]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/range_tree.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / range_tree.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/dnode.h>
34 #include <sys/zio.h>
35 #include <sys/range_tree.h>
36
37 /*
38 * Range trees are tree-based data structures that can be used to
39 * track free space or generally any space allocation information.
40 * A range tree keeps track of individual segments and automatically
41 * provides facilities such as adjacent extent merging and extent
42 * splitting in response to range add/remove requests.
43 *
44 * A range tree starts out completely empty, with no segments in it.
45 * Adding an allocation via range_tree_add to the range tree can either:
46 * 1) create a new extent
47 * 2) extend an adjacent extent
48 * 3) merge two adjacent extents
49 * Conversely, removing an allocation via range_tree_remove can:
50 * 1) completely remove an extent
51 * 2) shorten an extent (if the allocation was near one of its ends)
52 * 3) split an extent into two extents, in effect punching a hole
53 *
54 * A range tree is also capable of 'bridging' gaps when adding
55 * allocations. This is useful for cases when close proximity of
56 * allocations is an important detail that needs to be represented
57 * in the range tree. See range_tree_set_gap(). The default behavior
58 * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
59 *
60 * In order to traverse a range tree, use either the range_tree_walk()
61 * or range_tree_vacate() functions.
62 *
63 * To obtain more accurate information on individual segment
64 * operations that the range tree performs "under the hood", you can
65 * specify a set of callbacks by passing a range_tree_ops_t structure
66 * to the range_tree_create function. Any callbacks that are non-NULL
67 * are then called at the appropriate times.
68 *
69 * The range tree code also supports a special variant of range trees
70 * that can bridge small gaps between segments. This kind of tree is used
71 * by the dsl scanning code to group I/Os into mostly sequential chunks to
72 * optimize disk performance. The code here attempts to do this with as
73 * little memory and computational overhead as possible. One limitation of
74 * this implementation is that segments of range trees with gaps can only
75 * support removing complete segments.
76 */
77
78 static inline void
79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
80 {
81 ASSERT3U(rt->rt_type, <, RANGE_SEG_NUM_TYPES);
82 size_t size = 0;
83 switch (rt->rt_type) {
84 case RANGE_SEG32:
85 size = sizeof (range_seg32_t);
86 break;
87 case RANGE_SEG64:
88 size = sizeof (range_seg64_t);
89 break;
90 case RANGE_SEG_GAP:
91 size = sizeof (range_seg_gap_t);
92 break;
93 default:
94 __builtin_unreachable();
95 }
96 memcpy(dest, src, size);
97 }
98
99 void
100 range_tree_stat_verify(range_tree_t *rt)
101 {
102 range_seg_t *rs;
103 zfs_btree_index_t where;
104 uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
105 int i;
106
107 for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
108 rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
109 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
110 int idx = highbit64(size) - 1;
111
112 hist[idx]++;
113 ASSERT3U(hist[idx], !=, 0);
114 }
115
116 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
117 if (hist[i] != rt->rt_histogram[i]) {
118 zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
119 i, hist, (u_longlong_t)hist[i],
120 (u_longlong_t)rt->rt_histogram[i]);
121 }
122 VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
123 }
124 }
125
126 static void
127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
128 {
129 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
130 int idx = highbit64(size) - 1;
131
132 ASSERT(size != 0);
133 ASSERT3U(idx, <,
134 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
135
136 rt->rt_histogram[idx]++;
137 ASSERT3U(rt->rt_histogram[idx], !=, 0);
138 }
139
140 static void
141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
142 {
143 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
144 int idx = highbit64(size) - 1;
145
146 ASSERT(size != 0);
147 ASSERT3U(idx, <,
148 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
149
150 ASSERT3U(rt->rt_histogram[idx], !=, 0);
151 rt->rt_histogram[idx]--;
152 }
153
154 static int
155 range_tree_seg32_compare(const void *x1, const void *x2)
156 {
157 const range_seg32_t *r1 = x1;
