]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Illumos #3329, #3330, #3331, #3335
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/space_map.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33
34 #define WITH_DF_BLOCK_ALLOCATOR
35
36 /*
37 * Allow allocations to switch to gang blocks quickly. We do this to
38 * avoid having to load lots of space_maps in a given txg. There are,
39 * however, some cases where we want to avoid "fast" ganging and instead
40 * we want to do an exhaustive search of all metaslabs on this device.
41 * Currently we don't allow any gang, zil, or dump device related allocations
42 * to "fast" gang.
43 */
44 #define CAN_FASTGANG(flags) \
45 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
46 METASLAB_GANG_AVOID)))
47
48 uint64_t metaslab_aliquot = 512ULL << 10;
49 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
50
51 /*
52 * This value defines the number of allowed allocation failures per vdev.
53 * If a device reaches this threshold in a given txg then we consider skipping
54 * allocations on that device.
55 */
56 int zfs_mg_alloc_failures;
57
58 /*
59 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
60 */
61 int metaslab_debug = 0;
62
63 /*
64 * Minimum size which forces the dynamic allocator to change
65 * it's allocation strategy. Once the space map cannot satisfy
66 * an allocation of this size then it switches to using more
67 * aggressive strategy (i.e search by size rather than offset).
68 */
69 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
70
71 /*
72 * The minimum free space, in percent, which must be available
73 * in a space map to continue allocations in a first-fit fashion.
74 * Once the space_map's free space drops below this level we dynamically
75 * switch to using best-fit allocations.
76 */
77 int metaslab_df_free_pct = 4;
78
79 /*
80 * A metaslab is considered "free" if it contains a contiguous
81 * segment which is greater than metaslab_min_alloc_size.
82 */
83 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
84
85 /*
86 * Max number of space_maps to prefetch.
87 */
88 int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
89
90 /*
91 * Percentage bonus multiplier for metaslabs that are in the bonus area.
92 */
93 int metaslab_smo_bonus_pct = 150;
94
95 /*
96 * ==========================================================================
97 * Metaslab classes
98 * ==========================================================================
99 */
100 metaslab_class_t *
101 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
102 {
103 metaslab_class_t *mc;
104
105 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
106
107 mc->mc_spa = spa;
108 mc->mc_rotor = NULL;
109 mc->mc_ops = ops;
110 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
111
112 return (mc);
113 }
114
115 void
116 metaslab_class_destroy(metaslab_class_t *mc)
117 {
118 ASSERT(mc->mc_rotor == NULL);
119 ASSERT(mc->mc_alloc == 0);
120 ASSERT(mc->mc_deferred == 0);
121 ASSERT(mc->mc_space == 0);
122 ASSERT(mc->mc_dspace == 0);
123
124 mutex_destroy(&mc->mc_fastwrite_lock);
125 kmem_free(mc, sizeof (metaslab_class_t));
126 }
127
128 int
129 metaslab_class_validate(metaslab_class_t *mc)
130 {
131 metaslab_group_t *mg;
132 vdev_t *vd;
133
134 /*
135 * Must hold one of the spa_config locks.
136 */
137 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
138 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
139
140 if ((mg = mc->mc_rotor) == NULL)
141 return (0);
142
143 do {
144 vd = mg->mg_vd;
145 ASSERT(vd->vdev_mg != NULL);
146 ASSERT3P(vd->vdev_top, ==, vd);
147 ASSERT3P(mg->mg_class, ==, mc);
148 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
149 } while ((mg = mg->mg_next) != mc->mc_rotor);
150
151 return (0);
152 }
153
154 void
155 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
156 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
157 {
158 atomic_add_64(&mc->mc_alloc, alloc_delta);
159 atomic_add_64(&mc->mc_deferred, defer_delta);
160 atomic_add_64(&mc->mc_space, space_delta);
161 atomic_add_64(&mc->mc_dspace, dspace_delta);
162 }
163
164 uint64_t
165 metaslab_class_get_alloc(metaslab_class_t *mc)
166 {
167 return (mc->mc_alloc);
168 }
169
170 uint64_t
171 metaslab_class_get_deferred(metaslab_class_t *mc)
172 {
173 return (mc->mc_deferred);
174 }
175
176 uint64_t
177 metaslab_class_get_space(metaslab_class_t *mc)
178 {
179 return (mc->mc_space);
180 }
181
182 uint64_t
183 metaslab_class_get_dspace(metaslab_class_t *mc)
184 {
185 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
186 }
187
188 /*
189 * ==========================================================================
190 * Metaslab groups
191 * ==========================================================================
192 */
193 static int
194 metaslab_compare(const void *x1, const void *x2)
195 {
196 const metaslab_t *m1 = x1;
197 const metaslab_t *m2 = x2;
198
199 if (m1->ms_weight < m2->ms_weight)
200 return (1);
201 if (m1->ms_weight > m2->ms_weight)
202 return (-1);
203
204 /*
205 * If the weights are identical, use the offset to force uniqueness.
206 */
207 if (m1->ms_map.sm_start < m2->ms_map.sm_start)
208 return (-1);
209 if (m1->ms_map.sm_start > m2->ms_map.sm_start)
210 return (1);
211
212 ASSERT3P(m1, ==, m2);
213
214 return (0);
215 }
216
217 metaslab_group_t *
218 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
219 {
220 metaslab_group_t *mg;
221
222 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
223 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
224 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
225 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
226 mg->mg_vd = vd;
227 mg->mg_class = mc;
228 mg->mg_activation_count = 0;
229
230 return (mg);
231 }
232
233 void
234 metaslab_group_destroy(metaslab_group_t *mg)
235 {
236 ASSERT(mg->mg_prev == NULL);
237 ASSERT(mg->mg_next == NULL);
238 /*
239 * We may have gone below zero with the activation count
240 * either because we never activated in the first place or
241 * because we're done, and possibly removing the vdev.
