traversing the dataset, we need to switch to traversing the
2170 * newly promoted parent.
2171 */
2172 void
2173 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2174 {
2175 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2176 dsl_scan_t *scn = dp->dp_scan;
2177 uint64_t mintxg;
2178
2179 if (!dsl_scan_is_running(scn))
2180 return;
2181
2182 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2183 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2184
2185 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2186 scan_ds_queue_remove(scn, ds1->ds_object);
2187 scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2188 }
2189 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2190 scan_ds_queue_remove(scn, ds2->ds_object);
2191 scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2192 }
2193
2194 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2195 ds1->ds_object, &mintxg) == 0) {
2196 int err;
2197 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2198 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2199 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2200 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2201 err = zap_add_int_key(dp->dp_meta_objset,
2202 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2203 VERIFY(err == 0 || err == EEXIST);
2204 if (err == EEXIST) {
2205 /* Both were there to begin with */
2206 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2207 scn->scn_phys.scn_queue_obj,
2208 ds1->ds_object, mintxg, tx));
2209 }
2210 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2211 "replacing with %llu",
2212 (u_longlong_t)ds1->ds_object,
2213 (u_longlong_t)ds2->ds_object);
2214 }
2215 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2216 ds2->ds_object, &mintxg) == 0) {
2217 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2218 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2219 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2220 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2221 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2222 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2223 zfs_dbgmsg("clone_swap ds %llu; in queue; "
2224 "replacing with %llu",
2225 (u_longlong_t)ds2->ds_object,
2226 (u_longlong_t)ds1->ds_object);
2227 }
2228
2229 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2230 }
2231
2232 /* ARGSUSED */
2233 static int
2234 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2235 {
2236 uint64_t originobj = *(uint64_t *)arg;
2237 dsl_dataset_t *ds;
2238 int err;
2239 dsl_scan_t *scn = dp->dp_scan;
2240
2241 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2242 return (0);
2243
2244 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2245 if (err)
2246 return (err);
2247
2248 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2249 dsl_dataset_t *prev;
2250 err = dsl_dataset_hold_obj(dp,
2251 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2252
2253 dsl_dataset_rele(ds, FTAG);
2254 if (err)
2255 return (err);
2256 ds = prev;
2257 }
2258 scan_ds_queue_insert(scn, ds->ds_object,
2259 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2260 dsl_dataset_rele(ds, FTAG);
2261 return (0);
2262 }
2263
2264 static void
2265 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2266 {
2267 dsl_pool_t *dp = scn->scn_dp;
2268 dsl_dataset_t *ds;
2269
2270 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2271
2272 if (scn->scn_phys.scn_cur_min_txg >=
2273 scn->scn_phys.scn_max_txg) {
2274 /*
2275 * This can happen if this snapshot was created after the
2276 * scan started, and we already completed a previous snapshot
2277 * that was created after the scan started. This snapshot
2278 * only references blocks with:
2279 *
2280 * birth < our ds_creation_txg
2281 * cur_min_txg is no less than ds_creation_txg.
2282 * We have already visited these blocks.
2283 * or
2284 * birth > scn_max_txg
2285 * The scan requested not to visit these blocks.
2286 *
2287 * Subsequent snapshots (and clones) can reference our
2288 * blocks, or blocks with even higher birth times.
2289 * Therefore we do not need to visit them either,
2290 * so we do not add them to the work queue.
2291 *
2292 * Note that checking for cur_min_txg >= cur_max_txg
2293 * is not sufficient, because in that case we may need to
2294 * visit subsequent snapshots. This happens when min_txg > 0,
2295 * which raises cur_min_txg. In this case we will visit
2296 * this dataset but skip all of its blocks, because the
2297 * rootbp's birth time is < cur_min_txg. Then we will
2298 * add the next snapshots/clones to the work queue.
2299 */
2300 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2301 dsl_dataset_name(ds, dsname);
2302 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2303 "cur_min_txg (%llu) >= max_txg (%llu)",
2304 (longlong_t)dsobj, dsname,
2305 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2306 (longlong_t)scn->scn_phys.scn_max_txg);
2307 kmem_free(dsname, MAXNAMELEN);
2308
2309 goto out;
2310 }
2311
2312 /*
2313 * Only the ZIL in the head (non-snapshot) is valid. Even though
2314 * snapshots can have ZIL block pointers (which may be the same
2315 * BP as in the head), they must be ignored. In addition, $ORIGIN
2316 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2317 * need to look for a ZIL in it either. So we traverse the ZIL here,
2318 * rather than in scan_recurse(), because the regular snapshot
2319 * block-sharing rules don't apply to it.
2320 */
2321 if (!dsl_dataset_is_snapshot(ds) &&
2322 (dp->dp_origin_snap == NULL ||
2323 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2324 objset_t *os;
2325 if (dmu_objset_from_ds(ds, &os) != 0) {
2326 goto out;
2327 }
2328 dsl_scan_zil(dp, &os->os_zil_header);
2329 }
2330
2331 /*
2332 * Iterate over the bps in this ds.
2333 */
2334 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2335 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2336 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2337 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2338
2339 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2340 dsl_dataset_name(ds, dsname);
2341 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2342 "suspending=%u",
2343 (longlong_t)dsobj, dsname,
2344 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2345 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2346 (int)scn->scn_suspending);
2347 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2348
2349 if (scn->scn_suspending)
2350 goto out;
2351
2352 /*
2353 * We've finished this pass over this dataset.
2354 */
2355
2356 /*
2357 * If we did not completely visit this dataset, do another pass.
2358 */
2359 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2360 zfs_dbgmsg("incomplete pass; visiting again");
2361 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2362 scan_ds_queue_insert(scn, ds->ds_object,
2363 scn->scn_phys.scn_cur_max_txg);
2364 goto out;
2365 }
2366
2367 /*
2368 * Add descendant datasets to work queue.
2369 */
2370 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2371 scan_ds_queue_insert(scn,
2372 dsl_dataset_phys(ds)->ds_next_snap_obj,
2373 dsl_dataset_phys(ds)->ds_creation_txg);
2374 }
2375 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2376 boolean_t usenext = B_FALSE;
2377 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2378 uint64_t count;
2379 /*
2380 * A bug in a previous version of the code could
2381 * cause upgrade_clones_cb() to not set
2382 * ds_next_snap_obj when it should, leading to a
2383 * missing entry. Therefore we can only use the
2384 * next_clones_obj when its count is correct.
2385 */
2386 int err = zap_count(dp->dp_meta_objset,
2387 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2388 if (err == 0 &&
2389 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2390 usenext = B_TRUE;
2391 }
2392
2393 if (usenext) {
2394 zap_cursor_t zc;
2395 zap_attribute_t za;
2396 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2397 dsl_dataset_phys(ds)->ds_next_clones_obj);
2398 zap_cursor_retrieve(&zc, &za) == 0;
2399 (void) zap_cursor_advance(&zc)) {
2400 scan_ds_queue_insert(scn,
2401 zfs_strtonum(za.za_name, NULL),
2402 dsl_dataset_phys(ds)->ds_creation_txg);
2403 }
2404 zap_cursor_fini(&zc);
2405 } else {
2406 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2407 enqueue_clones_cb, &ds->ds_object,
2408 DS_FIND_CHILDREN));
2409 }
2410 }
2411
2412 out:
2413 dsl_dataset_rele(ds, FTAG);
2414 }
2415
2416 /* ARGSUSED */
2417 static int
2418 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2419 {
2420 dsl_dataset_t *ds;
2421 int err;
2422 dsl_scan_t *scn = dp->dp_scan;
2423
2424 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2425 if (err)
2426 return (err);
2427
2428 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2429 dsl_dataset_t *prev;
2430 err = dsl_dataset_hold_obj(dp,
2431 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2432 if (err) {
2433 dsl_dataset_rele(ds, FTAG);
2434 return (err);
2435 }
2436
2437 /*
2438 * If this is a clone, we don't need to worry about it for now.
2439 */
2440 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2441 dsl_dataset_rele(ds, FTAG);
2442 dsl_dataset_rele(prev, FTAG);
2443 return (0);
2444 }
2445 dsl_dataset_rele(ds, FTAG);
2446 ds = prev;
2447 }
2448
2449 scan_ds_queue_insert(scn, ds->ds_object,
2450 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2451 dsl_dataset_rele(ds, FTAG);
2452 return (0);
2453 }
2454
2455 /* ARGSUSED */
2456 void
2457 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2458 ddt_entry_t *dde, dmu_tx_t *tx)
2459 {
2460 const ddt_key_t *ddk = &dde->dde_key;
2461 ddt_phys_t *ddp = dde->dde_phys;
2462 blkptr_t bp;
2463 zbookmark_phys_t zb = { 0 };
2464 int p;
2465
2466 if (!dsl_scan_is_running(scn))
2467 return;
2468
2469 /*
2470 * This function is special because it is the only thing
2471 * that can add scan_io_t's to the vdev scan queues from
2472 * outside dsl_scan_sync(). For the most part this is ok
2473 * as long as it is called from within syncing context.
