]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Factor metaslab_load_wait() in metaslab_load()
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
39
40 #define WITH_DF_BLOCK_ALLOCATOR
41
42 #define GANG_ALLOCATION(flags) \
43 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
44
45 /*
46 * Metaslab granularity, in bytes. This is roughly similar to what would be
47 * referred to as the "stripe size" in traditional RAID arrays. In normal
48 * operation, we will try to write this amount of data to a top-level vdev
49 * before moving on to the next one.
50 */
51 unsigned long metaslab_aliquot = 512 << 10;
52
53 /*
54 * For testing, make some blocks above a certain size be gang blocks.
55 */
56 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
57
58 /*
59 * Since we can touch multiple metaslabs (and their respective space maps)
60 * with each transaction group, we benefit from having a smaller space map
61 * block size since it allows us to issue more I/O operations scattered
62 * around the disk.
63 */
64 int zfs_metaslab_sm_blksz = (1 << 12);
65
66 /*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
69 * space map representation must be before we compact it on-disk.
70 * Values should be greater than or equal to 100.
71 */
72 int zfs_condense_pct = 200;
73
74 /*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87 int zfs_metaslab_condense_block_threshold = 4;
88
89 /*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
92 * free space. Metaslab groups that have more free space than
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102 int zfs_mg_noalloc_threshold = 0;
103
104 /*
105 * Metaslab groups are considered eligible for allocations if their
106 * fragmenation metric (measured as a percentage) is less than or equal to
107 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
108 * then it will be skipped unless all metaslab groups within the metaslab
109 * class have also crossed this threshold.
110 */
111 int zfs_mg_fragmentation_threshold = 85;
112
113 /*
114 * Allow metaslabs to keep their active state as long as their fragmentation
115 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
116 * active metaslab that exceeds this threshold will no longer keep its active
117 * status allowing better metaslabs to be selected.
118 */
119 int zfs_metaslab_fragmentation_threshold = 70;
120
121 /*
122 * When set will load all metaslabs when pool is first opened.
123 */
124 int metaslab_debug_load = 0;
125
126 /*
127 * When set will prevent metaslabs from being unloaded.
128 */
129 int metaslab_debug_unload = 0;
130
131 /*
132 * Minimum size which forces the dynamic allocator to change
133 * it's allocation strategy. Once the space map cannot satisfy
134 * an allocation of this size then it switches to using more
135 * aggressive strategy (i.e search by size rather than offset).
136 */
137 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
138
139 /*
140 * The minimum free space, in percent, which must be available
141 * in a space map to continue allocations in a first-fit fashion.
142 * Once the space map's free space drops below this level we dynamically
143 * switch to using best-fit allocations.
144 */
145 int metaslab_df_free_pct = 4;
146
147 /*
148 * Percentage of all cpus that can be used by the metaslab taskq.
149 */
150 int metaslab_load_pct = 50;
151
152 /*
153 * Determines how many txgs a metaslab may remain loaded without having any
154 * allocations from it. As long as a metaslab continues to be used we will
155 * keep it loaded.
156 */
157 int metaslab_unload_delay = TXG_SIZE * 2;
158
159 /*
160 * Max number of metaslabs per group to preload.
161 */
162 int metaslab_preload_limit = SPA_DVAS_PER_BP;
163
164 /*
165 * Enable/disable preloading of metaslab.
166 */
167 int metaslab_preload_enabled = B_TRUE;
168
169 /*
170 * Enable/disable fragmentation weighting on metaslabs.
171 */
172 int metaslab_fragmentation_factor_enabled = B_TRUE;
173
174 /*
175 * Enable/disable lba weighting (i.e. outer tracks are given preference).
176 */
177 int metaslab_lba_weighting_enabled = B_TRUE;
178
179 /*
180 * Enable/disable metaslab group biasing.
181 */
182 int metaslab_bias_enabled = B_TRUE;
183
184
185 /*
186 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
187 */
188 boolean_t zfs_remap_blkptr_enable = B_TRUE;
189
190 /*
191 * Enable/disable segment-based metaslab selection.
192 */
193 int zfs_metaslab_segment_weight_enabled = B_TRUE;
194
195 /*
196 * When using segment-based metaslab selection, we will continue
197 * allocating from the active metaslab until we have exhausted
198 * zfs_metaslab_switch_threshold of its buckets.
199 */
200 int zfs_metaslab_switch_threshold = 2;
201
202 /*
203 * Internal switch to enable/disable the metaslab allocation tracing
204 * facility.
205 */
206 #ifdef _METASLAB_TRACING
207 boolean_t metaslab_trace_enabled = B_TRUE;
208 #endif
209
210 /*
211 * Maximum entries that the metaslab allocation tracing facility will keep
212 * in a given list when running in non-debug mode. We limit the number
213 * of entries in non-debug mode to prevent us from using up too much memory.
214 * The limit should be sufficiently large that we don't expect any allocation
215 * to every exceed this value. In debug mode, the system will panic if this
216 * limit is ever reached allowing for further investigation.
217 */
218 #ifdef _METASLAB_TRACING
219 uint64_t metaslab_trace_max_entries = 5000;
220 #endif
221
222 static uint64_t metaslab_weight(metaslab_t *);
223 static void metaslab_set_fragmentation(metaslab_t *);
224 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
225 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
226
227 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
228 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
229 #ifdef _METASLAB_TRACING
230 kmem_cache_t *metaslab_alloc_trace_cache;
231 #endif
232
233 /*
234 * ==========================================================================
235 * Metaslab classes
236 * ==========================================================================
237 */
238 metaslab_class_t *
239 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
240 {
241 metaslab_class_t *mc;
242
243 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
244
245 mc->mc_spa = spa;
246 mc->mc_rotor = NULL;
247 mc->mc_ops = ops;
248 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
249 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
250 sizeof (zfs_refcount_t), KM_SLEEP);
251 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
252 sizeof (uint64_t), KM_SLEEP);
253 for (int i = 0; i < spa->spa_alloc_count; i++)
254 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
255
256 return (mc);
257 }
258
259 void
260 metaslab_class_destroy(metaslab_class_t *mc)
261 {
262 ASSERT(mc->mc_rotor == NULL);
263 ASSERT(mc->mc_alloc == 0);
264 ASSERT(mc->mc_deferred == 0);
265 ASSERT(mc->mc_space == 0);
266 ASSERT(mc->mc_dspace == 0);
267
268 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
269 zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
270 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
271 sizeof (zfs_refcount_t));
272 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
273 sizeof (uint64_t));
274 mutex_destroy(&mc->mc_lock);
275 kmem_free(mc, sizeof (metaslab_class_t));
276 }
277
278 int
279 metaslab_class_validate(metaslab_class_t *mc)
280 {
281 metaslab_group_t *mg;
282 vdev_t *vd;
283
284 /*
285 * Must hold one of the spa_config locks.
286 */
287 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
288 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
289
290 if ((mg = mc->mc_rotor) == NULL)
291 return (0);
292
293 do {
294 vd = mg->mg_vd;
295 ASSERT(vd->vdev_mg != NULL);
296 ASSERT3P(vd->vdev_top, ==, vd);
297 ASSERT3P(mg->mg_class, ==, mc);
298 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
299 } while ((mg = mg->mg_next) != mc->mc_rotor);
300
301 return (0);
302 }
303
304 static void
305 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
306 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
307 {
308 atomic_add_64(&mc->mc_alloc, alloc_delta);
309 atomic_add_64(&mc->mc_deferred, defer_delta);
310 atomic_add_64(&mc->mc_space, space_delta);
311 atomic_add_64(&mc->mc_dspace, dspace_delta);
312 }
313
314 uint64_t
315 metaslab_class_get_alloc(metaslab_class_t *mc)
316 {
317 return (mc->mc_alloc);
318 }
319
320 uint64_t
321 metaslab_class_get_deferred(metaslab_class_t *mc)
322 {
323 return (mc->mc_deferred);
324 }
325
326 uint64_t
327 metaslab_class_get_space(metaslab_class_t *mc)
328 {
329 return (mc->mc_space);
330 }
331
332 uint64_t
333 metaslab_class_get_dspace(metaslab_class_t *mc)
334 {
335 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
336 }
337
338 void
339 metaslab_class_histogram_verify(metaslab_class_t *mc)
340 {
341 spa_t *spa = mc->mc_spa;
342 vdev_t *rvd = spa->spa_root_vdev;
343 uint64_t *mc_hist;
344 int i;
345
346 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
347 return;
348
349 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
350 KM_SLEEP);
351
352 for (int c = 0; c < rvd->vdev_children; c++) {
353 vdev_t *tvd = rvd->vdev_child[c];
354 metaslab_group_t *mg = tvd->vdev_mg;
355
356 /*
357 * Skip any holes, uninitialized top-levels, or
358 * vdevs that are not in this metalab class.
359 */
360 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
361 mg->mg_class != mc) {
362 continue;
363 }
364
365 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
366 mc_hist[i] += mg->mg_histogram[i];
367 }
368
369 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
370 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
371
372 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
373 }
374
375 /*
376 * Calculate the metaslab class's fragmentation metric. The metric
377 * is weighted based on the space contribution of each metaslab group.
378 * The return value will be a number between 0 and 100 (inclusive), or
379 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
380 * zfs_frag_table for more information about the metric.
381 */
382 uint64_t
383 metaslab_class_fragmentation(metaslab_class_t *mc)
384 {
385 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386 uint64_t fragmentation = 0;
387
388 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
389
390 for (int c = 0; c < rvd->vdev_children; c++) {
391 vdev_t *tvd = rvd->vdev_child[c];
392 metaslab_group_t *mg = tvd->vdev_mg;
393
394 /*
395 * Skip any holes, uninitialized top-levels,
396 * or vdevs that are not in this metalab class.
397 */
398 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
399 mg->mg_class != mc) {
400 continue;
401 }
402
403 /*
404 * If a metaslab group does not contain a fragmentation
405 * metric then just bail out.
406 */
407 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 return (ZFS_FRAG_INVALID);
410 }
411
412 /*
413 * Determine how much this metaslab_group is contributing
414 * to the overall pool fragmentation metric.
415 */
416 fragmentation += mg->mg_fragmentation *
417 metaslab_group_get_space(mg);
418 }
419 fragmentation /= metaslab_class_get_space(mc);
420
421 ASSERT3U(fragmentation, <=, 100);
422 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
423 return (fragmentation);
424 }
425
426 /*
427 * Calculate the amount of expandable space that is available in
428 * this metaslab class. If a device is expanded then its expandable
429 * space will be the amount of allocatable space that is currently not
430 * part of this metaslab class.
431 */
432 uint64_t
433 metaslab_class_expandable_space(metaslab_class_t *mc)
434 {
435 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
436 uint64_t space = 0;
437
438 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
439 for (int c = 0; c < rvd->vdev_children; c++) {
440 vdev_t *tvd = rvd->vdev_child[c];
441 metaslab_group_t *mg = tvd->vdev_mg;
442
443 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
444 mg->mg_class != mc) {
445 continue;
446 }
447
448 /*
449 * Calculate if we have enough space to add additional
450 * metaslabs. We report the expandable space in terms
451 * of the metaslab size since that's the unit of expansion.
452 */
453 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
454 1ULL << tvd->vdev_ms_shift);
455 }
456 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
457 return (space);
458 }
459
460 static int
461 metaslab_compare(const void *x1, const void *x2)
462 {
463 const metaslab_t *m1 = (const metaslab_t *)x1;
464 const metaslab_t *m2 = (const metaslab_t *)x2;
465
466 int sort1 = 0;
467 int sort2 = 0;
468 if (m1->ms_allocator != -1 && m1->ms_primary)
469 sort1 = 1;
470 else if (m1->ms_allocator != -1 && !m1->ms_primary)
471 sort1 = 2;
472 if (m2->ms_allocator != -1 && m2->ms_primary)
473 sort2 = 1;
474 else if (m2->ms_allocator != -1 && !m2->ms_primary)
475 sort2 = 2;
476
477 /*
478 * Sort inactive metaslabs first, then primaries, then secondaries. When
479 * selecting a metaslab to allocate from, an allocator first tries its
480 * primary, then secondary active metaslab. If it doesn't have active
481 * metaslabs, or can't allocate from them, it searches for an inactive
482 * metaslab to activate. If it can't find a suitable one, it will steal
483 * a primary or secondary metaslab from another allocator.
484 */
485 if (sort1 < sort2)
486 return (-1);
487 if (sort1 > sort2)
488 return (1);
489
490 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
491 if (likely(cmp))
492 return (cmp);
493
494 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
495
496 return (AVL_CMP(m1->ms_start, m2->ms_start));
497 }
498
499 /*
500 * Verify that the space accounting on disk matches the in-core range_trees.
501 */
502 void
503 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
504 {
505 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
506 uint64_t allocated = 0;
507 uint64_t sm_free_space, msp_free_space;
508
509 ASSERT(MUTEX_HELD(&msp->ms_lock));
510
511 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
512 return;
513
514 /*
515 * We can only verify the metaslab space when we're called
516 * from syncing context with a loaded metaslab that has an allocated
517 * space map. Calling this in non-syncing context does not
518 * provide a consistent view of the metaslab since we're performing
519 * allocations in the future.
520 */
521 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
522 !msp->ms_loaded)
523 return;
524
525 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
526 space_map_alloc_delta(msp->ms_sm);
527
528 /*
529 * Account for future allocations since we would have already
530 * deducted that space from the ms_freetree.
531 */
532 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
533 allocated +=
534 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
535 }
536
537 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
538 msp->ms_deferspace + range_tree_space(msp->ms_freed);
539
540 VERIFY3U(sm_free_space, ==, msp_free_space);
541 }
542
543 /*
544 * ==========================================================================
545 * Metaslab groups
546 * ==========================================================================
547 */
548 /*
549 * Update the allocatable flag and the metaslab group's capacity.
550 * The allocatable flag is set to true if the capacity is below
551 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
552 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
553 * transitions from allocatable to non-allocatable or vice versa then the
554 * metaslab group's class is updated to reflect the transition.
555 */
556 static void
557 metaslab_group_alloc_update(metaslab_group_t *mg)
558 {
559 vdev_t *vd = mg->mg_vd;
560 metaslab_class_t *mc = mg->mg_class;
561 vdev_stat_t *vs = &vd->vdev_stat;
562 boolean_t was_allocatable;
563 boolean_t was_initialized;
564
565 ASSERT(vd == vd->vdev_top);
566 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
567 SCL_ALLOC);
568
569 mutex_enter(&mg->mg_lock);
570 was_allocatable = mg->mg_allocatable;
571 was_initialized = mg->mg_initialized;
572
573 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
574 (vs->vs_space + 1);
575
576 mutex_enter(&mc->mc_lock);
577
578 /*
579 * If the metaslab group was just added then it won't
580 * have any space until we finish syncing out this txg.
581 * At that point we will consider it initialized and available
582 * for allocations. We also don't consider non-activated
583 * metaslab groups (e.g. vdevs that are in the middle of being removed)
584 * to be initialized, because they can't be used for allocation.
585 */
586 mg->mg_initialized = metaslab_group_initialized(mg);
587 if (!was_initialized && mg->mg_initialized) {
588 mc->mc_groups++;
589 } else if (was_initialized && !mg->mg_initialized) {
590 ASSERT3U(mc->mc_groups, >, 0);
591 mc->mc_groups--;
592 }
593 if (mg->mg_initialized)
594 mg->mg_no_free_space = B_FALSE;
595
596 /*
597 * A metaslab group is considered allocatable if it has plenty
598 * of free space or is not heavily fragmented. We only take
599 * fragmentation into account if the metaslab group has a valid
600 * fragmentation metric (i.e. a value between 0 and 100).
601 */
602 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
603 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
604 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
605 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
606
607 /*
608 * The mc_alloc_groups maintains a count of the number of
609 * groups in this metaslab class that are still above the
610 * zfs_mg_noalloc_threshold. This is used by the allocating
611 * threads to determine if they should avoid allocations to
612 * a given group. The allocator will avoid allocations to a group
613 * if that group has reached or is below the zfs_mg_noalloc_threshold
614 * and there are still other groups that are above the threshold.
615 * When a group transitions from allocatable to non-allocatable or
616 * vice versa we update the metaslab class to reflect that change.
617 * When the mc_alloc_groups value drops to 0 that means that all
618 * groups have reached the zfs_mg_noalloc_threshold making all groups
619 * eligible for allocations. This effectively means that all devices
620 * are balanced again.
