]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
import: require force when cachefile hostid doesn't match on-disk
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_draid.h>
67 #include <sys/metaslab.h>
68 #include <sys/metaslab_impl.h>
69 #include <sys/mmp.h>
70 #include <sys/uberblock_impl.h>
71 #include <sys/txg.h>
72 #include <sys/avl.h>
73 #include <sys/bpobj.h>
74 #include <sys/dmu_traverse.h>
75 #include <sys/dmu_objset.h>
76 #include <sys/unique.h>
77 #include <sys/dsl_pool.h>
78 #include <sys/dsl_dataset.h>
79 #include <sys/dsl_dir.h>
80 #include <sys/dsl_prop.h>
81 #include <sys/dsl_synctask.h>
82 #include <sys/fs/zfs.h>
83 #include <sys/arc.h>
84 #include <sys/callb.h>
85 #include <sys/systeminfo.h>
86 #include <sys/zfs_ioctl.h>
87 #include <sys/dsl_scan.h>
88 #include <sys/zfeature.h>
89 #include <sys/dsl_destroy.h>
90 #include <sys/zvol.h>
91
92 #ifdef _KERNEL
93 #include <sys/fm/protocol.h>
94 #include <sys/fm/util.h>
95 #include <sys/callb.h>
96 #include <sys/zone.h>
97 #include <sys/vmsystm.h>
98 #endif /* _KERNEL */
99
100 #include "zfs_prop.h"
101 #include "zfs_comutil.h"
102
103 /*
104 * The interval, in seconds, at which failed configuration cache file writes
105 * should be retried.
106 */
107 int zfs_ccw_retry_interval = 300;
108
109 typedef enum zti_modes {
110 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
111 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
112 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
113 ZTI_MODE_NULL, /* don't create a taskq */
114 ZTI_NMODES
115 } zti_modes_t;
116
117 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
118 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
119 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
120 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
121 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
122
123 #define ZTI_N(n) ZTI_P(n, 1)
124 #define ZTI_ONE ZTI_N(1)
125
126 typedef struct zio_taskq_info {
127 zti_modes_t zti_mode;
128 uint_t zti_value;
129 uint_t zti_count;
130 } zio_taskq_info_t;
131
132 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
133 "iss", "iss_h", "int", "int_h"
134 };
135
136 /*
137 * This table defines the taskq settings for each ZFS I/O type. When
138 * initializing a pool, we use this table to create an appropriately sized
139 * taskq. Some operations are low volume and therefore have a small, static
140 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
141 * macros. Other operations process a large amount of data; the ZTI_BATCH
142 * macro causes us to create a taskq oriented for throughput. Some operations
143 * are so high frequency and short-lived that the taskq itself can become a
144 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
145 * additional degree of parallelism specified by the number of threads per-
146 * taskq and the number of taskqs; when dispatching an event in this case, the
147 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
148 * but with number of taskqs also scaling with number of CPUs.
149 *
150 * The different taskq priorities are to handle the different contexts (issue
151 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
152 * need to be handled with minimum delay.
153 */
154 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
155 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
156 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
157 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
158 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
159 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
160 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
161 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
162 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
163 };
164
165 static void spa_sync_version(void *arg, dmu_tx_t *tx);
166 static void spa_sync_props(void *arg, dmu_tx_t *tx);
167 static boolean_t spa_has_active_shared_spare(spa_t *spa);
168 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
169 const char **ereport);
170 static void spa_vdev_resilver_done(spa_t *spa);
171
172 /*
173 * Percentage of all CPUs that can be used by the metaslab preload taskq.
174 */
175 static uint_t metaslab_preload_pct = 50;
176
177 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
178 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
179 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
180 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
181
182 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
183
184 /*
185 * Report any spa_load_verify errors found, but do not fail spa_load.
186 * This is used by zdb to analyze non-idle pools.
187 */
188 boolean_t spa_load_verify_dryrun = B_FALSE;
189
190 /*
191 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
192 * This is used by zdb for spacemaps verification.
