]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
btree: Implement faster binary search algorithm
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42
43 #define WITH_DF_BLOCK_ALLOCATOR
44
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47
48 /*
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
53 */
54 static uint64_t metaslab_aliquot = 1024 * 1024;
55
56 /*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60
61 /*
62 * In pools where the log space map feature is not enabled we touch
63 * multiple metaslabs (and their respective space maps) with each
64 * transaction group. Thus, we benefit from having a small space map
65 * block size since it allows us to issue more I/O operations scattered
66 * around the disk. So a sane default for the space map block size
67 * is 8~16K.
68 */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70
71 /*
72 * When the log space map feature is enabled, we accumulate a lot of
73 * changes per metaslab that are flushed once in a while so we benefit
74 * from a bigger block size like 128K for the metaslab space maps.
75 */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77
78 /*
79 * The in-core space map representation is more compact than its on-disk form.
80 * The zfs_condense_pct determines how much more compact the in-core
81 * space map representation must be before we compact it on-disk.
82 * Values should be greater than or equal to 100.
83 */
84 uint_t zfs_condense_pct = 200;
85
86 /*
87 * Condensing a metaslab is not guaranteed to actually reduce the amount of
88 * space used on disk. In particular, a space map uses data in increments of
89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90 * same number of blocks after condensing. Since the goal of condensing is to
91 * reduce the number of IOPs required to read the space map, we only want to
92 * condense when we can be sure we will reduce the number of blocks used by the
93 * space map. Unfortunately, we cannot precisely compute whether or not this is
94 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95 * we apply the following heuristic: do not condense a spacemap unless the
96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97 * blocks.
98 */
99 static const int zfs_metaslab_condense_block_threshold = 4;
100
101 /*
102 * The zfs_mg_noalloc_threshold defines which metaslab groups should
103 * be eligible for allocation. The value is defined as a percentage of
104 * free space. Metaslab groups that have more free space than
105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106 * a metaslab group's free space is less than or equal to the
107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110 * groups are allowed to accept allocations. Gang blocks are always
111 * eligible to allocate on any metaslab group. The default value of 0 means
112 * no metaslab group will be excluded based on this criterion.
113 */
114 static uint_t zfs_mg_noalloc_threshold = 0;
115
116 /*
117 * Metaslab groups are considered eligible for allocations if their
118 * fragmentation metric (measured as a percentage) is less than or
119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120 * exceeds this threshold then it will be skipped unless all metaslab
121 * groups within the metaslab class have also crossed this threshold.
122 *
123 * This tunable was introduced to avoid edge cases where we continue
124 * allocating from very fragmented disks in our pool while other, less
125 * fragmented disks, exists. On the other hand, if all disks in the
126 * pool are uniformly approaching the threshold, the threshold can
127 * be a speed bump in performance, where we keep switching the disks
128 * that we allocate from (e.g. we allocate some segments from disk A
129 * making it bypassing the threshold while freeing segments from disk
130 * B getting its fragmentation below the threshold).
131 *
132 * Empirically, we've seen that our vdev selection for allocations is
133 * good enough that fragmentation increases uniformly across all vdevs
134 * the majority of the time. Thus we set the threshold percentage high
135 * enough to avoid hitting the speed bump on pools that are being pushed
136 * to the edge.
137 */
138 static uint_t zfs_mg_fragmentation_threshold = 95;
139
140 /*
141 * Allow metaslabs to keep their active state as long as their fragmentation
142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143 * active metaslab that exceeds this threshold will no longer keep its active
144 * status allowing better metaslabs to be selected.
145 */
146 static uint_t zfs_metaslab_fragmentation_threshold = 70;
147
148 /*
149 * When set will load all metaslabs when pool is first opened.
150 */
151 int metaslab_debug_load = B_FALSE;
152
153 /*
154 * When set will prevent metaslabs from being unloaded.
155 */
156 static int metaslab_debug_unload = B_FALSE;
157
158 /*
159 * Minimum size which forces the dynamic allocator to change
160 * it's allocation strategy. Once the space map cannot satisfy
161 * an allocation of this size then it switches to using more
162 * aggressive strategy (i.e search by size rather than offset).
163 */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165
166 /*
167 * The minimum free space, in percent, which must be available
168 * in a space map to continue allocations in a first-fit fashion.
169 * Once the space map's free space drops below this level we dynamically
170 * switch to using best-fit allocations.
171 */
172 uint_t metaslab_df_free_pct = 4;
173
174 /*
175 * Maximum distance to search forward from the last offset. Without this
176 * limit, fragmented pools can see >100,000 iterations and
177 * metaslab_block_picker() becomes the performance limiting factor on
178 * high-performance storage.
179 *
180 * With the default setting of 16MB, we typically see less than 500
181 * iterations, even with very fragmented, ashift=9 pools. The maximum number
182 * of iterations possible is:
183 * metaslab_df_max_search / (2 * (1<<ashift))
184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185 * 2048 (with ashift=12).
186 */
187 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
188
189 /*
190 * Forces the metaslab_block_picker function to search for at least this many
191 * segments forwards until giving up on finding a segment that the allocation
192 * will fit into.
193 */
194 static const uint32_t metaslab_min_search_count = 100;
195
196 /*
197 * If we are not searching forward (due to metaslab_df_max_search,
198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199 * controls what segment is used. If it is set, we will use the largest free
200 * segment. If it is not set, we will use a segment of exactly the requested
201 * size (or larger).
202 */
203 static int metaslab_df_use_largest_segment = B_FALSE;
204
205 /*
206 * Percentage of all cpus that can be used by the metaslab taskq.
207 */
208 int metaslab_load_pct = 50;
209
210 /*
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217 */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220
221 /*
222 * Max number of metaslabs per group to preload.
223 */
224 uint_t metaslab_preload_limit = 10;
225
226 /*
227 * Enable/disable preloading of metaslab.
228 */
229 static int metaslab_preload_enabled = B_TRUE;
230
231 /*
232 * Enable/disable fragmentation weighting on metaslabs.
233 */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235
236 /*
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
238 */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240
241 /*
242 * Enable/disable metaslab group biasing.
243 */
244 static int metaslab_bias_enabled = B_TRUE;
245
246 /*
247 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248 */
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250
251 /*
252 * Enable/disable segment-based metaslab selection.
253 */
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255
256 /*
257 * When using segment-based metaslab selection, we will continue
258 * allocating from the active metaslab until we have exhausted
259 * zfs_metaslab_switch_threshold of its buckets.
260 */
261 static int zfs_metaslab_switch_threshold = 2;
262
263 /*
264 * Internal switch to enable/disable the metaslab allocation tracing
265 * facility.
266 */
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
268
269 /*
270 * Maximum entries that the metaslab allocation tracing facility will keep
271 * in a given list when running in non-debug mode. We limit the number
272 * of entries in non-debug mode to prevent us from using up too much memory.
273 * The limit should be sufficiently large that we don't expect any allocation
274 * to every exceed this value. In debug mode, the system will panic if this
275 * limit is ever reached allowing for further investigation.
276 */
277 static const uint64_t metaslab_trace_max_entries = 5000;
278
279 /*
280 * Maximum number of metaslabs per group that can be disabled
281 * simultaneously.
282 */
283 static const int max_disabled_ms = 3;
284
285 /*
286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287 * To avoid 64-bit overflow, don't set above UINT32_MAX.
288 */
289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290
291 /*
292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293 * a metaslab would take it over this percentage, the oldest selected metaslab
294 * is automatically unloaded.
295 */
296 static uint_t zfs_metaslab_mem_limit = 25;
297
298 /*
299 * Force the per-metaslab range trees to use 64-bit integers to store
300 * segments. Used for debugging purposes.
301 */
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303
304 /*
305 * By default we only store segments over a certain size in the size-sorted
306 * metaslab trees (ms_allocatable_by_size and
307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308 * improves load and unload times at the cost of causing us to use slightly
309 * larger segments than we would otherwise in some cases.
310 */
311 static const uint32_t metaslab_by_size_min_shift = 14;
312
313 /*
314 * If not set, we will first try normal allocation. If that fails then
315 * we will do a gang allocation. If that fails then we will do a "try hard"
316 * gang allocation. If that fails then we will have a multi-layer gang
317 * block.
318 *
319 * If set, we will first try normal allocation. If that fails then
320 * we will do a "try hard" allocation. If that fails we will do a gang
321 * allocation. If that fails we will do a "try hard" gang allocation. If
322 * that fails then we will have a multi-layer gang block.
323 */
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325
326 /*
327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328 * metaslabs. This improves performance, especially when there are many
329 * metaslabs per vdev and the allocation can't actually be satisfied (so we
330 * would otherwise iterate all the metaslabs). If there is a metaslab with a
331 * worse weight but it can actually satisfy the allocation, we won't find it
332 * until trying hard. This may happen if the worse metaslab is not loaded
333 * (and the true weight is better than we have calculated), or due to weight
334 * bucketization. E.g. we are looking for a 60K segment, and the best
335 * metaslabs all have free segments in the 32-63K bucket, but the best
336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338 * bucket, and therefore a lower weight).
339 */
340 static uint_t zfs_metaslab_find_max_tries = 100;
341
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354
355 typedef struct metaslab_stats {
356 kstat_named_t metaslabstat_trace_over_limit;
357 kstat_named_t metaslabstat_reload_tree;
358 kstat_named_t metaslabstat_too_many_tries;
359 kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361
362 static metaslab_stats_t metaslab_stats = {
363 { "trace_over_limit", KSTAT_DATA_UINT64 },
364 { "reload_tree", KSTAT_DATA_UINT64 },
365 { "too_many_tries", KSTAT_DATA_UINT64 },
366 { "try_hard", KSTAT_DATA_UINT64 },
367 };
368
369 #define METASLABSTAT_BUMP(stat) \
370 atomic_inc_64(&metaslab_stats.stat.value.ui64);
371
372
373 static kstat_t *metaslab_ksp;
374
375 void
376 metaslab_stat_init(void)
377 {
378 ASSERT(metaslab_alloc_trace_cache == NULL);
379 metaslab_alloc_trace_cache = kmem_cache_create(
380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 0, NULL, NULL, NULL, NULL, NULL, 0);
382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 if (metaslab_ksp != NULL) {
386 metaslab_ksp->ks_data = &metaslab_stats;
387 kstat_install(metaslab_ksp);
388 }
389 }
390
391 void
392 metaslab_stat_fini(void)
393 {
394 if (metaslab_ksp != NULL) {
395 kstat_delete(metaslab_ksp);
396 metaslab_ksp = NULL;
397 }
398
399 kmem_cache_destroy(metaslab_alloc_trace_cache);
400 metaslab_alloc_trace_cache = NULL;
401 }
402
403 /*
404 * ==========================================================================
405 * Metaslab classes
406 * ==========================================================================
407 */
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410 {
411 metaslab_class_t *mc;
412
413 mc = kmem_zalloc(offsetof(metaslab_class_t,
414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415
416 mc->mc_spa = spa;
417 mc->mc_ops = ops;
418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 for (int i = 0; i < spa->spa_alloc_count; i++) {
422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 mca->mca_rotor = NULL;
424 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 }
426
427 return (mc);
428 }
429
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 spa_t *spa = mc->mc_spa;
434
435 ASSERT(mc->mc_alloc == 0);
436 ASSERT(mc->mc_deferred == 0);
437 ASSERT(mc->mc_space == 0);
438 ASSERT(mc->mc_dspace == 0);
439
440 for (int i = 0; i < spa->spa_alloc_count; i++) {
441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 ASSERT(mca->mca_rotor == NULL);
443 zfs_refcount_destroy(&mca->mca_alloc_slots);
444 }
445 mutex_destroy(&mc->mc_lock);
446 multilist_destroy(&mc->mc_metaslab_txg_list);
447 kmem_free(mc, offsetof(metaslab_class_t,
448 mc_allocator[spa->spa_alloc_count]));
449 }
450
451 int
452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 metaslab_group_t *mg;
455 vdev_t *vd;
456
457 /*
458 * Must hold one of the spa_config locks.
459 */
460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462
463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 return (0);
465
466 do {
467 vd = mg->mg_vd;
468 ASSERT(vd->vdev_mg != NULL);
469 ASSERT3P(vd->vdev_top, ==, vd);
470 ASSERT3P(mg->mg_class, ==, mc);
471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473
474 return (0);
475 }
476
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 atomic_add_64(&mc->mc_alloc, alloc_delta);
482 atomic_add_64(&mc->mc_deferred, defer_delta);
483 atomic_add_64(&mc->mc_space, space_delta);
484 atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 return (mc->mc_alloc);
491 }
492
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 return (mc->mc_deferred);
497 }
498
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 return (mc->mc_space);
503 }
504
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 spa_t *spa = mc->mc_spa;
515 vdev_t *rvd = spa->spa_root_vdev;
516 uint64_t *mc_hist;
517 int i;
518
519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 return;
521
522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 KM_SLEEP);
524
525 mutex_enter(&mc->mc_lock);
526 for (int c = 0; c < rvd->vdev_children; c++) {
527 vdev_t *tvd = rvd->vdev_child[c];
528 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529
530 /*
531 * Skip any holes, uninitialized top-levels, or
532 * vdevs that are not in this metalab class.
533 */
534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 mg->mg_class != mc) {
536 continue;
537 }
538
539 IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541
542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 mc_hist[i] += mg->mg_histogram[i];
544 }
545
546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 }
549
550 mutex_exit(&mc->mc_lock);
551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553
554 /*
555 * Calculate the metaslab class's fragmentation metric. The metric
556 * is weighted based on the space contribution of each metaslab group.
557 * The return value will be a number between 0 and 100 (inclusive), or
558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559 * zfs_frag_table for more information about the metric.
560 */
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 uint64_t fragmentation = 0;
566
567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568
569 for (int c = 0; c < rvd->vdev_children; c++) {
570 vdev_t *tvd = rvd->vdev_child[c];
571 metaslab_group_t *mg = tvd->vdev_mg;
572
573 /*
574 * Skip any holes, uninitialized top-levels,
575 * or vdevs that are not in this metalab class.
576 */
577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 mg->mg_class != mc) {
579 continue;
580 }
581
582 /*
583 * If a metaslab group does not contain a fragmentation
584 * metric then just bail out.
585 */
586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 return (ZFS_FRAG_INVALID);
589 }
590
591 /*
592 * Determine how much this metaslab_group is contributing
593 * to the overall pool fragmentation metric.
594 */
595 fragmentation += mg->mg_fragmentation *
596 metaslab_group_get_space(mg);
597 }
598 fragmentation /= metaslab_class_get_space(mc);
599
600 ASSERT3U(fragmentation, <=, 100);
601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 return (fragmentation);
603 }
604
605 /*
606 * Calculate the amount of expandable space that is available in
607 * this metaslab class. If a device is expanded then its expandable
608 * space will be the amount of allocatable space that is currently not
609 * part of this metaslab class.
610 */
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 uint64_t space = 0;
616
617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 for (int c = 0; c < rvd->vdev_children; c++) {
619 vdev_t *tvd = rvd->vdev_child[c];
620 metaslab_group_t *mg = tvd->vdev_mg;
621
622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 mg->mg_class != mc) {
624 continue;
625 }
626
627 /*
628 * Calculate if we have enough space to add additional
629 * metaslabs. We report the expandable space in terms
630 * of the metaslab size since that's the unit of expansion.
631 */
632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 1ULL << tvd->vdev_ms_shift);
634 }
635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 return (space);
637 }
638
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 multilist_t *ml = &mc->mc_metaslab_txg_list;
643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 metaslab_t *msp = multilist_sublist_head(mls);
646 multilist_sublist_unlock(mls);
647 while (msp != NULL) {
648 mutex_enter(&msp->ms_lock);
649
650 /*
651 * If the metaslab has been removed from the list
652 * (which could happen if we were at the memory limit
653 * and it was evicted during this loop), then we can't
654 * proceed and we should restart the sublist.
655 */
656 if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 mutex_exit(&msp->ms_lock);
658 i--;
659 break;
660 }
661 mls = multilist_sublist_lock(ml, i);
662 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 multilist_sublist_unlock(mls);
664 if (txg >
665 msp->ms_selected_txg + metaslab_unload_delay &&
666 gethrtime() > msp->ms_selected_time +
667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 metaslab_evict(msp, txg);
669 } else {
670 /*
671 * Once we've hit a metaslab selected too
672 * recently to evict, we're done evicting for
673 * now.
674 */
675 mutex_exit(&msp->ms_lock);
676 break;
677 }
678 mutex_exit(&msp->ms_lock);
679 msp = next_msp;
680 }
681 }
682 }
683
684 static int
685 metaslab_compare(const void *x1, const void *x2)
686 {
687 const metaslab_t *m1 = (const metaslab_t *)x1;
688 const metaslab_t *m2 = (const metaslab_t *)x2;
689
690 int sort1 = 0;
691 int sort2 = 0;
692 if (m1->ms_allocator != -1 && m1->ms_primary)
693 sort1 = 1;
694 else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 sort1 = 2;
696 if (m2->ms_allocator != -1 && m2->ms_primary)
697 sort2 = 1;
698 else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 sort2 = 2;
700
701 /*
702 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 * selecting a metaslab to allocate from, an allocator first tries its
704 * primary, then secondary active metaslab. If it doesn't have active
705 * metaslabs, or can't allocate from them, it searches for an inactive
706 * metaslab to activate. If it can't find a suitable one, it will steal
707 * a primary or secondary metaslab from another allocator.
708 */
709 if (sort1 < sort2)
710 return (-1);
711 if (sort1 > sort2)
712 return (1);
713
714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 if (likely(cmp))
716 return (cmp);
717
718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719
720 return (TREE_CMP(m1->ms_start, m2->ms_start));
721 }
722
723 /*
724 * ==========================================================================
725 * Metaslab groups
726 * ==========================================================================
727 */
728 /*
729 * Update the allocatable flag and the metaslab group's capacity.
730 * The allocatable flag is set to true if the capacity is below
731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733 * transitions from allocatable to non-allocatable or vice versa then the
734 * metaslab group's class is updated to reflect the transition.
735 */
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
738 {
739 vdev_t *vd = mg->mg_vd;
740 metaslab_class_t *mc = mg->mg_class;
741 vdev_stat_t *vs = &vd->vdev_stat;
742 boolean_t was_allocatable;
743 boolean_t was_initialized;
744
745 ASSERT(vd == vd->vdev_top);
746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 SCL_ALLOC);
748
749 mutex_enter(&mg->mg_lock);
750 was_allocatable = mg->mg_allocatable;
751 was_initialized = mg->mg_initialized;
752
753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 (vs->vs_space + 1);
755
756 mutex_enter(&mc->mc_lock);
757
758 /*
759 * If the metaslab group was just added then it won't
760 * have any space until we finish syncing out this txg.
761 * At that point we will consider it initialized and available
762 * for allocations. We also don't consider non-activated
763 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 * to be initialized, because they can't be used for allocation.
765 */
766 mg->mg_initialized = metaslab_group_initialized(mg);
767 if (!was_initialized && mg->mg_initialized) {
768 mc->mc_groups++;
769 } else if (was_initialized && !mg->mg_initialized) {
770 ASSERT3U(mc->mc_groups, >, 0);
771 mc->mc_groups--;
772 }
773 if (mg->mg_initialized)
774 mg->mg_no_free_space = B_FALSE;
775
776 /*
777 * A metaslab group is considered allocatable if it has plenty
778 * of free space or is not heavily fragmented. We only take
779 * fragmentation into account if the metaslab group has a valid
780 * fragmentation metric (i.e. a value between 0 and 100).
781 */
782 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786
787 /*
788 * The mc_alloc_groups maintains a count of the number of
789 * groups in this metaslab class that are still above the
790 * zfs_mg_noalloc_threshold. This is used by the allocating
791 * threads to determine if they should avoid allocations to
792 * a given group. The allocator will avoid allocations to a group
793 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 * and there are still other groups that are above the threshold.
795 * When a group transitions from allocatable to non-allocatable or
796 * vice versa we update the metaslab class to reflect that change.
797 * When the mc_alloc_groups value drops to 0 that means that all
798 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 * eligible for allocations. This effectively means that all devices
800 * are balanced again.
801 */
802 if (was_allocatable && !mg->mg_allocatable)
803 mc->mc_alloc_groups--;
804 else if (!was_allocatable && mg->mg_allocatable)
805 mc->mc_alloc_groups++;
806 mutex_exit(&mc->mc_lock);
807
808 mutex_exit(&mg->mg_lock);
809 }
810
811 int
812 metaslab_sort_by_flushed(const void *va, const void *vb)
813 {
814 const metaslab_t *a = va;
815 const metaslab_t *b = vb;
816
817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 if (likely(cmp))
819 return (cmp);
820
821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 if (cmp)
825 return (cmp);
826
827 return (TREE_CMP(a->ms_id, b->ms_id));
828 }
829
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832 {
833 metaslab_group_t *mg;
834
835 mg = kmem_zalloc(offsetof(metaslab_group_t,
836 mg_allocator[allocators]), KM_SLEEP);
837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 mg->mg_vd = vd;
843 mg->mg_class = mc;
844 mg->mg_activation_count = 0;
845 mg->mg_initialized = B_FALSE;
846 mg->mg_no_free_space = B_TRUE;
847 mg->mg_allocators = allocators;
848
849 for (int i = 0; i < allocators; i++) {
850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852 }
853
854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856
857 return (mg);
858 }
859
860 void
861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 ASSERT(mg->mg_prev == NULL);
864 ASSERT(mg->mg_next == NULL);
865 /*
866 * We may have gone below zero with the activation count
867 * either because we never activated in the first place or
868 * because we're done, and possibly removing the vdev.
869 */
870 ASSERT(mg->mg_activation_count <= 0);
871
872 taskq_destroy(mg->mg_taskq);
873 avl_destroy(&mg->mg_metaslab_tree);
874 mutex_destroy(&mg->mg_lock);
875 mutex_destroy(&mg->mg_ms_disabled_lock);
876 cv_destroy(&mg->mg_ms_disabled_cv);
877
878 for (int i = 0; i < mg->mg_allocators; i++) {
879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881 }
882 kmem_free(mg, offsetof(metaslab_group_t,
883 mg_allocator[mg->mg_allocators]));
884 }
885
886 void
887 metaslab_group_activate(metaslab_group_t *mg)
888 {
889 metaslab_class_t *mc = mg->mg_class;
890 spa_t *spa = mc->mc_spa;
891 metaslab_group_t *mgprev, *mgnext;
892
893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894
895 ASSERT(mg->mg_prev == NULL);
896 ASSERT(mg->mg_next == NULL);
897 ASSERT(mg->mg_activation_count <= 0);
898
899 if (++mg->mg_activation_count <= 0)
900 return;
901
902 mg->mg_aliquot = metaslab_aliquot * MAX(1,
903 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
904 metaslab_group_alloc_update(mg);
905
906 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
907 mg->mg_prev = mg;
908 mg->mg_next = mg;
909 } else {
910 mgnext = mgprev->mg_next;
911 mg->mg_prev = mgprev;
912 mg->mg_next = mgnext;
913 mgprev->mg_next = mg;
914 mgnext->mg_prev = mg;
915 }
916 for (int i = 0; i < spa->spa_alloc_count; i++) {
917 mc->mc_allocator[i].mca_rotor = mg;
918 mg = mg->mg_next;
919 }
920 }
921
922 /*
923 * Passivate a metaslab group and remove it from the allocation rotor.
924 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
925 * a metaslab group. This function will momentarily drop spa_config_locks
926 * that are lower than the SCL_ALLOC lock (see comment below).