621 */
622 if (was_allocatable && !mg->mg_allocatable)
623 mc->mc_alloc_groups--;
624 else if (!was_allocatable && mg->mg_allocatable)
625 mc->mc_alloc_groups++;
626 mutex_exit(&mc->mc_lock);
627
628 mutex_exit(&mg->mg_lock);
629 }
630
631 metaslab_group_t *
632 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
633 {
634 metaslab_group_t *mg;
635
636 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
637 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
638 mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
639 cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL);
640 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
641 KM_SLEEP);
642 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
643 KM_SLEEP);
644 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
645 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
646 mg->mg_vd = vd;
647 mg->mg_class = mc;
648 mg->mg_activation_count = 0;
649 mg->mg_initialized = B_FALSE;
650 mg->mg_no_free_space = B_TRUE;
651 mg->mg_allocators = allocators;
652
653 mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
654 sizeof (zfs_refcount_t), KM_SLEEP);
655 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
656 sizeof (uint64_t), KM_SLEEP);
657 for (int i = 0; i < allocators; i++) {
658 zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
659 mg->mg_cur_max_alloc_queue_depth[i] = 0;
660 }
661
662 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
663 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
664
665 return (mg);
666 }
667
668 void
669 metaslab_group_destroy(metaslab_group_t *mg)
670 {
671 ASSERT(mg->mg_prev == NULL);
672 ASSERT(mg->mg_next == NULL);
673 /*
674 * We may have gone below zero with the activation count
675 * either because we never activated in the first place or
676 * because we're done, and possibly removing the vdev.
677 */
678 ASSERT(mg->mg_activation_count <= 0);
679
680 taskq_destroy(mg->mg_taskq);
681 avl_destroy(&mg->mg_metaslab_tree);
682 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
683 kmem_free(mg->mg_secondaries, mg->mg_allocators *
684 sizeof (metaslab_t *));
685 mutex_destroy(&mg->mg_lock);
686 mutex_destroy(&mg->mg_ms_initialize_lock);
687 cv_destroy(&mg->mg_ms_initialize_cv);
688
689 for (int i = 0; i < mg->mg_allocators; i++) {
690 zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
691 mg->mg_cur_max_alloc_queue_depth[i] = 0;
692 }
693 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
694 sizeof (zfs_refcount_t));
695 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
696 sizeof (uint64_t));
697
698 kmem_free(mg, sizeof (metaslab_group_t));
699 }
700
701 void
702 metaslab_group_activate(metaslab_group_t *mg)
703 {
704 metaslab_class_t *mc = mg->mg_class;
705 metaslab_group_t *mgprev, *mgnext;
706
707 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
708
709 ASSERT(mc->mc_rotor != mg);
710 ASSERT(mg->mg_prev == NULL);
711 ASSERT(mg->mg_next == NULL);
712 ASSERT(mg->mg_activation_count <= 0);
713
714 if (++mg->mg_activation_count <= 0)
715 return;
716
717 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
718 metaslab_group_alloc_update(mg);
719
720 if ((mgprev = mc->mc_rotor) == NULL) {
721 mg->mg_prev = mg;
722 mg->mg_next = mg;
723 } else {
724 mgnext = mgprev->mg_next;
725 mg->mg_prev = mgprev;
726 mg->mg_next = mgnext;
727 mgprev->mg_next = mg;
728 mgnext->mg_prev = mg;
729 }
730 mc->mc_rotor = mg;
731 }
732
733 /*
734 * Passivate a metaslab group and remove it from the allocation rotor.
735 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
736 * a metaslab group. This function will momentarily drop spa_config_locks
737 * that are lower than the SCL_ALLOC lock (see comment below).
738 */
739 void
740 metaslab_group_passivate(metaslab_group_t *mg)
741 {
742 metaslab_class_t *mc = mg->mg_class;
743 spa_t *spa = mc->mc_spa;
744 metaslab_group_t *mgprev, *mgnext;
745 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
746
747 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
748 (SCL_ALLOC | SCL_ZIO));
749
750 if (--mg->mg_activation_count != 0) {
751 ASSERT(mc->mc_rotor != mg);
752 ASSERT(mg->mg_prev == NULL);
753 ASSERT(mg->mg_next == NULL);
754 ASSERT(mg->mg_activation_count < 0);
755 return;
756 }
757
758 /*
759 * The spa_config_lock is an array of rwlocks, ordered as
760 * follows (from highest to lowest):
761 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
762 * SCL_ZIO > SCL_FREE > SCL_VDEV
763 * (For more information about the spa_config_lock see spa_misc.c)
764 * The higher the lock, the broader its coverage. When we passivate
765 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
766 * config locks. However, the metaslab group's taskq might be trying
767 * to preload metaslabs so we must drop the SCL_ZIO lock and any
768 * lower locks to allow the I/O to complete. At a minimum,
769 * we continue to hold the SCL_ALLOC lock, which prevents any future
770 * allocations from taking place and any changes to the vdev tree.
771 */
772 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
773 taskq_wait_outstanding(mg->mg_taskq, 0);
774 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
775 metaslab_group_alloc_update(mg);
776 for (int i = 0; i < mg->mg_allocators; i++) {
777 metaslab_t *msp = mg->mg_primaries[i];
778 if (msp != NULL) {
779 mutex_enter(&msp->ms_lock);
780 metaslab_passivate(msp,
781 metaslab_weight_from_range_tree(msp));
782 mutex_exit(&msp->ms_lock);
783 }
784 msp = mg->mg_secondaries[i];
785 if (msp != NULL) {
786 mutex_enter(&msp->ms_lock);
787 metaslab_passivate(msp,
788 metaslab_weight_from_range_tree(msp));
789 mutex_exit(&msp->ms_lock);
790 }
791 }
792
793 mgprev = mg->mg_prev;
794 mgnext = mg->mg_next;
795
796 if (mg == mgnext) {
797 mc->mc_rotor = NULL;
798 } else {
799 mc->mc_rotor = mgnext;
800 mgprev->mg_next = mgnext;
801 mgnext->mg_prev = mgprev;
802 }
803
804 mg->mg_prev = NULL;
805 mg->mg_next = NULL;
806 }
807
808 boolean_t
809 metaslab_group_initialized(metaslab_group_t *mg)
810 {
811 vdev_t *vd = mg->mg_vd;
812 vdev_stat_t *vs = &vd->vdev_stat;
813
814 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
815 }
816
817 uint64_t
818 metaslab_group_get_space(metaslab_group_t *mg)
819 {
820 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
821 }
822
823 void
824 metaslab_group_histogram_verify(metaslab_group_t *mg)
825 {
826 uint64_t *mg_hist;
827 vdev_t *vd = mg->mg_vd;
828 uint64_t ashift = vd->vdev_ashift;
829 int i;
830
831 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
832 return;
833
834 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
835 KM_SLEEP);
836
837 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
838 SPACE_MAP_HISTOGRAM_SIZE + ashift);
839
840 for (int m = 0; m < vd->vdev_ms_count; m++) {
841 metaslab_t *msp = vd->vdev_ms[m];
842
843 /* skip if not active or not a member */
844 if (msp->ms_sm == NULL || msp->ms_group != mg)
845 continue;
846
847 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
848 mg_hist[i + ashift] +=
849 msp->ms_sm->sm_phys->smp_histogram[i];
850 }
851
852 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
853 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
854
855 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
856 }
857
858 static void
859 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
860 {
861 metaslab_class_t *mc = mg->mg_class;
862 uint64_t ashift = mg->mg_vd->vdev_ashift;
863
864 ASSERT(MUTEX_HELD(&msp->ms_lock));
865 if (msp->ms_sm == NULL)
866 return;
867
868 mutex_enter(&mg->mg_lock);
869 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
870 mg->mg_histogram[i + ashift] +=
871 msp->ms_sm->sm_phys->smp_histogram[i];
872 mc->mc_histogram[i + ashift] +=
873 msp->ms_sm->sm_phys->smp_histogram[i];
874 }
875 mutex_exit(&mg->mg_lock);
876 }
877
878 void
879 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
880 {
881 metaslab_class_t *mc = mg->mg_class;
882 uint64_t ashift = mg->mg_vd->vdev_ashift;
883
884 ASSERT(MUTEX_HELD(&msp->ms_lock));
885 if (msp->ms_sm == NULL)
886 return;
887
888 mutex_enter(&mg->mg_lock);
889 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
890 ASSERT3U(mg->mg_histogram[i + ashift], >=,
891 msp->ms_sm->sm_phys->smp_histogram[i]);
892 ASSERT3U(mc->mc_histogram[i + ashift], >=,
893 msp->ms_sm->sm_phys->smp_histogram[i]);
894
895 mg->mg_histogram[i + ashift] -=
896 msp->ms_sm->sm_phys->smp_histogram[i];
897 mc->mc_histogram[i + ashift] -=
898 msp->ms_sm->sm_phys->smp_histogram[i];
899 }
900 mutex_exit(&mg->mg_lock);
901 }
902
903 static void
904 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
905 {
906 ASSERT(msp->ms_group == NULL);
907 mutex_enter(&mg->mg_lock);
908 msp->ms_group = mg;
909 msp->ms_weight = 0;
910 avl_add(&mg->mg_metaslab_tree, msp);
911 mutex_exit(&mg->mg_lock);
912
913 mutex_enter(&msp->ms_lock);
914 metaslab_group_histogram_add(mg, msp);
915 mutex_exit(&msp->ms_lock);
916 }
917
918 static void
919 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
920 {
921 mutex_enter(&msp->ms_lock);
922 metaslab_group_histogram_remove(mg, msp);
923 mutex_exit(&msp->ms_lock);
924
925 mutex_enter(&mg->mg_lock);
926 ASSERT(msp->ms_group == mg);
927 avl_remove(&mg->mg_metaslab_tree, msp);
928 msp->ms_group = NULL;
929 mutex_exit(&mg->mg_lock);
930 }
931
932 static void
933 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
934 {
935 ASSERT(MUTEX_HELD(&mg->mg_lock));
936 ASSERT(msp->ms_group == mg);
937 avl_remove(&mg->mg_metaslab_tree, msp);
938 msp->ms_weight = weight;
939 avl_add(&mg->mg_metaslab_tree, msp);
940
941 }
942
943 static void
944 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
945 {
946 /*
947 * Although in principle the weight can be any value, in
948 * practice we do not use values in the range [1, 511].
949 */
950 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
951 ASSERT(MUTEX_HELD(&msp->ms_lock));
952
953 mutex_enter(&mg->mg_lock);
954 metaslab_group_sort_impl(mg, msp, weight);
955 mutex_exit(&mg->mg_lock);
956 }
957
958 /*
959 * Calculate the fragmentation for a given metaslab group. We can use
960 * a simple average here since all metaslabs within the group must have
961 * the same size. The return value will be a value between 0 and 100
962 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
963 * group have a fragmentation metric.
964 */
965 uint64_t
966 metaslab_group_fragmentation(metaslab_group_t *mg)
967 {
968 vdev_t *vd = mg->mg_vd;
969 uint64_t fragmentation = 0;
970 uint64_t valid_ms = 0;
971
972 for (int m = 0; m < vd->vdev_ms_count; m++) {
973 metaslab_t *msp = vd->vdev_ms[m];
974
975 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
976 continue;
977 if (msp->ms_group != mg)
978 continue;
979
980 valid_ms++;
981 fragmentation += msp->ms_fragmentation;
982 }
983
984 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
985 return (ZFS_FRAG_INVALID);
986
987 fragmentation /= valid_ms;
988 ASSERT3U(fragmentation, <=, 100);
989 return (fragmentation);
990 }
991
992 /*
993 * Determine if a given metaslab group should skip allocations. A metaslab
994 * group should avoid allocations if its free capacity is less than the
995 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
996 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
997 * that can still handle allocations. If the allocation throttle is enabled
998 * then we skip allocations to devices that have reached their maximum
999 * allocation queue depth unless the selected metaslab group is the only
1000 * eligible group remaining.
1001 */
1002 static boolean_t
1003 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1004 uint64_t psize, int allocator, int d)
1005 {
1006 spa_t *spa = mg->mg_vd->vdev_spa;
1007 metaslab_class_t *mc = mg->mg_class;
1008
1009 /*
1010 * We can only consider skipping this metaslab group if it's
1011 * in the normal metaslab class and there are other metaslab
1012 * groups to select from. Otherwise, we always consider it eligible
1013 * for allocations.
1014 */
1015 if ((mc != spa_normal_class(spa) &&
1016 mc != spa_special_class(spa) &&
1017 mc != spa_dedup_class(spa)) ||
1018 mc->mc_groups <= 1)
1019 return (B_TRUE);
1020
1021 /*
1022 * If the metaslab group's mg_allocatable flag is set (see comments
1023 * in metaslab_group_alloc_update() for more information) and
1024 * the allocation throttle is disabled then allow allocations to this
1025 * device. However, if the allocation throttle is enabled then
1026 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1027 * to determine if we should allow allocations to this metaslab group.
1028 * If all metaslab groups are no longer considered allocatable
1029 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1030 * gang block size then we allow allocations on this metaslab group
1031 * regardless of the mg_allocatable or throttle settings.
1032 */
1033 if (mg->mg_allocatable) {
1034 metaslab_group_t *mgp;
1035 int64_t qdepth;
1036 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1037
1038 if (!mc->mc_alloc_throttle_enabled)
1039 return (B_TRUE);
1040
1041 /*
1042 * If this metaslab group does not have any free space, then
1043 * there is no point in looking further.
1044 */
1045 if (mg->mg_no_free_space)
1046 return (B_FALSE);
1047
1048 /*
1049 * Relax allocation throttling for ditto blocks. Due to
1050 * random imbalances in allocation it tends to push copies
1051 * to one vdev, that looks a bit better at the moment.
1052 */
1053 qmax = qmax * (4 + d) / 4;
1054
1055 qdepth = zfs_refcount_count(
1056 &mg->mg_alloc_queue_depth[allocator]);
1057
1058 /*
1059 * If this metaslab group is below its qmax or it's
1060 * the only allocatable metasable group, then attempt
1061 * to allocate from it.
1062 */
1063 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1064 return (B_TRUE);
1065 ASSERT3U(mc->mc_alloc_groups, >, 1);
1066
1067 /*
1068 * Since this metaslab group is at or over its qmax, we
1069 * need to determine if there are metaslab groups after this
1070 * one that might be able to handle this allocation. This is
1071 * racy since we can't hold the locks for all metaslab
1072 * groups at the same time when we make this check.
1073 */
1074 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1075 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1076 qmax = qmax * (4 + d) / 4;
1077 qdepth = zfs_refcount_count(
1078 &mgp->mg_alloc_queue_depth[allocator]);
1079
1080 /*
1081 * If there is another metaslab group that
1082 * might be able to handle the allocation, then
1083 * we return false so that we skip this group.
1084 */
1085 if (qdepth < qmax && !mgp->mg_no_free_space)
1086 return (B_FALSE);
1087 }
1088
1089 /*
1090 * We didn't find another group to handle the allocation
1091 * so we can't skip this metaslab group even though
1092 * we are at or over our qmax.
1093 */
1094 return (B_TRUE);
1095
1096 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1097 return (B_TRUE);
1098 }
1099 return (B_FALSE);
1100 }
1101
1102 /*
1103 * ==========================================================================
1104 * Range tree callbacks
1105 * ==========================================================================
1106 */
1107
1108 /*
1109 * Comparison function for the private size-ordered tree. Tree is sorted
1110 * by size, larger sizes at the end of the tree.
1111 */
1112 static int
1113 metaslab_rangesize_compare(const void *x1, const void *x2)
1114 {
1115 const range_seg_t *r1 = x1;
1116 const range_seg_t *r2 = x2;
1117 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1118 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1119
1120 int cmp = AVL_CMP(rs_size1, rs_size2);
1121 if (likely(cmp))
1122 return (cmp);
1123
1124 return (AVL_CMP(r1->rs_start, r2->rs_start));
1125 }
1126
1127 /*
1128 * ==========================================================================
1129 * Common allocator routines
1130 * ==========================================================================
1131 */
1132
1133 /*
1134 * Return the maximum contiguous segment within the metaslab.
