]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Illumos #4730 destroy metaslab group taskq
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35
36 #define WITH_DF_BLOCK_ALLOCATOR
37
38 /*
39 * Allow allocations to switch to gang blocks quickly. We do this to
40 * avoid having to load lots of space_maps in a given txg. There are,
41 * however, some cases where we want to avoid "fast" ganging and instead
42 * we want to do an exhaustive search of all metaslabs on this device.
43 * Currently we don't allow any gang, zil, or dump device related allocations
44 * to "fast" gang.
45 */
46 #define CAN_FASTGANG(flags) \
47 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
48 METASLAB_GANG_AVOID)))
49
50 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
51 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
52 #define METASLAB_ACTIVE_MASK \
53 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
54
55 uint64_t metaslab_aliquot = 512ULL << 10;
56 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
57
58 /*
59 * The in-core space map representation is more compact than its on-disk form.
60 * The zfs_condense_pct determines how much more compact the in-core
61 * space_map representation must be before we compact it on-disk.
62 * Values should be greater than or equal to 100.
63 */
64 int zfs_condense_pct = 200;
65
66 /*
67 * This value defines the number of allowed allocation failures per vdev.
68 * If a device reaches this threshold in a given txg then we consider skipping
69 * allocations on that device. The value of zfs_mg_alloc_failures is computed
70 * in zio_init() unless it has been overridden in /etc/system.
71 */
72 int zfs_mg_alloc_failures = 0;
73
74 /*
75 * The zfs_mg_noalloc_threshold defines which metaslab groups should
76 * be eligible for allocation. The value is defined as a percentage of
77 * a free space. Metaslab groups that have more free space than
78 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
79 * a metaslab group's free space is less than or equal to the
80 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
81 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
82 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
83 * groups are allowed to accept allocations. Gang blocks are always
84 * eligible to allocate on any metaslab group. The default value of 0 means
85 * no metaslab group will be excluded based on this criterion.
86 */
87 int zfs_mg_noalloc_threshold = 0;
88
89 /*
90 * When set will load all metaslabs when pool is first opened.
91 */
92 int metaslab_debug_load = 0;
93
94 /*
95 * When set will prevent metaslabs from being unloaded.
96 */
97 int metaslab_debug_unload = 0;
98
99 /*
100 * Minimum size which forces the dynamic allocator to change
101 * it's allocation strategy. Once the space map cannot satisfy
102 * an allocation of this size then it switches to using more
103 * aggressive strategy (i.e search by size rather than offset).
104 */
105 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
106
107 /*
108 * The minimum free space, in percent, which must be available
109 * in a space map to continue allocations in a first-fit fashion.
110 * Once the space_map's free space drops below this level we dynamically
111 * switch to using best-fit allocations.
112 */
113 int metaslab_df_free_pct = 4;
114
115 /*
116 * A metaslab is considered "free" if it contains a contiguous
117 * segment which is greater than metaslab_min_alloc_size.
118 */
119 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
120
121 /*
122 * Percentage of all cpus that can be used by the metaslab taskq.
123 */
124 int metaslab_load_pct = 50;
125
126 /*
127 * Determines how many txgs a metaslab may remain loaded without having any
128 * allocations from it. As long as a metaslab continues to be used we will
129 * keep it loaded.
130 */
131 int metaslab_unload_delay = TXG_SIZE * 2;
132
133 /*
134 * Should we be willing to write data to degraded vdevs?
135 */
136 boolean_t zfs_write_to_degraded = B_FALSE;
137
138 /*
139 * Max number of metaslabs per group to preload.
140 */
141 int metaslab_preload_limit = SPA_DVAS_PER_BP;
142
143 /*
144 * Enable/disable preloading of metaslab.
145 */
146 boolean_t metaslab_preload_enabled = B_TRUE;
147
148 /*
149 * Enable/disable additional weight factor for each metaslab.
150 */
151 boolean_t metaslab_weight_factor_enable = B_FALSE;
152
153
154 /*
155 * ==========================================================================
156 * Metaslab classes
157 * ==========================================================================
158 */
159 metaslab_class_t *
160 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
161 {
162 metaslab_class_t *mc;
163
164 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
165
166 mc->mc_spa = spa;
167 mc->mc_rotor = NULL;
168 mc->mc_ops = ops;
169 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
170
171 return (mc);
172 }
173
174 void
175 metaslab_class_destroy(metaslab_class_t *mc)
176 {
177 ASSERT(mc->mc_rotor == NULL);
178 ASSERT(mc->mc_alloc == 0);
179 ASSERT(mc->mc_deferred == 0);
180 ASSERT(mc->mc_space == 0);
181 ASSERT(mc->mc_dspace == 0);
182
183 mutex_destroy(&mc->mc_fastwrite_lock);
184 kmem_free(mc, sizeof (metaslab_class_t));
185 }
186
187 int
188 metaslab_class_validate(metaslab_class_t *mc)
189 {
190 metaslab_group_t *mg;
191 vdev_t *vd;
192
193 /*
194 * Must hold one of the spa_config locks.
195 */
196 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
197 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
198
199 if ((mg = mc->mc_rotor) == NULL)
200 return (0);
201
202 do {
203 vd = mg->mg_vd;
204 ASSERT(vd->vdev_mg != NULL);
205 ASSERT3P(vd->vdev_top, ==, vd);
206 ASSERT3P(mg->mg_class, ==, mc);
207 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
208 } while ((mg = mg->mg_next) != mc->mc_rotor);
209
210 return (0);
211 }
212
213 void
214 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
215 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
216 {
217 atomic_add_64(&mc->mc_alloc, alloc_delta);
218 atomic_add_64(&mc->mc_deferred, defer_delta);
219 atomic_add_64(&mc->mc_space, space_delta);
220 atomic_add_64(&mc->mc_dspace, dspace_delta);
221 }
222
223 uint64_t
224 metaslab_class_get_alloc(metaslab_class_t *mc)
225 {
226 return (mc->mc_alloc);
227 }
228
229 uint64_t
230 metaslab_class_get_deferred(metaslab_class_t *mc)
231 {
232 return (mc->mc_deferred);
233 }
234
235 uint64_t
236 metaslab_class_get_space(metaslab_class_t *mc)
237 {
238 return (mc->mc_space);
239 }
240
241 uint64_t
242 metaslab_class_get_dspace(metaslab_class_t *mc)
243 {
244 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
245 }
246
247 /*
248 * ==========================================================================
249 * Metaslab groups
250 * ==========================================================================
251 */
252 static int
253 metaslab_compare(const void *x1, const void *x2)
254 {
255 const metaslab_t *m1 = x1;
256 const metaslab_t *m2 = x2;
257
258 if (m1->ms_weight < m2->ms_weight)
259 return (1);
260 if (m1->ms_weight > m2->ms_weight)
261 return (-1);
262
263 /*
264 * If the weights are identical, use the offset to force uniqueness.
265 */
266 if (m1->ms_start < m2->ms_start)
267 return (-1);
268 if (m1->ms_start > m2->ms_start)
269 return (1);
270
271 ASSERT3P(m1, ==, m2);
272
273 return (0);
274 }
275
276 /*
277 * Update the allocatable flag and the metaslab group's capacity.
278 * The allocatable flag is set to true if the capacity is below
279 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
280 * from allocatable to non-allocatable or vice versa then the metaslab
281 * group's class is updated to reflect the transition.
282 */
283 static void
284 metaslab_group_alloc_update(metaslab_group_t *mg)
285 {
286 vdev_t *vd = mg->mg_vd;
287 metaslab_class_t *mc = mg->mg_class;
288 vdev_stat_t *vs = &vd->vdev_stat;
289 boolean_t was_allocatable;
290
291 ASSERT(vd == vd->vdev_top);
292
293 mutex_enter(&mg->mg_lock);
294 was_allocatable = mg->mg_allocatable;
295
296 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
297 (vs->vs_space + 1);
298
299 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
300
301 /*
302 * The mc_alloc_groups maintains a count of the number of
303 * groups in this metaslab class that are still above the
304 * zfs_mg_noalloc_threshold. This is used by the allocating
305 * threads to determine if they should avoid allocations to
306 * a given group. The allocator will avoid allocations to a group
307 * if that group has reached or is below the zfs_mg_noalloc_threshold
308 * and there are still other groups that are above the threshold.
309 * When a group transitions from allocatable to non-allocatable or
310 * vice versa we update the metaslab class to reflect that change.
311 * When the mc_alloc_groups value drops to 0 that means that all
312 * groups have reached the zfs_mg_noalloc_threshold making all groups
313 * eligible for allocations. This effectively means that all devices
314 * are balanced again.