2474 * However, dsl_scan_sync() expects that no new sio's will
2475 * be added between when all the work for a scan is done
2476 * and the next txg when the scan is actually marked as
2477 * completed. This check ensures we do not issue new sio's
2478 * during this period.
2479 */
2480 if (scn->scn_done_txg != 0)
2481 return;
2482
2483 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2484 if (ddp->ddp_phys_birth == 0 ||
2485 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2486 continue;
2487 ddt_bp_create(checksum, ddk, ddp, &bp);
2488
2489 scn->scn_visited_this_txg++;
2490 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2491 }
2492 }
2493
2494 /*
2495 * Scrub/dedup interaction.
2496 *
2497 * If there are N references to a deduped block, we don't want to scrub it
2498 * N times -- ideally, we should scrub it exactly once.
2499 *
2500 * We leverage the fact that the dde's replication class (enum ddt_class)
2501 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2502 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2503 *
2504 * To prevent excess scrubbing, the scrub begins by walking the DDT
2505 * to find all blocks with refcnt > 1, and scrubs each of these once.
2506 * Since there are two replication classes which contain blocks with
2507 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2508 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2509 *
2510 * There would be nothing more to say if a block's refcnt couldn't change
2511 * during a scrub, but of course it can so we must account for changes
2512 * in a block's replication class.
2513 *
2514 * Here's an example of what can occur:
2515 *
2516 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2517 * when visited during the top-down scrub phase, it will be scrubbed twice.
2518 * This negates our scrub optimization, but is otherwise harmless.
2519 *
2520 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2521 * on each visit during the top-down scrub phase, it will never be scrubbed.
2522 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2523 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2524 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2525 * while a scrub is in progress, it scrubs the block right then.
2526 */
2527 static void
2528 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2529 {
2530 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2531 ddt_entry_t dde;
2532 int error;
2533 uint64_t n = 0;
2534
2535 bzero(&dde, sizeof (ddt_entry_t));
2536
2537 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2538 ddt_t *ddt;
2539
2540 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2541 break;
2542 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2543 (longlong_t)ddb->ddb_class,
2544 (longlong_t)ddb->ddb_type,
2545 (longlong_t)ddb->ddb_checksum,
2546 (longlong_t)ddb->ddb_cursor);
2547
2548 /* There should be no pending changes to the dedup table */
2549 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2550 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2551
2552 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2553 n++;
2554
2555 if (dsl_scan_check_suspend(scn, NULL))
2556 break;
2557 }
2558
2559 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2560 "suspending=%u", (longlong_t)n,
2561 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2562
2563 ASSERT(error == 0 || error == ENOENT);
2564 ASSERT(error != ENOENT ||
2565 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2566 }
2567
2568 static uint64_t
2569 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2570 {
2571 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2572 if (ds->ds_is_snapshot)
2573 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2574 return (smt);
2575 }
2576
2577 static void
2578 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2579 {
2580 scan_ds_t *sds;
2581 dsl_pool_t *dp = scn->scn_dp;
2582
2583 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2584 scn->scn_phys.scn_ddt_class_max) {
2585 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2586 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2587 dsl_scan_ddt(scn, tx);
2588 if (scn->scn_suspending)
2589 return;
2590 }
2591
2592 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2593 /* First do the MOS & ORIGIN */
2594
2595 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2596 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2597 dsl_scan_visit_rootbp(scn, NULL,
2598 &dp->dp_meta_rootbp, tx);
2599 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2600 if (scn->scn_suspending)
2601 return;
2602
2603 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2604 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2605 enqueue_cb, NULL, DS_FIND_CHILDREN));
2606 } else {
2607 dsl_scan_visitds(scn,
2608 dp->dp_origin_snap->ds_object, tx);
2609 }
2610 ASSERT(!scn->scn_suspending);
2611 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2612 ZB_DESTROYED_OBJSET) {
2613 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2614 /*
2615 * If we were suspended, continue from here. Note if the
2616 * ds we were suspended on was deleted, the zb_objset may
2617 * be -1, so we will skip this and find a new objset
2618 * below.
2619 */
2620 dsl_scan_visitds(scn, dsobj, tx);
2621 if (scn->scn_suspending)
2622 return;
2623 }
2624
2625 /*
2626 * In case we suspended right at the end of the ds, zero the
2627 * bookmark so we don't think that we're still trying to resume.
2628 */
2629 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2630
2631 /*
2632 * Keep pulling things out of the dataset avl queue. Updates to the
2633 * persistent zap-object-as-queue happen only at checkpoints.
2634 */
2635 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2636 dsl_dataset_t *ds;
2637 uint64_t dsobj = sds->sds_dsobj;
2638 uint64_t txg = sds->sds_txg;
2639
2640 /* dequeue and free the ds from the queue */
2641 scan_ds_queue_remove(scn, dsobj);
2642 sds = NULL;
2643
2644 /* set up min / max txg */
2645 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2646 if (txg != 0) {
2647 scn->scn_phys.scn_cur_min_txg =
2648 MAX(scn->scn_phys.scn_min_txg, txg);
2649 } else {
2650 scn->scn_phys.scn_cur_min_txg =
2651 MAX(scn->scn_phys.scn_min_txg,
2652 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2653 }
2654 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2655 dsl_dataset_rele(ds, FTAG);
2656
2657 dsl_scan_visitds(scn, dsobj, tx);
2658 if (scn->scn_suspending)
2659 return;
2660 }
2661
2662 /* No more objsets to fetch, we're done */
2663 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2664 ASSERT0(scn->scn_suspending);
2665 }
2666
2667 static uint64_t
2668 dsl_scan_count_leaves(vdev_t *vd)
2669 {
2670 uint64_t i, leaves = 0;
2671
2672 /* we only count leaves that belong to the main pool and are readable */
2673 if (vd->vdev_islog || vd->vdev_isspare ||
2674 vd->vdev_isl2cache || !vdev_readable(vd))
2675 return (0);
2676
2677 if (vd->vdev_ops->vdev_op_leaf)
2678 return (1);
2679
2680 for (i = 0; i < vd->vdev_children; i++) {
2681 leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2682 }
2683
2684 return (leaves);
2685 }
2686
2687 static void
2688 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2689 {
2690 int i;
2691 uint64_t cur_size = 0;
2692
2693 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2694 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2695 }
2696
2697 q->q_total_zio_size_this_txg += cur_size;
2698 q->q_zios_this_txg++;
2699 }
2700
2701 static void
2702 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2703 uint64_t end)
2704 {
2705 q->q_total_seg_size_this_txg += end - start;
2706 q->q_segs_this_txg++;
2707 }
2708
2709 static boolean_t
2710 scan_io_queue_check_suspend(dsl_scan_t *scn)
2711 {
2712 /* See comment in dsl_scan_check_suspend() */
2713 uint64_t curr_time_ns = gethrtime();
2714 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2715 uint64_t sync_time_ns = curr_time_ns -
2716 scn->scn_dp->dp_spa->spa_sync_starttime;
2717 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2718 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2719 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2720
2721 return ((NSEC2MSEC(scan_time_ns) > mintime &&
2722 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2723 txg_sync_waiting(scn->scn_dp) ||
2724 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2725 spa_shutting_down(scn->scn_dp->dp_spa));
2726 }
2727
2728 /*
2729 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2730 * disk. This consumes the io_list and frees the scan_io_t's. This is
2731 * called when emptying queues, either when we're up against the memory
2732 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2733 * processing the list before we finished. Any sios that were not issued
2734 * will remain in the io_list.
2735 */
2736 static boolean_t
2737 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2738 {
2739 dsl_scan_t *scn = queue->q_scn;
2740 scan_io_t *sio;
2741 int64_t bytes_issued = 0;
2742 boolean_t suspended = B_FALSE;
2743
2744 while ((sio = list_head(io_list)) != NULL) {
2745 blkptr_t bp;
2746
2747 if (scan_io_queue_check_suspend(scn)) {
2748 suspended = B_TRUE;
2749 break;
2750 }
2751
2752 sio2bp(sio, &bp);
2753 bytes_issued += SIO_GET_ASIZE(sio);
2754 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2755 &sio->sio_zb, queue);
2756 (void) list_remove_head(io_list);
2757 scan_io_queues_update_zio_stats(queue, &bp);
2758 sio_free(sio);
2759 }
2760
2761 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2762
2763 return (suspended);
2764 }
2765
2766 /*
2767 * This function removes sios from an IO queue which reside within a given
2768 * range_seg_t and inserts them (in offset order) into a list. Note that
2769 * we only ever return a maximum of 32 sios at once. If there are more sios
2770 * to process within this segment that did not make it onto the list we
2771 * return B_TRUE and otherwise B_FALSE.
