]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Move metaslab_group_alloc_update() call
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34
35 #define WITH_DF_BLOCK_ALLOCATOR
36
37 /*
38 * Allow allocations to switch to gang blocks quickly. We do this to
39 * avoid having to load lots of space_maps in a given txg. There are,
40 * however, some cases where we want to avoid "fast" ganging and instead
41 * we want to do an exhaustive search of all metaslabs on this device.
42 * Currently we don't allow any gang, zil, or dump device related allocations
43 * to "fast" gang.
44 */
45 #define CAN_FASTGANG(flags) \
46 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
47 METASLAB_GANG_AVOID)))
48
49 uint64_t metaslab_aliquot = 512ULL << 10;
50 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
51
52 /*
53 * The in-core space map representation is more compact than its on-disk form.
54 * The zfs_condense_pct determines how much more compact the in-core
55 * space_map representation must be before we compact it on-disk.
56 * Values should be greater than or equal to 100.
57 */
58 int zfs_condense_pct = 200;
59
60 /*
61 * This value defines the number of allowed allocation failures per vdev.
62 * If a device reaches this threshold in a given txg then we consider skipping
63 * allocations on that device. The value of zfs_mg_alloc_failures is computed
64 * in zio_init() unless it has been overridden in /etc/system.
65 */
66 int zfs_mg_alloc_failures = 0;
67
68 /*
69 * The zfs_mg_noalloc_threshold defines which metaslab groups should
70 * be eligible for allocation. The value is defined as a percentage of
71 * a free space. Metaslab groups that have more free space than
72 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
73 * a metaslab group's free space is less than or equal to the
74 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
75 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
76 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
77 * groups are allowed to accept allocations. Gang blocks are always
78 * eligible to allocate on any metaslab group. The default value of 0 means
79 * no metaslab group will be excluded based on this criterion.
80 */
81 int zfs_mg_noalloc_threshold = 0;
82
83 /*
84 * When set will load all metaslabs when pool is first opened.
85 */
86 int metaslab_debug_load = 0;
87
88 /*
89 * When set will prevent metaslabs from being unloaded.
90 */
91 int metaslab_debug_unload = 0;
92
93 /*
94 * Minimum size which forces the dynamic allocator to change
95 * it's allocation strategy. Once the space map cannot satisfy
96 * an allocation of this size then it switches to using more
97 * aggressive strategy (i.e search by size rather than offset).
98 */
99 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
100
101 /*
102 * The minimum free space, in percent, which must be available
103 * in a space map to continue allocations in a first-fit fashion.
104 * Once the space_map's free space drops below this level we dynamically
105 * switch to using best-fit allocations.
106 */
107 int metaslab_df_free_pct = 4;
108
109 /*
110 * A metaslab is considered "free" if it contains a contiguous
111 * segment which is greater than metaslab_min_alloc_size.
112 */
113 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
114
115 /*
116 * Max number of space_maps to prefetch.
117 */
118 int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
119
120 /*
121 * Percentage bonus multiplier for metaslabs that are in the bonus area.
122 */
123 int metaslab_smo_bonus_pct = 150;
124
125 /*
126 * Should we be willing to write data to degraded vdevs?
127 */
128 boolean_t zfs_write_to_degraded = B_FALSE;
129
130 /*
131 * ==========================================================================
132 * Metaslab classes
133 * ==========================================================================
134 */
135 metaslab_class_t *
136 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
137 {
138 metaslab_class_t *mc;
139
140 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
141
142 mc->mc_spa = spa;
143 mc->mc_rotor = NULL;
144 mc->mc_ops = ops;
145 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
146
147 return (mc);
148 }
149
150 void
151 metaslab_class_destroy(metaslab_class_t *mc)
152 {
153 ASSERT(mc->mc_rotor == NULL);
154 ASSERT(mc->mc_alloc == 0);
155 ASSERT(mc->mc_deferred == 0);
156 ASSERT(mc->mc_space == 0);
157 ASSERT(mc->mc_dspace == 0);
158
159 mutex_destroy(&mc->mc_fastwrite_lock);
160 kmem_free(mc, sizeof (metaslab_class_t));
161 }
162
163 int
164 metaslab_class_validate(metaslab_class_t *mc)
165 {
166 metaslab_group_t *mg;
167 vdev_t *vd;
168
169 /*
170 * Must hold one of the spa_config locks.
171 */
172 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
173 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
174
175 if ((mg = mc->mc_rotor) == NULL)
176 return (0);
177
178 do {
179 vd = mg->mg_vd;
180 ASSERT(vd->vdev_mg != NULL);
181 ASSERT3P(vd->vdev_top, ==, vd);
182 ASSERT3P(mg->mg_class, ==, mc);
183 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
184 } while ((mg = mg->mg_next) != mc->mc_rotor);
185
186 return (0);
187 }
188
189 void
190 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
191 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
192 {
193 atomic_add_64(&mc->mc_alloc, alloc_delta);
194 atomic_add_64(&mc->mc_deferred, defer_delta);
195 atomic_add_64(&mc->mc_space, space_delta);
196 atomic_add_64(&mc->mc_dspace, dspace_delta);
197 }
198
199 uint64_t
200 metaslab_class_get_alloc(metaslab_class_t *mc)
201 {
202 return (mc->mc_alloc);
203 }
204
205 uint64_t
206 metaslab_class_get_deferred(metaslab_class_t *mc)
207 {
208 return (mc->mc_deferred);
209 }
210
211 uint64_t
212 metaslab_class_get_space(metaslab_class_t *mc)
213 {
214 return (mc->mc_space);
215 }
216
217 uint64_t
218 metaslab_class_get_dspace(metaslab_class_t *mc)
219 {
220 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
221 }
222
223 /*
224 * ==========================================================================
225 * Metaslab groups
226 * ==========================================================================
227 */
228 static int
229 metaslab_compare(const void *x1, const void *x2)
230 {
231 const metaslab_t *m1 = x1;
232 const metaslab_t *m2 = x2;
233
234 if (m1->ms_weight < m2->ms_weight)
235 return (1);
236 if (m1->ms_weight > m2->ms_weight)
237 return (-1);
238
239 /*
240 * If the weights are identical, use the offset to force uniqueness.
241 */
242 if (m1->ms_map->sm_start < m2->ms_map->sm_start)
243 return (-1);
244 if (m1->ms_map->sm_start > m2->ms_map->sm_start)
245 return (1);
246
247 ASSERT3P(m1, ==, m2);
248
249 return (0);
250 }
251
252 /*
253 * Update the allocatable flag and the metaslab group's capacity.
254 * The allocatable flag is set to true if the capacity is below
255 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
256 * from allocatable to non-allocatable or vice versa then the metaslab
257 * group's class is updated to reflect the transition.
258 */
259 static void
260 metaslab_group_alloc_update(metaslab_group_t *mg)
261 {
262 vdev_t *vd = mg->mg_vd;
263 metaslab_class_t *mc = mg->mg_class;
264 vdev_stat_t *vs = &vd->vdev_stat;
265 boolean_t was_allocatable;
266
267 ASSERT(vd == vd->vdev_top);
268
269 mutex_enter(&mg->mg_lock);
270 was_allocatable = mg->mg_allocatable;
271
272 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
273 (vs->vs_space + 1);
274
275 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
276
277 /*
278 * The mc_alloc_groups maintains a count of the number of
279 * groups in this metaslab class that are still above the
280 * zfs_mg_noalloc_threshold. This is used by the allocating
281 * threads to determine if they should avoid allocations to
282 * a given group. The allocator will avoid allocations to a group
283 * if that group has reached or is below the zfs_mg_noalloc_threshold
284 * and there are still other groups that are above the threshold.
285 * When a group transitions from allocatable to non-allocatable or
286 * vice versa we update the metaslab class to reflect that change.
287 * When the mc_alloc_groups value drops to 0 that means that all
288 * groups have reached the zfs_mg_noalloc_threshold making all groups
289 * eligible for allocations. This effectively means that all devices
290 * are balanced again.
