]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/rrwlock.c
Add/generalize abstractions in arc_summary3
[mirror_zfs.git] / module / zfs / rrwlock.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2012 by Delphix. All rights reserved.
27 */
28
29 #include <sys/refcount.h>
30 #include <sys/rrwlock.h>
31 #include <sys/trace_rrwlock.h>
32
33 /*
34 * This file contains the implementation of a re-entrant read
35 * reader/writer lock (aka "rrwlock").
36 *
37 * This is a normal reader/writer lock with the additional feature
38 * of allowing threads who have already obtained a read lock to
39 * re-enter another read lock (re-entrant read) - even if there are
40 * waiting writers.
41 *
42 * Callers who have not obtained a read lock give waiting writers priority.
43 *
44 * The rrwlock_t lock does not allow re-entrant writers, nor does it
45 * allow a re-entrant mix of reads and writes (that is, it does not
46 * allow a caller who has already obtained a read lock to be able to
47 * then grab a write lock without first dropping all read locks, and
48 * vice versa).
49 *
50 * The rrwlock_t uses tsd (thread specific data) to keep a list of
51 * nodes (rrw_node_t), where each node keeps track of which specific
52 * lock (rrw_node_t::rn_rrl) the thread has grabbed. Since re-entering
53 * should be rare, a thread that grabs multiple reads on the same rrwlock_t
54 * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the
55 * tsd list can represent a different rrwlock_t. This allows a thread
56 * to enter multiple and unique rrwlock_ts for read locks at the same time.
57 *
58 * Since using tsd exposes some overhead, the rrwlock_t only needs to
59 * keep tsd data when writers are waiting. If no writers are waiting, then
60 * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd
61 * is needed. Once a writer attempts to grab the lock, readers then
62 * keep tsd data and bump the linked readers count (rr_linked_rcount).
63 *
64 * If there are waiting writers and there are anonymous readers, then a
65 * reader doesn't know if it is a re-entrant lock. But since it may be one,
66 * we allow the read to proceed (otherwise it could deadlock). Since once
67 * waiting writers are active, readers no longer bump the anonymous count,
68 * the anonymous readers will eventually flush themselves out. At this point,
69 * readers will be able to tell if they are a re-entrant lock (have a
70 * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then
71 * we must let the proceed. If they are not, then the reader blocks for the
72 * waiting writers. Hence, we do not starve writers.
73 */
74
75 /* global key for TSD */
76 uint_t rrw_tsd_key;
77
78 typedef struct rrw_node {
79 struct rrw_node *rn_next;
80 rrwlock_t *rn_rrl;
81 void *rn_tag;
82 } rrw_node_t;
83
84 static rrw_node_t *
85 rrn_find(rrwlock_t *rrl)
86 {
87 rrw_node_t *rn;
88
89 if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0)
90 return (NULL);
91
92 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
93 if (rn->rn_rrl == rrl)
94 return (rn);
95 }
96 return (NULL);
97 }
98
99 /*
100 * Add a node to the head of the singly linked list.
101 */
102 static void
103 rrn_add(rrwlock_t *rrl, void *tag)
104 {
105 rrw_node_t *rn;
106
107 rn = kmem_alloc(sizeof (*rn), KM_SLEEP);
108 rn->rn_rrl = rrl;
109 rn->rn_next = tsd_get(rrw_tsd_key);
110 rn->rn_tag = tag;
111 VERIFY(tsd_set(rrw_tsd_key, rn) == 0);
112 }
113
114 /*
115 * If a node is found for 'rrl', then remove the node from this
116 * thread's list and return TRUE; otherwise return FALSE.