2772 */
2773 static boolean_t
2774 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2775 {
2776 scan_io_t *srch_sio, *sio, *next_sio;
2777 avl_index_t idx;
2778 uint_t num_sios = 0;
2779 int64_t bytes_issued = 0;
2780
2781 ASSERT(rs != NULL);
2782 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2783
2784 srch_sio = sio_alloc(1);
2785 srch_sio->sio_nr_dvas = 1;
2786 SIO_SET_OFFSET(srch_sio, rs->rs_start);
2787
2788 /*
2789 * The exact start of the extent might not contain any matching zios,
2790 * so if that's the case, examine the next one in the tree.
2791 */
2792 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2793 sio_free(srch_sio);
2794
2795 if (sio == NULL)
2796 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2797
2798 while (sio != NULL &&
2799 SIO_GET_OFFSET(sio) < rs->rs_end && num_sios <= 32) {
2800 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs->rs_start);
2801 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs->rs_end);
2802
2803 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2804 avl_remove(&queue->q_sios_by_addr, sio);
2805 queue->q_sio_memused -= SIO_GET_MUSED(sio);
2806
2807 bytes_issued += SIO_GET_ASIZE(sio);
2808 num_sios++;
2809 list_insert_tail(list, sio);
2810 sio = next_sio;
2811 }
2812
2813 /*
2814 * We limit the number of sios we process at once to 32 to avoid
2815 * biting off more than we can chew. If we didn't take everything
2816 * in the segment we update it to reflect the work we were able to
2817 * complete. Otherwise, we remove it from the range tree entirely.
2818 */
2819 if (sio != NULL && SIO_GET_OFFSET(sio) < rs->rs_end) {
2820 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2821 -bytes_issued);
2822 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2823 SIO_GET_OFFSET(sio), rs->rs_end - SIO_GET_OFFSET(sio));
2824
2825 return (B_TRUE);
2826 } else {
2827 range_tree_remove(queue->q_exts_by_addr, rs->rs_start,
2828 rs->rs_end - rs->rs_start);
2829 return (B_FALSE);
2830 }
2831 }
2832
2833 /*
2834 * This is called from the queue emptying thread and selects the next
2835 * extent from which we are to issue I/Os. The behavior of this function
2836 * depends on the state of the scan, the current memory consumption and
2837 * whether or not we are performing a scan shutdown.
2838 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2839 * needs to perform a checkpoint
2840 * 2) We select the largest available extent if we are up against the
2841 * memory limit.
2842 * 3) Otherwise we don't select any extents.
2843 */
2844 static range_seg_t *
2845 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2846 {
2847 dsl_scan_t *scn = queue->q_scn;
2848
2849 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2850 ASSERT(scn->scn_is_sorted);
2851
2852 /* handle tunable overrides */
2853 if (scn->scn_checkpointing || scn->scn_clearing) {
2854 if (zfs_scan_issue_strategy == 1) {
2855 return (range_tree_first(queue->q_exts_by_addr));
2856 } else if (zfs_scan_issue_strategy == 2) {
2857 return (avl_first(&queue->q_exts_by_size));
2858 }
2859 }
2860
2861 /*
2862 * During normal clearing, we want to issue our largest segments
2863 * first, keeping IO as sequential as possible, and leaving the
2864 * smaller extents for later with the hope that they might eventually
2865 * grow to larger sequential segments. However, when the scan is
2866 * checkpointing, no new extents will be added to the sorting queue,
2867 * so the way we are sorted now is as good as it will ever get.
2868 * In this case, we instead switch to issuing extents in LBA order.
2869 */
2870 if (scn->scn_checkpointing) {
2871 return (range_tree_first(queue->q_exts_by_addr));
2872 } else if (scn->scn_clearing) {
2873 return (avl_first(&queue->q_exts_by_size));
2874 } else {
2875 return (NULL);
2876 }
2877 }
2878
2879 static void
2880 scan_io_queues_run_one(void *arg)
2881 {
2882 dsl_scan_io_queue_t *queue = arg;
2883 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2884 boolean_t suspended = B_FALSE;
2885 range_seg_t *rs = NULL;
2886 scan_io_t *sio = NULL;
2887 list_t sio_list;
2888 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2889 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2890
2891 ASSERT(queue->q_scn->scn_is_sorted);
2892
2893 list_create(&sio_list, sizeof (scan_io_t),
2894 offsetof(scan_io_t, sio_nodes.sio_list_node));
2895 mutex_enter(q_lock);
2896
2897 /* calculate maximum in-flight bytes for this txg (min 1MB) */
2898 queue->q_maxinflight_bytes =
2899 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2900
2901 /* reset per-queue scan statistics for this txg */
2902 queue->q_total_seg_size_this_txg = 0;
2903 queue->q_segs_this_txg = 0;
2904 queue->q_total_zio_size_this_txg = 0;
2905 queue->q_zios_this_txg = 0;
2906
2907 /* loop until we run out of time or sios */
2908 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
2909 uint64_t seg_start = 0, seg_end = 0;
2910 boolean_t more_left = B_TRUE;
2911
2912 ASSERT(list_is_empty(&sio_list));
2913
2914 /* loop while we still have sios left to process in this rs */
2915 while (more_left) {
2916 scan_io_t *first_sio, *last_sio;
2917
2918 /*
2919 * We have selected which extent needs to be
2920 * processed next. Gather up the corresponding sios.
2921 */
2922 more_left = scan_io_queue_gather(queue, rs, &sio_list);
2923 ASSERT(!list_is_empty(&sio_list));
2924 first_sio = list_head(&sio_list);
2925 last_sio = list_tail(&sio_list);
2926
2927 seg_end = SIO_GET_END_OFFSET(last_sio);
2928 if (seg_start == 0)
2929 seg_start = SIO_GET_OFFSET(first_sio);
2930
2931 /*
2932 * Issuing sios can take a long time so drop the
2933 * queue lock. The sio queue won't be updated by
2934 * other threads since we're in syncing context so
2935 * we can be sure that our trees will remain exactly
2936 * as we left them.
2937 */
2938 mutex_exit(q_lock);
2939 suspended = scan_io_queue_issue(queue, &sio_list);
2940 mutex_enter(q_lock);
2941
2942 if (suspended)
2943 break;
2944 }
2945
2946 /* update statistics for debugging purposes */
2947 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2948
2949 if (suspended)
2950 break;
2951 }
2952
2953 /*
2954 * If we were suspended in the middle of processing,
2955 * requeue any unfinished sios and exit.
2956 */
2957 while ((sio = list_head(&sio_list)) != NULL) {
2958 list_remove(&sio_list, sio);
2959 scan_io_queue_insert_impl(queue, sio);
2960 }
2961
2962 mutex_exit(q_lock);
2963 list_destroy(&sio_list);
2964 }
2965
2966 /*
2967 * Performs an emptying run on all scan queues in the pool. This just
2968 * punches out one thread per top-level vdev, each of which processes
2969 * only that vdev's scan queue. We can parallelize the I/O here because
2970 * we know that each queue's I/Os only affect its own top-level vdev.
2971 *
2972 * This function waits for the queue runs to complete, and must be
2973 * called from dsl_scan_sync (or in general, syncing context).
2974 */
2975 static void
2976 scan_io_queues_run(dsl_scan_t *scn)
2977 {
2978 spa_t *spa = scn->scn_dp->dp_spa;
2979
2980 ASSERT(scn->scn_is_sorted);
2981 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2982
2983 if (scn->scn_bytes_pending == 0)
2984 return;
2985
2986 if (scn->scn_taskq == NULL) {
2987 int nthreads = spa->spa_root_vdev->vdev_children;
2988
2989 /*
2990 * We need to make this taskq *always* execute as many
2991 * threads in parallel as we have top-level vdevs and no
2992 * less, otherwise strange serialization of the calls to
2993 * scan_io_queues_run_one can occur during spa_sync runs
2994 * and that significantly impacts performance.
2995 */
2996 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
2997 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
2998 }
2999
3000 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3001 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3002
3003 mutex_enter(&vd->vdev_scan_io_queue_lock);
3004 if (vd->vdev_scan_io_queue != NULL) {
3005 VERIFY(taskq_dispatch(scn->scn_taskq,
3006 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3007 TQ_SLEEP) != TASKQID_INVALID);
3008 }
3009 mutex_exit(&vd->vdev_scan_io_queue_lock);
3010 }
3011
3012 /*
3013 * Wait for the queues to finish issuing their IOs for this run
3014 * before we return. There may still be IOs in flight at this
3015 * point.