242 */
243 ASSERT(mg->mg_activation_count <= 0);
244
245 avl_destroy(&mg->mg_metaslab_tree);
246 mutex_destroy(&mg->mg_lock);
247 kmem_free(mg, sizeof (metaslab_group_t));
248 }
249
250 void
251 metaslab_group_activate(metaslab_group_t *mg)
252 {
253 metaslab_class_t *mc = mg->mg_class;
254 metaslab_group_t *mgprev, *mgnext;
255
256 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
257
258 ASSERT(mc->mc_rotor != mg);
259 ASSERT(mg->mg_prev == NULL);
260 ASSERT(mg->mg_next == NULL);
261 ASSERT(mg->mg_activation_count <= 0);
262
263 if (++mg->mg_activation_count <= 0)
264 return;
265
266 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
267
268 if ((mgprev = mc->mc_rotor) == NULL) {
269 mg->mg_prev = mg;
270 mg->mg_next = mg;
271 } else {
272 mgnext = mgprev->mg_next;
273 mg->mg_prev = mgprev;
274 mg->mg_next = mgnext;
275 mgprev->mg_next = mg;
276 mgnext->mg_prev = mg;
277 }
278 mc->mc_rotor = mg;
279 }
280
281 void
282 metaslab_group_passivate(metaslab_group_t *mg)
283 {
284 metaslab_class_t *mc = mg->mg_class;
285 metaslab_group_t *mgprev, *mgnext;
286
287 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
288
289 if (--mg->mg_activation_count != 0) {
290 ASSERT(mc->mc_rotor != mg);
291 ASSERT(mg->mg_prev == NULL);
292 ASSERT(mg->mg_next == NULL);
293 ASSERT(mg->mg_activation_count < 0);
294 return;
295 }
296
297 mgprev = mg->mg_prev;
298 mgnext = mg->mg_next;
299
300 if (mg == mgnext) {
301 mc->mc_rotor = NULL;
302 } else {
303 mc->mc_rotor = mgnext;
304 mgprev->mg_next = mgnext;
305 mgnext->mg_prev = mgprev;
306 }
307
308 mg->mg_prev = NULL;
309 mg->mg_next = NULL;
310 }
311
312 static void
313 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
314 {
315 mutex_enter(&mg->mg_lock);
316 ASSERT(msp->ms_group == NULL);
317 msp->ms_group = mg;
318 msp->ms_weight = 0;
319 avl_add(&mg->mg_metaslab_tree, msp);
320 mutex_exit(&mg->mg_lock);
321 }
322
323 static void
324 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
325 {
326 mutex_enter(&mg->mg_lock);
327 ASSERT(msp->ms_group == mg);
328 avl_remove(&mg->mg_metaslab_tree, msp);
329 msp->ms_group = NULL;
330 mutex_exit(&mg->mg_lock);
331 }
332
333 static void
334 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
335 {
336 /*
337 * Although in principle the weight can be any value, in
338 * practice we do not use values in the range [1, 510].
339 */
340 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
341 ASSERT(MUTEX_HELD(&msp->ms_lock));
342
343 mutex_enter(&mg->mg_lock);
344 ASSERT(msp->ms_group == mg);
345 avl_remove(&mg->mg_metaslab_tree, msp);
346 msp->ms_weight = weight;
347 avl_add(&mg->mg_metaslab_tree, msp);
348 mutex_exit(&mg->mg_lock);
349 }
350
351 /*
352 * ==========================================================================
353 * Common allocator routines
354 * ==========================================================================
355 */
356 static int
357 metaslab_segsize_compare(const void *x1, const void *x2)
358 {
359 const space_seg_t *s1 = x1;
360 const space_seg_t *s2 = x2;
361 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
362 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
363
364 if (ss_size1 < ss_size2)
365 return (-1);
366 if (ss_size1 > ss_size2)
367 return (1);
368
369 if (s1->ss_start < s2->ss_start)
370 return (-1);
371 if (s1->ss_start > s2->ss_start)
372 return (1);
373
374 return (0);
375 }
376
377 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
378 defined(WITH_DF_BLOCK_ALLOCATOR) || \
379 defined(WITH_CDF_BLOCK_ALLOCATOR)
380 /*
381 * This is a helper function that can be used by the allocator to find
382 * a suitable block to allocate. This will search the specified AVL
383 * tree looking for a block that matches the specified criteria.
384 */
385 static uint64_t
386 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
387 uint64_t align)
388 {
389 space_seg_t *ss, ssearch;
390 avl_index_t where;
391
392 ssearch.ss_start = *cursor;
393 ssearch.ss_end = *cursor + size;
394
395 ss = avl_find(t, &ssearch, &where);
396 if (ss == NULL)
397 ss = avl_nearest(t, where, AVL_AFTER);
398
399 while (ss != NULL) {
400 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
401
402 if (offset + size <= ss->ss_end) {
403 *cursor = offset + size;
404 return (offset);
405 }
406 ss = AVL_NEXT(t, ss);
407 }
408
409 /*
410 * If we know we've searched the whole map (*cursor == 0), give up.
411 * Otherwise, reset the cursor to the beginning and try again.
412 */
413 if (*cursor == 0)
414 return (-1ULL);
415
416 *cursor = 0;
417 return (metaslab_block_picker(t, cursor, size, align));
418 }
419 #endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */
420
421 static void
422 metaslab_pp_load(space_map_t *sm)
423 {
424 space_seg_t *ss;
425
426 ASSERT(sm->sm_ppd == NULL);
427 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_PUSHPAGE);
428
429 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_PUSHPAGE);
430 avl_create(sm->sm_pp_root, metaslab_segsize_compare,
431 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
432
433 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
434 avl_add(sm->sm_pp_root, ss);
435 }
436
437 static void
438 metaslab_pp_unload(space_map_t *sm)
439 {
440 void *cookie = NULL;
441
442 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
443 sm->sm_ppd = NULL;
444
445 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
446 /* tear down the tree */
447 }
448
449 avl_destroy(sm->sm_pp_root);
450 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
451 sm->sm_pp_root = NULL;
452 }
453
454 /* ARGSUSED */
455 static void
456 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
457 {
458 /* No need to update cursor */
459 }
460
461 /* ARGSUSED */
462 static void
463 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
464 {
465 /* No need to update cursor */
466 }
467
468 /*
469 * Return the maximum contiguous segment within the metaslab.
