]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Illumos #2762: zpool command should have better support for feature flags
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */
27
28 /*
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
32 */
33
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_disk.h>
46 #include <sys/metaslab.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/dmu_traverse.h>
52 #include <sys/dmu_objset.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dataset.h>
56 #include <sys/dsl_dir.h>
57 #include <sys/dsl_prop.h>
58 #include <sys/dsl_synctask.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/arc.h>
61 #include <sys/callb.h>
62 #include <sys/systeminfo.h>
63 #include <sys/spa_boot.h>
64 #include <sys/zfs_ioctl.h>
65 #include <sys/dsl_scan.h>
66 #include <sys/zfeature.h>
67
68 #ifdef _KERNEL
69 #include <sys/bootprops.h>
70 #include <sys/callb.h>
71 #include <sys/cpupart.h>
72 #include <sys/pool.h>
73 #include <sys/sysdc.h>
74 #include <sys/zone.h>
75 #endif /* _KERNEL */
76
77 #include "zfs_prop.h"
78 #include "zfs_comutil.h"
79
80 typedef enum zti_modes {
81 zti_mode_fixed, /* value is # of threads (min 1) */
82 zti_mode_online_percent, /* value is % of online CPUs */
83 zti_mode_batch, /* cpu-intensive; value is ignored */
84 zti_mode_null, /* don't create a taskq */
85 zti_nmodes
86 } zti_modes_t;
87
88 #define ZTI_FIX(n) { zti_mode_fixed, (n) }
89 #define ZTI_PCT(n) { zti_mode_online_percent, (n) }
90 #define ZTI_BATCH { zti_mode_batch, 0 }
91 #define ZTI_NULL { zti_mode_null, 0 }
92
93 #define ZTI_ONE ZTI_FIX(1)
94
95 typedef struct zio_taskq_info {
96 enum zti_modes zti_mode;
97 uint_t zti_value;
98 } zio_taskq_info_t;
99
100 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
101 "iss", "iss_h", "int", "int_h"
102 };
103
104 /*
105 * Define the taskq threads for the following I/O types:
106 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
107 */
108 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
109 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
111 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
112 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(16), ZTI_FIX(5) },
113 { ZTI_PCT(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
115 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
116 };
117
118 static dsl_syncfunc_t spa_sync_version;
119 static dsl_syncfunc_t spa_sync_props;
120 static dsl_checkfunc_t spa_change_guid_check;
121 static dsl_syncfunc_t spa_change_guid_sync;
122 static boolean_t spa_has_active_shared_spare(spa_t *spa);
123 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
124 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
125 char **ereport);
126 static void spa_vdev_resilver_done(spa_t *spa);
127
128 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
129 id_t zio_taskq_psrset_bind = PS_NONE;
130 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
131 uint_t zio_taskq_basedc = 80; /* base duty cycle */
132
133 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
134
135 /*
136 * This (illegal) pool name is used when temporarily importing a spa_t in order
137 * to get the vdev stats associated with the imported devices.
138 */
139 #define TRYIMPORT_NAME "$import"
140
141 /*
142 * ==========================================================================
143 * SPA properties routines
144 * ==========================================================================
145 */
146
147 /*
148 * Add a (source=src, propname=propval) list to an nvlist.
149 */
150 static void
151 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
152 uint64_t intval, zprop_source_t src)
153 {
154 const char *propname = zpool_prop_to_name(prop);
155 nvlist_t *propval;
156
157 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
158 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
159
160 if (strval != NULL)
161 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
162 else
163 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
164
165 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
166 nvlist_free(propval);
167 }
168
169 /*
170 * Get property values from the spa configuration.
171 */
172 static void
173 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
174 {
175 vdev_t *rvd = spa->spa_root_vdev;
176 dsl_pool_t *pool = spa->spa_dsl_pool;
177 uint64_t size;
178 uint64_t alloc;
179 uint64_t space;
180 uint64_t cap, version;
181 zprop_source_t src = ZPROP_SRC_NONE;
182 spa_config_dirent_t *dp;
183 int c;
184
185 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
186
187 if (rvd != NULL) {
188 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
189 size = metaslab_class_get_space(spa_normal_class(spa));
190 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
191 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
192 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
193 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
194 size - alloc, src);
195
196 space = 0;
197 for (c = 0; c < rvd->vdev_children; c++) {
198 vdev_t *tvd = rvd->vdev_child[c];
199 space += tvd->vdev_max_asize - tvd->vdev_asize;
200 }
201 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
202 src);
203
204 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
205 (spa_mode(spa) == FREAD), src);
206
207 cap = (size == 0) ? 0 : (alloc * 100 / size);
208 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
209
210 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
211 ddt_get_pool_dedup_ratio(spa), src);
212
213 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
214 rvd->vdev_state, src);
215
216 version = spa_version(spa);
217 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
218 src = ZPROP_SRC_DEFAULT;
219 else
220 src = ZPROP_SRC_LOCAL;
221 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
222 }
223
224 if (pool != NULL) {
225 dsl_dir_t *freedir = pool->dp_free_dir;
226
227 /*
228 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
229 * when opening pools before this version freedir will be NULL.
230 */
231 if (freedir != NULL) {
232 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
233 freedir->dd_phys->dd_used_bytes, src);
234 } else {
235 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
236 NULL, 0, src);
237 }
238 }
239
240 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
241
242 if (spa->spa_comment != NULL) {
243 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
244 0, ZPROP_SRC_LOCAL);
245 }
246
247 if (spa->spa_root != NULL)
248 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
249 0, ZPROP_SRC_LOCAL);
250
251 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
252 if (dp->scd_path == NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
254 "none", 0, ZPROP_SRC_LOCAL);
255 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
256 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
257 dp->scd_path, 0, ZPROP_SRC_LOCAL);
258 }
259 }
260 }
261
262 /*
263 * Get zpool property values.
264 */
265 int
266 spa_prop_get(spa_t *spa, nvlist_t **nvp)
267 {
268 objset_t *mos = spa->spa_meta_objset;
269 zap_cursor_t zc;
270 zap_attribute_t za;
271 int err;
272
273 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_PUSHPAGE);
274 if (err)
275 return err;
276
277 mutex_enter(&spa->spa_props_lock);
278
279 /*
280 * Get properties from the spa config.
281 */
282 spa_prop_get_config(spa, nvp);
283
284 /* If no pool property object, no more prop to get. */
285 if (mos == NULL || spa->spa_pool_props_object == 0) {
286 mutex_exit(&spa->spa_props_lock);
287 goto out;
288 }
289
290 /*
291 * Get properties from the MOS pool property object.
292 */
293 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
294 (err = zap_cursor_retrieve(&zc, &za)) == 0;
295 zap_cursor_advance(&zc)) {
296 uint64_t intval = 0;
297 char *strval = NULL;
298 zprop_source_t src = ZPROP_SRC_DEFAULT;
299 zpool_prop_t prop;
300
301 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
302 continue;
303
304 switch (za.za_integer_length) {
305 case 8:
306 /* integer property */
307 if (za.za_first_integer !=
308 zpool_prop_default_numeric(prop))
309 src = ZPROP_SRC_LOCAL;
310
311 if (prop == ZPOOL_PROP_BOOTFS) {
312 dsl_pool_t *dp;
313 dsl_dataset_t *ds = NULL;
314
315 dp = spa_get_dsl(spa);
316 rw_enter(&dp->dp_config_rwlock, RW_READER);
317 if ((err = dsl_dataset_hold_obj(dp,
318 za.za_first_integer, FTAG, &ds))) {
319 rw_exit(&dp->dp_config_rwlock);
320 break;
321 }
322
323 strval = kmem_alloc(
324 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
325 KM_PUSHPAGE);
326 dsl_dataset_name(ds, strval);
327 dsl_dataset_rele(ds, FTAG);
328 rw_exit(&dp->dp_config_rwlock);
329 } else {
330 strval = NULL;
331 intval = za.za_first_integer;
332 }
333
334 spa_prop_add_list(*nvp, prop, strval, intval, src);
335
336 if (strval != NULL)
337 kmem_free(strval,
338 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
339
340 break;
341
342 case 1:
343 /* string property */
344 strval = kmem_alloc(za.za_num_integers, KM_PUSHPAGE);
345 err = zap_lookup(mos, spa->spa_pool_props_object,
346 za.za_name, 1, za.za_num_integers, strval);
347 if (err) {
348 kmem_free(strval, za.za_num_integers);
349 break;
350 }
351 spa_prop_add_list(*nvp, prop, strval, 0, src);
352 kmem_free(strval, za.za_num_integers);
353 break;
354
355 default:
356 break;
357 }
358 }
359 zap_cursor_fini(&zc);
360 mutex_exit(&spa->spa_props_lock);
361 out:
362 if (err && err != ENOENT) {
363 nvlist_free(*nvp);
364 *nvp = NULL;
365 return (err);
366 }
367
368 return (0);
369 }
370
371 /*
372 * Validate the given pool properties nvlist and modify the list
373 * for the property values to be set.
374 */
375 static int
376 spa_prop_validate(spa_t *spa, nvlist_t *props)
377 {
378 nvpair_t *elem;
379 int error = 0, reset_bootfs = 0;
380 uint64_t objnum = 0;
381 boolean_t has_feature = B_FALSE;
382
383 elem = NULL;
384 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
385 uint64_t intval;
386 char *strval, *slash, *check, *fname;
387 const char *propname = nvpair_name(elem);
388 zpool_prop_t prop = zpool_name_to_prop(propname);
389
390 switch ((int)prop) {
391 case ZPROP_INVAL:
392 if (!zpool_prop_feature(propname)) {
393 error = EINVAL;
394 break;
395 }
396
397 /*
398 * Sanitize the input.
399 */
400 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
401 error = EINVAL;
402 break;
403 }
404
405 if (nvpair_value_uint64(elem, &intval) != 0) {
406 error = EINVAL;
407 break;
408 }
409
410 if (intval != 0) {
411 error = EINVAL;
412 break;
413 }
414
415 fname = strchr(propname, '@') + 1;
416 if (zfeature_lookup_name(fname, NULL) != 0) {
417 error = EINVAL;
418 break;
419 }
420
421 has_feature = B_TRUE;
422 break;
423
424 case ZPOOL_PROP_VERSION:
425 error = nvpair_value_uint64(elem, &intval);
426 if (!error &&
427 (intval < spa_version(spa) ||
428 intval > SPA_VERSION_BEFORE_FEATURES ||
429 has_feature))
430 error = EINVAL;
431 break;
432
433 case ZPOOL_PROP_DELEGATION:
434 case ZPOOL_PROP_AUTOREPLACE:
435 case ZPOOL_PROP_LISTSNAPS:
436 case ZPOOL_PROP_AUTOEXPAND:
437 error = nvpair_value_uint64(elem, &intval);
438 if (!error && intval > 1)
439 error = EINVAL;
440 break;
441
442 case ZPOOL_PROP_BOOTFS:
443 /*
444 * If the pool version is less than SPA_VERSION_BOOTFS,
445 * or the pool is still being created (version == 0),
446 * the bootfs property cannot be set.
447 */
448 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
449 error = ENOTSUP;
450 break;
451 }
452
453 /*
454 * Make sure the vdev config is bootable
455 */
456 if (!vdev_is_bootable(spa->spa_root_vdev)) {
457 error = ENOTSUP;
458 break;
459 }
460
461 reset_bootfs = 1;
462
463 error = nvpair_value_string(elem, &strval);
464
465 if (!error) {
466 objset_t *os;
467 uint64_t compress;
468
469 if (strval == NULL || strval[0] == '\0') {
470 objnum = zpool_prop_default_numeric(
471 ZPOOL_PROP_BOOTFS);
472 break;
473 }
474
475 if ((error = dmu_objset_hold(strval,FTAG,&os)))
476 break;
477
478 /* Must be ZPL and not gzip compressed. */
479
480 if (dmu_objset_type(os) != DMU_OST_ZFS) {
481 error = ENOTSUP;
482 } else if ((error = dsl_prop_get_integer(strval,
483 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
484 &compress, NULL)) == 0 &&
485 !BOOTFS_COMPRESS_VALID(compress)) {
486 error = ENOTSUP;
487 } else {
488 objnum = dmu_objset_id(os);
489 }
490 dmu_objset_rele(os, FTAG);
491 }
492 break;
493
494 case ZPOOL_PROP_FAILUREMODE:
495 error = nvpair_value_uint64(elem, &intval);
496 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
497 intval > ZIO_FAILURE_MODE_PANIC))
498 error = EINVAL;
499
500 /*
501 * This is a special case which only occurs when
502 * the pool has completely failed. This allows
503 * the user to change the in-core failmode property
504 * without syncing it out to disk (I/Os might
505 * currently be blocked). We do this by returning
506 * EIO to the caller (spa_prop_set) to trick it
507 * into thinking we encountered a property validation
508 * error.
509 */
510 if (!error && spa_suspended(spa)) {
511 spa->spa_failmode = intval;
512 error = EIO;
513 }
514 break;
515
516 case ZPOOL_PROP_CACHEFILE:
517 if ((error = nvpair_value_string(elem, &strval)) != 0)
518 break;
519
520 if (strval[0] == '\0')
521 break;
522
523 if (strcmp(strval, "none") == 0)
524 break;
525
526 if (strval[0] != '/') {
527 error = EINVAL;
528 break;
529 }
530
531 slash = strrchr(strval, '/');
532 ASSERT(slash != NULL);
533
534 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
535 strcmp(slash, "/..") == 0)
536 error = EINVAL;
537 break;
538
539 case ZPOOL_PROP_COMMENT:
540 if ((error = nvpair_value_string(elem, &strval)) != 0)
541 break;
542 for (check = strval; *check != '\0'; check++) {
543 if (!isprint(*check)) {
544 error = EINVAL;
545 break;
546 }
547 check++;
548 }
549 if (strlen(strval) > ZPROP_MAX_COMMENT)
550 error = E2BIG;
551 break;
552
553 case ZPOOL_PROP_DEDUPDITTO:
554 if (spa_version(spa) < SPA_VERSION_DEDUP)
555 error = ENOTSUP;
556 else
557 error = nvpair_value_uint64(elem, &intval);
558 if (error == 0 &&
559 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
560 error = EINVAL;
561 break;
562
563 default:
564 break;
565 }
566
567 if (error)
568 break;
569 }
570
571 if (!error && reset_bootfs) {
572 error = nvlist_remove(props,
573 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
574
575 if (!error) {
576 error = nvlist_add_uint64(props,
577 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
578 }
579 }
580
581 return (error);
582 }
583
584 void
585 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
586 {
587 char *cachefile;
588 spa_config_dirent_t *dp;
589
590 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
591 &cachefile) != 0)
592 return;
593
594 dp = kmem_alloc(sizeof (spa_config_dirent_t),
595 KM_PUSHPAGE);
596
597 if (cachefile[0] == '\0')
598 dp->scd_path = spa_strdup(spa_config_path);
599 else if (strcmp(cachefile, "none") == 0)
600 dp->scd_path = NULL;
601 else
602 dp->scd_path = spa_strdup(cachefile);
603
604 list_insert_head(&spa->spa_config_list, dp);
605 if (need_sync)
606 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
607 }
608
609 int
610 spa_prop_set(spa_t *spa, nvlist_t *nvp)
611 {
612 int error;
613 nvpair_t *elem = NULL;
614 boolean_t need_sync = B_FALSE;
615
616 if ((error = spa_prop_validate(spa, nvp)) != 0)
617 return (error);
618
619 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
620 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
621
622 if (prop == ZPOOL_PROP_CACHEFILE ||
623 prop == ZPOOL_PROP_ALTROOT ||
624 prop == ZPOOL_PROP_READONLY)
625 continue;
626
627 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
628 uint64_t ver;
629
630 if (prop == ZPOOL_PROP_VERSION) {
631 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
632 } else {
633 ASSERT(zpool_prop_feature(nvpair_name(elem)));
634 ver = SPA_VERSION_FEATURES;
635 need_sync = B_TRUE;
636 }
637
638 /* Save time if the version is already set. */
639 if (ver == spa_version(spa))
640 continue;
641
642 /*
643 * In addition to the pool directory object, we might
644 * create the pool properties object, the features for
645 * read object, the features for write object, or the
646 * feature descriptions object.
647 */
648 error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
649 spa_sync_version, spa, &ver, 6);
650 if (error)
651 return (error);
652 continue;
653 }
654
655 need_sync = B_TRUE;
656 break;
657 }
658
659 if (need_sync) {
660 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
661 spa, nvp, 6));
662 }
663
664 return (0);
665 }
666
667 /*
668 * If the bootfs property value is dsobj, clear it.
669 */
670 void
671 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
672 {
673 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
674 VERIFY(zap_remove(spa->spa_meta_objset,
675 spa->spa_pool_props_object,
676 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
677 spa->spa_bootfs = 0;
678 }
679 }
680
681 /*ARGSUSED*/
682 static int
683 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
684 {
685 spa_t *spa = arg1;
686 vdev_t *rvd = spa->spa_root_vdev;
687 uint64_t vdev_state;
688 ASSERTV(uint64_t *newguid = arg2);
689
690 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
691 vdev_state = rvd->vdev_state;
692 spa_config_exit(spa, SCL_STATE, FTAG);
693
694 if (vdev_state != VDEV_STATE_HEALTHY)
695 return (ENXIO);
696
697 ASSERT3U(spa_guid(spa), !=, *newguid);
698
699 return (0);
700 }
701
702 static void
703 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
704 {
705 spa_t *spa = arg1;
706 uint64_t *newguid = arg2;
707 uint64_t oldguid;
708 vdev_t *rvd = spa->spa_root_vdev;
709
710 oldguid = spa_guid(spa);
711
712 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
713 rvd->vdev_guid = *newguid;
714 rvd->vdev_guid_sum += (*newguid - oldguid);
715 vdev_config_dirty(rvd);
716 spa_config_exit(spa, SCL_STATE, FTAG);
717
718 spa_history_log_internal(LOG_POOL_GUID_CHANGE, spa, tx,
719 "old=%lld new=%lld", oldguid, *newguid);
720 }
721
722 /*
723 * Change the GUID for the pool. This is done so that we can later
724 * re-import a pool built from a clone of our own vdevs. We will modify
725 * the root vdev's guid, our own pool guid, and then mark all of our
726 * vdevs dirty. Note that we must make sure that all our vdevs are
727 * online when we do this, or else any vdevs that weren't present
728 * would be orphaned from our pool. We are also going to issue a
729 * sysevent to update any watchers.
730 */
731 int
732 spa_change_guid(spa_t *spa)
733 {
734 int error;
735 uint64_t guid;
736
737 mutex_enter(&spa_namespace_lock);
738 guid = spa_generate_guid(NULL);
739
740 error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
741 spa_change_guid_sync, spa, &guid, 5);
742
743 if (error == 0) {
744 spa_config_sync(spa, B_FALSE, B_TRUE);
745 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
746 }
747
748 mutex_exit(&spa_namespace_lock);
749
750 return (error);
751 }
752
753 /*
754 * ==========================================================================
755 * SPA state manipulation (open/create/destroy/import/export)
756 * ==========================================================================
757 */
758
759 static int
760 spa_error_entry_compare(const void *a, const void *b)
761 {
762 spa_error_entry_t *sa = (spa_error_entry_t *)a;
763 spa_error_entry_t *sb = (spa_error_entry_t *)b;
764 int ret;
765
766 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
767 sizeof (zbookmark_t));
768
769 if (ret < 0)
770 return (-1);
771 else if (ret > 0)
772 return (1);
773 else
774 return (0);
775 }
776
777 /*
778 * Utility function which retrieves copies of the current logs and
779 * re-initializes them in the process.
780 */
781 void
782 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
783 {
784 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
785
786 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
787 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
788
789 avl_create(&spa->spa_errlist_scrub,
790 spa_error_entry_compare, sizeof (spa_error_entry_t),
791 offsetof(spa_error_entry_t, se_avl));
792 avl_create(&spa->spa_errlist_last,
793 spa_error_entry_compare, sizeof (spa_error_entry_t),
794 offsetof(spa_error_entry_t, se_avl));
795 }
796
797 static taskq_t *
798 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
799 uint_t value)
800 {
801 uint_t flags = TASKQ_PREPOPULATE;
802 boolean_t batch = B_FALSE;
803
804 switch (mode) {
805 case zti_mode_null:
806 return (NULL); /* no taskq needed */
807
808 case zti_mode_fixed:
809 ASSERT3U(value, >=, 1);
810 value = MAX(value, 1);
811 break;
812
813 case zti_mode_batch:
814 batch = B_TRUE;
815 flags |= TASKQ_THREADS_CPU_PCT;
816 value = zio_taskq_batch_pct;
817 break;
818
819 case zti_mode_online_percent:
820 flags |= TASKQ_THREADS_CPU_PCT;
821 break;
822
823 default:
824 panic("unrecognized mode for %s taskq (%u:%u) in "
825 "spa_activate()",
826 name, mode, value);
827 break;
828 }
829
830 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
831 if (batch)
832 flags |= TASKQ_DC_BATCH;
833
834 return (taskq_create_sysdc(name, value, 50, INT_MAX,
835 spa->spa_proc, zio_taskq_basedc, flags));
836 }
837 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
838 spa->spa_proc, flags));
839 }
840
841 static void
842 spa_create_zio_taskqs(spa_t *spa)
843 {
844 int t, q;
845
846 for (t = 0; t < ZIO_TYPES; t++) {
847 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
848 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
849 enum zti_modes mode = ztip->zti_mode;
850 uint_t value = ztip->zti_value;
851 char name[32];
852
853 (void) snprintf(name, sizeof (name),
854 "%s_%s", zio_type_name[t], zio_taskq_types[q]);
855
856 spa->spa_zio_taskq[t][q] =
857 spa_taskq_create(spa, name, mode, value);
858 }
859 }
860 }
861
862 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
863 static void
864 spa_thread(void *arg)
865 {
866 callb_cpr_t cprinfo;
867
868 spa_t *spa = arg;
869 user_t *pu = PTOU(curproc);
870
871 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
872 spa->spa_name);
873
874 ASSERT(curproc != &p0);
875 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
876 "zpool-%s", spa->spa_name);
877 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
878
879 /* bind this thread to the requested psrset */
880 if (zio_taskq_psrset_bind != PS_NONE) {
881 pool_lock();
882 mutex_enter(&cpu_lock);
883 mutex_enter(&pidlock);
884 mutex_enter(&curproc->p_lock);
885
886 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
887 0, NULL, NULL) == 0) {
888 curthread->t_bind_pset = zio_taskq_psrset_bind;
889 } else {
890 cmn_err(CE_WARN,
891 "Couldn't bind process for zfs pool \"%s\" to "
892 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
893 }
894
895 mutex_exit(&curproc->p_lock);
896 mutex_exit(&pidlock);
897 mutex_exit(&cpu_lock);
898 pool_unlock();
899 }
900
901 if (zio_taskq_sysdc) {
902 sysdc_thread_enter(curthread, 100, 0);
903 }
904
905 spa->spa_proc = curproc;
906 spa->spa_did = curthread->t_did;
907
908 spa_create_zio_taskqs(spa);
909
910 mutex_enter(&spa->spa_proc_lock);
911 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
912
913 spa->spa_proc_state = SPA_PROC_ACTIVE;
914 cv_broadcast(&spa->spa_proc_cv);
915
916 CALLB_CPR_SAFE_BEGIN(&cprinfo);
917 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
918 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
919 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
920
921 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
922 spa->spa_proc_state = SPA_PROC_GONE;
923 spa->spa_proc = &p0;
924 cv_broadcast(&spa->spa_proc_cv);
925 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
926
927 mutex_enter(&curproc->p_lock);
928 lwp_exit();
929 }
930 #endif
931
932 /*
933 * Activate an uninitialized pool.