291 */
292 if (was_allocatable && !mg->mg_allocatable)
293 mc->mc_alloc_groups--;
294 else if (!was_allocatable && mg->mg_allocatable)
295 mc->mc_alloc_groups++;
296 mutex_exit(&mg->mg_lock);
297 }
298
299 metaslab_group_t *
300 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
301 {
302 metaslab_group_t *mg;
303
304 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
305 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
306 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
307 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
308 mg->mg_vd = vd;
309 mg->mg_class = mc;
310 mg->mg_activation_count = 0;
311
312 return (mg);
313 }
314
315 void
316 metaslab_group_destroy(metaslab_group_t *mg)
317 {
318 ASSERT(mg->mg_prev == NULL);
319 ASSERT(mg->mg_next == NULL);
320 /*
321 * We may have gone below zero with the activation count
322 * either because we never activated in the first place or
323 * because we're done, and possibly removing the vdev.
324 */
325 ASSERT(mg->mg_activation_count <= 0);
326
327 avl_destroy(&mg->mg_metaslab_tree);
328 mutex_destroy(&mg->mg_lock);
329 kmem_free(mg, sizeof (metaslab_group_t));
330 }
331
332 void
333 metaslab_group_activate(metaslab_group_t *mg)
334 {
335 metaslab_class_t *mc = mg->mg_class;
336 metaslab_group_t *mgprev, *mgnext;
337
338 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
339
340 ASSERT(mc->mc_rotor != mg);
341 ASSERT(mg->mg_prev == NULL);
342 ASSERT(mg->mg_next == NULL);
343 ASSERT(mg->mg_activation_count <= 0);
344
345 if (++mg->mg_activation_count <= 0)
346 return;
347
348 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
349 metaslab_group_alloc_update(mg);
350
351 if ((mgprev = mc->mc_rotor) == NULL) {
352 mg->mg_prev = mg;
353 mg->mg_next = mg;
354 } else {
355 mgnext = mgprev->mg_next;
356 mg->mg_prev = mgprev;
357 mg->mg_next = mgnext;
358 mgprev->mg_next = mg;
359 mgnext->mg_prev = mg;
360 }
361 mc->mc_rotor = mg;
362 }
363
364 void
365 metaslab_group_passivate(metaslab_group_t *mg)
366 {
367 metaslab_class_t *mc = mg->mg_class;
368 metaslab_group_t *mgprev, *mgnext;
369
370 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
371
372 if (--mg->mg_activation_count != 0) {
373 ASSERT(mc->mc_rotor != mg);
374 ASSERT(mg->mg_prev == NULL);
375 ASSERT(mg->mg_next == NULL);
376 ASSERT(mg->mg_activation_count < 0);
377 return;
378 }
379
380 mgprev = mg->mg_prev;
381 mgnext = mg->mg_next;
382
383 if (mg == mgnext) {
384 mc->mc_rotor = NULL;
385 } else {
386 mc->mc_rotor = mgnext;
387 mgprev->mg_next = mgnext;
388 mgnext->mg_prev = mgprev;
389 }
390
391 mg->mg_prev = NULL;
392 mg->mg_next = NULL;
393 }
394
395 static void
396 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
397 {
398 mutex_enter(&mg->mg_lock);
399 ASSERT(msp->ms_group == NULL);
400 msp->ms_group = mg;
401 msp->ms_weight = 0;
402 avl_add(&mg->mg_metaslab_tree, msp);
403 mutex_exit(&mg->mg_lock);
404 }
405
406 static void
407 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
408 {
409 mutex_enter(&mg->mg_lock);
410 ASSERT(msp->ms_group == mg);
411 avl_remove(&mg->mg_metaslab_tree, msp);
412 msp->ms_group = NULL;
413 mutex_exit(&mg->mg_lock);
414 }
415
416 static void
417 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
418 {
419 /*
420 * Although in principle the weight can be any value, in
421 * practice we do not use values in the range [1, 510].
422 */
423 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
424 ASSERT(MUTEX_HELD(&msp->ms_lock));
425
426 mutex_enter(&mg->mg_lock);
427 ASSERT(msp->ms_group == mg);
428 avl_remove(&mg->mg_metaslab_tree, msp);
429 msp->ms_weight = weight;
430 avl_add(&mg->mg_metaslab_tree, msp);
431 mutex_exit(&mg->mg_lock);
432 }
433
434 /*
435 * Determine if a given metaslab group should skip allocations. A metaslab
436 * group should avoid allocations if its used capacity has crossed the
437 * zfs_mg_noalloc_threshold and there is at least one metaslab group
438 * that can still handle allocations.
439 */
440 static boolean_t
441 metaslab_group_allocatable(metaslab_group_t *mg)
442 {
443 vdev_t *vd = mg->mg_vd;
444 spa_t *spa = vd->vdev_spa;
445 metaslab_class_t *mc = mg->mg_class;
446
447 /*
448 * A metaslab group is considered allocatable if its free capacity
449 * is greater than the set value of zfs_mg_noalloc_threshold, it's
450 * associated with a slog, or there are no other metaslab groups
451 * with free capacity greater than zfs_mg_noalloc_threshold.
452 */
453 return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
454 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
455 }
456
457 /*
458 * ==========================================================================
459 * Common allocator routines
460 * ==========================================================================
461 */
462 static int
463 metaslab_segsize_compare(const void *x1, const void *x2)
464 {
465 const space_seg_t *s1 = x1;
466 const space_seg_t *s2 = x2;
467 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
468 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
469
470 if (ss_size1 < ss_size2)
471 return (-1);
472 if (ss_size1 > ss_size2)
473 return (1);
474
475 if (s1->ss_start < s2->ss_start)
476 return (-1);
477 if (s1->ss_start > s2->ss_start)
478 return (1);
479
480 return (0);
481 }
482
483 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
484 defined(WITH_DF_BLOCK_ALLOCATOR) || \
485 defined(WITH_CDF_BLOCK_ALLOCATOR)
486 /*
487 * This is a helper function that can be used by the allocator to find
488 * a suitable block to allocate. This will search the specified AVL
489 * tree looking for a block that matches the specified criteria.
490 */
491 static uint64_t
492 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
493 uint64_t align)
494 {
495 space_seg_t *ss, ssearch;
496 avl_index_t where;
497
498 ssearch.ss_start = *cursor;
499 ssearch.ss_end = *cursor + size;
500
501 ss = avl_find(t, &ssearch, &where);
502 if (ss == NULL)
503 ss = avl_nearest(t, where, AVL_AFTER);
504
505 while (ss != NULL) {
506 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
507
508 if (offset + size <= ss->ss_end) {
509 *cursor = offset + size;
510 return (offset);
511 }
512 ss = AVL_NEXT(t, ss);
513 }
514
515 /*
516 * If we know we've searched the whole map (*cursor == 0), give up.
517 * Otherwise, reset the cursor to the beginning and try again.
518 */
519 if (*cursor == 0)
520 return (-1ULL);
521
522 *cursor = 0;
523 return (metaslab_block_picker(t, cursor, size, align));
524 }
525 #endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */
526
527 static void
528 metaslab_pp_load(space_map_t *sm)
529 {
530 space_seg_t *ss;
531
532 ASSERT(sm->sm_ppd == NULL);
533 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_PUSHPAGE);
534
535 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_PUSHPAGE);
536 avl_create(sm->sm_pp_root, metaslab_segsize_compare,
537 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
538
539 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
540 avl_add(sm->sm_pp_root, ss);
541 }
542
543 static void
544 metaslab_pp_unload(space_map_t *sm)
545 {
546 void *cookie = NULL;
547
548 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
549 sm->sm_ppd = NULL;
550
551 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
552 /* tear down the tree */
553 }
554
555 avl_destroy(sm->sm_pp_root);
556 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
557 sm->sm_pp_root = NULL;
558 }
559
560 /* ARGSUSED */
561 static void
562 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
563 {
564 /* No need to update cursor */
565 }
566
567 /* ARGSUSED */
568 static void
569 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
570 {
571 /* No need to update cursor */
572 }
573
574 /*
575 * Return the maximum contiguous segment within the metaslab.