315 */
316 if (was_allocatable && !mg->mg_allocatable)
317 mc->mc_alloc_groups--;
318 else if (!was_allocatable && mg->mg_allocatable)
319 mc->mc_alloc_groups++;
320 mutex_exit(&mg->mg_lock);
321 }
322
323 metaslab_group_t *
324 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
325 {
326 metaslab_group_t *mg;
327
328 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
329 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
330 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
331 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
332 mg->mg_vd = vd;
333 mg->mg_class = mc;
334 mg->mg_activation_count = 0;
335
336 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
337 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
338
339 return (mg);
340 }
341
342 void
343 metaslab_group_destroy(metaslab_group_t *mg)
344 {
345 ASSERT(mg->mg_prev == NULL);
346 ASSERT(mg->mg_next == NULL);
347 /*
348 * We may have gone below zero with the activation count
349 * either because we never activated in the first place or
350 * because we're done, and possibly removing the vdev.
351 */
352 ASSERT(mg->mg_activation_count <= 0);
353
354 taskq_destroy(mg->mg_taskq);
355 avl_destroy(&mg->mg_metaslab_tree);
356 mutex_destroy(&mg->mg_lock);
357 kmem_free(mg, sizeof (metaslab_group_t));
358 }
359
360 void
361 metaslab_group_activate(metaslab_group_t *mg)
362 {
363 metaslab_class_t *mc = mg->mg_class;
364 metaslab_group_t *mgprev, *mgnext;
365
366 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
367
368 ASSERT(mc->mc_rotor != mg);
369 ASSERT(mg->mg_prev == NULL);
370 ASSERT(mg->mg_next == NULL);
371 ASSERT(mg->mg_activation_count <= 0);
372
373 if (++mg->mg_activation_count <= 0)
374 return;
375
376 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
377 metaslab_group_alloc_update(mg);
378
379 if ((mgprev = mc->mc_rotor) == NULL) {
380 mg->mg_prev = mg;
381 mg->mg_next = mg;
382 } else {
383 mgnext = mgprev->mg_next;
384 mg->mg_prev = mgprev;
385 mg->mg_next = mgnext;
386 mgprev->mg_next = mg;
387 mgnext->mg_prev = mg;
388 }
389 mc->mc_rotor = mg;
390 }
391
392 void
393 metaslab_group_passivate(metaslab_group_t *mg)
394 {
395 metaslab_class_t *mc = mg->mg_class;
396 metaslab_group_t *mgprev, *mgnext;
397
398 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
399
400 if (--mg->mg_activation_count != 0) {
401 ASSERT(mc->mc_rotor != mg);
402 ASSERT(mg->mg_prev == NULL);
403 ASSERT(mg->mg_next == NULL);
404 ASSERT(mg->mg_activation_count < 0);
405 return;
406 }
407
408 taskq_wait(mg->mg_taskq);
409
410 mgprev = mg->mg_prev;
411 mgnext = mg->mg_next;
412
413 if (mg == mgnext) {
414 mc->mc_rotor = NULL;
415 } else {
416 mc->mc_rotor = mgnext;
417 mgprev->mg_next = mgnext;
418 mgnext->mg_prev = mgprev;
419 }
420
421 mg->mg_prev = NULL;
422 mg->mg_next = NULL;
423 }
424
425 static void
426 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
427 {
428 mutex_enter(&mg->mg_lock);
429 ASSERT(msp->ms_group == NULL);
430 msp->ms_group = mg;
431 msp->ms_weight = 0;
432 avl_add(&mg->mg_metaslab_tree, msp);
433 mutex_exit(&mg->mg_lock);
434 }
435
436 static void
437 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
438 {
439 mutex_enter(&mg->mg_lock);
440 ASSERT(msp->ms_group == mg);
441 avl_remove(&mg->mg_metaslab_tree, msp);
442 msp->ms_group = NULL;
443 mutex_exit(&mg->mg_lock);
444 }
445
446 static void
447 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
448 {
449 /*
450 * Although in principle the weight can be any value, in
451 * practice we do not use values in the range [1, 510].
452 */
453 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
454 ASSERT(MUTEX_HELD(&msp->ms_lock));
455
456 mutex_enter(&mg->mg_lock);
457 ASSERT(msp->ms_group == mg);
458 avl_remove(&mg->mg_metaslab_tree, msp);
459 msp->ms_weight = weight;
460 avl_add(&mg->mg_metaslab_tree, msp);
461 mutex_exit(&mg->mg_lock);
462 }
463
464 /*
465 * Determine if a given metaslab group should skip allocations. A metaslab
466 * group should avoid allocations if its used capacity has crossed the
467 * zfs_mg_noalloc_threshold and there is at least one metaslab group
468 * that can still handle allocations.
469 */
470 static boolean_t
471 metaslab_group_allocatable(metaslab_group_t *mg)
472 {
473 vdev_t *vd = mg->mg_vd;
474 spa_t *spa = vd->vdev_spa;
475 metaslab_class_t *mc = mg->mg_class;
476
477 /*
478 * A metaslab group is considered allocatable if its free capacity
479 * is greater than the set value of zfs_mg_noalloc_threshold, it's
480 * associated with a slog, or there are no other metaslab groups
481 * with free capacity greater than zfs_mg_noalloc_threshold.
482 */
483 return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
484 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
485 }
486
487 /*
488 * ==========================================================================
489 * Range tree callbacks
490 * ==========================================================================
491 */
492
493 /*
494 * Comparison function for the private size-ordered tree. Tree is sorted
495 * by size, larger sizes at the end of the tree.
496 */
497 static int
498 metaslab_rangesize_compare(const void *x1, const void *x2)
499 {
500 const range_seg_t *r1 = x1;
501 const range_seg_t *r2 = x2;
502 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
503 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
504
505 if (rs_size1 < rs_size2)
506 return (-1);
507 if (rs_size1 > rs_size2)
508 return (1);
509
510 if (r1->rs_start < r2->rs_start)
511 return (-1);
512
513 if (r1->rs_start > r2->rs_start)
514 return (1);
515
516 return (0);
517 }
518
519 /*
520 * Create any block allocator specific components. The current allocators
521 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
522 */
523 static void
524 metaslab_rt_create(range_tree_t *rt, void *arg)
525 {
526 metaslab_t *msp = arg;
527
528 ASSERT3P(rt->rt_arg, ==, msp);
529 ASSERT(msp->ms_tree == NULL);
530
531 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
532 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
533 }
534
535 /*
536 * Destroy the block allocator specific components.
537 */
538 static void
539 metaslab_rt_destroy(range_tree_t *rt, void *arg)
540 {
541 metaslab_t *msp = arg;
542
543 ASSERT3P(rt->rt_arg, ==, msp);
544 ASSERT3P(msp->ms_tree, ==, rt);
545 ASSERT0(avl_numnodes(&msp->ms_size_tree));
546
547 avl_destroy(&msp->ms_size_tree);
548 }
549
550 static void
551 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
552 {
553 metaslab_t *msp = arg;
554
555 ASSERT3P(rt->rt_arg, ==, msp);
556 ASSERT3P(msp->ms_tree, ==, rt);
557 VERIFY(!msp->ms_condensing);
558 avl_add(&msp->ms_size_tree, rs);
559 }
560
561 static void
562 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
563 {
564 metaslab_t *msp = arg;
565
566 ASSERT3P(rt->rt_arg, ==, msp);
567 ASSERT3P(msp->ms_tree, ==, rt);
568 VERIFY(!msp->ms_condensing);
569 avl_remove(&msp->ms_size_tree, rs);
570 }
571
572 static void
573 metaslab_rt_vacate(range_tree_t *rt, void *arg)
574 {
575 metaslab_t *msp = arg;
576
577 ASSERT3P(rt->rt_arg, ==, msp);
578 ASSERT3P(msp->ms_tree, ==, rt);
579
580 /*
581 * Normally one would walk the tree freeing nodes along the way.
582 * Since the nodes are shared with the range trees we can avoid
583 * walking all nodes and just reinitialize the avl tree. The nodes
584 * will be freed by the range tree, so we don't want to free them here.
585 */
586 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
587 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
588 }
589
590 static range_tree_ops_t metaslab_rt_ops = {
591 metaslab_rt_create,
592 metaslab_rt_destroy,
593 metaslab_rt_add,
594 metaslab_rt_remove,
595 metaslab_rt_vacate
596 };
597
598 /*
599 * ==========================================================================
600 * Metaslab block operations
601 * ==========================================================================
602 */
603
604 /*
605 * Return the maximum contiguous segment within the metaslab.