470 */
471 uint64_t
472 metaslab_pp_maxsize(space_map_t *sm)
473 {
474 avl_tree_t *t = sm->sm_pp_root;
475 space_seg_t *ss;
476
477 if (t == NULL || (ss = avl_last(t)) == NULL)
478 return (0ULL);
479
480 return (ss->ss_end - ss->ss_start);
481 }
482
483 #if defined(WITH_FF_BLOCK_ALLOCATOR)
484 /*
485 * ==========================================================================
486 * The first-fit block allocator
487 * ==========================================================================
488 */
489 static uint64_t
490 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
491 {
492 avl_tree_t *t = &sm->sm_root;
493 uint64_t align = size & -size;
494 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
495
496 return (metaslab_block_picker(t, cursor, size, align));
497 }
498
499 /* ARGSUSED */
500 boolean_t
501 metaslab_ff_fragmented(space_map_t *sm)
502 {
503 return (B_TRUE);
504 }
505
506 static space_map_ops_t metaslab_ff_ops = {
507 metaslab_pp_load,
508 metaslab_pp_unload,
509 metaslab_ff_alloc,
510 metaslab_pp_claim,
511 metaslab_pp_free,
512 metaslab_pp_maxsize,
513 metaslab_ff_fragmented
514 };
515
516 space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
517 #endif /* WITH_FF_BLOCK_ALLOCATOR */
518
519 #if defined(WITH_DF_BLOCK_ALLOCATOR)
520 /*
521 * ==========================================================================
522 * Dynamic block allocator -
523 * Uses the first fit allocation scheme until space get low and then
524 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
525 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
526 * ==========================================================================
527 */
528 static uint64_t
529 metaslab_df_alloc(space_map_t *sm, uint64_t size)
530 {
531 avl_tree_t *t = &sm->sm_root;
532 uint64_t align = size & -size;
533 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
534 uint64_t max_size = metaslab_pp_maxsize(sm);
535 int free_pct = sm->sm_space * 100 / sm->sm_size;
536
537 ASSERT(MUTEX_HELD(sm->sm_lock));
538 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
539
540 if (max_size < size)
541 return (-1ULL);
542
543 /*
544 * If we're running low on space switch to using the size
545 * sorted AVL tree (best-fit).
546 */
547 if (max_size < metaslab_df_alloc_threshold ||
548 free_pct < metaslab_df_free_pct) {
549 t = sm->sm_pp_root;
550 *cursor = 0;
551 }
552
553 return (metaslab_block_picker(t, cursor, size, 1ULL));
554 }
555
556 static boolean_t
557 metaslab_df_fragmented(space_map_t *sm)
558 {
559 uint64_t max_size = metaslab_pp_maxsize(sm);
560 int free_pct = sm->sm_space * 100 / sm->sm_size;
561
562 if (max_size >= metaslab_df_alloc_threshold &&
563 free_pct >= metaslab_df_free_pct)
564 return (B_FALSE);
565
566 return (B_TRUE);
567 }
568
569 static space_map_ops_t metaslab_df_ops = {
570 metaslab_pp_load,
571 metaslab_pp_unload,
572 metaslab_df_alloc,
573 metaslab_pp_claim,
574 metaslab_pp_free,
575 metaslab_pp_maxsize,
576 metaslab_df_fragmented
577 };
578
579 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
580 #endif /* WITH_DF_BLOCK_ALLOCATOR */
581
582 /*
583 * ==========================================================================
584 * Other experimental allocators
585 * ==========================================================================
586 */
587 #if defined(WITH_CDF_BLOCK_ALLOCATOR)
588 static uint64_t
589 metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
590 {
591 avl_tree_t *t = &sm->sm_root;
592 uint64_t *cursor = (uint64_t *)sm->sm_ppd;
593 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
594 uint64_t max_size = metaslab_pp_maxsize(sm);
595 uint64_t rsize = size;
596 uint64_t offset = 0;
597
598 ASSERT(MUTEX_HELD(sm->sm_lock));
599 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
600
601 if (max_size < size)
602 return (-1ULL);
603
604 ASSERT3U(*extent_end, >=, *cursor);
605
606 /*
607 * If we're running low on space switch to using the size
608 * sorted AVL tree (best-fit).
609 */
610 if ((*cursor + size) > *extent_end) {
611
612 t = sm->sm_pp_root;
613 *cursor = *extent_end = 0;
614
615 if (max_size > 2 * SPA_MAXBLOCKSIZE)
616 rsize = MIN(metaslab_min_alloc_size, max_size);
617 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
618 if (offset != -1)
619 *cursor = offset + size;
620 } else {
621 offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
622 }
623 ASSERT3U(*cursor, <=, *extent_end);
624 return (offset);
625 }
626
627 static boolean_t
628 metaslab_cdf_fragmented(space_map_t *sm)
629 {
630 uint64_t max_size = metaslab_pp_maxsize(sm);
631
632 if (max_size > (metaslab_min_alloc_size * 10))
633 return (B_FALSE);
634 return (B_TRUE);
635 }
636
637 static space_map_ops_t metaslab_cdf_ops = {
638 metaslab_pp_load,
639 metaslab_pp_unload,
640 metaslab_cdf_alloc,
641 metaslab_pp_claim,
642 metaslab_pp_free,
643 metaslab_pp_maxsize,
644 metaslab_cdf_fragmented
645 };
646
647 space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops;
648 #endif /* WITH_CDF_BLOCK_ALLOCATOR */
649
650 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
651 uint64_t metaslab_ndf_clump_shift = 4;
652
653 static uint64_t
654 metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
655 {
656 avl_tree_t *t = &sm->sm_root;
657 avl_index_t where;
658 space_seg_t *ss, ssearch;
659 uint64_t hbit = highbit(size);
660 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
661 uint64_t max_size = metaslab_pp_maxsize(sm);
662
663 ASSERT(MUTEX_HELD(sm->sm_lock));
664 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
665
666 if (max_size < size)
667 return (-1ULL);
668
669 ssearch.ss_start = *cursor;
670 ssearch.ss_end = *cursor + size;
671
672 ss = avl_find(t, &ssearch, &where);
673 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
674 t = sm->sm_pp_root;
675
676 ssearch.ss_start = 0;
677 ssearch.ss_end = MIN(max_size,
678 1ULL << (hbit + metaslab_ndf_clump_shift));
679 ss = avl_find(t, &ssearch, &where);
680 if (ss == NULL)
681 ss = avl_nearest(t, where, AVL_AFTER);
682 ASSERT(ss != NULL);
683 }
684
685 if (ss != NULL) {
686 if (ss->ss_start + size <= ss->ss_end) {
687 *cursor = ss->ss_start + size;
688 return (ss->ss_start);
689 }
690 }
691 return (-1ULL);
692 }
693
694 static boolean_t
695 metaslab_ndf_fragmented(space_map_t *sm)
696 {
697 uint64_t max_size = metaslab_pp_maxsize(sm);
698
699 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
700 return (B_FALSE);
701 return (B_TRUE);
702 }
703
704
705 static space_map_ops_t metaslab_ndf_ops = {
706 metaslab_pp_load,
707 metaslab_pp_unload,
708 metaslab_ndf_alloc,
709 metaslab_pp_claim,
710 metaslab_pp_free,
711 metaslab_pp_maxsize,
712 metaslab_ndf_fragmented
713 };
714
715 space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
716 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
717
718 /*
719 * ==========================================================================
720 * Metaslabs
721 * ==========================================================================
722 */
723 metaslab_t *
724 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
725 uint64_t start, uint64_t size, uint64_t txg)
726 {
727 vdev_t *vd = mg->mg_vd;
728 metaslab_t *msp;
729
730 msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
731 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
732
733 msp->ms_smo_syncing = *smo;
734
735 /*
736 * We create the main space map here, but we don't create the
737 * allocmaps and freemaps until metaslab_sync_done(). This serves
738 * two purposes: it allows metaslab_sync_done() to detect the
739 * addition of new space; and for debugging, it ensures that we'd
740 * data fault on any attempt to use this metaslab before it's ready.