927 */
928 void
929 metaslab_group_passivate(metaslab_group_t *mg)
930 {
931 metaslab_class_t *mc = mg->mg_class;
932 spa_t *spa = mc->mc_spa;
933 metaslab_group_t *mgprev, *mgnext;
934 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
935
936 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
937 (SCL_ALLOC | SCL_ZIO));
938
939 if (--mg->mg_activation_count != 0) {
940 for (int i = 0; i < spa->spa_alloc_count; i++)
941 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
942 ASSERT(mg->mg_prev == NULL);
943 ASSERT(mg->mg_next == NULL);
944 ASSERT(mg->mg_activation_count < 0);
945 return;
946 }
947
948 /*
949 * The spa_config_lock is an array of rwlocks, ordered as
950 * follows (from highest to lowest):
951 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
952 * SCL_ZIO > SCL_FREE > SCL_VDEV
953 * (For more information about the spa_config_lock see spa_misc.c)
954 * The higher the lock, the broader its coverage. When we passivate
955 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
956 * config locks. However, the metaslab group's taskq might be trying
957 * to preload metaslabs so we must drop the SCL_ZIO lock and any
958 * lower locks to allow the I/O to complete. At a minimum,
959 * we continue to hold the SCL_ALLOC lock, which prevents any future
960 * allocations from taking place and any changes to the vdev tree.
961 */
962 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
963 taskq_wait_outstanding(mg->mg_taskq, 0);
964 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
965 metaslab_group_alloc_update(mg);
966 for (int i = 0; i < mg->mg_allocators; i++) {
967 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
968 metaslab_t *msp = mga->mga_primary;
969 if (msp != NULL) {
970 mutex_enter(&msp->ms_lock);
971 metaslab_passivate(msp,
972 metaslab_weight_from_range_tree(msp));
973 mutex_exit(&msp->ms_lock);
974 }
975 msp = mga->mga_secondary;
976 if (msp != NULL) {
977 mutex_enter(&msp->ms_lock);
978 metaslab_passivate(msp,
979 metaslab_weight_from_range_tree(msp));
980 mutex_exit(&msp->ms_lock);
981 }
982 }
983
984 mgprev = mg->mg_prev;
985 mgnext = mg->mg_next;
986
987 if (mg == mgnext) {
988 mgnext = NULL;
989 } else {
990 mgprev->mg_next = mgnext;
991 mgnext->mg_prev = mgprev;
992 }
993 for (int i = 0; i < spa->spa_alloc_count; i++) {
994 if (mc->mc_allocator[i].mca_rotor == mg)
995 mc->mc_allocator[i].mca_rotor = mgnext;
996 }
997
998 mg->mg_prev = NULL;
999 mg->mg_next = NULL;
1000 }
1001
1002 boolean_t
1003 metaslab_group_initialized(metaslab_group_t *mg)
1004 {
1005 vdev_t *vd = mg->mg_vd;
1006 vdev_stat_t *vs = &vd->vdev_stat;
1007
1008 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1009 }
1010
1011 uint64_t
1012 metaslab_group_get_space(metaslab_group_t *mg)
1013 {
1014 /*
1015 * Note that the number of nodes in mg_metaslab_tree may be one less
1016 * than vdev_ms_count, due to the embedded log metaslab.
1017 */
1018 mutex_enter(&mg->mg_lock);
1019 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1020 mutex_exit(&mg->mg_lock);
1021 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1022 }
1023
1024 void
1025 metaslab_group_histogram_verify(metaslab_group_t *mg)
1026 {
1027 uint64_t *mg_hist;
1028 avl_tree_t *t = &mg->mg_metaslab_tree;
1029 uint64_t ashift = mg->mg_vd->vdev_ashift;
1030
1031 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1032 return;
1033
1034 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1035 KM_SLEEP);
1036
1037 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1038 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1039
1040 mutex_enter(&mg->mg_lock);
1041 for (metaslab_t *msp = avl_first(t);
1042 msp != NULL; msp = AVL_NEXT(t, msp)) {
1043 VERIFY3P(msp->ms_group, ==, mg);
1044 /* skip if not active */
1045 if (msp->ms_sm == NULL)
1046 continue;
1047
1048 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1049 mg_hist[i + ashift] +=
1050 msp->ms_sm->sm_phys->smp_histogram[i];
1051 }
1052 }
1053
1054 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1055 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1056
1057 mutex_exit(&mg->mg_lock);
1058
1059 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1060 }
1061
1062 static void
1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1064 {
1065 metaslab_class_t *mc = mg->mg_class;
1066 uint64_t ashift = mg->mg_vd->vdev_ashift;
1067
1068 ASSERT(MUTEX_HELD(&msp->ms_lock));
1069 if (msp->ms_sm == NULL)
1070 return;
1071
1072 mutex_enter(&mg->mg_lock);
1073 mutex_enter(&mc->mc_lock);
1074 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1075 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1076 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1077 mg->mg_histogram[i + ashift] +=
1078 msp->ms_sm->sm_phys->smp_histogram[i];
1079 mc->mc_histogram[i + ashift] +=
1080 msp->ms_sm->sm_phys->smp_histogram[i];
1081 }
1082 mutex_exit(&mc->mc_lock);
1083 mutex_exit(&mg->mg_lock);
1084 }
1085
1086 void
1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1088 {
1089 metaslab_class_t *mc = mg->mg_class;
1090 uint64_t ashift = mg->mg_vd->vdev_ashift;
1091
1092 ASSERT(MUTEX_HELD(&msp->ms_lock));
1093 if (msp->ms_sm == NULL)
1094 return;
1095
1096 mutex_enter(&mg->mg_lock);
1097 mutex_enter(&mc->mc_lock);
1098 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1099 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1100 msp->ms_sm->sm_phys->smp_histogram[i]);
1101 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1102 msp->ms_sm->sm_phys->smp_histogram[i]);
1103 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1104 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1105
1106 mg->mg_histogram[i + ashift] -=
1107 msp->ms_sm->sm_phys->smp_histogram[i];
1108 mc->mc_histogram[i + ashift] -=
1109 msp->ms_sm->sm_phys->smp_histogram[i];
1110 }
1111 mutex_exit(&mc->mc_lock);
1112 mutex_exit(&mg->mg_lock);
1113 }
1114
1115 static void
1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1117 {
1118 ASSERT(msp->ms_group == NULL);
1119 mutex_enter(&mg->mg_lock);
1120 msp->ms_group = mg;
1121 msp->ms_weight = 0;
1122 avl_add(&mg->mg_metaslab_tree, msp);
1123 mutex_exit(&mg->mg_lock);
1124
1125 mutex_enter(&msp->ms_lock);
1126 metaslab_group_histogram_add(mg, msp);
1127 mutex_exit(&msp->ms_lock);
1128 }
1129
1130 static void
1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1132 {
1133 mutex_enter(&msp->ms_lock);
1134 metaslab_group_histogram_remove(mg, msp);
1135 mutex_exit(&msp->ms_lock);
1136
1137 mutex_enter(&mg->mg_lock);
1138 ASSERT(msp->ms_group == mg);
1139 avl_remove(&mg->mg_metaslab_tree, msp);
1140
1141 metaslab_class_t *mc = msp->ms_group->mg_class;
1142 multilist_sublist_t *mls =
1143 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1144 if (multilist_link_active(&msp->ms_class_txg_node))
1145 multilist_sublist_remove(mls, msp);
1146 multilist_sublist_unlock(mls);
1147
1148 msp->ms_group = NULL;
1149 mutex_exit(&mg->mg_lock);
1150 }
1151
1152 static void
1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1154 {
1155 ASSERT(MUTEX_HELD(&msp->ms_lock));
1156 ASSERT(MUTEX_HELD(&mg->mg_lock));
1157 ASSERT(msp->ms_group == mg);
1158
1159 avl_remove(&mg->mg_metaslab_tree, msp);
1160 msp->ms_weight = weight;
1161 avl_add(&mg->mg_metaslab_tree, msp);
1162
1163 }
1164
1165 static void
1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1167 {
1168 /*
1169 * Although in principle the weight can be any value, in
1170 * practice we do not use values in the range [1, 511].
1171 */
1172 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1173 ASSERT(MUTEX_HELD(&msp->ms_lock));
1174
1175 mutex_enter(&mg->mg_lock);
1176 metaslab_group_sort_impl(mg, msp, weight);
1177 mutex_exit(&mg->mg_lock);
1178 }
1179
1180 /*
1181 * Calculate the fragmentation for a given metaslab group. We can use
1182 * a simple average here since all metaslabs within the group must have
1183 * the same size. The return value will be a value between 0 and 100
1184 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1185 * group have a fragmentation metric.
1186 */
1187 uint64_t
1188 metaslab_group_fragmentation(metaslab_group_t *mg)
1189 {
1190 vdev_t *vd = mg->mg_vd;
1191 uint64_t fragmentation = 0;
1192 uint64_t valid_ms = 0;
1193
1194 for (int m = 0; m < vd->vdev_ms_count; m++) {
1195 metaslab_t *msp = vd->vdev_ms[m];
1196
1197 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1198 continue;
1199 if (msp->ms_group != mg)
1200 continue;
1201
1202 valid_ms++;
1203 fragmentation += msp->ms_fragmentation;
1204 }
1205
1206 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1207 return (ZFS_FRAG_INVALID);
1208
1209 fragmentation /= valid_ms;
1210 ASSERT3U(fragmentation, <=, 100);
1211 return (fragmentation);
1212 }
1213
1214 /*
1215 * Determine if a given metaslab group should skip allocations. A metaslab
1216 * group should avoid allocations if its free capacity is less than the
1217 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1218 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1219 * that can still handle allocations. If the allocation throttle is enabled
1220 * then we skip allocations to devices that have reached their maximum
1221 * allocation queue depth unless the selected metaslab group is the only
1222 * eligible group remaining.
1223 */
1224 static boolean_t
1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1226 int flags, uint64_t psize, int allocator, int d)
1227 {
1228 spa_t *spa = mg->mg_vd->vdev_spa;
1229 metaslab_class_t *mc = mg->mg_class;
1230
1231 /*
1232 * We can only consider skipping this metaslab group if it's
1233 * in the normal metaslab class and there are other metaslab
1234 * groups to select from. Otherwise, we always consider it eligible
1235 * for allocations.
1236 */
1237 if ((mc != spa_normal_class(spa) &&
1238 mc != spa_special_class(spa) &&
1239 mc != spa_dedup_class(spa)) ||
1240 mc->mc_groups <= 1)
1241 return (B_TRUE);
1242
1243 /*
1244 * If the metaslab group's mg_allocatable flag is set (see comments
1245 * in metaslab_group_alloc_update() for more information) and
1246 * the allocation throttle is disabled then allow allocations to this
1247 * device. However, if the allocation throttle is enabled then
1248 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1249 * to determine if we should allow allocations to this metaslab group.
1250 * If all metaslab groups are no longer considered allocatable
1251 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1252 * gang block size then we allow allocations on this metaslab group
1253 * regardless of the mg_allocatable or throttle settings.
1254 */
1255 if (mg->mg_allocatable) {
1256 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1257 int64_t qdepth;
1258 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1259
1260 if (!mc->mc_alloc_throttle_enabled)
1261 return (B_TRUE);
1262
1263 /*
1264 * If this metaslab group does not have any free space, then
1265 * there is no point in looking further.
1266 */
1267 if (mg->mg_no_free_space)
1268 return (B_FALSE);
1269
1270 /*
1271 * Some allocations (e.g., those coming from device removal
1272 * where the * allocations are not even counted in the
1273 * metaslab * allocation queues) are allowed to bypass
1274 * the throttle.
1275 */
1276 if (flags & METASLAB_DONT_THROTTLE)
1277 return (B_TRUE);
1278
1279 /*
1280 * Relax allocation throttling for ditto blocks. Due to
1281 * random imbalances in allocation it tends to push copies
1282 * to one vdev, that looks a bit better at the moment.
1283 */
1284 qmax = qmax * (4 + d) / 4;
1285
1286 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1287
1288 /*
1289 * If this metaslab group is below its qmax or it's
1290 * the only allocatable metasable group, then attempt
1291 * to allocate from it.
1292 */
1293 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1294 return (B_TRUE);
1295 ASSERT3U(mc->mc_alloc_groups, >, 1);
1296
1297 /*
1298 * Since this metaslab group is at or over its qmax, we
1299 * need to determine if there are metaslab groups after this
1300 * one that might be able to handle this allocation. This is
1301 * racy since we can't hold the locks for all metaslab
1302 * groups at the same time when we make this check.
1303 */
1304 for (metaslab_group_t *mgp = mg->mg_next;
1305 mgp != rotor; mgp = mgp->mg_next) {
1306 metaslab_group_allocator_t *mgap =
1307 &mgp->mg_allocator[allocator];
1308 qmax = mgap->mga_cur_max_alloc_queue_depth;
1309 qmax = qmax * (4 + d) / 4;
1310 qdepth =
1311 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1312
1313 /*
1314 * If there is another metaslab group that
1315 * might be able to handle the allocation, then
1316 * we return false so that we skip this group.
1317 */
1318 if (qdepth < qmax && !mgp->mg_no_free_space)
1319 return (B_FALSE);
1320 }
1321
1322 /*
1323 * We didn't find another group to handle the allocation
1324 * so we can't skip this metaslab group even though
1325 * we are at or over our qmax.
1326 */
1327 return (B_TRUE);
1328
1329 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1330 return (B_TRUE);
1331 }
1332 return (B_FALSE);
1333 }
1334
1335 /*
1336 * ==========================================================================
1337 * Range tree callbacks
1338 * ==========================================================================
1339 */
1340
1341 /*
1342 * Comparison function for the private size-ordered tree using 32-bit
1343 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1344 */
1345 __attribute__((always_inline)) inline
1346 static int
1347 metaslab_rangesize32_compare(const void *x1, const void *x2)
1348 {
1349 const range_seg32_t *r1 = x1;
1350 const range_seg32_t *r2 = x2;
1351
1352 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1353 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1354
1355 int cmp = TREE_CMP(rs_size1, rs_size2);
1356
1357 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1358 }
1359
1360 /*
1361 * Comparison function for the private size-ordered tree using 64-bit
1362 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1363 */
1364 __attribute__((always_inline)) inline
1365 static int
1366 metaslab_rangesize64_compare(const void *x1, const void *x2)
1367 {
1368 const range_seg64_t *r1 = x1;
1369 const range_seg64_t *r2 = x2;
1370
1371 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1372 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1373
1374 int cmp = TREE_CMP(rs_size1, rs_size2);
1375
1376 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1377 }
1378
1379 typedef struct metaslab_rt_arg {
1380 zfs_btree_t *mra_bt;
1381 uint32_t mra_floor_shift;
1382 } metaslab_rt_arg_t;
1383
1384 struct mssa_arg {
1385 range_tree_t *rt;
1386 metaslab_rt_arg_t *mra;
1387 };
1388
1389 static void
1390 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1391 {
1392 struct mssa_arg *mssap = arg;
1393 range_tree_t *rt = mssap->rt;
1394 metaslab_rt_arg_t *mrap = mssap->mra;
1395 range_seg_max_t seg = {0};
1396 rs_set_start(&seg, rt, start);
1397 rs_set_end(&seg, rt, start + size);
1398 metaslab_rt_add(rt, &seg, mrap);
1399 }
1400
1401 static void
1402 metaslab_size_tree_full_load(range_tree_t *rt)
1403 {
1404 metaslab_rt_arg_t *mrap = rt->rt_arg;
1405 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1406 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1407 mrap->mra_floor_shift = 0;
1408 struct mssa_arg arg = {0};
1409 arg.rt = rt;
1410 arg.mra = mrap;
1411 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1412 }
1413
1414
1415 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1416 range_seg32_t, metaslab_rangesize32_compare)
1417
1418 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1419 range_seg64_t, metaslab_rangesize64_compare)
1420
1421 /*
1422 * Create any block allocator specific components. The current allocators
1423 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1424 */
1425 static void
1426 metaslab_rt_create(range_tree_t *rt, void *arg)
1427 {
1428 metaslab_rt_arg_t *mrap = arg;
1429 zfs_btree_t *size_tree = mrap->mra_bt;
1430
1431 size_t size;
1432 int (*compare) (const void *, const void *);
1433 bt_find_in_buf_f bt_find;
1434 switch (rt->rt_type) {
1435 case RANGE_SEG32:
1436 size = sizeof (range_seg32_t);
1437 compare = metaslab_rangesize32_compare;
1438 bt_find = metaslab_rt_find_rangesize32_in_buf;
1439 break;
1440 case RANGE_SEG64:
1441 size = sizeof (range_seg64_t);
1442 compare = metaslab_rangesize64_compare;
1443 bt_find = metaslab_rt_find_rangesize64_in_buf;
1444 break;
1445 default:
1446 panic("Invalid range seg type %d", rt->rt_type);
1447 }
1448 zfs_btree_create(size_tree, compare, bt_find, size);
1449 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1450 }
1451
1452 static void
1453 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1454 {
1455 (void) rt;
1456 metaslab_rt_arg_t *mrap = arg;
1457 zfs_btree_t *size_tree = mrap->mra_bt;
1458
1459 zfs_btree_destroy(size_tree);
1460 kmem_free(mrap, sizeof (*mrap));
1461 }
1462
1463 static void
1464 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1465 {
1466 metaslab_rt_arg_t *mrap = arg;
1467 zfs_btree_t *size_tree = mrap->mra_bt;
1468
1469 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1470 (1ULL << mrap->mra_floor_shift))
1471 return;
1472
1473 zfs_btree_add(size_tree, rs);
1474 }
1475
1476 static void
1477 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1478 {
1479 metaslab_rt_arg_t *mrap = arg;
1480 zfs_btree_t *size_tree = mrap->mra_bt;
1481
1482 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1483 mrap->mra_floor_shift))
1484 return;
1485
1486 zfs_btree_remove(size_tree, rs);
1487 }
1488
1489 static void
1490 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1491 {
1492 metaslab_rt_arg_t *mrap = arg;
1493 zfs_btree_t *size_tree = mrap->mra_bt;
1494 zfs_btree_clear(size_tree);
1495 zfs_btree_destroy(size_tree);
1496
1497 metaslab_rt_create(rt, arg);
1498 }
1499
1500 static const range_tree_ops_t metaslab_rt_ops = {
1501 .rtop_create = metaslab_rt_create,
1502 .rtop_destroy = metaslab_rt_destroy,
1503 .rtop_add = metaslab_rt_add,
1504 .rtop_remove = metaslab_rt_remove,
1505 .rtop_vacate = metaslab_rt_vacate
1506 };
1507
1508 /*
1509 * ==========================================================================
1510 * Common allocator routines
1511 * ==========================================================================
1512 */
1513
1514 /*
1515 * Return the maximum contiguous segment within the metaslab.
1516 */
1517 uint64_t
1518 metaslab_largest_allocatable(metaslab_t *msp)
1519 {
1520 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1521 range_seg_t *rs;
1522
1523 if (t == NULL)
1524 return (0);
1525 if (zfs_btree_numnodes(t) == 0)
1526 metaslab_size_tree_full_load(msp->ms_allocatable);
1527
1528 rs = zfs_btree_last(t, NULL);
1529 if (rs == NULL)
1530 return (0);
1531
1532 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1533 msp->ms_allocatable));
1534 }
1535
1536 /*
1537 * Return the maximum contiguous segment within the unflushed frees of this
1538 * metaslab.
1539 */
1540 static uint64_t
1541 metaslab_largest_unflushed_free(metaslab_t *msp)
1542 {
1543 ASSERT(MUTEX_HELD(&msp->ms_lock));
1544
1545 if (msp->ms_unflushed_frees == NULL)
1546 return (0);
1547
1548 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1549 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1550 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1551 NULL);
1552 if (rs == NULL)
1553 return (0);
1554
1555 /*
1556 * When a range is freed from the metaslab, that range is added to
1557 * both the unflushed frees and the deferred frees. While the block
1558 * will eventually be usable, if the metaslab were loaded the range
1559 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1560 * txgs had passed. As a result, when attempting to estimate an upper
1561 * bound for the largest currently-usable free segment in the
1562 * metaslab, we need to not consider any ranges currently in the defer
1563 * trees. This algorithm approximates the largest available chunk in
1564 * the largest range in the unflushed_frees tree by taking the first
1565 * chunk. While this may be a poor estimate, it should only remain so
1566 * briefly and should eventually self-correct as frees are no longer
1567 * deferred. Similar logic applies to the ms_freed tree. See
1568 * metaslab_load() for more details.
1569 *
1570 * There are two primary sources of inaccuracy in this estimate. Both
1571 * are tolerated for performance reasons. The first source is that we
1572 * only check the largest segment for overlaps. Smaller segments may
1573 * have more favorable overlaps with the other trees, resulting in
1574 * larger usable chunks. Second, we only look at the first chunk in
1575 * the largest segment; there may be other usable chunks in the
1576 * largest segment, but we ignore them.
1577 */
1578 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1579 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1580 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1581 uint64_t start = 0;
1582 uint64_t size = 0;
1583 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1584 rsize, &start, &size);
1585 if (found) {
1586 if (rstart == start)
1587 return (0);
1588 rsize = start - rstart;
1589 }
1590 }
1591
1592 uint64_t start = 0;
1593 uint64_t size = 0;
1594 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1595 rsize, &start, &size);
1596 if (found)
1597 rsize = start - rstart;
1598
1599 return (rsize);
1600 }
1601
1602 static range_seg_t *
1603 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1604 uint64_t size, zfs_btree_index_t *where)
1605 {
1606 range_seg_t *rs;
1607 range_seg_max_t rsearch;
1608
1609 rs_set_start(&rsearch, rt, start);
1610 rs_set_end(&rsearch, rt, start + size);
1611
1612 rs = zfs_btree_find(t, &rsearch, where);
1613 if (rs == NULL) {
1614 rs = zfs_btree_next(t, where, where);
1615 }
1616
1617 return (rs);
1618 }
1619
1620 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1621 defined(WITH_CF_BLOCK_ALLOCATOR)
1622
1623 /*
1624 * This is a helper function that can be used by the allocator to find a
1625 * suitable block to allocate. This will search the specified B-tree looking
1626 * for a block that matches the specified criteria.
1627 */
1628 static uint64_t
1629 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1630 uint64_t max_search)
1631 {
1632 if (*cursor == 0)
1633 *cursor = rt->rt_start;
1634 zfs_btree_t *bt = &rt->rt_root;
1635 zfs_btree_index_t where;
1636 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1637 uint64_t first_found;
1638 int count_searched = 0;
1639
1640 if (rs != NULL)
1641 first_found = rs_get_start(rs, rt);
1642
1643 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1644 max_search || count_searched < metaslab_min_search_count)) {
1645 uint64_t offset = rs_get_start(rs, rt);
1646 if (offset + size <= rs_get_end(rs, rt)) {
1647 *cursor = offset + size;
1648 return (offset);
1649 }
1650 rs = zfs_btree_next(bt, &where, &where);
1651 count_searched++;
1652 }
1653
1654 *cursor = 0;
1655 return (-1ULL);
1656 }
1657 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1658
1659 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1660 /*
1661 * ==========================================================================
1662 * Dynamic Fit (df) block allocator
1663 *
1664 * Search for a free chunk of at least this size, starting from the last
1665 * offset (for this alignment of block) looking for up to
1666 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1667 * found within 16MB, then return a free chunk of exactly the requested size (or
1668 * larger).
1669 *
1670 * If it seems like searching from the last offset will be unproductive, skip
1671 * that and just return a free chunk of exactly the requested size (or larger).
1672 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1673 * mechanism is probably not very useful and may be removed in the future.
1674 *
1675 * The behavior when not searching can be changed to return the largest free
1676 * chunk, instead of a free chunk of exactly the requested size, by setting
1677 * metaslab_df_use_largest_segment.
1678 * ==========================================================================
1679 */
1680 static uint64_t
1681 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1682 {
1683 /*
1684 * Find the largest power of 2 block size that evenly divides the
1685 * requested size. This is used to try to allocate blocks with similar
1686 * alignment from the same area of the metaslab (i.e. same cursor
1687 * bucket) but it does not guarantee that other allocations sizes
1688 * may exist in the same region.
1689 */
1690 uint64_t align = size & -size;
1691 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1692 range_tree_t *rt = msp->ms_allocatable;
1693 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1694 uint64_t offset;
1695
1696 ASSERT(MUTEX_HELD(&msp->ms_lock));
1697
1698 /*
1699 * If we're running low on space, find a segment based on size,
1700 * rather than iterating based on offset.