934 */
935 static void
936 spa_activate(spa_t *spa, int mode)
937 {
938 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
939
940 spa->spa_state = POOL_STATE_ACTIVE;
941 spa->spa_mode = mode;
942
943 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
944 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
945
946 /* Try to create a covering process */
947 mutex_enter(&spa->spa_proc_lock);
948 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
949 ASSERT(spa->spa_proc == &p0);
950 spa->spa_did = 0;
951
952 #ifdef HAVE_SPA_THREAD
953 /* Only create a process if we're going to be around a while. */
954 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
955 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
956 NULL, 0) == 0) {
957 spa->spa_proc_state = SPA_PROC_CREATED;
958 while (spa->spa_proc_state == SPA_PROC_CREATED) {
959 cv_wait(&spa->spa_proc_cv,
960 &spa->spa_proc_lock);
961 }
962 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
963 ASSERT(spa->spa_proc != &p0);
964 ASSERT(spa->spa_did != 0);
965 } else {
966 #ifdef _KERNEL
967 cmn_err(CE_WARN,
968 "Couldn't create process for zfs pool \"%s\"\n",
969 spa->spa_name);
970 #endif
971 }
972 }
973 #endif /* HAVE_SPA_THREAD */
974 mutex_exit(&spa->spa_proc_lock);
975
976 /* If we didn't create a process, we need to create our taskqs. */
977 if (spa->spa_proc == &p0) {
978 spa_create_zio_taskqs(spa);
979 }
980
981 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
982 offsetof(vdev_t, vdev_config_dirty_node));
983 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
984 offsetof(vdev_t, vdev_state_dirty_node));
985
986 txg_list_create(&spa->spa_vdev_txg_list,
987 offsetof(struct vdev, vdev_txg_node));
988
989 avl_create(&spa->spa_errlist_scrub,
990 spa_error_entry_compare, sizeof (spa_error_entry_t),
991 offsetof(spa_error_entry_t, se_avl));
992 avl_create(&spa->spa_errlist_last,
993 spa_error_entry_compare, sizeof (spa_error_entry_t),
994 offsetof(spa_error_entry_t, se_avl));
995 }
996
997 /*
998 * Opposite of spa_activate().
999 */
1000 static void
1001 spa_deactivate(spa_t *spa)
1002 {
1003 int t, q;
1004
1005 ASSERT(spa->spa_sync_on == B_FALSE);
1006 ASSERT(spa->spa_dsl_pool == NULL);
1007 ASSERT(spa->spa_root_vdev == NULL);
1008 ASSERT(spa->spa_async_zio_root == NULL);
1009 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1010
1011 txg_list_destroy(&spa->spa_vdev_txg_list);
1012
1013 list_destroy(&spa->spa_config_dirty_list);
1014 list_destroy(&spa->spa_state_dirty_list);
1015
1016 for (t = 0; t < ZIO_TYPES; t++) {
1017 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1018 if (spa->spa_zio_taskq[t][q] != NULL)
1019 taskq_destroy(spa->spa_zio_taskq[t][q]);
1020 spa->spa_zio_taskq[t][q] = NULL;
1021 }
1022 }
1023
1024 metaslab_class_destroy(spa->spa_normal_class);
1025 spa->spa_normal_class = NULL;
1026
1027 metaslab_class_destroy(spa->spa_log_class);
1028 spa->spa_log_class = NULL;
1029
1030 /*
1031 * If this was part of an import or the open otherwise failed, we may
1032 * still have errors left in the queues. Empty them just in case.
1033 */
1034 spa_errlog_drain(spa);
1035
1036 avl_destroy(&spa->spa_errlist_scrub);
1037 avl_destroy(&spa->spa_errlist_last);
1038
1039 spa->spa_state = POOL_STATE_UNINITIALIZED;
1040
1041 mutex_enter(&spa->spa_proc_lock);
1042 if (spa->spa_proc_state != SPA_PROC_NONE) {
1043 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1044 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1045 cv_broadcast(&spa->spa_proc_cv);
1046 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1047 ASSERT(spa->spa_proc != &p0);
1048 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1049 }
1050 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1051 spa->spa_proc_state = SPA_PROC_NONE;
1052 }
1053 ASSERT(spa->spa_proc == &p0);
1054 mutex_exit(&spa->spa_proc_lock);
1055
1056 /*
1057 * We want to make sure spa_thread() has actually exited the ZFS
1058 * module, so that the module can't be unloaded out from underneath
1059 * it.
1060 */
1061 if (spa->spa_did != 0) {
1062 thread_join(spa->spa_did);
1063 spa->spa_did = 0;
1064 }
1065 }
1066
1067 /*
1068 * Verify a pool configuration, and construct the vdev tree appropriately. This
1069 * will create all the necessary vdevs in the appropriate layout, with each vdev
1070 * in the CLOSED state. This will prep the pool before open/creation/import.
1071 * All vdev validation is done by the vdev_alloc() routine.
1072 */
1073 static int
1074 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1075 uint_t id, int atype)
1076 {
1077 nvlist_t **child;
1078 uint_t children;
1079 int error;
1080 int c;
1081
1082 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1083 return (error);
1084
1085 if ((*vdp)->vdev_ops->vdev_op_leaf)
1086 return (0);
1087
1088 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1089 &child, &children);
1090
1091 if (error == ENOENT)
1092 return (0);
1093
1094 if (error) {
1095 vdev_free(*vdp);
1096 *vdp = NULL;
1097 return (EINVAL);
1098 }
1099
1100 for (c = 0; c < children; c++) {
1101 vdev_t *vd;
1102 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1103 atype)) != 0) {
1104 vdev_free(*vdp);
1105 *vdp = NULL;
1106 return (error);
1107 }
1108 }
1109
1110 ASSERT(*vdp != NULL);
1111
1112 return (0);
1113 }
1114
1115 /*
1116 * Opposite of spa_load().
1117 */
1118 static void
1119 spa_unload(spa_t *spa)
1120 {
1121 int i;
1122
1123 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1124
1125 /*
1126 * Stop async tasks.
1127 */
1128 spa_async_suspend(spa);
1129
1130 /*
1131 * Stop syncing.
1132 */
1133 if (spa->spa_sync_on) {
1134 txg_sync_stop(spa->spa_dsl_pool);
1135 spa->spa_sync_on = B_FALSE;
1136 }
1137
1138 /*
1139 * Wait for any outstanding async I/O to complete.
1140 */
1141 if (spa->spa_async_zio_root != NULL) {
1142 (void) zio_wait(spa->spa_async_zio_root);
1143 spa->spa_async_zio_root = NULL;
1144 }
1145
1146 bpobj_close(&spa->spa_deferred_bpobj);
1147
1148 /*
1149 * Close the dsl pool.
1150 */
1151 if (spa->spa_dsl_pool) {
1152 dsl_pool_close(spa->spa_dsl_pool);
1153 spa->spa_dsl_pool = NULL;
1154 spa->spa_meta_objset = NULL;
1155 }
1156
1157 ddt_unload(spa);
1158
1159 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1160
1161 /*
1162 * Drop and purge level 2 cache
1163 */
1164 spa_l2cache_drop(spa);
1165
1166 /*
1167 * Close all vdevs.
1168 */
1169 if (spa->spa_root_vdev)
1170 vdev_free(spa->spa_root_vdev);
1171 ASSERT(spa->spa_root_vdev == NULL);
1172
1173 for (i = 0; i < spa->spa_spares.sav_count; i++)
1174 vdev_free(spa->spa_spares.sav_vdevs[i]);
1175 if (spa->spa_spares.sav_vdevs) {
1176 kmem_free(spa->spa_spares.sav_vdevs,
1177 spa->spa_spares.sav_count * sizeof (void *));
1178 spa->spa_spares.sav_vdevs = NULL;
1179 }
1180 if (spa->spa_spares.sav_config) {
1181 nvlist_free(spa->spa_spares.sav_config);
1182 spa->spa_spares.sav_config = NULL;
1183 }
1184 spa->spa_spares.sav_count = 0;
1185
1186 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1187 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1188 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1189 }
1190 if (spa->spa_l2cache.sav_vdevs) {
1191 kmem_free(spa->spa_l2cache.sav_vdevs,
1192 spa->spa_l2cache.sav_count * sizeof (void *));
1193 spa->spa_l2cache.sav_vdevs = NULL;
1194 }
1195 if (spa->spa_l2cache.sav_config) {
1196 nvlist_free(spa->spa_l2cache.sav_config);
1197 spa->spa_l2cache.sav_config = NULL;
1198 }
1199 spa->spa_l2cache.sav_count = 0;
1200
1201 spa->spa_async_suspended = 0;
1202
1203 if (spa->spa_comment != NULL) {
1204 spa_strfree(spa->spa_comment);
1205 spa->spa_comment = NULL;
1206 }
1207
1208 spa_config_exit(spa, SCL_ALL, FTAG);
1209 }
1210
1211 /*
1212 * Load (or re-load) the current list of vdevs describing the active spares for
1213 * this pool. When this is called, we have some form of basic information in
1214 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1215 * then re-generate a more complete list including status information.
1216 */
1217 static void
1218 spa_load_spares(spa_t *spa)
1219 {
1220 nvlist_t **spares;
1221 uint_t nspares;
1222 int i;
1223 vdev_t *vd, *tvd;
1224
1225 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1226
1227 /*
1228 * First, close and free any existing spare vdevs.
1229 */
1230 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1231 vd = spa->spa_spares.sav_vdevs[i];
1232
1233 /* Undo the call to spa_activate() below */
1234 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1235 B_FALSE)) != NULL && tvd->vdev_isspare)
1236 spa_spare_remove(tvd);
1237 vdev_close(vd);
1238 vdev_free(vd);
1239 }
1240
1241 if (spa->spa_spares.sav_vdevs)
1242 kmem_free(spa->spa_spares.sav_vdevs,
1243 spa->spa_spares.sav_count * sizeof (void *));
1244
1245 if (spa->spa_spares.sav_config == NULL)
1246 nspares = 0;
1247 else
1248 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1249 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1250
1251 spa->spa_spares.sav_count = (int)nspares;
1252 spa->spa_spares.sav_vdevs = NULL;
1253
1254 if (nspares == 0)
1255 return;
1256
1257 /*
1258 * Construct the array of vdevs, opening them to get status in the
1259 * process. For each spare, there is potentially two different vdev_t
1260 * structures associated with it: one in the list of spares (used only
1261 * for basic validation purposes) and one in the active vdev
1262 * configuration (if it's spared in). During this phase we open and
1263 * validate each vdev on the spare list. If the vdev also exists in the
1264 * active configuration, then we also mark this vdev as an active spare.
1265 */
1266 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1267 KM_PUSHPAGE);
1268 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1269 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1270 VDEV_ALLOC_SPARE) == 0);
1271 ASSERT(vd != NULL);
1272
1273 spa->spa_spares.sav_vdevs[i] = vd;
1274
1275 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1276 B_FALSE)) != NULL) {
1277 if (!tvd->vdev_isspare)
1278 spa_spare_add(tvd);
1279
1280 /*
1281 * We only mark the spare active if we were successfully
1282 * able to load the vdev. Otherwise, importing a pool
1283 * with a bad active spare would result in strange
1284 * behavior, because multiple pool would think the spare
1285 * is actively in use.
1286 *
1287 * There is a vulnerability here to an equally bizarre
1288 * circumstance, where a dead active spare is later
1289 * brought back to life (onlined or otherwise). Given
1290 * the rarity of this scenario, and the extra complexity
1291 * it adds, we ignore the possibility.
1292 */
1293 if (!vdev_is_dead(tvd))
1294 spa_spare_activate(tvd);
1295 }
1296
1297 vd->vdev_top = vd;
1298 vd->vdev_aux = &spa->spa_spares;
1299
1300 if (vdev_open(vd) != 0)
1301 continue;
1302
1303 if (vdev_validate_aux(vd) == 0)
1304 spa_spare_add(vd);
1305 }
1306
1307 /*
1308 * Recompute the stashed list of spares, with status information
1309 * this time.
1310 */
1311 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1312 DATA_TYPE_NVLIST_ARRAY) == 0);
1313
1314 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1315 KM_PUSHPAGE);
1316 for (i = 0; i < spa->spa_spares.sav_count; i++)
1317 spares[i] = vdev_config_generate(spa,
1318 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1319 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1320 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1321 for (i = 0; i < spa->spa_spares.sav_count; i++)
1322 nvlist_free(spares[i]);
1323 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1324 }
1325
1326 /*
1327 * Load (or re-load) the current list of vdevs describing the active l2cache for
1328 * this pool. When this is called, we have some form of basic information in
1329 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1330 * then re-generate a more complete list including status information.
1331 * Devices which are already active have their details maintained, and are
1332 * not re-opened.
1333 */
1334 static void
1335 spa_load_l2cache(spa_t *spa)
1336 {
1337 nvlist_t **l2cache;
1338 uint_t nl2cache;
1339 int i, j, oldnvdevs;
1340 uint64_t guid;
1341 vdev_t *vd, **oldvdevs, **newvdevs = NULL;
1342 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1343
1344 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1345
1346 if (sav->sav_config != NULL) {
1347 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1348 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1349 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_PUSHPAGE);
1350 } else {
1351 nl2cache = 0;
1352 }
1353
1354 oldvdevs = sav->sav_vdevs;
1355 oldnvdevs = sav->sav_count;
1356 sav->sav_vdevs = NULL;
1357 sav->sav_count = 0;
1358
1359 /*
1360 * Process new nvlist of vdevs.
1361 */
1362 for (i = 0; i < nl2cache; i++) {
1363 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1364 &guid) == 0);
1365
1366 newvdevs[i] = NULL;
1367 for (j = 0; j < oldnvdevs; j++) {
1368 vd = oldvdevs[j];
1369 if (vd != NULL && guid == vd->vdev_guid) {
1370 /*
1371 * Retain previous vdev for add/remove ops.
1372 */
1373 newvdevs[i] = vd;
1374 oldvdevs[j] = NULL;
1375 break;
1376 }
1377 }
1378
1379 if (newvdevs[i] == NULL) {
1380 /*
1381 * Create new vdev
1382 */
1383 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1384 VDEV_ALLOC_L2CACHE) == 0);
1385 ASSERT(vd != NULL);
1386 newvdevs[i] = vd;
1387
1388 /*
1389 * Commit this vdev as an l2cache device,
1390 * even if it fails to open.
1391 */
1392 spa_l2cache_add(vd);
1393
1394 vd->vdev_top = vd;
1395 vd->vdev_aux = sav;
1396
1397 spa_l2cache_activate(vd);
1398
1399 if (vdev_open(vd) != 0)
1400 continue;
1401
1402 (void) vdev_validate_aux(vd);
1403
1404 if (!vdev_is_dead(vd))
1405 l2arc_add_vdev(spa, vd);
1406 }
1407 }
1408
1409 /*
1410 * Purge vdevs that were dropped
1411 */
1412 for (i = 0; i < oldnvdevs; i++) {
1413 uint64_t pool;
1414
1415 vd = oldvdevs[i];
1416 if (vd != NULL) {
1417 ASSERT(vd->vdev_isl2cache);
1418
1419 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1420 pool != 0ULL && l2arc_vdev_present(vd))
1421 l2arc_remove_vdev(vd);
1422 vdev_clear_stats(vd);
1423 vdev_free(vd);
1424 }
1425 }
1426
1427 if (oldvdevs)
1428 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1429
1430 if (sav->sav_config == NULL)
1431 goto out;
1432
1433 sav->sav_vdevs = newvdevs;
1434 sav->sav_count = (int)nl2cache;
1435
1436 /*
1437 * Recompute the stashed list of l2cache devices, with status
1438 * information this time.
1439 */
1440 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1441 DATA_TYPE_NVLIST_ARRAY) == 0);
1442
1443 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_PUSHPAGE);
1444 for (i = 0; i < sav->sav_count; i++)
1445 l2cache[i] = vdev_config_generate(spa,
1446 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1447 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1448 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1449 out:
1450 for (i = 0; i < sav->sav_count; i++)
1451 nvlist_free(l2cache[i]);
1452 if (sav->sav_count)
1453 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1454 }
1455
1456 static int
1457 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1458 {
1459 dmu_buf_t *db;
1460 char *packed = NULL;
1461 size_t nvsize = 0;
1462 int error;
1463 *value = NULL;
1464
1465 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1466 if (error)
1467 return (error);
1468
1469 nvsize = *(uint64_t *)db->db_data;
1470 dmu_buf_rele(db, FTAG);
1471
1472 packed = kmem_alloc(nvsize, KM_PUSHPAGE | KM_NODEBUG);
1473 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1474 DMU_READ_PREFETCH);
1475 if (error == 0)
1476 error = nvlist_unpack(packed, nvsize, value, 0);
1477 kmem_free(packed, nvsize);
1478
1479 return (error);
1480 }
1481
1482 /*
1483 * Checks to see if the given vdev could not be opened, in which case we post a
1484 * sysevent to notify the autoreplace code that the device has been removed.
1485 */
1486 static void
1487 spa_check_removed(vdev_t *vd)
1488 {
1489 int c;
1490
1491 for (c = 0; c < vd->vdev_children; c++)
1492 spa_check_removed(vd->vdev_child[c]);
1493
1494 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1495 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1496 vd->vdev_spa, vd, NULL, 0, 0);
1497 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1498 }
1499 }
1500
1501 /*
1502 * Validate the current config against the MOS config
1503 */
1504 static boolean_t
1505 spa_config_valid(spa_t *spa, nvlist_t *config)
1506 {
1507 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1508 nvlist_t *nv;
1509 int c, i;
1510
1511 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1512
1513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1514 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1515
1516 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1517
1518 /*
1519 * If we're doing a normal import, then build up any additional
1520 * diagnostic information about missing devices in this config.
1521 * We'll pass this up to the user for further processing.
1522 */
1523 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1524 nvlist_t **child, *nv;
1525 uint64_t idx = 0;
1526
1527 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1528 KM_PUSHPAGE);
1529 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
1530
1531 for (c = 0; c < rvd->vdev_children; c++) {
1532 vdev_t *tvd = rvd->vdev_child[c];
1533 vdev_t *mtvd = mrvd->vdev_child[c];
1534
1535 if (tvd->vdev_ops == &vdev_missing_ops &&
1536 mtvd->vdev_ops != &vdev_missing_ops &&
1537 mtvd->vdev_islog)
1538 child[idx++] = vdev_config_generate(spa, mtvd,
1539 B_FALSE, 0);
1540 }
1541
1542 if (idx) {
1543 VERIFY(nvlist_add_nvlist_array(nv,
1544 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1545 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1546 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1547
1548 for (i = 0; i < idx; i++)
1549 nvlist_free(child[i]);
1550 }
1551 nvlist_free(nv);
1552 kmem_free(child, rvd->vdev_children * sizeof (char **));
1553 }
1554
1555 /*
1556 * Compare the root vdev tree with the information we have
1557 * from the MOS config (mrvd). Check each top-level vdev
1558 * with the corresponding MOS config top-level (mtvd).
1559 */
1560 for (c = 0; c < rvd->vdev_children; c++) {
1561 vdev_t *tvd = rvd->vdev_child[c];
1562 vdev_t *mtvd = mrvd->vdev_child[c];
1563
1564 /*
1565 * Resolve any "missing" vdevs in the current configuration.
1566 * If we find that the MOS config has more accurate information
1567 * about the top-level vdev then use that vdev instead.
1568 */
1569 if (tvd->vdev_ops == &vdev_missing_ops &&
1570 mtvd->vdev_ops != &vdev_missing_ops) {
1571
1572 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1573 continue;
1574
1575 /*
1576 * Device specific actions.
1577 */
1578 if (mtvd->vdev_islog) {
1579 spa_set_log_state(spa, SPA_LOG_CLEAR);
1580 } else {
1581 /*
1582 * XXX - once we have 'readonly' pool
1583 * support we should be able to handle
1584 * missing data devices by transitioning
1585 * the pool to readonly.
1586 */
1587 continue;
1588 }
1589
1590 /*
1591 * Swap the missing vdev with the data we were
1592 * able to obtain from the MOS config.
1593 */
1594 vdev_remove_child(rvd, tvd);
1595 vdev_remove_child(mrvd, mtvd);
1596
1597 vdev_add_child(rvd, mtvd);
1598 vdev_add_child(mrvd, tvd);
1599
1600 spa_config_exit(spa, SCL_ALL, FTAG);
1601 vdev_load(mtvd);
1602 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1603
1604 vdev_reopen(rvd);
1605 } else if (mtvd->vdev_islog) {
1606 /*
1607 * Load the slog device's state from the MOS config
1608 * since it's possible that the label does not
1609 * contain the most up-to-date information.
1610 */
1611 vdev_load_log_state(tvd, mtvd);
1612 vdev_reopen(tvd);
1613 }
1614 }
1615 vdev_free(mrvd);
1616 spa_config_exit(spa, SCL_ALL, FTAG);
1617
1618 /*
1619 * Ensure we were able to validate the config.
1620 */
1621 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1622 }
1623
1624 /*
1625 * Check for missing log devices
1626 */
1627 static int
1628 spa_check_logs(spa_t *spa)
1629 {
1630 switch (spa->spa_log_state) {
1631 default:
1632 break;
1633 case SPA_LOG_MISSING:
1634 /* need to recheck in case slog has been restored */
1635 case SPA_LOG_UNKNOWN:
1636 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1637 DS_FIND_CHILDREN)) {
1638 spa_set_log_state(spa, SPA_LOG_MISSING);
1639 return (1);
1640 }
1641 break;
1642 }
1643 return (0);
1644 }
1645
1646 static boolean_t
1647 spa_passivate_log(spa_t *spa)
1648 {
1649 vdev_t *rvd = spa->spa_root_vdev;
1650 boolean_t slog_found = B_FALSE;
1651 int c;
1652
1653 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1654
1655 if (!spa_has_slogs(spa))
1656 return (B_FALSE);
1657
1658 for (c = 0; c < rvd->vdev_children; c++) {
1659 vdev_t *tvd = rvd->vdev_child[c];
1660 metaslab_group_t *mg = tvd->vdev_mg;
1661
1662 if (tvd->vdev_islog) {
1663 metaslab_group_passivate(mg);
1664 slog_found = B_TRUE;
1665 }
1666 }
1667
1668 return (slog_found);
1669 }
1670
1671 static void
1672 spa_activate_log(spa_t *spa)
1673 {
1674 vdev_t *rvd = spa->spa_root_vdev;
1675 int c;
1676
1677 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1678
1679 for (c = 0; c < rvd->vdev_children; c++) {
1680 vdev_t *tvd = rvd->vdev_child[c];
1681 metaslab_group_t *mg = tvd->vdev_mg;
1682
1683 if (tvd->vdev_islog)
1684 metaslab_group_activate(mg);
1685 }
1686 }
1687
1688 int
1689 spa_offline_log(spa_t *spa)
1690 {
1691 int error = 0;
1692
1693 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1694 NULL, DS_FIND_CHILDREN)) == 0) {
1695
1696 /*
1697 * We successfully offlined the log device, sync out the
1698 * current txg so that the "stubby" block can be removed
1699 * by zil_sync().