741 */
742 space_map_create(&msp->ms_map, start, size,
743 vd->vdev_ashift, &msp->ms_lock);
744
745 metaslab_group_add(mg, msp);
746
747 if (metaslab_debug && smo->smo_object != 0) {
748 mutex_enter(&msp->ms_lock);
749 VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
750 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
751 mutex_exit(&msp->ms_lock);
752 }
753
754 /*
755 * If we're opening an existing pool (txg == 0) or creating
756 * a new one (txg == TXG_INITIAL), all space is available now.
757 * If we're adding space to an existing pool, the new space
758 * does not become available until after this txg has synced.
759 */
760 if (txg <= TXG_INITIAL)
761 metaslab_sync_done(msp, 0);
762
763 if (txg != 0) {
764 vdev_dirty(vd, 0, NULL, txg);
765 vdev_dirty(vd, VDD_METASLAB, msp, txg);
766 }
767
768 return (msp);
769 }
770
771 void
772 metaslab_fini(metaslab_t *msp)
773 {
774 metaslab_group_t *mg = msp->ms_group;
775 int t;
776
777 vdev_space_update(mg->mg_vd,
778 -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
779
780 metaslab_group_remove(mg, msp);
781
782 mutex_enter(&msp->ms_lock);
783
784 space_map_unload(&msp->ms_map);
785 space_map_destroy(&msp->ms_map);
786
787 for (t = 0; t < TXG_SIZE; t++) {
788 space_map_destroy(&msp->ms_allocmap[t]);
789 space_map_destroy(&msp->ms_freemap[t]);
790 }
791
792 for (t = 0; t < TXG_DEFER_SIZE; t++)
793 space_map_destroy(&msp->ms_defermap[t]);
794
795 ASSERT3S(msp->ms_deferspace, ==, 0);
796
797 mutex_exit(&msp->ms_lock);
798 mutex_destroy(&msp->ms_lock);
799
800 kmem_free(msp, sizeof (metaslab_t));
801 }
802
803 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
804 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
805 #define METASLAB_ACTIVE_MASK \
806 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
807
808 static uint64_t
809 metaslab_weight(metaslab_t *msp)
810 {
811 metaslab_group_t *mg = msp->ms_group;
812 space_map_t *sm = &msp->ms_map;
813 space_map_obj_t *smo = &msp->ms_smo;
814 vdev_t *vd = mg->mg_vd;
815 uint64_t weight, space;
816
817 ASSERT(MUTEX_HELD(&msp->ms_lock));
818
819 /*
820 * The baseline weight is the metaslab's free space.
821 */
822 space = sm->sm_size - smo->smo_alloc;
823 weight = space;
824
825 /*
826 * Modern disks have uniform bit density and constant angular velocity.
827 * Therefore, the outer recording zones are faster (higher bandwidth)
828 * than the inner zones by the ratio of outer to inner track diameter,
829 * which is typically around 2:1. We account for this by assigning
830 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
831 * In effect, this means that we'll select the metaslab with the most
832 * free bandwidth rather than simply the one with the most free space.
833 */
834 weight = 2 * weight -
835 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
836 ASSERT(weight >= space && weight <= 2 * space);
837
838 /*
839 * For locality, assign higher weight to metaslabs which have
840 * a lower offset than what we've already activated.
841 */
842 if (sm->sm_start <= mg->mg_bonus_area)
843 weight *= (metaslab_smo_bonus_pct / 100);
844 ASSERT(weight >= space &&
845 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
846
847 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
848 /*
849 * If this metaslab is one we're actively using, adjust its
850 * weight to make it preferable to any inactive metaslab so
851 * we'll polish it off.
852 */
853 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
854 }
855 return (weight);
856 }
857
858 static void
859 metaslab_prefetch(metaslab_group_t *mg)
860 {
861 spa_t *spa = mg->mg_vd->vdev_spa;
862 metaslab_t *msp;
863 avl_tree_t *t = &mg->mg_metaslab_tree;
864 int m;
865
866 mutex_enter(&mg->mg_lock);
867
868 /*
869 * Prefetch the next potential metaslabs
870 */
871 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
872 space_map_t *sm = &msp->ms_map;
873 space_map_obj_t *smo = &msp->ms_smo;
874
875 /* If we have reached our prefetch limit then we're done */
876 if (m >= metaslab_prefetch_limit)
877 break;
878
879 if (!sm->sm_loaded && smo->smo_object != 0) {
880 mutex_exit(&mg->mg_lock);
881 dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
882 0ULL, smo->smo_objsize);
883 mutex_enter(&mg->mg_lock);
884 }
885 }
886 mutex_exit(&mg->mg_lock);
887 }
888
889 static int
890 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
891 {
892 metaslab_group_t *mg = msp->ms_group;
893 space_map_t *sm = &msp->ms_map;
894 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
895 int t;
896
897 ASSERT(MUTEX_HELD(&msp->ms_lock));
898
899 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
900 space_map_load_wait(sm);
901 if (!sm->sm_loaded) {
902 space_map_obj_t *smo = &msp->ms_smo;
903
904 int error = space_map_load(sm, sm_ops, SM_FREE, smo,
905 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
906 if (error) {
907 metaslab_group_sort(msp->ms_group, msp, 0);
908 return (error);
909 }
910 for (t = 0; t < TXG_DEFER_SIZE; t++)
911 space_map_walk(&msp->ms_defermap[t],
912 space_map_claim, sm);
913
914 }
915
916 /*
917 * Track the bonus area as we activate new metaslabs.