1701 */
1702 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1703 free_pct < metaslab_df_free_pct) {
1704 offset = -1;
1705 } else {
1706 offset = metaslab_block_picker(rt,
1707 cursor, size, metaslab_df_max_search);
1708 }
1709
1710 if (offset == -1) {
1711 range_seg_t *rs;
1712 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1713 metaslab_size_tree_full_load(msp->ms_allocatable);
1714
1715 if (metaslab_df_use_largest_segment) {
1716 /* use largest free segment */
1717 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1718 } else {
1719 zfs_btree_index_t where;
1720 /* use segment of this size, or next largest */
1721 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1722 rt, msp->ms_start, size, &where);
1723 }
1724 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1725 rt)) {
1726 offset = rs_get_start(rs, rt);
1727 *cursor = offset + size;
1728 }
1729 }
1730
1731 return (offset);
1732 }
1733
1734 const metaslab_ops_t zfs_metaslab_ops = {
1735 metaslab_df_alloc
1736 };
1737 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1738
1739 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1740 /*
1741 * ==========================================================================
1742 * Cursor fit block allocator -
1743 * Select the largest region in the metaslab, set the cursor to the beginning
1744 * of the range and the cursor_end to the end of the range. As allocations
1745 * are made advance the cursor. Continue allocating from the cursor until
1746 * the range is exhausted and then find a new range.
1747 * ==========================================================================
1748 */
1749 static uint64_t
1750 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1751 {
1752 range_tree_t *rt = msp->ms_allocatable;
1753 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1754 uint64_t *cursor = &msp->ms_lbas[0];
1755 uint64_t *cursor_end = &msp->ms_lbas[1];
1756 uint64_t offset = 0;
1757
1758 ASSERT(MUTEX_HELD(&msp->ms_lock));
1759
1760 ASSERT3U(*cursor_end, >=, *cursor);
1761
1762 if ((*cursor + size) > *cursor_end) {
1763 range_seg_t *rs;
1764
1765 if (zfs_btree_numnodes(t) == 0)
1766 metaslab_size_tree_full_load(msp->ms_allocatable);
1767 rs = zfs_btree_last(t, NULL);
1768 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1769 size)
1770 return (-1ULL);
1771
1772 *cursor = rs_get_start(rs, rt);
1773 *cursor_end = rs_get_end(rs, rt);
1774 }
1775
1776 offset = *cursor;
1777 *cursor += size;
1778
1779 return (offset);
1780 }
1781
1782 const metaslab_ops_t zfs_metaslab_ops = {
1783 metaslab_cf_alloc
1784 };
1785 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1786
1787 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1788 /*
1789 * ==========================================================================
1790 * New dynamic fit allocator -
1791 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1792 * contiguous blocks. If no region is found then just use the largest segment
1793 * that remains.
1794 * ==========================================================================
1795 */
1796
1797 /*
1798 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1799 * to request from the allocator.
1800 */
1801 uint64_t metaslab_ndf_clump_shift = 4;
1802
1803 static uint64_t
1804 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1805 {
1806 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1807 range_tree_t *rt = msp->ms_allocatable;
1808 zfs_btree_index_t where;
1809 range_seg_t *rs;
1810 range_seg_max_t rsearch;
1811 uint64_t hbit = highbit64(size);
1812 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1813 uint64_t max_size = metaslab_largest_allocatable(msp);
1814
1815 ASSERT(MUTEX_HELD(&msp->ms_lock));
1816
1817 if (max_size < size)
1818 return (-1ULL);
1819
1820 rs_set_start(&rsearch, rt, *cursor);
1821 rs_set_end(&rsearch, rt, *cursor + size);
1822
1823 rs = zfs_btree_find(t, &rsearch, &where);
1824 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1825 t = &msp->ms_allocatable_by_size;
1826
1827 rs_set_start(&rsearch, rt, 0);
1828 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1829 metaslab_ndf_clump_shift)));
1830
1831 rs = zfs_btree_find(t, &rsearch, &where);
1832 if (rs == NULL)
1833 rs = zfs_btree_next(t, &where, &where);
1834 ASSERT(rs != NULL);
1835 }
1836
1837 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1838 *cursor = rs_get_start(rs, rt) + size;
1839 return (rs_get_start(rs, rt));
1840 }
1841 return (-1ULL);
1842 }
1843
1844 const metaslab_ops_t zfs_metaslab_ops = {
1845 metaslab_ndf_alloc
1846 };
1847 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1848
1849
1850 /*
1851 * ==========================================================================
1852 * Metaslabs
1853 * ==========================================================================
1854 */
1855
1856 /*
1857 * Wait for any in-progress metaslab loads to complete.
1858 */
1859 static void
1860 metaslab_load_wait(metaslab_t *msp)
1861 {
1862 ASSERT(MUTEX_HELD(&msp->ms_lock));
1863
1864 while (msp->ms_loading) {
1865 ASSERT(!msp->ms_loaded);
1866 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1867 }
1868 }
1869
1870 /*
1871 * Wait for any in-progress flushing to complete.
1872 */
1873 static void
1874 metaslab_flush_wait(metaslab_t *msp)
1875 {
1876 ASSERT(MUTEX_HELD(&msp->ms_lock));
1877
1878 while (msp->ms_flushing)
1879 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1880 }
1881
1882 static unsigned int
1883 metaslab_idx_func(multilist_t *ml, void *arg)
1884 {
1885 metaslab_t *msp = arg;
1886
1887 /*
1888 * ms_id values are allocated sequentially, so full 64bit
1889 * division would be a waste of time, so limit it to 32 bits.
1890 */
1891 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1892 }
1893
1894 uint64_t
1895 metaslab_allocated_space(metaslab_t *msp)
1896 {
1897 return (msp->ms_allocated_space);
1898 }
1899
1900 /*
1901 * Verify that the space accounting on disk matches the in-core range_trees.
1902 */
1903 static void
1904 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1905 {
1906 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1907 uint64_t allocating = 0;
1908 uint64_t sm_free_space, msp_free_space;
1909
1910 ASSERT(MUTEX_HELD(&msp->ms_lock));
1911 ASSERT(!msp->ms_condensing);
1912
1913 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1914 return;
1915
1916 /*
1917 * We can only verify the metaslab space when we're called
1918 * from syncing context with a loaded metaslab that has an
1919 * allocated space map. Calling this in non-syncing context
1920 * does not provide a consistent view of the metaslab since
1921 * we're performing allocations in the future.
1922 */
1923 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1924 !msp->ms_loaded)
1925 return;
1926
1927 /*
1928 * Even though the smp_alloc field can get negative,
1929 * when it comes to a metaslab's space map, that should
1930 * never be the case.
1931 */
1932 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1933
1934 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1935 range_tree_space(msp->ms_unflushed_frees));
1936
1937 ASSERT3U(metaslab_allocated_space(msp), ==,
1938 space_map_allocated(msp->ms_sm) +
1939 range_tree_space(msp->ms_unflushed_allocs) -
1940 range_tree_space(msp->ms_unflushed_frees));
1941
1942 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1943
1944 /*
1945 * Account for future allocations since we would have
1946 * already deducted that space from the ms_allocatable.
1947 */
1948 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1949 allocating +=
1950 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1951 }
1952 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1953 msp->ms_allocating_total);
1954
1955 ASSERT3U(msp->ms_deferspace, ==,
1956 range_tree_space(msp->ms_defer[0]) +
1957 range_tree_space(msp->ms_defer[1]));
1958
1959 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1960 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1961
1962 VERIFY3U(sm_free_space, ==, msp_free_space);
1963 }
1964
1965 static void
1966 metaslab_aux_histograms_clear(metaslab_t *msp)
1967 {
1968 /*
1969 * Auxiliary histograms are only cleared when resetting them,
1970 * which can only happen while the metaslab is loaded.
1971 */
1972 ASSERT(msp->ms_loaded);
1973
1974 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1975 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1976 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1977 }
1978
1979 static void
1980 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1981 range_tree_t *rt)
1982 {
1983 /*
1984 * This is modeled after space_map_histogram_add(), so refer to that
1985 * function for implementation details. We want this to work like
1986 * the space map histogram, and not the range tree histogram, as we
1987 * are essentially constructing a delta that will be later subtracted
1988 * from the space map histogram.
1989 */
1990 int idx = 0;
1991 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1992 ASSERT3U(i, >=, idx + shift);
1993 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1994
1995 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1996 ASSERT3U(idx + shift, ==, i);
1997 idx++;
1998 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1999 }
2000 }
2001 }
2002
2003 /*
2004 * Called at every sync pass that the metaslab gets synced.
2005 *
2006 * The reason is that we want our auxiliary histograms to be updated
2007 * wherever the metaslab's space map histogram is updated. This way
2008 * we stay consistent on which parts of the metaslab space map's
2009 * histogram are currently not available for allocations (e.g because
2010 * they are in the defer, freed, and freeing trees).
2011 */
2012 static void
2013 metaslab_aux_histograms_update(metaslab_t *msp)
2014 {
2015 space_map_t *sm = msp->ms_sm;
2016 ASSERT(sm != NULL);
2017
2018 /*
2019 * This is similar to the metaslab's space map histogram updates
2020 * that take place in metaslab_sync(). The only difference is that
2021 * we only care about segments that haven't made it into the
2022 * ms_allocatable tree yet.
2023 */
2024 if (msp->ms_loaded) {
2025 metaslab_aux_histograms_clear(msp);
2026
2027 metaslab_aux_histogram_add(msp->ms_synchist,
2028 sm->sm_shift, msp->ms_freed);
2029
2030 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2031 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2032 sm->sm_shift, msp->ms_defer[t]);
2033 }
2034 }
2035
2036 metaslab_aux_histogram_add(msp->ms_synchist,
2037 sm->sm_shift, msp->ms_freeing);
2038 }
2039
2040 /*
2041 * Called every time we are done syncing (writing to) the metaslab,
2042 * i.e. at the end of each sync pass.
2043 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2044 */
2045 static void
2046 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2047 {
2048 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2049 space_map_t *sm = msp->ms_sm;
2050
2051 if (sm == NULL) {
2052 /*
2053 * We came here from metaslab_init() when creating/opening a
2054 * pool, looking at a metaslab that hasn't had any allocations
2055 * yet.
2056 */
2057 return;
2058 }
2059
2060 /*
2061 * This is similar to the actions that we take for the ms_freed
2062 * and ms_defer trees in metaslab_sync_done().
2063 */
2064 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2065 if (defer_allowed) {
2066 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2067 sizeof (msp->ms_synchist));
2068 } else {
2069 memset(msp->ms_deferhist[hist_index], 0,
2070 sizeof (msp->ms_deferhist[hist_index]));
2071 }
2072 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2073 }
2074
2075 /*
2076 * Ensure that the metaslab's weight and fragmentation are consistent
2077 * with the contents of the histogram (either the range tree's histogram
2078 * or the space map's depending whether the metaslab is loaded).
2079 */
2080 static void
2081 metaslab_verify_weight_and_frag(metaslab_t *msp)
2082 {
2083 ASSERT(MUTEX_HELD(&msp->ms_lock));
2084
2085 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2086 return;
2087
2088 /*
2089 * We can end up here from vdev_remove_complete(), in which case we
2090 * cannot do these assertions because we hold spa config locks and
2091 * thus we are not allowed to read from the DMU.
2092 *
2093 * We check if the metaslab group has been removed and if that's
2094 * the case we return immediately as that would mean that we are
2095 * here from the aforementioned code path.
2096 */
2097 if (msp->ms_group == NULL)
2098 return;
2099
2100 /*
2101 * Devices being removed always return a weight of 0 and leave
2102 * fragmentation and ms_max_size as is - there is nothing for
2103 * us to verify here.
2104 */
2105 vdev_t *vd = msp->ms_group->mg_vd;
2106 if (vd->vdev_removing)
2107 return;
2108
2109 /*
2110 * If the metaslab is dirty it probably means that we've done
2111 * some allocations or frees that have changed our histograms
2112 * and thus the weight.
2113 */
2114 for (int t = 0; t < TXG_SIZE; t++) {
2115 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2116 return;
2117 }
2118
2119 /*
2120 * This verification checks that our in-memory state is consistent
2121 * with what's on disk. If the pool is read-only then there aren't
2122 * any changes and we just have the initially-loaded state.
2123 */
2124 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2125 return;
2126
2127 /* some extra verification for in-core tree if you can */
2128 if (msp->ms_loaded) {
2129 range_tree_stat_verify(msp->ms_allocatable);
2130 VERIFY(space_map_histogram_verify(msp->ms_sm,
2131 msp->ms_allocatable));
2132 }
2133
2134 uint64_t weight = msp->ms_weight;
2135 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2136 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2137 uint64_t frag = msp->ms_fragmentation;
2138 uint64_t max_segsize = msp->ms_max_size;
2139
2140 msp->ms_weight = 0;
2141 msp->ms_fragmentation = 0;
2142
2143 /*
2144 * This function is used for verification purposes and thus should
2145 * not introduce any side-effects/mutations on the system's state.
2146 *
2147 * Regardless of whether metaslab_weight() thinks this metaslab
2148 * should be active or not, we want to ensure that the actual weight
2149 * (and therefore the value of ms_weight) would be the same if it
2150 * was to be recalculated at this point.
2151 *
2152 * In addition we set the nodirty flag so metaslab_weight() does
2153 * not dirty the metaslab for future TXGs (e.g. when trying to
2154 * force condensing to upgrade the metaslab spacemaps).
2155 */
2156 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2157
2158 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2159
2160 /*
2161 * If the weight type changed then there is no point in doing
2162 * verification. Revert fields to their original values.
2163 */
2164 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2165 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2166 msp->ms_fragmentation = frag;
2167 msp->ms_weight = weight;
2168 return;
2169 }
2170
2171 VERIFY3U(msp->ms_fragmentation, ==, frag);
2172 VERIFY3U(msp->ms_weight, ==, weight);
2173 }
2174
2175 /*
2176 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2177 * this class that was used longest ago, and attempt to unload it. We don't
2178 * want to spend too much time in this loop to prevent performance
2179 * degradation, and we expect that most of the time this operation will
2180 * succeed. Between that and the normal unloading processing during txg sync,
2181 * we expect this to keep the metaslab memory usage under control.
2182 */
2183 static void
2184 metaslab_potentially_evict(metaslab_class_t *mc)
2185 {
2186 #ifdef _KERNEL
2187 uint64_t allmem = arc_all_memory();
2188 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2189 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2190 uint_t tries = 0;
2191 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2192 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2193 tries++) {
2194 unsigned int idx = multilist_get_random_index(
2195 &mc->mc_metaslab_txg_list);
2196 multilist_sublist_t *mls =
2197 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2198 metaslab_t *msp = multilist_sublist_head(mls);
2199 multilist_sublist_unlock(mls);
2200 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2201 inuse * size) {
2202 VERIFY3P(mls, ==, multilist_sublist_lock(
2203 &mc->mc_metaslab_txg_list, idx));
2204 ASSERT3U(idx, ==,
2205 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2206
2207 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2208 multilist_sublist_unlock(mls);
2209 break;
2210 }
2211 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2212 multilist_sublist_unlock(mls);
2213 /*
2214 * If the metaslab is currently loading there are two
2215 * cases. If it's the metaslab we're evicting, we
2216 * can't continue on or we'll panic when we attempt to
2217 * recursively lock the mutex. If it's another
2218 * metaslab that's loading, it can be safely skipped,
2219 * since we know it's very new and therefore not a
2220 * good eviction candidate. We check later once the
2221 * lock is held that the metaslab is fully loaded
2222 * before actually unloading it.
2223 */
2224 if (msp->ms_loading) {
2225 msp = next_msp;
2226 inuse =
2227 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2228 continue;
2229 }
2230 /*
2231 * We can't unload metaslabs with no spacemap because
2232 * they're not ready to be unloaded yet. We can't
2233 * unload metaslabs with outstanding allocations
2234 * because doing so could cause the metaslab's weight
2235 * to decrease while it's unloaded, which violates an
2236 * invariant that we use to prevent unnecessary
2237 * loading. We also don't unload metaslabs that are
2238 * currently active because they are high-weight
2239 * metaslabs that are likely to be used in the near
2240 * future.
2241 */
2242 mutex_enter(&msp->ms_lock);
2243 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2244 msp->ms_allocating_total == 0) {
2245 metaslab_unload(msp);
2246 }
2247 mutex_exit(&msp->ms_lock);
2248 msp = next_msp;
2249 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2250 }
2251 }
2252 #else
2253 (void) mc, (void) zfs_metaslab_mem_limit;
2254 #endif
2255 }
2256
2257 static int
2258 metaslab_load_impl(metaslab_t *msp)
2259 {
2260 int error = 0;
2261
2262 ASSERT(MUTEX_HELD(&msp->ms_lock));
2263 ASSERT(msp->ms_loading);
2264 ASSERT(!msp->ms_condensing);
2265
2266 /*
2267 * We temporarily drop the lock to unblock other operations while we
2268 * are reading the space map. Therefore, metaslab_sync() and
2269 * metaslab_sync_done() can run at the same time as we do.
2270 *
2271 * If we are using the log space maps, metaslab_sync() can't write to
2272 * the metaslab's space map while we are loading as we only write to
2273 * it when we are flushing the metaslab, and that can't happen while
2274 * we are loading it.
2275 *
2276 * If we are not using log space maps though, metaslab_sync() can
2277 * append to the space map while we are loading. Therefore we load
2278 * only entries that existed when we started the load. Additionally,
2279 * metaslab_sync_done() has to wait for the load to complete because
2280 * there are potential races like metaslab_load() loading parts of the
2281 * space map that are currently being appended by metaslab_sync(). If
2282 * we didn't, the ms_allocatable would have entries that
2283 * metaslab_sync_done() would try to re-add later.
2284 *
2285 * That's why before dropping the lock we remember the synced length
2286 * of the metaslab and read up to that point of the space map,
2287 * ignoring entries appended by metaslab_sync() that happen after we
2288 * drop the lock.
2289 */
2290 uint64_t length = msp->ms_synced_length;
2291 mutex_exit(&msp->ms_lock);
2292
2293 hrtime_t load_start = gethrtime();
2294 metaslab_rt_arg_t *mrap;
2295 if (msp->ms_allocatable->rt_arg == NULL) {
2296 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2297 } else {
2298 mrap = msp->ms_allocatable->rt_arg;
2299 msp->ms_allocatable->rt_ops = NULL;
2300 msp->ms_allocatable->rt_arg = NULL;
2301 }
2302 mrap->mra_bt = &msp->ms_allocatable_by_size;
2303 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2304
2305 if (msp->ms_sm != NULL) {
2306 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2307 SM_FREE, length);
2308
2309 /* Now, populate the size-sorted tree. */
2310 metaslab_rt_create(msp->ms_allocatable, mrap);
2311 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2312 msp->ms_allocatable->rt_arg = mrap;
2313
2314 struct mssa_arg arg = {0};
2315 arg.rt = msp->ms_allocatable;
2316 arg.mra = mrap;
2317 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2318 &arg);
2319 } else {
2320 /*
2321 * Add the size-sorted tree first, since we don't need to load
2322 * the metaslab from the spacemap.
2323 */
2324 metaslab_rt_create(msp->ms_allocatable, mrap);
2325 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2326 msp->ms_allocatable->rt_arg = mrap;
2327 /*
2328 * The space map has not been allocated yet, so treat
2329 * all the space in the metaslab as free and add it to the
2330 * ms_allocatable tree.
2331 */
2332 range_tree_add(msp->ms_allocatable,
2333 msp->ms_start, msp->ms_size);
2334
2335 if (msp->ms_new) {
2336 /*
2337 * If the ms_sm doesn't exist, this means that this
2338 * metaslab hasn't gone through metaslab_sync() and
2339 * thus has never been dirtied. So we shouldn't
2340 * expect any unflushed allocs or frees from previous
2341 * TXGs.
2342 */
2343 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2344 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2345 }
2346 }
2347
2348 /*
2349 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2350 * changing the ms_sm (or log_sm) and the metaslab's range trees
2351 * while we are about to use them and populate the ms_allocatable.
2352 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2353 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2354 */
2355 mutex_enter(&msp->ms_sync_lock);
2356 mutex_enter(&msp->ms_lock);
2357
2358 ASSERT(!msp->ms_condensing);
2359 ASSERT(!msp->ms_flushing);
2360
2361 if (error != 0) {
2362 mutex_exit(&msp->ms_sync_lock);
2363 return (error);
2364 }
2365
2366 ASSERT3P(msp->ms_group, !=, NULL);
2367 msp->ms_loaded = B_TRUE;
2368
2369 /*
2370 * Apply all the unflushed changes to ms_allocatable right
2371 * away so any manipulations we do below have a clear view
2372 * of what is allocated and what is free.
2373 */
2374 range_tree_walk(msp->ms_unflushed_allocs,
2375 range_tree_remove, msp->ms_allocatable);
2376 range_tree_walk(msp->ms_unflushed_frees,
2377 range_tree_add, msp->ms_allocatable);
2378
2379 ASSERT3P(msp->ms_group, !=, NULL);
2380 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2381 if (spa_syncing_log_sm(spa) != NULL) {
2382 ASSERT(spa_feature_is_enabled(spa,
2383 SPA_FEATURE_LOG_SPACEMAP));
2384
2385 /*
2386 * If we use a log space map we add all the segments
2387 * that are in ms_unflushed_frees so they are available
2388 * for allocation.
2389 *
2390 * ms_allocatable needs to contain all free segments
2391 * that are ready for allocations (thus not segments
2392 * from ms_freeing, ms_freed, and the ms_defer trees).
2393 * But if we grab the lock in this code path at a sync
2394 * pass later that 1, then it also contains the
2395 * segments of ms_freed (they were added to it earlier
2396 * in this path through ms_unflushed_frees). So we
2397 * need to remove all the segments that exist in
2398 * ms_freed from ms_allocatable as they will be added
2399 * later in metaslab_sync_done().
2400 *
2401 * When there's no log space map, the ms_allocatable
2402 * correctly doesn't contain any segments that exist
2403 * in ms_freed [see ms_synced_length].
2404 */
2405 range_tree_walk(msp->ms_freed,
2406 range_tree_remove, msp->ms_allocatable);
2407 }
2408
2409 /*
2410 * If we are not using the log space map, ms_allocatable
2411 * contains the segments that exist in the ms_defer trees
2412 * [see ms_synced_length]. Thus we need to remove them
2413 * from ms_allocatable as they will be added again in
2414 * metaslab_sync_done().
2415 *
2416 * If we are using the log space map, ms_allocatable still
2417 * contains the segments that exist in the ms_defer trees.
2418 * Not because it read them through the ms_sm though. But
2419 * because these segments are part of ms_unflushed_frees
2420 * whose segments we add to ms_allocatable earlier in this
2421 * code path.
2422 */
2423 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2424 range_tree_walk(msp->ms_defer[t],
2425 range_tree_remove, msp->ms_allocatable);
2426 }
2427
2428 /*
2429 * Call metaslab_recalculate_weight_and_sort() now that the
2430 * metaslab is loaded so we get the metaslab's real weight.