1700 */
1701 txg_wait_synced(spa->spa_dsl_pool, 0);
1702 }
1703 return (error);
1704 }
1705
1706 static void
1707 spa_aux_check_removed(spa_aux_vdev_t *sav)
1708 {
1709 int i;
1710
1711 for (i = 0; i < sav->sav_count; i++)
1712 spa_check_removed(sav->sav_vdevs[i]);
1713 }
1714
1715 void
1716 spa_claim_notify(zio_t *zio)
1717 {
1718 spa_t *spa = zio->io_spa;
1719
1720 if (zio->io_error)
1721 return;
1722
1723 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1724 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1725 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1726 mutex_exit(&spa->spa_props_lock);
1727 }
1728
1729 typedef struct spa_load_error {
1730 uint64_t sle_meta_count;
1731 uint64_t sle_data_count;
1732 } spa_load_error_t;
1733
1734 static void
1735 spa_load_verify_done(zio_t *zio)
1736 {
1737 blkptr_t *bp = zio->io_bp;
1738 spa_load_error_t *sle = zio->io_private;
1739 dmu_object_type_t type = BP_GET_TYPE(bp);
1740 int error = zio->io_error;
1741
1742 if (error) {
1743 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1744 type != DMU_OT_INTENT_LOG)
1745 atomic_add_64(&sle->sle_meta_count, 1);
1746 else
1747 atomic_add_64(&sle->sle_data_count, 1);
1748 }
1749 zio_data_buf_free(zio->io_data, zio->io_size);
1750 }
1751
1752 /*ARGSUSED*/
1753 static int
1754 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1755 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1756 {
1757 if (bp != NULL) {
1758 zio_t *rio = arg;
1759 size_t size = BP_GET_PSIZE(bp);
1760 void *data = zio_data_buf_alloc(size);
1761
1762 zio_nowait(zio_read(rio, spa, bp, data, size,
1763 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1764 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1765 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1766 }
1767 return (0);
1768 }
1769
1770 static int
1771 spa_load_verify(spa_t *spa)
1772 {
1773 zio_t *rio;
1774 spa_load_error_t sle = { 0 };
1775 zpool_rewind_policy_t policy;
1776 boolean_t verify_ok = B_FALSE;
1777 int error;
1778
1779 zpool_get_rewind_policy(spa->spa_config, &policy);
1780
1781 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1782 return (0);
1783
1784 rio = zio_root(spa, NULL, &sle,
1785 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1786
1787 error = traverse_pool(spa, spa->spa_verify_min_txg,
1788 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1789
1790 (void) zio_wait(rio);
1791
1792 spa->spa_load_meta_errors = sle.sle_meta_count;
1793 spa->spa_load_data_errors = sle.sle_data_count;
1794
1795 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1796 sle.sle_data_count <= policy.zrp_maxdata) {
1797 int64_t loss = 0;
1798
1799 verify_ok = B_TRUE;
1800 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1801 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1802
1803 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1804 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1805 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1806 VERIFY(nvlist_add_int64(spa->spa_load_info,
1807 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1808 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1809 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1810 } else {
1811 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1812 }
1813
1814 if (error) {
1815 if (error != ENXIO && error != EIO)
1816 error = EIO;
1817 return (error);
1818 }
1819
1820 return (verify_ok ? 0 : EIO);
1821 }
1822
1823 /*
1824 * Find a value in the pool props object.
1825 */
1826 static void
1827 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1828 {
1829 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1830 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1831 }
1832
1833 /*
1834 * Find a value in the pool directory object.
1835 */
1836 static int
1837 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1838 {
1839 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1840 name, sizeof (uint64_t), 1, val));
1841 }
1842
1843 static int
1844 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1845 {
1846 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1847 return (err);
1848 }
1849
1850 /*
1851 * Fix up config after a partly-completed split. This is done with the
1852 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1853 * pool have that entry in their config, but only the splitting one contains
1854 * a list of all the guids of the vdevs that are being split off.
1855 *
1856 * This function determines what to do with that list: either rejoin
1857 * all the disks to the pool, or complete the splitting process. To attempt
1858 * the rejoin, each disk that is offlined is marked online again, and
1859 * we do a reopen() call. If the vdev label for every disk that was
1860 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1861 * then we call vdev_split() on each disk, and complete the split.
1862 *
1863 * Otherwise we leave the config alone, with all the vdevs in place in
1864 * the original pool.
1865 */
1866 static void
1867 spa_try_repair(spa_t *spa, nvlist_t *config)
1868 {
1869 uint_t extracted;
1870 uint64_t *glist;
1871 uint_t i, gcount;
1872 nvlist_t *nvl;
1873 vdev_t **vd;
1874 boolean_t attempt_reopen;
1875
1876 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1877 return;
1878
1879 /* check that the config is complete */
1880 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1881 &glist, &gcount) != 0)
1882 return;
1883
1884 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_PUSHPAGE);
1885
1886 /* attempt to online all the vdevs & validate */
1887 attempt_reopen = B_TRUE;
1888 for (i = 0; i < gcount; i++) {
1889 if (glist[i] == 0) /* vdev is hole */
1890 continue;
1891
1892 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1893 if (vd[i] == NULL) {
1894 /*
1895 * Don't bother attempting to reopen the disks;
1896 * just do the split.
1897 */
1898 attempt_reopen = B_FALSE;
1899 } else {
1900 /* attempt to re-online it */
1901 vd[i]->vdev_offline = B_FALSE;
1902 }
1903 }
1904
1905 if (attempt_reopen) {
1906 vdev_reopen(spa->spa_root_vdev);
1907
1908 /* check each device to see what state it's in */
1909 for (extracted = 0, i = 0; i < gcount; i++) {
1910 if (vd[i] != NULL &&
1911 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1912 break;
1913 ++extracted;
1914 }
1915 }
1916
1917 /*
1918 * If every disk has been moved to the new pool, or if we never
1919 * even attempted to look at them, then we split them off for
1920 * good.
1921 */
1922 if (!attempt_reopen || gcount == extracted) {
1923 for (i = 0; i < gcount; i++)
1924 if (vd[i] != NULL)
1925 vdev_split(vd[i]);
1926 vdev_reopen(spa->spa_root_vdev);
1927 }
1928
1929 kmem_free(vd, gcount * sizeof (vdev_t *));
1930 }
1931
1932 static int
1933 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1934 boolean_t mosconfig)
1935 {
1936 nvlist_t *config = spa->spa_config;
1937 char *ereport = FM_EREPORT_ZFS_POOL;
1938 char *comment;
1939 int error;
1940 uint64_t pool_guid;
1941 nvlist_t *nvl;
1942
1943 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1944 return (EINVAL);
1945
1946 ASSERT(spa->spa_comment == NULL);
1947 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1948 spa->spa_comment = spa_strdup(comment);
1949
1950 /*
1951 * Versioning wasn't explicitly added to the label until later, so if
1952 * it's not present treat it as the initial version.
1953 */
1954 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1955 &spa->spa_ubsync.ub_version) != 0)
1956 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1957
1958 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1959 &spa->spa_config_txg);
1960
1961 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1962 spa_guid_exists(pool_guid, 0)) {
1963 error = EEXIST;
1964 } else {
1965 spa->spa_config_guid = pool_guid;
1966
1967 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1968 &nvl) == 0) {
1969 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1970 KM_PUSHPAGE) == 0);
1971 }
1972
1973 nvlist_free(spa->spa_load_info);
1974 spa->spa_load_info = fnvlist_alloc();
1975
1976 gethrestime(&spa->spa_loaded_ts);
1977 error = spa_load_impl(spa, pool_guid, config, state, type,
1978 mosconfig, &ereport);
1979 }
1980
1981 spa->spa_minref = refcount_count(&spa->spa_refcount);
1982 if (error) {
1983 if (error != EEXIST) {
1984 spa->spa_loaded_ts.tv_sec = 0;
1985 spa->spa_loaded_ts.tv_nsec = 0;
1986 }
1987 if (error != EBADF) {
1988 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1989 }
1990 }
1991 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1992 spa->spa_ena = 0;
1993
1994 return (error);
1995 }
1996
1997 /*
1998 * Load an existing storage pool, using the pool's builtin spa_config as a
1999 * source of configuration information.
2000 */
2001 __attribute__((always_inline))
2002 static inline int
2003 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2004 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2005 char **ereport)
2006 {
2007 int error = 0;
2008 nvlist_t *nvroot = NULL;
2009 nvlist_t *label;
2010 vdev_t *rvd;
2011 uberblock_t *ub = &spa->spa_uberblock;
2012 uint64_t children, config_cache_txg = spa->spa_config_txg;
2013 int orig_mode = spa->spa_mode;
2014 int parse;
2015 uint64_t obj;
2016 boolean_t missing_feat_write = B_FALSE;
2017
2018 /*
2019 * If this is an untrusted config, access the pool in read-only mode.
2020 * This prevents things like resilvering recently removed devices.
2021 */
2022 if (!mosconfig)
2023 spa->spa_mode = FREAD;
2024
2025 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2026
2027 spa->spa_load_state = state;
2028
2029 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2030 return (EINVAL);
2031
2032 parse = (type == SPA_IMPORT_EXISTING ?
2033 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2034
2035 /*
2036 * Create "The Godfather" zio to hold all async IOs
2037 */
2038 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2039 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2040
2041 /*
2042 * Parse the configuration into a vdev tree. We explicitly set the
2043 * value that will be returned by spa_version() since parsing the
2044 * configuration requires knowing the version number.
2045 */
2046 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2047 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2048 spa_config_exit(spa, SCL_ALL, FTAG);
2049
2050 if (error != 0)
2051 return (error);
2052
2053 ASSERT(spa->spa_root_vdev == rvd);
2054
2055 if (type != SPA_IMPORT_ASSEMBLE) {
2056 ASSERT(spa_guid(spa) == pool_guid);
2057 }
2058
2059 /*
2060 * Try to open all vdevs, loading each label in the process.
2061 */
2062 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2063 error = vdev_open(rvd);
2064 spa_config_exit(spa, SCL_ALL, FTAG);
2065 if (error != 0)
2066 return (error);
2067
2068 /*
2069 * We need to validate the vdev labels against the configuration that
2070 * we have in hand, which is dependent on the setting of mosconfig. If
2071 * mosconfig is true then we're validating the vdev labels based on
2072 * that config. Otherwise, we're validating against the cached config
2073 * (zpool.cache) that was read when we loaded the zfs module, and then
2074 * later we will recursively call spa_load() and validate against
2075 * the vdev config.
2076 *
2077 * If we're assembling a new pool that's been split off from an
2078 * existing pool, the labels haven't yet been updated so we skip
2079 * validation for now.
2080 */
2081 if (type != SPA_IMPORT_ASSEMBLE) {
2082 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2083 error = vdev_validate(rvd, mosconfig);
2084 spa_config_exit(spa, SCL_ALL, FTAG);
2085
2086 if (error != 0)
2087 return (error);
2088
2089 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2090 return (ENXIO);
2091 }
2092
2093 /*
2094 * Find the best uberblock.
2095 */
2096 vdev_uberblock_load(rvd, ub, &label);
2097
2098 /*
2099 * If we weren't able to find a single valid uberblock, return failure.
2100 */
2101 if (ub->ub_txg == 0) {
2102 nvlist_free(label);
2103 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2104 }
2105
2106 /*
2107 * If the pool has an unsupported version we can't open it.
2108 */
2109 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2110 nvlist_free(label);
2111 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2112 }
2113
2114 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2115 nvlist_t *features;
2116
2117 /*
2118 * If we weren't able to find what's necessary for reading the
2119 * MOS in the label, return failure.
2120 */
2121 if (label == NULL || nvlist_lookup_nvlist(label,
2122 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2123 nvlist_free(label);
2124 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2125 ENXIO));
2126 }
2127
2128 /*
2129 * Update our in-core representation with the definitive values
2130 * from the label.
2131 */
2132 nvlist_free(spa->spa_label_features);
2133 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2134 }
2135
2136 nvlist_free(label);
2137
2138 /*
2139 * Look through entries in the label nvlist's features_for_read. If
2140 * there is a feature listed there which we don't understand then we
2141 * cannot open a pool.
2142 */
2143 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2144 nvlist_t *unsup_feat;
2145 nvpair_t *nvp;
2146
2147 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2148 0);
2149
2150 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2151 nvp != NULL;
2152 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2153 if (!zfeature_is_supported(nvpair_name(nvp))) {
2154 VERIFY(nvlist_add_string(unsup_feat,
2155 nvpair_name(nvp), "") == 0);
2156 }
2157 }
2158
2159 if (!nvlist_empty(unsup_feat)) {
2160 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2161 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2162 nvlist_free(unsup_feat);
2163 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2164 ENOTSUP));
2165 }
2166
2167 nvlist_free(unsup_feat);
2168 }
2169
2170 /*
2171 * If the vdev guid sum doesn't match the uberblock, we have an
2172 * incomplete configuration. We first check to see if the pool
2173 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2174 * If it is, defer the vdev_guid_sum check till later so we
2175 * can handle missing vdevs.
2176 */
2177 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2178 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2179 rvd->vdev_guid_sum != ub->ub_guid_sum)
2180 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2181
2182 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2183 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2184 spa_try_repair(spa, config);
2185 spa_config_exit(spa, SCL_ALL, FTAG);
2186 nvlist_free(spa->spa_config_splitting);
2187 spa->spa_config_splitting = NULL;
2188 }
2189
2190 /*
2191 * Initialize internal SPA structures.
2192 */
2193 spa->spa_state = POOL_STATE_ACTIVE;
2194 spa->spa_ubsync = spa->spa_uberblock;
2195 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2196 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2197 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2198 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2199 spa->spa_claim_max_txg = spa->spa_first_txg;
2200 spa->spa_prev_software_version = ub->ub_software_version;
2201
2202 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2203 if (error)
2204 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2205 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2206
2207 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2208 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2209
2210 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2211 boolean_t missing_feat_read = B_FALSE;
2212 nvlist_t *unsup_feat, *enabled_feat;
2213
2214 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2215 &spa->spa_feat_for_read_obj) != 0) {
2216 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2217 }
2218
2219 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2220 &spa->spa_feat_for_write_obj) != 0) {
2221 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2222 }
2223
2224 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2225 &spa->spa_feat_desc_obj) != 0) {
2226 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2227 }
2228
2229 enabled_feat = fnvlist_alloc();
2230 unsup_feat = fnvlist_alloc();
2231
2232 if (!feature_is_supported(spa->spa_meta_objset,
2233 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2234 unsup_feat, enabled_feat))
2235 missing_feat_read = B_TRUE;
2236
2237 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2238 if (!feature_is_supported(spa->spa_meta_objset,
2239 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2240 unsup_feat, enabled_feat)) {
2241 missing_feat_write = B_TRUE;
2242 }
2243 }
2244
2245 fnvlist_add_nvlist(spa->spa_load_info,
2246 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2247
2248 if (!nvlist_empty(unsup_feat)) {
2249 fnvlist_add_nvlist(spa->spa_load_info,
2250 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2251 }
2252
2253 fnvlist_free(enabled_feat);
2254 fnvlist_free(unsup_feat);
2255
2256 if (!missing_feat_read) {
2257 fnvlist_add_boolean(spa->spa_load_info,
2258 ZPOOL_CONFIG_CAN_RDONLY);
2259 }
2260
2261 /*
2262 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2263 * twofold: to determine whether the pool is available for
2264 * import in read-write mode and (if it is not) whether the
2265 * pool is available for import in read-only mode. If the pool
2266 * is available for import in read-write mode, it is displayed
2267 * as available in userland; if it is not available for import
2268 * in read-only mode, it is displayed as unavailable in
2269 * userland. If the pool is available for import in read-only
2270 * mode but not read-write mode, it is displayed as unavailable
2271 * in userland with a special note that the pool is actually
2272 * available for open in read-only mode.
2273 *
2274 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2275 * missing a feature for write, we must first determine whether
2276 * the pool can be opened read-only before returning to
2277 * userland in order to know whether to display the
2278 * abovementioned note.
2279 */
2280 if (missing_feat_read || (missing_feat_write &&
2281 spa_writeable(spa))) {
2282 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2283 ENOTSUP));
2284 }
2285 }
2286
2287 spa->spa_is_initializing = B_TRUE;
2288 error = dsl_pool_open(spa->spa_dsl_pool);
2289 spa->spa_is_initializing = B_FALSE;
2290 if (error != 0)
2291 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2292
2293 if (!mosconfig) {
2294 uint64_t hostid;
2295 nvlist_t *policy = NULL, *nvconfig;
2296
2297 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299
2300 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2301 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2302 char *hostname;
2303 unsigned long myhostid = 0;
2304
2305 VERIFY(nvlist_lookup_string(nvconfig,
2306 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2307
2308 #ifdef _KERNEL
2309 myhostid = zone_get_hostid(NULL);
2310 #else /* _KERNEL */
2311 /*
2312 * We're emulating the system's hostid in userland, so
2313 * we can't use zone_get_hostid().
2314 */
2315 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2316 #endif /* _KERNEL */
2317 if (hostid != 0 && myhostid != 0 &&
2318 hostid != myhostid) {
2319 nvlist_free(nvconfig);
2320 cmn_err(CE_WARN, "pool '%s' could not be "
2321 "loaded as it was last accessed by "
2322 "another system (host: %s hostid: 0x%lx). "
2323 "See: http://zfsonlinux.org/msg/ZFS-8000-EY",
2324 spa_name(spa), hostname,
2325 (unsigned long)hostid);
2326 return (EBADF);
2327 }
2328 }
2329 if (nvlist_lookup_nvlist(spa->spa_config,
2330 ZPOOL_REWIND_POLICY, &policy) == 0)
2331 VERIFY(nvlist_add_nvlist(nvconfig,
2332 ZPOOL_REWIND_POLICY, policy) == 0);
2333
2334 spa_config_set(spa, nvconfig);
2335 spa_unload(spa);
2336 spa_deactivate(spa);
2337 spa_activate(spa, orig_mode);
2338
2339 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2340 }
2341
2342 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2343 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2344 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2345 if (error != 0)
2346 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2347
2348 /*
2349 * Load the bit that tells us to use the new accounting function
2350 * (raid-z deflation). If we have an older pool, this will not
2351 * be present.
2352 */
2353 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2354 if (error != 0 && error != ENOENT)
2355 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356
2357 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2358 &spa->spa_creation_version);
2359 if (error != 0 && error != ENOENT)
2360 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2361
2362 /*
2363 * Load the persistent error log. If we have an older pool, this will
2364 * not be present.
2365 */
2366 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2367 if (error != 0 && error != ENOENT)
2368 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369
2370 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2371 &spa->spa_errlog_scrub);
2372 if (error != 0 && error != ENOENT)
2373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2374
2375 /*
2376 * Load the history object. If we have an older pool, this
2377 * will not be present.
2378 */
2379 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2380 if (error != 0 && error != ENOENT)
2381 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2382
2383 /*
2384 * If we're assembling the pool from the split-off vdevs of
2385 * an existing pool, we don't want to attach the spares & cache
2386 * devices.
2387 */
2388
2389 /*
2390 * Load any hot spares for this pool.
2391 */
2392 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2393 if (error != 0 && error != ENOENT)
2394 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2395 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2396 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2397 if (load_nvlist(spa, spa->spa_spares.sav_object,
2398 &spa->spa_spares.sav_config) != 0)
2399 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400
2401 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2402 spa_load_spares(spa);
2403 spa_config_exit(spa, SCL_ALL, FTAG);
2404 } else if (error == 0) {
2405 spa->spa_spares.sav_sync = B_TRUE;
2406 }
2407
2408 /*
2409 * Load any level 2 ARC devices for this pool.
2410 */
2411 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2412 &spa->spa_l2cache.sav_object);
2413 if (error != 0 && error != ENOENT)
2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2415 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2416 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2417 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2418 &spa->spa_l2cache.sav_config) != 0)
2419 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2420
2421 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2422 spa_load_l2cache(spa);
2423 spa_config_exit(spa, SCL_ALL, FTAG);
2424 } else if (error == 0) {
2425 spa->spa_l2cache.sav_sync = B_TRUE;
2426 }
2427
2428 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2429
2430 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2431 if (error && error != ENOENT)
2432 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433
2434 if (error == 0) {
2435 uint64_t autoreplace;
2436
2437 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2438 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2439 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2440 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2441 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2442 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2443 &spa->spa_dedup_ditto);
2444
2445 spa->spa_autoreplace = (autoreplace != 0);
2446 }
2447
2448 /*
2449 * If the 'autoreplace' property is set, then post a resource notifying
2450 * the ZFS DE that it should not issue any faults for unopenable
2451 * devices. We also iterate over the vdevs, and post a sysevent for any
2452 * unopenable vdevs so that the normal autoreplace handler can take
2453 * over.
2454 */
2455 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2456 spa_check_removed(spa->spa_root_vdev);
2457 /*
2458 * For the import case, this is done in spa_import(), because
2459 * at this point we're using the spare definitions from
2460 * the MOS config, not necessarily from the userland config.
2461 */
2462 if (state != SPA_LOAD_IMPORT) {
2463 spa_aux_check_removed(&spa->spa_spares);
2464 spa_aux_check_removed(&spa->spa_l2cache);
2465 }
2466 }
2467
2468 /*
2469 * Load the vdev state for all toplevel vdevs.
2470 */
2471 vdev_load(rvd);
2472
2473 /*
2474 * Propagate the leaf DTLs we just loaded all the way up the tree.
2475 */
2476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2477 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2478 spa_config_exit(spa, SCL_ALL, FTAG);
2479
2480 /*
2481 * Load the DDTs (dedup tables).
2482 */
2483 error = ddt_load(spa);
2484 if (error != 0)
2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486
2487 spa_update_dspace(spa);
2488
2489 /*
2490 * Validate the config, using the MOS config to fill in any
2491 * information which might be missing. If we fail to validate
2492 * the config then declare the pool unfit for use. If we're
2493 * assembling a pool from a split, the log is not transferred
2494 * over.