918 */
919 if (sm->sm_start > mg->mg_bonus_area) {
920 mutex_enter(&mg->mg_lock);
921 mg->mg_bonus_area = sm->sm_start;
922 mutex_exit(&mg->mg_lock);
923 }
924
925 metaslab_group_sort(msp->ms_group, msp,
926 msp->ms_weight | activation_weight);
927 }
928 ASSERT(sm->sm_loaded);
929 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
930
931 return (0);
932 }
933
934 static void
935 metaslab_passivate(metaslab_t *msp, uint64_t size)
936 {
937 /*
938 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
939 * this metaslab again. In that case, it had better be empty,
940 * or we would be leaving space on the table.
941 */
942 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
943 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
944 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
945 }
946
947 /*
948 * Write a metaslab to disk in the context of the specified transaction group.
949 */
950 void
951 metaslab_sync(metaslab_t *msp, uint64_t txg)
952 {
953 vdev_t *vd = msp->ms_group->mg_vd;
954 spa_t *spa = vd->vdev_spa;
955 objset_t *mos = spa_meta_objset(spa);
956 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
957 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
958 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
959 space_map_t *sm = &msp->ms_map;
960 space_map_obj_t *smo = &msp->ms_smo_syncing;
961 dmu_buf_t *db;
962 dmu_tx_t *tx;
963 int t;
964
965 ASSERT(!vd->vdev_ishole);
966
967 if (allocmap->sm_space == 0 && freemap->sm_space == 0)
968 return;
969
970 /*
971 * The only state that can actually be changing concurrently with
972 * metaslab_sync() is the metaslab's ms_map. No other thread can
973 * be modifying this txg's allocmap, freemap, freed_map, or smo.
974 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
975 * We drop it whenever we call into the DMU, because the DMU
976 * can call down to us (e.g. via zio_free()) at any time.
977 */
978
979 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
980
981 if (smo->smo_object == 0) {
982 ASSERT(smo->smo_objsize == 0);
983 ASSERT(smo->smo_alloc == 0);
984 smo->smo_object = dmu_object_alloc(mos,
985 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
986 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
987 ASSERT(smo->smo_object != 0);
988 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
989 (sm->sm_start >> vd->vdev_ms_shift),
990 sizeof (uint64_t), &smo->smo_object, tx);
991 }
992
993 mutex_enter(&msp->ms_lock);
994
995 space_map_walk(freemap, space_map_add, freed_map);
996
997 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
998 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
999 /*
1000 * The in-core space map representation is twice as compact
1001 * as the on-disk one, so it's time to condense the latter
1002 * by generating a pure allocmap from first principles.
1003 *
1004 * This metaslab is 100% allocated,
1005 * minus the content of the in-core map (sm),
1006 * minus what's been freed this txg (freed_map),
1007 * minus deferred frees (ms_defermap[]),
1008 * minus allocations from txgs in the future
1009 * (because they haven't been committed yet).
1010 */
1011 space_map_vacate(allocmap, NULL, NULL);
1012 space_map_vacate(freemap, NULL, NULL);
1013
1014 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
1015
1016 space_map_walk(sm, space_map_remove, allocmap);
1017 space_map_walk(freed_map, space_map_remove, allocmap);
1018
1019 for (t = 0; t < TXG_DEFER_SIZE; t++)
1020 space_map_walk(&msp->ms_defermap[t],
1021 space_map_remove, allocmap);
1022
1023 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1024 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
1025 space_map_remove, allocmap);
1026
1027 mutex_exit(&msp->ms_lock);
1028 space_map_truncate(smo, mos, tx);
1029 mutex_enter(&msp->ms_lock);
1030 }
1031
1032 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1033 space_map_sync(freemap, SM_FREE, smo, mos, tx);
1034
1035 mutex_exit(&msp->ms_lock);
1036
1037 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1038 dmu_buf_will_dirty(db, tx);
1039 ASSERT3U(db->db_size, >=, sizeof (*smo));
1040 bcopy(smo, db->db_data, sizeof (*smo));
1041 dmu_buf_rele(db, FTAG);
1042
1043 dmu_tx_commit(tx);
1044 }
1045
1046 /*
1047 * Called after a transaction group has completely synced to mark
1048 * all of the metaslab's free space as usable.
1049 */
1050 void
1051 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1052 {
1053 space_map_obj_t *smo = &msp->ms_smo;
1054 space_map_obj_t *smosync = &msp->ms_smo_syncing;
1055 space_map_t *sm = &msp->ms_map;
1056 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1057 space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1058 metaslab_group_t *mg = msp->ms_group;
1059 vdev_t *vd = mg->mg_vd;
1060 int64_t alloc_delta, defer_delta;
1061 int t;
1062
1063 ASSERT(!vd->vdev_ishole);
1064
1065 mutex_enter(&msp->ms_lock);
1066
1067 /*
1068 * If this metaslab is just becoming available, initialize its
1069 * allocmaps and freemaps and add its capacity to the vdev.
1070 */
1071 if (freed_map->sm_size == 0) {
1072 for (t = 0; t < TXG_SIZE; t++) {
1073 space_map_create(&msp->ms_allocmap[t], sm->sm_start,
1074 sm->sm_size, sm->sm_shift, sm->sm_lock);
1075 space_map_create(&msp->ms_freemap[t], sm->sm_start,
1076 sm->sm_size, sm->sm_shift, sm->sm_lock);
1077 }
1078
1079 for (t = 0; t < TXG_DEFER_SIZE; t++)
1080 space_map_create(&msp->ms_defermap[t], sm->sm_start,
1081 sm->sm_size, sm->sm_shift, sm->sm_lock);
1082
1083 vdev_space_update(vd, 0, 0, sm->sm_size);
1084 }
1085
1086 alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1087 defer_delta = freed_map->sm_space - defer_map->sm_space;
1088
1089 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1090
1091 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
1092 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
1093
1094 /*
1095 * If there's a space_map_load() in progress, wait for it to complete
1096 * so that we have a consistent view of the in-core space map.
1097 * Then, add defer_map (oldest deferred frees) to this map and
1098 * transfer freed_map (this txg's frees) to defer_map.