158 const range_seg32_t *r2 = x2;
159
160 ASSERT3U(r1->rs_start, <=, r1->rs_end);
161 ASSERT3U(r2->rs_start, <=, r2->rs_end);
162
163 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
164 }
165
166 static int
167 range_tree_seg64_compare(const void *x1, const void *x2)
168 {
169 const range_seg64_t *r1 = x1;
170 const range_seg64_t *r2 = x2;
171
172 ASSERT3U(r1->rs_start, <=, r1->rs_end);
173 ASSERT3U(r2->rs_start, <=, r2->rs_end);
174
175 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
176 }
177
178 static int
179 range_tree_seg_gap_compare(const void *x1, const void *x2)
180 {
181 const range_seg_gap_t *r1 = x1;
182 const range_seg_gap_t *r2 = x2;
183
184 ASSERT3U(r1->rs_start, <=, r1->rs_end);
185 ASSERT3U(r2->rs_start, <=, r2->rs_end);
186
187 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
188 }
189
190 range_tree_t *
191 range_tree_create_impl(const range_tree_ops_t *ops, range_seg_type_t type,
192 void *arg, uint64_t start, uint64_t shift,
193 int (*zfs_btree_compare) (const void *, const void *),
194 uint64_t gap)
195 {
196 range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
197
198 ASSERT3U(shift, <, 64);
199 ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
200 size_t size;
201 int (*compare) (const void *, const void *);
202 switch (type) {
203 case RANGE_SEG32:
204 size = sizeof (range_seg32_t);
205 compare = range_tree_seg32_compare;
206 break;
207 case RANGE_SEG64:
208 size = sizeof (range_seg64_t);
209 compare = range_tree_seg64_compare;
210 break;
211 case RANGE_SEG_GAP:
212 size = sizeof (range_seg_gap_t);
213 compare = range_tree_seg_gap_compare;
214 break;
215 default:
216 panic("Invalid range seg type %d", type);
217 }
218 zfs_btree_create(&rt->rt_root, compare, size);
219
220 rt->rt_ops = ops;
221 rt->rt_gap = gap;
222 rt->rt_arg = arg;
223 rt->rt_type = type;
224 rt->rt_start = start;
225 rt->rt_shift = shift;
226 rt->rt_btree_compare = zfs_btree_compare;
227
228 if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
229 rt->rt_ops->rtop_create(rt, rt->rt_arg);
230
231 return (rt);
232 }
233
234 range_tree_t *
235 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type,
236 void *arg, uint64_t start, uint64_t shift)
237 {
238 return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
239 }
240
241 void
242 range_tree_destroy(range_tree_t *rt)
243 {
244 VERIFY0(rt->rt_space);
245
246 if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
247 rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
248
249 zfs_btree_destroy(&rt->rt_root);
250 kmem_free(rt, sizeof (*rt));
251 }
252
253 void
254 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
255 {
256 if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
257 zfs_panic_recover("zfs: attempting to decrease fill to or "
258 "below 0; probable double remove in segment [%llx:%llx]",
259 (longlong_t)rs_get_start(rs, rt),
260 (longlong_t)rs_get_end(rs, rt));
261 }
262 if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
263 rs_get_start(rs, rt)) {
264 zfs_panic_recover("zfs: attempting to increase fill beyond "
265 "max; probable double add in segment [%llx:%llx]",
266 (longlong_t)rs_get_start(rs, rt),
267 (longlong_t)rs_get_end(rs, rt));
268 }
269
270 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
271 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
272 rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
273 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
274 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
275 }
276
277 static void
278 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
279 {
280 range_tree_t *rt = arg;
281 zfs_btree_index_t where;
282 range_seg_t *rs_before, *rs_after, *rs;
283 range_seg_max_t tmp, rsearch;
284 uint64_t end = start + size, gap = rt->rt_gap;
285 uint64_t bridge_size = 0;
286 boolean_t merge_before, merge_after;
287
288 ASSERT3U(size, !=, 0);
289 ASSERT3U(fill, <=, size);
290 ASSERT3U(start + size, >, start);
291
292 rs_set_start(&rsearch, rt, start);
293 rs_set_end(&rsearch, rt, end);
294 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
295
296 /*
297 * If this is a gap-supporting range tree, it is possible that we
298 * are inserting into an existing segment. In this case simply
299 * bump the fill count and call the remove / add callbacks. If the
300 * new range will extend an existing segment, we remove the
301 * existing one, apply the new extent to it and re-insert it using
302 * the normal code paths.