117 */
118 static boolean_t
119 rrn_find_and_remove(rrwlock_t *rrl, void *tag)
120 {
121 rrw_node_t *rn;
122 rrw_node_t *prev = NULL;
123
124 if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0)
125 return (B_FALSE);
126
127 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
128 if (rn->rn_rrl == rrl && rn->rn_tag == tag) {
129 if (prev)
130 prev->rn_next = rn->rn_next;
131 else
132 VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0);
133 kmem_free(rn, sizeof (*rn));
134 return (B_TRUE);
135 }
136 prev = rn;
137 }
138 return (B_FALSE);
139 }
140
141 void
142 rrw_init(rrwlock_t *rrl, boolean_t track_all)
143 {
144 mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL);
145 cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL);
146 rrl->rr_writer = NULL;
147 zfs_refcount_create(&rrl->rr_anon_rcount);
148 zfs_refcount_create(&rrl->rr_linked_rcount);
149 rrl->rr_writer_wanted = B_FALSE;
150 rrl->rr_track_all = track_all;
151 }
152
153 void
154 rrw_destroy(rrwlock_t *rrl)
155 {
156 mutex_destroy(&rrl->rr_lock);
157 cv_destroy(&rrl->rr_cv);
158 ASSERT(rrl->rr_writer == NULL);
159 zfs_refcount_destroy(&rrl->rr_anon_rcount);
160 zfs_refcount_destroy(&rrl->rr_linked_rcount);
161 }
162
163 static void
164 rrw_enter_read_impl(rrwlock_t *rrl, boolean_t prio, void *tag)
165 {
166 mutex_enter(&rrl->rr_lock);
167 #if !defined(DEBUG) && defined(_KERNEL)
168 if (rrl->rr_writer == NULL && !rrl->rr_writer_wanted &&
169 !rrl->rr_track_all) {
170 rrl->rr_anon_rcount.rc_count++;
171 mutex_exit(&rrl->rr_lock);
172 return;
173 }
174 DTRACE_PROBE(zfs__rrwfastpath__rdmiss);
175 #endif
176 ASSERT(rrl->rr_writer != curthread);
177 ASSERT(zfs_refcount_count(&rrl->rr_anon_rcount) >= 0);
178
179 while (rrl->rr_writer != NULL || (rrl->rr_writer_wanted &&
180 zfs_refcount_is_zero(&rrl->rr_anon_rcount) && !prio &&
181 rrn_find(rrl) == NULL))
182 cv_wait(&rrl->rr_cv, &rrl->rr_lock);
183
184 if (rrl->rr_writer_wanted || rrl->rr_track_all) {
185 /* may or may not be a re-entrant enter */
186 rrn_add(rrl, tag);
187 (void) zfs_refcount_add(&rrl->rr_linked_rcount, tag);
188 } else {
189 (void) zfs_refcount_add(&rrl->rr_anon_rcount, tag);
190 }
191 ASSERT(rrl->rr_writer == NULL);
192 mutex_exit(&rrl->rr_lock);
193 }
194
195 void
196 rrw_enter_read(rrwlock_t *rrl, void *tag)
197 {
198 rrw_enter_read_impl(rrl, B_FALSE, tag);
199 }
200
201 /*
202 * take a read lock even if there are pending write lock requests. if we want
203 * to take a lock reentrantly, but from different threads (that have a
204 * relationship to each other), the normal detection mechanism to overrule
205 * the pending writer does not work, so we have to give an explicit hint here.
206 */
207 void
208 rrw_enter_read_prio(rrwlock_t *rrl, void *tag)
209 {
210 rrw_enter_read_impl(rrl, B_TRUE, tag);
211 }
212
213
214 void
215 rrw_enter_write(rrwlock_t *rrl)
216 {
217 mutex_enter(&rrl->rr_lock);
218 ASSERT(rrl->rr_writer != curthread);
219
220 while (zfs_refcount_count(&rrl->rr_anon_rcount) > 0 ||
221 zfs_refcount_count(&rrl->rr_linked_rcount) > 0 ||
222 rrl->rr_writer != NULL) {
223 rrl->rr_writer_wanted = B_TRUE;
224 cv_wait(&rrl->rr_cv, &rrl->rr_lock);
225 }
226 rrl->rr_writer_wanted = B_FALSE;
227 rrl->rr_writer = curthread;
228 mutex_exit(&rrl->rr_lock);
229 }
230
231 void
232 rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag)
233 {
234 if (rw == RW_READER)
235 rrw_enter_read(rrl, tag);
236 else
237 rrw_enter_write(rrl);
238 }
239
240 void
241 rrw_exit(rrwlock_t *rrl, void *tag)
242 {
243 mutex_enter(&rrl->rr_lock);
244 #if !defined(DEBUG) && defined(_KERNEL)
245 if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) {
246 rrl->rr_anon_rcount.rc_count--;
247 if (rrl->rr_anon_rcount.rc_count == 0)
248 cv_broadcast(&rrl->rr_cv);
249 mutex_exit(&rrl->rr_lock);
250 return;
251 }
252 DTRACE_PROBE(zfs__rrwfastpath__exitmiss);
253 #endif
254 ASSERT(!zfs_refcount_is_zero(&rrl->rr_anon_rcount) ||
255 !zfs_refcount_is_zero(&rrl->rr_linked_rcount) ||
256 rrl->rr_writer != NULL);
257
258 if (rrl->rr_writer == NULL) {
259 int64_t count;
260 if (rrn_find_and_remove(rrl, tag)) {
261 count = zfs_refcount_remove(
262 &rrl->rr_linked_rcount, tag);
263 } else {
264 ASSERT(!rrl->rr_track_all);
265 count = zfs_refcount_remove(&rrl->rr_anon_rcount, tag);
266 }
267 if (count == 0)
268 cv_broadcast(&rrl->rr_cv);
269 } else {
270 ASSERT(rrl->rr_writer == curthread);
271 ASSERT(zfs_refcount_is_zero(&rrl->rr_anon_rcount) &&
272 zfs_refcount_is_zero(&rrl->rr_linked_rcount));
273 rrl->rr_writer = NULL;
274 cv_broadcast(&rrl->rr_cv);
275 }
276 mutex_exit(&rrl->rr_lock);
277 }
278
279 /*
280 * If the lock was created with track_all, rrw_held(RW_READER) will return
281 * B_TRUE iff the current thread has the lock for reader. Otherwise it may
282 * return B_TRUE if any thread has the lock for reader.