1099 */
1100 space_map_load_wait(sm);
1101 space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1102 space_map_vacate(freed_map, space_map_add, defer_map);
1103
1104 *smo = *smosync;
1105
1106 msp->ms_deferspace += defer_delta;
1107 ASSERT3S(msp->ms_deferspace, >=, 0);
1108 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1109 if (msp->ms_deferspace != 0) {
1110 /*
1111 * Keep syncing this metaslab until all deferred frees
1112 * are back in circulation.
1113 */
1114 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1115 }
1116
1117 /*
1118 * If the map is loaded but no longer active, evict it as soon as all
1119 * future allocations have synced. (If we unloaded it now and then
1120 * loaded a moment later, the map wouldn't reflect those allocations.)
1121 */
1122 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1123 int evictable = 1;
1124
1125 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1126 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
1127 evictable = 0;
1128
1129 if (evictable && !metaslab_debug)
1130 space_map_unload(sm);
1131 }
1132
1133 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1134
1135 mutex_exit(&msp->ms_lock);
1136 }
1137
1138 void
1139 metaslab_sync_reassess(metaslab_group_t *mg)
1140 {
1141 vdev_t *vd = mg->mg_vd;
1142 int64_t failures = mg->mg_alloc_failures;
1143 int m;
1144
1145 /*
1146 * Re-evaluate all metaslabs which have lower offsets than the
1147 * bonus area.
1148 */
1149 for (m = 0; m < vd->vdev_ms_count; m++) {
1150 metaslab_t *msp = vd->vdev_ms[m];
1151
1152 if (msp->ms_map.sm_start > mg->mg_bonus_area)
1153 break;
1154
1155 mutex_enter(&msp->ms_lock);
1156 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1157 mutex_exit(&msp->ms_lock);
1158 }
1159
1160 atomic_add_64(&mg->mg_alloc_failures, -failures);
1161
1162 /*
1163 * Prefetch the next potential metaslabs
1164 */
1165 metaslab_prefetch(mg);
1166 }
1167
1168 static uint64_t
1169 metaslab_distance(metaslab_t *msp, dva_t *dva)
1170 {
1171 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1172 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1173 uint64_t start = msp->ms_map.sm_start >> ms_shift;
1174
1175 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1176 return (1ULL << 63);
1177
1178 if (offset < start)
1179 return ((start - offset) << ms_shift);
1180 if (offset > start)
1181 return ((offset - start) << ms_shift);
1182 return (0);
1183 }
1184
1185 static uint64_t
1186 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1187 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1188 {
1189 spa_t *spa = mg->mg_vd->vdev_spa;
1190 metaslab_t *msp = NULL;
1191 uint64_t offset = -1ULL;
1192 avl_tree_t *t = &mg->mg_metaslab_tree;
1193 uint64_t activation_weight;
1194 uint64_t target_distance;
1195 int i;
1196
1197 activation_weight = METASLAB_WEIGHT_PRIMARY;
1198 for (i = 0; i < d; i++) {
1199 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1200 activation_weight = METASLAB_WEIGHT_SECONDARY;
1201 break;
1202 }
1203 }
1204
1205 for (;;) {
1206 boolean_t was_active;
1207
1208 mutex_enter(&mg->mg_lock);
1209 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1210 if (msp->ms_weight < asize) {
1211 spa_dbgmsg(spa, "%s: failed to meet weight "
1212 "requirement: vdev %llu, txg %llu, mg %p, "
1213 "msp %p, psize %llu, asize %llu, "
1214 "failures %llu, weight %llu",
1215 spa_name(spa), mg->mg_vd->vdev_id, txg,
1216 mg, msp, psize, asize,
1217 mg->mg_alloc_failures, msp->ms_weight);
1218 mutex_exit(&mg->mg_lock);
1219 return (-1ULL);
1220 }
1221 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1222 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1223 break;
1224
1225 target_distance = min_distance +
1226 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1227
1228 for (i = 0; i < d; i++)
1229 if (metaslab_distance(msp, &dva[i]) <
1230 target_distance)
1231 break;
1232 if (i == d)
1233 break;
1234 }
1235 mutex_exit(&mg->mg_lock);
1236 if (msp == NULL)
1237 return (-1ULL);
1238
1239 /*
1240 * If we've already reached the allowable number of failed
1241 * allocation attempts on this metaslab group then we
1242 * consider skipping it. We skip it only if we're allowed
1243 * to "fast" gang, the physical size is larger than
1244 * a gang block, and we're attempting to allocate from
1245 * the primary metaslab.
1246 */
1247 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1248 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1249 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1250 spa_dbgmsg(spa, "%s: skipping metaslab group: "
1251 "vdev %llu, txg %llu, mg %p, psize %llu, "
1252 "asize %llu, failures %llu", spa_name(spa),
1253 mg->mg_vd->vdev_id, txg, mg, psize, asize,
1254 mg->mg_alloc_failures);
1255 return (-1ULL);
1256 }
1257
1258 mutex_enter(&msp->ms_lock);
1259
1260 /*
1261 * Ensure that the metaslab we have selected is still
1262 * capable of handling our request. It's possible that
1263 * another thread may have changed the weight while we
1264 * were blocked on the metaslab lock.
1265 */
1266 if (msp->ms_weight < asize || (was_active &&
1267 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1268 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1269 mutex_exit(&msp->ms_lock);
1270 continue;
1271 }
1272
1273 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1274 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1275 metaslab_passivate(msp,
1276 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1277 mutex_exit(&msp->ms_lock);
1278 continue;
1279 }
1280
1281 if (metaslab_activate(msp, activation_weight) != 0) {
1282 mutex_exit(&msp->ms_lock);
1283 continue;
1284 }
1285
1286 if ((offset = space_map_alloc(&msp->ms_map, asize)) != -1ULL)
1287 break;
1288
1289 atomic_inc_64(&mg->mg_alloc_failures);
1290
1291 metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
1292
1293 mutex_exit(&msp->ms_lock);
1294 }
1295
1296 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1297 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1298
1299 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, asize);
1300
1301 mutex_exit(&msp->ms_lock);
1302
1303 return (offset);
1304 }
1305
1306 /*
1307 * Allocate a block for the specified i/o.
1308 */
1309 static int
1310 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1311 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1312 {
1313 metaslab_group_t *mg, *fast_mg, *rotor;
1314 vdev_t *vd;
1315 int dshift = 3;
1316 int all_zero;
1317 int zio_lock = B_FALSE;
1318 boolean_t allocatable;
1319 uint64_t offset = -1ULL;
1320 uint64_t asize;
1321 uint64_t distance;
1322
1323 ASSERT(!DVA_IS_VALID(&dva[d]));
1324
1325 /*
1326 * For testing, make some blocks above a certain size be gang blocks.