2431 *
2432 * Unless this metaslab was created with older software and
2433 * has not yet been converted to use segment-based weight, we
2434 * expect the new weight to be better or equal to the weight
2435 * that the metaslab had while it was not loaded. This is
2436 * because the old weight does not take into account the
2437 * consolidation of adjacent segments between TXGs. [see
2438 * comment for ms_synchist and ms_deferhist[] for more info]
2439 */
2440 uint64_t weight = msp->ms_weight;
2441 uint64_t max_size = msp->ms_max_size;
2442 metaslab_recalculate_weight_and_sort(msp);
2443 if (!WEIGHT_IS_SPACEBASED(weight))
2444 ASSERT3U(weight, <=, msp->ms_weight);
2445 msp->ms_max_size = metaslab_largest_allocatable(msp);
2446 ASSERT3U(max_size, <=, msp->ms_max_size);
2447 hrtime_t load_end = gethrtime();
2448 msp->ms_load_time = load_end;
2449 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2450 "ms_id %llu, smp_length %llu, "
2451 "unflushed_allocs %llu, unflushed_frees %llu, "
2452 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2453 "loading_time %lld ms, ms_max_size %llu, "
2454 "max size error %lld, "
2455 "old_weight %llx, new_weight %llx",
2456 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2457 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2458 (u_longlong_t)msp->ms_id,
2459 (u_longlong_t)space_map_length(msp->ms_sm),
2460 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2461 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2462 (u_longlong_t)range_tree_space(msp->ms_freed),
2463 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2464 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2465 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2466 (longlong_t)((load_end - load_start) / 1000000),
2467 (u_longlong_t)msp->ms_max_size,
2468 (u_longlong_t)msp->ms_max_size - max_size,
2469 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2470
2471 metaslab_verify_space(msp, spa_syncing_txg(spa));
2472 mutex_exit(&msp->ms_sync_lock);
2473 return (0);
2474 }
2475
2476 int
2477 metaslab_load(metaslab_t *msp)
2478 {
2479 ASSERT(MUTEX_HELD(&msp->ms_lock));
2480
2481 /*
2482 * There may be another thread loading the same metaslab, if that's
2483 * the case just wait until the other thread is done and return.
2484 */
2485 metaslab_load_wait(msp);
2486 if (msp->ms_loaded)
2487 return (0);
2488 VERIFY(!msp->ms_loading);
2489 ASSERT(!msp->ms_condensing);
2490
2491 /*
2492 * We set the loading flag BEFORE potentially dropping the lock to
2493 * wait for an ongoing flush (see ms_flushing below). This way other
2494 * threads know that there is already a thread that is loading this
2495 * metaslab.
2496 */
2497 msp->ms_loading = B_TRUE;
2498
2499 /*
2500 * Wait for any in-progress flushing to finish as we drop the ms_lock
2501 * both here (during space_map_load()) and in metaslab_flush() (when
2502 * we flush our changes to the ms_sm).
2503 */
2504 if (msp->ms_flushing)
2505 metaslab_flush_wait(msp);
2506
2507 /*
2508 * In the possibility that we were waiting for the metaslab to be
2509 * flushed (where we temporarily dropped the ms_lock), ensure that
2510 * no one else loaded the metaslab somehow.
2511 */
2512 ASSERT(!msp->ms_loaded);
2513
2514 /*
2515 * If we're loading a metaslab in the normal class, consider evicting
2516 * another one to keep our memory usage under the limit defined by the
2517 * zfs_metaslab_mem_limit tunable.
2518 */
2519 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2520 msp->ms_group->mg_class) {
2521 metaslab_potentially_evict(msp->ms_group->mg_class);
2522 }
2523
2524 int error = metaslab_load_impl(msp);
2525
2526 ASSERT(MUTEX_HELD(&msp->ms_lock));
2527 msp->ms_loading = B_FALSE;
2528 cv_broadcast(&msp->ms_load_cv);
2529
2530 return (error);
2531 }
2532
2533 void
2534 metaslab_unload(metaslab_t *msp)
2535 {
2536 ASSERT(MUTEX_HELD(&msp->ms_lock));
2537
2538 /*
2539 * This can happen if a metaslab is selected for eviction (in
2540 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2541 * metaslab_class_evict_old).
2542 */
2543 if (!msp->ms_loaded)
2544 return;
2545
2546 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2547 msp->ms_loaded = B_FALSE;
2548 msp->ms_unload_time = gethrtime();
2549
2550 msp->ms_activation_weight = 0;
2551 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2552
2553 if (msp->ms_group != NULL) {
2554 metaslab_class_t *mc = msp->ms_group->mg_class;
2555 multilist_sublist_t *mls =
2556 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2557 if (multilist_link_active(&msp->ms_class_txg_node))
2558 multilist_sublist_remove(mls, msp);
2559 multilist_sublist_unlock(mls);
2560
2561 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2562 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2563 "ms_id %llu, weight %llx, "
2564 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2565 "loaded %llu ms ago, max_size %llu",
2566 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2567 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2568 (u_longlong_t)msp->ms_id,
2569 (u_longlong_t)msp->ms_weight,
2570 (u_longlong_t)msp->ms_selected_txg,
2571 (u_longlong_t)(msp->ms_unload_time -
2572 msp->ms_selected_time) / 1000 / 1000,
2573 (u_longlong_t)msp->ms_alloc_txg,
2574 (u_longlong_t)(msp->ms_unload_time -
2575 msp->ms_load_time) / 1000 / 1000,
2576 (u_longlong_t)msp->ms_max_size);
2577 }
2578
2579 /*
2580 * We explicitly recalculate the metaslab's weight based on its space
2581 * map (as it is now not loaded). We want unload metaslabs to always
2582 * have their weights calculated from the space map histograms, while
2583 * loaded ones have it calculated from their in-core range tree
2584 * [see metaslab_load()]. This way, the weight reflects the information
2585 * available in-core, whether it is loaded or not.
2586 *
2587 * If ms_group == NULL means that we came here from metaslab_fini(),
2588 * at which point it doesn't make sense for us to do the recalculation
2589 * and the sorting.
2590 */
2591 if (msp->ms_group != NULL)
2592 metaslab_recalculate_weight_and_sort(msp);
2593 }
2594
2595 /*
2596 * We want to optimize the memory use of the per-metaslab range
2597 * trees. To do this, we store the segments in the range trees in
2598 * units of sectors, zero-indexing from the start of the metaslab. If
2599 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2600 * the ranges using two uint32_ts, rather than two uint64_ts.
2601 */
2602 range_seg_type_t
2603 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2604 uint64_t *start, uint64_t *shift)
2605 {
2606 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2607 !zfs_metaslab_force_large_segs) {
2608 *shift = vdev->vdev_ashift;
2609 *start = msp->ms_start;
2610 return (RANGE_SEG32);
2611 } else {
2612 *shift = 0;
2613 *start = 0;
2614 return (RANGE_SEG64);
2615 }
2616 }
2617
2618 void
2619 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2620 {
2621 ASSERT(MUTEX_HELD(&msp->ms_lock));
2622 metaslab_class_t *mc = msp->ms_group->mg_class;
2623 multilist_sublist_t *mls =
2624 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2625 if (multilist_link_active(&msp->ms_class_txg_node))
2626 multilist_sublist_remove(mls, msp);
2627 msp->ms_selected_txg = txg;
2628 msp->ms_selected_time = gethrtime();
2629 multilist_sublist_insert_tail(mls, msp);
2630 multilist_sublist_unlock(mls);
2631 }
2632
2633 void
2634 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2635 int64_t defer_delta, int64_t space_delta)
2636 {
2637 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2638
2639 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2640 ASSERT(vd->vdev_ms_count != 0);
2641
2642 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2643 vdev_deflated_space(vd, space_delta));
2644 }
2645
2646 int
2647 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2648 uint64_t txg, metaslab_t **msp)
2649 {
2650 vdev_t *vd = mg->mg_vd;
2651 spa_t *spa = vd->vdev_spa;
2652 objset_t *mos = spa->spa_meta_objset;
2653 metaslab_t *ms;
2654 int error;
2655
2656 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2657 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2658 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2659 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2660 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2661 multilist_link_init(&ms->ms_class_txg_node);
2662
2663 ms->ms_id = id;
2664 ms->ms_start = id << vd->vdev_ms_shift;
2665 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2666 ms->ms_allocator = -1;
2667 ms->ms_new = B_TRUE;
2668
2669 vdev_ops_t *ops = vd->vdev_ops;
2670 if (ops->vdev_op_metaslab_init != NULL)
2671 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2672
2673 /*
2674 * We only open space map objects that already exist. All others
2675 * will be opened when we finally allocate an object for it. For
2676 * readonly pools there is no need to open the space map object.
2677 *
2678 * Note:
2679 * When called from vdev_expand(), we can't call into the DMU as
2680 * we are holding the spa_config_lock as a writer and we would
2681 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2682 * that case, the object parameter is zero though, so we won't
2683 * call into the DMU.
2684 */
2685 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2686 !spa->spa_read_spacemaps)) {
2687 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2688 ms->ms_size, vd->vdev_ashift);
2689
2690 if (error != 0) {
2691 kmem_free(ms, sizeof (metaslab_t));
2692 return (error);
2693 }
2694
2695 ASSERT(ms->ms_sm != NULL);
2696 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2697 }
2698
2699 uint64_t shift, start;
2700 range_seg_type_t type =
2701 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2702
2703 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2704 for (int t = 0; t < TXG_SIZE; t++) {
2705 ms->ms_allocating[t] = range_tree_create(NULL, type,
2706 NULL, start, shift);
2707 }
2708 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2709 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2710 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2711 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2712 start, shift);
2713 }
2714 ms->ms_checkpointing =
2715 range_tree_create(NULL, type, NULL, start, shift);
2716 ms->ms_unflushed_allocs =
2717 range_tree_create(NULL, type, NULL, start, shift);
2718
2719 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2720 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2721 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2722 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2723 type, mrap, start, shift);
2724
2725 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2726
2727 metaslab_group_add(mg, ms);
2728 metaslab_set_fragmentation(ms, B_FALSE);
2729
2730 /*
2731 * If we're opening an existing pool (txg == 0) or creating
2732 * a new one (txg == TXG_INITIAL), all space is available now.
2733 * If we're adding space to an existing pool, the new space
2734 * does not become available until after this txg has synced.
2735 * The metaslab's weight will also be initialized when we sync
2736 * out this txg. This ensures that we don't attempt to allocate
2737 * from it before we have initialized it completely.
2738 */
2739 if (txg <= TXG_INITIAL) {
2740 metaslab_sync_done(ms, 0);
2741 metaslab_space_update(vd, mg->mg_class,
2742 metaslab_allocated_space(ms), 0, 0);
2743 }
2744
2745 if (txg != 0) {
2746 vdev_dirty(vd, 0, NULL, txg);
2747 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2748 }
2749
2750 *msp = ms;
2751
2752 return (0);
2753 }
2754
2755 static void
2756 metaslab_fini_flush_data(metaslab_t *msp)
2757 {
2758 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2759
2760 if (metaslab_unflushed_txg(msp) == 0) {
2761 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2762 ==, NULL);
2763 return;
2764 }
2765 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2766
2767 mutex_enter(&spa->spa_flushed_ms_lock);
2768 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2769 mutex_exit(&spa->spa_flushed_ms_lock);
2770
2771 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2772 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2773 metaslab_unflushed_dirty(msp));
2774 }
2775
2776 uint64_t
2777 metaslab_unflushed_changes_memused(metaslab_t *ms)
2778 {
2779 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2780 range_tree_numsegs(ms->ms_unflushed_frees)) *
2781 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2782 }
2783
2784 void
2785 metaslab_fini(metaslab_t *msp)
2786 {
2787 metaslab_group_t *mg = msp->ms_group;
2788 vdev_t *vd = mg->mg_vd;
2789 spa_t *spa = vd->vdev_spa;
2790
2791 metaslab_fini_flush_data(msp);
2792
2793 metaslab_group_remove(mg, msp);
2794
2795 mutex_enter(&msp->ms_lock);
2796 VERIFY(msp->ms_group == NULL);
2797
2798 /*
2799 * If this metaslab hasn't been through metaslab_sync_done() yet its
2800 * space hasn't been accounted for in its vdev and doesn't need to be
2801 * subtracted.
2802 */
2803 if (!msp->ms_new) {
2804 metaslab_space_update(vd, mg->mg_class,
2805 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2806
2807 }
2808 space_map_close(msp->ms_sm);
2809 msp->ms_sm = NULL;
2810
2811 metaslab_unload(msp);
2812
2813 range_tree_destroy(msp->ms_allocatable);
2814 range_tree_destroy(msp->ms_freeing);
2815 range_tree_destroy(msp->ms_freed);
2816
2817 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2818 metaslab_unflushed_changes_memused(msp));
2819 spa->spa_unflushed_stats.sus_memused -=
2820 metaslab_unflushed_changes_memused(msp);
2821 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2822 range_tree_destroy(msp->ms_unflushed_allocs);
2823 range_tree_destroy(msp->ms_checkpointing);
2824 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2825 range_tree_destroy(msp->ms_unflushed_frees);
2826
2827 for (int t = 0; t < TXG_SIZE; t++) {
2828 range_tree_destroy(msp->ms_allocating[t]);
2829 }
2830 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2831 range_tree_destroy(msp->ms_defer[t]);
2832 }
2833 ASSERT0(msp->ms_deferspace);
2834
2835 for (int t = 0; t < TXG_SIZE; t++)
2836 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2837
2838 range_tree_vacate(msp->ms_trim, NULL, NULL);
2839 range_tree_destroy(msp->ms_trim);
2840
2841 mutex_exit(&msp->ms_lock);
2842 cv_destroy(&msp->ms_load_cv);
2843 cv_destroy(&msp->ms_flush_cv);
2844 mutex_destroy(&msp->ms_lock);
2845 mutex_destroy(&msp->ms_sync_lock);
2846 ASSERT3U(msp->ms_allocator, ==, -1);
2847
2848 kmem_free(msp, sizeof (metaslab_t));
2849 }
2850
2851 #define FRAGMENTATION_TABLE_SIZE 17
2852
2853 /*
2854 * This table defines a segment size based fragmentation metric that will
2855 * allow each metaslab to derive its own fragmentation value. This is done
2856 * by calculating the space in each bucket of the spacemap histogram and
2857 * multiplying that by the fragmentation metric in this table. Doing
2858 * this for all buckets and dividing it by the total amount of free
2859 * space in this metaslab (i.e. the total free space in all buckets) gives
2860 * us the fragmentation metric. This means that a high fragmentation metric
2861 * equates to most of the free space being comprised of small segments.
2862 * Conversely, if the metric is low, then most of the free space is in
2863 * large segments. A 10% change in fragmentation equates to approximately
2864 * double the number of segments.
2865 *
2866 * This table defines 0% fragmented space using 16MB segments. Testing has
2867 * shown that segments that are greater than or equal to 16MB do not suffer
2868 * from drastic performance problems. Using this value, we derive the rest
2869 * of the table. Since the fragmentation value is never stored on disk, it
2870 * is possible to change these calculations in the future.
2871 */
2872 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2873 100, /* 512B */
2874 100, /* 1K */
2875 98, /* 2K */
2876 95, /* 4K */
2877 90, /* 8K */
2878 80, /* 16K */
2879 70, /* 32K */
2880 60, /* 64K */
2881 50, /* 128K */
2882 40, /* 256K */
2883 30, /* 512K */
2884 20, /* 1M */
2885 15, /* 2M */
2886 10, /* 4M */
2887 5, /* 8M */
2888 0 /* 16M */
2889 };
2890
2891 /*
2892 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2893 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2894 * been upgraded and does not support this metric. Otherwise, the return
2895 * value should be in the range [0, 100].
2896 */
2897 static void
2898 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2899 {
2900 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2901 uint64_t fragmentation = 0;
2902 uint64_t total = 0;
2903 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2904 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2905
2906 if (!feature_enabled) {
2907 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2908 return;
2909 }
2910
2911 /*
2912 * A null space map means that the entire metaslab is free
2913 * and thus is not fragmented.
2914 */
2915 if (msp->ms_sm == NULL) {
2916 msp->ms_fragmentation = 0;
2917 return;
2918 }
2919
2920 /*
2921 * If this metaslab's space map has not been upgraded, flag it
2922 * so that we upgrade next time we encounter it.
2923 */
2924 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2925 uint64_t txg = spa_syncing_txg(spa);
2926 vdev_t *vd = msp->ms_group->mg_vd;
2927
2928 /*
2929 * If we've reached the final dirty txg, then we must
2930 * be shutting down the pool. We don't want to dirty
2931 * any data past this point so skip setting the condense
2932 * flag. We can retry this action the next time the pool
2933 * is imported. We also skip marking this metaslab for
2934 * condensing if the caller has explicitly set nodirty.
2935 */
2936 if (!nodirty &&
2937 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2938 msp->ms_condense_wanted = B_TRUE;
2939 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2940 zfs_dbgmsg("txg %llu, requesting force condense: "
2941 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2942 (u_longlong_t)msp->ms_id,
2943 (u_longlong_t)vd->vdev_id);
2944 }
2945 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2946 return;
2947 }
2948
2949 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2950 uint64_t space = 0;
2951 uint8_t shift = msp->ms_sm->sm_shift;
2952
2953 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2954 FRAGMENTATION_TABLE_SIZE - 1);
2955
2956 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2957 continue;
2958
2959 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2960 total += space;
2961
2962 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2963 fragmentation += space * zfs_frag_table[idx];
2964 }
2965
2966 if (total > 0)
2967 fragmentation /= total;
2968 ASSERT3U(fragmentation, <=, 100);
2969
2970 msp->ms_fragmentation = fragmentation;
2971 }
2972
2973 /*
2974 * Compute a weight -- a selection preference value -- for the given metaslab.
2975 * This is based on the amount of free space, the level of fragmentation,
2976 * the LBA range, and whether the metaslab is loaded.
2977 */
2978 static uint64_t
2979 metaslab_space_weight(metaslab_t *msp)
2980 {
2981 metaslab_group_t *mg = msp->ms_group;
2982 vdev_t *vd = mg->mg_vd;
2983 uint64_t weight, space;
2984
2985 ASSERT(MUTEX_HELD(&msp->ms_lock));
2986
2987 /*
2988 * The baseline weight is the metaslab's free space.
2989 */
2990 space = msp->ms_size - metaslab_allocated_space(msp);
2991
2992 if (metaslab_fragmentation_factor_enabled &&
2993 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2994 /*
2995 * Use the fragmentation information to inversely scale
2996 * down the baseline weight. We need to ensure that we
2997 * don't exclude this metaslab completely when it's 100%
2998 * fragmented. To avoid this we reduce the fragmented value
2999 * by 1.
3000 */
3001 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3002
3003 /*
3004 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3005 * this metaslab again. The fragmentation metric may have
3006 * decreased the space to something smaller than
3007 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3008 * so that we can consume any remaining space.
3009 */
3010 if (space > 0 && space < SPA_MINBLOCKSIZE)
3011 space = SPA_MINBLOCKSIZE;
3012 }
3013 weight = space;
3014
3015 /*
3016 * Modern disks have uniform bit density and constant angular velocity.
3017 * Therefore, the outer recording zones are faster (higher bandwidth)
3018 * than the inner zones by the ratio of outer to inner track diameter,
3019 * which is typically around 2:1. We account for this by assigning
3020 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3021 * In effect, this means that we'll select the metaslab with the most
3022 * free bandwidth rather than simply the one with the most free space.
3023 */
3024 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3025 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3026 ASSERT(weight >= space && weight <= 2 * space);
3027 }
3028
3029 /*
3030 * If this metaslab is one we're actively using, adjust its
3031 * weight to make it preferable to any inactive metaslab so
3032 * we'll polish it off. If the fragmentation on this metaslab
3033 * has exceed our threshold, then don't mark it active.
3034 */
3035 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3036 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3037 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3038 }
3039
3040 WEIGHT_SET_SPACEBASED(weight);
3041 return (weight);
3042 }
3043
3044 /*
3045 * Return the weight of the specified metaslab, according to the segment-based
3046 * weighting algorithm. The metaslab must be loaded. This function can
3047 * be called within a sync pass since it relies only on the metaslab's
3048 * range tree which is always accurate when the metaslab is loaded.
3049 */
3050 static uint64_t
3051 metaslab_weight_from_range_tree(metaslab_t *msp)
3052 {
3053 uint64_t weight = 0;
3054 uint32_t segments = 0;
3055
3056 ASSERT(msp->ms_loaded);
3057
3058 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3059 i--) {
3060 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3061 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3062
3063 segments <<= 1;
3064 segments += msp->ms_allocatable->rt_histogram[i];
3065
3066 /*
3067 * The range tree provides more precision than the space map
3068 * and must be downgraded so that all values fit within the
3069 * space map's histogram. This allows us to compare loaded
3070 * vs. unloaded metaslabs to determine which metaslab is
3071 * considered "best".
3072 */
3073 if (i > max_idx)
3074 continue;
3075
3076 if (segments != 0) {
3077 WEIGHT_SET_COUNT(weight, segments);
3078 WEIGHT_SET_INDEX(weight, i);
3079 WEIGHT_SET_ACTIVE(weight, 0);
3080 break;
3081 }
3082 }
3083 return (weight);
3084 }
3085
3086 /*
3087 * Calculate the weight based on the on-disk histogram. Should be applied
3088 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3089 * give results consistent with the on-disk state
3090 */
3091 static uint64_t
3092 metaslab_weight_from_spacemap(metaslab_t *msp)
3093 {
3094 space_map_t *sm = msp->ms_sm;
3095 ASSERT(!msp->ms_loaded);
3096 ASSERT(sm != NULL);
3097 ASSERT3U(space_map_object(sm), !=, 0);
3098 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3099
3100 /*
3101 * Create a joint histogram from all the segments that have made
3102 * it to the metaslab's space map histogram, that are not yet
3103 * available for allocation because they are still in the freeing
3104 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3105 * these segments from the space map's histogram to get a more
3106 * accurate weight.
3107 */
3108 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3109 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3110 deferspace_histogram[i] += msp->ms_synchist[i];
3111 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3112 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3113 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3114 }
3115 }
3116
3117 uint64_t weight = 0;
3118 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3119 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3120 deferspace_histogram[i]);
3121 uint64_t count =
3122 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3123 if (count != 0) {
3124 WEIGHT_SET_COUNT(weight, count);
3125 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3126 WEIGHT_SET_ACTIVE(weight, 0);
3127 break;
3128 }
3129 }
3130 return (weight);
3131 }
3132
3133 /*
3134 * Compute a segment-based weight for the specified metaslab. The weight
3135 * is determined by highest bucket in the histogram. The information
3136 * for the highest bucket is encoded into the weight value.
3137 */
3138 static uint64_t
3139 metaslab_segment_weight(metaslab_t *msp)
3140 {
3141 metaslab_group_t *mg = msp->ms_group;
3142 uint64_t weight = 0;
3143 uint8_t shift = mg->mg_vd->vdev_ashift;
3144
3145 ASSERT(MUTEX_HELD(&msp->ms_lock));
3146
3147 /*
3148 * The metaslab is completely free.
3149 */
3150 if (metaslab_allocated_space(msp) == 0) {
3151 int idx = highbit64(msp->ms_size) - 1;
3152 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3153
3154 if (idx < max_idx) {
3155 WEIGHT_SET_COUNT(weight, 1ULL);
3156 WEIGHT_SET_INDEX(weight, idx);
3157 } else {
3158 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3159 WEIGHT_SET_INDEX(weight, max_idx);
3160 }
3161 WEIGHT_SET_ACTIVE(weight, 0);
3162 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3163 return (weight);
3164 }
3165
3166 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3167
3168 /*
3169 * If the metaslab is fully allocated then just make the weight 0.
3170 */
3171 if (metaslab_allocated_space(msp) == msp->ms_size)
3172 return (0);
3173 /*
3174 * If the metaslab is already loaded, then use the range tree to
3175 * determine the weight. Otherwise, we rely on the space map information
3176 * to generate the weight.
3177 */
3178 if (msp->ms_loaded) {
3179 weight = metaslab_weight_from_range_tree(msp);
3180 } else {
3181 weight = metaslab_weight_from_spacemap(msp);
3182 }
3183
3184 /*
3185 * If the metaslab was active the last time we calculated its weight
3186 * then keep it active. We want to consume the entire region that
3187 * is associated with this weight.
3188 */
3189 if (msp->ms_activation_weight != 0 && weight != 0)
3190 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3191 return (weight);
3192 }
3193
3194 /*
3195 * Determine if we should attempt to allocate from this metaslab. If the
3196 * metaslab is loaded, then we can determine if the desired allocation
3197 * can be satisfied by looking at the size of the maximum free segment
3198 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3199 * weight. For segment-based weighting we can determine the maximum
3200 * allocation based on the index encoded in its value. For space-based
3201 * weights we rely on the entire weight (excluding the weight-type bit).