1135 */
1136 uint64_t
1137 metaslab_block_maxsize(metaslab_t *msp)
1138 {
1139 avl_tree_t *t = &msp->ms_allocatable_by_size;
1140 range_seg_t *rs;
1141
1142 if (t == NULL || (rs = avl_last(t)) == NULL)
1143 return (0ULL);
1144
1145 return (rs->rs_end - rs->rs_start);
1146 }
1147
1148 static range_seg_t *
1149 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1150 {
1151 range_seg_t *rs, rsearch;
1152 avl_index_t where;
1153
1154 rsearch.rs_start = start;
1155 rsearch.rs_end = start + size;
1156
1157 rs = avl_find(t, &rsearch, &where);
1158 if (rs == NULL) {
1159 rs = avl_nearest(t, where, AVL_AFTER);
1160 }
1161
1162 return (rs);
1163 }
1164
1165 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1166 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1167 defined(WITH_CF_BLOCK_ALLOCATOR)
1168 /*
1169 * This is a helper function that can be used by the allocator to find
1170 * a suitable block to allocate. This will search the specified AVL
1171 * tree looking for a block that matches the specified criteria.
1172 */
1173 static uint64_t
1174 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1175 uint64_t align)
1176 {
1177 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1178
1179 while (rs != NULL) {
1180 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1181
1182 if (offset + size <= rs->rs_end) {
1183 *cursor = offset + size;
1184 return (offset);
1185 }
1186 rs = AVL_NEXT(t, rs);
1187 }
1188
1189 /*
1190 * If we know we've searched the whole map (*cursor == 0), give up.
1191 * Otherwise, reset the cursor to the beginning and try again.
1192 */
1193 if (*cursor == 0)
1194 return (-1ULL);
1195
1196 *cursor = 0;
1197 return (metaslab_block_picker(t, cursor, size, align));
1198 }
1199 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1200
1201 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1202 /*
1203 * ==========================================================================
1204 * The first-fit block allocator
1205 * ==========================================================================
1206 */
1207 static uint64_t
1208 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1209 {
1210 /*
1211 * Find the largest power of 2 block size that evenly divides the
1212 * requested size. This is used to try to allocate blocks with similar
1213 * alignment from the same area of the metaslab (i.e. same cursor
1214 * bucket) but it does not guarantee that other allocations sizes
1215 * may exist in the same region.
1216 */
1217 uint64_t align = size & -size;
1218 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1219 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1220
1221 return (metaslab_block_picker(t, cursor, size, align));
1222 }
1223
1224 static metaslab_ops_t metaslab_ff_ops = {
1225 metaslab_ff_alloc
1226 };
1227
1228 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1229 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1230
1231 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1232 /*
1233 * ==========================================================================
1234 * Dynamic block allocator -
1235 * Uses the first fit allocation scheme until space get low and then
1236 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1237 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1238 * ==========================================================================
1239 */
1240 static uint64_t
1241 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1242 {
1243 /*
1244 * Find the largest power of 2 block size that evenly divides the
1245 * requested size. This is used to try to allocate blocks with similar
1246 * alignment from the same area of the metaslab (i.e. same cursor
1247 * bucket) but it does not guarantee that other allocations sizes
1248 * may exist in the same region.
1249 */
1250 uint64_t align = size & -size;
1251 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1252 range_tree_t *rt = msp->ms_allocatable;
1253 avl_tree_t *t = &rt->rt_root;
1254 uint64_t max_size = metaslab_block_maxsize(msp);
1255 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1256
1257 ASSERT(MUTEX_HELD(&msp->ms_lock));
1258 ASSERT3U(avl_numnodes(t), ==,
1259 avl_numnodes(&msp->ms_allocatable_by_size));
1260
1261 if (max_size < size)
1262 return (-1ULL);
1263
1264 /*
1265 * If we're running low on space switch to using the size
1266 * sorted AVL tree (best-fit).
1267 */
1268 if (max_size < metaslab_df_alloc_threshold ||
1269 free_pct < metaslab_df_free_pct) {
1270 t = &msp->ms_allocatable_by_size;
1271 *cursor = 0;
1272 }
1273
1274 return (metaslab_block_picker(t, cursor, size, 1ULL));
1275 }
1276
1277 static metaslab_ops_t metaslab_df_ops = {
1278 metaslab_df_alloc
1279 };
1280
1281 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1282 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1283
1284 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1285 /*
1286 * ==========================================================================
1287 * Cursor fit block allocator -
1288 * Select the largest region in the metaslab, set the cursor to the beginning
1289 * of the range and the cursor_end to the end of the range. As allocations
1290 * are made advance the cursor. Continue allocating from the cursor until
1291 * the range is exhausted and then find a new range.
1292 * ==========================================================================
1293 */
1294 static uint64_t
1295 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1296 {
1297 range_tree_t *rt = msp->ms_allocatable;
1298 avl_tree_t *t = &msp->ms_allocatable_by_size;
1299 uint64_t *cursor = &msp->ms_lbas[0];
1300 uint64_t *cursor_end = &msp->ms_lbas[1];
1301 uint64_t offset = 0;
1302
1303 ASSERT(MUTEX_HELD(&msp->ms_lock));
1304 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1305
1306 ASSERT3U(*cursor_end, >=, *cursor);
1307
1308 if ((*cursor + size) > *cursor_end) {
1309 range_seg_t *rs;
1310
1311 rs = avl_last(&msp->ms_allocatable_by_size);
1312 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1313 return (-1ULL);
1314
1315 *cursor = rs->rs_start;
1316 *cursor_end = rs->rs_end;
1317 }
1318
1319 offset = *cursor;
1320 *cursor += size;
1321
1322 return (offset);
1323 }
1324
1325 static metaslab_ops_t metaslab_cf_ops = {
1326 metaslab_cf_alloc
1327 };
1328
1329 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1330 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1331
1332 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1333 /*
1334 * ==========================================================================
1335 * New dynamic fit allocator -
1336 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1337 * contiguous blocks. If no region is found then just use the largest segment
1338 * that remains.
1339 * ==========================================================================
1340 */
1341
1342 /*
1343 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1344 * to request from the allocator.
1345 */
1346 uint64_t metaslab_ndf_clump_shift = 4;
1347
1348 static uint64_t
1349 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1350 {
1351 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1352 avl_index_t where;
1353 range_seg_t *rs, rsearch;
1354 uint64_t hbit = highbit64(size);
1355 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1356 uint64_t max_size = metaslab_block_maxsize(msp);
1357
1358 ASSERT(MUTEX_HELD(&msp->ms_lock));
1359 ASSERT3U(avl_numnodes(t), ==,
1360 avl_numnodes(&msp->ms_allocatable_by_size));
1361
1362 if (max_size < size)
1363 return (-1ULL);
1364
1365 rsearch.rs_start = *cursor;
1366 rsearch.rs_end = *cursor + size;
1367
1368 rs = avl_find(t, &rsearch, &where);
1369 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1370 t = &msp->ms_allocatable_by_size;
1371
1372 rsearch.rs_start = 0;
1373 rsearch.rs_end = MIN(max_size,
1374 1ULL << (hbit + metaslab_ndf_clump_shift));
1375 rs = avl_find(t, &rsearch, &where);
1376 if (rs == NULL)
1377 rs = avl_nearest(t, where, AVL_AFTER);
1378 ASSERT(rs != NULL);
1379 }
1380
1381 if ((rs->rs_end - rs->rs_start) >= size) {
1382 *cursor = rs->rs_start + size;
1383 return (rs->rs_start);
1384 }
1385 return (-1ULL);
1386 }
1387
1388 static metaslab_ops_t metaslab_ndf_ops = {
1389 metaslab_ndf_alloc
1390 };
1391
1392 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1393 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1394
1395
1396 /*
1397 * ==========================================================================
1398 * Metaslabs
1399 * ==========================================================================
1400 */
1401
1402 /*
1403 * Wait for any in-progress metaslab loads to complete.
1404 */
1405 static void
1406 metaslab_load_wait(metaslab_t *msp)
1407 {
1408 ASSERT(MUTEX_HELD(&msp->ms_lock));
1409
1410 while (msp->ms_loading) {
1411 ASSERT(!msp->ms_loaded);
1412 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1413 }
1414 }
1415
1416 static int
1417 metaslab_load_impl(metaslab_t *msp)
1418 {
1419 int error = 0;
1420
1421 ASSERT(MUTEX_HELD(&msp->ms_lock));
1422 ASSERT(msp->ms_loading);
1423
1424 /*
1425 * Nobody else can manipulate a loading metaslab, so it's now safe
1426 * to drop the lock. This way we don't have to hold the lock while
1427 * reading the spacemap from disk.
1428 */
1429 mutex_exit(&msp->ms_lock);
1430
1431 /*
1432 * If the space map has not been allocated yet, then treat
1433 * all the space in the metaslab as free and add it to ms_allocatable.
1434 */
1435 if (msp->ms_sm != NULL) {
1436 error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1437 SM_FREE);
1438 } else {
1439 range_tree_add(msp->ms_allocatable,
1440 msp->ms_start, msp->ms_size);
1441 }
1442
1443 mutex_enter(&msp->ms_lock);
1444
1445 if (error != 0)
1446 return (error);
1447
1448 ASSERT3P(msp->ms_group, !=, NULL);
1449 msp->ms_loaded = B_TRUE;
1450
1451 /*
1452 * If the metaslab already has a spacemap, then we need to
1453 * remove all segments from the defer tree; otherwise, the
1454 * metaslab is completely empty and we can skip this.
1455 */
1456 if (msp->ms_sm != NULL) {
1457 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1458 range_tree_walk(msp->ms_defer[t],
1459 range_tree_remove, msp->ms_allocatable);
1460 }
1461 }
1462 msp->ms_max_size = metaslab_block_maxsize(msp);
1463
1464 return (0);
1465 }
1466
1467 int
1468 metaslab_load(metaslab_t *msp)
1469 {
1470 ASSERT(MUTEX_HELD(&msp->ms_lock));
1471
1472 /*
1473 * There may be another thread loading the same metaslab, if that's
1474 * the case just wait until the other thread is done and return.
1475 */
1476 metaslab_load_wait(msp);
1477 if (msp->ms_loaded)
1478 return (0);
1479 VERIFY(!msp->ms_loading);
1480
1481 msp->ms_loading = B_TRUE;
1482 int error = metaslab_load_impl(msp);
1483 msp->ms_loading = B_FALSE;
1484 cv_broadcast(&msp->ms_load_cv);
1485
1486 return (error);
1487 }
1488
1489 void
1490 metaslab_unload(metaslab_t *msp)
1491 {
1492 ASSERT(MUTEX_HELD(&msp->ms_lock));
1493 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1494 msp->ms_loaded = B_FALSE;
1495 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1496 msp->ms_max_size = 0;
1497 }
1498
1499 static void
1500 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1501 int64_t defer_delta, int64_t space_delta)
1502 {
1503 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1504
1505 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1506 ASSERT(vd->vdev_ms_count != 0);
1507
1508 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1509 vdev_deflated_space(vd, space_delta));
1510 }
1511
1512 int
1513 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1514 metaslab_t **msp)
1515 {
1516 vdev_t *vd = mg->mg_vd;
1517 spa_t *spa = vd->vdev_spa;
1518 objset_t *mos = spa->spa_meta_objset;
1519 metaslab_t *ms;
1520 int error;
1521
1522 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1523 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1524 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1525 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1526
1527 ms->ms_id = id;
1528 ms->ms_start = id << vd->vdev_ms_shift;
1529 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1530 ms->ms_allocator = -1;
1531 ms->ms_new = B_TRUE;
1532
1533 /*
1534 * We only open space map objects that already exist. All others
1535 * will be opened when we finally allocate an object for it.
1536 */
1537 if (object != 0) {
1538 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1539 ms->ms_size, vd->vdev_ashift);
1540
1541 if (error != 0) {
1542 kmem_free(ms, sizeof (metaslab_t));
1543 return (error);
1544 }
1545
1546 ASSERT(ms->ms_sm != NULL);
1547 }
1548
1549 /*
1550 * We create the main range tree here, but we don't create the
1551 * other range trees until metaslab_sync_done(). This serves
1552 * two purposes: it allows metaslab_sync_done() to detect the
1553 * addition of new space; and for debugging, it ensures that we'd
1554 * data fault on any attempt to use this metaslab before it's ready.
1555 */
1556 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1557 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
1558 metaslab_group_add(mg, ms);
1559
1560 metaslab_set_fragmentation(ms);
1561
1562 /*
1563 * If we're opening an existing pool (txg == 0) or creating
1564 * a new one (txg == TXG_INITIAL), all space is available now.
1565 * If we're adding space to an existing pool, the new space
1566 * does not become available until after this txg has synced.
1567 * The metaslab's weight will also be initialized when we sync
1568 * out this txg. This ensures that we don't attempt to allocate
1569 * from it before we have initialized it completely.
1570 */
1571 if (txg <= TXG_INITIAL)
1572 metaslab_sync_done(ms, 0);
1573
1574 /*
1575 * If metaslab_debug_load is set and we're initializing a metaslab
1576 * that has an allocated space map object then load the space map
1577 * so that we can verify frees.
1578 */
1579 if (metaslab_debug_load && ms->ms_sm != NULL) {
1580 mutex_enter(&ms->ms_lock);
1581 VERIFY0(metaslab_load(ms));
1582 mutex_exit(&ms->ms_lock);
1583 }
1584
1585 if (txg != 0) {
1586 vdev_dirty(vd, 0, NULL, txg);
1587 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1588 }
1589
1590 *msp = ms;
1591
1592 return (0);
1593 }
1594
1595 void
1596 metaslab_fini(metaslab_t *msp)
1597 {
1598 metaslab_group_t *mg = msp->ms_group;
1599 vdev_t *vd = mg->mg_vd;
1600
1601 metaslab_group_remove(mg, msp);
1602
1603 mutex_enter(&msp->ms_lock);
1604 VERIFY(msp->ms_group == NULL);
1605 metaslab_space_update(vd, mg->mg_class,
1606 -space_map_allocated(msp->ms_sm), 0, -msp->ms_size);
1607
1608 space_map_close(msp->ms_sm);
1609
1610 metaslab_unload(msp);
1611
1612 range_tree_destroy(msp->ms_allocatable);
1613 range_tree_destroy(msp->ms_freeing);
1614 range_tree_destroy(msp->ms_freed);
1615
1616 for (int t = 0; t < TXG_SIZE; t++) {
1617 range_tree_destroy(msp->ms_allocating[t]);
1618 }
1619
1620 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1621 range_tree_destroy(msp->ms_defer[t]);
1622 }
1623 ASSERT0(msp->ms_deferspace);
1624
1625 range_tree_destroy(msp->ms_checkpointing);
1626
1627 mutex_exit(&msp->ms_lock);
1628 cv_destroy(&msp->ms_load_cv);
1629 mutex_destroy(&msp->ms_lock);
1630 mutex_destroy(&msp->ms_sync_lock);
1631 ASSERT3U(msp->ms_allocator, ==, -1);
1632
1633 kmem_free(msp, sizeof (metaslab_t));
1634 }
1635
1636 #define FRAGMENTATION_TABLE_SIZE 17
1637
1638 /*
1639 * This table defines a segment size based fragmentation metric that will
1640 * allow each metaslab to derive its own fragmentation value. This is done
1641 * by calculating the space in each bucket of the spacemap histogram and
1642 * multiplying that by the fragmetation metric in this table. Doing
1643 * this for all buckets and dividing it by the total amount of free
1644 * space in this metaslab (i.e. the total free space in all buckets) gives
1645 * us the fragmentation metric. This means that a high fragmentation metric
1646 * equates to most of the free space being comprised of small segments.
1647 * Conversely, if the metric is low, then most of the free space is in
1648 * large segments. A 10% change in fragmentation equates to approximately
1649 * double the number of segments.
1650 *
1651 * This table defines 0% fragmented space using 16MB segments. Testing has
1652 * shown that segments that are greater than or equal to 16MB do not suffer
1653 * from drastic performance problems. Using this value, we derive the rest
1654 * of the table. Since the fragmentation value is never stored on disk, it
1655 * is possible to change these calculations in the future.
1656 */
1657 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1658 100, /* 512B */
1659 100, /* 1K */
1660 98, /* 2K */
1661 95, /* 4K */
1662 90, /* 8K */
1663 80, /* 16K */
1664 70, /* 32K */
1665 60, /* 64K */
1666 50, /* 128K */
1667 40, /* 256K */
1668 30, /* 512K */
1669 20, /* 1M */
1670 15, /* 2M */
1671 10, /* 4M */
1672 5, /* 8M */
1673 0 /* 16M */
1674 };
1675
1676 /*
1677 * Calclate the metaslab's fragmentation metric. A return value
1678 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1679 * not support this metric. Otherwise, the return value should be in the
1680 * range [0, 100].