193 */
194 boolean_t spa_mode_readable_spacemaps = B_FALSE;
195
196 /*
197 * This (illegal) pool name is used when temporarily importing a spa_t in order
198 * to get the vdev stats associated with the imported devices.
199 */
200 #define TRYIMPORT_NAME "$import"
201
202 /*
203 * For debugging purposes: print out vdev tree during pool import.
204 */
205 static int spa_load_print_vdev_tree = B_FALSE;
206
207 /*
208 * A non-zero value for zfs_max_missing_tvds means that we allow importing
209 * pools with missing top-level vdevs. This is strictly intended for advanced
210 * pool recovery cases since missing data is almost inevitable. Pools with
211 * missing devices can only be imported read-only for safety reasons, and their
212 * fail-mode will be automatically set to "continue".
213 *
214 * With 1 missing vdev we should be able to import the pool and mount all
215 * datasets. User data that was not modified after the missing device has been
216 * added should be recoverable. This means that snapshots created prior to the
217 * addition of that device should be completely intact.
218 *
219 * With 2 missing vdevs, some datasets may fail to mount since there are
220 * dataset statistics that are stored as regular metadata. Some data might be
221 * recoverable if those vdevs were added recently.
222 *
223 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
224 * may be missing entirely. Chances of data recovery are very low. Note that
225 * there are also risks of performing an inadvertent rewind as we might be
226 * missing all the vdevs with the latest uberblocks.
227 */
228 uint64_t zfs_max_missing_tvds = 0;
229
230 /*
231 * The parameters below are similar to zfs_max_missing_tvds but are only
232 * intended for a preliminary open of the pool with an untrusted config which
233 * might be incomplete or out-dated.
234 *
235 * We are more tolerant for pools opened from a cachefile since we could have
236 * an out-dated cachefile where a device removal was not registered.
237 * We could have set the limit arbitrarily high but in the case where devices
238 * are really missing we would want to return the proper error codes; we chose
239 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
240 * and we get a chance to retrieve the trusted config.
241 */
242 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
243
244 /*
245 * In the case where config was assembled by scanning device paths (/dev/dsks
246 * by default) we are less tolerant since all the existing devices should have
247 * been detected and we want spa_load to return the right error codes.
248 */
249 uint64_t zfs_max_missing_tvds_scan = 0;
250
251 /*
252 * Debugging aid that pauses spa_sync() towards the end.
253 */
254 static const boolean_t zfs_pause_spa_sync = B_FALSE;
255
256 /*
257 * Variables to indicate the livelist condense zthr func should wait at certain
258 * points for the livelist to be removed - used to test condense/destroy races
259 */
260 static int zfs_livelist_condense_zthr_pause = 0;
261 static int zfs_livelist_condense_sync_pause = 0;
262
263 /*
264 * Variables to track whether or not condense cancellation has been
265 * triggered in testing.
266 */
267 static int zfs_livelist_condense_sync_cancel = 0;
268 static int zfs_livelist_condense_zthr_cancel = 0;
269
270 /*
271 * Variable to track whether or not extra ALLOC blkptrs were added to a
272 * livelist entry while it was being condensed (caused by the way we track
273 * remapped blkptrs in dbuf_remap_impl)
274 */
275 static int zfs_livelist_condense_new_alloc = 0;
276
277 /*
278 * ==========================================================================
279 * SPA properties routines
280 * ==========================================================================
281 */
282
283 /*
284 * Add a (source=src, propname=propval) list to an nvlist.
285 */
286 static void
287 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
288 uint64_t intval, zprop_source_t src)
289 {
290 const char *propname = zpool_prop_to_name(prop);
291 nvlist_t *propval;
292
293 propval = fnvlist_alloc();
294 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
295
296 if (strval != NULL)
297 fnvlist_add_string(propval, ZPROP_VALUE, strval);
298 else
299 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
300
301 fnvlist_add_nvlist(nvl, propname, propval);
302 nvlist_free(propval);
303 }
304
305 /*
306 * Add a user property (source=src, propname=propval) to an nvlist.