576 */
577 uint64_t
578 metaslab_pp_maxsize(space_map_t *sm)
579 {
580 avl_tree_t *t = sm->sm_pp_root;
581 space_seg_t *ss;
582
583 if (t == NULL || (ss = avl_last(t)) == NULL)
584 return (0ULL);
585
586 return (ss->ss_end - ss->ss_start);
587 }
588
589 #if defined(WITH_FF_BLOCK_ALLOCATOR)
590 /*
591 * ==========================================================================
592 * The first-fit block allocator
593 * ==========================================================================
594 */
595 static uint64_t
596 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
597 {
598 avl_tree_t *t = &sm->sm_root;
599 uint64_t align = size & -size;
600 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
601
602 return (metaslab_block_picker(t, cursor, size, align));
603 }
604
605 /* ARGSUSED */
606 boolean_t
607 metaslab_ff_fragmented(space_map_t *sm)
608 {
609 return (B_TRUE);
610 }
611
612 static space_map_ops_t metaslab_ff_ops = {
613 metaslab_pp_load,
614 metaslab_pp_unload,
615 metaslab_ff_alloc,
616 metaslab_pp_claim,
617 metaslab_pp_free,
618 metaslab_pp_maxsize,
619 metaslab_ff_fragmented
620 };
621
622 space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
623 #endif /* WITH_FF_BLOCK_ALLOCATOR */
624
625 #if defined(WITH_DF_BLOCK_ALLOCATOR)
626 /*
627 * ==========================================================================
628 * Dynamic block allocator -
629 * Uses the first fit allocation scheme until space get low and then
630 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
631 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
632 * ==========================================================================
633 */
634 static uint64_t
635 metaslab_df_alloc(space_map_t *sm, uint64_t size)
636 {
637 avl_tree_t *t = &sm->sm_root;
638 uint64_t align = size & -size;
639 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
640 uint64_t max_size = metaslab_pp_maxsize(sm);
641 int free_pct = sm->sm_space * 100 / sm->sm_size;
642
643 ASSERT(MUTEX_HELD(sm->sm_lock));
644 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
645
646 if (max_size < size)
647 return (-1ULL);
648
649 /*
650 * If we're running low on space switch to using the size
651 * sorted AVL tree (best-fit).
652 */
653 if (max_size < metaslab_df_alloc_threshold ||
654 free_pct < metaslab_df_free_pct) {
655 t = sm->sm_pp_root;
656 *cursor = 0;
657 }
658
659 return (metaslab_block_picker(t, cursor, size, 1ULL));
660 }
661
662 static boolean_t
663 metaslab_df_fragmented(space_map_t *sm)
664 {
665 uint64_t max_size = metaslab_pp_maxsize(sm);
666 int free_pct = sm->sm_space * 100 / sm->sm_size;
667
668 if (max_size >= metaslab_df_alloc_threshold &&
669 free_pct >= metaslab_df_free_pct)
670 return (B_FALSE);
671
672 return (B_TRUE);
673 }
674
675 static space_map_ops_t metaslab_df_ops = {
676 metaslab_pp_load,
677 metaslab_pp_unload,
678 metaslab_df_alloc,
679 metaslab_pp_claim,
680 metaslab_pp_free,
681 metaslab_pp_maxsize,
682 metaslab_df_fragmented
683 };
684
685 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
686 #endif /* WITH_DF_BLOCK_ALLOCATOR */
687
688 /*
689 * ==========================================================================
690 * Other experimental allocators
691 * ==========================================================================
692 */
693 #if defined(WITH_CDF_BLOCK_ALLOCATOR)
694 static uint64_t
695 metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
696 {
697 avl_tree_t *t = &sm->sm_root;
698 uint64_t *cursor = (uint64_t *)sm->sm_ppd;
699 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
700 uint64_t max_size = metaslab_pp_maxsize(sm);
701 uint64_t rsize = size;
702 uint64_t offset = 0;
703
704 ASSERT(MUTEX_HELD(sm->sm_lock));
705 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
706
707 if (max_size < size)
708 return (-1ULL);
709
710 ASSERT3U(*extent_end, >=, *cursor);
711
712 /*
713 * If we're running low on space switch to using the size
714 * sorted AVL tree (best-fit).
715 */
716 if ((*cursor + size) > *extent_end) {
717
718 t = sm->sm_pp_root;
719 *cursor = *extent_end = 0;
720
721 if (max_size > 2 * SPA_MAXBLOCKSIZE)
722 rsize = MIN(metaslab_min_alloc_size, max_size);
723 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
724 if (offset != -1)
725 *cursor = offset + size;
726 } else {
727 offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
728 }
729 ASSERT3U(*cursor, <=, *extent_end);
730 return (offset);
731 }
732
733 static boolean_t
734 metaslab_cdf_fragmented(space_map_t *sm)
735 {
736 uint64_t max_size = metaslab_pp_maxsize(sm);
737
738 if (max_size > (metaslab_min_alloc_size * 10))
739 return (B_FALSE);
740 return (B_TRUE);
741 }
742
743 static space_map_ops_t metaslab_cdf_ops = {
744 metaslab_pp_load,
745 metaslab_pp_unload,
746 metaslab_cdf_alloc,
747 metaslab_pp_claim,
748 metaslab_pp_free,
749 metaslab_pp_maxsize,
750 metaslab_cdf_fragmented
751 };
752
753 space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops;
754 #endif /* WITH_CDF_BLOCK_ALLOCATOR */
755
756 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
757 uint64_t metaslab_ndf_clump_shift = 4;
758
759 static uint64_t
760 metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
761 {
762 avl_tree_t *t = &sm->sm_root;
763 avl_index_t where;
764 space_seg_t *ss, ssearch;
765 uint64_t hbit = highbit(size);
766 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
767 uint64_t max_size = metaslab_pp_maxsize(sm);
768
769 ASSERT(MUTEX_HELD(sm->sm_lock));
770 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
771
772 if (max_size < size)
773 return (-1ULL);
774
775 ssearch.ss_start = *cursor;
776 ssearch.ss_end = *cursor + size;
777
778 ss = avl_find(t, &ssearch, &where);
779 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
780 t = sm->sm_pp_root;
781
782 ssearch.ss_start = 0;
783 ssearch.ss_end = MIN(max_size,
784 1ULL << (hbit + metaslab_ndf_clump_shift));
785 ss = avl_find(t, &ssearch, &where);
786 if (ss == NULL)
787 ss = avl_nearest(t, where, AVL_AFTER);
788 ASSERT(ss != NULL);
789 }
790
791 if (ss != NULL) {
792 if (ss->ss_start + size <= ss->ss_end) {
793 *cursor = ss->ss_start + size;
794 return (ss->ss_start);
795 }
796 }
797 return (-1ULL);
798 }
799
800 static boolean_t
801 metaslab_ndf_fragmented(space_map_t *sm)
802 {
803 uint64_t max_size = metaslab_pp_maxsize(sm);
804
805 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
806 return (B_FALSE);
807 return (B_TRUE);
808 }
809
810
811 static space_map_ops_t metaslab_ndf_ops = {
812 metaslab_pp_load,
813 metaslab_pp_unload,
814 metaslab_ndf_alloc,
815 metaslab_pp_claim,
816 metaslab_pp_free,
817 metaslab_pp_maxsize,
818 metaslab_ndf_fragmented
819 };
820
821 space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
822 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
823
824 /*
825 * ==========================================================================
826 * Metaslabs
827 * ==========================================================================
828 */
829 metaslab_t *
830 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
831 uint64_t start, uint64_t size, uint64_t txg)
832 {
833 vdev_t *vd = mg->mg_vd;
834 metaslab_t *msp;
835
836 msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
837 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
838
839 msp->ms_smo_syncing = *smo;
840
841 /*
842 * We create the main space map here, but we don't create the
843 * allocmaps and freemaps until metaslab_sync_done(). This serves
844 * two purposes: it allows metaslab_sync_done() to detect the
845 * addition of new space; and for debugging, it ensures that we'd
846 * data fault on any attempt to use this metaslab before it's ready.
847 */
848 msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_PUSHPAGE);
849 space_map_create(msp->ms_map, start, size,
850 vd->vdev_ashift, &msp->ms_lock);
851
852 metaslab_group_add(mg, msp);
853
854 if (metaslab_debug_load && smo->smo_object != 0) {
855 mutex_enter(&msp->ms_lock);
856 VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops,
857 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
858 mutex_exit(&msp->ms_lock);
859 }
860
861 /*
862 * If we're opening an existing pool (txg == 0) or creating
863 * a new one (txg == TXG_INITIAL), all space is available now.