3202 */
3203 static boolean_t
3204 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3205 {
3206 /*
3207 * If the metaslab is loaded, ms_max_size is definitive and we can use
3208 * the fast check. If it's not, the ms_max_size is a lower bound (once
3209 * set), and we should use the fast check as long as we're not in
3210 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3211 * seconds since the metaslab was unloaded.
3212 */
3213 if (msp->ms_loaded ||
3214 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3215 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3216 return (msp->ms_max_size >= asize);
3217
3218 boolean_t should_allocate;
3219 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3220 /*
3221 * The metaslab segment weight indicates segments in the
3222 * range [2^i, 2^(i+1)), where i is the index in the weight.
3223 * Since the asize might be in the middle of the range, we
3224 * should attempt the allocation if asize < 2^(i+1).
3225 */
3226 should_allocate = (asize <
3227 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3228 } else {
3229 should_allocate = (asize <=
3230 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3231 }
3232
3233 return (should_allocate);
3234 }
3235
3236 static uint64_t
3237 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3238 {
3239 vdev_t *vd = msp->ms_group->mg_vd;
3240 spa_t *spa = vd->vdev_spa;
3241 uint64_t weight;
3242
3243 ASSERT(MUTEX_HELD(&msp->ms_lock));
3244
3245 metaslab_set_fragmentation(msp, nodirty);
3246
3247 /*
3248 * Update the maximum size. If the metaslab is loaded, this will
3249 * ensure that we get an accurate maximum size if newly freed space
3250 * has been added back into the free tree. If the metaslab is
3251 * unloaded, we check if there's a larger free segment in the
3252 * unflushed frees. This is a lower bound on the largest allocatable
3253 * segment size. Coalescing of adjacent entries may reveal larger
3254 * allocatable segments, but we aren't aware of those until loading
3255 * the space map into a range tree.
3256 */
3257 if (msp->ms_loaded) {
3258 msp->ms_max_size = metaslab_largest_allocatable(msp);
3259 } else {
3260 msp->ms_max_size = MAX(msp->ms_max_size,
3261 metaslab_largest_unflushed_free(msp));
3262 }
3263
3264 /*
3265 * Segment-based weighting requires space map histogram support.
3266 */
3267 if (zfs_metaslab_segment_weight_enabled &&
3268 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3269 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3270 sizeof (space_map_phys_t))) {
3271 weight = metaslab_segment_weight(msp);
3272 } else {
3273 weight = metaslab_space_weight(msp);
3274 }
3275 return (weight);
3276 }
3277
3278 void
3279 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3280 {
3281 ASSERT(MUTEX_HELD(&msp->ms_lock));
3282
3283 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3284 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3285 metaslab_group_sort(msp->ms_group, msp,
3286 metaslab_weight(msp, B_FALSE) | was_active);
3287 }
3288
3289 static int
3290 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3291 int allocator, uint64_t activation_weight)
3292 {
3293 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3294 ASSERT(MUTEX_HELD(&msp->ms_lock));
3295
3296 /*
3297 * If we're activating for the claim code, we don't want to actually
3298 * set the metaslab up for a specific allocator.
3299 */
3300 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3301 ASSERT0(msp->ms_activation_weight);
3302 msp->ms_activation_weight = msp->ms_weight;
3303 metaslab_group_sort(mg, msp, msp->ms_weight |
3304 activation_weight);
3305 return (0);
3306 }
3307
3308 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3309 &mga->mga_primary : &mga->mga_secondary);
3310
3311 mutex_enter(&mg->mg_lock);
3312 if (*mspp != NULL) {
3313 mutex_exit(&mg->mg_lock);
3314 return (EEXIST);
3315 }
3316
3317 *mspp = msp;
3318 ASSERT3S(msp->ms_allocator, ==, -1);
3319 msp->ms_allocator = allocator;
3320 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3321
3322 ASSERT0(msp->ms_activation_weight);
3323 msp->ms_activation_weight = msp->ms_weight;
3324 metaslab_group_sort_impl(mg, msp,
3325 msp->ms_weight | activation_weight);
3326 mutex_exit(&mg->mg_lock);
3327
3328 return (0);
3329 }
3330
3331 static int
3332 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3333 {
3334 ASSERT(MUTEX_HELD(&msp->ms_lock));
3335
3336 /*
3337 * The current metaslab is already activated for us so there
3338 * is nothing to do. Already activated though, doesn't mean
3339 * that this metaslab is activated for our allocator nor our
3340 * requested activation weight. The metaslab could have started
3341 * as an active one for our allocator but changed allocators
3342 * while we were waiting to grab its ms_lock or we stole it
3343 * [see find_valid_metaslab()]. This means that there is a
3344 * possibility of passivating a metaslab of another allocator
3345 * or from a different activation mask, from this thread.
3346 */
3347 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3348 ASSERT(msp->ms_loaded);
3349 return (0);
3350 }
3351
3352 int error = metaslab_load(msp);
3353 if (error != 0) {
3354 metaslab_group_sort(msp->ms_group, msp, 0);
3355 return (error);
3356 }
3357
3358 /*
3359 * When entering metaslab_load() we may have dropped the
3360 * ms_lock because we were loading this metaslab, or we
3361 * were waiting for another thread to load it for us. In
3362 * that scenario, we recheck the weight of the metaslab
3363 * to see if it was activated by another thread.
3364 *
3365 * If the metaslab was activated for another allocator or
3366 * it was activated with a different activation weight (e.g.
3367 * we wanted to make it a primary but it was activated as
3368 * secondary) we return error (EBUSY).
3369 *
3370 * If the metaslab was activated for the same allocator
3371 * and requested activation mask, skip activating it.
3372 */
3373 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3374 if (msp->ms_allocator != allocator)
3375 return (EBUSY);
3376
3377 if ((msp->ms_weight & activation_weight) == 0)
3378 return (SET_ERROR(EBUSY));
3379
3380 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3381 msp->ms_primary);
3382 return (0);
3383 }
3384
3385 /*
3386 * If the metaslab has literally 0 space, it will have weight 0. In
3387 * that case, don't bother activating it. This can happen if the
3388 * metaslab had space during find_valid_metaslab, but another thread
3389 * loaded it and used all that space while we were waiting to grab the
3390 * lock.
3391 */
3392 if (msp->ms_weight == 0) {
3393 ASSERT0(range_tree_space(msp->ms_allocatable));
3394 return (SET_ERROR(ENOSPC));
3395 }
3396
3397 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3398 allocator, activation_weight)) != 0) {
3399 return (error);
3400 }
3401
3402 ASSERT(msp->ms_loaded);
3403 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3404
3405 return (0);
3406 }
3407
3408 static void
3409 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3410 uint64_t weight)
3411 {
3412 ASSERT(MUTEX_HELD(&msp->ms_lock));
3413 ASSERT(msp->ms_loaded);
3414
3415 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3416 metaslab_group_sort(mg, msp, weight);
3417 return;
3418 }
3419
3420 mutex_enter(&mg->mg_lock);
3421 ASSERT3P(msp->ms_group, ==, mg);
3422 ASSERT3S(0, <=, msp->ms_allocator);
3423 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3424
3425 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3426 if (msp->ms_primary) {
3427 ASSERT3P(mga->mga_primary, ==, msp);
3428 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3429 mga->mga_primary = NULL;
3430 } else {
3431 ASSERT3P(mga->mga_secondary, ==, msp);
3432 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3433 mga->mga_secondary = NULL;
3434 }
3435 msp->ms_allocator = -1;
3436 metaslab_group_sort_impl(mg, msp, weight);
3437 mutex_exit(&mg->mg_lock);
3438 }
3439
3440 static void
3441 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3442 {
3443 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3444
3445 /*
3446 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3447 * this metaslab again. In that case, it had better be empty,
3448 * or we would be leaving space on the table.
3449 */
3450 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3451 size >= SPA_MINBLOCKSIZE ||
3452 range_tree_space(msp->ms_allocatable) == 0);
3453 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3454
3455 ASSERT(msp->ms_activation_weight != 0);
3456 msp->ms_activation_weight = 0;
3457 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3458 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3459 }
3460
3461 /*
3462 * Segment-based metaslabs are activated once and remain active until
3463 * we either fail an allocation attempt (similar to space-based metaslabs)
3464 * or have exhausted the free space in zfs_metaslab_switch_threshold
3465 * buckets since the metaslab was activated. This function checks to see
3466 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3467 * metaslab and passivates it proactively. This will allow us to select a
3468 * metaslab with a larger contiguous region, if any, remaining within this
3469 * metaslab group. If we're in sync pass > 1, then we continue using this
3470 * metaslab so that we don't dirty more block and cause more sync passes.
3471 */
3472 static void
3473 metaslab_segment_may_passivate(metaslab_t *msp)
3474 {
3475 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3476
3477 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3478 return;
3479
3480 /*
3481 * Since we are in the middle of a sync pass, the most accurate
3482 * information that is accessible to us is the in-core range tree
3483 * histogram; calculate the new weight based on that information.
3484 */
3485 uint64_t weight = metaslab_weight_from_range_tree(msp);
3486 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3487 int current_idx = WEIGHT_GET_INDEX(weight);
3488
3489 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3490 metaslab_passivate(msp, weight);
3491 }
3492
3493 static void
3494 metaslab_preload(void *arg)
3495 {
3496 metaslab_t *msp = arg;
3497 metaslab_class_t *mc = msp->ms_group->mg_class;
3498 spa_t *spa = mc->mc_spa;
3499 fstrans_cookie_t cookie = spl_fstrans_mark();
3500
3501 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3502
3503 mutex_enter(&msp->ms_lock);
3504 (void) metaslab_load(msp);
3505 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3506 mutex_exit(&msp->ms_lock);
3507 spl_fstrans_unmark(cookie);
3508 }
3509
3510 static void
3511 metaslab_group_preload(metaslab_group_t *mg)
3512 {
3513 spa_t *spa = mg->mg_vd->vdev_spa;
3514 metaslab_t *msp;
3515 avl_tree_t *t = &mg->mg_metaslab_tree;
3516 int m = 0;
3517
3518 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3519 taskq_wait_outstanding(mg->mg_taskq, 0);
3520 return;
3521 }
3522
3523 mutex_enter(&mg->mg_lock);
3524
3525 /*
3526 * Load the next potential metaslabs
3527 */
3528 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3529 ASSERT3P(msp->ms_group, ==, mg);
3530
3531 /*
3532 * We preload only the maximum number of metaslabs specified
3533 * by metaslab_preload_limit. If a metaslab is being forced
3534 * to condense then we preload it too. This will ensure
3535 * that force condensing happens in the next txg.
3536 */
3537 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3538 continue;
3539 }
3540
3541 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3542 msp, TQ_SLEEP) != TASKQID_INVALID);
3543 }
3544 mutex_exit(&mg->mg_lock);
3545 }
3546
3547 /*
3548 * Determine if the space map's on-disk footprint is past our tolerance for
3549 * inefficiency. We would like to use the following criteria to make our
3550 * decision:
3551 *
3552 * 1. Do not condense if the size of the space map object would dramatically
3553 * increase as a result of writing out the free space range tree.
3554 *
3555 * 2. Condense if the on on-disk space map representation is at least
3556 * zfs_condense_pct/100 times the size of the optimal representation
3557 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3558 *
3559 * 3. Do not condense if the on-disk size of the space map does not actually
3560 * decrease.
3561 *
3562 * Unfortunately, we cannot compute the on-disk size of the space map in this
3563 * context because we cannot accurately compute the effects of compression, etc.
3564 * Instead, we apply the heuristic described in the block comment for
3565 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3566 * is greater than a threshold number of blocks.
3567 */
3568 static boolean_t
3569 metaslab_should_condense(metaslab_t *msp)
3570 {
3571 space_map_t *sm = msp->ms_sm;
3572 vdev_t *vd = msp->ms_group->mg_vd;
3573 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3574
3575 ASSERT(MUTEX_HELD(&msp->ms_lock));
3576 ASSERT(msp->ms_loaded);
3577 ASSERT(sm != NULL);
3578 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3579
3580 /*
3581 * We always condense metaslabs that are empty and metaslabs for
3582 * which a condense request has been made.
3583 */
3584 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3585 msp->ms_condense_wanted)
3586 return (B_TRUE);
3587
3588 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3589 uint64_t object_size = space_map_length(sm);
3590 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3591 msp->ms_allocatable, SM_NO_VDEVID);
3592
3593 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3594 object_size > zfs_metaslab_condense_block_threshold * record_size);
3595 }
3596
3597 /*
3598 * Condense the on-disk space map representation to its minimized form.
3599 * The minimized form consists of a small number of allocations followed
3600 * by the entries of the free range tree (ms_allocatable). The condensed
3601 * spacemap contains all the entries of previous TXGs (including those in
3602 * the pool-wide log spacemaps; thus this is effectively a superset of
3603 * metaslab_flush()), but this TXG's entries still need to be written.
3604 */
3605 static void
3606 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3607 {
3608 range_tree_t *condense_tree;
3609 space_map_t *sm = msp->ms_sm;
3610 uint64_t txg = dmu_tx_get_txg(tx);
3611 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3612
3613 ASSERT(MUTEX_HELD(&msp->ms_lock));
3614 ASSERT(msp->ms_loaded);
3615 ASSERT(msp->ms_sm != NULL);
3616
3617 /*
3618 * In order to condense the space map, we need to change it so it
3619 * only describes which segments are currently allocated and free.
3620 *
3621 * All the current free space resides in the ms_allocatable, all
3622 * the ms_defer trees, and all the ms_allocating trees. We ignore
3623 * ms_freed because it is empty because we're in sync pass 1. We
3624 * ignore ms_freeing because these changes are not yet reflected
3625 * in the spacemap (they will be written later this txg).
3626 *
3627 * So to truncate the space map to represent all the entries of
3628 * previous TXGs we do the following:
3629 *
3630 * 1] We create a range tree (condense tree) that is 100% empty.
3631 * 2] We add to it all segments found in the ms_defer trees
3632 * as those segments are marked as free in the original space
3633 * map. We do the same with the ms_allocating trees for the same
3634 * reason. Adding these segments should be a relatively
3635 * inexpensive operation since we expect these trees to have a
3636 * small number of nodes.
3637 * 3] We vacate any unflushed allocs, since they are not frees we
3638 * need to add to the condense tree. Then we vacate any
3639 * unflushed frees as they should already be part of ms_allocatable.
3640 * 4] At this point, we would ideally like to add all segments
3641 * in the ms_allocatable tree from the condense tree. This way
3642 * we would write all the entries of the condense tree as the
3643 * condensed space map, which would only contain freed
3644 * segments with everything else assumed to be allocated.
3645 *
3646 * Doing so can be prohibitively expensive as ms_allocatable can
3647 * be large, and therefore computationally expensive to add to
3648 * the condense_tree. Instead we first sync out an entry marking
3649 * everything as allocated, then the condense_tree and then the
3650 * ms_allocatable, in the condensed space map. While this is not
3651 * optimal, it is typically close to optimal and more importantly
3652 * much cheaper to compute.
3653 *
3654 * 5] Finally, as both of the unflushed trees were written to our
3655 * new and condensed metaslab space map, we basically flushed
3656 * all the unflushed changes to disk, thus we call
3657 * metaslab_flush_update().
3658 */
3659 ASSERT3U(spa_sync_pass(spa), ==, 1);
3660 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3661
3662 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3663 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3664 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3665 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3666 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3667 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3668 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3669
3670 msp->ms_condense_wanted = B_FALSE;
3671
3672 range_seg_type_t type;
3673 uint64_t shift, start;
3674 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3675 &start, &shift);
3676
3677 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3678
3679 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3680 range_tree_walk(msp->ms_defer[t],
3681 range_tree_add, condense_tree);
3682 }
3683
3684 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3685 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3686 range_tree_add, condense_tree);
3687 }
3688
3689 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3690 metaslab_unflushed_changes_memused(msp));
3691 spa->spa_unflushed_stats.sus_memused -=
3692 metaslab_unflushed_changes_memused(msp);
3693 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3694 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3695
3696 /*
3697 * We're about to drop the metaslab's lock thus allowing other
3698 * consumers to change it's content. Set the metaslab's ms_condensing
3699 * flag to ensure that allocations on this metaslab do not occur
3700 * while we're in the middle of committing it to disk. This is only
3701 * critical for ms_allocatable as all other range trees use per TXG
3702 * views of their content.
3703 */
3704 msp->ms_condensing = B_TRUE;
3705
3706 mutex_exit(&msp->ms_lock);
3707 uint64_t object = space_map_object(msp->ms_sm);
3708 space_map_truncate(sm,
3709 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3710 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3711
3712 /*
3713 * space_map_truncate() may have reallocated the spacemap object.
3714 * If so, update the vdev_ms_array.
3715 */
3716 if (space_map_object(msp->ms_sm) != object) {
3717 object = space_map_object(msp->ms_sm);
3718 dmu_write(spa->spa_meta_objset,
3719 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3720 msp->ms_id, sizeof (uint64_t), &object, tx);
3721 }
3722
3723 /*
3724 * Note:
3725 * When the log space map feature is enabled, each space map will
3726 * always have ALLOCS followed by FREES for each sync pass. This is
3727 * typically true even when the log space map feature is disabled,
3728 * except from the case where a metaslab goes through metaslab_sync()
3729 * and gets condensed. In that case the metaslab's space map will have
3730 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3731 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3732 * sync pass 1.
3733 */
3734 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3735 shift);
3736 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3737 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3738 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3739 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3740
3741 range_tree_vacate(condense_tree, NULL, NULL);
3742 range_tree_destroy(condense_tree);
3743 range_tree_vacate(tmp_tree, NULL, NULL);
3744 range_tree_destroy(tmp_tree);
3745 mutex_enter(&msp->ms_lock);
3746
3747 msp->ms_condensing = B_FALSE;
3748 metaslab_flush_update(msp, tx);
3749 }
3750
3751 static void
3752 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3753 {
3754 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3755 ASSERT(spa_syncing_log_sm(spa) != NULL);
3756 ASSERT(msp->ms_sm != NULL);
3757 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3758 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3759
3760 mutex_enter(&spa->spa_flushed_ms_lock);
3761 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3762 metaslab_set_unflushed_dirty(msp, B_TRUE);
3763 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3764 mutex_exit(&spa->spa_flushed_ms_lock);
3765
3766 spa_log_sm_increment_current_mscount(spa);
3767 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3768 }
3769
3770 void
3771 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3772 {
3773 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3774 ASSERT(spa_syncing_log_sm(spa) != NULL);
3775 ASSERT(msp->ms_sm != NULL);
3776 ASSERT(metaslab_unflushed_txg(msp) != 0);
3777 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3778 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3779 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3780
3781 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3782
3783 /* update metaslab's position in our flushing tree */
3784 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3785 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3786 mutex_enter(&spa->spa_flushed_ms_lock);
3787 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3788 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3789 metaslab_set_unflushed_dirty(msp, dirty);
3790 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3791 mutex_exit(&spa->spa_flushed_ms_lock);
3792
3793 /* update metaslab counts of spa_log_sm_t nodes */
3794 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3795 spa_log_sm_increment_current_mscount(spa);
3796
3797 /* update log space map summary */
3798 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3799 ms_prev_flushed_dirty);
3800 spa_log_summary_add_flushed_metaslab(spa, dirty);
3801
3802 /* cleanup obsolete logs if any */
3803 spa_cleanup_old_sm_logs(spa, tx);
3804 }
3805
3806 /*
3807 * Called when the metaslab has been flushed (its own spacemap now reflects
3808 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3809 * metadata and any pool-wide related log space map data (e.g. summary,
3810 * obsolete logs, etc..) to reflect that.
3811 */
3812 static void
3813 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3814 {
3815 metaslab_group_t *mg = msp->ms_group;
3816 spa_t *spa = mg->mg_vd->vdev_spa;
3817
3818 ASSERT(MUTEX_HELD(&msp->ms_lock));
3819
3820 ASSERT3U(spa_sync_pass(spa), ==, 1);
3821
3822 /*
3823 * Just because a metaslab got flushed, that doesn't mean that
3824 * it will pass through metaslab_sync_done(). Thus, make sure to
3825 * update ms_synced_length here in case it doesn't.
3826 */
3827 msp->ms_synced_length = space_map_length(msp->ms_sm);
3828
3829 /*
3830 * We may end up here from metaslab_condense() without the
3831 * feature being active. In that case this is a no-op.
3832 */
3833 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3834 metaslab_unflushed_txg(msp) == 0)
3835 return;
3836
3837 metaslab_unflushed_bump(msp, tx, B_FALSE);
3838 }
3839
3840 boolean_t
3841 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3842 {
3843 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3844
3845 ASSERT(MUTEX_HELD(&msp->ms_lock));
3846 ASSERT3U(spa_sync_pass(spa), ==, 1);
3847 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3848
3849 ASSERT(msp->ms_sm != NULL);
3850 ASSERT(metaslab_unflushed_txg(msp) != 0);
3851 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3852
3853 /*
3854 * There is nothing wrong with flushing the same metaslab twice, as
3855 * this codepath should work on that case. However, the current
3856 * flushing scheme makes sure to avoid this situation as we would be
3857 * making all these calls without having anything meaningful to write
3858 * to disk. We assert this behavior here.
3859 */
3860 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3861
3862 /*
3863 * We can not flush while loading, because then we would
3864 * not load the ms_unflushed_{allocs,frees}.
3865 */
3866 if (msp->ms_loading)
3867 return (B_FALSE);
3868
3869 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3870 metaslab_verify_weight_and_frag(msp);
3871
3872 /*
3873 * Metaslab condensing is effectively flushing. Therefore if the
3874 * metaslab can be condensed we can just condense it instead of
3875 * flushing it.
3876 *
3877 * Note that metaslab_condense() does call metaslab_flush_update()
3878 * so we can just return immediately after condensing. We also
3879 * don't need to care about setting ms_flushing or broadcasting
3880 * ms_flush_cv, even if we temporarily drop the ms_lock in
3881 * metaslab_condense(), as the metaslab is already loaded.
3882 */
3883 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3884 metaslab_group_t *mg = msp->ms_group;
3885
3886 /*
3887 * For all histogram operations below refer to the
3888 * comments of metaslab_sync() where we follow a
3889 * similar procedure.
3890 */
3891 metaslab_group_histogram_verify(mg);
3892 metaslab_class_histogram_verify(mg->mg_class);
3893 metaslab_group_histogram_remove(mg, msp);
3894
3895 metaslab_condense(msp, tx);
3896
3897 space_map_histogram_clear(msp->ms_sm);
3898 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3899 ASSERT(range_tree_is_empty(msp->ms_freed));
3900 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3901 space_map_histogram_add(msp->ms_sm,
3902 msp->ms_defer[t], tx);
3903 }
3904 metaslab_aux_histograms_update(msp);
3905
3906 metaslab_group_histogram_add(mg, msp);
3907 metaslab_group_histogram_verify(mg);
3908 metaslab_class_histogram_verify(mg->mg_class);
3909
3910 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3911
3912 /*
3913 * Since we recreated the histogram (and potentially
3914 * the ms_sm too while condensing) ensure that the
3915 * weight is updated too because we are not guaranteed
3916 * that this metaslab is dirty and will go through
3917 * metaslab_sync_done().