307 */
308 static void
309 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
310 zprop_source_t src)
311 {
312 nvlist_t *propval;
313
314 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
315 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
316 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
317 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
318 nvlist_free(propval);
319 }
320
321 /*
322 * Get property values from the spa configuration.
323 */
324 static void
325 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
326 {
327 vdev_t *rvd = spa->spa_root_vdev;
328 dsl_pool_t *pool = spa->spa_dsl_pool;
329 uint64_t size, alloc, cap, version;
330 const zprop_source_t src = ZPROP_SRC_NONE;
331 spa_config_dirent_t *dp;
332 metaslab_class_t *mc = spa_normal_class(spa);
333
334 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
335
336 if (rvd != NULL) {
337 alloc = metaslab_class_get_alloc(mc);
338 alloc += metaslab_class_get_alloc(spa_special_class(spa));
339 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
340 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
341
342 size = metaslab_class_get_space(mc);
343 size += metaslab_class_get_space(spa_special_class(spa));
344 size += metaslab_class_get_space(spa_dedup_class(spa));
345 size += metaslab_class_get_space(spa_embedded_log_class(spa));
346
347 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
348 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
349 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
350 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
351 size - alloc, src);
352 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
353 spa->spa_checkpoint_info.sci_dspace, src);
354
355 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
356 metaslab_class_fragmentation(mc), src);
357 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
358 metaslab_class_expandable_space(mc), src);
359 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
360 (spa_mode(spa) == SPA_MODE_READ), src);
361
362 cap = (size == 0) ? 0 : (alloc * 100 / size);
363 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
364
365 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
366 ddt_get_pool_dedup_ratio(spa), src);
367 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
368 brt_get_used(spa), src);
369 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
370 brt_get_saved(spa), src);
371 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
372 brt_get_ratio(spa), src);
373
374 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
375 rvd->vdev_state, src);
376
377 version = spa_version(spa);
378 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
379 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
380 version, ZPROP_SRC_DEFAULT);
381 } else {
382 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
383 version, ZPROP_SRC_LOCAL);
384 }
385 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
386 NULL, spa_load_guid(spa), src);
387 }
388
389 if (pool != NULL) {
390 /*
391 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
392 * when opening pools before this version freedir will be NULL.
393 */
394 if (pool->dp_free_dir != NULL) {
395 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
396 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
397 src);
398 } else {
399 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
400 NULL, 0, src);
401 }
402
403 if (pool->dp_leak_dir != NULL) {
404 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
405 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
406 src);
407 } else {
408 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
409 NULL, 0, src);
410 }
411 }
412
413 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
414
415 if (spa->spa_comment != NULL) {
416 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
417 0, ZPROP_SRC_LOCAL);
418 }
419
420 if (spa->spa_compatibility != NULL) {
421 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
422 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
423 }
424
425 if (spa->spa_root != NULL)
426 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
427 0, ZPROP_SRC_LOCAL);
428
429 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
430 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
431 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
432 } else {
433 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
434 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
435 }
436
437 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
438 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
439 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
440 } else {
441 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
442 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
443 }
444
445 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
446 if (dp->scd_path == NULL) {
447 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
448 "none", 0, ZPROP_SRC_LOCAL);
449 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
450 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
451 dp->scd_path, 0, ZPROP_SRC_LOCAL);
452 }
453 }
454 }
455
456 /*
457 * Get zpool property values.
458 */
459 int
460 spa_prop_get(spa_t *spa, nvlist_t **nvp)
461 {
462 objset_t *mos = spa->spa_meta_objset;
463 zap_cursor_t zc;
464 zap_attribute_t za;
465 dsl_pool_t *dp;
466 int err;
467
468 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
469 if (err)
470 return (err);
471
472 dp = spa_get_dsl(spa);
473 dsl_pool_config_enter(dp, FTAG);
474 mutex_enter(&spa->spa_props_lock);
475
476 /*
477 * Get properties from the spa config.