3016 */
3017 taskq_wait(scn->scn_taskq);
3018 }
3019
3020 static boolean_t
3021 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3022 {
3023 uint64_t elapsed_nanosecs;
3024
3025 if (zfs_recover)
3026 return (B_FALSE);
3027
3028 if (zfs_async_block_max_blocks != 0 &&
3029 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3030 return (B_TRUE);
3031 }
3032
3033 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3034 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3035 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3036 txg_sync_waiting(scn->scn_dp)) ||
3037 spa_shutting_down(scn->scn_dp->dp_spa));
3038 }
3039
3040 static int
3041 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3042 {
3043 dsl_scan_t *scn = arg;
3044
3045 if (!scn->scn_is_bptree ||
3046 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3047 if (dsl_scan_async_block_should_pause(scn))
3048 return (SET_ERROR(ERESTART));
3049 }
3050
3051 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3052 dmu_tx_get_txg(tx), bp, 0));
3053 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3054 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3055 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3056 scn->scn_visited_this_txg++;
3057 return (0);
3058 }
3059
3060 static void
3061 dsl_scan_update_stats(dsl_scan_t *scn)
3062 {
3063 spa_t *spa = scn->scn_dp->dp_spa;
3064 uint64_t i;
3065 uint64_t seg_size_total = 0, zio_size_total = 0;
3066 uint64_t seg_count_total = 0, zio_count_total = 0;
3067
3068 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3069 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3070 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3071
3072 if (queue == NULL)
3073 continue;
3074
3075 seg_size_total += queue->q_total_seg_size_this_txg;
3076 zio_size_total += queue->q_total_zio_size_this_txg;
3077 seg_count_total += queue->q_segs_this_txg;
3078 zio_count_total += queue->q_zios_this_txg;
3079 }
3080
3081 if (seg_count_total == 0 || zio_count_total == 0) {
3082 scn->scn_avg_seg_size_this_txg = 0;
3083 scn->scn_avg_zio_size_this_txg = 0;
3084 scn->scn_segs_this_txg = 0;
3085 scn->scn_zios_this_txg = 0;
3086 return;
3087 }
3088
3089 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3090 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3091 scn->scn_segs_this_txg = seg_count_total;
3092 scn->scn_zios_this_txg = zio_count_total;
3093 }
3094
3095 static int
3096 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3097 {
3098 dsl_scan_t *scn = arg;
3099 const dva_t *dva = &bp->blk_dva[0];
3100
3101 if (dsl_scan_async_block_should_pause(scn))
3102 return (SET_ERROR(ERESTART));
3103
3104 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3105 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3106 DVA_GET_ASIZE(dva), tx);
3107 scn->scn_visited_this_txg++;
3108 return (0);
3109 }
3110
3111 boolean_t
3112 dsl_scan_active(dsl_scan_t *scn)
3113 {
3114 spa_t *spa = scn->scn_dp->dp_spa;
3115 uint64_t used = 0, comp, uncomp;
3116
3117 if (spa->spa_load_state != SPA_LOAD_NONE)
3118 return (B_FALSE);
3119 if (spa_shutting_down(spa))
3120 return (B_FALSE);
3121 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3122 (scn->scn_async_destroying && !scn->scn_async_stalled))
3123 return (B_TRUE);
3124
3125 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3126 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3127 &used, &comp, &uncomp);
3128 }
3129 return (used != 0);
3130 }
3131
3132 static boolean_t
3133 dsl_scan_check_deferred(vdev_t *vd)
3134 {
3135 boolean_t need_resilver = B_FALSE;
3136
3137 for (int c = 0; c < vd->vdev_children; c++) {
3138 need_resilver |=
3139 dsl_scan_check_deferred(vd->vdev_child[c]);
3140 }
3141
3142 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3143 !vd->vdev_ops->vdev_op_leaf)
3144 return (need_resilver);
3145
3146 if (!vd->vdev_resilver_deferred)
3147 need_resilver = B_TRUE;
3148
3149 return (need_resilver);
3150 }
3151
3152 static boolean_t
3153 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3154 uint64_t phys_birth)
3155 {
3156 vdev_t *vd;
3157
3158 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3159
3160 if (vd->vdev_ops == &vdev_indirect_ops) {
3161 /*
3162 * The indirect vdev can point to multiple
3163 * vdevs. For simplicity, always create
3164 * the resilver zio_t. zio_vdev_io_start()
3165 * will bypass the child resilver i/o's if
3166 * they are on vdevs that don't have DTL's.
3167 */
3168 return (B_TRUE);
3169 }
3170
3171 if (DVA_GET_GANG(dva)) {
3172 /*
3173 * Gang members may be spread across multiple
3174 * vdevs, so the best estimate we have is the
3175 * scrub range, which has already been checked.
3176 * XXX -- it would be better to change our
3177 * allocation policy to ensure that all
3178 * gang members reside on the same vdev.
3179 */
3180 return (B_TRUE);
3181 }
3182
3183 /*
3184 * Check if the txg falls within the range which must be
3185 * resilvered. DVAs outside this range can always be skipped.
3186 */
3187 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3188 return (B_FALSE);
3189
3190 /*
3191 * Check if the top-level vdev must resilver this offset.
3192 * When the offset does not intersect with a dirty leaf DTL
3193 * then it may be possible to skip the resilver IO. The psize
3194 * is provided instead of asize to simplify the check for RAIDZ.
3195 */
3196 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3197 return (B_FALSE);
3198
3199 /*
3200 * Check that this top-level vdev has a device under it which
3201 * is resilvering and is not deferred.
3202 */
3203 if (!dsl_scan_check_deferred(vd))
3204 return (B_FALSE);
3205
3206 return (B_TRUE);
3207 }
3208
3209 static int
3210 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3211 {
3212 dsl_scan_t *scn = dp->dp_scan;
3213 spa_t *spa = dp->dp_spa;
3214 int err = 0;
3215
3216 if (spa_suspend_async_destroy(spa))
3217 return (0);
3218
3219 if (zfs_free_bpobj_enabled &&
3220 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3221 scn->scn_is_bptree = B_FALSE;
3222 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3223 scn->scn_zio_root = zio_root(spa, NULL,
3224 NULL, ZIO_FLAG_MUSTSUCCEED);
3225 err = bpobj_iterate(&dp->dp_free_bpobj,
3226 dsl_scan_free_block_cb, scn, tx);
3227 VERIFY0(zio_wait(scn->scn_zio_root));
3228 scn->scn_zio_root = NULL;
3229
3230 if (err != 0 && err != ERESTART)
3231 zfs_panic_recover("error %u from bpobj_iterate()", err);
3232 }
3233
3234 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3235 ASSERT(scn->scn_async_destroying);
3236 scn->scn_is_bptree = B_TRUE;
3237 scn->scn_zio_root = zio_root(spa, NULL,
3238 NULL, ZIO_FLAG_MUSTSUCCEED);
3239 err = bptree_iterate(dp->dp_meta_objset,
3240 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3241 VERIFY0(zio_wait(scn->scn_zio_root));
3242 scn->scn_zio_root = NULL;
3243
3244 if (err == EIO || err == ECKSUM) {
3245 err = 0;
3246 } else if (err != 0 && err != ERESTART) {
3247 zfs_panic_recover("error %u from "
3248 "traverse_dataset_destroyed()", err);
3249 }
3250
3251 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3252 /* finished; deactivate async destroy feature */
3253 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3254 ASSERT(!spa_feature_is_active(spa,
3255 SPA_FEATURE_ASYNC_DESTROY));
3256 VERIFY0(zap_remove(dp->dp_meta_objset,
3257 DMU_POOL_DIRECTORY_OBJECT,
3258 DMU_POOL_BPTREE_OBJ, tx));
3259 VERIFY0(bptree_free(dp->dp_meta_objset,
3260 dp->dp_bptree_obj, tx));
3261 dp->dp_bptree_obj = 0;
3262 scn->scn_async_destroying = B_FALSE;
3263 scn->scn_async_stalled = B_FALSE;
3264 } else {
3265 /*
3266 * If we didn't make progress, mark the async
3267 * destroy as stalled, so that we will not initiate
3268 * a spa_sync() on its behalf. Note that we only
3269 * check this if we are not finished, because if the
3270 * bptree had no blocks for us to visit, we can
3271 * finish without "making progress".