606 */
607 uint64_t
608 metaslab_block_maxsize(metaslab_t *msp)
609 {
610 avl_tree_t *t = &msp->ms_size_tree;
611 range_seg_t *rs;
612
613 if (t == NULL || (rs = avl_last(t)) == NULL)
614 return (0ULL);
615
616 return (rs->rs_end - rs->rs_start);
617 }
618
619 uint64_t
620 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
621 {
622 uint64_t start;
623 range_tree_t *rt = msp->ms_tree;
624
625 VERIFY(!msp->ms_condensing);
626
627 start = msp->ms_ops->msop_alloc(msp, size);
628 if (start != -1ULL) {
629 vdev_t *vd = msp->ms_group->mg_vd;
630
631 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
632 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
633 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
634 range_tree_remove(rt, start, size);
635 }
636 return (start);
637 }
638
639 /*
640 * ==========================================================================
641 * Common allocator routines
642 * ==========================================================================
643 */
644
645 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
646 defined(WITH_DF_BLOCK_ALLOCATOR) || \
647 defined(WITH_CF_BLOCK_ALLOCATOR)
648 /*
649 * This is a helper function that can be used by the allocator to find
650 * a suitable block to allocate. This will search the specified AVL
651 * tree looking for a block that matches the specified criteria.
652 */
653 static uint64_t
654 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
655 uint64_t align)
656 {
657 range_seg_t *rs, rsearch;
658 avl_index_t where;
659
660 rsearch.rs_start = *cursor;
661 rsearch.rs_end = *cursor + size;
662
663 rs = avl_find(t, &rsearch, &where);
664 if (rs == NULL)
665 rs = avl_nearest(t, where, AVL_AFTER);
666
667 while (rs != NULL) {
668 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
669
670 if (offset + size <= rs->rs_end) {
671 *cursor = offset + size;
672 return (offset);
673 }
674 rs = AVL_NEXT(t, rs);
675 }
676
677 /*
678 * If we know we've searched the whole map (*cursor == 0), give up.
679 * Otherwise, reset the cursor to the beginning and try again.
680 */
681 if (*cursor == 0)
682 return (-1ULL);
683
684 *cursor = 0;
685 return (metaslab_block_picker(t, cursor, size, align));
686 }
687 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
688
689 #if defined(WITH_FF_BLOCK_ALLOCATOR)
690 /*
691 * ==========================================================================
692 * The first-fit block allocator
693 * ==========================================================================
694 */
695 static uint64_t
696 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
697 {
698 /*
699 * Find the largest power of 2 block size that evenly divides the
700 * requested size. This is used to try to allocate blocks with similar
701 * alignment from the same area of the metaslab (i.e. same cursor
702 * bucket) but it does not guarantee that other allocations sizes
703 * may exist in the same region.
704 */
705 uint64_t align = size & -size;
706 uint64_t *cursor = &msp->ms_lbas[highbit(align) - 1];
707 avl_tree_t *t = &msp->ms_tree->rt_root;
708
709 return (metaslab_block_picker(t, cursor, size, align));
710 }
711
712 /* ARGSUSED */
713 static boolean_t
714 metaslab_ff_fragmented(metaslab_t *msp)
715 {
716 return (B_TRUE);
717 }
718
719 static metaslab_ops_t metaslab_ff_ops = {
720 metaslab_ff_alloc,
721 metaslab_ff_fragmented
722 };
723
724 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
725 #endif /* WITH_FF_BLOCK_ALLOCATOR */
726
727 #if defined(WITH_DF_BLOCK_ALLOCATOR)
728 /*
729 * ==========================================================================
730 * Dynamic block allocator -
731 * Uses the first fit allocation scheme until space get low and then
732 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
733 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
734 * ==========================================================================
735 */
736 static uint64_t
737 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
738 {
739 /*
740 * Find the largest power of 2 block size that evenly divides the
741 * requested size. This is used to try to allocate blocks with similar
742 * alignment from the same area of the metaslab (i.e. same cursor
743 * bucket) but it does not guarantee that other allocations sizes
744 * may exist in the same region.
745 */
746 uint64_t align = size & -size;
747 uint64_t *cursor = &msp->ms_lbas[highbit(align) - 1];
748 range_tree_t *rt = msp->ms_tree;
749 avl_tree_t *t = &rt->rt_root;
750 uint64_t max_size = metaslab_block_maxsize(msp);
751 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
752
753 ASSERT(MUTEX_HELD(&msp->ms_lock));
754 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
755
756 if (max_size < size)
757 return (-1ULL);
758
759 /*
760 * If we're running low on space switch to using the size
761 * sorted AVL tree (best-fit).
762 */
763 if (max_size < metaslab_df_alloc_threshold ||
764 free_pct < metaslab_df_free_pct) {
765 t = &msp->ms_size_tree;
766 *cursor = 0;
767 }
768
769 return (metaslab_block_picker(t, cursor, size, 1ULL));
770 }
771
772 static boolean_t
773 metaslab_df_fragmented(metaslab_t *msp)
774 {
775 range_tree_t *rt = msp->ms_tree;
776 uint64_t max_size = metaslab_block_maxsize(msp);
777 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
778
779 if (max_size >= metaslab_df_alloc_threshold &&
780 free_pct >= metaslab_df_free_pct)
781 return (B_FALSE);
782
783
784 return (B_TRUE);
785 }
786
787 static metaslab_ops_t metaslab_df_ops = {
788 metaslab_df_alloc,
789 metaslab_df_fragmented
790 };
791
792 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
793 #endif /* WITH_DF_BLOCK_ALLOCATOR */
794
795 #if defined(WITH_CF_BLOCK_ALLOCATOR)
796 /*
797 * ==========================================================================
798 * Cursor fit block allocator -
799 * Select the largest region in the metaslab, set the cursor to the beginning
800 * of the range and the cursor_end to the end of the range. As allocations
801 * are made advance the cursor. Continue allocating from the cursor until
802 * the range is exhausted and then find a new range.
803 * ==========================================================================
804 */
805 static uint64_t
806 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
807 {
808 range_tree_t *rt = msp->ms_tree;
809 avl_tree_t *t = &msp->ms_size_tree;
810 uint64_t *cursor = &msp->ms_lbas[0];
811 uint64_t *cursor_end = &msp->ms_lbas[1];
812 uint64_t offset = 0;
813
814 ASSERT(MUTEX_HELD(&msp->ms_lock));
815 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
816
817 ASSERT3U(*cursor_end, >=, *cursor);
818
819 if ((*cursor + size) > *cursor_end) {
820 range_seg_t *rs;
821
822 rs = avl_last(&msp->ms_size_tree);
823 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
824 return (-1ULL);
825
826 *cursor = rs->rs_start;
827 *cursor_end = rs->rs_end;
828 }
829
830 offset = *cursor;
831 *cursor += size;
832
833 return (offset);
834 }
835
836 static boolean_t
837 metaslab_cf_fragmented(metaslab_t *msp)
838 {
839 return (metaslab_block_maxsize(msp) < metaslab_min_alloc_size);
840 }
841
842 static metaslab_ops_t metaslab_cf_ops = {
843 metaslab_cf_alloc,
844 metaslab_cf_fragmented
845 };
846
847 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
848 #endif /* WITH_CF_BLOCK_ALLOCATOR */
849
850 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
851 /*
852 * ==========================================================================
853 * New dynamic fit allocator -
854 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
855 * contiguous blocks. If no region is found then just use the largest segment
856 * that remains.
857 * ==========================================================================
858 */
859
860 /*
861 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
862 * to request from the allocator.
863 */
864 uint64_t metaslab_ndf_clump_shift = 4;
865
866 static uint64_t
867 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
868 {
869 avl_tree_t *t = &msp->ms_tree->rt_root;
870 avl_index_t where;
871 range_seg_t *rs, rsearch;
872 uint64_t hbit = highbit(size);
873 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
874 uint64_t max_size = metaslab_block_maxsize(msp);
875
876 ASSERT(MUTEX_HELD(&msp->ms_lock));
877 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
878
879 if (max_size < size)
880 return (-1ULL);
881
882 rsearch.rs_start = *cursor;
883 rsearch.rs_end = *cursor + size;
884
885 rs = avl_find(t, &rsearch, &where);
886 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
887 t = &msp->ms_size_tree;
888
889 rsearch.rs_start = 0;
890 rsearch.rs_end = MIN(max_size,
891 1ULL << (hbit + metaslab_ndf_clump_shift));
892 rs = avl_find(t, &rsearch, &where);
893 if (rs == NULL)
894 rs = avl_nearest(t, where, AVL_AFTER);
895 ASSERT(rs != NULL);
896 }
897
898 if ((rs->rs_end - rs->rs_start) >= size) {
899 *cursor = rs->rs_start + size;
900 return (rs->rs_start);
901 }
902 return (-1ULL);
903 }
904
905 static boolean_t
906 metaslab_ndf_fragmented(metaslab_t *msp)
907 {
908 return (metaslab_block_maxsize(msp) <=
909 (metaslab_min_alloc_size << metaslab_ndf_clump_shift));
910 }
911
912 static metaslab_ops_t metaslab_ndf_ops = {
913 metaslab_ndf_alloc,
914 metaslab_ndf_fragmented
915 };
916
917 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
918 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
919
920
921 /*
922 * ==========================================================================
923 * Metaslabs
924 * ==========================================================================
925 */
926
927 /*
928 * Wait for any in-progress metaslab loads to complete.