478 */
479 spa_prop_get_config(spa, nvp);
480
481 /* If no pool property object, no more prop to get. */
482 if (mos == NULL || spa->spa_pool_props_object == 0)
483 goto out;
484
485 /*
486 * Get properties from the MOS pool property object.
487 */
488 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
489 (err = zap_cursor_retrieve(&zc, &za)) == 0;
490 zap_cursor_advance(&zc)) {
491 uint64_t intval = 0;
492 char *strval = NULL;
493 zprop_source_t src = ZPROP_SRC_DEFAULT;
494 zpool_prop_t prop;
495
496 if ((prop = zpool_name_to_prop(za.za_name)) ==
497 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
498 continue;
499
500 switch (za.za_integer_length) {
501 case 8:
502 /* integer property */
503 if (za.za_first_integer !=
504 zpool_prop_default_numeric(prop))
505 src = ZPROP_SRC_LOCAL;
506
507 if (prop == ZPOOL_PROP_BOOTFS) {
508 dsl_dataset_t *ds = NULL;
509
510 err = dsl_dataset_hold_obj(dp,
511 za.za_first_integer, FTAG, &ds);
512 if (err != 0)
513 break;
514
515 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
516 KM_SLEEP);
517 dsl_dataset_name(ds, strval);
518 dsl_dataset_rele(ds, FTAG);
519 } else {
520 strval = NULL;
521 intval = za.za_first_integer;
522 }
523
524 spa_prop_add_list(*nvp, prop, strval, intval, src);
525
526 if (strval != NULL)
527 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
528
529 break;
530
531 case 1:
532 /* string property */
533 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
534 err = zap_lookup(mos, spa->spa_pool_props_object,
535 za.za_name, 1, za.za_num_integers, strval);
536 if (err) {
537 kmem_free(strval, za.za_num_integers);
538 break;
539 }
540 if (prop != ZPOOL_PROP_INVAL) {
541 spa_prop_add_list(*nvp, prop, strval, 0, src);
542 } else {
543 src = ZPROP_SRC_LOCAL;
544 spa_prop_add_user(*nvp, za.za_name, strval,
545 src);
546 }
547 kmem_free(strval, za.za_num_integers);
548 break;
549
550 default:
551 break;
552 }
553 }
554 zap_cursor_fini(&zc);
555 out:
556 mutex_exit(&spa->spa_props_lock);
557 dsl_pool_config_exit(dp, FTAG);
558 if (err && err != ENOENT) {
559 nvlist_free(*nvp);
560 *nvp = NULL;
561 return (err);
562 }
563
564 return (0);
565 }
566
567 /*
568 * Validate the given pool properties nvlist and modify the list
569 * for the property values to be set.
570 */
571 static int
572 spa_prop_validate(spa_t *spa, nvlist_t *props)
573 {
574 nvpair_t *elem;
575 int error = 0, reset_bootfs = 0;
576 uint64_t objnum = 0;
577 boolean_t has_feature = B_FALSE;
578
579 elem = NULL;
580 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
581 uint64_t intval;
582 const char *strval, *slash, *check, *fname;
583 const char *propname = nvpair_name(elem);
584 zpool_prop_t prop = zpool_name_to_prop(propname);
585
586 switch (prop) {
587 case ZPOOL_PROP_INVAL:
588 /*
589 * Sanitize the input.