303 */
304 if (rs != NULL) {
305 if (gap == 0) {
306 zfs_panic_recover("zfs: adding existent segment to "
307 "range tree (offset=%llx size=%llx)",
308 (longlong_t)start, (longlong_t)size);
309 return;
310 }
311 uint64_t rstart = rs_get_start(rs, rt);
312 uint64_t rend = rs_get_end(rs, rt);
313 if (rstart <= start && rend >= end) {
314 range_tree_adjust_fill(rt, rs, fill);
315 return;
316 }
317
318 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
319 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
320
321 range_tree_stat_decr(rt, rs);
322 rt->rt_space -= rend - rstart;
323
324 fill += rs_get_fill(rs, rt);
325 start = MIN(start, rstart);
326 end = MAX(end, rend);
327 size = end - start;
328
329 zfs_btree_remove(&rt->rt_root, rs);
330 range_tree_add_impl(rt, start, size, fill);
331 return;
332 }
333
334 ASSERT3P(rs, ==, NULL);
335
336 /*
337 * Determine whether or not we will have to merge with our neighbors.
338 * If gap != 0, we might need to merge with our neighbors even if we
339 * aren't directly touching.
340 */
341 zfs_btree_index_t where_before, where_after;
342 rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
343 rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
344
345 merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
346 start - gap);
347 merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
348 gap);
349
350 if (merge_before && gap != 0)
351 bridge_size += start - rs_get_end(rs_before, rt);
352 if (merge_after && gap != 0)
353 bridge_size += rs_get_start(rs_after, rt) - end;
354
355 if (merge_before && merge_after) {
356 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
357 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
358 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
359 }
360
361 range_tree_stat_decr(rt, rs_before);
362 range_tree_stat_decr(rt, rs_after);
363
364 rs_copy(rs_after, &tmp, rt);
365 uint64_t before_start = rs_get_start_raw(rs_before, rt);
366 uint64_t before_fill = rs_get_fill(rs_before, rt);
367 uint64_t after_fill = rs_get_fill(rs_after, rt);
368 zfs_btree_remove_idx(&rt->rt_root, &where_before);
369
370 /*
371 * We have to re-find the node because our old reference is
372 * invalid as soon as we do any mutating btree operations.
373 */
374 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
375 rs_set_start_raw(rs_after, rt, before_start);
376 rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
377 rs = rs_after;
378 } else if (merge_before) {
379 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
380 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
381
382 range_tree_stat_decr(rt, rs_before);
383
384 uint64_t before_fill = rs_get_fill(rs_before, rt);
385 rs_set_end(rs_before, rt, end);
386 rs_set_fill(rs_before, rt, before_fill + fill);
387 rs = rs_before;
388 } else if (merge_after) {
389 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
390 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
391
392 range_tree_stat_decr(rt, rs_after);
393
394 uint64_t after_fill = rs_get_fill(rs_after, rt);
395 rs_set_start(rs_after, rt, start);
396 rs_set_fill(rs_after, rt, after_fill + fill);
397 rs = rs_after;
398 } else {
399 rs = &tmp;
400
401 rs_set_start(rs, rt, start);
402 rs_set_end(rs, rt, end);
403 rs_set_fill(rs, rt, fill);
404 zfs_btree_add_idx(&rt->rt_root, rs, &where);
405 }
406
407 if (gap != 0) {
408 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
409 rs_get_start(rs, rt));
410 } else {
411 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
412 rs_get_start(rs, rt));
413 }
414
415 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
416 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
417
418 range_tree_stat_incr(rt, rs);
419 rt->rt_space += size + bridge_size;
420 }
421
422 void
423 range_tree_add(void *arg, uint64_t start, uint64_t size)
424 {
425 range_tree_add_impl(arg, start, size, size);
426 }
427
428 static void
429 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
430 boolean_t do_fill)
431 {
432 zfs_btree_index_t where;
433 range_seg_t *rs;
434 range_seg_max_t rsearch, rs_tmp;
435 uint64_t end = start + size;
436 boolean_t left_over, right_over;
437
438 VERIFY3U(size, !=, 0);
439 VERIFY3U(size, <=, rt->rt_space);
440 if (rt->rt_type == RANGE_SEG64)
441 ASSERT3U(start + size, >, start);
442
443 rs_set_start(&rsearch, rt, start);
444 rs_set_end(&rsearch, rt, end);
445 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
446
447 /* Make sure we completely overlap with someone */
448 if (rs == NULL) {
449 zfs_panic_recover("zfs: removing nonexistent segment from "
450 "range tree (offset=%llx size=%llx)",
451 (longlong_t)start, (longlong_t)size);
452 return;
453 }
454
455 /*
456 * Range trees with gap support must only remove complete segments
457 * from the tree. This allows us to maintain accurate fill accounting
458 * and to ensure that bridged sections are not leaked. If we need to
459 * remove less than the full segment, we can only adjust the fill count.