864 * If we're adding space to an existing pool, the new space
865 * does not become available until after this txg has synced.
866 */
867 if (txg <= TXG_INITIAL)
868 metaslab_sync_done(msp, 0);
869
870 if (txg != 0) {
871 vdev_dirty(vd, 0, NULL, txg);
872 vdev_dirty(vd, VDD_METASLAB, msp, txg);
873 }
874
875 return (msp);
876 }
877
878 void
879 metaslab_fini(metaslab_t *msp)
880 {
881 metaslab_group_t *mg = msp->ms_group;
882 int t;
883
884 vdev_space_update(mg->mg_vd,
885 -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size);
886
887 metaslab_group_remove(mg, msp);
888
889 mutex_enter(&msp->ms_lock);
890
891 space_map_unload(msp->ms_map);
892 space_map_destroy(msp->ms_map);
893 kmem_free(msp->ms_map, sizeof (*msp->ms_map));
894
895 for (t = 0; t < TXG_SIZE; t++) {
896 space_map_destroy(msp->ms_allocmap[t]);
897 space_map_destroy(msp->ms_freemap[t]);
898 kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t]));
899 kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t]));
900 }
901
902 for (t = 0; t < TXG_DEFER_SIZE; t++) {
903 space_map_destroy(msp->ms_defermap[t]);
904 kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t]));
905 }
906
907 ASSERT0(msp->ms_deferspace);
908
909 mutex_exit(&msp->ms_lock);
910 mutex_destroy(&msp->ms_lock);
911
912 kmem_free(msp, sizeof (metaslab_t));
913 }
914
915 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
916 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
917 #define METASLAB_ACTIVE_MASK \
918 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
919
920 static uint64_t
921 metaslab_weight(metaslab_t *msp)
922 {
923 metaslab_group_t *mg = msp->ms_group;
924 space_map_t *sm = msp->ms_map;
925 space_map_obj_t *smo = &msp->ms_smo;
926 vdev_t *vd = mg->mg_vd;
927 uint64_t weight, space;
928
929 ASSERT(MUTEX_HELD(&msp->ms_lock));
930
931 /*
932 * This vdev is in the process of being removed so there is nothing
933 * for us to do here.
934 */
935 if (vd->vdev_removing) {
936 ASSERT0(smo->smo_alloc);
937 ASSERT0(vd->vdev_ms_shift);
938 return (0);
939 }
940
941 /*
942 * The baseline weight is the metaslab's free space.
943 */
944 space = sm->sm_size - smo->smo_alloc;
945 weight = space;
946
947 /*
948 * Modern disks have uniform bit density and constant angular velocity.
949 * Therefore, the outer recording zones are faster (higher bandwidth)
950 * than the inner zones by the ratio of outer to inner track diameter,
951 * which is typically around 2:1. We account for this by assigning
952 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
953 * In effect, this means that we'll select the metaslab with the most
954 * free bandwidth rather than simply the one with the most free space.
955 */
956 weight = 2 * weight -
957 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
958 ASSERT(weight >= space && weight <= 2 * space);
959
960 /*
961 * For locality, assign higher weight to metaslabs which have
962 * a lower offset than what we've already activated.
963 */
964 if (sm->sm_start <= mg->mg_bonus_area)
965 weight *= (metaslab_smo_bonus_pct / 100);
966 ASSERT(weight >= space &&
967 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
968
969 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
970 /*
971 * If this metaslab is one we're actively using, adjust its
972 * weight to make it preferable to any inactive metaslab so
973 * we'll polish it off.
974 */
975 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
976 }
977 return (weight);
978 }
979
980 static void
981 metaslab_prefetch(metaslab_group_t *mg)
982 {
983 spa_t *spa = mg->mg_vd->vdev_spa;
984 metaslab_t *msp;
985 avl_tree_t *t = &mg->mg_metaslab_tree;
986 int m;
987
988 mutex_enter(&mg->mg_lock);
989
990 /*
991 * Prefetch the next potential metaslabs
992 */
993 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
994 space_map_t *sm = msp->ms_map;
995 space_map_obj_t *smo = &msp->ms_smo;
996
997 /* If we have reached our prefetch limit then we're done */
998 if (m >= metaslab_prefetch_limit)
999 break;
1000
1001 if (!sm->sm_loaded && smo->smo_object != 0) {
1002 mutex_exit(&mg->mg_lock);
1003 dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
1004 0ULL, smo->smo_objsize);
1005 mutex_enter(&mg->mg_lock);
1006 }
1007 }
1008 mutex_exit(&mg->mg_lock);
1009 }
1010
1011 static int
1012 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1013 {
1014 metaslab_group_t *mg = msp->ms_group;
1015 space_map_t *sm = msp->ms_map;
1016 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
1017 int t;
1018
1019 ASSERT(MUTEX_HELD(&msp->ms_lock));
1020
1021 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1022 space_map_load_wait(sm);
1023 if (!sm->sm_loaded) {
1024 space_map_obj_t *smo = &msp->ms_smo;
1025
1026 int error = space_map_load(sm, sm_ops, SM_FREE, smo,
1027 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
1028 if (error) {
1029 metaslab_group_sort(msp->ms_group, msp, 0);
1030 return (error);
1031 }
1032 for (t = 0; t < TXG_DEFER_SIZE; t++)
1033 space_map_walk(msp->ms_defermap[t],
1034 space_map_claim, sm);
1035
1036 }
1037
1038 /*
1039 * Track the bonus area as we activate new metaslabs.
1040 */
1041 if (sm->sm_start > mg->mg_bonus_area) {
1042 mutex_enter(&mg->mg_lock);
1043 mg->mg_bonus_area = sm->sm_start;
1044 mutex_exit(&mg->mg_lock);
1045 }
1046
1047 metaslab_group_sort(msp->ms_group, msp,
1048 msp->ms_weight | activation_weight);
1049 }
1050 ASSERT(sm->sm_loaded);
1051 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1052
1053 return (0);
1054 }
1055
1056 static void
1057 metaslab_passivate(metaslab_t *msp, uint64_t size)
1058 {
1059 /*
1060 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1061 * this metaslab again. In that case, it had better be empty,
1062 * or we would be leaving space on the table.
1063 */
1064 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0);
1065 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1066 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1067 }
1068
1069 /*
1070 * Determine if the in-core space map representation can be condensed on-disk.
1071 * We would like to use the following criteria to make our decision:
1072 *
1073 * 1. The size of the space map object should not dramatically increase as a
1074 * result of writing out our in-core free map.
1075 *
1076 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1077 * times the size than the in-core representation (i.e. zfs_condense_pct = 110
1078 * and in-core = 1MB, minimal = 1.1.MB).
1079 *
1080 * Checking the first condition is tricky since we don't want to walk
1081 * the entire AVL tree calculating the estimated on-disk size. Instead we
1082 * use the size-ordered AVL tree in the space map and calculate the
1083 * size required for the largest segment in our in-core free map. If the
1084 * size required to represent that segment on disk is larger than the space
1085 * map object then we avoid condensing this map.
1086 *
1087 * To determine the second criterion we use a best-case estimate and assume
1088 * each segment can be represented on-disk as a single 64-bit entry. We refer
1089 * to this best-case estimate as the space map's minimal form.
1090 */
1091 static boolean_t
1092 metaslab_should_condense(metaslab_t *msp)
1093 {
1094 space_map_t *sm = msp->ms_map;
1095 space_map_obj_t *smo = &msp->ms_smo_syncing;
1096 space_seg_t *ss;
1097 uint64_t size, entries, segsz;
1098
1099 ASSERT(MUTEX_HELD(&msp->ms_lock));
1100 ASSERT(sm->sm_loaded);
1101
1102 /*
1103 * Use the sm_pp_root AVL tree, which is ordered by size, to obtain
1104 * the largest segment in the in-core free map. If the tree is
1105 * empty then we should condense the map.