1681 */
1682 static void
1683 metaslab_set_fragmentation(metaslab_t *msp)
1684 {
1685 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1686 uint64_t fragmentation = 0;
1687 uint64_t total = 0;
1688 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1689 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1690
1691 if (!feature_enabled) {
1692 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1693 return;
1694 }
1695
1696 /*
1697 * A null space map means that the entire metaslab is free
1698 * and thus is not fragmented.
1699 */
1700 if (msp->ms_sm == NULL) {
1701 msp->ms_fragmentation = 0;
1702 return;
1703 }
1704
1705 /*
1706 * If this metaslab's space map has not been upgraded, flag it
1707 * so that we upgrade next time we encounter it.
1708 */
1709 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1710 uint64_t txg = spa_syncing_txg(spa);
1711 vdev_t *vd = msp->ms_group->mg_vd;
1712
1713 /*
1714 * If we've reached the final dirty txg, then we must
1715 * be shutting down the pool. We don't want to dirty
1716 * any data past this point so skip setting the condense
1717 * flag. We can retry this action the next time the pool
1718 * is imported.
1719 */
1720 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1721 msp->ms_condense_wanted = B_TRUE;
1722 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1723 zfs_dbgmsg("txg %llu, requesting force condense: "
1724 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1725 vd->vdev_id);
1726 }
1727 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1728 return;
1729 }
1730
1731 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1732 uint64_t space = 0;
1733 uint8_t shift = msp->ms_sm->sm_shift;
1734
1735 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1736 FRAGMENTATION_TABLE_SIZE - 1);
1737
1738 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1739 continue;
1740
1741 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1742 total += space;
1743
1744 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1745 fragmentation += space * zfs_frag_table[idx];
1746 }
1747
1748 if (total > 0)
1749 fragmentation /= total;
1750 ASSERT3U(fragmentation, <=, 100);
1751
1752 msp->ms_fragmentation = fragmentation;
1753 }
1754
1755 /*
1756 * Compute a weight -- a selection preference value -- for the given metaslab.
1757 * This is based on the amount of free space, the level of fragmentation,
1758 * the LBA range, and whether the metaslab is loaded.
1759 */
1760 static uint64_t
1761 metaslab_space_weight(metaslab_t *msp)
1762 {
1763 metaslab_group_t *mg = msp->ms_group;
1764 vdev_t *vd = mg->mg_vd;
1765 uint64_t weight, space;
1766
1767 ASSERT(MUTEX_HELD(&msp->ms_lock));
1768 ASSERT(!vd->vdev_removing);
1769
1770 /*
1771 * The baseline weight is the metaslab's free space.
1772 */
1773 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1774
1775 if (metaslab_fragmentation_factor_enabled &&
1776 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1777 /*
1778 * Use the fragmentation information to inversely scale
1779 * down the baseline weight. We need to ensure that we
1780 * don't exclude this metaslab completely when it's 100%
1781 * fragmented. To avoid this we reduce the fragmented value
1782 * by 1.
1783 */
1784 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1785
1786 /*
1787 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1788 * this metaslab again. The fragmentation metric may have
1789 * decreased the space to something smaller than
1790 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1791 * so that we can consume any remaining space.
1792 */
1793 if (space > 0 && space < SPA_MINBLOCKSIZE)
1794 space = SPA_MINBLOCKSIZE;
1795 }
1796 weight = space;
1797
1798 /*
1799 * Modern disks have uniform bit density and constant angular velocity.
1800 * Therefore, the outer recording zones are faster (higher bandwidth)
1801 * than the inner zones by the ratio of outer to inner track diameter,
1802 * which is typically around 2:1. We account for this by assigning
1803 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1804 * In effect, this means that we'll select the metaslab with the most
1805 * free bandwidth rather than simply the one with the most free space.
1806 */
1807 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
1808 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1809 ASSERT(weight >= space && weight <= 2 * space);
1810 }
1811
1812 /*
1813 * If this metaslab is one we're actively using, adjust its
1814 * weight to make it preferable to any inactive metaslab so
1815 * we'll polish it off. If the fragmentation on this metaslab
1816 * has exceed our threshold, then don't mark it active.
1817 */
1818 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1819 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1820 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1821 }
1822
1823 WEIGHT_SET_SPACEBASED(weight);
1824 return (weight);
1825 }
1826
1827 /*
1828 * Return the weight of the specified metaslab, according to the segment-based
1829 * weighting algorithm. The metaslab must be loaded. This function can
1830 * be called within a sync pass since it relies only on the metaslab's
1831 * range tree which is always accurate when the metaslab is loaded.
1832 */
1833 static uint64_t
1834 metaslab_weight_from_range_tree(metaslab_t *msp)
1835 {
1836 uint64_t weight = 0;
1837 uint32_t segments = 0;
1838
1839 ASSERT(msp->ms_loaded);
1840
1841 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1842 i--) {
1843 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1844 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1845
1846 segments <<= 1;
1847 segments += msp->ms_allocatable->rt_histogram[i];
1848
1849 /*
1850 * The range tree provides more precision than the space map
1851 * and must be downgraded so that all values fit within the
1852 * space map's histogram. This allows us to compare loaded
1853 * vs. unloaded metaslabs to determine which metaslab is
1854 * considered "best".
1855 */
1856 if (i > max_idx)
1857 continue;
1858
1859 if (segments != 0) {
1860 WEIGHT_SET_COUNT(weight, segments);
1861 WEIGHT_SET_INDEX(weight, i);
1862 WEIGHT_SET_ACTIVE(weight, 0);
1863 break;
1864 }
1865 }
1866 return (weight);
1867 }
1868
1869 /*
1870 * Calculate the weight based on the on-disk histogram. This should only
1871 * be called after a sync pass has completely finished since the on-disk
1872 * information is updated in metaslab_sync().
1873 */
1874 static uint64_t
1875 metaslab_weight_from_spacemap(metaslab_t *msp)
1876 {
1877 uint64_t weight = 0;
1878
1879 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1880 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1881 WEIGHT_SET_COUNT(weight,
1882 msp->ms_sm->sm_phys->smp_histogram[i]);
1883 WEIGHT_SET_INDEX(weight, i +
1884 msp->ms_sm->sm_shift);
1885 WEIGHT_SET_ACTIVE(weight, 0);
1886 break;
1887 }
1888 }
1889 return (weight);
1890 }
1891
1892 /*
1893 * Compute a segment-based weight for the specified metaslab. The weight
1894 * is determined by highest bucket in the histogram. The information
1895 * for the highest bucket is encoded into the weight value.
1896 */
1897 static uint64_t
1898 metaslab_segment_weight(metaslab_t *msp)
1899 {
1900 metaslab_group_t *mg = msp->ms_group;
1901 uint64_t weight = 0;
1902 uint8_t shift = mg->mg_vd->vdev_ashift;
1903
1904 ASSERT(MUTEX_HELD(&msp->ms_lock));
1905
1906 /*
1907 * The metaslab is completely free.
1908 */
1909 if (space_map_allocated(msp->ms_sm) == 0) {
1910 int idx = highbit64(msp->ms_size) - 1;
1911 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1912
1913 if (idx < max_idx) {
1914 WEIGHT_SET_COUNT(weight, 1ULL);
1915 WEIGHT_SET_INDEX(weight, idx);
1916 } else {
1917 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1918 WEIGHT_SET_INDEX(weight, max_idx);
1919 }
1920 WEIGHT_SET_ACTIVE(weight, 0);
1921 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1922
1923 return (weight);
1924 }
1925
1926 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1927
1928 /*
1929 * If the metaslab is fully allocated then just make the weight 0.
1930 */
1931 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1932 return (0);
1933 /*
1934 * If the metaslab is already loaded, then use the range tree to
1935 * determine the weight. Otherwise, we rely on the space map information
1936 * to generate the weight.
1937 */
1938 if (msp->ms_loaded) {
1939 weight = metaslab_weight_from_range_tree(msp);
1940 } else {
1941 weight = metaslab_weight_from_spacemap(msp);
1942 }
1943
1944 /*
1945 * If the metaslab was active the last time we calculated its weight
1946 * then keep it active. We want to consume the entire region that
1947 * is associated with this weight.
1948 */
1949 if (msp->ms_activation_weight != 0 && weight != 0)
1950 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1951 return (weight);
1952 }
1953
1954 /*
1955 * Determine if we should attempt to allocate from this metaslab. If the
1956 * metaslab has a maximum size then we can quickly determine if the desired
1957 * allocation size can be satisfied. Otherwise, if we're using segment-based
1958 * weighting then we can determine the maximum allocation that this metaslab
1959 * can accommodate based on the index encoded in the weight. If we're using
1960 * space-based weights then rely on the entire weight (excluding the weight
1961 * type bit).
1962 */
1963 boolean_t
1964 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1965 {
1966 boolean_t should_allocate;
1967
1968 if (msp->ms_max_size != 0)
1969 return (msp->ms_max_size >= asize);
1970
1971 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1972 /*
1973 * The metaslab segment weight indicates segments in the
1974 * range [2^i, 2^(i+1)), where i is the index in the weight.
1975 * Since the asize might be in the middle of the range, we
1976 * should attempt the allocation if asize < 2^(i+1).
1977 */
1978 should_allocate = (asize <
1979 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1980 } else {
1981 should_allocate = (asize <=
1982 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1983 }
1984 return (should_allocate);
1985 }
1986 static uint64_t
1987 metaslab_weight(metaslab_t *msp)
1988 {
1989 vdev_t *vd = msp->ms_group->mg_vd;
1990 spa_t *spa = vd->vdev_spa;
1991 uint64_t weight;
1992
1993 ASSERT(MUTEX_HELD(&msp->ms_lock));
1994
1995 /*
1996 * If this vdev is in the process of being removed, there is nothing
1997 * for us to do here.
1998 */
1999 if (vd->vdev_removing)
2000 return (0);
2001
2002 metaslab_set_fragmentation(msp);
2003
2004 /*
2005 * Update the maximum size if the metaslab is loaded. This will
2006 * ensure that we get an accurate maximum size if newly freed space
2007 * has been added back into the free tree.
2008 */
2009 if (msp->ms_loaded)
2010 msp->ms_max_size = metaslab_block_maxsize(msp);
2011
2012 /*
2013 * Segment-based weighting requires space map histogram support.
2014 */
2015 if (zfs_metaslab_segment_weight_enabled &&
2016 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2017 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2018 sizeof (space_map_phys_t))) {
2019 weight = metaslab_segment_weight(msp);
2020 } else {
2021 weight = metaslab_space_weight(msp);
2022 }
2023 return (weight);
2024 }
2025
2026 static int
2027 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2028 int allocator, uint64_t activation_weight)
2029 {
2030 /*
2031 * If we're activating for the claim code, we don't want to actually
2032 * set the metaslab up for a specific allocator.
2033 */
2034 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2035 return (0);
2036 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2037 mg->mg_primaries : mg->mg_secondaries);
2038
2039 ASSERT(MUTEX_HELD(&msp->ms_lock));
2040 mutex_enter(&mg->mg_lock);
2041 if (arr[allocator] != NULL) {
2042 mutex_exit(&mg->mg_lock);
2043 return (EEXIST);
2044 }
2045
2046 arr[allocator] = msp;
2047 ASSERT3S(msp->ms_allocator, ==, -1);
2048 msp->ms_allocator = allocator;
2049 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2050 mutex_exit(&mg->mg_lock);
2051
2052 return (0);
2053 }
2054
2055 static int
2056 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2057 {
2058 ASSERT(MUTEX_HELD(&msp->ms_lock));
2059
2060 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2061 int error = metaslab_load(msp);
2062 if (error != 0) {
2063 metaslab_group_sort(msp->ms_group, msp, 0);
2064 return (error);
2065 }
2066 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2067 /*
2068 * The metaslab was activated for another allocator
2069 * while we were waiting, we should reselect.
2070 */
2071 return (SET_ERROR(EBUSY));
2072 }
2073 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2074 allocator, activation_weight)) != 0) {
2075 return (error);
2076 }
2077
2078 msp->ms_activation_weight = msp->ms_weight;
2079 metaslab_group_sort(msp->ms_group, msp,
2080 msp->ms_weight | activation_weight);
2081 }
2082 ASSERT(msp->ms_loaded);
2083 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2084
2085 return (0);
2086 }
2087
2088 static void
2089 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2090 uint64_t weight)
2091 {
2092 ASSERT(MUTEX_HELD(&msp->ms_lock));
2093 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2094 metaslab_group_sort(mg, msp, weight);
2095 return;
2096 }
2097
2098 mutex_enter(&mg->mg_lock);
2099 ASSERT3P(msp->ms_group, ==, mg);
2100 if (msp->ms_primary) {
2101 ASSERT3U(0, <=, msp->ms_allocator);
2102 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2103 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2104 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2105 mg->mg_primaries[msp->ms_allocator] = NULL;
2106 } else {
2107 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2108 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2109 mg->mg_secondaries[msp->ms_allocator] = NULL;
2110 }
2111 msp->ms_allocator = -1;
2112 metaslab_group_sort_impl(mg, msp, weight);
2113 mutex_exit(&mg->mg_lock);
2114 }
2115
2116 static void
2117 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2118 {
2119 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2120
2121 /*
2122 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2123 * this metaslab again. In that case, it had better be empty,
2124 * or we would be leaving space on the table.
2125 */
2126 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2127 size >= SPA_MINBLOCKSIZE ||
2128 range_tree_space(msp->ms_allocatable) == 0);
2129 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2130
2131 msp->ms_activation_weight = 0;
2132 metaslab_passivate_allocator(msp->ms_group, msp, weight);
2133 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2134 }
2135
2136 /*
2137 * Segment-based metaslabs are activated once and remain active until
2138 * we either fail an allocation attempt (similar to space-based metaslabs)
2139 * or have exhausted the free space in zfs_metaslab_switch_threshold
2140 * buckets since the metaslab was activated. This function checks to see
2141 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2142 * metaslab and passivates it proactively. This will allow us to select a
2143 * metaslab with a larger contiguous region, if any, remaining within this
2144 * metaslab group. If we're in sync pass > 1, then we continue using this
2145 * metaslab so that we don't dirty more block and cause more sync passes.
2146 */
2147 void
2148 metaslab_segment_may_passivate(metaslab_t *msp)
2149 {
2150 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2151
2152 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2153 return;
2154
2155 /*
2156 * Since we are in the middle of a sync pass, the most accurate
2157 * information that is accessible to us is the in-core range tree
2158 * histogram; calculate the new weight based on that information.
2159 */
2160 uint64_t weight = metaslab_weight_from_range_tree(msp);
2161 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2162 int current_idx = WEIGHT_GET_INDEX(weight);
2163
2164 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2165 metaslab_passivate(msp, weight);
2166 }
2167
2168 static void
2169 metaslab_preload(void *arg)
2170 {
2171 metaslab_t *msp = arg;
2172 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2173 fstrans_cookie_t cookie = spl_fstrans_mark();
2174
2175 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2176
2177 mutex_enter(&msp->ms_lock);
2178 (void) metaslab_load(msp);
2179 msp->ms_selected_txg = spa_syncing_txg(spa);
2180 mutex_exit(&msp->ms_lock);
2181 spl_fstrans_unmark(cookie);
2182 }
2183
2184 static void
2185 metaslab_group_preload(metaslab_group_t *mg)
2186 {
2187 spa_t *spa = mg->mg_vd->vdev_spa;
2188 metaslab_t *msp;
2189 avl_tree_t *t = &mg->mg_metaslab_tree;
2190 int m = 0;
2191
2192 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2193 taskq_wait_outstanding(mg->mg_taskq, 0);
2194 return;
2195 }
2196
2197 mutex_enter(&mg->mg_lock);
2198
2199 /*
2200 * Load the next potential metaslabs
2201 */
2202 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2203 ASSERT3P(msp->ms_group, ==, mg);
2204
2205 /*
2206 * We preload only the maximum number of metaslabs specified
2207 * by metaslab_preload_limit. If a metaslab is being forced
2208 * to condense then we preload it too. This will ensure
2209 * that force condensing happens in the next txg.
2210 */
2211 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2212 continue;
2213 }
2214
2215 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2216 msp, TQ_SLEEP) != TASKQID_INVALID);
2217 }
2218 mutex_exit(&mg->mg_lock);
2219 }
2220
2221 /*
2222 * Determine if the space map's on-disk footprint is past our tolerance
2223 * for inefficiency. We would like to use the following criteria to make
2224 * our decision:
2225 *
2226 * 1. The size of the space map object should not dramatically increase as a
2227 * result of writing out the free space range tree.
2228 *
2229 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2230 * times the size than the free space range tree representation
2231 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2232 *
2233 * 3. The on-disk size of the space map should actually decrease.