929 */
930 void
931 metaslab_load_wait(metaslab_t *msp)
932 {
933 ASSERT(MUTEX_HELD(&msp->ms_lock));
934
935 while (msp->ms_loading) {
936 ASSERT(!msp->ms_loaded);
937 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
938 }
939 }
940
941 int
942 metaslab_load(metaslab_t *msp)
943 {
944 int error = 0;
945 int t;
946
947 ASSERT(MUTEX_HELD(&msp->ms_lock));
948 ASSERT(!msp->ms_loaded);
949 ASSERT(!msp->ms_loading);
950
951 msp->ms_loading = B_TRUE;
952
953 /*
954 * If the space map has not been allocated yet, then treat
955 * all the space in the metaslab as free and add it to the
956 * ms_tree.
957 */
958 if (msp->ms_sm != NULL)
959 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
960 else
961 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
962
963 msp->ms_loaded = (error == 0);
964 msp->ms_loading = B_FALSE;
965
966 if (msp->ms_loaded) {
967 for (t = 0; t < TXG_DEFER_SIZE; t++) {
968 range_tree_walk(msp->ms_defertree[t],
969 range_tree_remove, msp->ms_tree);
970 }
971 }
972 cv_broadcast(&msp->ms_load_cv);
973 return (error);
974 }
975
976 void
977 metaslab_unload(metaslab_t *msp)
978 {
979 ASSERT(MUTEX_HELD(&msp->ms_lock));
980 range_tree_vacate(msp->ms_tree, NULL, NULL);
981 msp->ms_loaded = B_FALSE;
982 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
983 }
984
985 metaslab_t *
986 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
987 {
988 vdev_t *vd = mg->mg_vd;
989 objset_t *mos = vd->vdev_spa->spa_meta_objset;
990 metaslab_t *msp;
991
992 msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
993 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
994 cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
995 msp->ms_id = id;
996 msp->ms_start = id << vd->vdev_ms_shift;
997 msp->ms_size = 1ULL << vd->vdev_ms_shift;
998
999 /*
1000 * We only open space map objects that already exist. All others
1001 * will be opened when we finally allocate an object for it.
1002 */
1003 if (object != 0) {
1004 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
1005 msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
1006 ASSERT(msp->ms_sm != NULL);
1007 }
1008
1009 /*
1010 * We create the main range tree here, but we don't create the
1011 * alloctree and freetree until metaslab_sync_done(). This serves
1012 * two purposes: it allows metaslab_sync_done() to detect the
1013 * addition of new space; and for debugging, it ensures that we'd
1014 * data fault on any attempt to use this metaslab before it's ready.
1015 */
1016 msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
1017 metaslab_group_add(mg, msp);
1018
1019 msp->ms_ops = mg->mg_class->mc_ops;
1020
1021 /*
1022 * If we're opening an existing pool (txg == 0) or creating
1023 * a new one (txg == TXG_INITIAL), all space is available now.
1024 * If we're adding space to an existing pool, the new space
1025 * does not become available until after this txg has synced.
1026 */
1027 if (txg <= TXG_INITIAL)
1028 metaslab_sync_done(msp, 0);
1029
1030 /*
1031 * If metaslab_debug_load is set and we're initializing a metaslab
1032 * that has an allocated space_map object then load the its space
1033 * map so that can verify frees.
1034 */
1035 if (metaslab_debug_load && msp->ms_sm != NULL) {
1036 mutex_enter(&msp->ms_lock);
1037 VERIFY0(metaslab_load(msp));
1038 mutex_exit(&msp->ms_lock);
1039 }
1040
1041 if (txg != 0) {
1042 vdev_dirty(vd, 0, NULL, txg);
1043 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1044 }
1045
1046 return (msp);
1047 }
1048
1049 void
1050 metaslab_fini(metaslab_t *msp)
1051 {
1052 int t;
1053
1054 metaslab_group_t *mg = msp->ms_group;
1055
1056 metaslab_group_remove(mg, msp);
1057
1058 mutex_enter(&msp->ms_lock);
1059
1060 VERIFY(msp->ms_group == NULL);
1061 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1062 0, -msp->ms_size);
1063 space_map_close(msp->ms_sm);
1064
1065 metaslab_unload(msp);
1066 range_tree_destroy(msp->ms_tree);
1067
1068 for (t = 0; t < TXG_SIZE; t++) {
1069 range_tree_destroy(msp->ms_alloctree[t]);
1070 range_tree_destroy(msp->ms_freetree[t]);
1071 }
1072
1073 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1074 range_tree_destroy(msp->ms_defertree[t]);
1075 }
1076
1077 ASSERT0(msp->ms_deferspace);
1078
1079 mutex_exit(&msp->ms_lock);
1080 cv_destroy(&msp->ms_load_cv);
1081 mutex_destroy(&msp->ms_lock);
1082
1083 kmem_free(msp, sizeof (metaslab_t));
1084 }
1085
1086 /*
1087 * Apply a weighting factor based on the histogram information for this
1088 * metaslab. The current weighting factor is somewhat arbitrary and requires
1089 * additional investigation. The implementation provides a measure of
1090 * "weighted" free space and gives a higher weighting for larger contiguous
1091 * regions. The weighting factor is determined by counting the number of
1092 * sm_shift sectors that exist in each region represented by the histogram.
1093 * That value is then multiplied by the power of 2 exponent and the sm_shift
1094 * value.
1095 *
1096 * For example, assume the 2^21 histogram bucket has 4 2MB regions and the
1097 * metaslab has an sm_shift value of 9 (512B):
1098 *
1099 * 1) calculate the number of sm_shift sectors in the region:
1100 * 2^21 / 2^9 = 2^12 = 4096 * 4 (number of regions) = 16384
1101 * 2) multiply by the power of 2 exponent and the sm_shift value:
1102 * 16384 * 21 * 9 = 3096576
1103 * This value will be added to the weighting of the metaslab.
1104 */
1105 static uint64_t
1106 metaslab_weight_factor(metaslab_t *msp)
1107 {
1108 uint64_t factor = 0;
1109 uint64_t sectors;
1110 int i;
1111
1112 /*
1113 * A null space map means that the entire metaslab is free,
1114 * calculate a weight factor that spans the entire size of the
1115 * metaslab.
1116 */
1117 if (msp->ms_sm == NULL) {
1118 vdev_t *vd = msp->ms_group->mg_vd;
1119
1120 i = highbit(msp->ms_size) - 1;
1121 sectors = msp->ms_size >> vd->vdev_ashift;
1122 return (sectors * i * vd->vdev_ashift);
1123 }
1124
1125 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
1126 return (0);
1127
1128 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE(msp->ms_sm); i++) {
1129 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1130 continue;
1131
1132 /*
1133 * Determine the number of sm_shift sectors in the region
1134 * indicated by the histogram. For example, given an
1135 * sm_shift value of 9 (512 bytes) and i = 4 then we know
1136 * that we're looking at an 8K region in the histogram
1137 * (i.e. 9 + 4 = 13, 2^13 = 8192). To figure out the
1138 * number of sm_shift sectors (512 bytes in this example),
1139 * we would take 8192 / 512 = 16. Since the histogram
1140 * is offset by sm_shift we can simply use the value of
1141 * of i to calculate this (i.e. 2^i = 16 where i = 4).
1142 */
1143 sectors = msp->ms_sm->sm_phys->smp_histogram[i] << i;
1144 factor += (i + msp->ms_sm->sm_shift) * sectors;
1145 }
1146 return (factor * msp->ms_sm->sm_shift);
1147 }
1148
1149 static uint64_t
1150 metaslab_weight(metaslab_t *msp)
1151 {
1152 metaslab_group_t *mg = msp->ms_group;
1153 vdev_t *vd = mg->mg_vd;
1154 uint64_t weight, space;
1155
1156 ASSERT(MUTEX_HELD(&msp->ms_lock));
1157
1158 /*
1159 * This vdev is in the process of being removed so there is nothing
1160 * for us to do here.
1161 */
1162 if (vd->vdev_removing) {
1163 ASSERT0(space_map_allocated(msp->ms_sm));
1164 ASSERT0(vd->vdev_ms_shift);
1165 return (0);
1166 }
1167
1168 /*
1169 * The baseline weight is the metaslab's free space.
1170 */
1171 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1172 weight = space;
1173
1174 /*
1175 * Modern disks have uniform bit density and constant angular velocity.