460 */
461 if (rt->rt_gap != 0) {
462 if (do_fill) {
463 if (rs_get_fill(rs, rt) == size) {
464 start = rs_get_start(rs, rt);
465 end = rs_get_end(rs, rt);
466 size = end - start;
467 } else {
468 range_tree_adjust_fill(rt, rs, -size);
469 return;
470 }
471 } else if (rs_get_start(rs, rt) != start ||
472 rs_get_end(rs, rt) != end) {
473 zfs_panic_recover("zfs: freeing partial segment of "
474 "gap tree (offset=%llx size=%llx) of "
475 "(offset=%llx size=%llx)",
476 (longlong_t)start, (longlong_t)size,
477 (longlong_t)rs_get_start(rs, rt),
478 (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
479 rt));
480 return;
481 }
482 }
483
484 VERIFY3U(rs_get_start(rs, rt), <=, start);
485 VERIFY3U(rs_get_end(rs, rt), >=, end);
486
487 left_over = (rs_get_start(rs, rt) != start);
488 right_over = (rs_get_end(rs, rt) != end);
489
490 range_tree_stat_decr(rt, rs);
491
492 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
493 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
494
495 if (left_over && right_over) {
496 range_seg_max_t newseg;
497 rs_set_start(&newseg, rt, end);
498 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
499 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
500 range_tree_stat_incr(rt, &newseg);
501
502 // This modifies the buffer already inside the range tree
503 rs_set_end(rs, rt, start);
504
505 rs_copy(rs, &rs_tmp, rt);
506 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
507 zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
508 else
509 zfs_btree_add(&rt->rt_root, &newseg);
510
511 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
512 rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
513 } else if (left_over) {
514 // This modifies the buffer already inside the range tree
515 rs_set_end(rs, rt, start);
516 rs_copy(rs, &rs_tmp, rt);
517 } else if (right_over) {
518 // This modifies the buffer already inside the range tree
519 rs_set_start(rs, rt, end);
520 rs_copy(rs, &rs_tmp, rt);
521 } else {
522 zfs_btree_remove_idx(&rt->rt_root, &where);
523 rs = NULL;
524 }
525
526 if (rs != NULL) {
527 /*
528 * The fill of the leftover segment will always be equal to
529 * the size, since we do not support removing partial segments
530 * of range trees with gaps.
531 */
532 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
533 rs_get_start_raw(rs, rt));
534 range_tree_stat_incr(rt, &rs_tmp);
535
536 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
537 rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
538 }
539
540 rt->rt_space -= size;
541 }
542
543 void
544 range_tree_remove(void *arg, uint64_t start, uint64_t size)
545 {
546 range_tree_remove_impl(arg, start, size, B_FALSE);
547 }
548
549 void
550 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
551 {
552 range_tree_remove_impl(rt, start, size, B_TRUE);
553 }
554
555 void
556 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
557 uint64_t newstart, uint64_t newsize)
558 {
559 int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
560
561 range_tree_stat_decr(rt, rs);
562 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
563 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
564
565 rs_set_start(rs, rt, newstart);
566 rs_set_end(rs, rt, newstart + newsize);
567
568 range_tree_stat_incr(rt, rs);
569 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
570 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
571
572 rt->rt_space += delta;
573 }
574
575 static range_seg_t *
576 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
577 {
578 range_seg_max_t rsearch;
579 uint64_t end = start + size;
580
581 VERIFY(size != 0);
582
583 rs_set_start(&rsearch, rt, start);
584 rs_set_end(&rsearch, rt, end);
585 return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
586 }
587
588 range_seg_t *
589 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
590 {
591 if (rt->rt_type == RANGE_SEG64)
592 ASSERT3U(start + size, >, start);
593
594 range_seg_t *rs = range_tree_find_impl(rt, start, size);
595 if (rs != NULL && rs_get_start(rs, rt) <= start &&
596 rs_get_end(rs, rt) >= start + size) {
597 return (rs);
598 }
599 return (NULL);
600 }
601
602 void
603 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
604 {
605 range_seg_t *rs = range_tree_find(rt, off, size);
606 if (rs != NULL)
607 panic("segment already in tree; rs=%p", (void *)rs);
608 }
609
610 boolean_t
611 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
612 {
613 return (range_tree_find(rt, start, size) != NULL);
614 }
615
616 /*
617 * Returns the first subset of the given range which overlaps with the range
618 * tree. Returns true if there is a segment in the range, and false if there
619 * isn't.