2234 *
2235 * Unfortunately, we cannot compute the on-disk size of the space map in this
2236 * context because we cannot accurately compute the effects of compression, etc.
2237 * Instead, we apply the heuristic described in the block comment for
2238 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2239 * is greater than a threshold number of blocks.
2240 */
2241 static boolean_t
2242 metaslab_should_condense(metaslab_t *msp)
2243 {
2244 space_map_t *sm = msp->ms_sm;
2245 vdev_t *vd = msp->ms_group->mg_vd;
2246 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2247 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2248
2249 ASSERT(MUTEX_HELD(&msp->ms_lock));
2250 ASSERT(msp->ms_loaded);
2251
2252 /*
2253 * Allocations and frees in early passes are generally more space
2254 * efficient (in terms of blocks described in space map entries)
2255 * than the ones in later passes (e.g. we don't compress after
2256 * sync pass 5) and condensing a metaslab multiple times in a txg
2257 * could degrade performance.
2258 *
2259 * Thus we prefer condensing each metaslab at most once every txg at
2260 * the earliest sync pass possible. If a metaslab is eligible for
2261 * condensing again after being considered for condensing within the
2262 * same txg, it will hopefully be dirty in the next txg where it will
2263 * be condensed at an earlier pass.
2264 */
2265 if (msp->ms_condense_checked_txg == current_txg)
2266 return (B_FALSE);
2267 msp->ms_condense_checked_txg = current_txg;
2268
2269 /*
2270 * We always condense metaslabs that are empty and metaslabs for
2271 * which a condense request has been made.
2272 */
2273 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2274 msp->ms_condense_wanted)
2275 return (B_TRUE);
2276
2277 uint64_t object_size = space_map_length(msp->ms_sm);
2278 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2279 msp->ms_allocatable, SM_NO_VDEVID);
2280
2281 dmu_object_info_t doi;
2282 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2283 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2284
2285 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2286 object_size > zfs_metaslab_condense_block_threshold * record_size);
2287 }
2288
2289 /*
2290 * Condense the on-disk space map representation to its minimized form.
2291 * The minimized form consists of a small number of allocations followed by
2292 * the entries of the free range tree.
2293 */
2294 static void
2295 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2296 {
2297 range_tree_t *condense_tree;
2298 space_map_t *sm = msp->ms_sm;
2299
2300 ASSERT(MUTEX_HELD(&msp->ms_lock));
2301 ASSERT(msp->ms_loaded);
2302
2303
2304 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2305 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2306 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2307 msp->ms_group->mg_vd->vdev_spa->spa_name,
2308 space_map_length(msp->ms_sm),
2309 avl_numnodes(&msp->ms_allocatable->rt_root),
2310 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2311
2312 msp->ms_condense_wanted = B_FALSE;
2313
2314 /*
2315 * Create an range tree that is 100% allocated. We remove segments
2316 * that have been freed in this txg, any deferred frees that exist,
2317 * and any allocation in the future. Removing segments should be
2318 * a relatively inexpensive operation since we expect these trees to
2319 * have a small number of nodes.
2320 */
2321 condense_tree = range_tree_create(NULL, NULL);
2322 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2323
2324 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2325 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2326
2327 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2328 range_tree_walk(msp->ms_defer[t],
2329 range_tree_remove, condense_tree);
2330 }
2331
2332 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2333 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2334 range_tree_remove, condense_tree);
2335 }
2336
2337 /*
2338 * We're about to drop the metaslab's lock thus allowing
2339 * other consumers to change it's content. Set the
2340 * metaslab's ms_condensing flag to ensure that
2341 * allocations on this metaslab do not occur while we're
2342 * in the middle of committing it to disk. This is only critical
2343 * for ms_allocatable as all other range trees use per txg
2344 * views of their content.
2345 */
2346 msp->ms_condensing = B_TRUE;
2347
2348 mutex_exit(&msp->ms_lock);
2349 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2350
2351 /*
2352 * While we would ideally like to create a space map representation
2353 * that consists only of allocation records, doing so can be
2354 * prohibitively expensive because the in-core free tree can be
2355 * large, and therefore computationally expensive to subtract
2356 * from the condense_tree. Instead we sync out two trees, a cheap
2357 * allocation only tree followed by the in-core free tree. While not
2358 * optimal, this is typically close to optimal, and much cheaper to
2359 * compute.
2360 */
2361 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2362 range_tree_vacate(condense_tree, NULL, NULL);
2363 range_tree_destroy(condense_tree);
2364
2365 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2366 mutex_enter(&msp->ms_lock);
2367 msp->ms_condensing = B_FALSE;
2368 }
2369
2370 /*
2371 * Write a metaslab to disk in the context of the specified transaction group.
2372 */
2373 void
2374 metaslab_sync(metaslab_t *msp, uint64_t txg)
2375 {
2376 metaslab_group_t *mg = msp->ms_group;
2377 vdev_t *vd = mg->mg_vd;
2378 spa_t *spa = vd->vdev_spa;
2379 objset_t *mos = spa_meta_objset(spa);
2380 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2381 dmu_tx_t *tx;
2382 uint64_t object = space_map_object(msp->ms_sm);
2383
2384 ASSERT(!vd->vdev_ishole);
2385
2386 /*
2387 * This metaslab has just been added so there's no work to do now.
2388 */
2389 if (msp->ms_freeing == NULL) {
2390 ASSERT3P(alloctree, ==, NULL);
2391 return;
2392 }
2393
2394 ASSERT3P(alloctree, !=, NULL);
2395 ASSERT3P(msp->ms_freeing, !=, NULL);
2396 ASSERT3P(msp->ms_freed, !=, NULL);
2397 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2398
2399 /*
2400 * Normally, we don't want to process a metaslab if there are no
2401 * allocations or frees to perform. However, if the metaslab is being
2402 * forced to condense and it's loaded, we need to let it through.
2403 */
2404 if (range_tree_is_empty(alloctree) &&
2405 range_tree_is_empty(msp->ms_freeing) &&
2406 range_tree_is_empty(msp->ms_checkpointing) &&
2407 !(msp->ms_loaded && msp->ms_condense_wanted))
2408 return;
2409
2410
2411 VERIFY(txg <= spa_final_dirty_txg(spa));
2412
2413 /*
2414 * The only state that can actually be changing concurrently with
2415 * metaslab_sync() is the metaslab's ms_allocatable. No other
2416 * thread can be modifying this txg's alloc, freeing,
2417 * freed, or space_map_phys_t. We drop ms_lock whenever we
2418 * could call into the DMU, because the DMU can call down to us
2419 * (e.g. via zio_free()) at any time.
2420 *
2421 * The spa_vdev_remove_thread() can be reading metaslab state
2422 * concurrently, and it is locked out by the ms_sync_lock. Note
2423 * that the ms_lock is insufficient for this, because it is dropped
2424 * by space_map_write().
2425 */
2426 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2427
2428 if (msp->ms_sm == NULL) {
2429 uint64_t new_object;
2430
2431 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2432 VERIFY3U(new_object, !=, 0);
2433
2434 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2435 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2436 ASSERT(msp->ms_sm != NULL);
2437 }
2438
2439 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2440 vd->vdev_checkpoint_sm == NULL) {
2441 ASSERT(spa_has_checkpoint(spa));
2442
2443 uint64_t new_object = space_map_alloc(mos,
2444 vdev_standard_sm_blksz, tx);
2445 VERIFY3U(new_object, !=, 0);
2446
2447 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2448 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2449 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2450
2451 /*
2452 * We save the space map object as an entry in vdev_top_zap
2453 * so it can be retrieved when the pool is reopened after an
2454 * export or through zdb.
2455 */
2456 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2457 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2458 sizeof (new_object), 1, &new_object, tx));
2459 }
2460
2461 mutex_enter(&msp->ms_sync_lock);
2462 mutex_enter(&msp->ms_lock);
2463
2464 /*
2465 * Note: metaslab_condense() clears the space map's histogram.
2466 * Therefore we must verify and remove this histogram before
2467 * condensing.
2468 */
2469 metaslab_group_histogram_verify(mg);
2470 metaslab_class_histogram_verify(mg->mg_class);
2471 metaslab_group_histogram_remove(mg, msp);
2472
2473 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2474 metaslab_condense(msp, txg, tx);
2475 } else {
2476 mutex_exit(&msp->ms_lock);
2477 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2478 SM_NO_VDEVID, tx);
2479 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2480 SM_NO_VDEVID, tx);
2481 mutex_enter(&msp->ms_lock);
2482 }
2483
2484 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2485 ASSERT(spa_has_checkpoint(spa));
2486 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2487
2488 /*
2489 * Since we are doing writes to disk and the ms_checkpointing
2490 * tree won't be changing during that time, we drop the
2491 * ms_lock while writing to the checkpoint space map.
2492 */
2493 mutex_exit(&msp->ms_lock);
2494 space_map_write(vd->vdev_checkpoint_sm,
2495 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2496 mutex_enter(&msp->ms_lock);
2497 space_map_update(vd->vdev_checkpoint_sm);
2498
2499 spa->spa_checkpoint_info.sci_dspace +=
2500 range_tree_space(msp->ms_checkpointing);
2501 vd->vdev_stat.vs_checkpoint_space +=
2502 range_tree_space(msp->ms_checkpointing);
2503 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2504 -vd->vdev_checkpoint_sm->sm_alloc);
2505
2506 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2507 }
2508
2509 if (msp->ms_loaded) {
2510 /*
2511 * When the space map is loaded, we have an accurate
2512 * histogram in the range tree. This gives us an opportunity
2513 * to bring the space map's histogram up-to-date so we clear
2514 * it first before updating it.
2515 */
2516 space_map_histogram_clear(msp->ms_sm);
2517 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2518
2519 /*
2520 * Since we've cleared the histogram we need to add back
2521 * any free space that has already been processed, plus
2522 * any deferred space. This allows the on-disk histogram
2523 * to accurately reflect all free space even if some space
2524 * is not yet available for allocation (i.e. deferred).
2525 */
2526 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2527
2528 /*
2529 * Add back any deferred free space that has not been
2530 * added back into the in-core free tree yet. This will
2531 * ensure that we don't end up with a space map histogram
2532 * that is completely empty unless the metaslab is fully
2533 * allocated.
2534 */
2535 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2536 space_map_histogram_add(msp->ms_sm,
2537 msp->ms_defer[t], tx);
2538 }
2539 }
2540
2541 /*
2542 * Always add the free space from this sync pass to the space
2543 * map histogram. We want to make sure that the on-disk histogram
2544 * accounts for all free space. If the space map is not loaded,
2545 * then we will lose some accuracy but will correct it the next
2546 * time we load the space map.
2547 */
2548 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2549
2550 metaslab_group_histogram_add(mg, msp);
2551 metaslab_group_histogram_verify(mg);
2552 metaslab_class_histogram_verify(mg->mg_class);
2553
2554 /*
2555 * For sync pass 1, we avoid traversing this txg's free range tree
2556 * and instead will just swap the pointers for freeing and
2557 * freed. We can safely do this since the freed_tree is
2558 * guaranteed to be empty on the initial pass.
2559 */
2560 if (spa_sync_pass(spa) == 1) {
2561 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2562 } else {
2563 range_tree_vacate(msp->ms_freeing,
2564 range_tree_add, msp->ms_freed);
2565 }
2566 range_tree_vacate(alloctree, NULL, NULL);
2567
2568 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2569 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2570 & TXG_MASK]));
2571 ASSERT0(range_tree_space(msp->ms_freeing));
2572 ASSERT0(range_tree_space(msp->ms_checkpointing));
2573
2574 mutex_exit(&msp->ms_lock);
2575
2576 if (object != space_map_object(msp->ms_sm)) {
2577 object = space_map_object(msp->ms_sm);
2578 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2579 msp->ms_id, sizeof (uint64_t), &object, tx);
2580 }
2581 mutex_exit(&msp->ms_sync_lock);
2582 dmu_tx_commit(tx);
2583 }
2584
2585 /*
2586 * Called after a transaction group has completely synced to mark
2587 * all of the metaslab's free space as usable.
2588 */
2589 void
2590 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2591 {
2592 metaslab_group_t *mg = msp->ms_group;
2593 vdev_t *vd = mg->mg_vd;
2594 spa_t *spa = vd->vdev_spa;
2595 range_tree_t **defer_tree;
2596 int64_t alloc_delta, defer_delta;
2597 boolean_t defer_allowed = B_TRUE;
2598
2599 ASSERT(!vd->vdev_ishole);
2600
2601 mutex_enter(&msp->ms_lock);
2602
2603 /*
2604 * If this metaslab is just becoming available, initialize its
2605 * range trees and add its capacity to the vdev.
2606 */
2607 if (msp->ms_freed == NULL) {
2608 for (int t = 0; t < TXG_SIZE; t++) {
2609 ASSERT(msp->ms_allocating[t] == NULL);
2610
2611 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2612 }
2613
2614 ASSERT3P(msp->ms_freeing, ==, NULL);
2615 msp->ms_freeing = range_tree_create(NULL, NULL);
2616
2617 ASSERT3P(msp->ms_freed, ==, NULL);
2618 msp->ms_freed = range_tree_create(NULL, NULL);
2619
2620 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2621 ASSERT(msp->ms_defer[t] == NULL);
2622
2623 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2624 }
2625
2626 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2627 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2628
2629 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
2630 }
2631 ASSERT0(range_tree_space(msp->ms_freeing));
2632 ASSERT0(range_tree_space(msp->ms_checkpointing));
2633
2634 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2635
2636 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2637 metaslab_class_get_alloc(spa_normal_class(spa));
2638 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2639 defer_allowed = B_FALSE;
2640 }
2641
2642 defer_delta = 0;
2643 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2644 if (defer_allowed) {
2645 defer_delta = range_tree_space(msp->ms_freed) -
2646 range_tree_space(*defer_tree);
2647 } else {
2648 defer_delta -= range_tree_space(*defer_tree);
2649 }
2650
2651 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
2652 defer_delta, 0);
2653
2654 /*
2655 * If there's a metaslab_load() in progress, wait for it to complete
2656 * so that we have a consistent view of the in-core space map.
2657 */
2658 metaslab_load_wait(msp);
2659
2660 /*
2661 * Move the frees from the defer_tree back to the free
2662 * range tree (if it's loaded). Swap the freed_tree and
2663 * the defer_tree -- this is safe to do because we've
2664 * just emptied out the defer_tree.
2665 */
2666 range_tree_vacate(*defer_tree,
2667 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
2668 if (defer_allowed) {
2669 range_tree_swap(&msp->ms_freed, defer_tree);
2670 } else {
2671 range_tree_vacate(msp->ms_freed,
2672 msp->ms_loaded ? range_tree_add : NULL,
2673 msp->ms_allocatable);
2674 }
2675 space_map_update(msp->ms_sm);
2676
2677 msp->ms_deferspace += defer_delta;
2678 ASSERT3S(msp->ms_deferspace, >=, 0);
2679 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2680 if (msp->ms_deferspace != 0) {
2681 /*
2682 * Keep syncing this metaslab until all deferred frees
2683 * are back in circulation.
2684 */
2685 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2686 }
2687
2688 if (msp->ms_new) {
2689 msp->ms_new = B_FALSE;
2690 mutex_enter(&mg->mg_lock);
2691 mg->mg_ms_ready++;
2692 mutex_exit(&mg->mg_lock);
2693 }
2694 /*
2695 * Calculate the new weights before unloading any metaslabs.
2696 * This will give us the most accurate weighting.
2697 */
2698 metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2699 (msp->ms_weight & METASLAB_ACTIVE_MASK));
2700
2701 /*
2702 * If the metaslab is loaded and we've not tried to load or allocate
2703 * from it in 'metaslab_unload_delay' txgs, then unload it.
2704 */
2705 if (msp->ms_loaded &&
2706 msp->ms_initializing == 0 &&
2707 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2708
2709 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2710 VERIFY0(range_tree_space(
2711 msp->ms_allocating[(txg + t) & TXG_MASK]));
2712 }
2713 if (msp->ms_allocator != -1) {
2714 metaslab_passivate(msp, msp->ms_weight &
2715 ~METASLAB_ACTIVE_MASK);
2716 }
2717
2718 if (!metaslab_debug_unload)
2719 metaslab_unload(msp);
2720 }
2721
2722 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2723 ASSERT0(range_tree_space(msp->ms_freeing));
2724 ASSERT0(range_tree_space(msp->ms_freed));
2725 ASSERT0(range_tree_space(msp->ms_checkpointing));
2726
2727 mutex_exit(&msp->ms_lock);
2728 }
2729
2730 void
2731 metaslab_sync_reassess(metaslab_group_t *mg)
2732 {
2733 spa_t *spa = mg->mg_class->mc_spa;
2734
2735 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2736 metaslab_group_alloc_update(mg);
2737 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2738
2739 /*
2740 * Preload the next potential metaslabs but only on active
2741 * metaslab groups. We can get into a state where the metaslab
2742 * is no longer active since we dirty metaslabs as we remove a
2743 * a device, thus potentially making the metaslab group eligible
2744 * for preloading.