1176 * Therefore, the outer recording zones are faster (higher bandwidth)
1177 * than the inner zones by the ratio of outer to inner track diameter,
1178 * which is typically around 2:1. We account for this by assigning
1179 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1180 * In effect, this means that we'll select the metaslab with the most
1181 * free bandwidth rather than simply the one with the most free space.
1182 */
1183 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1184 ASSERT(weight >= space && weight <= 2 * space);
1185
1186 msp->ms_factor = metaslab_weight_factor(msp);
1187 if (metaslab_weight_factor_enable)
1188 weight += msp->ms_factor;
1189
1190 if (msp->ms_loaded && !msp->ms_ops->msop_fragmented(msp)) {
1191 /*
1192 * If this metaslab is one we're actively using, adjust its
1193 * weight to make it preferable to any inactive metaslab so
1194 * we'll polish it off.
1195 */
1196 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1197 }
1198
1199 return (weight);
1200 }
1201
1202 static int
1203 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1204 {
1205 ASSERT(MUTEX_HELD(&msp->ms_lock));
1206
1207 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1208 metaslab_load_wait(msp);
1209 if (!msp->ms_loaded) {
1210 int error = metaslab_load(msp);
1211 if (error) {
1212 metaslab_group_sort(msp->ms_group, msp, 0);
1213 return (error);
1214 }
1215 }
1216
1217 metaslab_group_sort(msp->ms_group, msp,
1218 msp->ms_weight | activation_weight);
1219 }
1220 ASSERT(msp->ms_loaded);
1221 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1222
1223 return (0);
1224 }
1225
1226 static void
1227 metaslab_passivate(metaslab_t *msp, uint64_t size)
1228 {
1229 /*
1230 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1231 * this metaslab again. In that case, it had better be empty,
1232 * or we would be leaving space on the table.
1233 */
1234 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1235 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1236 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1237 }
1238
1239 static void
1240 metaslab_preload(void *arg)
1241 {
1242 metaslab_t *msp = arg;
1243 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1244
1245 mutex_enter(&msp->ms_lock);
1246 metaslab_load_wait(msp);
1247 if (!msp->ms_loaded)
1248 (void) metaslab_load(msp);
1249
1250 /*
1251 * Set the ms_access_txg value so that we don't unload it right away.
1252 */
1253 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1254 mutex_exit(&msp->ms_lock);
1255 }
1256
1257 static void
1258 metaslab_group_preload(metaslab_group_t *mg)
1259 {
1260 spa_t *spa = mg->mg_vd->vdev_spa;
1261 metaslab_t *msp;
1262 avl_tree_t *t = &mg->mg_metaslab_tree;
1263 int m = 0;
1264
1265 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1266 taskq_wait(mg->mg_taskq);
1267 return;
1268 }
1269 mutex_enter(&mg->mg_lock);
1270
1271 /*
1272 * Prefetch the next potential metaslabs
1273 */
1274 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
1275
1276 /* If we have reached our preload limit then we're done */
1277 if (++m > metaslab_preload_limit)
1278 break;
1279
1280 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1281 msp, TQ_PUSHPAGE) != 0);
1282 }
1283 mutex_exit(&mg->mg_lock);
1284 }
1285
1286 /*
1287 * Determine if the space map's on-disk footprint is past our tolerance
1288 * for inefficiency. We would like to use the following criteria to make
1289 * our decision:
1290 *
1291 * 1. The size of the space map object should not dramatically increase as a
1292 * result of writing out the free space range tree.
1293 *
1294 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1295 * times the size than the free space range tree representation
1296 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1297 *
1298 * Checking the first condition is tricky since we don't want to walk
1299 * the entire AVL tree calculating the estimated on-disk size. Instead we
1300 * use the size-ordered range tree in the metaslab and calculate the
1301 * size required to write out the largest segment in our free tree. If the
1302 * size required to represent that segment on disk is larger than the space
1303 * map object then we avoid condensing this map.
1304 *
1305 * To determine the second criterion we use a best-case estimate and assume
1306 * each segment can be represented on-disk as a single 64-bit entry. We refer
1307 * to this best-case estimate as the space map's minimal form.
1308 */
1309 static boolean_t
1310 metaslab_should_condense(metaslab_t *msp)
1311 {
1312 space_map_t *sm = msp->ms_sm;
1313 range_seg_t *rs;
1314 uint64_t size, entries, segsz;
1315
1316 ASSERT(MUTEX_HELD(&msp->ms_lock));
1317 ASSERT(msp->ms_loaded);
1318
1319 /*
1320 * Use the ms_size_tree range tree, which is ordered by size, to
1321 * obtain the largest segment in the free tree. If the tree is empty
1322 * then we should condense the map.
1323 */
1324 rs = avl_last(&msp->ms_size_tree);
1325 if (rs == NULL)
1326 return (B_TRUE);
1327
1328 /*
1329 * Calculate the number of 64-bit entries this segment would
1330 * require when written to disk. If this single segment would be
1331 * larger on-disk than the entire current on-disk structure, then
1332 * clearly condensing will increase the on-disk structure size.
1333 */
1334 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1335 entries = size / (MIN(size, SM_RUN_MAX));
1336 segsz = entries * sizeof (uint64_t);
1337
1338 return (segsz <= space_map_length(msp->ms_sm) &&
1339 space_map_length(msp->ms_sm) >= (zfs_condense_pct *
1340 sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root)) / 100);
1341 }
1342
1343 /*
1344 * Condense the on-disk space map representation to its minimized form.
1345 * The minimized form consists of a small number of allocations followed by
1346 * the entries of the free range tree.
1347 */
1348 static void
1349 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1350 {
1351 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1352 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1353 range_tree_t *condense_tree;
1354 space_map_t *sm = msp->ms_sm;
1355 int t;
1356
1357 ASSERT(MUTEX_HELD(&msp->ms_lock));
1358 ASSERT3U(spa_sync_pass(spa), ==, 1);
1359 ASSERT(msp->ms_loaded);
1360
1361 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1362 "smp size %llu, segments %lu", txg, msp->ms_id, msp,
1363 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root));
1364
1365 /*
1366 * Create an range tree that is 100% allocated. We remove segments
1367 * that have been freed in this txg, any deferred frees that exist,
1368 * and any allocation in the future. Removing segments should be
1369 * a relatively inexpensive operation since we expect these trees to
1370 * have a small number of nodes.
1371 */
1372 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1373 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1374
1375 /*
1376 * Remove what's been freed in this txg from the condense_tree.
1377 * Since we're in sync_pass 1, we know that all the frees from
1378 * this txg are in the freetree.
1379 */
1380 range_tree_walk(freetree, range_tree_remove, condense_tree);
1381
1382 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1383 range_tree_walk(msp->ms_defertree[t],
1384 range_tree_remove, condense_tree);
1385 }
1386
1387 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1388 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1389 range_tree_remove, condense_tree);
1390 }
1391
1392 /*
1393 * We're about to drop the metaslab's lock thus allowing
1394 * other consumers to change it's content. Set the
1395 * metaslab's ms_condensing flag to ensure that
1396 * allocations on this metaslab do not occur while we're
1397 * in the middle of committing it to disk. This is only critical
1398 * for the ms_tree as all other range trees use per txg
1399 * views of their content.
1400 */
1401 msp->ms_condensing = B_TRUE;
1402
1403 mutex_exit(&msp->ms_lock);
1404 space_map_truncate(sm, tx);
1405 mutex_enter(&msp->ms_lock);
1406
1407 /*
1408 * While we would ideally like to create a space_map representation
1409 * that consists only of allocation records, doing so can be
1410 * prohibitively expensive because the in-core free tree can be
1411 * large, and therefore computationally expensive to subtract
1412 * from the condense_tree. Instead we sync out two trees, a cheap
1413 * allocation only tree followed by the in-core free tree. While not
1414 * optimal, this is typically close to optimal, and much cheaper to
1415 * compute.
1416 */
1417 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1418 range_tree_vacate(condense_tree, NULL, NULL);
1419 range_tree_destroy(condense_tree);
1420
1421 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1422 msp->ms_condensing = B_FALSE;
1423 }
1424
1425 /*
1426 * Write a metaslab to disk in the context of the specified transaction group.
1427 */
1428 void
1429 metaslab_sync(metaslab_t *msp, uint64_t txg)
1430 {
1431 metaslab_group_t *mg = msp->ms_group;
1432 vdev_t *vd = mg->mg_vd;
1433 spa_t *spa = vd->vdev_spa;
1434 objset_t *mos = spa_meta_objset(spa);
1435 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1436 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1437 range_tree_t **freed_tree =
1438 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1439 dmu_tx_t *tx;
1440 uint64_t object = space_map_object(msp->ms_sm);
1441
1442 ASSERT(!vd->vdev_ishole);
1443
1444 /*
1445 * This metaslab has just been added so there's no work to do now.