1106 */
1107 ss = avl_last(sm->sm_pp_root);
1108 if (ss == NULL)
1109 return (B_TRUE);
1110
1111 /*
1112 * Calculate the number of 64-bit entries this segment would
1113 * require when written to disk. If this single segment would be
1114 * larger on-disk than the entire current on-disk structure, then
1115 * clearly condensing will increase the on-disk structure size.
1116 */
1117 size = (ss->ss_end - ss->ss_start) >> sm->sm_shift;
1118 entries = size / (MIN(size, SM_RUN_MAX));
1119 segsz = entries * sizeof (uint64_t);
1120
1121 return (segsz <= smo->smo_objsize &&
1122 smo->smo_objsize >= (zfs_condense_pct *
1123 sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100);
1124 }
1125
1126 /*
1127 * Condense the on-disk space map representation to its minimized form.
1128 * The minimized form consists of a small number of allocations followed by
1129 * the in-core free map.
1130 */
1131 static void
1132 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1133 {
1134 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1135 space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK];
1136 space_map_t condense_map;
1137 space_map_t *sm = msp->ms_map;
1138 objset_t *mos = spa_meta_objset(spa);
1139 space_map_obj_t *smo = &msp->ms_smo_syncing;
1140 int t;
1141
1142 ASSERT(MUTEX_HELD(&msp->ms_lock));
1143 ASSERT3U(spa_sync_pass(spa), ==, 1);
1144 ASSERT(sm->sm_loaded);
1145
1146 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1147 "smo size %llu, segments %lu", txg,
1148 (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
1149 smo->smo_objsize, avl_numnodes(&sm->sm_root));
1150
1151 /*
1152 * Create an map that is a 100% allocated map. We remove segments
1153 * that have been freed in this txg, any deferred frees that exist,
1154 * and any allocation in the future. Removing segments should be
1155 * a relatively inexpensive operation since we expect these maps to
1156 * a small number of nodes.
1157 */
1158 space_map_create(&condense_map, sm->sm_start, sm->sm_size,
1159 sm->sm_shift, sm->sm_lock);
1160 space_map_add(&condense_map, condense_map.sm_start,
1161 condense_map.sm_size);
1162
1163 /*
1164 * Remove what's been freed in this txg from the condense_map.
1165 * Since we're in sync_pass 1, we know that all the frees from
1166 * this txg are in the freemap.
1167 */
1168 space_map_walk(freemap, space_map_remove, &condense_map);
1169
1170 for (t = 0; t < TXG_DEFER_SIZE; t++)
1171 space_map_walk(msp->ms_defermap[t],
1172 space_map_remove, &condense_map);
1173
1174 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1175 space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK],
1176 space_map_remove, &condense_map);
1177
1178 /*
1179 * We're about to drop the metaslab's lock thus allowing
1180 * other consumers to change it's content. Set the
1181 * space_map's sm_condensing flag to ensure that
1182 * allocations on this metaslab do not occur while we're
1183 * in the middle of committing it to disk. This is only critical
1184 * for the ms_map as all other space_maps use per txg
1185 * views of their content.
1186 */
1187 sm->sm_condensing = B_TRUE;
1188
1189 mutex_exit(&msp->ms_lock);
1190 space_map_truncate(smo, mos, tx);
1191 mutex_enter(&msp->ms_lock);
1192
1193 /*
1194 * While we would ideally like to create a space_map representation
1195 * that consists only of allocation records, doing so can be
1196 * prohibitively expensive because the in-core free map can be
1197 * large, and therefore computationally expensive to subtract
1198 * from the condense_map. Instead we sync out two maps, a cheap
1199 * allocation only map followed by the in-core free map. While not
1200 * optimal, this is typically close to optimal, and much cheaper to
1201 * compute.
1202 */
1203 space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx);
1204 space_map_vacate(&condense_map, NULL, NULL);
1205 space_map_destroy(&condense_map);
1206
1207 space_map_sync(sm, SM_FREE, smo, mos, tx);
1208 sm->sm_condensing = B_FALSE;
1209
1210 spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, "
1211 "smo size %llu", txg,
1212 (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
1213 smo->smo_objsize);
1214 }
1215
1216 /*
1217 * Write a metaslab to disk in the context of the specified transaction group.
1218 */
1219 void
1220 metaslab_sync(metaslab_t *msp, uint64_t txg)
1221 {
1222 vdev_t *vd = msp->ms_group->mg_vd;
1223 spa_t *spa = vd->vdev_spa;
1224 objset_t *mos = spa_meta_objset(spa);
1225 space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK];
1226 space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK];
1227 space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1228 space_map_t *sm = msp->ms_map;
1229 space_map_obj_t *smo = &msp->ms_smo_syncing;
1230 dmu_buf_t *db;
1231 dmu_tx_t *tx;
1232
1233 ASSERT(!vd->vdev_ishole);
1234
1235 /*
1236 * This metaslab has just been added so there's no work to do now.
1237 */
1238 if (*freemap == NULL) {
1239 ASSERT3P(allocmap, ==, NULL);
1240 return;
1241 }
1242
1243 ASSERT3P(allocmap, !=, NULL);
1244 ASSERT3P(*freemap, !=, NULL);
1245 ASSERT3P(*freed_map, !=, NULL);
1246
1247 if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0)
1248 return;
1249
1250 /*
1251 * The only state that can actually be changing concurrently with
1252 * metaslab_sync() is the metaslab's ms_map. No other thread can
1253 * be modifying this txg's allocmap, freemap, freed_map, or smo.
1254 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
1255 * We drop it whenever we call into the DMU, because the DMU
1256 * can call down to us (e.g. via zio_free()) at any time.
1257 */
1258
1259 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1260
1261 if (smo->smo_object == 0) {
1262 ASSERT(smo->smo_objsize == 0);
1263 ASSERT(smo->smo_alloc == 0);
1264 smo->smo_object = dmu_object_alloc(mos,
1265 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1266 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1267 ASSERT(smo->smo_object != 0);
1268 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1269 (sm->sm_start >> vd->vdev_ms_shift),
1270 sizeof (uint64_t), &smo->smo_object, tx);
1271 }
1272
1273 mutex_enter(&msp->ms_lock);
1274
1275 if (sm->sm_loaded && spa_sync_pass(spa) == 1 &&
1276 metaslab_should_condense(msp)) {
1277 metaslab_condense(msp, txg, tx);
1278 } else {
1279 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1280 space_map_sync(*freemap, SM_FREE, smo, mos, tx);
1281 }
1282
1283 space_map_vacate(allocmap, NULL, NULL);
1284
1285 /*
1286 * For sync pass 1, we avoid walking the entire space map and
1287 * instead will just swap the pointers for freemap and
1288 * freed_map. We can safely do this since the freed_map is
1289 * guaranteed to be empty on the initial pass.
1290 */
1291 if (spa_sync_pass(spa) == 1) {
1292 ASSERT0((*freed_map)->sm_space);
1293 ASSERT0(avl_numnodes(&(*freed_map)->sm_root));
1294 space_map_swap(freemap, freed_map);
1295 } else {
1296 space_map_vacate(*freemap, space_map_add, *freed_map);
1297 }
1298
1299 ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space);
1300 ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space);
1301
1302 mutex_exit(&msp->ms_lock);
1303
1304 VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1305 dmu_buf_will_dirty(db, tx);
1306 ASSERT3U(db->db_size, >=, sizeof (*smo));
1307 bcopy(smo, db->db_data, sizeof (*smo));
1308 dmu_buf_rele(db, FTAG);
1309
1310 dmu_tx_commit(tx);
1311 }
1312
1313 /*
1314 * Called after a transaction group has completely synced to mark
1315 * all of the metaslab's free space as usable.
1316 */
1317 void
1318 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1319 {
1320 space_map_obj_t *smo = &msp->ms_smo;
1321 space_map_obj_t *smosync = &msp->ms_smo_syncing;
1322 space_map_t *sm = msp->ms_map;
1323 space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1324 space_map_t **defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1325 metaslab_group_t *mg = msp->ms_group;
1326 vdev_t *vd = mg->mg_vd;
1327 int64_t alloc_delta, defer_delta;
1328 int t;
1329
1330 ASSERT(!vd->vdev_ishole);
1331
1332 mutex_enter(&msp->ms_lock);
1333
1334 /*
1335 * If this metaslab is just becoming available, initialize its
1336 * allocmaps, freemaps, and defermap and add its capacity to the vdev.