2745 */
2746 if (mg->mg_activation_count > 0) {
2747 metaslab_group_preload(mg);
2748 }
2749 spa_config_exit(spa, SCL_ALLOC, FTAG);
2750 }
2751
2752 /*
2753 * When writing a ditto block (i.e. more than one DVA for a given BP) on
2754 * the same vdev as an existing DVA of this BP, then try to allocate it
2755 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
2756 */
2757 static boolean_t
2758 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
2759 {
2760 uint64_t dva_ms_id;
2761
2762 if (DVA_GET_ASIZE(dva) == 0)
2763 return (B_TRUE);
2764
2765 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2766 return (B_TRUE);
2767
2768 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
2769
2770 return (msp->ms_id != dva_ms_id);
2771 }
2772
2773 /*
2774 * ==========================================================================
2775 * Metaslab allocation tracing facility
2776 * ==========================================================================
2777 */
2778 #ifdef _METASLAB_TRACING
2779 kstat_t *metaslab_trace_ksp;
2780 kstat_named_t metaslab_trace_over_limit;
2781
2782 void
2783 metaslab_alloc_trace_init(void)
2784 {
2785 ASSERT(metaslab_alloc_trace_cache == NULL);
2786 metaslab_alloc_trace_cache = kmem_cache_create(
2787 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2788 0, NULL, NULL, NULL, NULL, NULL, 0);
2789 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2790 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2791 if (metaslab_trace_ksp != NULL) {
2792 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2793 kstat_named_init(&metaslab_trace_over_limit,
2794 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2795 kstat_install(metaslab_trace_ksp);
2796 }
2797 }
2798
2799 void
2800 metaslab_alloc_trace_fini(void)
2801 {
2802 if (metaslab_trace_ksp != NULL) {
2803 kstat_delete(metaslab_trace_ksp);
2804 metaslab_trace_ksp = NULL;
2805 }
2806 kmem_cache_destroy(metaslab_alloc_trace_cache);
2807 metaslab_alloc_trace_cache = NULL;
2808 }
2809
2810 /*
2811 * Add an allocation trace element to the allocation tracing list.
2812 */
2813 static void
2814 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2815 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2816 int allocator)
2817 {
2818 metaslab_alloc_trace_t *mat;
2819
2820 if (!metaslab_trace_enabled)
2821 return;
2822
2823 /*
2824 * When the tracing list reaches its maximum we remove
2825 * the second element in the list before adding a new one.
2826 * By removing the second element we preserve the original
2827 * entry as a clue to what allocations steps have already been
2828 * performed.
2829 */
2830 if (zal->zal_size == metaslab_trace_max_entries) {
2831 metaslab_alloc_trace_t *mat_next;
2832 #ifdef DEBUG
2833 panic("too many entries in allocation list");
2834 #endif
2835 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2836 zal->zal_size--;
2837 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2838 list_remove(&zal->zal_list, mat_next);
2839 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2840 }
2841
2842 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2843 list_link_init(&mat->mat_list_node);
2844 mat->mat_mg = mg;
2845 mat->mat_msp = msp;
2846 mat->mat_size = psize;
2847 mat->mat_dva_id = dva_id;
2848 mat->mat_offset = offset;
2849 mat->mat_weight = 0;
2850 mat->mat_allocator = allocator;
2851
2852 if (msp != NULL)
2853 mat->mat_weight = msp->ms_weight;
2854
2855 /*
2856 * The list is part of the zio so locking is not required. Only
2857 * a single thread will perform allocations for a given zio.
2858 */
2859 list_insert_tail(&zal->zal_list, mat);
2860 zal->zal_size++;
2861
2862 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2863 }
2864
2865 void
2866 metaslab_trace_init(zio_alloc_list_t *zal)
2867 {
2868 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2869 offsetof(metaslab_alloc_trace_t, mat_list_node));
2870 zal->zal_size = 0;
2871 }
2872
2873 void
2874 metaslab_trace_fini(zio_alloc_list_t *zal)
2875 {
2876 metaslab_alloc_trace_t *mat;
2877
2878 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2879 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2880 list_destroy(&zal->zal_list);
2881 zal->zal_size = 0;
2882 }
2883 #else
2884
2885 #define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
2886
2887 void
2888 metaslab_alloc_trace_init(void)
2889 {
2890 }
2891
2892 void
2893 metaslab_alloc_trace_fini(void)
2894 {
2895 }
2896
2897 void
2898 metaslab_trace_init(zio_alloc_list_t *zal)
2899 {
2900 }
2901
2902 void
2903 metaslab_trace_fini(zio_alloc_list_t *zal)
2904 {
2905 }
2906
2907 #endif /* _METASLAB_TRACING */
2908
2909 /*
2910 * ==========================================================================
2911 * Metaslab block operations
2912 * ==========================================================================
2913 */
2914
2915 static void
2916 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2917 int allocator)
2918 {
2919 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2920 (flags & METASLAB_DONT_THROTTLE))
2921 return;
2922
2923 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2924 if (!mg->mg_class->mc_alloc_throttle_enabled)
2925 return;
2926
2927 (void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
2928 }
2929
2930 static void
2931 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
2932 {
2933 uint64_t max = mg->mg_max_alloc_queue_depth;
2934 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2935 while (cur < max) {
2936 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
2937 cur, cur + 1) == cur) {
2938 atomic_inc_64(
2939 &mg->mg_class->mc_alloc_max_slots[allocator]);
2940 return;
2941 }
2942 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2943 }
2944 }
2945
2946 void
2947 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
2948 int allocator, boolean_t io_complete)
2949 {
2950 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2951 (flags & METASLAB_DONT_THROTTLE))
2952 return;
2953
2954 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2955 if (!mg->mg_class->mc_alloc_throttle_enabled)
2956 return;
2957
2958 (void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
2959 if (io_complete)
2960 metaslab_group_increment_qdepth(mg, allocator);
2961 }
2962
2963 void
2964 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
2965 int allocator)
2966 {
2967 #ifdef ZFS_DEBUG
2968 const dva_t *dva = bp->blk_dva;
2969 int ndvas = BP_GET_NDVAS(bp);
2970
2971 for (int d = 0; d < ndvas; d++) {
2972 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2973 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2974 VERIFY(zfs_refcount_not_held(
2975 &mg->mg_alloc_queue_depth[allocator], tag));
2976 }
2977 #endif
2978 }
2979
2980 static uint64_t
2981 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2982 {
2983 uint64_t start;
2984 range_tree_t *rt = msp->ms_allocatable;
2985 metaslab_class_t *mc = msp->ms_group->mg_class;
2986
2987 VERIFY(!msp->ms_condensing);
2988 VERIFY0(msp->ms_initializing);
2989
2990 start = mc->mc_ops->msop_alloc(msp, size);
2991 if (start != -1ULL) {
2992 metaslab_group_t *mg = msp->ms_group;
2993 vdev_t *vd = mg->mg_vd;
2994
2995 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2996 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2997 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2998 range_tree_remove(rt, start, size);
2999
3000 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3001 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3002
3003 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
3004
3005 /* Track the last successful allocation */
3006 msp->ms_alloc_txg = txg;
3007 metaslab_verify_space(msp, txg);
3008 }
3009
3010 /*
3011 * Now that we've attempted the allocation we need to update the
3012 * metaslab's maximum block size since it may have changed.
3013 */
3014 msp->ms_max_size = metaslab_block_maxsize(msp);
3015 return (start);
3016 }
3017
3018 /*
3019 * Find the metaslab with the highest weight that is less than what we've
3020 * already tried. In the common case, this means that we will examine each
3021 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3022 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3023 * activated by another thread, and we fail to allocate from the metaslab we
3024 * have selected, we may not try the newly-activated metaslab, and instead
3025 * activate another metaslab. This is not optimal, but generally does not cause
3026 * any problems (a possible exception being if every metaslab is completely full
3027 * except for the the newly-activated metaslab which we fail to examine).
3028 */
3029 static metaslab_t *
3030 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3031 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
3032 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3033 {
3034 avl_index_t idx;
3035 avl_tree_t *t = &mg->mg_metaslab_tree;
3036 metaslab_t *msp = avl_find(t, search, &idx);
3037 if (msp == NULL)
3038 msp = avl_nearest(t, idx, AVL_AFTER);
3039
3040 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3041 int i;
3042 if (!metaslab_should_allocate(msp, asize)) {
3043 metaslab_trace_add(zal, mg, msp, asize, d,
3044 TRACE_TOO_SMALL, allocator);
3045 continue;
3046 }
3047
3048 /*
3049 * If the selected metaslab is condensing or being
3050 * initialized, skip it.
3051 */
3052 if (msp->ms_condensing || msp->ms_initializing > 0)
3053 continue;
3054
3055 *was_active = msp->ms_allocator != -1;
3056 /*
3057 * If we're activating as primary, this is our first allocation
3058 * from this disk, so we don't need to check how close we are.
3059 * If the metaslab under consideration was already active,
3060 * we're getting desperate enough to steal another allocator's
3061 * metaslab, so we still don't care about distances.
3062 */
3063 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3064 break;
3065
3066 for (i = 0; i < d; i++) {
3067 if (want_unique &&
3068 !metaslab_is_unique(msp, &dva[i]))
3069 break; /* try another metaslab */
3070 }
3071 if (i == d)
3072 break;
3073 }
3074
3075 if (msp != NULL) {
3076 search->ms_weight = msp->ms_weight;
3077 search->ms_start = msp->ms_start + 1;
3078 search->ms_allocator = msp->ms_allocator;
3079 search->ms_primary = msp->ms_primary;
3080 }
3081 return (msp);
3082 }
3083
3084 /* ARGSUSED */
3085 static uint64_t
3086 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3087 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3088 int d, int allocator)
3089 {
3090 metaslab_t *msp = NULL;
3091 uint64_t offset = -1ULL;
3092 uint64_t activation_weight;
3093
3094 activation_weight = METASLAB_WEIGHT_PRIMARY;
3095 for (int i = 0; i < d; i++) {
3096 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3097 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3098 activation_weight = METASLAB_WEIGHT_SECONDARY;
3099 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3100 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3101 activation_weight = METASLAB_WEIGHT_CLAIM;
3102 break;
3103 }
3104 }
3105
3106 /*
3107 * If we don't have enough metaslabs active to fill the entire array, we
3108 * just use the 0th slot.
3109 */
3110 if (mg->mg_ms_ready < mg->mg_allocators * 3)
3111 allocator = 0;
3112
3113 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3114
3115 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3116 search->ms_weight = UINT64_MAX;
3117 search->ms_start = 0;
3118 /*
3119 * At the end of the metaslab tree are the already-active metaslabs,
3120 * first the primaries, then the secondaries. When we resume searching
3121 * through the tree, we need to consider ms_allocator and ms_primary so
3122 * we start in the location right after where we left off, and don't
3123 * accidentally loop forever considering the same metaslabs.
3124 */
3125 search->ms_allocator = -1;
3126 search->ms_primary = B_TRUE;
3127 for (;;) {
3128 boolean_t was_active = B_FALSE;
3129
3130 mutex_enter(&mg->mg_lock);
3131
3132 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3133 mg->mg_primaries[allocator] != NULL) {
3134 msp = mg->mg_primaries[allocator];
3135 was_active = B_TRUE;
3136 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3137 mg->mg_secondaries[allocator] != NULL) {
3138 msp = mg->mg_secondaries[allocator];
3139 was_active = B_TRUE;
3140 } else {
3141 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3142 want_unique, asize, allocator, zal, search,
3143 &was_active);
3144 }
3145
3146 mutex_exit(&mg->mg_lock);
3147 if (msp == NULL) {
3148 kmem_free(search, sizeof (*search));
3149 return (-1ULL);
3150 }
3151
3152 mutex_enter(&msp->ms_lock);
3153 /*
3154 * Ensure that the metaslab we have selected is still
3155 * capable of handling our request. It's possible that
3156 * another thread may have changed the weight while we
3157 * were blocked on the metaslab lock. We check the
3158 * active status first to see if we need to reselect
3159 * a new metaslab.
3160 */
3161 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3162 mutex_exit(&msp->ms_lock);
3163 continue;
3164 }
3165
3166 /*
3167 * If the metaslab is freshly activated for an allocator that
3168 * isn't the one we're allocating from, or if it's a primary and
3169 * we're seeking a secondary (or vice versa), we go back and
3170 * select a new metaslab.
3171 */
3172 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3173 (msp->ms_allocator != -1) &&
3174 (msp->ms_allocator != allocator || ((activation_weight ==
3175 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3176 mutex_exit(&msp->ms_lock);
3177 continue;
3178 }
3179
3180 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3181 activation_weight != METASLAB_WEIGHT_CLAIM) {
3182 metaslab_passivate(msp, msp->ms_weight &
3183 ~METASLAB_WEIGHT_CLAIM);
3184 mutex_exit(&msp->ms_lock);
3185 continue;
3186 }
3187
3188 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3189 mutex_exit(&msp->ms_lock);
3190 continue;
3191 }
3192
3193 msp->ms_selected_txg = txg;
3194
3195 /*
3196 * Now that we have the lock, recheck to see if we should
3197 * continue to use this metaslab for this allocation. The
3198 * the metaslab is now loaded so metaslab_should_allocate() can
3199 * accurately determine if the allocation attempt should
3200 * proceed.
3201 */
3202 if (!metaslab_should_allocate(msp, asize)) {
3203 /* Passivate this metaslab and select a new one. */
3204 metaslab_trace_add(zal, mg, msp, asize, d,
3205 TRACE_TOO_SMALL, allocator);
3206 goto next;
3207 }
3208
3209
3210 /*
3211 * If this metaslab is currently condensing then pick again as
3212 * we can't manipulate this metaslab until it's committed
3213 * to disk. If this metaslab is being initialized, we shouldn't
3214 * allocate from it since the allocated region might be
3215 * overwritten after allocation.
3216 */
3217 if (msp->ms_condensing) {
3218 metaslab_trace_add(zal, mg, msp, asize, d,
3219 TRACE_CONDENSING, allocator);
3220 metaslab_passivate(msp, msp->ms_weight &
3221 ~METASLAB_ACTIVE_MASK);
3222 mutex_exit(&msp->ms_lock);
3223 continue;
3224 } else if (msp->ms_initializing > 0) {
3225 metaslab_trace_add(zal, mg, msp, asize, d,
3226 TRACE_INITIALIZING, allocator);
3227 metaslab_passivate(msp, msp->ms_weight &
3228 ~METASLAB_ACTIVE_MASK);
3229 mutex_exit(&msp->ms_lock);
3230 continue;
3231 }
3232
3233 offset = metaslab_block_alloc(msp, asize, txg);
3234 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3235
3236 if (offset != -1ULL) {
3237 /* Proactively passivate the metaslab, if needed */
3238 metaslab_segment_may_passivate(msp);
3239 break;
3240 }
3241 next:
3242 ASSERT(msp->ms_loaded);
3243
3244 /*
3245 * We were unable to allocate from this metaslab so determine
3246 * a new weight for this metaslab. Now that we have loaded
3247 * the metaslab we can provide a better hint to the metaslab
3248 * selector.
3249 *
3250 * For space-based metaslabs, we use the maximum block size.
3251 * This information is only available when the metaslab
3252 * is loaded and is more accurate than the generic free
3253 * space weight that was calculated by metaslab_weight().
3254 * This information allows us to quickly compare the maximum
3255 * available allocation in the metaslab to the allocation
3256 * size being requested.
3257 *
3258 * For segment-based metaslabs, determine the new weight
3259 * based on the highest bucket in the range tree. We
3260 * explicitly use the loaded segment weight (i.e. the range
3261 * tree histogram) since it contains the space that is
3262 * currently available for allocation and is accurate
3263 * even within a sync pass.