1446 */
1447 if (*freetree == NULL) {
1448 ASSERT3P(alloctree, ==, NULL);
1449 return;
1450 }
1451
1452 ASSERT3P(alloctree, !=, NULL);
1453 ASSERT3P(*freetree, !=, NULL);
1454 ASSERT3P(*freed_tree, !=, NULL);
1455
1456 if (range_tree_space(alloctree) == 0 &&
1457 range_tree_space(*freetree) == 0)
1458 return;
1459
1460 /*
1461 * The only state that can actually be changing concurrently with
1462 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1463 * be modifying this txg's alloctree, freetree, freed_tree, or
1464 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1465 * space_map ASSERTs. We drop it whenever we call into the DMU,
1466 * because the DMU can call down to us (e.g. via zio_free()) at
1467 * any time.
1468 */
1469
1470 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1471
1472 if (msp->ms_sm == NULL) {
1473 uint64_t new_object;
1474
1475 new_object = space_map_alloc(mos, tx);
1476 VERIFY3U(new_object, !=, 0);
1477
1478 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1479 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1480 &msp->ms_lock));
1481 ASSERT(msp->ms_sm != NULL);
1482 }
1483
1484 mutex_enter(&msp->ms_lock);
1485
1486 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1487 metaslab_should_condense(msp)) {
1488 metaslab_condense(msp, txg, tx);
1489 } else {
1490 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1491 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1492 }
1493
1494 range_tree_vacate(alloctree, NULL, NULL);
1495
1496 if (msp->ms_loaded) {
1497 /*
1498 * When the space map is loaded, we have an accruate
1499 * histogram in the range tree. This gives us an opportunity
1500 * to bring the space map's histogram up-to-date so we clear
1501 * it first before updating it.
1502 */
1503 space_map_histogram_clear(msp->ms_sm);
1504 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1505 } else {
1506 /*
1507 * Since the space map is not loaded we simply update the
1508 * exisiting histogram with what was freed in this txg. This
1509 * means that the on-disk histogram may not have an accurate
1510 * view of the free space but it's close enough to allow
1511 * us to make allocation decisions.
1512 */
1513 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1514 }
1515
1516 /*
1517 * For sync pass 1, we avoid traversing this txg's free range tree
1518 * and instead will just swap the pointers for freetree and
1519 * freed_tree. We can safely do this since the freed_tree is
1520 * guaranteed to be empty on the initial pass.
1521 */
1522 if (spa_sync_pass(spa) == 1) {
1523 range_tree_swap(freetree, freed_tree);
1524 } else {
1525 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1526 }
1527
1528 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1529 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1530
1531 mutex_exit(&msp->ms_lock);
1532
1533 if (object != space_map_object(msp->ms_sm)) {
1534 object = space_map_object(msp->ms_sm);
1535 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1536 msp->ms_id, sizeof (uint64_t), &object, tx);
1537 }
1538 dmu_tx_commit(tx);
1539 }
1540
1541 /*
1542 * Called after a transaction group has completely synced to mark
1543 * all of the metaslab's free space as usable.
1544 */
1545 void
1546 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1547 {
1548 metaslab_group_t *mg = msp->ms_group;
1549 vdev_t *vd = mg->mg_vd;
1550 range_tree_t **freed_tree;
1551 range_tree_t **defer_tree;
1552 int64_t alloc_delta, defer_delta;
1553 int t;
1554
1555 ASSERT(!vd->vdev_ishole);
1556
1557 mutex_enter(&msp->ms_lock);
1558
1559 /*
1560 * If this metaslab is just becoming available, initialize its
1561 * alloctrees, freetrees, and defertree and add its capacity to
1562 * the vdev.
1563 */
1564 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1565 for (t = 0; t < TXG_SIZE; t++) {
1566 ASSERT(msp->ms_alloctree[t] == NULL);
1567 ASSERT(msp->ms_freetree[t] == NULL);
1568
1569 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1570 &msp->ms_lock);
1571 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1572 &msp->ms_lock);
1573 }
1574
1575 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1576 ASSERT(msp->ms_defertree[t] == NULL);
1577
1578 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1579 &msp->ms_lock);
1580 }
1581
1582 vdev_space_update(vd, 0, 0, msp->ms_size);
1583 }
1584
1585 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1586 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1587
1588 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1589 defer_delta = range_tree_space(*freed_tree) -
1590 range_tree_space(*defer_tree);
1591
1592 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1593
1594 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1595 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1596
1597 /*
1598 * If there's a metaslab_load() in progress, wait for it to complete
1599 * so that we have a consistent view of the in-core space map.
1600 */
1601 metaslab_load_wait(msp);
1602
1603 /*
1604 * Move the frees from the defer_tree back to the free
1605 * range tree (if it's loaded). Swap the freed_tree and the
1606 * defer_tree -- this is safe to do because we've just emptied out
1607 * the defer_tree.
1608 */
1609 range_tree_vacate(*defer_tree,
1610 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1611 range_tree_swap(freed_tree, defer_tree);
1612
1613 space_map_update(msp->ms_sm);
1614
1615 msp->ms_deferspace += defer_delta;
1616 ASSERT3S(msp->ms_deferspace, >=, 0);
1617 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
1618 if (msp->ms_deferspace != 0) {
1619 /*
1620 * Keep syncing this metaslab until all deferred frees
1621 * are back in circulation.
1622 */
1623 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1624 }
1625
1626 if (msp->ms_loaded && msp->ms_access_txg < txg) {
1627 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1628 VERIFY0(range_tree_space(
1629 msp->ms_alloctree[(txg + t) & TXG_MASK]));
1630 }
1631
1632 if (!metaslab_debug_unload)
1633 metaslab_unload(msp);
1634 }
1635
1636 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1637 mutex_exit(&msp->ms_lock);
1638
1639 }
1640
1641 void
1642 metaslab_sync_reassess(metaslab_group_t *mg)
1643 {
1644 int64_t failures = mg->mg_alloc_failures;
1645
1646 metaslab_group_alloc_update(mg);
1647 atomic_add_64(&mg->mg_alloc_failures, -failures);
1648
1649 /*
1650 * Preload the next potential metaslabs
1651 */
1652 metaslab_group_preload(mg);
1653 }
1654
1655 static uint64_t
1656 metaslab_distance(metaslab_t *msp, dva_t *dva)
1657 {
1658 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1659 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1660 uint64_t start = msp->ms_id;
1661
1662 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1663 return (1ULL << 63);
1664
1665 if (offset < start)
1666 return ((start - offset) << ms_shift);
1667 if (offset > start)
1668 return ((offset - start) << ms_shift);
1669 return (0);
1670 }
1671
1672 static uint64_t
1673 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1674 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1675 {
1676 spa_t *spa = mg->mg_vd->vdev_spa;
1677 metaslab_t *msp = NULL;
1678 uint64_t offset = -1ULL;
1679 avl_tree_t *t = &mg->mg_metaslab_tree;
1680 uint64_t activation_weight;
1681 uint64_t target_distance;
1682 int i;
1683
1684 activation_weight = METASLAB_WEIGHT_PRIMARY;
1685 for (i = 0; i < d; i++) {
1686 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1687 activation_weight = METASLAB_WEIGHT_SECONDARY;
1688 break;
1689 }
1690 }
1691
1692 for (;;) {
1693 boolean_t was_active;
1694
1695 mutex_enter(&mg->mg_lock);
1696 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1697 if (msp->ms_weight < asize) {
1698 spa_dbgmsg(spa, "%s: failed to meet weight "
1699 "requirement: vdev %llu, txg %llu, mg %p, "
1700 "msp %p, psize %llu, asize %llu, "
1701 "failures %llu, weight %llu",
1702 spa_name(spa), mg->mg_vd->vdev_id, txg,
1703 mg, msp, psize, asize,
1704 mg->mg_alloc_failures, msp->ms_weight);
1705 mutex_exit(&mg->mg_lock);
1706 return (-1ULL);
1707 }
1708
1709 /*
1710 * If the selected metaslab is condensing, skip it.
1711 */
1712 if (msp->ms_condensing)
1713 continue;
1714
1715 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1716 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1717 break;
1718
1719 target_distance = min_distance +
1720 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
1721 min_distance >> 1);
1722
1723 for (i = 0; i < d; i++)
1724 if (metaslab_distance(msp, &dva[i]) <
1725 target_distance)
1726 break;
1727 if (i == d)
1728 break;
1729 }
1730 mutex_exit(&mg->mg_lock);
1731 if (msp == NULL)
1732 return (-1ULL);
1733
1734 mutex_enter(&msp->ms_lock);
1735
1736 /*
1737 * If we've already reached the allowable number of failed
1738 * allocation attempts on this metaslab group then we
1739 * consider skipping it. We skip it only if we're allowed
1740 * to "fast" gang, the physical size is larger than
1741 * a gang block, and we're attempting to allocate from
1742 * the primary metaslab.