3272 */
3273 scn->scn_async_stalled =
3274 (scn->scn_visited_this_txg == 0);
3275 }
3276 }
3277 if (scn->scn_visited_this_txg) {
3278 zfs_dbgmsg("freed %llu blocks in %llums from "
3279 "free_bpobj/bptree txg %llu; err=%u",
3280 (longlong_t)scn->scn_visited_this_txg,
3281 (longlong_t)
3282 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3283 (longlong_t)tx->tx_txg, err);
3284 scn->scn_visited_this_txg = 0;
3285
3286 /*
3287 * Write out changes to the DDT that may be required as a
3288 * result of the blocks freed. This ensures that the DDT
3289 * is clean when a scrub/resilver runs.
3290 */
3291 ddt_sync(spa, tx->tx_txg);
3292 }
3293 if (err != 0)
3294 return (err);
3295 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3296 zfs_free_leak_on_eio &&
3297 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3298 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3299 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3300 /*
3301 * We have finished background destroying, but there is still
3302 * some space left in the dp_free_dir. Transfer this leaked
3303 * space to the dp_leak_dir.
3304 */
3305 if (dp->dp_leak_dir == NULL) {
3306 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3307 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3308 LEAK_DIR_NAME, tx);
3309 VERIFY0(dsl_pool_open_special_dir(dp,
3310 LEAK_DIR_NAME, &dp->dp_leak_dir));
3311 rrw_exit(&dp->dp_config_rwlock, FTAG);
3312 }
3313 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3314 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3315 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3316 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3317 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3318 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3319 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3320 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3321 }
3322
3323 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3324 /* finished; verify that space accounting went to zero */
3325 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3326 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3327 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3328 }
3329
3330 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3331 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3332 DMU_POOL_OBSOLETE_BPOBJ));
3333 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3334 ASSERT(spa_feature_is_active(dp->dp_spa,
3335 SPA_FEATURE_OBSOLETE_COUNTS));
3336
3337 scn->scn_is_bptree = B_FALSE;
3338 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3339 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3340 dsl_scan_obsolete_block_cb, scn, tx);
3341 if (err != 0 && err != ERESTART)
3342 zfs_panic_recover("error %u from bpobj_iterate()", err);
3343
3344 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3345 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3346 }
3347 return (0);
3348 }
3349
3350 /*
3351 * This is the primary entry point for scans that is called from syncing
3352 * context. Scans must happen entirely during syncing context so that we
3353 * cna guarantee that blocks we are currently scanning will not change out
3354 * from under us. While a scan is active, this function controls how quickly
3355 * transaction groups proceed, instead of the normal handling provided by
3356 * txg_sync_thread().
3357 */
3358 void
3359 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3360 {
3361 int err = 0;
3362 dsl_scan_t *scn = dp->dp_scan;
3363 spa_t *spa = dp->dp_spa;
3364 state_sync_type_t sync_type = SYNC_OPTIONAL;
3365
3366 if (spa->spa_resilver_deferred &&
3367 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3368 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3369
3370 /*
3371 * Check for scn_restart_txg before checking spa_load_state, so
3372 * that we can restart an old-style scan while the pool is being
3373 * imported (see dsl_scan_init). We also restart scans if there
3374 * is a deferred resilver and the user has manually disabled
3375 * deferred resilvers via the tunable.
3376 */
3377 if (dsl_scan_restarting(scn, tx) ||
3378 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3379 pool_scan_func_t func = POOL_SCAN_SCRUB;
3380 dsl_scan_done(scn, B_FALSE, tx);
3381 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3382 func = POOL_SCAN_RESILVER;
3383 zfs_dbgmsg("restarting scan func=%u txg=%llu",
3384 func, (longlong_t)tx->tx_txg);
3385 dsl_scan_setup_sync(&func, tx);
3386 }
3387
3388 /*
3389 * Only process scans in sync pass 1.
3390 */
3391 if (spa_sync_pass(spa) > 1)
3392 return;
3393
3394 /*
3395 * If the spa is shutting down, then stop scanning. This will
3396 * ensure that the scan does not dirty any new data during the
3397 * shutdown phase.
3398 */
3399 if (spa_shutting_down(spa))
3400 return;
3401
3402 /*
3403 * If the scan is inactive due to a stalled async destroy, try again.
3404 */
3405 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3406 return;
3407
3408 /* reset scan statistics */
3409 scn->scn_visited_this_txg = 0;
3410 scn->scn_holes_this_txg = 0;
3411 scn->scn_lt_min_this_txg = 0;
3412 scn->scn_gt_max_this_txg = 0;
3413 scn->scn_ddt_contained_this_txg = 0;
3414 scn->scn_objsets_visited_this_txg = 0;
3415 scn->scn_avg_seg_size_this_txg = 0;
3416 scn->scn_segs_this_txg = 0;
3417 scn->scn_avg_zio_size_this_txg = 0;
3418 scn->scn_zios_this_txg = 0;
3419 scn->scn_suspending = B_FALSE;
3420 scn->scn_sync_start_time = gethrtime();
3421 spa->spa_scrub_active = B_TRUE;
3422
3423 /*
3424 * First process the async destroys. If we suspend, don't do
3425 * any scrubbing or resilvering. This ensures that there are no
3426 * async destroys while we are scanning, so the scan code doesn't
3427 * have to worry about traversing it. It is also faster to free the
3428 * blocks than to scrub them.
3429 */
3430 err = dsl_process_async_destroys(dp, tx);
3431 if (err != 0)
3432 return;
3433
3434 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3435 return;
3436
3437 /*
3438 * Wait a few txgs after importing to begin scanning so that
3439 * we can get the pool imported quickly.
3440 */
3441 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3442 return;
3443
3444 /*
3445 * zfs_scan_suspend_progress can be set to disable scan progress.
3446 * We don't want to spin the txg_sync thread, so we add a delay
3447 * here to simulate the time spent doing a scan. This is mostly
3448 * useful for testing and debugging.
3449 */
3450 if (zfs_scan_suspend_progress) {
3451 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3452 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3453 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3454
3455 while (zfs_scan_suspend_progress &&
3456 !txg_sync_waiting(scn->scn_dp) &&
3457 !spa_shutting_down(scn->scn_dp->dp_spa) &&
3458 NSEC2MSEC(scan_time_ns) < mintime) {
3459 delay(hz);
3460 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3461 }
3462 return;
3463 }
3464
3465 /*
3466 * It is possible to switch from unsorted to sorted at any time,
3467 * but afterwards the scan will remain sorted unless reloaded from
3468 * a checkpoint after a reboot.
3469 */
3470 if (!zfs_scan_legacy) {
3471 scn->scn_is_sorted = B_TRUE;
3472 if (scn->scn_last_checkpoint == 0)
3473 scn->scn_last_checkpoint = ddi_get_lbolt();
3474 }
3475
3476 /*
3477 * For sorted scans, determine what kind of work we will be doing
3478 * this txg based on our memory limitations and whether or not we
3479 * need to perform a checkpoint.
3480 */
3481 if (scn->scn_is_sorted) {
3482 /*
3483 * If we are over our checkpoint interval, set scn_clearing
3484 * so that we can begin checkpointing immediately. The
3485 * checkpoint allows us to save a consistent bookmark
3486 * representing how much data we have scrubbed so far.
3487 * Otherwise, use the memory limit to determine if we should
3488 * scan for metadata or start issue scrub IOs. We accumulate
3489 * metadata until we hit our hard memory limit at which point
3490 * we issue scrub IOs until we are at our soft memory limit.
3491 */
3492 if (scn->scn_checkpointing ||
3493 ddi_get_lbolt() - scn->scn_last_checkpoint >
3494 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3495 if (!scn->scn_checkpointing)
3496 zfs_dbgmsg("begin scan checkpoint");
3497
3498 scn->scn_checkpointing = B_TRUE;
3499 scn->scn_clearing = B_TRUE;
3500 } else {
3501 boolean_t should_clear = dsl_scan_should_clear(scn);
3502 if (should_clear && !scn->scn_clearing) {
3503 zfs_dbgmsg("begin scan clearing");
3504 scn->scn_clearing = B_TRUE;
3505 } else if (!should_clear && scn->scn_clearing) {
3506 zfs_dbgmsg("finish scan clearing");
3507 scn->scn_clearing = B_FALSE;
3508 }
3509 }
3510 } else {
3511 ASSERT0(scn->scn_checkpointing);
3512 ASSERT0(scn->scn_clearing);
3513 }
3514
3515 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3516 /* Need to scan metadata for more blocks to scrub */
3517 dsl_scan_phys_t *scnp = &scn->scn_phys;
3518 taskqid_t prefetch_tqid;
3519 uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3520 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3521
3522 /*
3523 * Recalculate the max number of in-flight bytes for pool-wide
3524 * scanning operations (minimum 1MB). Limits for the issuing
3525 * phase are done per top-level vdev and are handled separately.