3264 */
3265 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3266 uint64_t weight = metaslab_block_maxsize(msp);
3267 WEIGHT_SET_SPACEBASED(weight);
3268 metaslab_passivate(msp, weight);
3269 } else {
3270 metaslab_passivate(msp,
3271 metaslab_weight_from_range_tree(msp));
3272 }
3273
3274 /*
3275 * We have just failed an allocation attempt, check
3276 * that metaslab_should_allocate() agrees. Otherwise,
3277 * we may end up in an infinite loop retrying the same
3278 * metaslab.
3279 */
3280 ASSERT(!metaslab_should_allocate(msp, asize));
3281
3282 mutex_exit(&msp->ms_lock);
3283 }
3284 mutex_exit(&msp->ms_lock);
3285 kmem_free(search, sizeof (*search));
3286 return (offset);
3287 }
3288
3289 static uint64_t
3290 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3291 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3292 int d, int allocator)
3293 {
3294 uint64_t offset;
3295 ASSERT(mg->mg_initialized);
3296
3297 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
3298 dva, d, allocator);
3299
3300 mutex_enter(&mg->mg_lock);
3301 if (offset == -1ULL) {
3302 mg->mg_failed_allocations++;
3303 metaslab_trace_add(zal, mg, NULL, asize, d,
3304 TRACE_GROUP_FAILURE, allocator);
3305 if (asize == SPA_GANGBLOCKSIZE) {
3306 /*
3307 * This metaslab group was unable to allocate
3308 * the minimum gang block size so it must be out of
3309 * space. We must notify the allocation throttle
3310 * to start skipping allocation attempts to this
3311 * metaslab group until more space becomes available.
3312 * Note: this failure cannot be caused by the
3313 * allocation throttle since the allocation throttle
3314 * is only responsible for skipping devices and
3315 * not failing block allocations.
3316 */
3317 mg->mg_no_free_space = B_TRUE;
3318 }
3319 }
3320 mg->mg_allocations++;
3321 mutex_exit(&mg->mg_lock);
3322 return (offset);
3323 }
3324
3325 /*
3326 * Allocate a block for the specified i/o.
3327 */
3328 int
3329 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3330 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3331 zio_alloc_list_t *zal, int allocator)
3332 {
3333 metaslab_group_t *mg, *fast_mg, *rotor;
3334 vdev_t *vd;
3335 boolean_t try_hard = B_FALSE;
3336
3337 ASSERT(!DVA_IS_VALID(&dva[d]));
3338
3339 /*
3340 * For testing, make some blocks above a certain size be gang blocks.
3341 * This will result in more split blocks when using device removal,
3342 * and a large number of split blocks coupled with ztest-induced
3343 * damage can result in extremely long reconstruction times. This
3344 * will also test spilling from special to normal.
3345 */
3346 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
3347 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3348 allocator);
3349 return (SET_ERROR(ENOSPC));
3350 }
3351
3352 /*
3353 * Start at the rotor and loop through all mgs until we find something.
3354 * Note that there's no locking on mc_rotor or mc_aliquot because
3355 * nothing actually breaks if we miss a few updates -- we just won't
3356 * allocate quite as evenly. It all balances out over time.
3357 *
3358 * If we are doing ditto or log blocks, try to spread them across
3359 * consecutive vdevs. If we're forced to reuse a vdev before we've
3360 * allocated all of our ditto blocks, then try and spread them out on
3361 * that vdev as much as possible. If it turns out to not be possible,
3362 * gradually lower our standards until anything becomes acceptable.
3363 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3364 * gives us hope of containing our fault domains to something we're
3365 * able to reason about. Otherwise, any two top-level vdev failures
3366 * will guarantee the loss of data. With consecutive allocation,
3367 * only two adjacent top-level vdev failures will result in data loss.
3368 *
3369 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3370 * ourselves on the same vdev as our gang block header. That
3371 * way, we can hope for locality in vdev_cache, plus it makes our
3372 * fault domains something tractable.
3373 */
3374 if (hintdva) {
3375 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3376
3377 /*
3378 * It's possible the vdev we're using as the hint no
3379 * longer exists or its mg has been closed (e.g. by
3380 * device removal). Consult the rotor when
3381 * all else fails.
3382 */
3383 if (vd != NULL && vd->vdev_mg != NULL) {
3384 mg = vd->vdev_mg;
3385
3386 if (flags & METASLAB_HINTBP_AVOID &&
3387 mg->mg_next != NULL)
3388 mg = mg->mg_next;
3389 } else {
3390 mg = mc->mc_rotor;
3391 }
3392 } else if (d != 0) {
3393 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3394 mg = vd->vdev_mg->mg_next;
3395 } else if (flags & METASLAB_FASTWRITE) {
3396 mg = fast_mg = mc->mc_rotor;
3397
3398 do {
3399 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3400 mg->mg_vd->vdev_pending_fastwrite)
3401 mg = fast_mg;
3402 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3403
3404 } else {
3405 ASSERT(mc->mc_rotor != NULL);
3406 mg = mc->mc_rotor;
3407 }
3408
3409 /*
3410 * If the hint put us into the wrong metaslab class, or into a
3411 * metaslab group that has been passivated, just follow the rotor.
3412 */
3413 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3414 mg = mc->mc_rotor;
3415
3416 rotor = mg;
3417 top:
3418 do {
3419 boolean_t allocatable;
3420
3421 ASSERT(mg->mg_activation_count == 1);
3422 vd = mg->mg_vd;
3423
3424 /*
3425 * Don't allocate from faulted devices.
3426 */
3427 if (try_hard) {
3428 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3429 allocatable = vdev_allocatable(vd);
3430 spa_config_exit(spa, SCL_ZIO, FTAG);
3431 } else {
3432 allocatable = vdev_allocatable(vd);
3433 }
3434
3435 /*
3436 * Determine if the selected metaslab group is eligible
3437 * for allocations. If we're ganging then don't allow
3438 * this metaslab group to skip allocations since that would
3439 * inadvertently return ENOSPC and suspend the pool
3440 * even though space is still available.
3441 */
3442 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3443 allocatable = metaslab_group_allocatable(mg, rotor,
3444 psize, allocator, d);
3445 }
3446
3447 if (!allocatable) {
3448 metaslab_trace_add(zal, mg, NULL, psize, d,
3449 TRACE_NOT_ALLOCATABLE, allocator);
3450 goto next;
3451 }
3452
3453 ASSERT(mg->mg_initialized);
3454
3455 /*
3456 * Avoid writing single-copy data to a failing,
3457 * non-redundant vdev, unless we've already tried all
3458 * other vdevs.
3459 */
3460 if ((vd->vdev_stat.vs_write_errors > 0 ||
3461 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3462 d == 0 && !try_hard && vd->vdev_children == 0) {
3463 metaslab_trace_add(zal, mg, NULL, psize, d,
3464 TRACE_VDEV_ERROR, allocator);
3465 goto next;
3466 }
3467
3468 ASSERT(mg->mg_class == mc);
3469
3470 uint64_t asize = vdev_psize_to_asize(vd, psize);
3471 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3472
3473 /*
3474 * If we don't need to try hard, then require that the
3475 * block be on an different metaslab from any other DVAs
3476 * in this BP (unique=true). If we are trying hard, then
3477 * allow any metaslab to be used (unique=false).
3478 */
3479 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3480 !try_hard, dva, d, allocator);
3481
3482 if (offset != -1ULL) {
3483 /*
3484 * If we've just selected this metaslab group,
3485 * figure out whether the corresponding vdev is
3486 * over- or under-used relative to the pool,
3487 * and set an allocation bias to even it out.
3488 *
3489 * Bias is also used to compensate for unequally
3490 * sized vdevs so that space is allocated fairly.
3491 */
3492 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3493 vdev_stat_t *vs = &vd->vdev_stat;
3494 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3495 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3496 int64_t ratio;
3497
3498 /*
3499 * Calculate how much more or less we should
3500 * try to allocate from this device during
3501 * this iteration around the rotor.
3502 *
3503 * This basically introduces a zero-centered
3504 * bias towards the devices with the most
3505 * free space, while compensating for vdev
3506 * size differences.
3507 *
3508 * Examples:
3509 * vdev V1 = 16M/128M
3510 * vdev V2 = 16M/128M
3511 * ratio(V1) = 100% ratio(V2) = 100%
3512 *
3513 * vdev V1 = 16M/128M
3514 * vdev V2 = 64M/128M
3515 * ratio(V1) = 127% ratio(V2) = 72%
3516 *
3517 * vdev V1 = 16M/128M
3518 * vdev V2 = 64M/512M
3519 * ratio(V1) = 40% ratio(V2) = 160%
3520 */
3521 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3522 (mc_free + 1);
3523 mg->mg_bias = ((ratio - 100) *
3524 (int64_t)mg->mg_aliquot) / 100;
3525 } else if (!metaslab_bias_enabled) {
3526 mg->mg_bias = 0;
3527 }
3528
3529 if ((flags & METASLAB_FASTWRITE) ||
3530 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3531 mg->mg_aliquot + mg->mg_bias) {
3532 mc->mc_rotor = mg->mg_next;
3533 mc->mc_aliquot = 0;
3534 }
3535
3536 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3537 DVA_SET_OFFSET(&dva[d], offset);
3538 DVA_SET_GANG(&dva[d],
3539 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
3540 DVA_SET_ASIZE(&dva[d], asize);
3541
3542 if (flags & METASLAB_FASTWRITE) {
3543 atomic_add_64(&vd->vdev_pending_fastwrite,
3544 psize);
3545 }
3546
3547 return (0);
3548 }
3549 next:
3550 mc->mc_rotor = mg->mg_next;
3551 mc->mc_aliquot = 0;
3552 } while ((mg = mg->mg_next) != rotor);
3553
3554 /*
3555 * If we haven't tried hard, do so now.
3556 */
3557 if (!try_hard) {
3558 try_hard = B_TRUE;
3559 goto top;
3560 }
3561
3562 bzero(&dva[d], sizeof (dva_t));
3563
3564 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3565 return (SET_ERROR(ENOSPC));
3566 }
3567
3568 void
3569 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3570 boolean_t checkpoint)
3571 {
3572 metaslab_t *msp;
3573 spa_t *spa = vd->vdev_spa;
3574
3575 ASSERT(vdev_is_concrete(vd));
3576 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3577 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3578
3579 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3580
3581 VERIFY(!msp->ms_condensing);
3582 VERIFY3U(offset, >=, msp->ms_start);
3583 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3584 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3585 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3586
3587 metaslab_check_free_impl(vd, offset, asize);
3588
3589 mutex_enter(&msp->ms_lock);
3590 if (range_tree_is_empty(msp->ms_freeing) &&
3591 range_tree_is_empty(msp->ms_checkpointing)) {
3592 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3593 }
3594
3595 if (checkpoint) {
3596 ASSERT(spa_has_checkpoint(spa));
3597 range_tree_add(msp->ms_checkpointing, offset, asize);
3598 } else {
3599 range_tree_add(msp->ms_freeing, offset, asize);
3600 }
3601 mutex_exit(&msp->ms_lock);
3602 }
3603
3604 /* ARGSUSED */
3605 void
3606 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3607 uint64_t size, void *arg)
3608 {
3609 boolean_t *checkpoint = arg;
3610
3611 ASSERT3P(checkpoint, !=, NULL);
3612
3613 if (vd->vdev_ops->vdev_op_remap != NULL)
3614 vdev_indirect_mark_obsolete(vd, offset, size);
3615 else
3616 metaslab_free_impl(vd, offset, size, *checkpoint);
3617 }
3618
3619 static void
3620 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3621 boolean_t checkpoint)
3622 {
3623 spa_t *spa = vd->vdev_spa;
3624
3625 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3626
3627 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3628 return;
3629
3630 if (spa->spa_vdev_removal != NULL &&
3631 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3632 vdev_is_concrete(vd)) {
3633 /*
3634 * Note: we check if the vdev is concrete because when
3635 * we complete the removal, we first change the vdev to be
3636 * an indirect vdev (in open context), and then (in syncing
3637 * context) clear spa_vdev_removal.
3638 */
3639 free_from_removing_vdev(vd, offset, size);
3640 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3641 vdev_indirect_mark_obsolete(vd, offset, size);
3642 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3643 metaslab_free_impl_cb, &checkpoint);
3644 } else {
3645 metaslab_free_concrete(vd, offset, size, checkpoint);
3646 }
3647 }
3648
3649 typedef struct remap_blkptr_cb_arg {
3650 blkptr_t *rbca_bp;
3651 spa_remap_cb_t rbca_cb;
3652 vdev_t *rbca_remap_vd;
3653 uint64_t rbca_remap_offset;
3654 void *rbca_cb_arg;
3655 } remap_blkptr_cb_arg_t;
3656
3657 void
3658 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3659 uint64_t size, void *arg)
3660 {
3661 remap_blkptr_cb_arg_t *rbca = arg;
3662 blkptr_t *bp = rbca->rbca_bp;
3663
3664 /* We can not remap split blocks. */
3665 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3666 return;
3667 ASSERT0(inner_offset);
3668
3669 if (rbca->rbca_cb != NULL) {
3670 /*
3671 * At this point we know that we are not handling split
3672 * blocks and we invoke the callback on the previous
3673 * vdev which must be indirect.
3674 */
3675 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3676
3677 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3678 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3679
3680 /* set up remap_blkptr_cb_arg for the next call */
3681 rbca->rbca_remap_vd = vd;
3682 rbca->rbca_remap_offset = offset;
3683 }
3684
3685 /*
3686 * The phys birth time is that of dva[0]. This ensures that we know
3687 * when each dva was written, so that resilver can determine which
3688 * blocks need to be scrubbed (i.e. those written during the time
3689 * the vdev was offline). It also ensures that the key used in
3690 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3691 * we didn't change the phys_birth, a lookup in the ARC for a
3692 * remapped BP could find the data that was previously stored at
3693 * this vdev + offset.
3694 */
3695 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3696 DVA_GET_VDEV(&bp->blk_dva[0]));
3697 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3698 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3699 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3700
3701 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3702 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3703 }
3704
3705 /*
3706 * If the block pointer contains any indirect DVAs, modify them to refer to
3707 * concrete DVAs. Note that this will sometimes not be possible, leaving
3708 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3709 * segments in the mapping (i.e. it is a "split block").
3710 *
3711 * If the BP was remapped, calls the callback on the original dva (note the
3712 * callback can be called multiple times if the original indirect DVA refers
3713 * to another indirect DVA, etc).
3714 *
3715 * Returns TRUE if the BP was remapped.
3716 */
3717 boolean_t
3718 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
3719 {
3720 remap_blkptr_cb_arg_t rbca;
3721
3722 if (!zfs_remap_blkptr_enable)
3723 return (B_FALSE);
3724
3725 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3726 return (B_FALSE);
3727
3728 /*
3729 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3730 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3731 */
3732 if (BP_GET_DEDUP(bp))
3733 return (B_FALSE);
3734
3735 /*
3736 * Gang blocks can not be remapped, because
3737 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3738 * the BP used to read the gang block header (GBH) being the same
3739 * as the DVA[0] that we allocated for the GBH.
3740 */
3741 if (BP_IS_GANG(bp))
3742 return (B_FALSE);
3743
3744 /*
3745 * Embedded BP's have no DVA to remap.
3746 */
3747 if (BP_GET_NDVAS(bp) < 1)
3748 return (B_FALSE);
3749
3750 /*
3751 * Note: we only remap dva[0]. If we remapped other dvas, we
3752 * would no longer know what their phys birth txg is.
3753 */
3754 dva_t *dva = &bp->blk_dva[0];
3755
3756 uint64_t offset = DVA_GET_OFFSET(dva);
3757 uint64_t size = DVA_GET_ASIZE(dva);
3758 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3759
3760 if (vd->vdev_ops->vdev_op_remap == NULL)
3761 return (B_FALSE);
3762
3763 rbca.rbca_bp = bp;
3764 rbca.rbca_cb = callback;
3765 rbca.rbca_remap_vd = vd;
3766 rbca.rbca_remap_offset = offset;
3767 rbca.rbca_cb_arg = arg;
3768
3769 /*
3770 * remap_blkptr_cb() will be called in order for each level of
3771 * indirection, until a concrete vdev is reached or a split block is
3772 * encountered. old_vd and old_offset are updated within the callback
3773 * as we go from the one indirect vdev to the next one (either concrete
3774 * or indirect again) in that order.
3775 */
3776 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3777
3778 /* Check if the DVA wasn't remapped because it is a split block */
3779 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3780 return (B_FALSE);
3781
3782 return (B_TRUE);
3783 }
3784
3785 /*
3786 * Undo the allocation of a DVA which happened in the given transaction group.