1327 */
1328 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1329 return (ENOSPC);
1330
1331 if (flags & METASLAB_FASTWRITE)
1332 mutex_enter(&mc->mc_fastwrite_lock);
1333
1334 /*
1335 * Start at the rotor and loop through all mgs until we find something.
1336 * Note that there's no locking on mc_rotor or mc_aliquot because
1337 * nothing actually breaks if we miss a few updates -- we just won't
1338 * allocate quite as evenly. It all balances out over time.
1339 *
1340 * If we are doing ditto or log blocks, try to spread them across
1341 * consecutive vdevs. If we're forced to reuse a vdev before we've
1342 * allocated all of our ditto blocks, then try and spread them out on
1343 * that vdev as much as possible. If it turns out to not be possible,
1344 * gradually lower our standards until anything becomes acceptable.
1345 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1346 * gives us hope of containing our fault domains to something we're
1347 * able to reason about. Otherwise, any two top-level vdev failures
1348 * will guarantee the loss of data. With consecutive allocation,
1349 * only two adjacent top-level vdev failures will result in data loss.
1350 *
1351 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1352 * ourselves on the same vdev as our gang block header. That
1353 * way, we can hope for locality in vdev_cache, plus it makes our
1354 * fault domains something tractable.
1355 */
1356 if (hintdva) {
1357 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1358
1359 /*
1360 * It's possible the vdev we're using as the hint no
1361 * longer exists (i.e. removed). Consult the rotor when
1362 * all else fails.
1363 */
1364 if (vd != NULL) {
1365 mg = vd->vdev_mg;
1366
1367 if (flags & METASLAB_HINTBP_AVOID &&
1368 mg->mg_next != NULL)
1369 mg = mg->mg_next;
1370 } else {
1371 mg = mc->mc_rotor;
1372 }
1373 } else if (d != 0) {
1374 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1375 mg = vd->vdev_mg->mg_next;
1376 } else if (flags & METASLAB_FASTWRITE) {
1377 mg = fast_mg = mc->mc_rotor;
1378
1379 do {
1380 if (fast_mg->mg_vd->vdev_pending_fastwrite <
1381 mg->mg_vd->vdev_pending_fastwrite)
1382 mg = fast_mg;
1383 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
1384
1385 } else {
1386 mg = mc->mc_rotor;
1387 }
1388
1389 /*
1390 * If the hint put us into the wrong metaslab class, or into a
1391 * metaslab group that has been passivated, just follow the rotor.
1392 */
1393 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1394 mg = mc->mc_rotor;
1395
1396 rotor = mg;
1397 top:
1398 all_zero = B_TRUE;
1399 do {
1400 ASSERT(mg->mg_activation_count == 1);
1401
1402 vd = mg->mg_vd;
1403
1404 /*
1405 * Don't allocate from faulted devices.
1406 */
1407 if (zio_lock) {
1408 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1409 allocatable = vdev_allocatable(vd);
1410 spa_config_exit(spa, SCL_ZIO, FTAG);
1411 } else {
1412 allocatable = vdev_allocatable(vd);
1413 }
1414 if (!allocatable)
1415 goto next;
1416
1417 /*
1418 * Avoid writing single-copy data to a failing vdev
1419 */
1420 if ((vd->vdev_stat.vs_write_errors > 0 ||
1421 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1422 d == 0 && dshift == 3) {
1423 all_zero = B_FALSE;
1424 goto next;
1425 }
1426
1427 ASSERT(mg->mg_class == mc);
1428
1429 distance = vd->vdev_asize >> dshift;
1430 if (distance <= (1ULL << vd->vdev_ms_shift))
1431 distance = 0;
1432 else
1433 all_zero = B_FALSE;
1434
1435 asize = vdev_psize_to_asize(vd, psize);
1436 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1437
1438 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1439 dva, d, flags);
1440 if (offset != -1ULL) {
1441 /*
1442 * If we've just selected this metaslab group,
1443 * figure out whether the corresponding vdev is
1444 * over- or under-used relative to the pool,
1445 * and set an allocation bias to even it out.
1446 */
1447 if (mc->mc_aliquot == 0) {
1448 vdev_stat_t *vs = &vd->vdev_stat;
1449 int64_t vu, cu;
1450
1451 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1452 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1453
1454 /*
1455 * Calculate how much more or less we should
1456 * try to allocate from this device during
1457 * this iteration around the rotor.
1458 * For example, if a device is 80% full
1459 * and the pool is 20% full then we should
1460 * reduce allocations by 60% on this device.
1461 *
1462 * mg_bias = (20 - 80) * 512K / 100 = -307K
1463 *
1464 * This reduces allocations by 307K for this
1465 * iteration.
1466 */
1467 mg->mg_bias = ((cu - vu) *
1468 (int64_t)mg->mg_aliquot) / 100;
1469 }
1470
1471 if ((flags & METASLAB_FASTWRITE) ||
1472 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1473 mg->mg_aliquot + mg->mg_bias) {
1474 mc->mc_rotor = mg->mg_next;
1475 mc->mc_aliquot = 0;
1476 }
1477
1478 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1479 DVA_SET_OFFSET(&dva[d], offset);
1480 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1481 DVA_SET_ASIZE(&dva[d], asize);
1482
1483 if (flags & METASLAB_FASTWRITE) {
1484 atomic_add_64(&vd->vdev_pending_fastwrite,
1485 psize);
1486 mutex_exit(&mc->mc_fastwrite_lock);
1487 }
1488
1489 return (0);
1490 }
1491 next:
1492 mc->mc_rotor = mg->mg_next;
1493 mc->mc_aliquot = 0;
1494 } while ((mg = mg->mg_next) != rotor);
1495
1496 if (!all_zero) {
1497 dshift++;
1498 ASSERT(dshift < 64);
1499 goto top;
1500 }
1501
1502 if (!allocatable && !zio_lock) {
1503 dshift = 3;
1504 zio_lock = B_TRUE;
1505 goto top;
1506 }
1507
1508 bzero(&dva[d], sizeof (dva_t));
1509
1510 if (flags & METASLAB_FASTWRITE)
1511 mutex_exit(&mc->mc_fastwrite_lock);
1512 return (ENOSPC);
1513 }
1514
1515 /*
1516 * Free the block represented by DVA in the context of the specified
1517 * transaction group.