3526 */
3527 scn->scn_maxinflight_bytes =
3528 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3529
3530 if (scnp->scn_ddt_bookmark.ddb_class <=
3531 scnp->scn_ddt_class_max) {
3532 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3533 zfs_dbgmsg("doing scan sync txg %llu; "
3534 "ddt bm=%llu/%llu/%llu/%llx",
3535 (longlong_t)tx->tx_txg,
3536 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3537 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3538 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3539 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3540 } else {
3541 zfs_dbgmsg("doing scan sync txg %llu; "
3542 "bm=%llu/%llu/%llu/%llu",
3543 (longlong_t)tx->tx_txg,
3544 (longlong_t)scnp->scn_bookmark.zb_objset,
3545 (longlong_t)scnp->scn_bookmark.zb_object,
3546 (longlong_t)scnp->scn_bookmark.zb_level,
3547 (longlong_t)scnp->scn_bookmark.zb_blkid);
3548 }
3549
3550 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3551 NULL, ZIO_FLAG_CANFAIL);
3552
3553 scn->scn_prefetch_stop = B_FALSE;
3554 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3555 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3556 ASSERT(prefetch_tqid != TASKQID_INVALID);
3557
3558 dsl_pool_config_enter(dp, FTAG);
3559 dsl_scan_visit(scn, tx);
3560 dsl_pool_config_exit(dp, FTAG);
3561
3562 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3563 scn->scn_prefetch_stop = B_TRUE;
3564 cv_broadcast(&spa->spa_scrub_io_cv);
3565 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3566
3567 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3568 (void) zio_wait(scn->scn_zio_root);
3569 scn->scn_zio_root = NULL;
3570
3571 zfs_dbgmsg("scan visited %llu blocks in %llums "
3572 "(%llu os's, %llu holes, %llu < mintxg, "
3573 "%llu in ddt, %llu > maxtxg)",
3574 (longlong_t)scn->scn_visited_this_txg,
3575 (longlong_t)NSEC2MSEC(gethrtime() -
3576 scn->scn_sync_start_time),
3577 (longlong_t)scn->scn_objsets_visited_this_txg,
3578 (longlong_t)scn->scn_holes_this_txg,
3579 (longlong_t)scn->scn_lt_min_this_txg,
3580 (longlong_t)scn->scn_ddt_contained_this_txg,
3581 (longlong_t)scn->scn_gt_max_this_txg);
3582
3583 if (!scn->scn_suspending) {
3584 ASSERT0(avl_numnodes(&scn->scn_queue));
3585 scn->scn_done_txg = tx->tx_txg + 1;
3586 if (scn->scn_is_sorted) {
3587 scn->scn_checkpointing = B_TRUE;
3588 scn->scn_clearing = B_TRUE;
3589 }
3590 zfs_dbgmsg("scan complete txg %llu",
3591 (longlong_t)tx->tx_txg);
3592 }
3593 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3594 ASSERT(scn->scn_clearing);
3595
3596 /* need to issue scrubbing IOs from per-vdev queues */
3597 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3598 NULL, ZIO_FLAG_CANFAIL);
3599 scan_io_queues_run(scn);
3600 (void) zio_wait(scn->scn_zio_root);
3601 scn->scn_zio_root = NULL;
3602
3603 /* calculate and dprintf the current memory usage */
3604 (void) dsl_scan_should_clear(scn);
3605 dsl_scan_update_stats(scn);
3606
3607 zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
3608 "(avg_block_size = %llu, avg_seg_size = %llu)",
3609 (longlong_t)scn->scn_zios_this_txg,
3610 (longlong_t)scn->scn_segs_this_txg,
3611 (longlong_t)NSEC2MSEC(gethrtime() -
3612 scn->scn_sync_start_time),
3613 (longlong_t)scn->scn_avg_zio_size_this_txg,
3614 (longlong_t)scn->scn_avg_seg_size_this_txg);
3615 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3616 /* Finished with everything. Mark the scrub as complete */
3617 zfs_dbgmsg("scan issuing complete txg %llu",
3618 (longlong_t)tx->tx_txg);
3619 ASSERT3U(scn->scn_done_txg, !=, 0);
3620 ASSERT0(spa->spa_scrub_inflight);
3621 ASSERT0(scn->scn_bytes_pending);
3622 dsl_scan_done(scn, B_TRUE, tx);
3623 sync_type = SYNC_MANDATORY;
3624 }
3625
3626 dsl_scan_sync_state(scn, tx, sync_type);
3627 }
3628
3629 static void
3630 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3631 {
3632 int i;
3633
3634 /*
3635 * Don't count embedded bp's, since we already did the work of
3636 * scanning these when we scanned the containing block.
3637 */
3638 if (BP_IS_EMBEDDED(bp))
3639 return;
3640
3641 /*
3642 * Update the spa's stats on how many bytes we have issued.
3643 * Sequential scrubs create a zio for each DVA of the bp. Each
3644 * of these will include all DVAs for repair purposes, but the
3645 * zio code will only try the first one unless there is an issue.
3646 * Therefore, we should only count the first DVA for these IOs.
3647 */
3648 if (scn->scn_is_sorted) {
3649 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3650 DVA_GET_ASIZE(&bp->blk_dva[0]));
3651 } else {
3652 spa_t *spa = scn->scn_dp->dp_spa;
3653
3654 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3655 atomic_add_64(&spa->spa_scan_pass_issued,
3656 DVA_GET_ASIZE(&bp->blk_dva[i]));
3657 }
3658 }
3659
3660 /*
3661 * If we resume after a reboot, zab will be NULL; don't record
3662 * incomplete stats in that case.
3663 */
3664 if (zab == NULL)
3665 return;
3666
3667 mutex_enter(&zab->zab_lock);
3668
3669 for (i = 0; i < 4; i++) {
3670 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3671 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3672
3673 if (t & DMU_OT_NEWTYPE)
3674 t = DMU_OT_OTHER;
3675 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3676 int equal;
3677
3678 zb->zb_count++;
3679 zb->zb_asize += BP_GET_ASIZE(bp);
3680 zb->zb_lsize += BP_GET_LSIZE(bp);
3681 zb->zb_psize += BP_GET_PSIZE(bp);
3682 zb->zb_gangs += BP_COUNT_GANG(bp);
3683
3684 switch (BP_GET_NDVAS(bp)) {
3685 case 2:
3686 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3687 DVA_GET_VDEV(&bp->blk_dva[1]))
3688 zb->zb_ditto_2_of_2_samevdev++;
3689 break;
3690 case 3:
3691 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3692 DVA_GET_VDEV(&bp->blk_dva[1])) +
3693 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3694 DVA_GET_VDEV(&bp->blk_dva[2])) +
3695 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3696 DVA_GET_VDEV(&bp->blk_dva[2]));
3697 if (equal == 1)
3698 zb->zb_ditto_2_of_3_samevdev++;
3699 else if (equal == 3)
3700 zb->zb_ditto_3_of_3_samevdev++;
3701 break;
3702 }
3703 }
3704
3705 mutex_exit(&zab->zab_lock);
3706 }
3707
3708 static void
3709 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3710 {
3711 avl_index_t idx;
3712 int64_t asize = SIO_GET_ASIZE(sio);
3713 dsl_scan_t *scn = queue->q_scn;
3714
3715 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3716
3717 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3718 /* block is already scheduled for reading */
3719 atomic_add_64(&scn->scn_bytes_pending, -asize);
3720 sio_free(sio);
3721 return;
3722 }
3723 avl_insert(&queue->q_sios_by_addr, sio, idx);
3724 queue->q_sio_memused += SIO_GET_MUSED(sio);
3725 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3726 }
3727
3728 /*
3729 * Given all the info we got from our metadata scanning process, we
3730 * construct a scan_io_t and insert it into the scan sorting queue. The
3731 * I/O must already be suitable for us to process. This is controlled
3732 * by dsl_scan_enqueue().
3733 */
3734 static void
3735 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3736 int zio_flags, const zbookmark_phys_t *zb)
3737 {
3738 dsl_scan_t *scn = queue->q_scn;
3739 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3740
3741 ASSERT0(BP_IS_GANG(bp));
3742 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3743
3744 bp2sio(bp, sio, dva_i);
3745 sio->sio_flags = zio_flags;
3746 sio->sio_zb = *zb;
3747
3748 /*
3749 * Increment the bytes pending counter now so that we can't
3750 * get an integer underflow in case the worker processes the
3751 * zio before we get to incrementing this counter.
3752 */
3753 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3754
3755 scan_io_queue_insert_impl(queue, sio);
3756 }
3757
3758 /*
3759 * Given a set of I/O parameters as discovered by the metadata traversal
3760 * process, attempts to place the I/O into the sorted queues (if allowed),
3761 * or immediately executes the I/O.