590 */
591 if (zfs_prop_user(propname)) {
592 if (strlen(propname) >= ZAP_MAXNAMELEN) {
593 error = SET_ERROR(ENAMETOOLONG);
594 break;
595 }
596
597 if (strlen(fnvpair_value_string(elem)) >=
598 ZAP_MAXVALUELEN) {
599 error = SET_ERROR(E2BIG);
600 break;
601 }
602 } else if (zpool_prop_feature(propname)) {
603 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
604 error = SET_ERROR(EINVAL);
605 break;
606 }
607
608 if (nvpair_value_uint64(elem, &intval) != 0) {
609 error = SET_ERROR(EINVAL);
610 break;
611 }
612
613 if (intval != 0) {
614 error = SET_ERROR(EINVAL);
615 break;
616 }
617
618 fname = strchr(propname, '@') + 1;
619 if (zfeature_lookup_name(fname, NULL) != 0) {
620 error = SET_ERROR(EINVAL);
621 break;
622 }
623
624 has_feature = B_TRUE;
625 } else {
626 error = SET_ERROR(EINVAL);
627 break;
628 }
629 break;
630
631 case ZPOOL_PROP_VERSION:
632 error = nvpair_value_uint64(elem, &intval);
633 if (!error &&
634 (intval < spa_version(spa) ||
635 intval > SPA_VERSION_BEFORE_FEATURES ||
636 has_feature))
637 error = SET_ERROR(EINVAL);
638 break;
639
640 case ZPOOL_PROP_DELEGATION:
641 case ZPOOL_PROP_AUTOREPLACE:
642 case ZPOOL_PROP_LISTSNAPS:
643 case ZPOOL_PROP_AUTOEXPAND:
644 case ZPOOL_PROP_AUTOTRIM:
645 error = nvpair_value_uint64(elem, &intval);
646 if (!error && intval > 1)
647 error = SET_ERROR(EINVAL);
648 break;
649
650 case ZPOOL_PROP_MULTIHOST:
651 error = nvpair_value_uint64(elem, &intval);
652 if (!error && intval > 1)
653 error = SET_ERROR(EINVAL);
654
655 if (!error) {
656 uint32_t hostid = zone_get_hostid(NULL);
657 if (hostid)
658 spa->spa_hostid = hostid;
659 else
660 error = SET_ERROR(ENOTSUP);
661 }
662
663 break;
664
665 case ZPOOL_PROP_BOOTFS:
666 /*
667 * If the pool version is less than SPA_VERSION_BOOTFS,
668 * or the pool is still being created (version == 0),
669 * the bootfs property cannot be set.
670 */
671 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
672 error = SET_ERROR(ENOTSUP);
673 break;
674 }
675
676 /*
677 * Make sure the vdev config is bootable
678 */
679 if (!vdev_is_bootable(spa->spa_root_vdev)) {
680 error = SET_ERROR(ENOTSUP);
681 break;
682 }
683
684 reset_bootfs = 1;
685
686 error = nvpair_value_string(elem, &strval);
687
688 if (!error) {
689 objset_t *os;
690
691 if (strval == NULL || strval[0] == '\0') {
692 objnum = zpool_prop_default_numeric(
693 ZPOOL_PROP_BOOTFS);
694 break;
695 }
696
697 error = dmu_objset_hold(strval, FTAG, &os);
698 if (error != 0)
699 break;
700
701 /* Must be ZPL. */
702 if (dmu_objset_type(os) != DMU_OST_ZFS) {
703 error = SET_ERROR(ENOTSUP);
704 } else {
705 objnum = dmu_objset_id(os);
706 }
707 dmu_objset_rele(os, FTAG);
708 }
709 break;
710
711 case ZPOOL_PROP_FAILUREMODE:
712 error = nvpair_value_uint64(elem, &intval);
713 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
714 error = SET_ERROR(EINVAL);
715
716 /*
717 * This is a special case which only occurs when
718 * the pool has completely failed. This allows
719 * the user to change the in-core failmode property
720 * without syncing it out to disk (I/Os might
721 * currently be blocked). We do this by returning
722 * EIO to the caller (spa_prop_set) to trick it
723 * into thinking we encountered a property validation
724 * error.