283 */
284 boolean_t
285 rrw_held(rrwlock_t *rrl, krw_t rw)
286 {
287 boolean_t held;
288
289 mutex_enter(&rrl->rr_lock);
290 if (rw == RW_WRITER) {
291 held = (rrl->rr_writer == curthread);
292 } else {
293 held = (!zfs_refcount_is_zero(&rrl->rr_anon_rcount) ||
294 rrn_find(rrl) != NULL);
295 }
296 mutex_exit(&rrl->rr_lock);
297
298 return (held);
299 }
300
301 void
302 rrw_tsd_destroy(void *arg)
303 {
304 rrw_node_t *rn = arg;
305 if (rn != NULL) {
306 panic("thread %p terminating with rrw lock %p held",
307 (void *)curthread, (void *)rn->rn_rrl);
308 }
309 }
310
311 /*
312 * A reader-mostly lock implementation, tuning above reader-writer locks
313 * for hightly parallel read acquisitions, while pessimizing writes.
314 *
315 * The idea is to split single busy lock into array of locks, so that
316 * each reader can lock only one of them for read, depending on result
317 * of simple hash function. That proportionally reduces lock congestion.
318 * Writer at the same time has to sequentially acquire write on all the locks.
319 * That makes write acquisition proportionally slower, but in places where
320 * it is used (filesystem unmount) performance is not critical.
321 *
322 * All the functions below are direct wrappers around functions above.
323 */
324 void
325 rrm_init(rrmlock_t *rrl, boolean_t track_all)
326 {
327 int i;
328
329 for (i = 0; i < RRM_NUM_LOCKS; i++)
330 rrw_init(&rrl->locks[i], track_all);
331 }
332
333 void
334 rrm_destroy(rrmlock_t *rrl)
335 {
336 int i;
337
338 for (i = 0; i < RRM_NUM_LOCKS; i++)
339 rrw_destroy(&rrl->locks[i]);
340 }
341
342 void
343 rrm_enter(rrmlock_t *rrl, krw_t rw, void *tag)
344 {
345 if (rw == RW_READER)
346 rrm_enter_read(rrl, tag);
347 else
348 rrm_enter_write(rrl);
349 }
350
351 /*
352 * This maps the current thread to a specific lock. Note that the lock
353 * must be released by the same thread that acquired it. We do this
354 * mapping by taking the thread pointer mod a prime number. We examine
355 * only the low 32 bits of the thread pointer, because 32-bit division
356 * is faster than 64-bit division, and the high 32 bits have little
357 * entropy anyway.
358 */
359 #define RRM_TD_LOCK() (((uint32_t)(uintptr_t)(curthread)) % RRM_NUM_LOCKS)
360
361 void
362 rrm_enter_read(rrmlock_t *rrl, void *tag)
363 {
364 rrw_enter_read(&rrl->locks[RRM_TD_LOCK()], tag);
365 }
366
367 void
368 rrm_enter_write(rrmlock_t *rrl)
369 {
370 int i;
371
372 for (i = 0; i < RRM_NUM_LOCKS; i++)
373 rrw_enter_write(&rrl->locks[i]);
374 }
375
376 void
377 rrm_exit(rrmlock_t *rrl, void *tag)
378 {
379 int i;
380
381 if (rrl->locks[0].rr_writer == curthread) {
382 for (i = 0; i < RRM_NUM_LOCKS; i++)
383 rrw_exit(&rrl->locks[i], tag);
384 } else {
385 rrw_exit(&rrl->locks[RRM_TD_LOCK()], tag);
386 }
387 }
388
389 boolean_t
390 rrm_held(rrmlock_t *rrl, krw_t rw)
391 {
392 if (rw == RW_WRITER) {
393 return (rrw_held(&rrl->locks[0], rw));
394 } else {
395 return (rrw_held(&rrl->locks[RRM_TD_LOCK()], rw));
396 }
397 }