2495 */
2496 if (type != SPA_IMPORT_ASSEMBLE) {
2497 nvlist_t *nvconfig;
2498
2499 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501
2502 if (!spa_config_valid(spa, nvconfig)) {
2503 nvlist_free(nvconfig);
2504 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2505 ENXIO));
2506 }
2507 nvlist_free(nvconfig);
2508
2509 /*
2510 * Now that we've validated the config, check the state of the
2511 * root vdev. If it can't be opened, it indicates one or
2512 * more toplevel vdevs are faulted.
2513 */
2514 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2515 return (ENXIO);
2516
2517 if (spa_check_logs(spa)) {
2518 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2519 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2520 }
2521 }
2522
2523 if (missing_feat_write) {
2524 ASSERT(state == SPA_LOAD_TRYIMPORT);
2525
2526 /*
2527 * At this point, we know that we can open the pool in
2528 * read-only mode but not read-write mode. We now have enough
2529 * information and can return to userland.
2530 */
2531 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2532 }
2533
2534 /*
2535 * We've successfully opened the pool, verify that we're ready
2536 * to start pushing transactions.
2537 */
2538 if (state != SPA_LOAD_TRYIMPORT) {
2539 if ((error = spa_load_verify(spa)))
2540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2541 error));
2542 }
2543
2544 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2545 spa->spa_load_max_txg == UINT64_MAX)) {
2546 dmu_tx_t *tx;
2547 int need_update = B_FALSE;
2548 int c;
2549
2550 ASSERT(state != SPA_LOAD_TRYIMPORT);
2551
2552 /*
2553 * Claim log blocks that haven't been committed yet.
2554 * This must all happen in a single txg.
2555 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2556 * invoked from zil_claim_log_block()'s i/o done callback.
2557 * Price of rollback is that we abandon the log.
2558 */
2559 spa->spa_claiming = B_TRUE;
2560
2561 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2562 spa_first_txg(spa));
2563 (void) dmu_objset_find(spa_name(spa),
2564 zil_claim, tx, DS_FIND_CHILDREN);
2565 dmu_tx_commit(tx);
2566
2567 spa->spa_claiming = B_FALSE;
2568
2569 spa_set_log_state(spa, SPA_LOG_GOOD);
2570 spa->spa_sync_on = B_TRUE;
2571 txg_sync_start(spa->spa_dsl_pool);
2572
2573 /*
2574 * Wait for all claims to sync. We sync up to the highest
2575 * claimed log block birth time so that claimed log blocks
2576 * don't appear to be from the future. spa_claim_max_txg
2577 * will have been set for us by either zil_check_log_chain()
2578 * (invoked from spa_check_logs()) or zil_claim() above.
2579 */
2580 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2581
2582 /*
2583 * If the config cache is stale, or we have uninitialized
2584 * metaslabs (see spa_vdev_add()), then update the config.
2585 *
2586 * If this is a verbatim import, trust the current
2587 * in-core spa_config and update the disk labels.
2588 */
2589 if (config_cache_txg != spa->spa_config_txg ||
2590 state == SPA_LOAD_IMPORT ||
2591 state == SPA_LOAD_RECOVER ||
2592 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2593 need_update = B_TRUE;
2594
2595 for (c = 0; c < rvd->vdev_children; c++)
2596 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2597 need_update = B_TRUE;
2598
2599 /*
2600 * Update the config cache asychronously in case we're the
2601 * root pool, in which case the config cache isn't writable yet.
2602 */
2603 if (need_update)
2604 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2605
2606 /*
2607 * Check all DTLs to see if anything needs resilvering.
2608 */
2609 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2610 vdev_resilver_needed(rvd, NULL, NULL))
2611 spa_async_request(spa, SPA_ASYNC_RESILVER);
2612
2613 /*
2614 * Delete any inconsistent datasets.
2615 */
2616 (void) dmu_objset_find(spa_name(spa),
2617 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2618
2619 /*
2620 * Clean up any stale temporary dataset userrefs.
2621 */
2622 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2623 }
2624
2625 return (0);
2626 }
2627
2628 static int
2629 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2630 {
2631 int mode = spa->spa_mode;
2632
2633 spa_unload(spa);
2634 spa_deactivate(spa);
2635
2636 spa->spa_load_max_txg--;
2637
2638 spa_activate(spa, mode);
2639 spa_async_suspend(spa);
2640
2641 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2642 }
2643
2644 /*
2645 * If spa_load() fails this function will try loading prior txg's. If
2646 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2647 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2648 * function will not rewind the pool and will return the same error as
2649 * spa_load().
2650 */
2651 static int
2652 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2653 uint64_t max_request, int rewind_flags)
2654 {
2655 nvlist_t *loadinfo = NULL;
2656 nvlist_t *config = NULL;
2657 int load_error, rewind_error;
2658 uint64_t safe_rewind_txg;
2659 uint64_t min_txg;
2660
2661 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2662 spa->spa_load_max_txg = spa->spa_load_txg;
2663 spa_set_log_state(spa, SPA_LOG_CLEAR);
2664 } else {
2665 spa->spa_load_max_txg = max_request;
2666 }
2667
2668 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2669 mosconfig);
2670 if (load_error == 0)
2671 return (0);
2672
2673 if (spa->spa_root_vdev != NULL)
2674 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2675
2676 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2677 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2678
2679 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2680 nvlist_free(config);
2681 return (load_error);
2682 }
2683
2684 if (state == SPA_LOAD_RECOVER) {
2685 /* Price of rolling back is discarding txgs, including log */
2686 spa_set_log_state(spa, SPA_LOG_CLEAR);
2687 } else {
2688 /*
2689 * If we aren't rolling back save the load info from our first
2690 * import attempt so that we can restore it after attempting
2691 * to rewind.
2692 */
2693 loadinfo = spa->spa_load_info;
2694 spa->spa_load_info = fnvlist_alloc();
2695 }
2696
2697 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2698 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2699 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2700 TXG_INITIAL : safe_rewind_txg;
2701
2702 /*
2703 * Continue as long as we're finding errors, we're still within
2704 * the acceptable rewind range, and we're still finding uberblocks
2705 */
2706 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2707 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2708 if (spa->spa_load_max_txg < safe_rewind_txg)
2709 spa->spa_extreme_rewind = B_TRUE;
2710 rewind_error = spa_load_retry(spa, state, mosconfig);
2711 }
2712
2713 spa->spa_extreme_rewind = B_FALSE;
2714 spa->spa_load_max_txg = UINT64_MAX;
2715
2716 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2717 spa_config_set(spa, config);
2718
2719 if (state == SPA_LOAD_RECOVER) {
2720 ASSERT3P(loadinfo, ==, NULL);
2721 return (rewind_error);
2722 } else {
2723 /* Store the rewind info as part of the initial load info */
2724 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2725 spa->spa_load_info);
2726
2727 /* Restore the initial load info */
2728 fnvlist_free(spa->spa_load_info);
2729 spa->spa_load_info = loadinfo;
2730
2731 return (load_error);
2732 }
2733 }
2734
2735 /*
2736 * Pool Open/Import
2737 *
2738 * The import case is identical to an open except that the configuration is sent
2739 * down from userland, instead of grabbed from the configuration cache. For the
2740 * case of an open, the pool configuration will exist in the
2741 * POOL_STATE_UNINITIALIZED state.
2742 *
2743 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2744 * the same time open the pool, without having to keep around the spa_t in some
2745 * ambiguous state.
2746 */
2747 static int
2748 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2749 nvlist_t **config)
2750 {
2751 spa_t *spa;
2752 spa_load_state_t state = SPA_LOAD_OPEN;
2753 int error;
2754 int locked = B_FALSE;
2755
2756 *spapp = NULL;
2757
2758 /*
2759 * As disgusting as this is, we need to support recursive calls to this
2760 * function because dsl_dir_open() is called during spa_load(), and ends
2761 * up calling spa_open() again. The real fix is to figure out how to
2762 * avoid dsl_dir_open() calling this in the first place.
2763 */
2764 if (mutex_owner(&spa_namespace_lock) != curthread) {
2765 mutex_enter(&spa_namespace_lock);
2766 locked = B_TRUE;
2767 }
2768
2769 if ((spa = spa_lookup(pool)) == NULL) {
2770 if (locked)
2771 mutex_exit(&spa_namespace_lock);
2772 return (ENOENT);
2773 }
2774
2775 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2776 zpool_rewind_policy_t policy;
2777
2778 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2779 &policy);
2780 if (policy.zrp_request & ZPOOL_DO_REWIND)
2781 state = SPA_LOAD_RECOVER;
2782
2783 spa_activate(spa, spa_mode_global);
2784
2785 if (state != SPA_LOAD_RECOVER)
2786 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2787
2788 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2789 policy.zrp_request);
2790
2791 if (error == EBADF) {
2792 /*
2793 * If vdev_validate() returns failure (indicated by
2794 * EBADF), it indicates that one of the vdevs indicates
2795 * that the pool has been exported or destroyed. If
2796 * this is the case, the config cache is out of sync and
2797 * we should remove the pool from the namespace.
2798 */
2799 spa_unload(spa);
2800 spa_deactivate(spa);
2801 spa_config_sync(spa, B_TRUE, B_TRUE);
2802 spa_remove(spa);
2803 if (locked)
2804 mutex_exit(&spa_namespace_lock);
2805 return (ENOENT);
2806 }
2807
2808 if (error) {
2809 /*
2810 * We can't open the pool, but we still have useful
2811 * information: the state of each vdev after the
2812 * attempted vdev_open(). Return this to the user.
2813 */
2814 if (config != NULL && spa->spa_config) {
2815 VERIFY(nvlist_dup(spa->spa_config, config,
2816 KM_PUSHPAGE) == 0);
2817 VERIFY(nvlist_add_nvlist(*config,
2818 ZPOOL_CONFIG_LOAD_INFO,
2819 spa->spa_load_info) == 0);
2820 }
2821 spa_unload(spa);
2822 spa_deactivate(spa);
2823 spa->spa_last_open_failed = error;
2824 if (locked)
2825 mutex_exit(&spa_namespace_lock);
2826 *spapp = NULL;
2827 return (error);
2828 }
2829 }
2830
2831 spa_open_ref(spa, tag);
2832
2833 if (config != NULL)
2834 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2835
2836 /*
2837 * If we've recovered the pool, pass back any information we
2838 * gathered while doing the load.
2839 */
2840 if (state == SPA_LOAD_RECOVER) {
2841 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2842 spa->spa_load_info) == 0);
2843 }
2844
2845 if (locked) {
2846 spa->spa_last_open_failed = 0;
2847 spa->spa_last_ubsync_txg = 0;
2848 spa->spa_load_txg = 0;
2849 mutex_exit(&spa_namespace_lock);
2850 }
2851
2852 *spapp = spa;
2853
2854 return (0);
2855 }
2856
2857 int
2858 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2859 nvlist_t **config)
2860 {
2861 return (spa_open_common(name, spapp, tag, policy, config));
2862 }
2863
2864 int
2865 spa_open(const char *name, spa_t **spapp, void *tag)
2866 {
2867 return (spa_open_common(name, spapp, tag, NULL, NULL));
2868 }
2869
2870 /*
2871 * Lookup the given spa_t, incrementing the inject count in the process,
2872 * preventing it from being exported or destroyed.
2873 */
2874 spa_t *
2875 spa_inject_addref(char *name)
2876 {
2877 spa_t *spa;
2878
2879 mutex_enter(&spa_namespace_lock);
2880 if ((spa = spa_lookup(name)) == NULL) {
2881 mutex_exit(&spa_namespace_lock);
2882 return (NULL);
2883 }
2884 spa->spa_inject_ref++;
2885 mutex_exit(&spa_namespace_lock);
2886
2887 return (spa);
2888 }
2889
2890 void
2891 spa_inject_delref(spa_t *spa)
2892 {
2893 mutex_enter(&spa_namespace_lock);
2894 spa->spa_inject_ref--;
2895 mutex_exit(&spa_namespace_lock);
2896 }
2897
2898 /*
2899 * Add spares device information to the nvlist.
2900 */
2901 static void
2902 spa_add_spares(spa_t *spa, nvlist_t *config)
2903 {
2904 nvlist_t **spares;
2905 uint_t i, nspares;
2906 nvlist_t *nvroot;
2907 uint64_t guid;
2908 vdev_stat_t *vs;
2909 uint_t vsc;
2910 uint64_t pool;
2911
2912 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2913
2914 if (spa->spa_spares.sav_count == 0)
2915 return;
2916
2917 VERIFY(nvlist_lookup_nvlist(config,
2918 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2919 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2920 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2921 if (nspares != 0) {
2922 VERIFY(nvlist_add_nvlist_array(nvroot,
2923 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2924 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2925 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2926
2927 /*
2928 * Go through and find any spares which have since been
2929 * repurposed as an active spare. If this is the case, update
2930 * their status appropriately.
2931 */
2932 for (i = 0; i < nspares; i++) {
2933 VERIFY(nvlist_lookup_uint64(spares[i],
2934 ZPOOL_CONFIG_GUID, &guid) == 0);
2935 if (spa_spare_exists(guid, &pool, NULL) &&
2936 pool != 0ULL) {
2937 VERIFY(nvlist_lookup_uint64_array(
2938 spares[i], ZPOOL_CONFIG_VDEV_STATS,
2939 (uint64_t **)&vs, &vsc) == 0);
2940 vs->vs_state = VDEV_STATE_CANT_OPEN;
2941 vs->vs_aux = VDEV_AUX_SPARED;
2942 }
2943 }
2944 }
2945 }
2946
2947 /*
2948 * Add l2cache device information to the nvlist, including vdev stats.
2949 */
2950 static void
2951 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2952 {
2953 nvlist_t **l2cache;
2954 uint_t i, j, nl2cache;
2955 nvlist_t *nvroot;
2956 uint64_t guid;
2957 vdev_t *vd;
2958 vdev_stat_t *vs;
2959 uint_t vsc;
2960
2961 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2962
2963 if (spa->spa_l2cache.sav_count == 0)
2964 return;
2965
2966 VERIFY(nvlist_lookup_nvlist(config,
2967 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2968 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2969 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2970 if (nl2cache != 0) {
2971 VERIFY(nvlist_add_nvlist_array(nvroot,
2972 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2973 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2974 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2975
2976 /*
2977 * Update level 2 cache device stats.
2978 */
2979
2980 for (i = 0; i < nl2cache; i++) {
2981 VERIFY(nvlist_lookup_uint64(l2cache[i],
2982 ZPOOL_CONFIG_GUID, &guid) == 0);
2983
2984 vd = NULL;
2985 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2986 if (guid ==
2987 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2988 vd = spa->spa_l2cache.sav_vdevs[j];
2989 break;
2990 }
2991 }
2992 ASSERT(vd != NULL);
2993
2994 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2995 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2996 == 0);
2997 vdev_get_stats(vd, vs);
2998 }
2999 }
3000 }
3001
3002 static void
3003 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3004 {
3005 nvlist_t *features;
3006 zap_cursor_t zc;
3007 zap_attribute_t za;
3008
3009 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3010 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3011
3012 if (spa->spa_feat_for_read_obj != 0) {
3013 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3014 spa->spa_feat_for_read_obj);
3015 zap_cursor_retrieve(&zc, &za) == 0;
3016 zap_cursor_advance(&zc)) {
3017 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3018 za.za_num_integers == 1);
3019 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3020 za.za_first_integer));
3021 }
3022 zap_cursor_fini(&zc);
3023 }
3024
3025 if (spa->spa_feat_for_write_obj != 0) {
3026 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3027 spa->spa_feat_for_write_obj);
3028 zap_cursor_retrieve(&zc, &za) == 0;
3029 zap_cursor_advance(&zc)) {
3030 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3031 za.za_num_integers == 1);
3032 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3033 za.za_first_integer));
3034 }
3035 zap_cursor_fini(&zc);
3036 }
3037
3038 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3039 features) == 0);
3040 nvlist_free(features);
3041 }
3042
3043 int
3044 spa_get_stats(const char *name, nvlist_t **config,
3045 char *altroot, size_t buflen)
3046 {
3047 int error;
3048 spa_t *spa;
3049
3050 *config = NULL;
3051 error = spa_open_common(name, &spa, FTAG, NULL, config);
3052
3053 if (spa != NULL) {
3054 /*
3055 * This still leaves a window of inconsistency where the spares
3056 * or l2cache devices could change and the config would be
3057 * self-inconsistent.
3058 */
3059 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3060
3061 if (*config != NULL) {
3062 uint64_t loadtimes[2];
3063
3064 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3065 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3066 VERIFY(nvlist_add_uint64_array(*config,
3067 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3068
3069 VERIFY(nvlist_add_uint64(*config,
3070 ZPOOL_CONFIG_ERRCOUNT,
3071 spa_get_errlog_size(spa)) == 0);
3072
3073 if (spa_suspended(spa))
3074 VERIFY(nvlist_add_uint64(*config,
3075 ZPOOL_CONFIG_SUSPENDED,
3076 spa->spa_failmode) == 0);
3077
3078 spa_add_spares(spa, *config);
3079 spa_add_l2cache(spa, *config);
3080 spa_add_feature_stats(spa, *config);
3081 }
3082 }
3083
3084 /*
3085 * We want to get the alternate root even for faulted pools, so we cheat
3086 * and call spa_lookup() directly.
3087 */
3088 if (altroot) {
3089 if (spa == NULL) {
3090 mutex_enter(&spa_namespace_lock);
3091 spa = spa_lookup(name);
3092 if (spa)
3093 spa_altroot(spa, altroot, buflen);
3094 else
3095 altroot[0] = '\0';
3096 spa = NULL;
3097 mutex_exit(&spa_namespace_lock);
3098 } else {
3099 spa_altroot(spa, altroot, buflen);
3100 }
3101 }
3102
3103 if (spa != NULL) {
3104 spa_config_exit(spa, SCL_CONFIG, FTAG);
3105 spa_close(spa, FTAG);
3106 }
3107
3108 return (error);
3109 }
3110
3111 /*
3112 * Validate that the auxiliary device array is well formed. We must have an
3113 * array of nvlists, each which describes a valid leaf vdev. If this is an
3114 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3115 * specified, as long as they are well-formed.
3116 */
3117 static int
3118 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3119 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3120 vdev_labeltype_t label)
3121 {
3122 nvlist_t **dev;
3123 uint_t i, ndev;
3124 vdev_t *vd;
3125 int error;
3126
3127 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3128
3129 /*
3130 * It's acceptable to have no devs specified.
3131 */
3132 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3133 return (0);
3134
3135 if (ndev == 0)
3136 return (EINVAL);
3137
3138 /*
3139 * Make sure the pool is formatted with a version that supports this
3140 * device type.
3141 */
3142 if (spa_version(spa) < version)
3143 return (ENOTSUP);
3144
3145 /*
3146 * Set the pending device list so we correctly handle device in-use
3147 * checking.
3148 */
3149 sav->sav_pending = dev;
3150 sav->sav_npending = ndev;
3151
3152 for (i = 0; i < ndev; i++) {
3153 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3154 mode)) != 0)
3155 goto out;
3156
3157 if (!vd->vdev_ops->vdev_op_leaf) {
3158 vdev_free(vd);
3159 error = EINVAL;
3160 goto out;
3161 }
3162
3163 /*
3164 * The L2ARC currently only supports disk devices in
3165 * kernel context. For user-level testing, we allow it.
3166 */
3167 #ifdef _KERNEL
3168 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3169 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3170 error = ENOTBLK;
3171 vdev_free(vd);
3172 goto out;
3173 }
3174 #endif
3175 vd->vdev_top = vd;
3176
3177 if ((error = vdev_open(vd)) == 0 &&
3178 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3179 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3180 vd->vdev_guid) == 0);
3181 }
3182
3183 vdev_free(vd);
3184
3185 if (error &&
3186 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3187 goto out;
3188 else
3189 error = 0;
3190 }
3191
3192 out:
3193 sav->sav_pending = NULL;
3194 sav->sav_npending = 0;
3195 return (error);
3196 }
3197
3198 static int
3199 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3200 {
3201 int error;
3202
3203 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3204
3205 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3206 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3207 VDEV_LABEL_SPARE)) != 0) {
3208 return (error);
3209 }
3210
3211 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3212 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3213 VDEV_LABEL_L2CACHE));
3214 }
3215
3216 static void
3217 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3218 const char *config)
3219 {
3220 int i;
3221
3222 if (sav->sav_config != NULL) {
3223 nvlist_t **olddevs;
3224 uint_t oldndevs;
3225 nvlist_t **newdevs;
3226
3227 /*
3228 * Generate new dev list by concatentating with the
3229 * current dev list.
3230 */
3231 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3232 &olddevs, &oldndevs) == 0);
3233
3234 newdevs = kmem_alloc(sizeof (void *) *
3235 (ndevs + oldndevs), KM_PUSHPAGE);
3236 for (i = 0; i < oldndevs; i++)
3237 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3238 KM_PUSHPAGE) == 0);
3239 for (i = 0; i < ndevs; i++)
3240 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3241 KM_PUSHPAGE) == 0);
3242
3243 VERIFY(nvlist_remove(sav->sav_config, config,
3244 DATA_TYPE_NVLIST_ARRAY) == 0);
3245
3246 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3247 config, newdevs, ndevs + oldndevs) == 0);
3248 for (i = 0; i < oldndevs + ndevs; i++)
3249 nvlist_free(newdevs[i]);
3250 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3251 } else {
3252 /*
3253 * Generate a new dev list.
3254 */
3255 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3256 KM_PUSHPAGE) == 0);
3257 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3258 devs, ndevs) == 0);
3259 }
3260 }
3261
3262 /*
3263 * Stop and drop level 2 ARC devices
3264 */
3265 void
3266 spa_l2cache_drop(spa_t *spa)
3267 {
3268 vdev_t *vd;
3269 int i;
3270 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3271
3272 for (i = 0; i < sav->sav_count; i++) {
3273 uint64_t pool;
3274
3275 vd = sav->sav_vdevs[i];
3276 ASSERT(vd != NULL);
3277
3278 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3279 pool != 0ULL && l2arc_vdev_present(vd))
3280 l2arc_remove_vdev(vd);
3281 }
3282 }
3283
3284 /*
3285 * Pool Creation
3286 */
3287 int
3288 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3289 const char *history_str, nvlist_t *zplprops)
3290 {
3291 spa_t *spa;
3292 char *altroot = NULL;
3293 vdev_t *rvd;
3294 dsl_pool_t *dp;
3295 dmu_tx_t *tx;
3296 int error = 0;
3297 uint64_t txg = TXG_INITIAL;
3298 nvlist_t **spares, **l2cache;
3299 uint_t nspares, nl2cache;
3300 uint64_t version, obj;
3301 boolean_t has_features;
3302 nvpair_t *elem;
3303 int c;
3304
3305 /*
3306 * If this pool already exists, return failure.