1337 */
1338 if (*freed_map == NULL) {
1339 ASSERT(*defer_map == NULL);
1340 for (t = 0; t < TXG_SIZE; t++) {
1341 msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t),
1342 KM_PUSHPAGE);
1343 space_map_create(msp->ms_allocmap[t], sm->sm_start,
1344 sm->sm_size, sm->sm_shift, sm->sm_lock);
1345 msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t),
1346 KM_PUSHPAGE);
1347 space_map_create(msp->ms_freemap[t], sm->sm_start,
1348 sm->sm_size, sm->sm_shift, sm->sm_lock);
1349 }
1350
1351 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1352 msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t),
1353 KM_PUSHPAGE);
1354 space_map_create(msp->ms_defermap[t], sm->sm_start,
1355 sm->sm_size, sm->sm_shift, sm->sm_lock);
1356 }
1357
1358 freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1359 defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1360
1361 vdev_space_update(vd, 0, 0, sm->sm_size);
1362 }
1363
1364 alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1365 defer_delta = (*freed_map)->sm_space - (*defer_map)->sm_space;
1366
1367 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1368
1369 ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0);
1370 ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0);
1371
1372 /*
1373 * If there's a space_map_load() in progress, wait for it to complete
1374 * so that we have a consistent view of the in-core space map.
1375 */
1376 space_map_load_wait(sm);
1377
1378 /*
1379 * Move the frees from the defer_map to this map (if it's loaded).
1380 * Swap the freed_map and the defer_map -- this is safe to do
1381 * because we've just emptied out the defer_map.
1382 */
1383 space_map_vacate(*defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1384 ASSERT0((*defer_map)->sm_space);
1385 ASSERT0(avl_numnodes(&(*defer_map)->sm_root));
1386 space_map_swap(freed_map, defer_map);
1387
1388 *smo = *smosync;
1389
1390 msp->ms_deferspace += defer_delta;
1391 ASSERT3S(msp->ms_deferspace, >=, 0);
1392 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1393 if (msp->ms_deferspace != 0) {
1394 /*
1395 * Keep syncing this metaslab until all deferred frees
1396 * are back in circulation.
1397 */
1398 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1399 }
1400
1401 /*
1402 * If the map is loaded but no longer active, evict it as soon as all
1403 * future allocations have synced. (If we unloaded it now and then
1404 * loaded a moment later, the map wouldn't reflect those allocations.)
1405 */
1406 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1407 int evictable = 1;
1408
1409 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1410 if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space)
1411 evictable = 0;
1412
1413 if (evictable && !metaslab_debug_unload)
1414 space_map_unload(sm);
1415 }
1416
1417 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1418
1419 mutex_exit(&msp->ms_lock);
1420 }
1421
1422 void
1423 metaslab_sync_reassess(metaslab_group_t *mg)
1424 {
1425 vdev_t *vd = mg->mg_vd;
1426 int64_t failures = mg->mg_alloc_failures;
1427 int m;
1428
1429 metaslab_group_alloc_update(mg);
1430
1431 /*
1432 * Re-evaluate all metaslabs which have lower offsets than the
1433 * bonus area.
1434 */
1435 for (m = 0; m < vd->vdev_ms_count; m++) {
1436 metaslab_t *msp = vd->vdev_ms[m];
1437
1438 if (msp->ms_map->sm_start > mg->mg_bonus_area)
1439 break;
1440
1441 mutex_enter(&msp->ms_lock);
1442 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1443 mutex_exit(&msp->ms_lock);
1444 }
1445
1446 atomic_add_64(&mg->mg_alloc_failures, -failures);
1447
1448 /*
1449 * Prefetch the next potential metaslabs
1450 */
1451 metaslab_prefetch(mg);
1452 }
1453
1454 static uint64_t
1455 metaslab_distance(metaslab_t *msp, dva_t *dva)
1456 {
1457 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1458 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1459 uint64_t start = msp->ms_map->sm_start >> ms_shift;
1460
1461 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1462 return (1ULL << 63);
1463
1464 if (offset < start)
1465 return ((start - offset) << ms_shift);
1466 if (offset > start)
1467 return ((offset - start) << ms_shift);
1468 return (0);
1469 }
1470
1471 static uint64_t
1472 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1473 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1474 {
1475 spa_t *spa = mg->mg_vd->vdev_spa;
1476 metaslab_t *msp = NULL;
1477 uint64_t offset = -1ULL;
1478 avl_tree_t *t = &mg->mg_metaslab_tree;
1479 uint64_t activation_weight;
1480 uint64_t target_distance;
1481 int i;
1482
1483 activation_weight = METASLAB_WEIGHT_PRIMARY;
1484 for (i = 0; i < d; i++) {
1485 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1486 activation_weight = METASLAB_WEIGHT_SECONDARY;
1487 break;
1488 }
1489 }
1490
1491 for (;;) {
1492 boolean_t was_active;
1493
1494 mutex_enter(&mg->mg_lock);
1495 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1496 if (msp->ms_weight < asize) {
1497 spa_dbgmsg(spa, "%s: failed to meet weight "
1498 "requirement: vdev %llu, txg %llu, mg %p, "
1499 "msp %p, psize %llu, asize %llu, "
1500 "failures %llu, weight %llu",
1501 spa_name(spa), mg->mg_vd->vdev_id, txg,
1502 mg, msp, psize, asize,
1503 mg->mg_alloc_failures, msp->ms_weight);
1504 mutex_exit(&mg->mg_lock);
1505 return (-1ULL);
1506 }
1507
1508 /*
1509 * If the selected metaslab is condensing, skip it.
1510 */
1511 if (msp->ms_map->sm_condensing)
1512 continue;
1513
1514 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1515 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1516 break;
1517
1518 target_distance = min_distance +
1519 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1520
1521 for (i = 0; i < d; i++)
1522 if (metaslab_distance(msp, &dva[i]) <
1523 target_distance)
1524 break;
1525 if (i == d)
1526 break;
1527 }
1528 mutex_exit(&mg->mg_lock);
1529 if (msp == NULL)
1530 return (-1ULL);
1531
1532 mutex_enter(&msp->ms_lock);
1533
1534 /*
1535 * If we've already reached the allowable number of failed
1536 * allocation attempts on this metaslab group then we
1537 * consider skipping it. We skip it only if we're allowed
1538 * to "fast" gang, the physical size is larger than
1539 * a gang block, and we're attempting to allocate from
1540 * the primary metaslab.
1541 */
1542 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1543 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1544 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1545 spa_dbgmsg(spa, "%s: skipping metaslab group: "
1546 "vdev %llu, txg %llu, mg %p, psize %llu, "
1547 "asize %llu, failures %llu", spa_name(spa),
1548 mg->mg_vd->vdev_id, txg, mg, psize, asize,
1549 mg->mg_alloc_failures);
1550 mutex_exit(&msp->ms_lock);
1551 return (-1ULL);
1552 }
1553
1554 /*
1555 * Ensure that the metaslab we have selected is still
1556 * capable of handling our request. It's possible that
1557 * another thread may have changed the weight while we
1558 * were blocked on the metaslab lock.
1559 */
1560 if (msp->ms_weight < asize || (was_active &&
1561 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1562 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1563 mutex_exit(&msp->ms_lock);
1564 continue;
1565 }
1566
1567 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1568 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1569 metaslab_passivate(msp,
1570 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1571 mutex_exit(&msp->ms_lock);
1572 continue;
1573 }
1574
1575 if (metaslab_activate(msp, activation_weight) != 0) {
1576 mutex_exit(&msp->ms_lock);
1577 continue;
1578 }
1579
1580 /*
1581 * If this metaslab is currently condensing then pick again as
1582 * we can't manipulate this metaslab until it's committed
1583 * to disk.