3918 */
3919 metaslab_recalculate_weight_and_sort(msp);
3920 return (B_TRUE);
3921 }
3922
3923 msp->ms_flushing = B_TRUE;
3924 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3925
3926 mutex_exit(&msp->ms_lock);
3927 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3928 SM_NO_VDEVID, tx);
3929 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3930 SM_NO_VDEVID, tx);
3931 mutex_enter(&msp->ms_lock);
3932
3933 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3934 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3935 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3936 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3937 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3938 spa_name(spa),
3939 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3940 (u_longlong_t)msp->ms_id,
3941 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3942 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3943 (u_longlong_t)(sm_len_after - sm_len_before));
3944 }
3945
3946 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3947 metaslab_unflushed_changes_memused(msp));
3948 spa->spa_unflushed_stats.sus_memused -=
3949 metaslab_unflushed_changes_memused(msp);
3950 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3951 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3952
3953 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3954 metaslab_verify_weight_and_frag(msp);
3955
3956 metaslab_flush_update(msp, tx);
3957
3958 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3959 metaslab_verify_weight_and_frag(msp);
3960
3961 msp->ms_flushing = B_FALSE;
3962 cv_broadcast(&msp->ms_flush_cv);
3963 return (B_TRUE);
3964 }
3965
3966 /*
3967 * Write a metaslab to disk in the context of the specified transaction group.
3968 */
3969 void
3970 metaslab_sync(metaslab_t *msp, uint64_t txg)
3971 {
3972 metaslab_group_t *mg = msp->ms_group;
3973 vdev_t *vd = mg->mg_vd;
3974 spa_t *spa = vd->vdev_spa;
3975 objset_t *mos = spa_meta_objset(spa);
3976 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3977 dmu_tx_t *tx;
3978
3979 ASSERT(!vd->vdev_ishole);
3980
3981 /*
3982 * This metaslab has just been added so there's no work to do now.
3983 */
3984 if (msp->ms_new) {
3985 ASSERT0(range_tree_space(alloctree));
3986 ASSERT0(range_tree_space(msp->ms_freeing));
3987 ASSERT0(range_tree_space(msp->ms_freed));
3988 ASSERT0(range_tree_space(msp->ms_checkpointing));
3989 ASSERT0(range_tree_space(msp->ms_trim));
3990 return;
3991 }
3992
3993 /*
3994 * Normally, we don't want to process a metaslab if there are no
3995 * allocations or frees to perform. However, if the metaslab is being
3996 * forced to condense, it's loaded and we're not beyond the final
3997 * dirty txg, we need to let it through. Not condensing beyond the
3998 * final dirty txg prevents an issue where metaslabs that need to be
3999 * condensed but were loaded for other reasons could cause a panic
4000 * here. By only checking the txg in that branch of the conditional,
4001 * we preserve the utility of the VERIFY statements in all other
4002 * cases.
4003 */
4004 if (range_tree_is_empty(alloctree) &&
4005 range_tree_is_empty(msp->ms_freeing) &&
4006 range_tree_is_empty(msp->ms_checkpointing) &&
4007 !(msp->ms_loaded && msp->ms_condense_wanted &&
4008 txg <= spa_final_dirty_txg(spa)))
4009 return;
4010
4011
4012 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4013
4014 /*
4015 * The only state that can actually be changing concurrently
4016 * with metaslab_sync() is the metaslab's ms_allocatable. No
4017 * other thread can be modifying this txg's alloc, freeing,
4018 * freed, or space_map_phys_t. We drop ms_lock whenever we
4019 * could call into the DMU, because the DMU can call down to
4020 * us (e.g. via zio_free()) at any time.
4021 *
4022 * The spa_vdev_remove_thread() can be reading metaslab state
4023 * concurrently, and it is locked out by the ms_sync_lock.
4024 * Note that the ms_lock is insufficient for this, because it
4025 * is dropped by space_map_write().
4026 */
4027 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4028
4029 /*
4030 * Generate a log space map if one doesn't exist already.
4031 */
4032 spa_generate_syncing_log_sm(spa, tx);
4033
4034 if (msp->ms_sm == NULL) {
4035 uint64_t new_object = space_map_alloc(mos,
4036 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4037 zfs_metaslab_sm_blksz_with_log :
4038 zfs_metaslab_sm_blksz_no_log, tx);
4039 VERIFY3U(new_object, !=, 0);
4040
4041 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4042 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4043
4044 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4045 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4046 ASSERT(msp->ms_sm != NULL);
4047
4048 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4049 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4050 ASSERT0(metaslab_allocated_space(msp));
4051 }
4052
4053 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4054 vd->vdev_checkpoint_sm == NULL) {
4055 ASSERT(spa_has_checkpoint(spa));
4056
4057 uint64_t new_object = space_map_alloc(mos,
4058 zfs_vdev_standard_sm_blksz, tx);
4059 VERIFY3U(new_object, !=, 0);
4060
4061 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4062 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4063 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4064
4065 /*
4066 * We save the space map object as an entry in vdev_top_zap
4067 * so it can be retrieved when the pool is reopened after an
4068 * export or through zdb.
4069 */
4070 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4071 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4072 sizeof (new_object), 1, &new_object, tx));
4073 }
4074
4075 mutex_enter(&msp->ms_sync_lock);
4076 mutex_enter(&msp->ms_lock);
4077
4078 /*
4079 * Note: metaslab_condense() clears the space map's histogram.
4080 * Therefore we must verify and remove this histogram before
4081 * condensing.
4082 */
4083 metaslab_group_histogram_verify(mg);
4084 metaslab_class_histogram_verify(mg->mg_class);
4085 metaslab_group_histogram_remove(mg, msp);
4086
4087 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4088 metaslab_should_condense(msp))
4089 metaslab_condense(msp, tx);
4090
4091 /*
4092 * We'll be going to disk to sync our space accounting, thus we
4093 * drop the ms_lock during that time so allocations coming from
4094 * open-context (ZIL) for future TXGs do not block.
4095 */
4096 mutex_exit(&msp->ms_lock);
4097 space_map_t *log_sm = spa_syncing_log_sm(spa);
4098 if (log_sm != NULL) {
4099 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4100 if (metaslab_unflushed_txg(msp) == 0)
4101 metaslab_unflushed_add(msp, tx);
4102 else if (!metaslab_unflushed_dirty(msp))
4103 metaslab_unflushed_bump(msp, tx, B_TRUE);
4104
4105 space_map_write(log_sm, alloctree, SM_ALLOC,
4106 vd->vdev_id, tx);
4107 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4108 vd->vdev_id, tx);
4109 mutex_enter(&msp->ms_lock);
4110
4111 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4112 metaslab_unflushed_changes_memused(msp));
4113 spa->spa_unflushed_stats.sus_memused -=
4114 metaslab_unflushed_changes_memused(msp);
4115 range_tree_remove_xor_add(alloctree,
4116 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4117 range_tree_remove_xor_add(msp->ms_freeing,
4118 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4119 spa->spa_unflushed_stats.sus_memused +=
4120 metaslab_unflushed_changes_memused(msp);
4121 } else {
4122 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4123
4124 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4125 SM_NO_VDEVID, tx);
4126 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4127 SM_NO_VDEVID, tx);
4128 mutex_enter(&msp->ms_lock);
4129 }
4130
4131 msp->ms_allocated_space += range_tree_space(alloctree);
4132 ASSERT3U(msp->ms_allocated_space, >=,
4133 range_tree_space(msp->ms_freeing));
4134 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4135
4136 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4137 ASSERT(spa_has_checkpoint(spa));
4138 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4139
4140 /*
4141 * Since we are doing writes to disk and the ms_checkpointing
4142 * tree won't be changing during that time, we drop the
4143 * ms_lock while writing to the checkpoint space map, for the
4144 * same reason mentioned above.
4145 */
4146 mutex_exit(&msp->ms_lock);
4147 space_map_write(vd->vdev_checkpoint_sm,
4148 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4149 mutex_enter(&msp->ms_lock);
4150
4151 spa->spa_checkpoint_info.sci_dspace +=
4152 range_tree_space(msp->ms_checkpointing);
4153 vd->vdev_stat.vs_checkpoint_space +=
4154 range_tree_space(msp->ms_checkpointing);
4155 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4156 -space_map_allocated(vd->vdev_checkpoint_sm));
4157
4158 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4159 }
4160
4161 if (msp->ms_loaded) {
4162 /*
4163 * When the space map is loaded, we have an accurate
4164 * histogram in the range tree. This gives us an opportunity
4165 * to bring the space map's histogram up-to-date so we clear
4166 * it first before updating it.
4167 */
4168 space_map_histogram_clear(msp->ms_sm);
4169 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4170
4171 /*
4172 * Since we've cleared the histogram we need to add back
4173 * any free space that has already been processed, plus
4174 * any deferred space. This allows the on-disk histogram
4175 * to accurately reflect all free space even if some space
4176 * is not yet available for allocation (i.e. deferred).
4177 */
4178 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4179
4180 /*
4181 * Add back any deferred free space that has not been
4182 * added back into the in-core free tree yet. This will
4183 * ensure that we don't end up with a space map histogram
4184 * that is completely empty unless the metaslab is fully
4185 * allocated.
4186 */
4187 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4188 space_map_histogram_add(msp->ms_sm,
4189 msp->ms_defer[t], tx);
4190 }
4191 }
4192
4193 /*
4194 * Always add the free space from this sync pass to the space
4195 * map histogram. We want to make sure that the on-disk histogram
4196 * accounts for all free space. If the space map is not loaded,
4197 * then we will lose some accuracy but will correct it the next
4198 * time we load the space map.
4199 */
4200 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4201 metaslab_aux_histograms_update(msp);
4202
4203 metaslab_group_histogram_add(mg, msp);
4204 metaslab_group_histogram_verify(mg);
4205 metaslab_class_histogram_verify(mg->mg_class);
4206
4207 /*
4208 * For sync pass 1, we avoid traversing this txg's free range tree
4209 * and instead will just swap the pointers for freeing and freed.
4210 * We can safely do this since the freed_tree is guaranteed to be
4211 * empty on the initial pass.
4212 *
4213 * Keep in mind that even if we are currently using a log spacemap
4214 * we want current frees to end up in the ms_allocatable (but not
4215 * get appended to the ms_sm) so their ranges can be reused as usual.
4216 */
4217 if (spa_sync_pass(spa) == 1) {
4218 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4219 ASSERT0(msp->ms_allocated_this_txg);
4220 } else {
4221 range_tree_vacate(msp->ms_freeing,
4222 range_tree_add, msp->ms_freed);
4223 }
4224 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4225 range_tree_vacate(alloctree, NULL, NULL);
4226
4227 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4228 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4229 & TXG_MASK]));
4230 ASSERT0(range_tree_space(msp->ms_freeing));
4231 ASSERT0(range_tree_space(msp->ms_checkpointing));
4232
4233 mutex_exit(&msp->ms_lock);
4234
4235 /*
4236 * Verify that the space map object ID has been recorded in the
4237 * vdev_ms_array.
4238 */
4239 uint64_t object;
4240 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4241 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4242 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4243
4244 mutex_exit(&msp->ms_sync_lock);
4245 dmu_tx_commit(tx);
4246 }
4247
4248 static void
4249 metaslab_evict(metaslab_t *msp, uint64_t txg)
4250 {
4251 if (!msp->ms_loaded || msp->ms_disabled != 0)
4252 return;
4253
4254 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4255 VERIFY0(range_tree_space(
4256 msp->ms_allocating[(txg + t) & TXG_MASK]));
4257 }
4258 if (msp->ms_allocator != -1)
4259 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4260
4261 if (!metaslab_debug_unload)
4262 metaslab_unload(msp);
4263 }
4264
4265 /*
4266 * Called after a transaction group has completely synced to mark
4267 * all of the metaslab's free space as usable.
4268 */
4269 void
4270 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4271 {
4272 metaslab_group_t *mg = msp->ms_group;
4273 vdev_t *vd = mg->mg_vd;
4274 spa_t *spa = vd->vdev_spa;
4275 range_tree_t **defer_tree;
4276 int64_t alloc_delta, defer_delta;
4277 boolean_t defer_allowed = B_TRUE;
4278
4279 ASSERT(!vd->vdev_ishole);
4280
4281 mutex_enter(&msp->ms_lock);
4282
4283 if (msp->ms_new) {
4284 /* this is a new metaslab, add its capacity to the vdev */
4285 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4286
4287 /* there should be no allocations nor frees at this point */
4288 VERIFY0(msp->ms_allocated_this_txg);
4289 VERIFY0(range_tree_space(msp->ms_freed));
4290 }
4291
4292 ASSERT0(range_tree_space(msp->ms_freeing));
4293 ASSERT0(range_tree_space(msp->ms_checkpointing));
4294
4295 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4296
4297 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4298 metaslab_class_get_alloc(spa_normal_class(spa));
4299 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4300 defer_allowed = B_FALSE;
4301 }
4302
4303 defer_delta = 0;
4304 alloc_delta = msp->ms_allocated_this_txg -
4305 range_tree_space(msp->ms_freed);
4306
4307 if (defer_allowed) {
4308 defer_delta = range_tree_space(msp->ms_freed) -
4309 range_tree_space(*defer_tree);
4310 } else {
4311 defer_delta -= range_tree_space(*defer_tree);
4312 }
4313 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4314 defer_delta, 0);
4315
4316 if (spa_syncing_log_sm(spa) == NULL) {
4317 /*
4318 * If there's a metaslab_load() in progress and we don't have
4319 * a log space map, it means that we probably wrote to the
4320 * metaslab's space map. If this is the case, we need to
4321 * make sure that we wait for the load to complete so that we
4322 * have a consistent view at the in-core side of the metaslab.
4323 */
4324 metaslab_load_wait(msp);
4325 } else {
4326 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4327 }
4328
4329 /*
4330 * When auto-trimming is enabled, free ranges which are added to
4331 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4332 * periodically consumed by the vdev_autotrim_thread() which issues
4333 * trims for all ranges and then vacates the tree. The ms_trim tree
4334 * can be discarded at any time with the sole consequence of recent
4335 * frees not being trimmed.
4336 */
4337 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4338 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4339 if (!defer_allowed) {
4340 range_tree_walk(msp->ms_freed, range_tree_add,
4341 msp->ms_trim);
4342 }
4343 } else {
4344 range_tree_vacate(msp->ms_trim, NULL, NULL);
4345 }
4346
4347 /*
4348 * Move the frees from the defer_tree back to the free
4349 * range tree (if it's loaded). Swap the freed_tree and
4350 * the defer_tree -- this is safe to do because we've
4351 * just emptied out the defer_tree.
4352 */
4353 range_tree_vacate(*defer_tree,
4354 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4355 if (defer_allowed) {
4356 range_tree_swap(&msp->ms_freed, defer_tree);
4357 } else {
4358 range_tree_vacate(msp->ms_freed,
4359 msp->ms_loaded ? range_tree_add : NULL,
4360 msp->ms_allocatable);
4361 }
4362
4363 msp->ms_synced_length = space_map_length(msp->ms_sm);
4364
4365 msp->ms_deferspace += defer_delta;
4366 ASSERT3S(msp->ms_deferspace, >=, 0);
4367 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4368 if (msp->ms_deferspace != 0) {
4369 /*
4370 * Keep syncing this metaslab until all deferred frees
4371 * are back in circulation.
4372 */
4373 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4374 }
4375 metaslab_aux_histograms_update_done(msp, defer_allowed);
4376
4377 if (msp->ms_new) {
4378 msp->ms_new = B_FALSE;
4379 mutex_enter(&mg->mg_lock);
4380 mg->mg_ms_ready++;
4381 mutex_exit(&mg->mg_lock);
4382 }
4383
4384 /*
4385 * Re-sort metaslab within its group now that we've adjusted
4386 * its allocatable space.
4387 */
4388 metaslab_recalculate_weight_and_sort(msp);
4389
4390 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4391 ASSERT0(range_tree_space(msp->ms_freeing));
4392 ASSERT0(range_tree_space(msp->ms_freed));
4393 ASSERT0(range_tree_space(msp->ms_checkpointing));
4394 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4395 msp->ms_allocated_this_txg = 0;
4396 mutex_exit(&msp->ms_lock);
4397 }
4398
4399 void
4400 metaslab_sync_reassess(metaslab_group_t *mg)
4401 {
4402 spa_t *spa = mg->mg_class->mc_spa;
4403
4404 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4405 metaslab_group_alloc_update(mg);
4406 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4407
4408 /*
4409 * Preload the next potential metaslabs but only on active
4410 * metaslab groups. We can get into a state where the metaslab
4411 * is no longer active since we dirty metaslabs as we remove a
4412 * a device, thus potentially making the metaslab group eligible
4413 * for preloading.
4414 */
4415 if (mg->mg_activation_count > 0) {
4416 metaslab_group_preload(mg);
4417 }
4418 spa_config_exit(spa, SCL_ALLOC, FTAG);
4419 }
4420
4421 /*
4422 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4423 * the same vdev as an existing DVA of this BP, then try to allocate it
4424 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4425 */
4426 static boolean_t
4427 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4428 {
4429 uint64_t dva_ms_id;
4430
4431 if (DVA_GET_ASIZE(dva) == 0)
4432 return (B_TRUE);
4433
4434 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4435 return (B_TRUE);
4436
4437 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4438
4439 return (msp->ms_id != dva_ms_id);
4440 }
4441
4442 /*
4443 * ==========================================================================
4444 * Metaslab allocation tracing facility
4445 * ==========================================================================
4446 */
4447
4448 /*
4449 * Add an allocation trace element to the allocation tracing list.
4450 */
4451 static void
4452 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4453 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4454 int allocator)
4455 {
4456 metaslab_alloc_trace_t *mat;
4457
4458 if (!metaslab_trace_enabled)
4459 return;
4460
4461 /*
4462 * When the tracing list reaches its maximum we remove
4463 * the second element in the list before adding a new one.
4464 * By removing the second element we preserve the original
4465 * entry as a clue to what allocations steps have already been
4466 * performed.
4467 */
4468 if (zal->zal_size == metaslab_trace_max_entries) {
4469 metaslab_alloc_trace_t *mat_next;
4470 #ifdef ZFS_DEBUG
4471 panic("too many entries in allocation list");
4472 #endif
4473 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4474 zal->zal_size--;
4475 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4476 list_remove(&zal->zal_list, mat_next);
4477 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4478 }
4479
4480 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4481 list_link_init(&mat->mat_list_node);
4482 mat->mat_mg = mg;
4483 mat->mat_msp = msp;
4484 mat->mat_size = psize;
4485 mat->mat_dva_id = dva_id;
4486 mat->mat_offset = offset;
4487 mat->mat_weight = 0;
4488 mat->mat_allocator = allocator;
4489
4490 if (msp != NULL)
4491 mat->mat_weight = msp->ms_weight;
4492
4493 /*
4494 * The list is part of the zio so locking is not required. Only
4495 * a single thread will perform allocations for a given zio.
4496 */
4497 list_insert_tail(&zal->zal_list, mat);
4498 zal->zal_size++;
4499
4500 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4501 }
4502
4503 void
4504 metaslab_trace_init(zio_alloc_list_t *zal)
4505 {
4506 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4507 offsetof(metaslab_alloc_trace_t, mat_list_node));
4508 zal->zal_size = 0;
4509 }
4510
4511 void
4512 metaslab_trace_fini(zio_alloc_list_t *zal)
4513 {
4514 metaslab_alloc_trace_t *mat;
4515
4516 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4517 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4518 list_destroy(&zal->zal_list);
4519 zal->zal_size = 0;
4520 }
4521
4522 /*
4523 * ==========================================================================
4524 * Metaslab block operations
4525 * ==========================================================================
4526 */
4527
4528 static void
4529 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4530 int flags, int allocator)
4531 {
4532 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4533 (flags & METASLAB_DONT_THROTTLE))
4534 return;
4535
4536 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4537 if (!mg->mg_class->mc_alloc_throttle_enabled)
4538 return;
4539
4540 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4541 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4542 }
4543
4544 static void
4545 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4546 {
4547 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4548 metaslab_class_allocator_t *mca =
4549 &mg->mg_class->mc_allocator[allocator];
4550 uint64_t max = mg->mg_max_alloc_queue_depth;
4551 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4552 while (cur < max) {
4553 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4554 cur, cur + 1) == cur) {
4555 atomic_inc_64(&mca->mca_alloc_max_slots);
4556 return;
4557 }
4558 cur = mga->mga_cur_max_alloc_queue_depth;
4559 }
4560 }
4561
4562 void
4563 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4564 int flags, int allocator, boolean_t io_complete)
4565 {
4566 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4567 (flags & METASLAB_DONT_THROTTLE))
4568 return;
4569
4570 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4571 if (!mg->mg_class->mc_alloc_throttle_enabled)
4572 return;
4573
4574 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4575 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4576 if (io_complete)
4577 metaslab_group_increment_qdepth(mg, allocator);
4578 }
4579
4580 void
4581 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4582 int allocator)
4583 {
4584 #ifdef ZFS_DEBUG
4585 const dva_t *dva = bp->blk_dva;
4586 int ndvas = BP_GET_NDVAS(bp);
4587
4588 for (int d = 0; d < ndvas; d++) {
4589 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4590 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4591 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4592 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4593 }
4594 #endif
4595 }
4596
4597 static uint64_t
4598 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4599 {
4600 uint64_t start;
4601 range_tree_t *rt = msp->ms_allocatable;
4602 metaslab_class_t *mc = msp->ms_group->mg_class;
4603
4604 ASSERT(MUTEX_HELD(&msp->ms_lock));
4605 VERIFY(!msp->ms_condensing);
4606 VERIFY0(msp->ms_disabled);
4607
4608 start = mc->mc_ops->msop_alloc(msp, size);
4609 if (start != -1ULL) {
4610 metaslab_group_t *mg = msp->ms_group;
4611 vdev_t *vd = mg->mg_vd;
4612
4613 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4614 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4615 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4616 range_tree_remove(rt, start, size);
4617 range_tree_clear(msp->ms_trim, start, size);
4618
4619 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4620 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4621
4622 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4623 msp->ms_allocating_total += size;
4624
4625 /* Track the last successful allocation */
4626 msp->ms_alloc_txg = txg;
4627 metaslab_verify_space(msp, txg);
4628 }
4629
4630 /*
4631 * Now that we've attempted the allocation we need to update the
4632 * metaslab's maximum block size since it may have changed.
4633 */
4634 msp->ms_max_size = metaslab_largest_allocatable(msp);
4635 return (start);
4636 }
4637
4638 /*
4639 * Find the metaslab with the highest weight that is less than what we've
4640 * already tried. In the common case, this means that we will examine each
4641 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4642 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4643 * activated by another thread, and we fail to allocate from the metaslab we
4644 * have selected, we may not try the newly-activated metaslab, and instead
4645 * activate another metaslab. This is not optimal, but generally does not cause
4646 * any problems (a possible exception being if every metaslab is completely full
4647 * except for the newly-activated metaslab which we fail to examine).
4648 */
4649 static metaslab_t *
4650 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4651 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4652 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4653 boolean_t *was_active)
4654 {
4655 avl_index_t idx;
4656 avl_tree_t *t = &mg->mg_metaslab_tree;
4657 metaslab_t *msp = avl_find(t, search, &idx);
4658 if (msp == NULL)
4659 msp = avl_nearest(t, idx, AVL_AFTER);
4660
4661 uint_t tries = 0;
4662 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4663 int i;
4664
4665 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4666 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4667 return (NULL);
4668 }
4669 tries++;
4670
4671 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4672 metaslab_trace_add(zal, mg, msp, asize, d,
4673 TRACE_TOO_SMALL, allocator);
4674 continue;
4675 }
4676
4677 /*
4678 * If the selected metaslab is condensing or disabled,
4679 * skip it.
4680 */
4681 if (msp->ms_condensing || msp->ms_disabled > 0)
4682 continue;
4683
4684 *was_active = msp->ms_allocator != -1;
4685 /*
4686 * If we're activating as primary, this is our first allocation
4687 * from this disk, so we don't need to check how close we are.
4688 * If the metaslab under consideration was already active,
4689 * we're getting desperate enough to steal another allocator's
4690 * metaslab, so we still don't care about distances.