3307 */
3308 mutex_enter(&spa_namespace_lock);
3309 if (spa_lookup(pool) != NULL) {
3310 mutex_exit(&spa_namespace_lock);
3311 return (EEXIST);
3312 }
3313
3314 /*
3315 * Allocate a new spa_t structure.
3316 */
3317 (void) nvlist_lookup_string(props,
3318 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3319 spa = spa_add(pool, NULL, altroot);
3320 spa_activate(spa, spa_mode_global);
3321
3322 if (props && (error = spa_prop_validate(spa, props))) {
3323 spa_deactivate(spa);
3324 spa_remove(spa);
3325 mutex_exit(&spa_namespace_lock);
3326 return (error);
3327 }
3328
3329 has_features = B_FALSE;
3330 for (elem = nvlist_next_nvpair(props, NULL);
3331 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3332 if (zpool_prop_feature(nvpair_name(elem)))
3333 has_features = B_TRUE;
3334 }
3335
3336 if (has_features || nvlist_lookup_uint64(props,
3337 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3338 version = SPA_VERSION;
3339 }
3340 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3341
3342 spa->spa_first_txg = txg;
3343 spa->spa_uberblock.ub_txg = txg - 1;
3344 spa->spa_uberblock.ub_version = version;
3345 spa->spa_ubsync = spa->spa_uberblock;
3346
3347 /*
3348 * Create "The Godfather" zio to hold all async IOs
3349 */
3350 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3351 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3352
3353 /*
3354 * Create the root vdev.
3355 */
3356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3357
3358 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3359
3360 ASSERT(error != 0 || rvd != NULL);
3361 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3362
3363 if (error == 0 && !zfs_allocatable_devs(nvroot))
3364 error = EINVAL;
3365
3366 if (error == 0 &&
3367 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3368 (error = spa_validate_aux(spa, nvroot, txg,
3369 VDEV_ALLOC_ADD)) == 0) {
3370 for (c = 0; c < rvd->vdev_children; c++) {
3371 vdev_metaslab_set_size(rvd->vdev_child[c]);
3372 vdev_expand(rvd->vdev_child[c], txg);
3373 }
3374 }
3375
3376 spa_config_exit(spa, SCL_ALL, FTAG);
3377
3378 if (error != 0) {
3379 spa_unload(spa);
3380 spa_deactivate(spa);
3381 spa_remove(spa);
3382 mutex_exit(&spa_namespace_lock);
3383 return (error);
3384 }
3385
3386 /*
3387 * Get the list of spares, if specified.
3388 */
3389 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3390 &spares, &nspares) == 0) {
3391 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3392 KM_PUSHPAGE) == 0);
3393 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3394 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3396 spa_load_spares(spa);
3397 spa_config_exit(spa, SCL_ALL, FTAG);
3398 spa->spa_spares.sav_sync = B_TRUE;
3399 }
3400
3401 /*
3402 * Get the list of level 2 cache devices, if specified.
3403 */
3404 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3405 &l2cache, &nl2cache) == 0) {
3406 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3407 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3408 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3409 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3410 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3411 spa_load_l2cache(spa);
3412 spa_config_exit(spa, SCL_ALL, FTAG);
3413 spa->spa_l2cache.sav_sync = B_TRUE;
3414 }
3415
3416 spa->spa_is_initializing = B_TRUE;
3417 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3418 spa->spa_meta_objset = dp->dp_meta_objset;
3419 spa->spa_is_initializing = B_FALSE;
3420
3421 /*
3422 * Create DDTs (dedup tables).
3423 */
3424 ddt_create(spa);
3425
3426 spa_update_dspace(spa);
3427
3428 tx = dmu_tx_create_assigned(dp, txg);
3429
3430 /*
3431 * Create the pool config object.
3432 */
3433 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3434 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3435 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3436
3437 if (zap_add(spa->spa_meta_objset,
3438 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3439 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3440 cmn_err(CE_PANIC, "failed to add pool config");
3441 }
3442
3443 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3444 spa_feature_create_zap_objects(spa, tx);
3445
3446 if (zap_add(spa->spa_meta_objset,
3447 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3448 sizeof (uint64_t), 1, &version, tx) != 0) {
3449 cmn_err(CE_PANIC, "failed to add pool version");
3450 }
3451
3452 /* Newly created pools with the right version are always deflated. */
3453 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3454 spa->spa_deflate = TRUE;
3455 if (zap_add(spa->spa_meta_objset,
3456 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3457 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3458 cmn_err(CE_PANIC, "failed to add deflate");
3459 }
3460 }
3461
3462 /*
3463 * Create the deferred-free bpobj. Turn off compression
3464 * because sync-to-convergence takes longer if the blocksize
3465 * keeps changing.
3466 */
3467 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3468 dmu_object_set_compress(spa->spa_meta_objset, obj,
3469 ZIO_COMPRESS_OFF, tx);
3470 if (zap_add(spa->spa_meta_objset,
3471 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3472 sizeof (uint64_t), 1, &obj, tx) != 0) {
3473 cmn_err(CE_PANIC, "failed to add bpobj");
3474 }
3475 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3476 spa->spa_meta_objset, obj));
3477
3478 /*
3479 * Create the pool's history object.
3480 */
3481 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3482 spa_history_create_obj(spa, tx);
3483
3484 /*
3485 * Set pool properties.
3486 */
3487 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3488 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3489 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3490 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3491
3492 if (props != NULL) {
3493 spa_configfile_set(spa, props, B_FALSE);
3494 spa_sync_props(spa, props, tx);
3495 }
3496
3497 dmu_tx_commit(tx);
3498
3499 spa->spa_sync_on = B_TRUE;
3500 txg_sync_start(spa->spa_dsl_pool);
3501
3502 /*
3503 * We explicitly wait for the first transaction to complete so that our
3504 * bean counters are appropriately updated.
3505 */
3506 txg_wait_synced(spa->spa_dsl_pool, txg);
3507
3508 spa_config_sync(spa, B_FALSE, B_TRUE);
3509
3510 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3511 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3512 spa_history_log_version(spa, LOG_POOL_CREATE);
3513
3514 spa->spa_minref = refcount_count(&spa->spa_refcount);
3515
3516 mutex_exit(&spa_namespace_lock);
3517
3518 return (0);
3519 }
3520
3521 #ifdef _KERNEL
3522 /*
3523 * Get the root pool information from the root disk, then import the root pool
3524 * during the system boot up time.
3525 */
3526 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3527
3528 static nvlist_t *
3529 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3530 {
3531 nvlist_t *config;
3532 nvlist_t *nvtop, *nvroot;
3533 uint64_t pgid;
3534
3535 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3536 return (NULL);
3537
3538 /*
3539 * Add this top-level vdev to the child array.
3540 */
3541 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3542 &nvtop) == 0);
3543 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3544 &pgid) == 0);
3545 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3546
3547 /*
3548 * Put this pool's top-level vdevs into a root vdev.
3549 */
3550 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3551 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3552 VDEV_TYPE_ROOT) == 0);
3553 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3554 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3555 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3556 &nvtop, 1) == 0);
3557
3558 /*
3559 * Replace the existing vdev_tree with the new root vdev in
3560 * this pool's configuration (remove the old, add the new).
3561 */
3562 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3563 nvlist_free(nvroot);
3564 return (config);
3565 }
3566
3567 /*
3568 * Walk the vdev tree and see if we can find a device with "better"
3569 * configuration. A configuration is "better" if the label on that
3570 * device has a more recent txg.
3571 */
3572 static void
3573 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3574 {
3575 int c;
3576
3577 for (c = 0; c < vd->vdev_children; c++)
3578 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3579
3580 if (vd->vdev_ops->vdev_op_leaf) {
3581 nvlist_t *label;
3582 uint64_t label_txg;
3583
3584 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3585 &label) != 0)
3586 return;
3587
3588 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3589 &label_txg) == 0);
3590
3591 /*
3592 * Do we have a better boot device?
3593 */
3594 if (label_txg > *txg) {
3595 *txg = label_txg;
3596 *avd = vd;
3597 }
3598 nvlist_free(label);
3599 }
3600 }
3601
3602 /*
3603 * Import a root pool.
3604 *
3605 * For x86. devpath_list will consist of devid and/or physpath name of
3606 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3607 * The GRUB "findroot" command will return the vdev we should boot.
3608 *
3609 * For Sparc, devpath_list consists the physpath name of the booting device
3610 * no matter the rootpool is a single device pool or a mirrored pool.
3611 * e.g.
3612 * "/pci@1f,0/ide@d/disk@0,0:a"
3613 */
3614 int
3615 spa_import_rootpool(char *devpath, char *devid)
3616 {
3617 spa_t *spa;
3618 vdev_t *rvd, *bvd, *avd = NULL;
3619 nvlist_t *config, *nvtop;
3620 uint64_t guid, txg;
3621 char *pname;
3622 int error;
3623
3624 /*
3625 * Read the label from the boot device and generate a configuration.
3626 */
3627 config = spa_generate_rootconf(devpath, devid, &guid);
3628 #if defined(_OBP) && defined(_KERNEL)
3629 if (config == NULL) {
3630 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3631 /* iscsi boot */
3632 get_iscsi_bootpath_phy(devpath);
3633 config = spa_generate_rootconf(devpath, devid, &guid);
3634 }
3635 }
3636 #endif
3637 if (config == NULL) {
3638 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3639 devpath);
3640 return (EIO);
3641 }
3642
3643 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3644 &pname) == 0);
3645 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3646
3647 mutex_enter(&spa_namespace_lock);
3648 if ((spa = spa_lookup(pname)) != NULL) {
3649 /*
3650 * Remove the existing root pool from the namespace so that we
3651 * can replace it with the correct config we just read in.
3652 */
3653 spa_remove(spa);
3654 }
3655
3656 spa = spa_add(pname, config, NULL);
3657 spa->spa_is_root = B_TRUE;
3658 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3659
3660 /*
3661 * Build up a vdev tree based on the boot device's label config.
3662 */
3663 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3664 &nvtop) == 0);
3665 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3666 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3667 VDEV_ALLOC_ROOTPOOL);
3668 spa_config_exit(spa, SCL_ALL, FTAG);
3669 if (error) {
3670 mutex_exit(&spa_namespace_lock);
3671 nvlist_free(config);
3672 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3673 pname);
3674 return (error);
3675 }
3676
3677 /*
3678 * Get the boot vdev.
3679 */
3680 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3681 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3682 (u_longlong_t)guid);
3683 error = ENOENT;
3684 goto out;
3685 }
3686
3687 /*
3688 * Determine if there is a better boot device.
3689 */
3690 avd = bvd;
3691 spa_alt_rootvdev(rvd, &avd, &txg);
3692 if (avd != bvd) {
3693 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3694 "try booting from '%s'", avd->vdev_path);
3695 error = EINVAL;
3696 goto out;
3697 }
3698
3699 /*
3700 * If the boot device is part of a spare vdev then ensure that
3701 * we're booting off the active spare.
3702 */
3703 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3704 !bvd->vdev_isspare) {
3705 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3706 "try booting from '%s'",
3707 bvd->vdev_parent->
3708 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3709 error = EINVAL;
3710 goto out;
3711 }
3712
3713 error = 0;
3714 spa_history_log_version(spa, LOG_POOL_IMPORT);
3715 out:
3716 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3717 vdev_free(rvd);
3718 spa_config_exit(spa, SCL_ALL, FTAG);
3719 mutex_exit(&spa_namespace_lock);
3720
3721 nvlist_free(config);
3722 return (error);
3723 }
3724
3725 #endif
3726
3727 /*
3728 * Import a non-root pool into the system.
3729 */
3730 int
3731 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3732 {
3733 spa_t *spa;
3734 char *altroot = NULL;
3735 spa_load_state_t state = SPA_LOAD_IMPORT;
3736 zpool_rewind_policy_t policy;
3737 uint64_t mode = spa_mode_global;
3738 uint64_t readonly = B_FALSE;
3739 int error;
3740 nvlist_t *nvroot;
3741 nvlist_t **spares, **l2cache;
3742 uint_t nspares, nl2cache;
3743
3744 /*
3745 * If a pool with this name exists, return failure.
3746 */
3747 mutex_enter(&spa_namespace_lock);
3748 if (spa_lookup(pool) != NULL) {
3749 mutex_exit(&spa_namespace_lock);
3750 return (EEXIST);
3751 }
3752
3753 /*
3754 * Create and initialize the spa structure.
3755 */
3756 (void) nvlist_lookup_string(props,
3757 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3758 (void) nvlist_lookup_uint64(props,
3759 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3760 if (readonly)
3761 mode = FREAD;
3762 spa = spa_add(pool, config, altroot);
3763 spa->spa_import_flags = flags;
3764
3765 /*
3766 * Verbatim import - Take a pool and insert it into the namespace
3767 * as if it had been loaded at boot.
3768 */
3769 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3770 if (props != NULL)
3771 spa_configfile_set(spa, props, B_FALSE);
3772
3773 spa_config_sync(spa, B_FALSE, B_TRUE);
3774
3775 mutex_exit(&spa_namespace_lock);
3776 spa_history_log_version(spa, LOG_POOL_IMPORT);
3777
3778 return (0);
3779 }
3780
3781 spa_activate(spa, mode);
3782
3783 /*
3784 * Don't start async tasks until we know everything is healthy.
3785 */
3786 spa_async_suspend(spa);
3787
3788 zpool_get_rewind_policy(config, &policy);
3789 if (policy.zrp_request & ZPOOL_DO_REWIND)
3790 state = SPA_LOAD_RECOVER;
3791
3792 /*
3793 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3794 * because the user-supplied config is actually the one to trust when
3795 * doing an import.
3796 */
3797 if (state != SPA_LOAD_RECOVER)
3798 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3799
3800 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3801 policy.zrp_request);
3802
3803 /*
3804 * Propagate anything learned while loading the pool and pass it
3805 * back to caller (i.e. rewind info, missing devices, etc).
3806 */
3807 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3808 spa->spa_load_info) == 0);
3809
3810 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3811 /*
3812 * Toss any existing sparelist, as it doesn't have any validity
3813 * anymore, and conflicts with spa_has_spare().
3814 */
3815 if (spa->spa_spares.sav_config) {
3816 nvlist_free(spa->spa_spares.sav_config);
3817 spa->spa_spares.sav_config = NULL;
3818 spa_load_spares(spa);
3819 }
3820 if (spa->spa_l2cache.sav_config) {
3821 nvlist_free(spa->spa_l2cache.sav_config);
3822 spa->spa_l2cache.sav_config = NULL;
3823 spa_load_l2cache(spa);
3824 }
3825
3826 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3827 &nvroot) == 0);
3828 if (error == 0)
3829 error = spa_validate_aux(spa, nvroot, -1ULL,
3830 VDEV_ALLOC_SPARE);
3831 if (error == 0)
3832 error = spa_validate_aux(spa, nvroot, -1ULL,
3833 VDEV_ALLOC_L2CACHE);
3834 spa_config_exit(spa, SCL_ALL, FTAG);
3835
3836 if (props != NULL)
3837 spa_configfile_set(spa, props, B_FALSE);
3838
3839 if (error != 0 || (props && spa_writeable(spa) &&
3840 (error = spa_prop_set(spa, props)))) {
3841 spa_unload(spa);
3842 spa_deactivate(spa);
3843 spa_remove(spa);
3844 mutex_exit(&spa_namespace_lock);
3845 return (error);
3846 }
3847
3848 spa_async_resume(spa);
3849
3850 /*
3851 * Override any spares and level 2 cache devices as specified by
3852 * the user, as these may have correct device names/devids, etc.
3853 */
3854 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3855 &spares, &nspares) == 0) {
3856 if (spa->spa_spares.sav_config)
3857 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3858 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3859 else
3860 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3861 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3862 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3863 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3864 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3865 spa_load_spares(spa);
3866 spa_config_exit(spa, SCL_ALL, FTAG);
3867 spa->spa_spares.sav_sync = B_TRUE;
3868 }
3869 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3870 &l2cache, &nl2cache) == 0) {
3871 if (spa->spa_l2cache.sav_config)
3872 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3873 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3874 else
3875 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3876 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3877 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3878 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3879 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3880 spa_load_l2cache(spa);
3881 spa_config_exit(spa, SCL_ALL, FTAG);
3882 spa->spa_l2cache.sav_sync = B_TRUE;
3883 }
3884
3885 /*
3886 * Check for any removed devices.
3887 */
3888 if (spa->spa_autoreplace) {
3889 spa_aux_check_removed(&spa->spa_spares);
3890 spa_aux_check_removed(&spa->spa_l2cache);
3891 }
3892
3893 if (spa_writeable(spa)) {
3894 /*
3895 * Update the config cache to include the newly-imported pool.
3896 */
3897 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3898 }
3899
3900 /*
3901 * It's possible that the pool was expanded while it was exported.
3902 * We kick off an async task to handle this for us.
3903 */
3904 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3905
3906 mutex_exit(&spa_namespace_lock);
3907 spa_history_log_version(spa, LOG_POOL_IMPORT);
3908
3909 return (0);
3910 }
3911
3912 nvlist_t *
3913 spa_tryimport(nvlist_t *tryconfig)
3914 {
3915 nvlist_t *config = NULL;
3916 char *poolname;
3917 spa_t *spa;
3918 uint64_t state;
3919 int error;
3920
3921 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3922 return (NULL);
3923
3924 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3925 return (NULL);
3926
3927 /*
3928 * Create and initialize the spa structure.
3929 */
3930 mutex_enter(&spa_namespace_lock);
3931 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3932 spa_activate(spa, FREAD);
3933
3934 /*
3935 * Pass off the heavy lifting to spa_load().
3936 * Pass TRUE for mosconfig because the user-supplied config
3937 * is actually the one to trust when doing an import.
3938 */
3939 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3940
3941 /*
3942 * If 'tryconfig' was at least parsable, return the current config.
3943 */
3944 if (spa->spa_root_vdev != NULL) {
3945 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3946 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3947 poolname) == 0);
3948 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3949 state) == 0);
3950 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3951 spa->spa_uberblock.ub_timestamp) == 0);
3952 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3953 spa->spa_load_info) == 0);
3954
3955 /*
3956 * If the bootfs property exists on this pool then we
3957 * copy it out so that external consumers can tell which
3958 * pools are bootable.
3959 */
3960 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3961 char *tmpname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
3962
3963 /*
3964 * We have to play games with the name since the
3965 * pool was opened as TRYIMPORT_NAME.
3966 */
3967 if (dsl_dsobj_to_dsname(spa_name(spa),
3968 spa->spa_bootfs, tmpname) == 0) {
3969 char *cp;
3970 char *dsname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
3971
3972 cp = strchr(tmpname, '/');
3973 if (cp == NULL) {
3974 (void) strlcpy(dsname, tmpname,
3975 MAXPATHLEN);
3976 } else {
3977 (void) snprintf(dsname, MAXPATHLEN,
3978 "%s/%s", poolname, ++cp);
3979 }
3980 VERIFY(nvlist_add_string(config,
3981 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3982 kmem_free(dsname, MAXPATHLEN);
3983 }
3984 kmem_free(tmpname, MAXPATHLEN);
3985 }
3986
3987 /*
3988 * Add the list of hot spares and level 2 cache devices.
3989 */
3990 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3991 spa_add_spares(spa, config);
3992 spa_add_l2cache(spa, config);
3993 spa_config_exit(spa, SCL_CONFIG, FTAG);
3994 }
3995
3996 spa_unload(spa);
3997 spa_deactivate(spa);
3998 spa_remove(spa);
3999 mutex_exit(&spa_namespace_lock);
4000
4001 return (config);
4002 }
4003
4004 /*
4005 * Pool export/destroy
4006 *
4007 * The act of destroying or exporting a pool is very simple. We make sure there
4008 * is no more pending I/O and any references to the pool are gone. Then, we
4009 * update the pool state and sync all the labels to disk, removing the
4010 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4011 * we don't sync the labels or remove the configuration cache.
4012 */
4013 static int
4014 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4015 boolean_t force, boolean_t hardforce)
4016 {
4017 spa_t *spa;
4018
4019 if (oldconfig)
4020 *oldconfig = NULL;
4021
4022 if (!(spa_mode_global & FWRITE))
4023 return (EROFS);
4024
4025 mutex_enter(&spa_namespace_lock);
4026 if ((spa = spa_lookup(pool)) == NULL) {
4027 mutex_exit(&spa_namespace_lock);
4028 return (ENOENT);
4029 }
4030
4031 /*
4032 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4033 * reacquire the namespace lock, and see if we can export.
4034 */
4035 spa_open_ref(spa, FTAG);
4036 mutex_exit(&spa_namespace_lock);
4037 spa_async_suspend(spa);
4038 mutex_enter(&spa_namespace_lock);
4039 spa_close(spa, FTAG);
4040
4041 /*
4042 * The pool will be in core if it's openable,
4043 * in which case we can modify its state.
4044 */
4045 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4046 /*
4047 * Objsets may be open only because they're dirty, so we
4048 * have to force it to sync before checking spa_refcnt.
4049 */
4050 txg_wait_synced(spa->spa_dsl_pool, 0);
4051
4052 /*
4053 * A pool cannot be exported or destroyed if there are active
4054 * references. If we are resetting a pool, allow references by
4055 * fault injection handlers.
4056 */
4057 if (!spa_refcount_zero(spa) ||
4058 (spa->spa_inject_ref != 0 &&
4059 new_state != POOL_STATE_UNINITIALIZED)) {
4060 spa_async_resume(spa);
4061 mutex_exit(&spa_namespace_lock);
4062 return (EBUSY);
4063 }
4064
4065 /*
4066 * A pool cannot be exported if it has an active shared spare.
4067 * This is to prevent other pools stealing the active spare
4068 * from an exported pool. At user's own will, such pool can
4069 * be forcedly exported.
4070 */
4071 if (!force && new_state == POOL_STATE_EXPORTED &&
4072 spa_has_active_shared_spare(spa)) {
4073 spa_async_resume(spa);
4074 mutex_exit(&spa_namespace_lock);
4075 return (EXDEV);
4076 }
4077
4078 /*
4079 * We want this to be reflected on every label,
4080 * so mark them all dirty. spa_unload() will do the
4081 * final sync that pushes these changes out.
4082 */
4083 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4084 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4085 spa->spa_state = new_state;
4086 spa->spa_final_txg = spa_last_synced_txg(spa) +
4087 TXG_DEFER_SIZE + 1;
4088 vdev_config_dirty(spa->spa_root_vdev);
4089 spa_config_exit(spa, SCL_ALL, FTAG);
4090 }
4091 }
4092
4093 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4094
4095 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4096 spa_unload(spa);
4097 spa_deactivate(spa);
4098 }
4099
4100 if (oldconfig && spa->spa_config)
4101 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4102
4103 if (new_state != POOL_STATE_UNINITIALIZED) {
4104 if (!hardforce)
4105 spa_config_sync(spa, B_TRUE, B_TRUE);
4106 spa_remove(spa);
4107 }
4108 mutex_exit(&spa_namespace_lock);
4109
4110 return (0);
4111 }
4112
4113 /*
4114 * Destroy a storage pool.