3762 */
3763 static void
3764 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3765 const zbookmark_phys_t *zb)
3766 {
3767 spa_t *spa = dp->dp_spa;
3768
3769 ASSERT(!BP_IS_EMBEDDED(bp));
3770
3771 /*
3772 * Gang blocks are hard to issue sequentially, so we just issue them
3773 * here immediately instead of queuing them.
3774 */
3775 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3776 scan_exec_io(dp, bp, zio_flags, zb, NULL);
3777 return;
3778 }
3779
3780 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3781 dva_t dva;
3782 vdev_t *vdev;
3783
3784 dva = bp->blk_dva[i];
3785 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3786 ASSERT(vdev != NULL);
3787
3788 mutex_enter(&vdev->vdev_scan_io_queue_lock);
3789 if (vdev->vdev_scan_io_queue == NULL)
3790 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3791 ASSERT(dp->dp_scan != NULL);
3792 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3793 i, zio_flags, zb);
3794 mutex_exit(&vdev->vdev_scan_io_queue_lock);
3795 }
3796 }
3797
3798 static int
3799 dsl_scan_scrub_cb(dsl_pool_t *dp,
3800 const blkptr_t *bp, const zbookmark_phys_t *zb)
3801 {
3802 dsl_scan_t *scn = dp->dp_scan;
3803 spa_t *spa = dp->dp_spa;
3804 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3805 size_t psize = BP_GET_PSIZE(bp);
3806 boolean_t needs_io = B_FALSE;
3807 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3808
3809
3810 if (phys_birth <= scn->scn_phys.scn_min_txg ||
3811 phys_birth >= scn->scn_phys.scn_max_txg) {
3812 count_block(scn, dp->dp_blkstats, bp);
3813 return (0);
3814 }
3815
3816 /* Embedded BP's have phys_birth==0, so we reject them above. */
3817 ASSERT(!BP_IS_EMBEDDED(bp));
3818
3819 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3820 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3821 zio_flags |= ZIO_FLAG_SCRUB;
3822 needs_io = B_TRUE;
3823 } else {
3824 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3825 zio_flags |= ZIO_FLAG_RESILVER;
3826 needs_io = B_FALSE;
3827 }
3828
3829 /* If it's an intent log block, failure is expected. */
3830 if (zb->zb_level == ZB_ZIL_LEVEL)
3831 zio_flags |= ZIO_FLAG_SPECULATIVE;
3832
3833 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
3834 const dva_t *dva = &bp->blk_dva[d];
3835
3836 /*
3837 * Keep track of how much data we've examined so that
3838 * zpool(1M) status can make useful progress reports.
3839 */
3840 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3841 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3842
3843 /* if it's a resilver, this may not be in the target range */
3844 if (!needs_io)
3845 needs_io = dsl_scan_need_resilver(spa, dva, psize,
3846 phys_birth);
3847 }
3848
3849 if (needs_io && !zfs_no_scrub_io) {
3850 dsl_scan_enqueue(dp, bp, zio_flags, zb);
3851 } else {
3852 count_block(scn, dp->dp_blkstats, bp);
3853 }
3854
3855 /* do not relocate this block */
3856 return (0);
3857 }
3858
3859 static void
3860 dsl_scan_scrub_done(zio_t *zio)
3861 {
3862 spa_t *spa = zio->io_spa;
3863 blkptr_t *bp = zio->io_bp;
3864 dsl_scan_io_queue_t *queue = zio->io_private;
3865
3866 abd_free(zio->io_abd);
3867
3868 if (queue == NULL) {
3869 mutex_enter(&spa->spa_scrub_lock);
3870 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3871 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3872 cv_broadcast(&spa->spa_scrub_io_cv);
3873 mutex_exit(&spa->spa_scrub_lock);
3874 } else {
3875 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3876 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3877 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3878 cv_broadcast(&queue->q_zio_cv);
3879 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3880 }
3881
3882 if (zio->io_error && (zio->io_error != ECKSUM ||
3883 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3884 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3885 }
3886 }
3887
3888 /*
3889 * Given a scanning zio's information, executes the zio. The zio need
3890 * not necessarily be only sortable, this function simply executes the
3891 * zio, no matter what it is. The optional queue argument allows the
3892 * caller to specify that they want per top level vdev IO rate limiting
3893 * instead of the legacy global limiting.
3894 */
3895 static void
3896 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3897 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3898 {
3899 spa_t *spa = dp->dp_spa;
3900 dsl_scan_t *scn = dp->dp_scan;
3901 size_t size = BP_GET_PSIZE(bp);
3902 abd_t *data = abd_alloc_for_io(size, B_FALSE);
3903
3904 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
3905
3906 if (queue == NULL) {
3907 mutex_enter(&spa->spa_scrub_lock);
3908 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3909 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3910 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3911 mutex_exit(&spa->spa_scrub_lock);
3912 } else {
3913 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3914
3915 mutex_enter(q_lock);
3916 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3917 cv_wait(&queue->q_zio_cv, q_lock);
3918 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3919 mutex_exit(q_lock);
3920 }
3921
3922 count_block(scn, dp->dp_blkstats, bp);
3923 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
3924 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3925 }
3926
3927 /*
3928 * This is the primary extent sorting algorithm. We balance two parameters:
3929 * 1) how many bytes of I/O are in an extent
3930 * 2) how well the extent is filled with I/O (as a fraction of its total size)
3931 * Since we allow extents to have gaps between their constituent I/Os, it's
3932 * possible to have a fairly large extent that contains the same amount of
3933 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3934 * The algorithm sorts based on a score calculated from the extent's size,
3935 * the relative fill volume (in %) and a "fill weight" parameter that controls
3936 * the split between whether we prefer larger extents or more well populated
3937 * extents:
3938 *
3939 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3940 *
3941 * Example:
3942 * 1) assume extsz = 64 MiB
3943 * 2) assume fill = 32 MiB (extent is half full)
3944 * 3) assume fill_weight = 3
3945 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3946 * SCORE = 32M + (50 * 3 * 32M) / 100
3947 * SCORE = 32M + (4800M / 100)
3948 * SCORE = 32M + 48M
3949 * ^ ^
3950 * | +--- final total relative fill-based score
3951 * +--------- final total fill-based score
3952 * SCORE = 80M
3953 *
3954 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3955 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3956 * Note that as an optimization, we replace multiplication and division by
3957 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3958 */
3959 static int
3960 ext_size_compare(const void *x, const void *y)
3961 {
3962 const range_seg_t *rsa = x, *rsb = y;
3963 uint64_t sa = rsa->rs_end - rsa->rs_start,
3964 sb = rsb->rs_end - rsb->rs_start;
3965 uint64_t score_a, score_b;
3966
3967 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3968 fill_weight * rsa->rs_fill) >> 7);
3969 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3970 fill_weight * rsb->rs_fill) >> 7);
3971
3972 if (score_a > score_b)
3973 return (-1);
3974 if (score_a == score_b) {
3975 if (rsa->rs_start < rsb->rs_start)
3976 return (-1);
3977 if (rsa->rs_start == rsb->rs_start)
3978 return (0);
3979 return (1);
3980 }
3981 return (1);
3982 }
3983
3984 /*
3985 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
3986 * based on LBA-order (from lowest to highest).
3987 */
3988 static int
3989 sio_addr_compare(const void *x, const void *y)
3990 {
3991 const scan_io_t *a = x, *b = y;
3992
3993 return (AVL_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
3994 }
3995
3996 /* IO queues are created on demand when they are needed. */
3997 static dsl_scan_io_queue_t *
3998 scan_io_queue_create(vdev_t *vd)
3999 {
4000 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4001 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4002
4003 q->q_scn = scn;
4004 q->q_vd = vd;
4005 q->q_sio_memused = 0;
4006 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4007 q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops,
4008 &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap);
4009 avl_create(&q->q_sios_by_addr, sio_addr_compare,
4010 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4011
4012 return (q);
4013 }
4014
4015 /*
4016 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4017 * No further execution of I/O occurs, anything pending in the queue is
4018 * simply freed without being executed.
4019 */
4020 void
4021 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4022 {
4023 dsl_scan_t *scn = queue->q_scn;
4024 scan_io_t *sio;
4025 void *cookie = NULL;
4026 int64_t bytes_dequeued = 0;
4027
4028 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4029
4030 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4031 NULL) {
4032 ASSERT(range_tree_contains(queue->q_exts_by_addr,
4033 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4034 bytes_dequeued += SIO_GET_ASIZE(sio);
4035 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4036 sio_free(sio);
4037 }
4038
4039 ASSERT0(queue->q_sio_memused);
4040 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4041 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4042 range_tree_destroy(queue->q_exts_by_addr);
4043 avl_destroy(&queue->q_sios_by_addr);
4044 cv_destroy(&queue->q_zio_cv);
4045
4046 kmem_free(queue, sizeof (*queue));
4047 }
4048
4049 /*
4050 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4051 * called on behalf of vdev_top_transfer when creating or destroying
4052 * a mirror vdev due to zpool attach/detach.