4691 */
4692 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4693 break;
4694
4695 for (i = 0; i < d; i++) {
4696 if (want_unique &&
4697 !metaslab_is_unique(msp, &dva[i]))
4698 break; /* try another metaslab */
4699 }
4700 if (i == d)
4701 break;
4702 }
4703
4704 if (msp != NULL) {
4705 search->ms_weight = msp->ms_weight;
4706 search->ms_start = msp->ms_start + 1;
4707 search->ms_allocator = msp->ms_allocator;
4708 search->ms_primary = msp->ms_primary;
4709 }
4710 return (msp);
4711 }
4712
4713 static void
4714 metaslab_active_mask_verify(metaslab_t *msp)
4715 {
4716 ASSERT(MUTEX_HELD(&msp->ms_lock));
4717
4718 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4719 return;
4720
4721 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4722 return;
4723
4724 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4725 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4726 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4727 VERIFY3S(msp->ms_allocator, !=, -1);
4728 VERIFY(msp->ms_primary);
4729 return;
4730 }
4731
4732 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4733 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4734 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4735 VERIFY3S(msp->ms_allocator, !=, -1);
4736 VERIFY(!msp->ms_primary);
4737 return;
4738 }
4739
4740 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4741 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4742 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4743 VERIFY3S(msp->ms_allocator, ==, -1);
4744 return;
4745 }
4746 }
4747
4748 static uint64_t
4749 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4750 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4751 int allocator, boolean_t try_hard)
4752 {
4753 metaslab_t *msp = NULL;
4754 uint64_t offset = -1ULL;
4755
4756 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4757 for (int i = 0; i < d; i++) {
4758 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4759 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4760 activation_weight = METASLAB_WEIGHT_SECONDARY;
4761 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4762 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4763 activation_weight = METASLAB_WEIGHT_CLAIM;
4764 break;
4765 }
4766 }
4767
4768 /*
4769 * If we don't have enough metaslabs active to fill the entire array, we
4770 * just use the 0th slot.
4771 */
4772 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4773 allocator = 0;
4774 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4775
4776 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4777
4778 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4779 search->ms_weight = UINT64_MAX;
4780 search->ms_start = 0;
4781 /*
4782 * At the end of the metaslab tree are the already-active metaslabs,
4783 * first the primaries, then the secondaries. When we resume searching
4784 * through the tree, we need to consider ms_allocator and ms_primary so
4785 * we start in the location right after where we left off, and don't
4786 * accidentally loop forever considering the same metaslabs.
4787 */
4788 search->ms_allocator = -1;
4789 search->ms_primary = B_TRUE;
4790 for (;;) {
4791 boolean_t was_active = B_FALSE;
4792
4793 mutex_enter(&mg->mg_lock);
4794
4795 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4796 mga->mga_primary != NULL) {
4797 msp = mga->mga_primary;
4798
4799 /*
4800 * Even though we don't hold the ms_lock for the
4801 * primary metaslab, those fields should not
4802 * change while we hold the mg_lock. Thus it is
4803 * safe to make assertions on them.
4804 */
4805 ASSERT(msp->ms_primary);
4806 ASSERT3S(msp->ms_allocator, ==, allocator);
4807 ASSERT(msp->ms_loaded);
4808
4809 was_active = B_TRUE;
4810 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4811 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4812 mga->mga_secondary != NULL) {
4813 msp = mga->mga_secondary;
4814
4815 /*
4816 * See comment above about the similar assertions
4817 * for the primary metaslab.
4818 */
4819 ASSERT(!msp->ms_primary);
4820 ASSERT3S(msp->ms_allocator, ==, allocator);
4821 ASSERT(msp->ms_loaded);
4822
4823 was_active = B_TRUE;
4824 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4825 } else {
4826 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4827 want_unique, asize, allocator, try_hard, zal,
4828 search, &was_active);
4829 }
4830
4831 mutex_exit(&mg->mg_lock);
4832 if (msp == NULL) {
4833 kmem_free(search, sizeof (*search));
4834 return (-1ULL);
4835 }
4836 mutex_enter(&msp->ms_lock);
4837
4838 metaslab_active_mask_verify(msp);
4839
4840 /*
4841 * This code is disabled out because of issues with
4842 * tracepoints in non-gpl kernel modules.
4843 */
4844 #if 0
4845 DTRACE_PROBE3(ms__activation__attempt,
4846 metaslab_t *, msp, uint64_t, activation_weight,
4847 boolean_t, was_active);
4848 #endif
4849
4850 /*
4851 * Ensure that the metaslab we have selected is still
4852 * capable of handling our request. It's possible that
4853 * another thread may have changed the weight while we
4854 * were blocked on the metaslab lock. We check the
4855 * active status first to see if we need to set_selected_txg
4856 * a new metaslab.
4857 */
4858 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4859 ASSERT3S(msp->ms_allocator, ==, -1);
4860 mutex_exit(&msp->ms_lock);
4861 continue;
4862 }
4863
4864 /*
4865 * If the metaslab was activated for another allocator
4866 * while we were waiting in the ms_lock above, or it's
4867 * a primary and we're seeking a secondary (or vice versa),
4868 * we go back and select a new metaslab.
4869 */
4870 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4871 (msp->ms_allocator != -1) &&
4872 (msp->ms_allocator != allocator || ((activation_weight ==
4873 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4874 ASSERT(msp->ms_loaded);
4875 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4876 msp->ms_allocator != -1);
4877 mutex_exit(&msp->ms_lock);
4878 continue;
4879 }
4880
4881 /*
4882 * This metaslab was used for claiming regions allocated
4883 * by the ZIL during pool import. Once these regions are
4884 * claimed we don't need to keep the CLAIM bit set
4885 * anymore. Passivate this metaslab to zero its activation
4886 * mask.
4887 */
4888 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4889 activation_weight != METASLAB_WEIGHT_CLAIM) {
4890 ASSERT(msp->ms_loaded);
4891 ASSERT3S(msp->ms_allocator, ==, -1);
4892 metaslab_passivate(msp, msp->ms_weight &
4893 ~METASLAB_WEIGHT_CLAIM);
4894 mutex_exit(&msp->ms_lock);
4895 continue;
4896 }
4897
4898 metaslab_set_selected_txg(msp, txg);
4899
4900 int activation_error =
4901 metaslab_activate(msp, allocator, activation_weight);
4902 metaslab_active_mask_verify(msp);
4903
4904 /*
4905 * If the metaslab was activated by another thread for
4906 * another allocator or activation_weight (EBUSY), or it
4907 * failed because another metaslab was assigned as primary
4908 * for this allocator (EEXIST) we continue using this
4909 * metaslab for our allocation, rather than going on to a
4910 * worse metaslab (we waited for that metaslab to be loaded
4911 * after all).
4912 *
4913 * If the activation failed due to an I/O error or ENOSPC we
4914 * skip to the next metaslab.
4915 */
4916 boolean_t activated;
4917 if (activation_error == 0) {
4918 activated = B_TRUE;
4919 } else if (activation_error == EBUSY ||
4920 activation_error == EEXIST) {
4921 activated = B_FALSE;
4922 } else {
4923 mutex_exit(&msp->ms_lock);
4924 continue;
4925 }
4926 ASSERT(msp->ms_loaded);
4927
4928 /*
4929 * Now that we have the lock, recheck to see if we should
4930 * continue to use this metaslab for this allocation. The
4931 * the metaslab is now loaded so metaslab_should_allocate()
4932 * can accurately determine if the allocation attempt should
4933 * proceed.
4934 */
4935 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4936 /* Passivate this metaslab and select a new one. */
4937 metaslab_trace_add(zal, mg, msp, asize, d,
4938 TRACE_TOO_SMALL, allocator);
4939 goto next;
4940 }
4941
4942 /*
4943 * If this metaslab is currently condensing then pick again
4944 * as we can't manipulate this metaslab until it's committed
4945 * to disk. If this metaslab is being initialized, we shouldn't
4946 * allocate from it since the allocated region might be
4947 * overwritten after allocation.
4948 */
4949 if (msp->ms_condensing) {
4950 metaslab_trace_add(zal, mg, msp, asize, d,
4951 TRACE_CONDENSING, allocator);
4952 if (activated) {
4953 metaslab_passivate(msp, msp->ms_weight &
4954 ~METASLAB_ACTIVE_MASK);
4955 }
4956 mutex_exit(&msp->ms_lock);
4957 continue;
4958 } else if (msp->ms_disabled > 0) {
4959 metaslab_trace_add(zal, mg, msp, asize, d,
4960 TRACE_DISABLED, allocator);
4961 if (activated) {
4962 metaslab_passivate(msp, msp->ms_weight &
4963 ~METASLAB_ACTIVE_MASK);
4964 }
4965 mutex_exit(&msp->ms_lock);
4966 continue;
4967 }
4968
4969 offset = metaslab_block_alloc(msp, asize, txg);
4970 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4971
4972 if (offset != -1ULL) {
4973 /* Proactively passivate the metaslab, if needed */
4974 if (activated)
4975 metaslab_segment_may_passivate(msp);
4976 break;
4977 }
4978 next:
4979 ASSERT(msp->ms_loaded);
4980
4981 /*
4982 * This code is disabled out because of issues with
4983 * tracepoints in non-gpl kernel modules.
4984 */
4985 #if 0
4986 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4987 uint64_t, asize);
4988 #endif
4989
4990 /*
4991 * We were unable to allocate from this metaslab so determine
4992 * a new weight for this metaslab. Now that we have loaded
4993 * the metaslab we can provide a better hint to the metaslab
4994 * selector.
4995 *
4996 * For space-based metaslabs, we use the maximum block size.
4997 * This information is only available when the metaslab
4998 * is loaded and is more accurate than the generic free
4999 * space weight that was calculated by metaslab_weight().
5000 * This information allows us to quickly compare the maximum
5001 * available allocation in the metaslab to the allocation
5002 * size being requested.
5003 *
5004 * For segment-based metaslabs, determine the new weight
5005 * based on the highest bucket in the range tree. We
5006 * explicitly use the loaded segment weight (i.e. the range
5007 * tree histogram) since it contains the space that is
5008 * currently available for allocation and is accurate
5009 * even within a sync pass.
5010 */
5011 uint64_t weight;
5012 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5013 weight = metaslab_largest_allocatable(msp);
5014 WEIGHT_SET_SPACEBASED(weight);
5015 } else {
5016 weight = metaslab_weight_from_range_tree(msp);
5017 }
5018
5019 if (activated) {
5020 metaslab_passivate(msp, weight);
5021 } else {
5022 /*
5023 * For the case where we use the metaslab that is
5024 * active for another allocator we want to make
5025 * sure that we retain the activation mask.
5026 *
5027 * Note that we could attempt to use something like
5028 * metaslab_recalculate_weight_and_sort() that
5029 * retains the activation mask here. That function
5030 * uses metaslab_weight() to set the weight though
5031 * which is not as accurate as the calculations
5032 * above.
5033 */
5034 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5035 metaslab_group_sort(mg, msp, weight);
5036 }
5037 metaslab_active_mask_verify(msp);
5038
5039 /*
5040 * We have just failed an allocation attempt, check
5041 * that metaslab_should_allocate() agrees. Otherwise,
5042 * we may end up in an infinite loop retrying the same
5043 * metaslab.
5044 */
5045 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5046
5047 mutex_exit(&msp->ms_lock);
5048 }
5049 mutex_exit(&msp->ms_lock);
5050 kmem_free(search, sizeof (*search));
5051 return (offset);
5052 }
5053
5054 static uint64_t
5055 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5056 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5057 int allocator, boolean_t try_hard)
5058 {
5059 uint64_t offset;
5060 ASSERT(mg->mg_initialized);
5061
5062 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5063 dva, d, allocator, try_hard);
5064
5065 mutex_enter(&mg->mg_lock);
5066 if (offset == -1ULL) {
5067 mg->mg_failed_allocations++;
5068 metaslab_trace_add(zal, mg, NULL, asize, d,
5069 TRACE_GROUP_FAILURE, allocator);
5070 if (asize == SPA_GANGBLOCKSIZE) {
5071 /*
5072 * This metaslab group was unable to allocate
5073 * the minimum gang block size so it must be out of
5074 * space. We must notify the allocation throttle
5075 * to start skipping allocation attempts to this
5076 * metaslab group until more space becomes available.
5077 * Note: this failure cannot be caused by the
5078 * allocation throttle since the allocation throttle
5079 * is only responsible for skipping devices and
5080 * not failing block allocations.
5081 */
5082 mg->mg_no_free_space = B_TRUE;
5083 }
5084 }
5085 mg->mg_allocations++;
5086 mutex_exit(&mg->mg_lock);
5087 return (offset);
5088 }
5089
5090 /*
5091 * Allocate a block for the specified i/o.
5092 */
5093 int
5094 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5095 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5096 zio_alloc_list_t *zal, int allocator)
5097 {
5098 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5099 metaslab_group_t *mg, *fast_mg, *rotor;
5100 vdev_t *vd;
5101 boolean_t try_hard = B_FALSE;
5102
5103 ASSERT(!DVA_IS_VALID(&dva[d]));
5104
5105 /*
5106 * For testing, make some blocks above a certain size be gang blocks.
5107 * This will result in more split blocks when using device removal,
5108 * and a large number of split blocks coupled with ztest-induced
5109 * damage can result in extremely long reconstruction times. This
5110 * will also test spilling from special to normal.
5111 */
5112 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5113 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5114 allocator);
5115 return (SET_ERROR(ENOSPC));
5116 }
5117
5118 /*
5119 * Start at the rotor and loop through all mgs until we find something.
5120 * Note that there's no locking on mca_rotor or mca_aliquot because
5121 * nothing actually breaks if we miss a few updates -- we just won't
5122 * allocate quite as evenly. It all balances out over time.
5123 *
5124 * If we are doing ditto or log blocks, try to spread them across
5125 * consecutive vdevs. If we're forced to reuse a vdev before we've
5126 * allocated all of our ditto blocks, then try and spread them out on
5127 * that vdev as much as possible. If it turns out to not be possible,
5128 * gradually lower our standards until anything becomes acceptable.
5129 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5130 * gives us hope of containing our fault domains to something we're
5131 * able to reason about. Otherwise, any two top-level vdev failures
5132 * will guarantee the loss of data. With consecutive allocation,
5133 * only two adjacent top-level vdev failures will result in data loss.
5134 *
5135 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5136 * ourselves on the same vdev as our gang block header. That
5137 * way, we can hope for locality in vdev_cache, plus it makes our
5138 * fault domains something tractable.
5139 */
5140 if (hintdva) {
5141 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5142
5143 /*
5144 * It's possible the vdev we're using as the hint no
5145 * longer exists or its mg has been closed (e.g. by
5146 * device removal). Consult the rotor when
5147 * all else fails.
5148 */
5149 if (vd != NULL && vd->vdev_mg != NULL) {
5150 mg = vdev_get_mg(vd, mc);
5151
5152 if (flags & METASLAB_HINTBP_AVOID)
5153 mg = mg->mg_next;
5154 } else {
5155 mg = mca->mca_rotor;
5156 }
5157 } else if (d != 0) {
5158 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5159 mg = vd->vdev_mg->mg_next;
5160 } else if (flags & METASLAB_FASTWRITE) {
5161 mg = fast_mg = mca->mca_rotor;
5162
5163 do {
5164 if (fast_mg->mg_vd->vdev_pending_fastwrite <
5165 mg->mg_vd->vdev_pending_fastwrite)
5166 mg = fast_mg;
5167 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5168
5169 } else {
5170 ASSERT(mca->mca_rotor != NULL);
5171 mg = mca->mca_rotor;
5172 }
5173
5174 /*
5175 * If the hint put us into the wrong metaslab class, or into a
5176 * metaslab group that has been passivated, just follow the rotor.
5177 */
5178 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5179 mg = mca->mca_rotor;
5180
5181 rotor = mg;
5182 top:
5183 do {
5184 boolean_t allocatable;
5185
5186 ASSERT(mg->mg_activation_count == 1);
5187 vd = mg->mg_vd;
5188
5189 /*
5190 * Don't allocate from faulted devices.
5191 */
5192 if (try_hard) {
5193 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5194 allocatable = vdev_allocatable(vd);
5195 spa_config_exit(spa, SCL_ZIO, FTAG);
5196 } else {
5197 allocatable = vdev_allocatable(vd);
5198 }
5199
5200 /*
5201 * Determine if the selected metaslab group is eligible
5202 * for allocations. If we're ganging then don't allow
5203 * this metaslab group to skip allocations since that would
5204 * inadvertently return ENOSPC and suspend the pool
5205 * even though space is still available.
5206 */
5207 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5208 allocatable = metaslab_group_allocatable(mg, rotor,
5209 flags, psize, allocator, d);
5210 }
5211
5212 if (!allocatable) {
5213 metaslab_trace_add(zal, mg, NULL, psize, d,
5214 TRACE_NOT_ALLOCATABLE, allocator);
5215 goto next;
5216 }
5217
5218 ASSERT(mg->mg_initialized);
5219
5220 /*
5221 * Avoid writing single-copy data to an unhealthy,
5222 * non-redundant vdev, unless we've already tried all
5223 * other vdevs.
5224 */
5225 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5226 d == 0 && !try_hard && vd->vdev_children == 0) {
5227 metaslab_trace_add(zal, mg, NULL, psize, d,
5228 TRACE_VDEV_ERROR, allocator);
5229 goto next;
5230 }
5231
5232 ASSERT(mg->mg_class == mc);
5233
5234 uint64_t asize = vdev_psize_to_asize(vd, psize);
5235 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5236
5237 /*
5238 * If we don't need to try hard, then require that the
5239 * block be on a different metaslab from any other DVAs
5240 * in this BP (unique=true). If we are trying hard, then
5241 * allow any metaslab to be used (unique=false).
5242 */
5243 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5244 !try_hard, dva, d, allocator, try_hard);
5245
5246 if (offset != -1ULL) {
5247 /*
5248 * If we've just selected this metaslab group,
5249 * figure out whether the corresponding vdev is
5250 * over- or under-used relative to the pool,
5251 * and set an allocation bias to even it out.
5252 *
5253 * Bias is also used to compensate for unequally
5254 * sized vdevs so that space is allocated fairly.
5255 */
5256 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5257 vdev_stat_t *vs = &vd->vdev_stat;
5258 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5259 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5260 int64_t ratio;
5261
5262 /*
5263 * Calculate how much more or less we should
5264 * try to allocate from this device during
5265 * this iteration around the rotor.
5266 *
5267 * This basically introduces a zero-centered
5268 * bias towards the devices with the most
5269 * free space, while compensating for vdev
5270 * size differences.
5271 *
5272 * Examples:
5273 * vdev V1 = 16M/128M
5274 * vdev V2 = 16M/128M
5275 * ratio(V1) = 100% ratio(V2) = 100%
5276 *
5277 * vdev V1 = 16M/128M
5278 * vdev V2 = 64M/128M
5279 * ratio(V1) = 127% ratio(V2) = 72%
5280 *
5281 * vdev V1 = 16M/128M
5282 * vdev V2 = 64M/512M
5283 * ratio(V1) = 40% ratio(V2) = 160%
5284 */
5285 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5286 (mc_free + 1);
5287 mg->mg_bias = ((ratio - 100) *
5288 (int64_t)mg->mg_aliquot) / 100;
5289 } else if (!metaslab_bias_enabled) {
5290 mg->mg_bias = 0;
5291 }
5292
5293 if ((flags & METASLAB_FASTWRITE) ||
5294 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5295 mg->mg_aliquot + mg->mg_bias) {
5296 mca->mca_rotor = mg->mg_next;
5297 mca->mca_aliquot = 0;
5298 }
5299
5300 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5301 DVA_SET_OFFSET(&dva[d], offset);
5302 DVA_SET_GANG(&dva[d],
5303 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5304 DVA_SET_ASIZE(&dva[d], asize);
5305
5306 if (flags & METASLAB_FASTWRITE) {
5307 atomic_add_64(&vd->vdev_pending_fastwrite,
5308 psize);
5309 }
5310
5311 return (0);
5312 }
5313 next:
5314 mca->mca_rotor = mg->mg_next;
5315 mca->mca_aliquot = 0;
5316 } while ((mg = mg->mg_next) != rotor);
5317
5318 /*
5319 * If we haven't tried hard, perhaps do so now.
5320 */
5321 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5322 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5323 psize <= 1 << spa->spa_min_ashift)) {
5324 METASLABSTAT_BUMP(metaslabstat_try_hard);
5325 try_hard = B_TRUE;
5326 goto top;
5327 }
5328
5329 memset(&dva[d], 0, sizeof (dva_t));
5330
5331 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5332 return (SET_ERROR(ENOSPC));
5333 }
5334
5335 void
5336 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5337 boolean_t checkpoint)
5338 {
5339 metaslab_t *msp;
5340 spa_t *spa = vd->vdev_spa;
5341
5342 ASSERT(vdev_is_concrete(vd));
5343 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5344 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5345
5346 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5347
5348 VERIFY(!msp->ms_condensing);
5349 VERIFY3U(offset, >=, msp->ms_start);
5350 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5351 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5352 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5353
5354 metaslab_check_free_impl(vd, offset, asize);
5355
5356 mutex_enter(&msp->ms_lock);
5357 if (range_tree_is_empty(msp->ms_freeing) &&
5358 range_tree_is_empty(msp->ms_checkpointing)) {
5359 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5360 }
5361
5362 if (checkpoint) {
5363 ASSERT(spa_has_checkpoint(spa));
5364 range_tree_add(msp->ms_checkpointing, offset, asize);
5365 } else {
5366 range_tree_add(msp->ms_freeing, offset, asize);
5367 }
5368 mutex_exit(&msp->ms_lock);
5369 }
5370
5371 void
5372 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5373 uint64_t size, void *arg)
5374 {
5375 (void) inner_offset;
5376 boolean_t *checkpoint = arg;
5377
5378 ASSERT3P(checkpoint, !=, NULL);
5379
5380 if (vd->vdev_ops->vdev_op_remap != NULL)
5381 vdev_indirect_mark_obsolete(vd, offset, size);
5382 else
5383 metaslab_free_impl(vd, offset, size, *checkpoint);
5384 }
5385
5386 static void
5387 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5388 boolean_t checkpoint)
5389 {
5390 spa_t *spa = vd->vdev_spa;
5391
5392 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5393
5394 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5395 return;
5396
5397 if (spa->spa_vdev_removal != NULL &&
5398 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5399 vdev_is_concrete(vd)) {
5400 /*
5401 * Note: we check if the vdev is concrete because when
5402 * we complete the removal, we first change the vdev to be
5403 * an indirect vdev (in open context), and then (in syncing
5404 * context) clear spa_vdev_removal.
5405 */
5406 free_from_removing_vdev(vd, offset, size);
5407 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5408 vdev_indirect_mark_obsolete(vd, offset, size);
5409 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5410 metaslab_free_impl_cb, &checkpoint);
5411 } else {
5412 metaslab_free_concrete(vd, offset, size, checkpoint);
5413 }
5414 }
5415
5416 typedef struct remap_blkptr_cb_arg {
5417 blkptr_t *rbca_bp;
5418 spa_remap_cb_t rbca_cb;
5419 vdev_t *rbca_remap_vd;
5420 uint64_t rbca_remap_offset;
5421 void *rbca_cb_arg;
5422 } remap_blkptr_cb_arg_t;
5423
5424 static void
5425 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5426 uint64_t size, void *arg)
5427 {
5428 remap_blkptr_cb_arg_t *rbca = arg;
5429 blkptr_t *bp = rbca->rbca_bp;
5430
5431 /* We can not remap split blocks. */
5432 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5433 return;
5434 ASSERT0(inner_offset);
5435
5436 if (rbca->rbca_cb != NULL) {
5437 /*
5438 * At this point we know that we are not handling split
5439 * blocks and we invoke the callback on the previous
5440 * vdev which must be indirect.
5441 */
5442 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5443
5444 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5445 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5446
5447 /* set up remap_blkptr_cb_arg for the next call */
5448 rbca->rbca_remap_vd = vd;
5449 rbca->rbca_remap_offset = offset;
5450 }
5451
5452 /*
5453 * The phys birth time is that of dva[0]. This ensures that we know
5454 * when each dva was written, so that resilver can determine which
5455 * blocks need to be scrubbed (i.e. those written during the time
5456 * the vdev was offline). It also ensures that the key used in
5457 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5458 * we didn't change the phys_birth, a lookup in the ARC for a
5459 * remapped BP could find the data that was previously stored at
5460 * this vdev + offset.