1518 */
1519 static void
1520 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1521 {
1522 uint64_t vdev = DVA_GET_VDEV(dva);
1523 uint64_t offset = DVA_GET_OFFSET(dva);
1524 uint64_t size = DVA_GET_ASIZE(dva);
1525 vdev_t *vd;
1526 metaslab_t *msp;
1527
1528 ASSERT(DVA_IS_VALID(dva));
1529
1530 if (txg > spa_freeze_txg(spa))
1531 return;
1532
1533 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1534 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1535 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1536 (u_longlong_t)vdev, (u_longlong_t)offset);
1537 ASSERT(0);
1538 return;
1539 }
1540
1541 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1542
1543 if (DVA_GET_GANG(dva))
1544 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1545
1546 mutex_enter(&msp->ms_lock);
1547
1548 if (now) {
1549 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1550 offset, size);
1551 space_map_free(&msp->ms_map, offset, size);
1552 } else {
1553 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1554 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1555 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1556 }
1557
1558 mutex_exit(&msp->ms_lock);
1559 }
1560
1561 /*
1562 * Intent log support: upon opening the pool after a crash, notify the SPA
1563 * of blocks that the intent log has allocated for immediate write, but
1564 * which are still considered free by the SPA because the last transaction
1565 * group didn't commit yet.
1566 */
1567 static int
1568 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1569 {
1570 uint64_t vdev = DVA_GET_VDEV(dva);
1571 uint64_t offset = DVA_GET_OFFSET(dva);
1572 uint64_t size = DVA_GET_ASIZE(dva);
1573 vdev_t *vd;
1574 metaslab_t *msp;
1575 int error = 0;
1576
1577 ASSERT(DVA_IS_VALID(dva));
1578
1579 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1580 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1581 return (ENXIO);
1582
1583 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1584
1585 if (DVA_GET_GANG(dva))
1586 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1587
1588 mutex_enter(&msp->ms_lock);
1589
1590 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1591 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
1592
1593 if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1594 error = ENOENT;
1595
1596 if (error || txg == 0) { /* txg == 0 indicates dry run */
1597 mutex_exit(&msp->ms_lock);
1598 return (error);
1599 }
1600
1601 space_map_claim(&msp->ms_map, offset, size);
1602
1603 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
1604 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1605 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1606 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1607 }
1608
1609 mutex_exit(&msp->ms_lock);
1610
1611 return (0);
1612 }
1613
1614 int
1615 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1616 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1617 {
1618 dva_t *dva = bp->blk_dva;
1619 dva_t *hintdva = hintbp->blk_dva;
1620 int d, error = 0;
1621
1622 ASSERT(bp->blk_birth == 0);
1623 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1624
1625 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1626
1627 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1628 spa_config_exit(spa, SCL_ALLOC, FTAG);
1629 return (ENOSPC);
1630 }
1631
1632 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1633 ASSERT(BP_GET_NDVAS(bp) == 0);
1634 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1635
1636 for (d = 0; d < ndvas; d++) {
1637 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1638 txg, flags);
1639 if (error) {
1640 for (d--; d >= 0; d--) {
1641 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1642 bzero(&dva[d], sizeof (dva_t));
1643 }
1644 spa_config_exit(spa, SCL_ALLOC, FTAG);
1645 return (error);
1646 }
1647 }
1648 ASSERT(error == 0);
1649 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1650
1651 spa_config_exit(spa, SCL_ALLOC, FTAG);
1652
1653 BP_SET_BIRTH(bp, txg, txg);
1654
1655 return (0);
1656 }
1657
1658 void
1659 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1660 {
1661 const dva_t *dva = bp->blk_dva;
1662 int d, ndvas = BP_GET_NDVAS(bp);
1663
1664 ASSERT(!BP_IS_HOLE(bp));
1665 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1666
1667 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1668
1669 for (d = 0; d < ndvas; d++)
1670 metaslab_free_dva(spa, &dva[d], txg, now);
1671
1672 spa_config_exit(spa, SCL_FREE, FTAG);
1673 }
1674
1675 int
1676 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1677 {
1678 const dva_t *dva = bp->blk_dva;
1679 int ndvas = BP_GET_NDVAS(bp);
1680 int d, error = 0;
1681
1682 ASSERT(!BP_IS_HOLE(bp));
1683
1684 if (txg != 0) {
1685 /*
1686 * First do a dry run to make sure all DVAs are claimable,
1687 * so we don't have to unwind from partial failures below.
1688 */
1689 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1690 return (error);
1691 }
1692
1693 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1694
1695 for (d = 0; d < ndvas; d++)
1696 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1697 break;
1698
1699 spa_config_exit(spa, SCL_ALLOC, FTAG);
1700
1701 ASSERT(error == 0 || txg == 0);
1702
1703 return (error);
1704 }
1705
1706 void metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
1707 {
1708 const dva_t *dva = bp->blk_dva;
1709 int ndvas = BP_GET_NDVAS(bp);
1710 uint64_t psize = BP_GET_PSIZE(bp);
1711 int d;
1712 vdev_t *vd;
1713
1714 ASSERT(!BP_IS_HOLE(bp));
1715 ASSERT(psize > 0);
1716
1717 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1718
1719 for (d = 0; d < ndvas; d++) {
1720 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
1721 continue;
1722 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
1723 }
1724
1725 spa_config_exit(spa, SCL_VDEV, FTAG);
1726 }
1727
1728 void metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
1729 {
1730 const dva_t *dva = bp->blk_dva;
1731 int ndvas = BP_GET_NDVAS(bp);
1732 uint64_t psize = BP_GET_PSIZE(bp);
1733 int d;
1734 vdev_t *vd;
1735
1736 ASSERT(!BP_IS_HOLE(bp));
1737 ASSERT(psize > 0);
1738
1739 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1740
1741 for (d = 0; d < ndvas; d++) {
1742 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
1743 continue;
1744 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
1745 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
1746 }
1747
1748 spa_config_exit(spa, SCL_VDEV, FTAG);
1749 }
1750
1751 #if defined(_KERNEL) && defined(HAVE_SPL)
1752 module_param(metaslab_debug, int, 0644);
1753 MODULE_PARM_DESC(metaslab_debug, "keep space maps in core to verify frees");
1754 #endif /* _KERNEL && HAVE_SPL */