1584 */
1585 if (msp->ms_map->sm_condensing) {
1586 mutex_exit(&msp->ms_lock);
1587 continue;
1588 }
1589
1590 if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL)
1591 break;
1592
1593 atomic_inc_64(&mg->mg_alloc_failures);
1594
1595 metaslab_passivate(msp, space_map_maxsize(msp->ms_map));
1596
1597 mutex_exit(&msp->ms_lock);
1598 }
1599
1600 if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
1601 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1602
1603 space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize);
1604
1605 mutex_exit(&msp->ms_lock);
1606
1607 return (offset);
1608 }
1609
1610 /*
1611 * Allocate a block for the specified i/o.
1612 */
1613 static int
1614 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1615 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1616 {
1617 metaslab_group_t *mg, *fast_mg, *rotor;
1618 vdev_t *vd;
1619 int dshift = 3;
1620 int all_zero;
1621 int zio_lock = B_FALSE;
1622 boolean_t allocatable;
1623 uint64_t offset = -1ULL;
1624 uint64_t asize;
1625 uint64_t distance;
1626
1627 ASSERT(!DVA_IS_VALID(&dva[d]));
1628
1629 /*
1630 * For testing, make some blocks above a certain size be gang blocks.
1631 */
1632 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1633 return (SET_ERROR(ENOSPC));
1634
1635 if (flags & METASLAB_FASTWRITE)
1636 mutex_enter(&mc->mc_fastwrite_lock);
1637
1638 /*
1639 * Start at the rotor and loop through all mgs until we find something.
1640 * Note that there's no locking on mc_rotor or mc_aliquot because
1641 * nothing actually breaks if we miss a few updates -- we just won't
1642 * allocate quite as evenly. It all balances out over time.
1643 *
1644 * If we are doing ditto or log blocks, try to spread them across
1645 * consecutive vdevs. If we're forced to reuse a vdev before we've
1646 * allocated all of our ditto blocks, then try and spread them out on
1647 * that vdev as much as possible. If it turns out to not be possible,
1648 * gradually lower our standards until anything becomes acceptable.
1649 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1650 * gives us hope of containing our fault domains to something we're
1651 * able to reason about. Otherwise, any two top-level vdev failures
1652 * will guarantee the loss of data. With consecutive allocation,
1653 * only two adjacent top-level vdev failures will result in data loss.
1654 *
1655 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1656 * ourselves on the same vdev as our gang block header. That
1657 * way, we can hope for locality in vdev_cache, plus it makes our
1658 * fault domains something tractable.
1659 */
1660 if (hintdva) {
1661 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1662
1663 /*
1664 * It's possible the vdev we're using as the hint no
1665 * longer exists (i.e. removed). Consult the rotor when
1666 * all else fails.
1667 */
1668 if (vd != NULL) {
1669 mg = vd->vdev_mg;
1670
1671 if (flags & METASLAB_HINTBP_AVOID &&
1672 mg->mg_next != NULL)
1673 mg = mg->mg_next;
1674 } else {
1675 mg = mc->mc_rotor;
1676 }
1677 } else if (d != 0) {
1678 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1679 mg = vd->vdev_mg->mg_next;
1680 } else if (flags & METASLAB_FASTWRITE) {
1681 mg = fast_mg = mc->mc_rotor;
1682
1683 do {
1684 if (fast_mg->mg_vd->vdev_pending_fastwrite <
1685 mg->mg_vd->vdev_pending_fastwrite)
1686 mg = fast_mg;
1687 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
1688
1689 } else {
1690 mg = mc->mc_rotor;
1691 }
1692
1693 /*
1694 * If the hint put us into the wrong metaslab class, or into a
1695 * metaslab group that has been passivated, just follow the rotor.
1696 */
1697 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1698 mg = mc->mc_rotor;
1699
1700 rotor = mg;
1701 top:
1702 all_zero = B_TRUE;
1703 do {
1704 ASSERT(mg->mg_activation_count == 1);
1705
1706 vd = mg->mg_vd;
1707
1708 /*
1709 * Don't allocate from faulted devices.
1710 */
1711 if (zio_lock) {
1712 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1713 allocatable = vdev_allocatable(vd);
1714 spa_config_exit(spa, SCL_ZIO, FTAG);
1715 } else {
1716 allocatable = vdev_allocatable(vd);
1717 }
1718
1719 /*
1720 * Determine if the selected metaslab group is eligible
1721 * for allocations. If we're ganging or have requested
1722 * an allocation for the smallest gang block size
1723 * then we don't want to avoid allocating to the this
1724 * metaslab group. If we're in this condition we should
1725 * try to allocate from any device possible so that we
1726 * don't inadvertently return ENOSPC and suspend the pool
1727 * even though space is still available.
1728 */
1729 if (allocatable && CAN_FASTGANG(flags) &&
1730 psize > SPA_GANGBLOCKSIZE)
1731 allocatable = metaslab_group_allocatable(mg);
1732
1733 if (!allocatable)
1734 goto next;
1735
1736 /*
1737 * Avoid writing single-copy data to a failing vdev
1738 * unless the user instructs us that it is okay.
1739 */
1740 if ((vd->vdev_stat.vs_write_errors > 0 ||
1741 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1742 d == 0 && dshift == 3 &&
1743 !(zfs_write_to_degraded && vd->vdev_state ==
1744 VDEV_STATE_DEGRADED)) {
1745 all_zero = B_FALSE;
1746 goto next;
1747 }
1748
1749 ASSERT(mg->mg_class == mc);
1750
1751 distance = vd->vdev_asize >> dshift;
1752 if (distance <= (1ULL << vd->vdev_ms_shift))
1753 distance = 0;
1754 else
1755 all_zero = B_FALSE;
1756
1757 asize = vdev_psize_to_asize(vd, psize);
1758 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1759
1760 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1761 dva, d, flags);
1762 if (offset != -1ULL) {
1763 /*
1764 * If we've just selected this metaslab group,
1765 * figure out whether the corresponding vdev is
1766 * over- or under-used relative to the pool,
1767 * and set an allocation bias to even it out.
1768 */
1769 if (mc->mc_aliquot == 0) {
1770 vdev_stat_t *vs = &vd->vdev_stat;
1771 int64_t vu, cu;
1772
1773 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1774 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1775
1776 /*
1777 * Calculate how much more or less we should
1778 * try to allocate from this device during
1779 * this iteration around the rotor.
1780 * For example, if a device is 80% full
1781 * and the pool is 20% full then we should
1782 * reduce allocations by 60% on this device.
1783 *
1784 * mg_bias = (20 - 80) * 512K / 100 = -307K
1785 *
1786 * This reduces allocations by 307K for this
1787 * iteration.
1788 */
1789 mg->mg_bias = ((cu - vu) *
1790 (int64_t)mg->mg_aliquot) / 100;
1791 }
1792
1793 if ((flags & METASLAB_FASTWRITE) ||
1794 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1795 mg->mg_aliquot + mg->mg_bias) {
1796 mc->mc_rotor = mg->mg_next;
1797 mc->mc_aliquot = 0;
1798 }
1799
1800 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1801 DVA_SET_OFFSET(&dva[d], offset);
1802 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1803 DVA_SET_ASIZE(&dva[d], asize);
1804
1805 if (flags & METASLAB_FASTWRITE) {
1806 atomic_add_64(&vd->vdev_pending_fastwrite,
1807 psize);
1808 mutex_exit(&mc->mc_fastwrite_lock);
1809 }
1810
1811 return (0);
1812 }
1813 next:
1814 mc->mc_rotor = mg->mg_next;
1815 mc->mc_aliquot = 0;
1816 } while ((mg = mg->mg_next) != rotor);
1817
1818 if (!all_zero) {
1819 dshift++;
1820 ASSERT(dshift < 64);
1821 goto top;
1822 }
1823
1824 if (!allocatable && !zio_lock) {
1825 dshift = 3;
1826 zio_lock = B_TRUE;
1827 goto top;
1828 }
1829
1830 bzero(&dva[d], sizeof (dva_t));
1831
1832 if (flags & METASLAB_FASTWRITE)
1833 mutex_exit(&mc->mc_fastwrite_lock);
1834
1835 return (SET_ERROR(ENOSPC));
1836 }
1837
1838 /*
1839 * Free the block represented by DVA in the context of the specified
1840 * transaction group.