4115 */
4116 int
4117 spa_destroy(char *pool)
4118 {
4119 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4120 B_FALSE, B_FALSE));
4121 }
4122
4123 /*
4124 * Export a storage pool.
4125 */
4126 int
4127 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4128 boolean_t hardforce)
4129 {
4130 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4131 force, hardforce));
4132 }
4133
4134 /*
4135 * Similar to spa_export(), this unloads the spa_t without actually removing it
4136 * from the namespace in any way.
4137 */
4138 int
4139 spa_reset(char *pool)
4140 {
4141 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4142 B_FALSE, B_FALSE));
4143 }
4144
4145 /*
4146 * ==========================================================================
4147 * Device manipulation
4148 * ==========================================================================
4149 */
4150
4151 /*
4152 * Add a device to a storage pool.
4153 */
4154 int
4155 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4156 {
4157 uint64_t txg, id;
4158 int error;
4159 vdev_t *rvd = spa->spa_root_vdev;
4160 vdev_t *vd, *tvd;
4161 nvlist_t **spares, **l2cache;
4162 uint_t nspares, nl2cache;
4163 int c;
4164
4165 ASSERT(spa_writeable(spa));
4166
4167 txg = spa_vdev_enter(spa);
4168
4169 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4170 VDEV_ALLOC_ADD)) != 0)
4171 return (spa_vdev_exit(spa, NULL, txg, error));
4172
4173 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4174
4175 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4176 &nspares) != 0)
4177 nspares = 0;
4178
4179 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4180 &nl2cache) != 0)
4181 nl2cache = 0;
4182
4183 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4184 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4185
4186 if (vd->vdev_children != 0 &&
4187 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4188 return (spa_vdev_exit(spa, vd, txg, error));
4189
4190 /*
4191 * We must validate the spares and l2cache devices after checking the
4192 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4193 */
4194 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4195 return (spa_vdev_exit(spa, vd, txg, error));
4196
4197 /*
4198 * Transfer each new top-level vdev from vd to rvd.
4199 */
4200 for (c = 0; c < vd->vdev_children; c++) {
4201
4202 /*
4203 * Set the vdev id to the first hole, if one exists.
4204 */
4205 for (id = 0; id < rvd->vdev_children; id++) {
4206 if (rvd->vdev_child[id]->vdev_ishole) {
4207 vdev_free(rvd->vdev_child[id]);
4208 break;
4209 }
4210 }
4211 tvd = vd->vdev_child[c];
4212 vdev_remove_child(vd, tvd);
4213 tvd->vdev_id = id;
4214 vdev_add_child(rvd, tvd);
4215 vdev_config_dirty(tvd);
4216 }
4217
4218 if (nspares != 0) {
4219 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4220 ZPOOL_CONFIG_SPARES);
4221 spa_load_spares(spa);
4222 spa->spa_spares.sav_sync = B_TRUE;
4223 }
4224
4225 if (nl2cache != 0) {
4226 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4227 ZPOOL_CONFIG_L2CACHE);
4228 spa_load_l2cache(spa);
4229 spa->spa_l2cache.sav_sync = B_TRUE;
4230 }
4231
4232 /*
4233 * We have to be careful when adding new vdevs to an existing pool.
4234 * If other threads start allocating from these vdevs before we
4235 * sync the config cache, and we lose power, then upon reboot we may
4236 * fail to open the pool because there are DVAs that the config cache
4237 * can't translate. Therefore, we first add the vdevs without
4238 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4239 * and then let spa_config_update() initialize the new metaslabs.
4240 *
4241 * spa_load() checks for added-but-not-initialized vdevs, so that
4242 * if we lose power at any point in this sequence, the remaining
4243 * steps will be completed the next time we load the pool.
4244 */
4245 (void) spa_vdev_exit(spa, vd, txg, 0);
4246
4247 mutex_enter(&spa_namespace_lock);
4248 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4249 mutex_exit(&spa_namespace_lock);
4250
4251 return (0);
4252 }
4253
4254 /*
4255 * Attach a device to a mirror. The arguments are the path to any device
4256 * in the mirror, and the nvroot for the new device. If the path specifies
4257 * a device that is not mirrored, we automatically insert the mirror vdev.
4258 *
4259 * If 'replacing' is specified, the new device is intended to replace the
4260 * existing device; in this case the two devices are made into their own
4261 * mirror using the 'replacing' vdev, which is functionally identical to
4262 * the mirror vdev (it actually reuses all the same ops) but has a few
4263 * extra rules: you can't attach to it after it's been created, and upon
4264 * completion of resilvering, the first disk (the one being replaced)
4265 * is automatically detached.
4266 */
4267 int
4268 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4269 {
4270 uint64_t txg, dtl_max_txg;
4271 ASSERTV(vdev_t *rvd = spa->spa_root_vdev;)
4272 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4273 vdev_ops_t *pvops;
4274 char *oldvdpath, *newvdpath;
4275 int newvd_isspare;
4276 int error;
4277
4278 ASSERT(spa_writeable(spa));
4279
4280 txg = spa_vdev_enter(spa);
4281
4282 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4283
4284 if (oldvd == NULL)
4285 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4286
4287 if (!oldvd->vdev_ops->vdev_op_leaf)
4288 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4289
4290 pvd = oldvd->vdev_parent;
4291
4292 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4293 VDEV_ALLOC_ATTACH)) != 0)
4294 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4295
4296 if (newrootvd->vdev_children != 1)
4297 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4298
4299 newvd = newrootvd->vdev_child[0];
4300
4301 if (!newvd->vdev_ops->vdev_op_leaf)
4302 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4303
4304 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4305 return (spa_vdev_exit(spa, newrootvd, txg, error));
4306
4307 /*
4308 * Spares can't replace logs
4309 */
4310 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4311 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4312
4313 if (!replacing) {
4314 /*
4315 * For attach, the only allowable parent is a mirror or the root
4316 * vdev.
4317 */
4318 if (pvd->vdev_ops != &vdev_mirror_ops &&
4319 pvd->vdev_ops != &vdev_root_ops)
4320 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4321
4322 pvops = &vdev_mirror_ops;
4323 } else {
4324 /*
4325 * Active hot spares can only be replaced by inactive hot
4326 * spares.
4327 */
4328 if (pvd->vdev_ops == &vdev_spare_ops &&
4329 oldvd->vdev_isspare &&
4330 !spa_has_spare(spa, newvd->vdev_guid))
4331 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4332
4333 /*
4334 * If the source is a hot spare, and the parent isn't already a
4335 * spare, then we want to create a new hot spare. Otherwise, we
4336 * want to create a replacing vdev. The user is not allowed to
4337 * attach to a spared vdev child unless the 'isspare' state is
4338 * the same (spare replaces spare, non-spare replaces
4339 * non-spare).
4340 */
4341 if (pvd->vdev_ops == &vdev_replacing_ops &&
4342 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4343 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4344 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4345 newvd->vdev_isspare != oldvd->vdev_isspare) {
4346 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4347 }
4348
4349 if (newvd->vdev_isspare)
4350 pvops = &vdev_spare_ops;
4351 else
4352 pvops = &vdev_replacing_ops;
4353 }
4354
4355 /*
4356 * Make sure the new device is big enough.
4357 */
4358 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4359 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4360
4361 /*
4362 * The new device cannot have a higher alignment requirement
4363 * than the top-level vdev.
4364 */
4365 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4366 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4367
4368 /*
4369 * If this is an in-place replacement, update oldvd's path and devid
4370 * to make it distinguishable from newvd, and unopenable from now on.
4371 */
4372 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4373 spa_strfree(oldvd->vdev_path);
4374 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4375 KM_PUSHPAGE);
4376 (void) sprintf(oldvd->vdev_path, "%s/%s",
4377 newvd->vdev_path, "old");
4378 if (oldvd->vdev_devid != NULL) {
4379 spa_strfree(oldvd->vdev_devid);
4380 oldvd->vdev_devid = NULL;
4381 }
4382 }
4383
4384 /* mark the device being resilvered */
4385 newvd->vdev_resilvering = B_TRUE;
4386
4387 /*
4388 * If the parent is not a mirror, or if we're replacing, insert the new
4389 * mirror/replacing/spare vdev above oldvd.
4390 */
4391 if (pvd->vdev_ops != pvops)
4392 pvd = vdev_add_parent(oldvd, pvops);
4393
4394 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4395 ASSERT(pvd->vdev_ops == pvops);
4396 ASSERT(oldvd->vdev_parent == pvd);
4397
4398 /*
4399 * Extract the new device from its root and add it to pvd.
4400 */
4401 vdev_remove_child(newrootvd, newvd);
4402 newvd->vdev_id = pvd->vdev_children;
4403 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4404 vdev_add_child(pvd, newvd);
4405
4406 tvd = newvd->vdev_top;
4407 ASSERT(pvd->vdev_top == tvd);
4408 ASSERT(tvd->vdev_parent == rvd);
4409
4410 vdev_config_dirty(tvd);
4411
4412 /*
4413 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4414 * for any dmu_sync-ed blocks. It will propagate upward when
4415 * spa_vdev_exit() calls vdev_dtl_reassess().
4416 */
4417 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4418
4419 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4420 dtl_max_txg - TXG_INITIAL);
4421
4422 if (newvd->vdev_isspare) {
4423 spa_spare_activate(newvd);
4424 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4425 }
4426
4427 oldvdpath = spa_strdup(oldvd->vdev_path);
4428 newvdpath = spa_strdup(newvd->vdev_path);
4429 newvd_isspare = newvd->vdev_isspare;
4430
4431 /*
4432 * Mark newvd's DTL dirty in this txg.
4433 */
4434 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4435
4436 /*
4437 * Restart the resilver
4438 */
4439 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4440
4441 /*
4442 * Commit the config
4443 */
4444 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4445
4446 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4447 "%s vdev=%s %s vdev=%s",
4448 replacing && newvd_isspare ? "spare in" :
4449 replacing ? "replace" : "attach", newvdpath,
4450 replacing ? "for" : "to", oldvdpath);
4451
4452 spa_strfree(oldvdpath);
4453 spa_strfree(newvdpath);
4454
4455 if (spa->spa_bootfs)
4456 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4457
4458 return (0);
4459 }
4460
4461 /*
4462 * Detach a device from a mirror or replacing vdev.
4463 * If 'replace_done' is specified, only detach if the parent
4464 * is a replacing vdev.
4465 */
4466 int
4467 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4468 {
4469 uint64_t txg;
4470 int error;
4471 ASSERTV(vdev_t *rvd = spa->spa_root_vdev;)
4472 vdev_t *vd, *pvd, *cvd, *tvd;
4473 boolean_t unspare = B_FALSE;
4474 uint64_t unspare_guid = 0;
4475 char *vdpath;
4476 int c, t;
4477
4478 ASSERT(spa_writeable(spa));
4479
4480 txg = spa_vdev_enter(spa);
4481
4482 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4483
4484 if (vd == NULL)
4485 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4486
4487 if (!vd->vdev_ops->vdev_op_leaf)
4488 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4489
4490 pvd = vd->vdev_parent;
4491
4492 /*
4493 * If the parent/child relationship is not as expected, don't do it.
4494 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4495 * vdev that's replacing B with C. The user's intent in replacing
4496 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4497 * the replace by detaching C, the expected behavior is to end up
4498 * M(A,B). But suppose that right after deciding to detach C,
4499 * the replacement of B completes. We would have M(A,C), and then
4500 * ask to detach C, which would leave us with just A -- not what
4501 * the user wanted. To prevent this, we make sure that the
4502 * parent/child relationship hasn't changed -- in this example,
4503 * that C's parent is still the replacing vdev R.
4504 */
4505 if (pvd->vdev_guid != pguid && pguid != 0)
4506 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4507
4508 /*
4509 * Only 'replacing' or 'spare' vdevs can be replaced.
4510 */
4511 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4512 pvd->vdev_ops != &vdev_spare_ops)
4513 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4514
4515 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4516 spa_version(spa) >= SPA_VERSION_SPARES);
4517
4518 /*
4519 * Only mirror, replacing, and spare vdevs support detach.
4520 */
4521 if (pvd->vdev_ops != &vdev_replacing_ops &&
4522 pvd->vdev_ops != &vdev_mirror_ops &&
4523 pvd->vdev_ops != &vdev_spare_ops)
4524 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4525
4526 /*
4527 * If this device has the only valid copy of some data,
4528 * we cannot safely detach it.
4529 */
4530 if (vdev_dtl_required(vd))
4531 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4532
4533 ASSERT(pvd->vdev_children >= 2);
4534
4535 /*
4536 * If we are detaching the second disk from a replacing vdev, then
4537 * check to see if we changed the original vdev's path to have "/old"
4538 * at the end in spa_vdev_attach(). If so, undo that change now.
4539 */
4540 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4541 vd->vdev_path != NULL) {
4542 size_t len = strlen(vd->vdev_path);
4543
4544 for (c = 0; c < pvd->vdev_children; c++) {
4545 cvd = pvd->vdev_child[c];
4546
4547 if (cvd == vd || cvd->vdev_path == NULL)
4548 continue;
4549
4550 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4551 strcmp(cvd->vdev_path + len, "/old") == 0) {
4552 spa_strfree(cvd->vdev_path);
4553 cvd->vdev_path = spa_strdup(vd->vdev_path);
4554 break;
4555 }
4556 }
4557 }
4558
4559 /*
4560 * If we are detaching the original disk from a spare, then it implies
4561 * that the spare should become a real disk, and be removed from the
4562 * active spare list for the pool.
4563 */
4564 if (pvd->vdev_ops == &vdev_spare_ops &&
4565 vd->vdev_id == 0 &&
4566 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4567 unspare = B_TRUE;
4568
4569 /*
4570 * Erase the disk labels so the disk can be used for other things.
4571 * This must be done after all other error cases are handled,
4572 * but before we disembowel vd (so we can still do I/O to it).
4573 * But if we can't do it, don't treat the error as fatal --
4574 * it may be that the unwritability of the disk is the reason
4575 * it's being detached!
4576 */
4577 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4578
4579 /*
4580 * Remove vd from its parent and compact the parent's children.
4581 */
4582 vdev_remove_child(pvd, vd);
4583 vdev_compact_children(pvd);
4584
4585 /*
4586 * Remember one of the remaining children so we can get tvd below.
4587 */
4588 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4589
4590 /*
4591 * If we need to remove the remaining child from the list of hot spares,
4592 * do it now, marking the vdev as no longer a spare in the process.
4593 * We must do this before vdev_remove_parent(), because that can
4594 * change the GUID if it creates a new toplevel GUID. For a similar
4595 * reason, we must remove the spare now, in the same txg as the detach;
4596 * otherwise someone could attach a new sibling, change the GUID, and
4597 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4598 */
4599 if (unspare) {
4600 ASSERT(cvd->vdev_isspare);
4601 spa_spare_remove(cvd);
4602 unspare_guid = cvd->vdev_guid;
4603 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4604 cvd->vdev_unspare = B_TRUE;
4605 }
4606
4607 /*
4608 * If the parent mirror/replacing vdev only has one child,
4609 * the parent is no longer needed. Remove it from the tree.
4610 */
4611 if (pvd->vdev_children == 1) {
4612 if (pvd->vdev_ops == &vdev_spare_ops)
4613 cvd->vdev_unspare = B_FALSE;
4614 vdev_remove_parent(cvd);
4615 cvd->vdev_resilvering = B_FALSE;
4616 }
4617
4618
4619 /*
4620 * We don't set tvd until now because the parent we just removed
4621 * may have been the previous top-level vdev.
4622 */
4623 tvd = cvd->vdev_top;
4624 ASSERT(tvd->vdev_parent == rvd);
4625
4626 /*
4627 * Reevaluate the parent vdev state.
4628 */
4629 vdev_propagate_state(cvd);
4630
4631 /*
4632 * If the 'autoexpand' property is set on the pool then automatically
4633 * try to expand the size of the pool. For example if the device we
4634 * just detached was smaller than the others, it may be possible to
4635 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4636 * first so that we can obtain the updated sizes of the leaf vdevs.
4637 */
4638 if (spa->spa_autoexpand) {
4639 vdev_reopen(tvd);
4640 vdev_expand(tvd, txg);
4641 }
4642
4643 vdev_config_dirty(tvd);
4644
4645 /*
4646 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4647 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4648 * But first make sure we're not on any *other* txg's DTL list, to
4649 * prevent vd from being accessed after it's freed.
4650 */
4651 vdpath = spa_strdup(vd->vdev_path);
4652 for (t = 0; t < TXG_SIZE; t++)
4653 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4654 vd->vdev_detached = B_TRUE;
4655 vdev_dirty(tvd, VDD_DTL, vd, txg);
4656
4657 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4658
4659 /* hang on to the spa before we release the lock */
4660 spa_open_ref(spa, FTAG);
4661
4662 error = spa_vdev_exit(spa, vd, txg, 0);
4663
4664 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4665 "vdev=%s", vdpath);
4666 spa_strfree(vdpath);
4667
4668 /*
4669 * If this was the removal of the original device in a hot spare vdev,
4670 * then we want to go through and remove the device from the hot spare
4671 * list of every other pool.
4672 */
4673 if (unspare) {
4674 spa_t *altspa = NULL;
4675
4676 mutex_enter(&spa_namespace_lock);
4677 while ((altspa = spa_next(altspa)) != NULL) {
4678 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4679 altspa == spa)
4680 continue;
4681
4682 spa_open_ref(altspa, FTAG);
4683 mutex_exit(&spa_namespace_lock);
4684 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4685 mutex_enter(&spa_namespace_lock);
4686 spa_close(altspa, FTAG);
4687 }
4688 mutex_exit(&spa_namespace_lock);
4689
4690 /* search the rest of the vdevs for spares to remove */
4691 spa_vdev_resilver_done(spa);
4692 }
4693
4694 /* all done with the spa; OK to release */
4695 mutex_enter(&spa_namespace_lock);
4696 spa_close(spa, FTAG);
4697 mutex_exit(&spa_namespace_lock);
4698
4699 return (error);
4700 }
4701
4702 /*
4703 * Split a set of devices from their mirrors, and create a new pool from them.
4704 */
4705 int
4706 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4707 nvlist_t *props, boolean_t exp)
4708 {
4709 int error = 0;
4710 uint64_t txg, *glist;
4711 spa_t *newspa;
4712 uint_t c, children, lastlog;
4713 nvlist_t **child, *nvl, *tmp;
4714 dmu_tx_t *tx;
4715 char *altroot = NULL;
4716 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4717 boolean_t activate_slog;
4718
4719 ASSERT(spa_writeable(spa));
4720
4721 txg = spa_vdev_enter(spa);
4722
4723 /* clear the log and flush everything up to now */
4724 activate_slog = spa_passivate_log(spa);
4725 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4726 error = spa_offline_log(spa);
4727 txg = spa_vdev_config_enter(spa);
4728
4729 if (activate_slog)
4730 spa_activate_log(spa);
4731
4732 if (error != 0)
4733 return (spa_vdev_exit(spa, NULL, txg, error));
4734
4735 /* check new spa name before going any further */
4736 if (spa_lookup(newname) != NULL)
4737 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4738
4739 /*
4740 * scan through all the children to ensure they're all mirrors
4741 */
4742 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4743 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4744 &children) != 0)
4745 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4746
4747 /* first, check to ensure we've got the right child count */
4748 rvd = spa->spa_root_vdev;
4749 lastlog = 0;
4750 for (c = 0; c < rvd->vdev_children; c++) {
4751 vdev_t *vd = rvd->vdev_child[c];
4752
4753 /* don't count the holes & logs as children */
4754 if (vd->vdev_islog || vd->vdev_ishole) {
4755 if (lastlog == 0)
4756 lastlog = c;
4757 continue;
4758 }
4759
4760 lastlog = 0;
4761 }
4762 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4763 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4764
4765 /* next, ensure no spare or cache devices are part of the split */
4766 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4767 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4768 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4769
4770 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_PUSHPAGE);
4771 glist = kmem_zalloc(children * sizeof (uint64_t), KM_PUSHPAGE);
4772
4773 /* then, loop over each vdev and validate it */
4774 for (c = 0; c < children; c++) {
4775 uint64_t is_hole = 0;
4776
4777 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4778 &is_hole);
4779
4780 if (is_hole != 0) {
4781 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4782 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4783 continue;
4784 } else {
4785 error = EINVAL;
4786 break;
4787 }
4788 }
4789
4790 /* which disk is going to be split? */
4791 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4792 &glist[c]) != 0) {
4793 error = EINVAL;
4794 break;
4795 }
4796
4797 /* look it up in the spa */
4798 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4799 if (vml[c] == NULL) {
4800 error = ENODEV;
4801 break;
4802 }
4803
4804 /* make sure there's nothing stopping the split */
4805 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4806 vml[c]->vdev_islog ||
4807 vml[c]->vdev_ishole ||
4808 vml[c]->vdev_isspare ||
4809 vml[c]->vdev_isl2cache ||
4810 !vdev_writeable(vml[c]) ||
4811 vml[c]->vdev_children != 0 ||
4812 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4813 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4814 error = EINVAL;
4815 break;
4816 }
4817
4818 if (vdev_dtl_required(vml[c])) {
4819 error = EBUSY;
4820 break;
4821 }
4822
4823 /* we need certain info from the top level */
4824 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4825 vml[c]->vdev_top->vdev_ms_array) == 0);
4826 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4827 vml[c]->vdev_top->vdev_ms_shift) == 0);
4828 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4829 vml[c]->vdev_top->vdev_asize) == 0);
4830 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4831 vml[c]->vdev_top->vdev_ashift) == 0);
4832 }
4833
4834 if (error != 0) {
4835 kmem_free(vml, children * sizeof (vdev_t *));
4836 kmem_free(glist, children * sizeof (uint64_t));
4837 return (spa_vdev_exit(spa, NULL, txg, error));
4838 }
4839
4840 /* stop writers from using the disks */
4841 for (c = 0; c < children; c++) {
4842 if (vml[c] != NULL)
4843 vml[c]->vdev_offline = B_TRUE;
4844 }
4845 vdev_reopen(spa->spa_root_vdev);
4846
4847 /*
4848 * Temporarily record the splitting vdevs in the spa config. This
4849 * will disappear once the config is regenerated.