4053 */
4054 void
4055 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4056 {
4057 mutex_enter(&svd->vdev_scan_io_queue_lock);
4058 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4059
4060 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4061 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4062 svd->vdev_scan_io_queue = NULL;
4063 if (tvd->vdev_scan_io_queue != NULL)
4064 tvd->vdev_scan_io_queue->q_vd = tvd;
4065
4066 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4067 mutex_exit(&svd->vdev_scan_io_queue_lock);
4068 }
4069
4070 static void
4071 scan_io_queues_destroy(dsl_scan_t *scn)
4072 {
4073 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4074
4075 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4076 vdev_t *tvd = rvd->vdev_child[i];
4077
4078 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4079 if (tvd->vdev_scan_io_queue != NULL)
4080 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4081 tvd->vdev_scan_io_queue = NULL;
4082 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4083 }
4084 }
4085
4086 static void
4087 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4088 {
4089 dsl_pool_t *dp = spa->spa_dsl_pool;
4090 dsl_scan_t *scn = dp->dp_scan;
4091 vdev_t *vdev;
4092 kmutex_t *q_lock;
4093 dsl_scan_io_queue_t *queue;
4094 scan_io_t *srch_sio, *sio;
4095 avl_index_t idx;
4096 uint64_t start, size;
4097
4098 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4099 ASSERT(vdev != NULL);
4100 q_lock = &vdev->vdev_scan_io_queue_lock;
4101 queue = vdev->vdev_scan_io_queue;
4102
4103 mutex_enter(q_lock);
4104 if (queue == NULL) {
4105 mutex_exit(q_lock);
4106 return;
4107 }
4108
4109 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4110 bp2sio(bp, srch_sio, dva_i);
4111 start = SIO_GET_OFFSET(srch_sio);
4112 size = SIO_GET_ASIZE(srch_sio);
4113
4114 /*
4115 * We can find the zio in two states:
4116 * 1) Cold, just sitting in the queue of zio's to be issued at
4117 * some point in the future. In this case, all we do is
4118 * remove the zio from the q_sios_by_addr tree, decrement
4119 * its data volume from the containing range_seg_t and
4120 * resort the q_exts_by_size tree to reflect that the
4121 * range_seg_t has lost some of its 'fill'. We don't shorten
4122 * the range_seg_t - this is usually rare enough not to be
4123 * worth the extra hassle of trying keep track of precise
4124 * extent boundaries.
4125 * 2) Hot, where the zio is currently in-flight in
4126 * dsl_scan_issue_ios. In this case, we can't simply
4127 * reach in and stop the in-flight zio's, so we instead
4128 * block the caller. Eventually, dsl_scan_issue_ios will
4129 * be done with issuing the zio's it gathered and will
4130 * signal us.
4131 */
4132 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4133 sio_free(srch_sio);
4134
4135 if (sio != NULL) {
4136 int64_t asize = SIO_GET_ASIZE(sio);
4137 blkptr_t tmpbp;
4138
4139 /* Got it while it was cold in the queue */
4140 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4141 ASSERT3U(size, ==, asize);
4142 avl_remove(&queue->q_sios_by_addr, sio);
4143 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4144
4145 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4146 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4147
4148 /*
4149 * We only update scn_bytes_pending in the cold path,
4150 * otherwise it will already have been accounted for as
4151 * part of the zio's execution.
4152 */
4153 atomic_add_64(&scn->scn_bytes_pending, -asize);
4154
4155 /* count the block as though we issued it */
4156 sio2bp(sio, &tmpbp);
4157 count_block(scn, dp->dp_blkstats, &tmpbp);
4158
4159 sio_free(sio);
4160 }
4161 mutex_exit(q_lock);
4162 }
4163
4164 /*
4165 * Callback invoked when a zio_free() zio is executing. This needs to be
4166 * intercepted to prevent the zio from deallocating a particular portion
4167 * of disk space and it then getting reallocated and written to, while we
4168 * still have it queued up for processing.
4169 */
4170 void
4171 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4172 {
4173 dsl_pool_t *dp = spa->spa_dsl_pool;
4174 dsl_scan_t *scn = dp->dp_scan;
4175
4176 ASSERT(!BP_IS_EMBEDDED(bp));
4177 ASSERT(scn != NULL);
4178 if (!dsl_scan_is_running(scn))
4179 return;
4180
4181 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4182 dsl_scan_freed_dva(spa, bp, i);
4183 }
4184
4185 #if defined(_KERNEL)
4186 /* CSTYLED */
4187 module_param(zfs_scan_vdev_limit, ulong, 0644);
4188 MODULE_PARM_DESC(zfs_scan_vdev_limit,
4189 "Max bytes in flight per leaf vdev for scrubs and resilvers");
4190
4191 module_param(zfs_scrub_min_time_ms, int, 0644);
4192 MODULE_PARM_DESC(zfs_scrub_min_time_ms, "Min millisecs to scrub per txg");
4193
4194 module_param(zfs_obsolete_min_time_ms, int, 0644);
4195 MODULE_PARM_DESC(zfs_obsolete_min_time_ms, "Min millisecs to obsolete per txg");
4196
4197 module_param(zfs_free_min_time_ms, int, 0644);
4198 MODULE_PARM_DESC(zfs_free_min_time_ms, "Min millisecs to free per txg");
4199
4200 module_param(zfs_resilver_min_time_ms, int, 0644);
4201 MODULE_PARM_DESC(zfs_resilver_min_time_ms, "Min millisecs to resilver per txg");
4202
4203 module_param(zfs_scan_suspend_progress, int, 0644);
4204 MODULE_PARM_DESC(zfs_scan_suspend_progress,
4205 "Set to prevent scans from progressing");
4206
4207 module_param(zfs_no_scrub_io, int, 0644);
4208 MODULE_PARM_DESC(zfs_no_scrub_io, "Set to disable scrub I/O");
4209
4210 module_param(zfs_no_scrub_prefetch, int, 0644);
4211 MODULE_PARM_DESC(zfs_no_scrub_prefetch, "Set to disable scrub prefetching");
4212
4213 /* CSTYLED */
4214 module_param(zfs_async_block_max_blocks, ulong, 0644);
4215 MODULE_PARM_DESC(zfs_async_block_max_blocks,
4216 "Max number of blocks freed in one txg");
4217
4218 module_param(zfs_free_bpobj_enabled, int, 0644);
4219 MODULE_PARM_DESC(zfs_free_bpobj_enabled, "Enable processing of the free_bpobj");
4220
4221 module_param(zfs_scan_mem_lim_fact, int, 0644);
4222 MODULE_PARM_DESC(zfs_scan_mem_lim_fact, "Fraction of RAM for scan hard limit");
4223
4224 module_param(zfs_scan_issue_strategy, int, 0644);
4225 MODULE_PARM_DESC(zfs_scan_issue_strategy,
4226 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4227
4228 module_param(zfs_scan_legacy, int, 0644);
4229 MODULE_PARM_DESC(zfs_scan_legacy, "Scrub using legacy non-sequential method");
4230
4231 module_param(zfs_scan_checkpoint_intval, int, 0644);
4232 MODULE_PARM_DESC(zfs_scan_checkpoint_intval,
4233 "Scan progress on-disk checkpointing interval");
4234
4235 /* CSTYLED */
4236 module_param(zfs_scan_max_ext_gap, ulong, 0644);
4237 MODULE_PARM_DESC(zfs_scan_max_ext_gap,
4238 "Max gap in bytes between sequential scrub / resilver I/Os");
4239
4240 module_param(zfs_scan_mem_lim_soft_fact, int, 0644);
4241 MODULE_PARM_DESC(zfs_scan_mem_lim_soft_fact,
4242 "Fraction of hard limit used as soft limit");
4243
4244 module_param(zfs_scan_strict_mem_lim, int, 0644);
4245 MODULE_PARM_DESC(zfs_scan_strict_mem_lim,
4246 "Tunable to attempt to reduce lock contention");
4247
4248 module_param(zfs_scan_fill_weight, int, 0644);
4249 MODULE_PARM_DESC(zfs_scan_fill_weight,
4250 "Tunable to adjust bias towards more filled segments during scans");
4251
4252 module_param(zfs_resilver_disable_defer, int, 0644);
4253 MODULE_PARM_DESC(zfs_resilver_disable_defer,
4254 "Process all resilvers immediately");
4255 #endif