1743 */
1744 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1745 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1746 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1747 spa_dbgmsg(spa, "%s: skipping metaslab group: "
1748 "vdev %llu, txg %llu, mg %p, msp[%llu] %p, "
1749 "psize %llu, asize %llu, failures %llu",
1750 spa_name(spa), mg->mg_vd->vdev_id, txg, mg,
1751 msp->ms_id, msp, psize, asize,
1752 mg->mg_alloc_failures);
1753 mutex_exit(&msp->ms_lock);
1754 return (-1ULL);
1755 }
1756
1757 /*
1758 * Ensure that the metaslab we have selected is still
1759 * capable of handling our request. It's possible that
1760 * another thread may have changed the weight while we
1761 * were blocked on the metaslab lock.
1762 */
1763 if (msp->ms_weight < asize || (was_active &&
1764 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1765 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1766 mutex_exit(&msp->ms_lock);
1767 continue;
1768 }
1769
1770 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1771 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1772 metaslab_passivate(msp,
1773 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1774 mutex_exit(&msp->ms_lock);
1775 continue;
1776 }
1777
1778 if (metaslab_activate(msp, activation_weight) != 0) {
1779 mutex_exit(&msp->ms_lock);
1780 continue;
1781 }
1782
1783 /*
1784 * If this metaslab is currently condensing then pick again as
1785 * we can't manipulate this metaslab until it's committed
1786 * to disk.
1787 */
1788 if (msp->ms_condensing) {
1789 mutex_exit(&msp->ms_lock);
1790 continue;
1791 }
1792
1793 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
1794 break;
1795
1796 atomic_inc_64(&mg->mg_alloc_failures);
1797
1798 metaslab_passivate(msp, metaslab_block_maxsize(msp));
1799 mutex_exit(&msp->ms_lock);
1800 }
1801
1802 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
1803 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1804
1805 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
1806 msp->ms_access_txg = txg + metaslab_unload_delay;
1807
1808 mutex_exit(&msp->ms_lock);
1809
1810 return (offset);
1811 }
1812
1813 /*
1814 * Allocate a block for the specified i/o.
1815 */
1816 static int
1817 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1818 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1819 {
1820 metaslab_group_t *mg, *fast_mg, *rotor;
1821 vdev_t *vd;
1822 int dshift = 3;
1823 int all_zero;
1824 int zio_lock = B_FALSE;
1825 boolean_t allocatable;
1826 uint64_t offset = -1ULL;
1827 uint64_t asize;
1828 uint64_t distance;
1829
1830 ASSERT(!DVA_IS_VALID(&dva[d]));
1831
1832 /*
1833 * For testing, make some blocks above a certain size be gang blocks.
1834 */
1835 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1836 return (SET_ERROR(ENOSPC));
1837
1838 if (flags & METASLAB_FASTWRITE)
1839 mutex_enter(&mc->mc_fastwrite_lock);
1840
1841 /*
1842 * Start at the rotor and loop through all mgs until we find something.
1843 * Note that there's no locking on mc_rotor or mc_aliquot because
1844 * nothing actually breaks if we miss a few updates -- we just won't
1845 * allocate quite as evenly. It all balances out over time.
1846 *
1847 * If we are doing ditto or log blocks, try to spread them across
1848 * consecutive vdevs. If we're forced to reuse a vdev before we've
1849 * allocated all of our ditto blocks, then try and spread them out on
1850 * that vdev as much as possible. If it turns out to not be possible,
1851 * gradually lower our standards until anything becomes acceptable.
1852 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1853 * gives us hope of containing our fault domains to something we're
1854 * able to reason about. Otherwise, any two top-level vdev failures
1855 * will guarantee the loss of data. With consecutive allocation,
1856 * only two adjacent top-level vdev failures will result in data loss.
1857 *
1858 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1859 * ourselves on the same vdev as our gang block header. That
1860 * way, we can hope for locality in vdev_cache, plus it makes our
1861 * fault domains something tractable.
1862 */
1863 if (hintdva) {
1864 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1865
1866 /*
1867 * It's possible the vdev we're using as the hint no
1868 * longer exists (i.e. removed). Consult the rotor when
1869 * all else fails.
1870 */
1871 if (vd != NULL) {
1872 mg = vd->vdev_mg;
1873
1874 if (flags & METASLAB_HINTBP_AVOID &&
1875 mg->mg_next != NULL)
1876 mg = mg->mg_next;
1877 } else {
1878 mg = mc->mc_rotor;
1879 }
1880 } else if (d != 0) {
1881 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1882 mg = vd->vdev_mg->mg_next;
1883 } else if (flags & METASLAB_FASTWRITE) {
1884 mg = fast_mg = mc->mc_rotor;
1885
1886 do {
1887 if (fast_mg->mg_vd->vdev_pending_fastwrite <
1888 mg->mg_vd->vdev_pending_fastwrite)
1889 mg = fast_mg;
1890 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
1891
1892 } else {
1893 mg = mc->mc_rotor;
1894 }
1895
1896 /*
1897 * If the hint put us into the wrong metaslab class, or into a
1898 * metaslab group that has been passivated, just follow the rotor.
1899 */
1900 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1901 mg = mc->mc_rotor;
1902
1903 rotor = mg;
1904 top:
1905 all_zero = B_TRUE;
1906 do {
1907 ASSERT(mg->mg_activation_count == 1);
1908
1909 vd = mg->mg_vd;
1910
1911 /*
1912 * Don't allocate from faulted devices.
1913 */
1914 if (zio_lock) {
1915 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1916 allocatable = vdev_allocatable(vd);
1917 spa_config_exit(spa, SCL_ZIO, FTAG);
1918 } else {
1919 allocatable = vdev_allocatable(vd);
1920 }
1921
1922 /*
1923 * Determine if the selected metaslab group is eligible
1924 * for allocations. If we're ganging or have requested
1925 * an allocation for the smallest gang block size
1926 * then we don't want to avoid allocating to the this
1927 * metaslab group. If we're in this condition we should
1928 * try to allocate from any device possible so that we
1929 * don't inadvertently return ENOSPC and suspend the pool
1930 * even though space is still available.
1931 */
1932 if (allocatable && CAN_FASTGANG(flags) &&
1933 psize > SPA_GANGBLOCKSIZE)
1934 allocatable = metaslab_group_allocatable(mg);
1935
1936 if (!allocatable)
1937 goto next;
1938
1939 /*
1940 * Avoid writing single-copy data to a failing vdev
1941 * unless the user instructs us that it is okay.
1942 */
1943 if ((vd->vdev_stat.vs_write_errors > 0 ||
1944 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1945 d == 0 && dshift == 3 &&
1946 !(zfs_write_to_degraded && vd->vdev_state ==
1947 VDEV_STATE_DEGRADED)) {
1948 all_zero = B_FALSE;
1949 goto next;
1950 }
1951
1952 ASSERT(mg->mg_class == mc);
1953
1954 distance = vd->vdev_asize >> dshift;
1955 if (distance <= (1ULL << vd->vdev_ms_shift))
1956 distance = 0;
1957 else
1958 all_zero = B_FALSE;
1959
1960 asize = vdev_psize_to_asize(vd, psize);
1961 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1962
1963 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1964 dva, d, flags);
1965 if (offset != -1ULL) {
1966 /*
1967 * If we've just selected this metaslab group,
1968 * figure out whether the corresponding vdev is
1969 * over- or under-used relative to the pool,
1970 * and set an allocation bias to even it out.
1971 */
1972 if (mc->mc_aliquot == 0) {
1973 vdev_stat_t *vs = &vd->vdev_stat;
1974 int64_t vu, cu;
1975
1976 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1977 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1978
1979 /*
1980 * Calculate how much more or less we should
1981 * try to allocate from this device during
1982 * this iteration around the rotor.
1983 * For example, if a device is 80% full
1984 * and the pool is 20% full then we should
1985 * reduce allocations by 60% on this device.
1986 *
1987 * mg_bias = (20 - 80) * 512K / 100 = -307K
1988 *
1989 * This reduces allocations by 307K for this
1990 * iteration.