4850 */
4851 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4852 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4853 glist, children) == 0);
4854 kmem_free(glist, children * sizeof (uint64_t));
4855
4856 mutex_enter(&spa->spa_props_lock);
4857 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4858 nvl) == 0);
4859 mutex_exit(&spa->spa_props_lock);
4860 spa->spa_config_splitting = nvl;
4861 vdev_config_dirty(spa->spa_root_vdev);
4862
4863 /* configure and create the new pool */
4864 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4865 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4866 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4867 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4868 spa_version(spa)) == 0);
4869 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4870 spa->spa_config_txg) == 0);
4871 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4872 spa_generate_guid(NULL)) == 0);
4873 (void) nvlist_lookup_string(props,
4874 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4875
4876 /* add the new pool to the namespace */
4877 newspa = spa_add(newname, config, altroot);
4878 newspa->spa_config_txg = spa->spa_config_txg;
4879 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4880
4881 /* release the spa config lock, retaining the namespace lock */
4882 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4883
4884 if (zio_injection_enabled)
4885 zio_handle_panic_injection(spa, FTAG, 1);
4886
4887 spa_activate(newspa, spa_mode_global);
4888 spa_async_suspend(newspa);
4889
4890 /* create the new pool from the disks of the original pool */
4891 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4892 if (error)
4893 goto out;
4894
4895 /* if that worked, generate a real config for the new pool */
4896 if (newspa->spa_root_vdev != NULL) {
4897 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4898 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4899 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4900 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4901 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4902 B_TRUE));
4903 }
4904
4905 /* set the props */
4906 if (props != NULL) {
4907 spa_configfile_set(newspa, props, B_FALSE);
4908 error = spa_prop_set(newspa, props);
4909 if (error)
4910 goto out;
4911 }
4912
4913 /* flush everything */
4914 txg = spa_vdev_config_enter(newspa);
4915 vdev_config_dirty(newspa->spa_root_vdev);
4916 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4917
4918 if (zio_injection_enabled)
4919 zio_handle_panic_injection(spa, FTAG, 2);
4920
4921 spa_async_resume(newspa);
4922
4923 /* finally, update the original pool's config */
4924 txg = spa_vdev_config_enter(spa);
4925 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4926 error = dmu_tx_assign(tx, TXG_WAIT);
4927 if (error != 0)
4928 dmu_tx_abort(tx);
4929 for (c = 0; c < children; c++) {
4930 if (vml[c] != NULL) {
4931 vdev_split(vml[c]);
4932 if (error == 0)
4933 spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4934 spa, tx, "vdev=%s",
4935 vml[c]->vdev_path);
4936 vdev_free(vml[c]);
4937 }
4938 }
4939 vdev_config_dirty(spa->spa_root_vdev);
4940 spa->spa_config_splitting = NULL;
4941 nvlist_free(nvl);
4942 if (error == 0)
4943 dmu_tx_commit(tx);
4944 (void) spa_vdev_exit(spa, NULL, txg, 0);
4945
4946 if (zio_injection_enabled)
4947 zio_handle_panic_injection(spa, FTAG, 3);
4948
4949 /* split is complete; log a history record */
4950 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4951 "split new pool %s from pool %s", newname, spa_name(spa));
4952
4953 kmem_free(vml, children * sizeof (vdev_t *));
4954
4955 /* if we're not going to mount the filesystems in userland, export */
4956 if (exp)
4957 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4958 B_FALSE, B_FALSE);
4959
4960 return (error);
4961
4962 out:
4963 spa_unload(newspa);
4964 spa_deactivate(newspa);
4965 spa_remove(newspa);
4966
4967 txg = spa_vdev_config_enter(spa);
4968
4969 /* re-online all offlined disks */
4970 for (c = 0; c < children; c++) {
4971 if (vml[c] != NULL)
4972 vml[c]->vdev_offline = B_FALSE;
4973 }
4974 vdev_reopen(spa->spa_root_vdev);
4975
4976 nvlist_free(spa->spa_config_splitting);
4977 spa->spa_config_splitting = NULL;
4978 (void) spa_vdev_exit(spa, NULL, txg, error);
4979
4980 kmem_free(vml, children * sizeof (vdev_t *));
4981 return (error);
4982 }
4983
4984 static nvlist_t *
4985 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4986 {
4987 int i;
4988
4989 for (i = 0; i < count; i++) {
4990 uint64_t guid;
4991
4992 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4993 &guid) == 0);
4994
4995 if (guid == target_guid)
4996 return (nvpp[i]);
4997 }
4998
4999 return (NULL);
5000 }
5001
5002 static void
5003 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5004 nvlist_t *dev_to_remove)
5005 {
5006 nvlist_t **newdev = NULL;
5007 int i, j;
5008
5009 if (count > 1)
5010 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_PUSHPAGE);
5011
5012 for (i = 0, j = 0; i < count; i++) {
5013 if (dev[i] == dev_to_remove)
5014 continue;
5015 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_PUSHPAGE) == 0);
5016 }
5017
5018 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5019 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5020
5021 for (i = 0; i < count - 1; i++)
5022 nvlist_free(newdev[i]);
5023
5024 if (count > 1)
5025 kmem_free(newdev, (count - 1) * sizeof (void *));
5026 }
5027
5028 /*
5029 * Evacuate the device.
5030 */
5031 static int
5032 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5033 {
5034 uint64_t txg;
5035 int error = 0;
5036
5037 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5038 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5039 ASSERT(vd == vd->vdev_top);
5040
5041 /*
5042 * Evacuate the device. We don't hold the config lock as writer
5043 * since we need to do I/O but we do keep the
5044 * spa_namespace_lock held. Once this completes the device
5045 * should no longer have any blocks allocated on it.
5046 */
5047 if (vd->vdev_islog) {
5048 if (vd->vdev_stat.vs_alloc != 0)
5049 error = spa_offline_log(spa);
5050 } else {
5051 error = ENOTSUP;
5052 }
5053
5054 if (error)
5055 return (error);
5056
5057 /*
5058 * The evacuation succeeded. Remove any remaining MOS metadata
5059 * associated with this vdev, and wait for these changes to sync.
5060 */
5061 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
5062 txg = spa_vdev_config_enter(spa);
5063 vd->vdev_removing = B_TRUE;
5064 vdev_dirty(vd, 0, NULL, txg);
5065 vdev_config_dirty(vd);
5066 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5067
5068 return (0);
5069 }
5070
5071 /*
5072 * Complete the removal by cleaning up the namespace.
5073 */
5074 static void
5075 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5076 {
5077 vdev_t *rvd = spa->spa_root_vdev;
5078 uint64_t id = vd->vdev_id;
5079 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5080
5081 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5082 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5083 ASSERT(vd == vd->vdev_top);
5084
5085 /*
5086 * Only remove any devices which are empty.
5087 */
5088 if (vd->vdev_stat.vs_alloc != 0)
5089 return;
5090
5091 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5092
5093 if (list_link_active(&vd->vdev_state_dirty_node))
5094 vdev_state_clean(vd);
5095 if (list_link_active(&vd->vdev_config_dirty_node))
5096 vdev_config_clean(vd);
5097
5098 vdev_free(vd);
5099
5100 if (last_vdev) {
5101 vdev_compact_children(rvd);
5102 } else {
5103 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5104 vdev_add_child(rvd, vd);
5105 }
5106 vdev_config_dirty(rvd);
5107
5108 /*
5109 * Reassess the health of our root vdev.
5110 */
5111 vdev_reopen(rvd);
5112 }
5113
5114 /*
5115 * Remove a device from the pool -
5116 *
5117 * Removing a device from the vdev namespace requires several steps
5118 * and can take a significant amount of time. As a result we use
5119 * the spa_vdev_config_[enter/exit] functions which allow us to
5120 * grab and release the spa_config_lock while still holding the namespace
5121 * lock. During each step the configuration is synced out.
5122 */
5123
5124 /*
5125 * Remove a device from the pool. Currently, this supports removing only hot
5126 * spares, slogs, and level 2 ARC devices.
5127 */
5128 int
5129 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5130 {
5131 vdev_t *vd;
5132 metaslab_group_t *mg;
5133 nvlist_t **spares, **l2cache, *nv;
5134 uint64_t txg = 0;
5135 uint_t nspares, nl2cache;
5136 int error = 0;
5137 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5138
5139 ASSERT(spa_writeable(spa));
5140
5141 if (!locked)
5142 txg = spa_vdev_enter(spa);
5143
5144 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5145
5146 if (spa->spa_spares.sav_vdevs != NULL &&
5147 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5148 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5149 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5150 /*
5151 * Only remove the hot spare if it's not currently in use
5152 * in this pool.
5153 */
5154 if (vd == NULL || unspare) {
5155 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5156 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5157 spa_load_spares(spa);
5158 spa->spa_spares.sav_sync = B_TRUE;
5159 } else {
5160 error = EBUSY;
5161 }
5162 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5163 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5164 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5165 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5166 /*
5167 * Cache devices can always be removed.
5168 */
5169 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5170 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5171 spa_load_l2cache(spa);
5172 spa->spa_l2cache.sav_sync = B_TRUE;
5173 } else if (vd != NULL && vd->vdev_islog) {
5174 ASSERT(!locked);
5175 ASSERT(vd == vd->vdev_top);
5176
5177 /*
5178 * XXX - Once we have bp-rewrite this should
5179 * become the common case.
5180 */
5181
5182 mg = vd->vdev_mg;
5183
5184 /*
5185 * Stop allocating from this vdev.
5186 */
5187 metaslab_group_passivate(mg);
5188
5189 /*
5190 * Wait for the youngest allocations and frees to sync,
5191 * and then wait for the deferral of those frees to finish.
5192 */
5193 spa_vdev_config_exit(spa, NULL,
5194 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5195
5196 /*
5197 * Attempt to evacuate the vdev.
5198 */
5199 error = spa_vdev_remove_evacuate(spa, vd);
5200
5201 txg = spa_vdev_config_enter(spa);
5202
5203 /*
5204 * If we couldn't evacuate the vdev, unwind.
5205 */
5206 if (error) {
5207 metaslab_group_activate(mg);
5208 return (spa_vdev_exit(spa, NULL, txg, error));
5209 }
5210
5211 /*
5212 * Clean up the vdev namespace.
5213 */
5214 spa_vdev_remove_from_namespace(spa, vd);
5215
5216 } else if (vd != NULL) {
5217 /*
5218 * Normal vdevs cannot be removed (yet).
5219 */
5220 error = ENOTSUP;
5221 } else {
5222 /*
5223 * There is no vdev of any kind with the specified guid.
5224 */
5225 error = ENOENT;
5226 }
5227
5228 if (!locked)
5229 return (spa_vdev_exit(spa, NULL, txg, error));
5230
5231 return (error);
5232 }
5233
5234 /*
5235 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5236 * current spared, so we can detach it.
5237 */
5238 static vdev_t *
5239 spa_vdev_resilver_done_hunt(vdev_t *vd)
5240 {
5241 vdev_t *newvd, *oldvd;
5242 int c;
5243
5244 for (c = 0; c < vd->vdev_children; c++) {
5245 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5246 if (oldvd != NULL)
5247 return (oldvd);
5248 }
5249
5250 /*
5251 * Check for a completed replacement. We always consider the first
5252 * vdev in the list to be the oldest vdev, and the last one to be
5253 * the newest (see spa_vdev_attach() for how that works). In
5254 * the case where the newest vdev is faulted, we will not automatically
5255 * remove it after a resilver completes. This is OK as it will require
5256 * user intervention to determine which disk the admin wishes to keep.
5257 */
5258 if (vd->vdev_ops == &vdev_replacing_ops) {
5259 ASSERT(vd->vdev_children > 1);
5260
5261 newvd = vd->vdev_child[vd->vdev_children - 1];
5262 oldvd = vd->vdev_child[0];
5263
5264 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5265 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5266 !vdev_dtl_required(oldvd))
5267 return (oldvd);
5268 }
5269
5270 /*
5271 * Check for a completed resilver with the 'unspare' flag set.
5272 */
5273 if (vd->vdev_ops == &vdev_spare_ops) {
5274 vdev_t *first = vd->vdev_child[0];
5275 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5276
5277 if (last->vdev_unspare) {
5278 oldvd = first;
5279 newvd = last;
5280 } else if (first->vdev_unspare) {
5281 oldvd = last;
5282 newvd = first;
5283 } else {
5284 oldvd = NULL;
5285 }
5286
5287 if (oldvd != NULL &&
5288 vdev_dtl_empty(newvd, DTL_MISSING) &&
5289 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5290 !vdev_dtl_required(oldvd))
5291 return (oldvd);
5292
5293 /*
5294 * If there are more than two spares attached to a disk,
5295 * and those spares are not required, then we want to
5296 * attempt to free them up now so that they can be used
5297 * by other pools. Once we're back down to a single
5298 * disk+spare, we stop removing them.
5299 */
5300 if (vd->vdev_children > 2) {
5301 newvd = vd->vdev_child[1];
5302
5303 if (newvd->vdev_isspare && last->vdev_isspare &&
5304 vdev_dtl_empty(last, DTL_MISSING) &&
5305 vdev_dtl_empty(last, DTL_OUTAGE) &&
5306 !vdev_dtl_required(newvd))
5307 return (newvd);
5308 }
5309 }
5310
5311 return (NULL);
5312 }
5313
5314 static void
5315 spa_vdev_resilver_done(spa_t *spa)
5316 {
5317 vdev_t *vd, *pvd, *ppvd;
5318 uint64_t guid, sguid, pguid, ppguid;
5319
5320 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5321
5322 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5323 pvd = vd->vdev_parent;
5324 ppvd = pvd->vdev_parent;
5325 guid = vd->vdev_guid;
5326 pguid = pvd->vdev_guid;
5327 ppguid = ppvd->vdev_guid;
5328 sguid = 0;
5329 /*
5330 * If we have just finished replacing a hot spared device, then
5331 * we need to detach the parent's first child (the original hot
5332 * spare) as well.
5333 */
5334 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5335 ppvd->vdev_children == 2) {
5336 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5337 sguid = ppvd->vdev_child[1]->vdev_guid;
5338 }
5339 spa_config_exit(spa, SCL_ALL, FTAG);
5340 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5341 return;
5342 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5343 return;
5344 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5345 }
5346
5347 spa_config_exit(spa, SCL_ALL, FTAG);
5348 }
5349
5350 /*
5351 * Update the stored path or FRU for this vdev.
5352 */
5353 int
5354 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5355 boolean_t ispath)
5356 {
5357 vdev_t *vd;
5358 boolean_t sync = B_FALSE;
5359
5360 ASSERT(spa_writeable(spa));
5361
5362 spa_vdev_state_enter(spa, SCL_ALL);
5363
5364 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5365 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5366
5367 if (!vd->vdev_ops->vdev_op_leaf)
5368 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5369
5370 if (ispath) {
5371 if (strcmp(value, vd->vdev_path) != 0) {
5372 spa_strfree(vd->vdev_path);
5373 vd->vdev_path = spa_strdup(value);
5374 sync = B_TRUE;
5375 }
5376 } else {
5377 if (vd->vdev_fru == NULL) {
5378 vd->vdev_fru = spa_strdup(value);
5379 sync = B_TRUE;
5380 } else if (strcmp(value, vd->vdev_fru) != 0) {
5381 spa_strfree(vd->vdev_fru);
5382 vd->vdev_fru = spa_strdup(value);
5383 sync = B_TRUE;
5384 }
5385 }
5386
5387 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5388 }
5389
5390 int
5391 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5392 {
5393 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5394 }
5395
5396 int
5397 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5398 {
5399 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5400 }
5401
5402 /*
5403 * ==========================================================================
5404 * SPA Scanning
5405 * ==========================================================================
5406 */
5407
5408 int
5409 spa_scan_stop(spa_t *spa)
5410 {
5411 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5412 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5413 return (EBUSY);
5414 return (dsl_scan_cancel(spa->spa_dsl_pool));
5415 }
5416
5417 int
5418 spa_scan(spa_t *spa, pool_scan_func_t func)
5419 {
5420 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5421
5422 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5423 return (ENOTSUP);
5424
5425 /*
5426 * If a resilver was requested, but there is no DTL on a
5427 * writeable leaf device, we have nothing to do.
5428 */
5429 if (func == POOL_SCAN_RESILVER &&
5430 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5431 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5432 return (0);
5433 }
5434
5435 return (dsl_scan(spa->spa_dsl_pool, func));
5436 }
5437
5438 /*
5439 * ==========================================================================
5440 * SPA async task processing
5441 * ==========================================================================
5442 */
5443
5444 static void
5445 spa_async_remove(spa_t *spa, vdev_t *vd)
5446 {
5447 int c;
5448
5449 if (vd->vdev_remove_wanted) {
5450 vd->vdev_remove_wanted = B_FALSE;
5451 vd->vdev_delayed_close = B_FALSE;
5452 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5453
5454 /*
5455 * We want to clear the stats, but we don't want to do a full
5456 * vdev_clear() as that will cause us to throw away
5457 * degraded/faulted state as well as attempt to reopen the
5458 * device, all of which is a waste.
5459 */
5460 vd->vdev_stat.vs_read_errors = 0;
5461 vd->vdev_stat.vs_write_errors = 0;
5462 vd->vdev_stat.vs_checksum_errors = 0;
5463
5464 vdev_state_dirty(vd->vdev_top);
5465 }
5466
5467 for (c = 0; c < vd->vdev_children; c++)
5468 spa_async_remove(spa, vd->vdev_child[c]);
5469 }
5470
5471 static void
5472 spa_async_probe(spa_t *spa, vdev_t *vd)
5473 {
5474 int c;
5475
5476 if (vd->vdev_probe_wanted) {
5477 vd->vdev_probe_wanted = B_FALSE;
5478 vdev_reopen(vd); /* vdev_open() does the actual probe */
5479 }
5480
5481 for (c = 0; c < vd->vdev_children; c++)
5482 spa_async_probe(spa, vd->vdev_child[c]);
5483 }
5484
5485 static void
5486 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5487 {
5488 int c;
5489
5490 if (!spa->spa_autoexpand)
5491 return;
5492
5493 for (c = 0; c < vd->vdev_children; c++) {
5494 vdev_t *cvd = vd->vdev_child[c];
5495 spa_async_autoexpand(spa, cvd);
5496 }
5497
5498 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5499 return;
5500
5501 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5502 }
5503
5504 static void
5505 spa_async_thread(spa_t *spa)
5506 {
5507 int tasks, i;
5508
5509 ASSERT(spa->spa_sync_on);
5510
5511 mutex_enter(&spa->spa_async_lock);
5512 tasks = spa->spa_async_tasks;
5513 spa->spa_async_tasks = 0;
5514 mutex_exit(&spa->spa_async_lock);
5515
5516 /*
5517 * See if the config needs to be updated.
5518 */
5519 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5520 uint64_t old_space, new_space;
5521
5522 mutex_enter(&spa_namespace_lock);
5523 old_space = metaslab_class_get_space(spa_normal_class(spa));
5524 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5525 new_space = metaslab_class_get_space(spa_normal_class(spa));
5526 mutex_exit(&spa_namespace_lock);
5527
5528 /*
5529 * If the pool grew as a result of the config update,
5530 * then log an internal history event.
5531 */
5532 if (new_space != old_space) {
5533 spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5534 spa, NULL,
5535 "pool '%s' size: %llu(+%llu)",
5536 spa_name(spa), new_space, new_space - old_space);
5537 }
5538 }
5539
5540 /*
5541 * See if any devices need to be marked REMOVED.
5542 */
5543 if (tasks & SPA_ASYNC_REMOVE) {
5544 spa_vdev_state_enter(spa, SCL_NONE);
5545 spa_async_remove(spa, spa->spa_root_vdev);
5546 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5547 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5548 for (i = 0; i < spa->spa_spares.sav_count; i++)
5549 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5550 (void) spa_vdev_state_exit(spa, NULL, 0);
5551 }
5552
5553 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5554 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5555 spa_async_autoexpand(spa, spa->spa_root_vdev);
5556 spa_config_exit(spa, SCL_CONFIG, FTAG);
5557 }
5558
5559 /*
5560 * See if any devices need to be probed.
5561 */
5562 if (tasks & SPA_ASYNC_PROBE) {
5563 spa_vdev_state_enter(spa, SCL_NONE);
5564 spa_async_probe(spa, spa->spa_root_vdev);
5565 (void) spa_vdev_state_exit(spa, NULL, 0);
5566 }
5567
5568 /*
5569 * If any devices are done replacing, detach them.
5570 */
5571 if (tasks & SPA_ASYNC_RESILVER_DONE)
5572 spa_vdev_resilver_done(spa);
5573
5574 /*
5575 * Kick off a resilver.
5576 */
5577 if (tasks & SPA_ASYNC_RESILVER)
5578 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5579
5580 /*
5581 * Let the world know that we're done.
5582 */
5583 mutex_enter(&spa->spa_async_lock);
5584 spa->spa_async_thread = NULL;
5585 cv_broadcast(&spa->spa_async_cv);
5586 mutex_exit(&spa->spa_async_lock);
5587 thread_exit();
5588 }
5589
5590 void
5591 spa_async_suspend(spa_t *spa)
5592 {
5593 mutex_enter(&spa->spa_async_lock);
5594 spa->spa_async_suspended++;
5595 while (spa->spa_async_thread != NULL)
5596 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5597 mutex_exit(&spa->spa_async_lock);
5598 }
5599
5600 void
5601 spa_async_resume(spa_t *spa)
5602 {
5603 mutex_enter(&spa->spa_async_lock);
5604 ASSERT(spa->spa_async_suspended != 0);
5605 spa->spa_async_suspended--;
5606 mutex_exit(&spa->spa_async_lock);
5607 }
5608
5609 static void
5610 spa_async_dispatch(spa_t *spa)
5611 {
5612 mutex_enter(&spa->spa_async_lock);
5613 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5614 spa->spa_async_thread == NULL &&
5615 rootdir != NULL && !vn_is_readonly(rootdir))
5616 spa->spa_async_thread = thread_create(NULL, 0,
5617 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5618 mutex_exit(&spa->spa_async_lock);
5619 }
5620
5621 void
5622 spa_async_request(spa_t *spa, int task)
5623 {
5624 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5625 mutex_enter(&spa->spa_async_lock);
5626 spa->spa_async_tasks |= task;
5627 mutex_exit(&spa->spa_async_lock);
5628 }
5629
5630 /*
5631 * ==========================================================================
5632 * SPA syncing routines
5633 * ==========================================================================
5634 */
5635
5636 static int
5637 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5638 {
5639 bpobj_t *bpo = arg;
5640 bpobj_enqueue(bpo, bp, tx);
5641 return (0);
5642 }
5643
5644 static int
5645 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5646 {
5647 zio_t *zio = arg;
5648
5649 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5650 zio->io_flags));
5651 return (0);
5652 }
5653
5654 static void
5655 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5656 {
5657 char *packed = NULL;
5658 size_t bufsize;
5659 size_t nvsize = 0;
5660 dmu_buf_t *db;
5661
5662 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5663
5664 /*
5665 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5666 * information. This avoids the dbuf_will_dirty() path and
5667 * saves us a pre-read to get data we don't actually care about.