5461 */
5462 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5463 DVA_GET_VDEV(&bp->blk_dva[0]));
5464 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5465 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5466 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5467
5468 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5469 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5470 }
5471
5472 /*
5473 * If the block pointer contains any indirect DVAs, modify them to refer to
5474 * concrete DVAs. Note that this will sometimes not be possible, leaving
5475 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5476 * segments in the mapping (i.e. it is a "split block").
5477 *
5478 * If the BP was remapped, calls the callback on the original dva (note the
5479 * callback can be called multiple times if the original indirect DVA refers
5480 * to another indirect DVA, etc).
5481 *
5482 * Returns TRUE if the BP was remapped.
5483 */
5484 boolean_t
5485 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5486 {
5487 remap_blkptr_cb_arg_t rbca;
5488
5489 if (!zfs_remap_blkptr_enable)
5490 return (B_FALSE);
5491
5492 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5493 return (B_FALSE);
5494
5495 /*
5496 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5497 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5498 */
5499 if (BP_GET_DEDUP(bp))
5500 return (B_FALSE);
5501
5502 /*
5503 * Gang blocks can not be remapped, because
5504 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5505 * the BP used to read the gang block header (GBH) being the same
5506 * as the DVA[0] that we allocated for the GBH.
5507 */
5508 if (BP_IS_GANG(bp))
5509 return (B_FALSE);
5510
5511 /*
5512 * Embedded BP's have no DVA to remap.
5513 */
5514 if (BP_GET_NDVAS(bp) < 1)
5515 return (B_FALSE);
5516
5517 /*
5518 * Note: we only remap dva[0]. If we remapped other dvas, we
5519 * would no longer know what their phys birth txg is.
5520 */
5521 dva_t *dva = &bp->blk_dva[0];
5522
5523 uint64_t offset = DVA_GET_OFFSET(dva);
5524 uint64_t size = DVA_GET_ASIZE(dva);
5525 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5526
5527 if (vd->vdev_ops->vdev_op_remap == NULL)
5528 return (B_FALSE);
5529
5530 rbca.rbca_bp = bp;
5531 rbca.rbca_cb = callback;
5532 rbca.rbca_remap_vd = vd;
5533 rbca.rbca_remap_offset = offset;
5534 rbca.rbca_cb_arg = arg;
5535
5536 /*
5537 * remap_blkptr_cb() will be called in order for each level of
5538 * indirection, until a concrete vdev is reached or a split block is
5539 * encountered. old_vd and old_offset are updated within the callback
5540 * as we go from the one indirect vdev to the next one (either concrete
5541 * or indirect again) in that order.
5542 */
5543 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5544
5545 /* Check if the DVA wasn't remapped because it is a split block */
5546 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5547 return (B_FALSE);
5548
5549 return (B_TRUE);
5550 }
5551
5552 /*
5553 * Undo the allocation of a DVA which happened in the given transaction group.
5554 */
5555 void
5556 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5557 {
5558 metaslab_t *msp;
5559 vdev_t *vd;
5560 uint64_t vdev = DVA_GET_VDEV(dva);
5561 uint64_t offset = DVA_GET_OFFSET(dva);
5562 uint64_t size = DVA_GET_ASIZE(dva);
5563
5564 ASSERT(DVA_IS_VALID(dva));
5565 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5566
5567 if (txg > spa_freeze_txg(spa))
5568 return;
5569
5570 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5571 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5572 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5573 (u_longlong_t)vdev, (u_longlong_t)offset,
5574 (u_longlong_t)size);
5575 return;
5576 }
5577
5578 ASSERT(!vd->vdev_removing);
5579 ASSERT(vdev_is_concrete(vd));
5580 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5581 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5582
5583 if (DVA_GET_GANG(dva))
5584 size = vdev_gang_header_asize(vd);
5585
5586 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5587
5588 mutex_enter(&msp->ms_lock);
5589 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5590 offset, size);
5591 msp->ms_allocating_total -= size;
5592
5593 VERIFY(!msp->ms_condensing);
5594 VERIFY3U(offset, >=, msp->ms_start);
5595 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5596 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5597 msp->ms_size);
5598 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5599 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5600 range_tree_add(msp->ms_allocatable, offset, size);
5601 mutex_exit(&msp->ms_lock);
5602 }
5603
5604 /*
5605 * Free the block represented by the given DVA.
5606 */
5607 void
5608 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5609 {
5610 uint64_t vdev = DVA_GET_VDEV(dva);
5611 uint64_t offset = DVA_GET_OFFSET(dva);
5612 uint64_t size = DVA_GET_ASIZE(dva);
5613 vdev_t *vd = vdev_lookup_top(spa, vdev);
5614
5615 ASSERT(DVA_IS_VALID(dva));
5616 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5617
5618 if (DVA_GET_GANG(dva)) {
5619 size = vdev_gang_header_asize(vd);
5620 }
5621
5622 metaslab_free_impl(vd, offset, size, checkpoint);
5623 }
5624
5625 /*
5626 * Reserve some allocation slots. The reservation system must be called
5627 * before we call into the allocator. If there aren't any available slots
5628 * then the I/O will be throttled until an I/O completes and its slots are
5629 * freed up. The function returns true if it was successful in placing
5630 * the reservation.
5631 */
5632 boolean_t
5633 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5634 zio_t *zio, int flags)
5635 {
5636 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5637 uint64_t max = mca->mca_alloc_max_slots;
5638
5639 ASSERT(mc->mc_alloc_throttle_enabled);
5640 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5641 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5642 /*
5643 * The potential race between _count() and _add() is covered
5644 * by the allocator lock in most cases, or irrelevant due to
5645 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5646 * But even if we assume some other non-existing scenario, the
5647 * worst that can happen is few more I/Os get to allocation
5648 * earlier, that is not a problem.
5649 *
5650 * We reserve the slots individually so that we can unreserve
5651 * them individually when an I/O completes.
5652 */
5653 for (int d = 0; d < slots; d++)
5654 zfs_refcount_add(&mca->mca_alloc_slots, zio);
5655 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5656 return (B_TRUE);
5657 }
5658 return (B_FALSE);
5659 }
5660
5661 void
5662 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5663 int allocator, zio_t *zio)
5664 {
5665 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5666
5667 ASSERT(mc->mc_alloc_throttle_enabled);
5668 for (int d = 0; d < slots; d++)
5669 zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5670 }
5671
5672 static int
5673 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5674 uint64_t txg)
5675 {
5676 metaslab_t *msp;
5677 spa_t *spa = vd->vdev_spa;
5678 int error = 0;
5679
5680 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5681 return (SET_ERROR(ENXIO));
5682
5683 ASSERT3P(vd->vdev_ms, !=, NULL);
5684 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5685
5686 mutex_enter(&msp->ms_lock);
5687
5688 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5689 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5690 if (error == EBUSY) {
5691 ASSERT(msp->ms_loaded);
5692 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5693 error = 0;
5694 }
5695 }
5696
5697 if (error == 0 &&
5698 !range_tree_contains(msp->ms_allocatable, offset, size))
5699 error = SET_ERROR(ENOENT);
5700
5701 if (error || txg == 0) { /* txg == 0 indicates dry run */
5702 mutex_exit(&msp->ms_lock);
5703 return (error);
5704 }
5705
5706 VERIFY(!msp->ms_condensing);
5707 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5708 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5709 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5710 msp->ms_size);
5711 range_tree_remove(msp->ms_allocatable, offset, size);
5712 range_tree_clear(msp->ms_trim, offset, size);
5713
5714 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5715 metaslab_class_t *mc = msp->ms_group->mg_class;
5716 multilist_sublist_t *mls =
5717 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5718 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5719 msp->ms_selected_txg = txg;
5720 multilist_sublist_insert_head(mls, msp);
5721 }
5722 multilist_sublist_unlock(mls);
5723
5724 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5725 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5726 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5727 offset, size);
5728 msp->ms_allocating_total += size;
5729 }
5730
5731 mutex_exit(&msp->ms_lock);
5732
5733 return (0);
5734 }
5735
5736 typedef struct metaslab_claim_cb_arg_t {
5737 uint64_t mcca_txg;
5738 int mcca_error;
5739 } metaslab_claim_cb_arg_t;
5740
5741 static void
5742 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5743 uint64_t size, void *arg)
5744 {
5745 (void) inner_offset;
5746 metaslab_claim_cb_arg_t *mcca_arg = arg;
5747
5748 if (mcca_arg->mcca_error == 0) {
5749 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5750 size, mcca_arg->mcca_txg);
5751 }
5752 }
5753
5754 int
5755 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5756 {
5757 if (vd->vdev_ops->vdev_op_remap != NULL) {
5758 metaslab_claim_cb_arg_t arg;
5759
5760 /*
5761 * Only zdb(8) can claim on indirect vdevs. This is used
5762 * to detect leaks of mapped space (that are not accounted
5763 * for in the obsolete counts, spacemap, or bpobj).
5764 */
5765 ASSERT(!spa_writeable(vd->vdev_spa));
5766 arg.mcca_error = 0;
5767 arg.mcca_txg = txg;
5768
5769 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5770 metaslab_claim_impl_cb, &arg);
5771
5772 if (arg.mcca_error == 0) {
5773 arg.mcca_error = metaslab_claim_concrete(vd,
5774 offset, size, txg);
5775 }
5776 return (arg.mcca_error);
5777 } else {
5778 return (metaslab_claim_concrete(vd, offset, size, txg));
5779 }
5780 }
5781
5782 /*
5783 * Intent log support: upon opening the pool after a crash, notify the SPA
5784 * of blocks that the intent log has allocated for immediate write, but
5785 * which are still considered free by the SPA because the last transaction
5786 * group didn't commit yet.
5787 */
5788 static int
5789 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5790 {
5791 uint64_t vdev = DVA_GET_VDEV(dva);
5792 uint64_t offset = DVA_GET_OFFSET(dva);
5793 uint64_t size = DVA_GET_ASIZE(dva);
5794 vdev_t *vd;
5795
5796 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5797 return (SET_ERROR(ENXIO));
5798 }
5799
5800 ASSERT(DVA_IS_VALID(dva));
5801
5802 if (DVA_GET_GANG(dva))
5803 size = vdev_gang_header_asize(vd);
5804
5805 return (metaslab_claim_impl(vd, offset, size, txg));
5806 }
5807
5808 int
5809 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5810 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5811 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5812 {
5813 dva_t *dva = bp->blk_dva;
5814 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5815 int error = 0;
5816
5817 ASSERT(bp->blk_birth == 0);
5818 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5819
5820 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5821
5822 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5823 /* no vdevs in this class */
5824 spa_config_exit(spa, SCL_ALLOC, FTAG);
5825 return (SET_ERROR(ENOSPC));
5826 }
5827
5828 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5829 ASSERT(BP_GET_NDVAS(bp) == 0);
5830 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5831 ASSERT3P(zal, !=, NULL);
5832
5833 for (int d = 0; d < ndvas; d++) {
5834 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5835 txg, flags, zal, allocator);
5836 if (error != 0) {
5837 for (d--; d >= 0; d--) {
5838 metaslab_unalloc_dva(spa, &dva[d], txg);
5839 metaslab_group_alloc_decrement(spa,
5840 DVA_GET_VDEV(&dva[d]), zio, flags,
5841 allocator, B_FALSE);
5842 memset(&dva[d], 0, sizeof (dva_t));
5843 }
5844 spa_config_exit(spa, SCL_ALLOC, FTAG);
5845 return (error);
5846 } else {
5847 /*
5848 * Update the metaslab group's queue depth
5849 * based on the newly allocated dva.
5850 */
5851 metaslab_group_alloc_increment(spa,
5852 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5853 }
5854 }
5855 ASSERT(error == 0);
5856 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5857
5858 spa_config_exit(spa, SCL_ALLOC, FTAG);
5859
5860 BP_SET_BIRTH(bp, txg, 0);
5861
5862 return (0);
5863 }
5864
5865 void
5866 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5867 {
5868 const dva_t *dva = bp->blk_dva;
5869 int ndvas = BP_GET_NDVAS(bp);
5870
5871 ASSERT(!BP_IS_HOLE(bp));
5872 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5873
5874 /*
5875 * If we have a checkpoint for the pool we need to make sure that
5876 * the blocks that we free that are part of the checkpoint won't be
5877 * reused until the checkpoint is discarded or we revert to it.
5878 *
5879 * The checkpoint flag is passed down the metaslab_free code path
5880 * and is set whenever we want to add a block to the checkpoint's
5881 * accounting. That is, we "checkpoint" blocks that existed at the
5882 * time the checkpoint was created and are therefore referenced by
5883 * the checkpointed uberblock.
5884 *
5885 * Note that, we don't checkpoint any blocks if the current
5886 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5887 * normally as they will be referenced by the checkpointed uberblock.
5888 */
5889 boolean_t checkpoint = B_FALSE;
5890 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5891 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5892 /*
5893 * At this point, if the block is part of the checkpoint
5894 * there is no way it was created in the current txg.
5895 */
5896 ASSERT(!now);
5897 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5898 checkpoint = B_TRUE;
5899 }
5900
5901 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5902
5903 for (int d = 0; d < ndvas; d++) {
5904 if (now) {
5905 metaslab_unalloc_dva(spa, &dva[d], txg);
5906 } else {
5907 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5908 metaslab_free_dva(spa, &dva[d], checkpoint);
5909 }
5910 }
5911
5912 spa_config_exit(spa, SCL_FREE, FTAG);
5913 }
5914
5915 int
5916 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5917 {
5918 const dva_t *dva = bp->blk_dva;
5919 int ndvas = BP_GET_NDVAS(bp);
5920 int error = 0;
5921
5922 ASSERT(!BP_IS_HOLE(bp));
5923
5924 if (txg != 0) {
5925 /*
5926 * First do a dry run to make sure all DVAs are claimable,
5927 * so we don't have to unwind from partial failures below.
5928 */
5929 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5930 return (error);
5931 }
5932
5933 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5934
5935 for (int d = 0; d < ndvas; d++) {
5936 error = metaslab_claim_dva(spa, &dva[d], txg);
5937 if (error != 0)
5938 break;
5939 }
5940
5941 spa_config_exit(spa, SCL_ALLOC, FTAG);
5942
5943 ASSERT(error == 0 || txg == 0);
5944
5945 return (error);
5946 }
5947
5948 void
5949 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5950 {
5951 const dva_t *dva = bp->blk_dva;
5952 int ndvas = BP_GET_NDVAS(bp);
5953 uint64_t psize = BP_GET_PSIZE(bp);
5954 int d;
5955 vdev_t *vd;
5956
5957 ASSERT(!BP_IS_HOLE(bp));
5958 ASSERT(!BP_IS_EMBEDDED(bp));
5959 ASSERT(psize > 0);
5960
5961 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5962
5963 for (d = 0; d < ndvas; d++) {
5964 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5965 continue;
5966 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5967 }
5968
5969 spa_config_exit(spa, SCL_VDEV, FTAG);
5970 }
5971
5972 void
5973 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5974 {
5975 const dva_t *dva = bp->blk_dva;
5976 int ndvas = BP_GET_NDVAS(bp);
5977 uint64_t psize = BP_GET_PSIZE(bp);
5978 int d;
5979 vdev_t *vd;
5980
5981 ASSERT(!BP_IS_HOLE(bp));
5982 ASSERT(!BP_IS_EMBEDDED(bp));
5983 ASSERT(psize > 0);
5984
5985 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5986
5987 for (d = 0; d < ndvas; d++) {
5988 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5989 continue;
5990 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5991 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5992 }
5993
5994 spa_config_exit(spa, SCL_VDEV, FTAG);
5995 }
5996
5997 static void
5998 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5999 uint64_t size, void *arg)
6000 {
6001 (void) inner, (void) arg;
6002
6003 if (vd->vdev_ops == &vdev_indirect_ops)
6004 return;
6005
6006 metaslab_check_free_impl(vd, offset, size);
6007 }
6008
6009 static void
6010 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6011 {
6012 metaslab_t *msp;
6013 spa_t *spa __maybe_unused = vd->vdev_spa;
6014
6015 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6016 return;
6017
6018 if (vd->vdev_ops->vdev_op_remap != NULL) {
6019 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6020 metaslab_check_free_impl_cb, NULL);
6021 return;
6022 }
6023
6024 ASSERT(vdev_is_concrete(vd));
6025 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6026 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6027
6028 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6029
6030 mutex_enter(&msp->ms_lock);
6031 if (msp->ms_loaded) {
6032 range_tree_verify_not_present(msp->ms_allocatable,
6033 offset, size);
6034 }
6035
6036 /*
6037 * Check all segments that currently exist in the freeing pipeline.
6038 *
6039 * It would intuitively make sense to also check the current allocating
6040 * tree since metaslab_unalloc_dva() exists for extents that are
6041 * allocated and freed in the same sync pass within the same txg.
6042 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6043 * segment but then we free part of it within the same txg
6044 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6045 * current allocating tree.
6046 */
6047 range_tree_verify_not_present(msp->ms_freeing, offset, size);
6048 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6049 range_tree_verify_not_present(msp->ms_freed, offset, size);
6050 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6051 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6052 range_tree_verify_not_present(msp->ms_trim, offset, size);
6053 mutex_exit(&msp->ms_lock);
6054 }
6055
6056 void
6057 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6058 {
6059 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6060 return;
6061
6062 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6063 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6064 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6065 vdev_t *vd = vdev_lookup_top(spa, vdev);
6066 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6067 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6068
6069 if (DVA_GET_GANG(&bp->blk_dva[i]))
6070 size = vdev_gang_header_asize(vd);
6071
6072 ASSERT3P(vd, !=, NULL);
6073
6074 metaslab_check_free_impl(vd, offset, size);
6075 }
6076 spa_config_exit(spa, SCL_VDEV, FTAG);
6077 }
6078
6079 static void
6080 metaslab_group_disable_wait(metaslab_group_t *mg)
6081 {
6082 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6083 while (mg->mg_disabled_updating) {
6084 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6085 }
6086 }
6087
6088 static void
6089 metaslab_group_disabled_increment(metaslab_group_t *mg)
6090 {
6091 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6092 ASSERT(mg->mg_disabled_updating);
6093
6094 while (mg->mg_ms_disabled >= max_disabled_ms) {
6095 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6096 }
6097 mg->mg_ms_disabled++;
6098 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6099 }
6100
6101 /*
6102 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6103 * We must also track how many metaslabs are currently disabled within a
6104 * metaslab group and limit them to prevent allocation failures from
6105 * occurring because all metaslabs are disabled.
6106 */
6107 void
6108 metaslab_disable(metaslab_t *msp)
6109 {
6110 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6111 metaslab_group_t *mg = msp->ms_group;
6112
6113 mutex_enter(&mg->mg_ms_disabled_lock);
6114
6115 /*
6116 * To keep an accurate count of how many threads have disabled
6117 * a specific metaslab group, we only allow one thread to mark
6118 * the metaslab group at a time. This ensures that the value of
6119 * ms_disabled will be accurate when we decide to mark a metaslab
6120 * group as disabled. To do this we force all other threads
6121 * to wait till the metaslab's mg_disabled_updating flag is no
6122 * longer set.
6123 */
6124 metaslab_group_disable_wait(mg);
6125 mg->mg_disabled_updating = B_TRUE;
6126 if (msp->ms_disabled == 0) {
6127 metaslab_group_disabled_increment(mg);
6128 }
6129 mutex_enter(&msp->ms_lock);
6130 msp->ms_disabled++;
6131 mutex_exit(&msp->ms_lock);
6132
6133 mg->mg_disabled_updating = B_FALSE;
6134 cv_broadcast(&mg->mg_ms_disabled_cv);
6135 mutex_exit(&mg->mg_ms_disabled_lock);
6136 }
6137
6138 void
6139 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6140 {
6141 metaslab_group_t *mg = msp->ms_group;
6142 spa_t *spa = mg->mg_vd->vdev_spa;
6143
6144 /*
6145 * Wait for the outstanding IO to be synced to prevent newly
6146 * allocated blocks from being overwritten. This used by
6147 * initialize and TRIM which are modifying unallocated space.
6148 */
6149 if (sync)
6150 txg_wait_synced(spa_get_dsl(spa), 0);
6151
6152 mutex_enter(&mg->mg_ms_disabled_lock);
6153 mutex_enter(&msp->ms_lock);
6154 if (--msp->ms_disabled == 0) {
6155 mg->mg_ms_disabled--;
6156 cv_broadcast(&mg->mg_ms_disabled_cv);
6157 if (unload)
6158 metaslab_unload(msp);
6159 }
6160 mutex_exit(&msp->ms_lock);
6161 mutex_exit(&mg->mg_ms_disabled_lock);
6162 }
6163
6164 void
6165 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6166 {
6167 ms->ms_unflushed_dirty = dirty;
6168 }
6169
6170 static void
6171 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6172 {
6173 vdev_t *vd = ms->ms_group->mg_vd;
6174 spa_t *spa = vd->vdev_spa;
6175 objset_t *mos = spa_meta_objset(spa);
6176
6177 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6178
6179 metaslab_unflushed_phys_t entry = {
6180 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6181 };
6182 uint64_t entry_size = sizeof (entry);
6183 uint64_t entry_offset = ms->ms_id * entry_size;
6184
6185 uint64_t object = 0;
6186 int err = zap_lookup(mos, vd->vdev_top_zap,
6187 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6188 &object);
6189 if (err == ENOENT) {
6190 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6191 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6192 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6193 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6194 &object, tx));
6195 } else {
6196 VERIFY0(err);
6197 }
6198
6199 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6200 &entry, tx);
6201 }
6202
6203 void
6204 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6205 {
6206 ms->ms_unflushed_txg = txg;
6207 metaslab_update_ondisk_flush_data(ms, tx);
6208 }
6209
6210 boolean_t
6211 metaslab_unflushed_dirty(metaslab_t *ms)
6212 {
6213 return (ms->ms_unflushed_dirty);
6214 }
6215
6216 uint64_t
6217 metaslab_unflushed_txg(metaslab_t *ms)
6218 {
6219 return (ms->ms_unflushed_txg);
6220 }
6221
6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6223 "Allocation granularity (a.k.a. stripe size)");
6224
6225 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6226 "Load all metaslabs when pool is first opened");
6227
6228 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6229 "Prevent metaslabs from being unloaded");
6230
6231 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6232 "Preload potential metaslabs during reassessment");
6233
6234 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6235 "Delay in txgs after metaslab was last used before unloading");
6236
6237 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6238 "Delay in milliseconds after metaslab was last used before unloading");
6239
6240 /* BEGIN CSTYLED */
6241 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6242 "Percentage of metaslab group size that should be free to make it "
6243 "eligible for allocation");
6244
6245 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6246 "Percentage of metaslab group size that should be considered eligible "
6247 "for allocations unless all metaslab groups within the metaslab class "
6248 "have also crossed this threshold");
6249
6250 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6251 ZMOD_RW,
6252 "Use the fragmentation metric to prefer less fragmented metaslabs");
6253 /* END CSTYLED */
6254
6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6256 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6257
6258 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6259 "Prefer metaslabs with lower LBAs");
6260
6261 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6262 "Enable metaslab group biasing");
6263
6264 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6265 ZMOD_RW, "Enable segment-based metaslab selection");
6266
6267 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6268 "Segment-based metaslab selection maximum buckets before switching");
6269
6270 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6271 "Blocks larger than this size are forced to be gang blocks");
6272
6273 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6274 "Max distance (bytes) to search forward before using size tree");
6275
6276 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6277 "When looking in size tree, use largest segment instead of exact fit");
6278
6279 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6280 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6281
6282 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6283 "Percentage of memory that can be used to store metaslab range trees");
6284
6285 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6286 ZMOD_RW, "Try hard to allocate before ganging");
6287
6288 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6289 "Normally only consider this many of the best metaslabs in each vdev");