620 */
621 boolean_t
622 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
623 uint64_t *ostart, uint64_t *osize)
624 {
625 if (rt->rt_type == RANGE_SEG64)
626 ASSERT3U(start + size, >, start);
627
628 range_seg_max_t rsearch;
629 rs_set_start(&rsearch, rt, start);
630 rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
631
632 zfs_btree_index_t where;
633 range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
634 if (rs != NULL) {
635 *ostart = start;
636 *osize = MIN(size, rs_get_end(rs, rt) - start);
637 return (B_TRUE);
638 }
639
640 rs = zfs_btree_next(&rt->rt_root, &where, &where);
641 if (rs == NULL || rs_get_start(rs, rt) > start + size)
642 return (B_FALSE);
643
644 *ostart = rs_get_start(rs, rt);
645 *osize = MIN(start + size, rs_get_end(rs, rt)) -
646 rs_get_start(rs, rt);
647 return (B_TRUE);
648 }
649
650 /*
651 * Ensure that this range is not in the tree, regardless of whether
652 * it is currently in the tree.
653 */
654 void
655 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
656 {
657 range_seg_t *rs;
658
659 if (size == 0)
660 return;
661
662 if (rt->rt_type == RANGE_SEG64)
663 ASSERT3U(start + size, >, start);
664
665 while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
666 uint64_t free_start = MAX(rs_get_start(rs, rt), start);
667 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
668 range_tree_remove(rt, free_start, free_end - free_start);
669 }
670 }
671
672 void
673 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
674 {
675 range_tree_t *rt;
676
677 ASSERT0(range_tree_space(*rtdst));
678 ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
679
680 rt = *rtsrc;
681 *rtsrc = *rtdst;
682 *rtdst = rt;
683 }
684
685 void
686 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
687 {
688 if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
689 rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
690
691 if (func != NULL) {
692 range_seg_t *rs;
693 zfs_btree_index_t *cookie = NULL;
694
695 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
696 NULL) {
697 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
698 rs_get_start(rs, rt));
699 }
700 } else {
701 zfs_btree_clear(&rt->rt_root);
702 }
703
704 memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram));
705 rt->rt_space = 0;
706 }
707
708 void
709 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
710 {
711 zfs_btree_index_t where;
712 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
713 rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
714 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
715 rs_get_start(rs, rt));
716 }
717 }
718
719 range_seg_t *
720 range_tree_first(range_tree_t *rt)
721 {
722 return (zfs_btree_first(&rt->rt_root, NULL));
723 }
724
725 uint64_t
726 range_tree_space(range_tree_t *rt)
727 {
728 return (rt->rt_space);
729 }
730
731 uint64_t
732 range_tree_numsegs(range_tree_t *rt)
733 {
734 return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
735 }
736
737 boolean_t
738 range_tree_is_empty(range_tree_t *rt)
739 {
740 ASSERT(rt != NULL);
741 return (range_tree_space(rt) == 0);
742 }
743
744 void
745 rt_btree_create(range_tree_t *rt, void *arg)
746 {
747 zfs_btree_t *size_tree = arg;
748
749 size_t size;
750 switch (rt->rt_type) {
751 case RANGE_SEG32:
752 size = sizeof (range_seg32_t);
753 break;
754 case RANGE_SEG64:
755 size = sizeof (range_seg64_t);
756 break;
757 case RANGE_SEG_GAP:
758 size = sizeof (range_seg_gap_t);
759 break;
760 default:
761 panic("Invalid range seg type %d", rt->rt_type);
762 }
763 zfs_btree_create(size_tree, rt->rt_btree_compare, size);
764 }
765
766 void
767 rt_btree_destroy(range_tree_t *rt, void *arg)
768 {
769 (void) rt;
770 zfs_btree_t *size_tree = arg;
771 ASSERT0(zfs_btree_numnodes(size_tree));
772
773 zfs_btree_destroy(size_tree);
774 }
775
776 void
777 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
778 {
779 (void) rt;
780 zfs_btree_t *size_tree = arg;
781