5668 */
5669 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5670 packed = vmem_alloc(bufsize, KM_PUSHPAGE);
5671
5672 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5673 KM_PUSHPAGE) == 0);
5674 bzero(packed + nvsize, bufsize - nvsize);
5675
5676 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5677
5678 vmem_free(packed, bufsize);
5679
5680 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5681 dmu_buf_will_dirty(db, tx);
5682 *(uint64_t *)db->db_data = nvsize;
5683 dmu_buf_rele(db, FTAG);
5684 }
5685
5686 static void
5687 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5688 const char *config, const char *entry)
5689 {
5690 nvlist_t *nvroot;
5691 nvlist_t **list;
5692 int i;
5693
5694 if (!sav->sav_sync)
5695 return;
5696
5697 /*
5698 * Update the MOS nvlist describing the list of available devices.
5699 * spa_validate_aux() will have already made sure this nvlist is
5700 * valid and the vdevs are labeled appropriately.
5701 */
5702 if (sav->sav_object == 0) {
5703 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5704 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5705 sizeof (uint64_t), tx);
5706 VERIFY(zap_update(spa->spa_meta_objset,
5707 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5708 &sav->sav_object, tx) == 0);
5709 }
5710
5711 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5712 if (sav->sav_count == 0) {
5713 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5714 } else {
5715 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_PUSHPAGE);
5716 for (i = 0; i < sav->sav_count; i++)
5717 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5718 B_FALSE, VDEV_CONFIG_L2CACHE);
5719 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5720 sav->sav_count) == 0);
5721 for (i = 0; i < sav->sav_count; i++)
5722 nvlist_free(list[i]);
5723 kmem_free(list, sav->sav_count * sizeof (void *));
5724 }
5725
5726 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5727 nvlist_free(nvroot);
5728
5729 sav->sav_sync = B_FALSE;
5730 }
5731
5732 static void
5733 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5734 {
5735 nvlist_t *config;
5736
5737 if (list_is_empty(&spa->spa_config_dirty_list))
5738 return;
5739
5740 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5741
5742 config = spa_config_generate(spa, spa->spa_root_vdev,
5743 dmu_tx_get_txg(tx), B_FALSE);
5744
5745 spa_config_exit(spa, SCL_STATE, FTAG);
5746
5747 if (spa->spa_config_syncing)
5748 nvlist_free(spa->spa_config_syncing);
5749 spa->spa_config_syncing = config;
5750
5751 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5752 }
5753
5754 static void
5755 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5756 {
5757 spa_t *spa = arg1;
5758 uint64_t version = *(uint64_t *)arg2;
5759
5760 /*
5761 * Setting the version is special cased when first creating the pool.
5762 */
5763 ASSERT(tx->tx_txg != TXG_INITIAL);
5764
5765 ASSERT(version <= SPA_VERSION);
5766 ASSERT(version >= spa_version(spa));
5767
5768 spa->spa_uberblock.ub_version = version;
5769 vdev_config_dirty(spa->spa_root_vdev);
5770 }
5771
5772 /*
5773 * Set zpool properties.
5774 */
5775 static void
5776 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5777 {
5778 spa_t *spa = arg1;
5779 objset_t *mos = spa->spa_meta_objset;
5780 nvlist_t *nvp = arg2;
5781 nvpair_t *elem = NULL;
5782
5783 mutex_enter(&spa->spa_props_lock);
5784
5785 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5786 uint64_t intval;
5787 char *strval, *fname;
5788 zpool_prop_t prop;
5789 const char *propname;
5790 zprop_type_t proptype;
5791 zfeature_info_t *feature;
5792
5793 prop = zpool_name_to_prop(nvpair_name(elem));
5794 switch ((int)prop) {
5795 case ZPROP_INVAL:
5796 /*
5797 * We checked this earlier in spa_prop_validate().
5798 */
5799 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5800
5801 fname = strchr(nvpair_name(elem), '@') + 1;
5802 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5803
5804 spa_feature_enable(spa, feature, tx);
5805 break;
5806
5807 case ZPOOL_PROP_VERSION:
5808 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5809 /*
5810 * The version is synced seperatly before other
5811 * properties and should be correct by now.
5812 */
5813 ASSERT3U(spa_version(spa), >=, intval);
5814 break;
5815
5816 case ZPOOL_PROP_ALTROOT:
5817 /*
5818 * 'altroot' is a non-persistent property. It should
5819 * have been set temporarily at creation or import time.
5820 */
5821 ASSERT(spa->spa_root != NULL);
5822 break;
5823
5824 case ZPOOL_PROP_READONLY:
5825 case ZPOOL_PROP_CACHEFILE:
5826 /*
5827 * 'readonly' and 'cachefile' are also non-persisitent
5828 * properties.
5829 */
5830 break;
5831 case ZPOOL_PROP_COMMENT:
5832 VERIFY(nvpair_value_string(elem, &strval) == 0);
5833 if (spa->spa_comment != NULL)
5834 spa_strfree(spa->spa_comment);
5835 spa->spa_comment = spa_strdup(strval);
5836 /*
5837 * We need to dirty the configuration on all the vdevs
5838 * so that their labels get updated. It's unnecessary
5839 * to do this for pool creation since the vdev's
5840 * configuratoin has already been dirtied.
5841 */
5842 if (tx->tx_txg != TXG_INITIAL)
5843 vdev_config_dirty(spa->spa_root_vdev);
5844 break;
5845 default:
5846 /*
5847 * Set pool property values in the poolprops mos object.
5848 */
5849 if (spa->spa_pool_props_object == 0) {
5850 spa->spa_pool_props_object =
5851 zap_create_link(mos, DMU_OT_POOL_PROPS,
5852 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5853 tx);
5854 }
5855
5856 /* normalize the property name */
5857 propname = zpool_prop_to_name(prop);
5858 proptype = zpool_prop_get_type(prop);
5859
5860 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5861 ASSERT(proptype == PROP_TYPE_STRING);
5862 VERIFY(nvpair_value_string(elem, &strval) == 0);
5863 VERIFY(zap_update(mos,
5864 spa->spa_pool_props_object, propname,
5865 1, strlen(strval) + 1, strval, tx) == 0);
5866
5867 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5868 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5869
5870 if (proptype == PROP_TYPE_INDEX) {
5871 const char *unused;
5872 VERIFY(zpool_prop_index_to_string(
5873 prop, intval, &unused) == 0);
5874 }
5875 VERIFY(zap_update(mos,
5876 spa->spa_pool_props_object, propname,
5877 8, 1, &intval, tx) == 0);
5878 } else {
5879 ASSERT(0); /* not allowed */
5880 }
5881
5882 switch (prop) {
5883 case ZPOOL_PROP_DELEGATION:
5884 spa->spa_delegation = intval;
5885 break;
5886 case ZPOOL_PROP_BOOTFS:
5887 spa->spa_bootfs = intval;
5888 break;
5889 case ZPOOL_PROP_FAILUREMODE:
5890 spa->spa_failmode = intval;
5891 break;
5892 case ZPOOL_PROP_AUTOEXPAND:
5893 spa->spa_autoexpand = intval;
5894 if (tx->tx_txg != TXG_INITIAL)
5895 spa_async_request(spa,
5896 SPA_ASYNC_AUTOEXPAND);
5897 break;
5898 case ZPOOL_PROP_DEDUPDITTO:
5899 spa->spa_dedup_ditto = intval;
5900 break;
5901 default:
5902 break;
5903 }
5904 }
5905
5906 /* log internal history if this is not a zpool create */
5907 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5908 tx->tx_txg != TXG_INITIAL) {
5909 spa_history_log_internal(LOG_POOL_PROPSET,
5910 spa, tx, "%s %lld %s",
5911 nvpair_name(elem), intval, spa_name(spa));
5912 }
5913 }
5914
5915 mutex_exit(&spa->spa_props_lock);
5916 }
5917
5918 /*
5919 * Perform one-time upgrade on-disk changes. spa_version() does not
5920 * reflect the new version this txg, so there must be no changes this
5921 * txg to anything that the upgrade code depends on after it executes.
5922 * Therefore this must be called after dsl_pool_sync() does the sync
5923 * tasks.
5924 */
5925 static void
5926 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5927 {
5928 dsl_pool_t *dp = spa->spa_dsl_pool;
5929
5930 ASSERT(spa->spa_sync_pass == 1);
5931
5932 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5933 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5934 dsl_pool_create_origin(dp, tx);
5935
5936 /* Keeping the origin open increases spa_minref */
5937 spa->spa_minref += 3;
5938 }
5939
5940 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5941 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5942 dsl_pool_upgrade_clones(dp, tx);
5943 }
5944
5945 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5946 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5947 dsl_pool_upgrade_dir_clones(dp, tx);
5948
5949 /* Keeping the freedir open increases spa_minref */
5950 spa->spa_minref += 3;
5951 }
5952
5953 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5954 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5955 spa_feature_create_zap_objects(spa, tx);
5956 }
5957 }
5958
5959 /*
5960 * Sync the specified transaction group. New blocks may be dirtied as
5961 * part of the process, so we iterate until it converges.
5962 */
5963 void
5964 spa_sync(spa_t *spa, uint64_t txg)
5965 {
5966 dsl_pool_t *dp = spa->spa_dsl_pool;
5967 objset_t *mos = spa->spa_meta_objset;
5968 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5969 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5970 vdev_t *rvd = spa->spa_root_vdev;
5971 vdev_t *vd;
5972 dmu_tx_t *tx;
5973 int error;
5974 int c;
5975
5976 VERIFY(spa_writeable(spa));
5977
5978 /*
5979 * Lock out configuration changes.
5980 */
5981 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5982
5983 spa->spa_syncing_txg = txg;
5984 spa->spa_sync_pass = 0;
5985
5986 /*
5987 * If there are any pending vdev state changes, convert them
5988 * into config changes that go out with this transaction group.
5989 */
5990 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5991 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5992 /*
5993 * We need the write lock here because, for aux vdevs,
5994 * calling vdev_config_dirty() modifies sav_config.
5995 * This is ugly and will become unnecessary when we
5996 * eliminate the aux vdev wart by integrating all vdevs
5997 * into the root vdev tree.
5998 */
5999 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6000 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6001 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6002 vdev_state_clean(vd);
6003 vdev_config_dirty(vd);
6004 }
6005 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6006 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6007 }
6008 spa_config_exit(spa, SCL_STATE, FTAG);
6009
6010 tx = dmu_tx_create_assigned(dp, txg);
6011
6012 /*
6013 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6014 * set spa_deflate if we have no raid-z vdevs.
6015 */
6016 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6017 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6018 int i;
6019
6020 for (i = 0; i < rvd->vdev_children; i++) {
6021 vd = rvd->vdev_child[i];
6022 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6023 break;
6024 }
6025 if (i == rvd->vdev_children) {
6026 spa->spa_deflate = TRUE;
6027 VERIFY(0 == zap_add(spa->spa_meta_objset,
6028 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6029 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6030 }
6031 }
6032
6033 /*
6034 * If anything has changed in this txg, or if someone is waiting
6035 * for this txg to sync (eg, spa_vdev_remove()), push the
6036 * deferred frees from the previous txg. If not, leave them
6037 * alone so that we don't generate work on an otherwise idle
6038 * system.
6039 */
6040 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6041 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6042 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6043 ((dsl_scan_active(dp->dp_scan) ||
6044 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6045 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6046 VERIFY3U(bpobj_iterate(defer_bpo,
6047 spa_free_sync_cb, zio, tx), ==, 0);
6048 VERIFY3U(zio_wait(zio), ==, 0);
6049 }
6050
6051 /*
6052 * Iterate to convergence.
6053 */
6054 do {
6055 int pass = ++spa->spa_sync_pass;
6056
6057 spa_sync_config_object(spa, tx);
6058 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6059 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6060 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6061 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6062 spa_errlog_sync(spa, txg);
6063 dsl_pool_sync(dp, txg);
6064
6065 if (pass <= SYNC_PASS_DEFERRED_FREE) {
6066 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6067 bplist_iterate(free_bpl, spa_free_sync_cb,
6068 zio, tx);
6069 VERIFY(zio_wait(zio) == 0);
6070 } else {
6071 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6072 defer_bpo, tx);
6073 }
6074
6075 ddt_sync(spa, txg);
6076 dsl_scan_sync(dp, tx);
6077
6078 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6079 vdev_sync(vd, txg);
6080
6081 if (pass == 1)
6082 spa_sync_upgrades(spa, tx);
6083
6084 } while (dmu_objset_is_dirty(mos, txg));
6085
6086 /*
6087 * Rewrite the vdev configuration (which includes the uberblock)
6088 * to commit the transaction group.
6089 *
6090 * If there are no dirty vdevs, we sync the uberblock to a few
6091 * random top-level vdevs that are known to be visible in the
6092 * config cache (see spa_vdev_add() for a complete description).
6093 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6094 */
6095 for (;;) {
6096 /*
6097 * We hold SCL_STATE to prevent vdev open/close/etc.
6098 * while we're attempting to write the vdev labels.
6099 */
6100 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6101
6102 if (list_is_empty(&spa->spa_config_dirty_list)) {
6103 vdev_t *svd[SPA_DVAS_PER_BP];
6104 int svdcount = 0;
6105 int children = rvd->vdev_children;
6106 int c0 = spa_get_random(children);
6107
6108 for (c = 0; c < children; c++) {
6109 vd = rvd->vdev_child[(c0 + c) % children];
6110 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6111 continue;
6112 svd[svdcount++] = vd;
6113 if (svdcount == SPA_DVAS_PER_BP)
6114 break;
6115 }
6116 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6117 if (error != 0)
6118 error = vdev_config_sync(svd, svdcount, txg,
6119 B_TRUE);
6120 } else {
6121 error = vdev_config_sync(rvd->vdev_child,
6122 rvd->vdev_children, txg, B_FALSE);
6123 if (error != 0)
6124 error = vdev_config_sync(rvd->vdev_child,
6125 rvd->vdev_children, txg, B_TRUE);
6126 }
6127
6128 if (error == 0)
6129 spa->spa_last_synced_guid = rvd->vdev_guid;
6130
6131 spa_config_exit(spa, SCL_STATE, FTAG);
6132
6133 if (error == 0)
6134 break;
6135 zio_suspend(spa, NULL);
6136 zio_resume_wait(spa);
6137 }
6138 dmu_tx_commit(tx);
6139
6140 /*
6141 * Clear the dirty config list.
6142 */
6143 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6144 vdev_config_clean(vd);
6145
6146 /*
6147 * Now that the new config has synced transactionally,
6148 * let it become visible to the config cache.
6149 */
6150 if (spa->spa_config_syncing != NULL) {
6151 spa_config_set(spa, spa->spa_config_syncing);
6152 spa->spa_config_txg = txg;
6153 spa->spa_config_syncing = NULL;
6154 }
6155
6156 spa->spa_ubsync = spa->spa_uberblock;
6157
6158 dsl_pool_sync_done(dp, txg);
6159
6160 /*
6161 * Update usable space statistics.
6162 */
6163 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6164 vdev_sync_done(vd, txg);
6165
6166 spa_update_dspace(spa);
6167
6168 /*
6169 * It had better be the case that we didn't dirty anything
6170 * since vdev_config_sync().
6171 */
6172 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6173 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6174 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6175
6176 spa->spa_sync_pass = 0;
6177
6178 spa_config_exit(spa, SCL_CONFIG, FTAG);
6179
6180 spa_handle_ignored_writes(spa);
6181
6182 /*
6183 * If any async tasks have been requested, kick them off.
6184 */
6185 spa_async_dispatch(spa);
6186 }
6187
6188 /*
6189 * Sync all pools. We don't want to hold the namespace lock across these
6190 * operations, so we take a reference on the spa_t and drop the lock during the
6191 * sync.
6192 */
6193 void
6194 spa_sync_allpools(void)
6195 {
6196 spa_t *spa = NULL;
6197 mutex_enter(&spa_namespace_lock);
6198 while ((spa = spa_next(spa)) != NULL) {
6199 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6200 !spa_writeable(spa) || spa_suspended(spa))
6201 continue;
6202 spa_open_ref(spa, FTAG);
6203 mutex_exit(&spa_namespace_lock);
6204 txg_wait_synced(spa_get_dsl(spa), 0);
6205 mutex_enter(&spa_namespace_lock);
6206 spa_close(spa, FTAG);
6207 }
6208 mutex_exit(&spa_namespace_lock);
6209 }
6210
6211 /*
6212 * ==========================================================================
6213 * Miscellaneous routines
6214 * ==========================================================================
6215 */
6216
6217 /*
6218 * Remove all pools in the system.
6219 */
6220 void
6221 spa_evict_all(void)
6222 {
6223 spa_t *spa;
6224
6225 /*
6226 * Remove all cached state. All pools should be closed now,
6227 * so every spa in the AVL tree should be unreferenced.
6228 */
6229 mutex_enter(&spa_namespace_lock);
6230 while ((spa = spa_next(NULL)) != NULL) {
6231 /*
6232 * Stop async tasks. The async thread may need to detach
6233 * a device that's been replaced, which requires grabbing
6234 * spa_namespace_lock, so we must drop it here.
6235 */
6236 spa_open_ref(spa, FTAG);
6237 mutex_exit(&spa_namespace_lock);
6238 spa_async_suspend(spa);
6239 mutex_enter(&spa_namespace_lock);
6240 spa_close(spa, FTAG);
6241
6242 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6243 spa_unload(spa);
6244 spa_deactivate(spa);
6245 }
6246 spa_remove(spa);
6247 }
6248 mutex_exit(&spa_namespace_lock);
6249 }
6250
6251 vdev_t *
6252 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6253 {
6254 vdev_t *vd;
6255 int i;
6256
6257 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6258 return (vd);
6259
6260 if (aux) {
6261 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6262 vd = spa->spa_l2cache.sav_vdevs[i];
6263 if (vd->vdev_guid == guid)
6264 return (vd);
6265 }
6266
6267 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6268 vd = spa->spa_spares.sav_vdevs[i];
6269 if (vd->vdev_guid == guid)
6270 return (vd);
6271 }
6272 }
6273
6274 return (NULL);
6275 }
6276
6277 void
6278 spa_upgrade(spa_t *spa, uint64_t version)
6279 {
6280 ASSERT(spa_writeable(spa));
6281
6282 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6283
6284 /*
6285 * This should only be called for a non-faulted pool, and since a
6286 * future version would result in an unopenable pool, this shouldn't be
6287 * possible.
6288 */
6289 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6290 ASSERT(version >= spa->spa_uberblock.ub_version);
6291
6292 spa->spa_uberblock.ub_version = version;
6293 vdev_config_dirty(spa->spa_root_vdev);
6294
6295 spa_config_exit(spa, SCL_ALL, FTAG);
6296
6297 txg_wait_synced(spa_get_dsl(spa), 0);
6298 }
6299
6300 boolean_t
6301 spa_has_spare(spa_t *spa, uint64_t guid)
6302 {
6303 int i;
6304 uint64_t spareguid;
6305 spa_aux_vdev_t *sav = &spa->spa_spares;
6306
6307 for (i = 0; i < sav->sav_count; i++)
6308 if (sav->sav_vdevs[i]->vdev_guid == guid)
6309 return (B_TRUE);
6310
6311 for (i = 0; i < sav->sav_npending; i++) {
6312 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6313 &spareguid) == 0 && spareguid == guid)
6314 return (B_TRUE);
6315 }
6316
6317 return (B_FALSE);
6318 }
6319
6320 /*
6321 * Check if a pool has an active shared spare device.
6322 * Note: reference count of an active spare is 2, as a spare and as a replace
6323 */
6324 static boolean_t
6325 spa_has_active_shared_spare(spa_t *spa)
6326 {
6327 int i, refcnt;
6328 uint64_t pool;
6329 spa_aux_vdev_t *sav = &spa->spa_spares;
6330
6331 for (i = 0; i < sav->sav_count; i++) {
6332 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6333 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6334 refcnt > 2)
6335 return (B_TRUE);
6336 }
6337
6338 return (B_FALSE);
6339 }
6340
6341 /*
6342 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6343 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6344 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6345 * or zdb as real changes.
6346 */
6347 void
6348 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6349 {
6350 #ifdef _KERNEL
6351 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6352 #endif
6353 }
6354
6355 #if defined(_KERNEL) && defined(HAVE_SPL)
6356 /* state manipulation functions */
6357 EXPORT_SYMBOL(spa_open);
6358 EXPORT_SYMBOL(spa_open_rewind);
6359 EXPORT_SYMBOL(spa_get_stats);
6360 EXPORT_SYMBOL(spa_create);
6361 EXPORT_SYMBOL(spa_import_rootpool);
6362 EXPORT_SYMBOL(spa_import);
6363 EXPORT_SYMBOL(spa_tryimport);
6364 EXPORT_SYMBOL(spa_destroy);
6365 EXPORT_SYMBOL(spa_export);
6366 EXPORT_SYMBOL(spa_reset);
6367 EXPORT_SYMBOL(spa_async_request);
6368 EXPORT_SYMBOL(spa_async_suspend);
6369 EXPORT_SYMBOL(spa_async_resume);
6370 EXPORT_SYMBOL(spa_inject_addref);
6371 EXPORT_SYMBOL(spa_inject_delref);
6372 EXPORT_SYMBOL(spa_scan_stat_init);
6373 EXPORT_SYMBOL(spa_scan_get_stats);
6374
6375 /* device maniion */
6376 EXPORT_SYMBOL(spa_vdev_add);
6377 EXPORT_SYMBOL(spa_vdev_attach);
6378 EXPORT_SYMBOL(spa_vdev_detach);
6379 EXPORT_SYMBOL(spa_vdev_remove);
6380 EXPORT_SYMBOL(spa_vdev_setpath);
6381 EXPORT_SYMBOL(spa_vdev_setfru);
6382 EXPORT_SYMBOL(spa_vdev_split_mirror);
6383
6384 /* spare statech is global across all pools) */
6385 EXPORT_SYMBOL(spa_spare_add);
6386 EXPORT_SYMBOL(spa_spare_remove);
6387 EXPORT_SYMBOL(spa_spare_exists);
6388 EXPORT_SYMBOL(spa_spare_activate);
6389
6390 /* L2ARC statech is global across all pools) */
6391 EXPORT_SYMBOL(spa_l2cache_add);
6392 EXPORT_SYMBOL(spa_l2cache_remove);
6393 EXPORT_SYMBOL(spa_l2cache_exists);
6394 EXPORT_SYMBOL(spa_l2cache_activate);
6395 EXPORT_SYMBOL(spa_l2cache_drop);
6396
6397 /* scanning */
6398 EXPORT_SYMBOL(spa_scan);
6399 EXPORT_SYMBOL(spa_scan_stop);
6400
6401 /* spa syncing */
6402 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6403 EXPORT_SYMBOL(spa_sync_allpools);
6404
6405 /* properties */
6406 EXPORT_SYMBOL(spa_prop_set);
6407 EXPORT_SYMBOL(spa_prop_get);
6408 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6409
6410 /* asynchronous event notification */
6411 EXPORT_SYMBOL(spa_event_notify);
6412 #endif