3787 */
3788 void
3789 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3790 {
3791 metaslab_t *msp;
3792 vdev_t *vd;
3793 uint64_t vdev = DVA_GET_VDEV(dva);
3794 uint64_t offset = DVA_GET_OFFSET(dva);
3795 uint64_t size = DVA_GET_ASIZE(dva);
3796
3797 ASSERT(DVA_IS_VALID(dva));
3798 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3799
3800 if (txg > spa_freeze_txg(spa))
3801 return;
3802
3803 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
3804 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3805 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3806 (u_longlong_t)vdev, (u_longlong_t)offset,
3807 (u_longlong_t)size);
3808 return;
3809 }
3810
3811 ASSERT(!vd->vdev_removing);
3812 ASSERT(vdev_is_concrete(vd));
3813 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3814 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
3815
3816 if (DVA_GET_GANG(dva))
3817 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3818
3819 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3820
3821 mutex_enter(&msp->ms_lock);
3822 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
3823 offset, size);
3824
3825 VERIFY(!msp->ms_condensing);
3826 VERIFY3U(offset, >=, msp->ms_start);
3827 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3828 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
3829 msp->ms_size);
3830 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3831 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3832 range_tree_add(msp->ms_allocatable, offset, size);
3833 mutex_exit(&msp->ms_lock);
3834 }
3835
3836 /*
3837 * Free the block represented by the given DVA.
3838 */
3839 void
3840 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
3841 {
3842 uint64_t vdev = DVA_GET_VDEV(dva);
3843 uint64_t offset = DVA_GET_OFFSET(dva);
3844 uint64_t size = DVA_GET_ASIZE(dva);
3845 vdev_t *vd = vdev_lookup_top(spa, vdev);
3846
3847 ASSERT(DVA_IS_VALID(dva));
3848 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3849
3850 if (DVA_GET_GANG(dva)) {
3851 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3852 }
3853
3854 metaslab_free_impl(vd, offset, size, checkpoint);
3855 }
3856
3857 /*
3858 * Reserve some allocation slots. The reservation system must be called
3859 * before we call into the allocator. If there aren't any available slots
3860 * then the I/O will be throttled until an I/O completes and its slots are
3861 * freed up. The function returns true if it was successful in placing
3862 * the reservation.
3863 */
3864 boolean_t
3865 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3866 zio_t *zio, int flags)
3867 {
3868 uint64_t available_slots = 0;
3869 boolean_t slot_reserved = B_FALSE;
3870 uint64_t max = mc->mc_alloc_max_slots[allocator];
3871
3872 ASSERT(mc->mc_alloc_throttle_enabled);
3873 mutex_enter(&mc->mc_lock);
3874
3875 uint64_t reserved_slots =
3876 zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
3877 if (reserved_slots < max)
3878 available_slots = max - reserved_slots;
3879
3880 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
3881 flags & METASLAB_MUST_RESERVE) {
3882 /*
3883 * We reserve the slots individually so that we can unreserve
3884 * them individually when an I/O completes.
3885 */
3886 for (int d = 0; d < slots; d++) {
3887 reserved_slots =
3888 zfs_refcount_add(&mc->mc_alloc_slots[allocator],
3889 zio);
3890 }
3891 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3892 slot_reserved = B_TRUE;
3893 }
3894
3895 mutex_exit(&mc->mc_lock);
3896 return (slot_reserved);
3897 }
3898
3899 void
3900 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3901 int allocator, zio_t *zio)
3902 {
3903 ASSERT(mc->mc_alloc_throttle_enabled);
3904 mutex_enter(&mc->mc_lock);
3905 for (int d = 0; d < slots; d++) {
3906 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
3907 zio);
3908 }
3909 mutex_exit(&mc->mc_lock);
3910 }
3911
3912 static int
3913 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3914 uint64_t txg)
3915 {
3916 metaslab_t *msp;
3917 spa_t *spa = vd->vdev_spa;
3918 int error = 0;
3919
3920 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3921 return (SET_ERROR(ENXIO));
3922
3923 ASSERT3P(vd->vdev_ms, !=, NULL);
3924 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3925
3926 mutex_enter(&msp->ms_lock);
3927
3928 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
3929 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
3930 if (error == EBUSY) {
3931 ASSERT(msp->ms_loaded);
3932 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3933 error = 0;
3934 }
3935 }
3936
3937 if (error == 0 &&
3938 !range_tree_contains(msp->ms_allocatable, offset, size))
3939 error = SET_ERROR(ENOENT);
3940
3941 if (error || txg == 0) { /* txg == 0 indicates dry run */
3942 mutex_exit(&msp->ms_lock);
3943 return (error);
3944 }
3945
3946 VERIFY(!msp->ms_condensing);
3947 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3948 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3949 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3950 msp->ms_size);
3951 range_tree_remove(msp->ms_allocatable, offset, size);
3952
3953 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
3954 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3955 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3956 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3957 offset, size);
3958 }
3959
3960 mutex_exit(&msp->ms_lock);
3961
3962 return (0);
3963 }
3964
3965 typedef struct metaslab_claim_cb_arg_t {
3966 uint64_t mcca_txg;
3967 int mcca_error;
3968 } metaslab_claim_cb_arg_t;
3969
3970 /* ARGSUSED */
3971 static void
3972 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3973 uint64_t size, void *arg)
3974 {
3975 metaslab_claim_cb_arg_t *mcca_arg = arg;
3976
3977 if (mcca_arg->mcca_error == 0) {
3978 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3979 size, mcca_arg->mcca_txg);
3980 }
3981 }
3982
3983 int
3984 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3985 {
3986 if (vd->vdev_ops->vdev_op_remap != NULL) {
3987 metaslab_claim_cb_arg_t arg;
3988
3989 /*
3990 * Only zdb(1M) can claim on indirect vdevs. This is used
3991 * to detect leaks of mapped space (that are not accounted
3992 * for in the obsolete counts, spacemap, or bpobj).
3993 */
3994 ASSERT(!spa_writeable(vd->vdev_spa));
3995 arg.mcca_error = 0;
3996 arg.mcca_txg = txg;
3997
3998 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3999 metaslab_claim_impl_cb, &arg);
4000
4001 if (arg.mcca_error == 0) {
4002 arg.mcca_error = metaslab_claim_concrete(vd,
4003 offset, size, txg);
4004 }
4005 return (arg.mcca_error);
4006 } else {
4007 return (metaslab_claim_concrete(vd, offset, size, txg));
4008 }
4009 }
4010
4011 /*
4012 * Intent log support: upon opening the pool after a crash, notify the SPA
4013 * of blocks that the intent log has allocated for immediate write, but
4014 * which are still considered free by the SPA because the last transaction
4015 * group didn't commit yet.
4016 */
4017 static int
4018 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4019 {
4020 uint64_t vdev = DVA_GET_VDEV(dva);
4021 uint64_t offset = DVA_GET_OFFSET(dva);
4022 uint64_t size = DVA_GET_ASIZE(dva);
4023 vdev_t *vd;
4024
4025 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4026 return (SET_ERROR(ENXIO));
4027 }
4028
4029 ASSERT(DVA_IS_VALID(dva));
4030
4031 if (DVA_GET_GANG(dva))
4032 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4033
4034 return (metaslab_claim_impl(vd, offset, size, txg));
4035 }
4036
4037 int
4038 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4039 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
4040 zio_alloc_list_t *zal, zio_t *zio, int allocator)
4041 {
4042 dva_t *dva = bp->blk_dva;
4043 dva_t *hintdva = hintbp->blk_dva;
4044 int error = 0;
4045
4046 ASSERT(bp->blk_birth == 0);
4047 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4048
4049 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4050
4051 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4052 spa_config_exit(spa, SCL_ALLOC, FTAG);
4053 return (SET_ERROR(ENOSPC));
4054 }
4055
4056 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4057 ASSERT(BP_GET_NDVAS(bp) == 0);
4058 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4059 ASSERT3P(zal, !=, NULL);
4060
4061 for (int d = 0; d < ndvas; d++) {
4062 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4063 txg, flags, zal, allocator);
4064 if (error != 0) {
4065 for (d--; d >= 0; d--) {
4066 metaslab_unalloc_dva(spa, &dva[d], txg);
4067 metaslab_group_alloc_decrement(spa,
4068 DVA_GET_VDEV(&dva[d]), zio, flags,
4069 allocator, B_FALSE);
4070 bzero(&dva[d], sizeof (dva_t));
4071 }
4072 spa_config_exit(spa, SCL_ALLOC, FTAG);
4073 return (error);
4074 } else {
4075 /*
4076 * Update the metaslab group's queue depth
4077 * based on the newly allocated dva.
4078 */
4079 metaslab_group_alloc_increment(spa,
4080 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4081 }
4082
4083 }
4084 ASSERT(error == 0);
4085 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4086
4087 spa_config_exit(spa, SCL_ALLOC, FTAG);
4088
4089 BP_SET_BIRTH(bp, txg, 0);
4090
4091 return (0);
4092 }
4093
4094 void
4095 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4096 {
4097 const dva_t *dva = bp->blk_dva;
4098 int ndvas = BP_GET_NDVAS(bp);
4099
4100 ASSERT(!BP_IS_HOLE(bp));
4101 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4102
4103 /*
4104 * If we have a checkpoint for the pool we need to make sure that
4105 * the blocks that we free that are part of the checkpoint won't be
4106 * reused until the checkpoint is discarded or we revert to it.
4107 *
4108 * The checkpoint flag is passed down the metaslab_free code path
4109 * and is set whenever we want to add a block to the checkpoint's
4110 * accounting. That is, we "checkpoint" blocks that existed at the
4111 * time the checkpoint was created and are therefore referenced by
4112 * the checkpointed uberblock.
4113 *
4114 * Note that, we don't checkpoint any blocks if the current
4115 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4116 * normally as they will be referenced by the checkpointed uberblock.
4117 */
4118 boolean_t checkpoint = B_FALSE;
4119 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4120 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4121 /*
4122 * At this point, if the block is part of the checkpoint
4123 * there is no way it was created in the current txg.
4124 */
4125 ASSERT(!now);
4126 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4127 checkpoint = B_TRUE;
4128 }
4129
4130 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4131
4132 for (int d = 0; d < ndvas; d++) {
4133 if (now) {
4134 metaslab_unalloc_dva(spa, &dva[d], txg);
4135 } else {
4136 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4137 metaslab_free_dva(spa, &dva[d], checkpoint);
4138 }
4139 }
4140
4141 spa_config_exit(spa, SCL_FREE, FTAG);
4142 }
4143
4144 int
4145 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4146 {
4147 const dva_t *dva = bp->blk_dva;
4148 int ndvas = BP_GET_NDVAS(bp);
4149 int error = 0;
4150
4151 ASSERT(!BP_IS_HOLE(bp));
4152
4153 if (txg != 0) {
4154 /*
4155 * First do a dry run to make sure all DVAs are claimable,
4156 * so we don't have to unwind from partial failures below.
4157 */
4158 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4159 return (error);
4160 }
4161
4162 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4163
4164 for (int d = 0; d < ndvas; d++) {
4165 error = metaslab_claim_dva(spa, &dva[d], txg);
4166 if (error != 0)
4167 break;
4168 }
4169
4170 spa_config_exit(spa, SCL_ALLOC, FTAG);
4171
4172 ASSERT(error == 0 || txg == 0);
4173
4174 return (error);
4175 }
4176
4177 void
4178 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
4179 {
4180 const dva_t *dva = bp->blk_dva;
4181 int ndvas = BP_GET_NDVAS(bp);
4182 uint64_t psize = BP_GET_PSIZE(bp);
4183 int d;
4184 vdev_t *vd;
4185
4186 ASSERT(!BP_IS_HOLE(bp));
4187 ASSERT(!BP_IS_EMBEDDED(bp));
4188 ASSERT(psize > 0);
4189
4190 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4191
4192 for (d = 0; d < ndvas; d++) {
4193 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4194 continue;
4195 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4196 }
4197
4198 spa_config_exit(spa, SCL_VDEV, FTAG);
4199 }
4200
4201 void
4202 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
4203 {
4204 const dva_t *dva = bp->blk_dva;
4205 int ndvas = BP_GET_NDVAS(bp);
4206 uint64_t psize = BP_GET_PSIZE(bp);
4207 int d;
4208 vdev_t *vd;
4209
4210 ASSERT(!BP_IS_HOLE(bp));
4211 ASSERT(!BP_IS_EMBEDDED(bp));
4212 ASSERT(psize > 0);
4213
4214 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4215
4216 for (d = 0; d < ndvas; d++) {
4217 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4218 continue;
4219 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4220 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4221 }
4222
4223 spa_config_exit(spa, SCL_VDEV, FTAG);
4224 }
4225
4226 /* ARGSUSED */
4227 static void
4228 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4229 uint64_t size, void *arg)
4230 {
4231 if (vd->vdev_ops == &vdev_indirect_ops)
4232 return;
4233
4234 metaslab_check_free_impl(vd, offset, size);
4235 }
4236
4237 static void
4238 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4239 {
4240 metaslab_t *msp;
4241 ASSERTV(spa_t *spa = vd->vdev_spa);
4242
4243 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4244 return;
4245
4246 if (vd->vdev_ops->vdev_op_remap != NULL) {
4247 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4248 metaslab_check_free_impl_cb, NULL);
4249 return;
4250 }
4251
4252 ASSERT(vdev_is_concrete(vd));
4253 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4254 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4255
4256 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4257
4258 mutex_enter(&msp->ms_lock);
4259 if (msp->ms_loaded)
4260 range_tree_verify(msp->ms_allocatable, offset, size);
4261
4262 range_tree_verify(msp->ms_freeing, offset, size);
4263 range_tree_verify(msp->ms_checkpointing, offset, size);
4264 range_tree_verify(msp->ms_freed, offset, size);
4265 for (int j = 0; j < TXG_DEFER_SIZE; j++)
4266 range_tree_verify(msp->ms_defer[j], offset, size);
4267 mutex_exit(&msp->ms_lock);
4268 }
4269
4270 void
4271 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4272 {
4273 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4274 return;
4275
4276 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4277 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4278 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4279 vdev_t *vd = vdev_lookup_top(spa, vdev);
4280 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4281 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4282
4283 if (DVA_GET_GANG(&bp->blk_dva[i]))
4284 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4285
4286 ASSERT3P(vd, !=, NULL);
4287
4288 metaslab_check_free_impl(vd, offset, size);
4289 }
4290 spa_config_exit(spa, SCL_VDEV, FTAG);
4291 }
4292
4293 #if defined(_KERNEL)
4294 /* BEGIN CSTYLED */
4295 module_param(metaslab_aliquot, ulong, 0644);
4296 MODULE_PARM_DESC(metaslab_aliquot,
4297 "allocation granularity (a.k.a. stripe size)");
4298
4299 module_param(metaslab_debug_load, int, 0644);
4300 MODULE_PARM_DESC(metaslab_debug_load,
4301 "load all metaslabs when pool is first opened");
4302
4303 module_param(metaslab_debug_unload, int, 0644);
4304 MODULE_PARM_DESC(metaslab_debug_unload,
4305 "prevent metaslabs from being unloaded");
4306
4307 module_param(metaslab_preload_enabled, int, 0644);
4308 MODULE_PARM_DESC(metaslab_preload_enabled,
4309 "preload potential metaslabs during reassessment");
4310
4311 module_param(zfs_mg_noalloc_threshold, int, 0644);
4312 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4313 "percentage of free space for metaslab group to allow allocation");
4314
4315 module_param(zfs_mg_fragmentation_threshold, int, 0644);
4316 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4317 "fragmentation for metaslab group to allow allocation");
4318
4319 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
4320 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4321 "fragmentation for metaslab to allow allocation");
4322
4323 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
4324 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4325 "use the fragmentation metric to prefer less fragmented metaslabs");
4326
4327 module_param(metaslab_lba_weighting_enabled, int, 0644);
4328 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4329 "prefer metaslabs with lower LBAs");
4330
4331 module_param(metaslab_bias_enabled, int, 0644);
4332 MODULE_PARM_DESC(metaslab_bias_enabled,
4333 "enable metaslab group biasing");
4334
4335 module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4336 MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4337 "enable segment-based metaslab selection");
4338
4339 module_param(zfs_metaslab_switch_threshold, int, 0644);
4340 MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4341 "segment-based metaslab selection maximum buckets before switching");
4342
4343 module_param(metaslab_force_ganging, ulong, 0644);
4344 MODULE_PARM_DESC(metaslab_force_ganging,
4345 "blocks larger than this size are forced to be gang blocks");
4346 /* END CSTYLED */
4347
4348 #endif