782 zfs_btree_add(size_tree, rs);
783 }
784
785 void
786 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
787 {
788 (void) rt;
789 zfs_btree_t *size_tree = arg;
790
791 zfs_btree_remove(size_tree, rs);
792 }
793
794 void
795 rt_btree_vacate(range_tree_t *rt, void *arg)
796 {
797 zfs_btree_t *size_tree = arg;
798 zfs_btree_clear(size_tree);
799 zfs_btree_destroy(size_tree);
800
801 rt_btree_create(rt, arg);
802 }
803
804 const range_tree_ops_t rt_btree_ops = {
805 .rtop_create = rt_btree_create,
806 .rtop_destroy = rt_btree_destroy,
807 .rtop_add = rt_btree_add,
808 .rtop_remove = rt_btree_remove,
809 .rtop_vacate = rt_btree_vacate
810 };
811
812 /*
813 * Remove any overlapping ranges between the given segment [start, end)
814 * from removefrom. Add non-overlapping leftovers to addto.
815 */
816 void
817 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
818 range_tree_t *removefrom, range_tree_t *addto)
819 {
820 zfs_btree_index_t where;
821 range_seg_max_t starting_rs;
822 rs_set_start(&starting_rs, removefrom, start);
823 rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
824 removefrom) + 1);
825
826 range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
827 &starting_rs, &where);
828
829 if (curr == NULL)
830 curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
831
832 range_seg_t *next;
833 for (; curr != NULL; curr = next) {
834 if (start == end)
835 return;
836 VERIFY3U(start, <, end);
837
838 /* there is no overlap */
839 if (end <= rs_get_start(curr, removefrom)) {
840 range_tree_add(addto, start, end - start);
841 return;
842 }
843
844 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
845 start);
846 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
847 end);
848 uint64_t overlap_size = overlap_end - overlap_start;
849 ASSERT3S(overlap_size, >, 0);
850 range_seg_max_t rs;
851 rs_copy(curr, &rs, removefrom);
852
853 range_tree_remove(removefrom, overlap_start, overlap_size);
854
855 if (start < overlap_start)
856 range_tree_add(addto, start, overlap_start - start);
857
858 start = overlap_end;
859 next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
860 /*
861 * If we find something here, we only removed part of the
862 * curr segment. Either there's some left at the end
863 * because we've reached the end of the range we're removing,
864 * or there's some left at the start because we started
865 * partway through the range. Either way, we continue with
866 * the loop. If it's the former, we'll return at the start of
867 * the loop, and if it's the latter we'll see if there is more
868 * area to process.
869 */
870 if (next != NULL) {
871 ASSERT(start == end || start == rs_get_end(&rs,
872 removefrom));
873 }
874
875 next = zfs_btree_next(&removefrom->rt_root, &where, &where);
876 }
877 VERIFY3P(curr, ==, NULL);
878
879 if (start != end) {
880 VERIFY3U(start, <, end);
881 range_tree_add(addto, start, end - start);
882 } else {
883 VERIFY3U(start, ==, end);
884 }
885 }
886
887 /*
888 * For each entry in rt, if it exists in removefrom, remove it
889 * from removefrom. Otherwise, add it to addto.
890 */
891 void
892 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
893 range_tree_t *addto)
894 {
895 zfs_btree_index_t where;
896 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
897 rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
898 range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
899 rs_get_end(rs, rt), removefrom, addto);
900 }
901 }
902
903 uint64_t
904 range_tree_min(range_tree_t *rt)
905 {
906 range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
907 return (rs != NULL ? rs_get_start(rs, rt) : 0);
908 }
909
910 uint64_t
911 range_tree_max(range_tree_t *rt)
912 {
913 range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
914 return (rs != NULL ? rs_get_end(rs, rt) : 0);
915 }
916
917 uint64_t
918 range_tree_span(range_tree_t *rt)
919 {
920 return (range_tree_max(rt) - range_tree_min(rt));
921 }