1841 */
1842 static void
1843 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1844 {
1845 uint64_t vdev = DVA_GET_VDEV(dva);
1846 uint64_t offset = DVA_GET_OFFSET(dva);
1847 uint64_t size = DVA_GET_ASIZE(dva);
1848 vdev_t *vd;
1849 metaslab_t *msp;
1850
1851 ASSERT(DVA_IS_VALID(dva));
1852
1853 if (txg > spa_freeze_txg(spa))
1854 return;
1855
1856 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1857 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1858 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1859 (u_longlong_t)vdev, (u_longlong_t)offset);
1860 ASSERT(0);
1861 return;
1862 }
1863
1864 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1865
1866 if (DVA_GET_GANG(dva))
1867 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1868
1869 mutex_enter(&msp->ms_lock);
1870
1871 if (now) {
1872 space_map_remove(msp->ms_allocmap[txg & TXG_MASK],
1873 offset, size);
1874 space_map_free(msp->ms_map, offset, size);
1875 } else {
1876 if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0)
1877 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1878 space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size);
1879 }
1880
1881 mutex_exit(&msp->ms_lock);
1882 }
1883
1884 /*
1885 * Intent log support: upon opening the pool after a crash, notify the SPA
1886 * of blocks that the intent log has allocated for immediate write, but
1887 * which are still considered free by the SPA because the last transaction
1888 * group didn't commit yet.
1889 */
1890 static int
1891 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1892 {
1893 uint64_t vdev = DVA_GET_VDEV(dva);
1894 uint64_t offset = DVA_GET_OFFSET(dva);
1895 uint64_t size = DVA_GET_ASIZE(dva);
1896 vdev_t *vd;
1897 metaslab_t *msp;
1898 int error = 0;
1899
1900 ASSERT(DVA_IS_VALID(dva));
1901
1902 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1903 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1904 return (SET_ERROR(ENXIO));
1905
1906 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1907
1908 if (DVA_GET_GANG(dva))
1909 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1910
1911 mutex_enter(&msp->ms_lock);
1912
1913 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded)
1914 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
1915
1916 if (error == 0 && !space_map_contains(msp->ms_map, offset, size))
1917 error = SET_ERROR(ENOENT);
1918
1919 if (error || txg == 0) { /* txg == 0 indicates dry run */
1920 mutex_exit(&msp->ms_lock);
1921 return (error);
1922 }
1923
1924 space_map_claim(msp->ms_map, offset, size);
1925
1926 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
1927 if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
1928 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1929 space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size);
1930 }
1931
1932 mutex_exit(&msp->ms_lock);
1933
1934 return (0);
1935 }
1936
1937 int
1938 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1939 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1940 {
1941 dva_t *dva = bp->blk_dva;
1942 dva_t *hintdva = hintbp->blk_dva;
1943 int d, error = 0;
1944
1945 ASSERT(bp->blk_birth == 0);
1946 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1947
1948 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1949
1950 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1951 spa_config_exit(spa, SCL_ALLOC, FTAG);
1952 return (SET_ERROR(ENOSPC));
1953 }
1954
1955 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1956 ASSERT(BP_GET_NDVAS(bp) == 0);
1957 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1958
1959 for (d = 0; d < ndvas; d++) {
1960 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1961 txg, flags);
1962 if (error) {
1963 for (d--; d >= 0; d--) {
1964 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1965 bzero(&dva[d], sizeof (dva_t));
1966 }
1967 spa_config_exit(spa, SCL_ALLOC, FTAG);
1968 return (error);
1969 }
1970 }
1971 ASSERT(error == 0);
1972 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1973
1974 spa_config_exit(spa, SCL_ALLOC, FTAG);
1975
1976 BP_SET_BIRTH(bp, txg, txg);
1977
1978 return (0);
1979 }
1980
1981 void
1982 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1983 {
1984 const dva_t *dva = bp->blk_dva;
1985 int d, ndvas = BP_GET_NDVAS(bp);
1986
1987 ASSERT(!BP_IS_HOLE(bp));
1988 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1989
1990 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1991
1992 for (d = 0; d < ndvas; d++)
1993 metaslab_free_dva(spa, &dva[d], txg, now);
1994
1995 spa_config_exit(spa, SCL_FREE, FTAG);
1996 }
1997
1998 int
1999 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2000 {
2001 const dva_t *dva = bp->blk_dva;
2002 int ndvas = BP_GET_NDVAS(bp);
2003 int d, error = 0;
2004
2005 ASSERT(!BP_IS_HOLE(bp));
2006
2007 if (txg != 0) {
2008 /*
2009 * First do a dry run to make sure all DVAs are claimable,
2010 * so we don't have to unwind from partial failures below.
2011 */
2012 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2013 return (error);
2014 }
2015
2016 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2017
2018 for (d = 0; d < ndvas; d++)
2019 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2020 break;
2021
2022 spa_config_exit(spa, SCL_ALLOC, FTAG);
2023
2024 ASSERT(error == 0 || txg == 0);
2025
2026 return (error);
2027 }
2028
2029 void
2030 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2031 {
2032 const dva_t *dva = bp->blk_dva;
2033 int ndvas = BP_GET_NDVAS(bp);
2034 uint64_t psize = BP_GET_PSIZE(bp);
2035 int d;
2036 vdev_t *vd;
2037
2038 ASSERT(!BP_IS_HOLE(bp));
2039 ASSERT(psize > 0);
2040
2041 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2042
2043 for (d = 0; d < ndvas; d++) {
2044 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2045 continue;
2046 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2047 }
2048
2049 spa_config_exit(spa, SCL_VDEV, FTAG);
2050 }
2051
2052 void
2053 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2054 {
2055 const dva_t *dva = bp->blk_dva;
2056 int ndvas = BP_GET_NDVAS(bp);
2057 uint64_t psize = BP_GET_PSIZE(bp);
2058 int d;
2059 vdev_t *vd;
2060
2061 ASSERT(!BP_IS_HOLE(bp));
2062 ASSERT(psize > 0);
2063
2064 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2065
2066 for (d = 0; d < ndvas; d++) {
2067 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2068 continue;
2069 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2070 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2071 }
2072
2073 spa_config_exit(spa, SCL_VDEV, FTAG);
2074 }
2075
2076 static void
2077 checkmap(space_map_t *sm, uint64_t off, uint64_t size)
2078 {
2079 space_seg_t *ss;
2080 avl_index_t where;
2081
2082 mutex_enter(sm->sm_lock);
2083 ss = space_map_find(sm, off, size, &where);
2084 if (ss != NULL)
2085 panic("freeing free block; ss=%p", (void *)ss);
2086 mutex_exit(sm->sm_lock);
2087 }
2088
2089 void
2090 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2091 {
2092 int i, j;
2093
2094 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2095 return;
2096
2097 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2098 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2099 uint64_t vdid = DVA_GET_VDEV(&bp->blk_dva[i]);
2100 vdev_t *vd = vdev_lookup_top(spa, vdid);
2101 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[i]);
2102 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2103 metaslab_t *ms = vd->vdev_ms[off >> vd->vdev_ms_shift];
2104
2105 if (ms->ms_map->sm_loaded)
2106 checkmap(ms->ms_map, off, size);
2107
2108 for (j = 0; j < TXG_SIZE; j++)
2109 checkmap(ms->ms_freemap[j], off, size);
2110 for (j = 0; j < TXG_DEFER_SIZE; j++)
2111 checkmap(ms->ms_defermap[j], off, size);
2112 }
2113 spa_config_exit(spa, SCL_VDEV, FTAG);
2114 }
2115
2116 #if defined(_KERNEL) && defined(HAVE_SPL)
2117 module_param(metaslab_debug_load, int, 0644);
2118 MODULE_PARM_DESC(metaslab_debug_load, "load all metaslabs during pool import");
2119
2120 module_param(metaslab_debug_unload, int, 0644);
2121 MODULE_PARM_DESC(metaslab_debug_unload,
2122 "prevent metaslabs from being unloaded");
2123
2124 module_param(zfs_mg_noalloc_threshold, int, 0644);
2125 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2126 "percentage of free space for metaslab group to allow allocation");
2127 #endif /* _KERNEL && HAVE_SPL */