1991 */
1992 mg->mg_bias = ((cu - vu) *
1993 (int64_t)mg->mg_aliquot) / 100;
1994 }
1995
1996 if ((flags & METASLAB_FASTWRITE) ||
1997 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1998 mg->mg_aliquot + mg->mg_bias) {
1999 mc->mc_rotor = mg->mg_next;
2000 mc->mc_aliquot = 0;
2001 }
2002
2003 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2004 DVA_SET_OFFSET(&dva[d], offset);
2005 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2006 DVA_SET_ASIZE(&dva[d], asize);
2007
2008 if (flags & METASLAB_FASTWRITE) {
2009 atomic_add_64(&vd->vdev_pending_fastwrite,
2010 psize);
2011 mutex_exit(&mc->mc_fastwrite_lock);
2012 }
2013
2014 return (0);
2015 }
2016 next:
2017 mc->mc_rotor = mg->mg_next;
2018 mc->mc_aliquot = 0;
2019 } while ((mg = mg->mg_next) != rotor);
2020
2021 if (!all_zero) {
2022 dshift++;
2023 ASSERT(dshift < 64);
2024 goto top;
2025 }
2026
2027 if (!allocatable && !zio_lock) {
2028 dshift = 3;
2029 zio_lock = B_TRUE;
2030 goto top;
2031 }
2032
2033 bzero(&dva[d], sizeof (dva_t));
2034
2035 if (flags & METASLAB_FASTWRITE)
2036 mutex_exit(&mc->mc_fastwrite_lock);
2037
2038 return (SET_ERROR(ENOSPC));
2039 }
2040
2041 /*
2042 * Free the block represented by DVA in the context of the specified
2043 * transaction group.
2044 */
2045 static void
2046 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2047 {
2048 uint64_t vdev = DVA_GET_VDEV(dva);
2049 uint64_t offset = DVA_GET_OFFSET(dva);
2050 uint64_t size = DVA_GET_ASIZE(dva);
2051 vdev_t *vd;
2052 metaslab_t *msp;
2053
2054 ASSERT(DVA_IS_VALID(dva));
2055
2056 if (txg > spa_freeze_txg(spa))
2057 return;
2058
2059 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2060 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2061 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2062 (u_longlong_t)vdev, (u_longlong_t)offset);
2063 ASSERT(0);
2064 return;
2065 }
2066
2067 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2068
2069 if (DVA_GET_GANG(dva))
2070 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2071
2072 mutex_enter(&msp->ms_lock);
2073
2074 if (now) {
2075 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2076 offset, size);
2077
2078 VERIFY(!msp->ms_condensing);
2079 VERIFY3U(offset, >=, msp->ms_start);
2080 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2081 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2082 msp->ms_size);
2083 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2084 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2085 range_tree_add(msp->ms_tree, offset, size);
2086 } else {
2087 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2088 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2089 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2090 offset, size);
2091 }
2092
2093 mutex_exit(&msp->ms_lock);
2094 }
2095
2096 /*
2097 * Intent log support: upon opening the pool after a crash, notify the SPA
2098 * of blocks that the intent log has allocated for immediate write, but
2099 * which are still considered free by the SPA because the last transaction
2100 * group didn't commit yet.
2101 */
2102 static int
2103 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2104 {
2105 uint64_t vdev = DVA_GET_VDEV(dva);
2106 uint64_t offset = DVA_GET_OFFSET(dva);
2107 uint64_t size = DVA_GET_ASIZE(dva);
2108 vdev_t *vd;
2109 metaslab_t *msp;
2110 int error = 0;
2111
2112 ASSERT(DVA_IS_VALID(dva));
2113
2114 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2115 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2116 return (SET_ERROR(ENXIO));
2117
2118 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2119
2120 if (DVA_GET_GANG(dva))
2121 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2122
2123 mutex_enter(&msp->ms_lock);
2124
2125 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2126 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2127
2128 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2129 error = SET_ERROR(ENOENT);
2130
2131 if (error || txg == 0) { /* txg == 0 indicates dry run */
2132 mutex_exit(&msp->ms_lock);
2133 return (error);
2134 }
2135
2136 VERIFY(!msp->ms_condensing);
2137 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2138 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2139 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2140 range_tree_remove(msp->ms_tree, offset, size);
2141
2142 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2143 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2144 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2145 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2146 }
2147
2148 mutex_exit(&msp->ms_lock);
2149
2150 return (0);
2151 }
2152
2153 int
2154 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2155 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2156 {
2157 dva_t *dva = bp->blk_dva;
2158 dva_t *hintdva = hintbp->blk_dva;
2159 int d, error = 0;
2160
2161 ASSERT(bp->blk_birth == 0);
2162 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2163
2164 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2165
2166 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2167 spa_config_exit(spa, SCL_ALLOC, FTAG);
2168 return (SET_ERROR(ENOSPC));
2169 }
2170
2171 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2172 ASSERT(BP_GET_NDVAS(bp) == 0);
2173 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2174
2175 for (d = 0; d < ndvas; d++) {
2176 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2177 txg, flags);
2178 if (error != 0) {
2179 for (d--; d >= 0; d--) {
2180 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2181 bzero(&dva[d], sizeof (dva_t));
2182 }
2183 spa_config_exit(spa, SCL_ALLOC, FTAG);
2184 return (error);
2185 }
2186 }
2187 ASSERT(error == 0);
2188 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2189
2190 spa_config_exit(spa, SCL_ALLOC, FTAG);
2191
2192 BP_SET_BIRTH(bp, txg, txg);
2193
2194 return (0);
2195 }
2196
2197 void
2198 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2199 {
2200 const dva_t *dva = bp->blk_dva;
2201 int d, ndvas = BP_GET_NDVAS(bp);
2202
2203 ASSERT(!BP_IS_HOLE(bp));
2204 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2205
2206 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2207
2208 for (d = 0; d < ndvas; d++)
2209 metaslab_free_dva(spa, &dva[d], txg, now);
2210
2211 spa_config_exit(spa, SCL_FREE, FTAG);
2212 }
2213
2214 int
2215 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2216 {
2217 const dva_t *dva = bp->blk_dva;
2218 int ndvas = BP_GET_NDVAS(bp);
2219 int d, error = 0;
2220
2221 ASSERT(!BP_IS_HOLE(bp));
2222
2223 if (txg != 0) {
2224 /*
2225 * First do a dry run to make sure all DVAs are claimable,
2226 * so we don't have to unwind from partial failures below.
2227 */
2228 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2229 return (error);
2230 }
2231
2232 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2233
2234 for (d = 0; d < ndvas; d++)
2235 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2236 break;
2237
2238 spa_config_exit(spa, SCL_ALLOC, FTAG);
2239
2240 ASSERT(error == 0 || txg == 0);
2241
2242 return (error);
2243 }
2244
2245 void
2246 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2247 {
2248 const dva_t *dva = bp->blk_dva;
2249 int ndvas = BP_GET_NDVAS(bp);
2250 uint64_t psize = BP_GET_PSIZE(bp);
2251 int d;
2252 vdev_t *vd;
2253
2254 ASSERT(!BP_IS_HOLE(bp));
2255 ASSERT(psize > 0);
2256
2257 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2258
2259 for (d = 0; d < ndvas; d++) {
2260 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2261 continue;
2262 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2263 }
2264
2265 spa_config_exit(spa, SCL_VDEV, FTAG);
2266 }
2267
2268 void
2269 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2270 {
2271 const dva_t *dva = bp->blk_dva;
2272 int ndvas = BP_GET_NDVAS(bp);
2273 uint64_t psize = BP_GET_PSIZE(bp);
2274 int d;
2275 vdev_t *vd;
2276
2277 ASSERT(!BP_IS_HOLE(bp));
2278 ASSERT(psize > 0);
2279
2280 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2281
2282 for (d = 0; d < ndvas; d++) {
2283 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2284 continue;
2285 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2286 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2287 }
2288
2289 spa_config_exit(spa, SCL_VDEV, FTAG);
2290 }
2291
2292 void
2293 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2294 {
2295 int i, j;
2296
2297 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2298 return;
2299
2300 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2301 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2302 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2303 vdev_t *vd = vdev_lookup_top(spa, vdev);
2304 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2305 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2306 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2307
2308 if (msp->ms_loaded)
2309 range_tree_verify(msp->ms_tree, offset, size);
2310
2311 for (j = 0; j < TXG_SIZE; j++)
2312 range_tree_verify(msp->ms_freetree[j], offset, size);
2313 for (j = 0; j < TXG_DEFER_SIZE; j++)
2314 range_tree_verify(msp->ms_defertree[j], offset, size);
2315 }
2316 spa_config_exit(spa, SCL_VDEV, FTAG);
2317 }
2318
2319 #if defined(_KERNEL) && defined(HAVE_SPL)
2320 module_param(metaslab_debug_load, int, 0644);
2321 module_param(metaslab_debug_unload, int, 0644);
2322 MODULE_PARM_DESC(metaslab_debug_load,
2323 "load all metaslabs when pool is first opened");
2324 MODULE_PARM_DESC(metaslab_debug_unload,
2325 "prevent metaslabs from being unloaded");
2326
2327 module_param(zfs_mg_noalloc_threshold, int, 0644);
2328 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2329 "percentage of free space for metaslab group to allow allocation");
2330 #endif /* _KERNEL && HAVE_SPL */