725 */
726 if (!error && spa_suspended(spa)) {
727 spa->spa_failmode = intval;
728 error = SET_ERROR(EIO);
729 }
730 break;
731
732 case ZPOOL_PROP_CACHEFILE:
733 if ((error = nvpair_value_string(elem, &strval)) != 0)
734 break;
735
736 if (strval[0] == '\0')
737 break;
738
739 if (strcmp(strval, "none") == 0)
740 break;
741
742 if (strval[0] != '/') {
743 error = SET_ERROR(EINVAL);
744 break;
745 }
746
747 slash = strrchr(strval, '/');
748 ASSERT(slash != NULL);
749
750 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
751 strcmp(slash, "/..") == 0)
752 error = SET_ERROR(EINVAL);
753 break;
754
755 case ZPOOL_PROP_COMMENT:
756 if ((error = nvpair_value_string(elem, &strval)) != 0)
757 break;
758 for (check = strval; *check != '\0'; check++) {
759 if (!isprint(*check)) {
760 error = SET_ERROR(EINVAL);
761 break;
762 }
763 }
764 if (strlen(strval) > ZPROP_MAX_COMMENT)
765 error = SET_ERROR(E2BIG);
766 break;
767
768 default:
769 break;
770 }
771
772 if (error)
773 break;
774 }
775
776 (void) nvlist_remove_all(props,
777 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
778
779 if (!error && reset_bootfs) {
780 error = nvlist_remove(props,
781 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
782
783 if (!error) {
784 error = nvlist_add_uint64(props,
785 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
786 }
787 }
788
789 return (error);
790 }
791
792 void
793 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
794 {
795 const char *cachefile;
796 spa_config_dirent_t *dp;
797
798 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
799 &cachefile) != 0)
800 return;
801
802 dp = kmem_alloc(sizeof (spa_config_dirent_t),
803 KM_SLEEP);
804
805 if (cachefile[0] == '\0')
806 dp->scd_path = spa_strdup(spa_config_path);
807 else if (strcmp(cachefile, "none") == 0)
808 dp->scd_path = NULL;
809 else
810 dp->scd_path = spa_strdup(cachefile);
811
812 list_insert_head(&spa->spa_config_list, dp);
813 if (need_sync)
814 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
815 }
816
817 int
818 spa_prop_set(spa_t *spa, nvlist_t *nvp)
819 {
820 int error;
821 nvpair_t *elem = NULL;
822 boolean_t need_sync = B_FALSE;
823
824 if ((error = spa_prop_validate(spa, nvp)) != 0)
825 return (error);
826
827 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
828 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
829
830 if (prop == ZPOOL_PROP_CACHEFILE ||
831 prop == ZPOOL_PROP_ALTROOT ||
832 prop == ZPOOL_PROP_READONLY)
833 continue;
834
835 if (prop == ZPOOL_PROP_INVAL &&
836 zfs_prop_user(nvpair_name(elem))) {
837 need_sync = B_TRUE;
838 break;
839 }
840
841 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
842 uint64_t ver = 0;
843
844 if (prop == ZPOOL_PROP_VERSION) {
845 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
846 } else {
847 ASSERT(zpool_prop_feature(nvpair_name(elem)));
848 ver = SPA_VERSION_FEATURES;
849 need_sync = B_TRUE;
850 }
851
852 /* Save time if the version is already set. */
853 if (ver == spa_version(spa))
854 continue;
855
856 /*
857 * In addition to the pool directory object, we might
858 * create the pool properties object, the features for
859 * read object, the features for write object, or the
860 * feature descriptions object.
861 */
862 error = dsl_sync_task(spa->spa_name, NULL,
863 spa_sync_version, &ver,
864 6, ZFS_SPACE_CHECK_RESERVED);
865 if (error)
866 return (error);
867 continue;
868 }
869
870 need_sync = B_TRUE;
871 break;
872 }
873
874 if (need_sync) {
875 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
876 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
877 }
878
879 return (0);
880 }
881
882 /*
883 * If the bootfs property value is dsobj, clear it.
884 */
885 void
886 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
887 {
888 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
889 VERIFY(zap_remove(spa->spa_meta_objset,
890 spa->spa_pool_props_object,
891 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
892 spa->spa_bootfs = 0;
893 }
894 }
895
896 static int
897 spa_change_guid_check(void *arg, dmu_tx_t *tx)
898 {
899 uint64_t *newguid __maybe_unused = arg;
900 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
901 vdev_t *rvd = spa->spa_root_vdev;
902 uint64_t vdev_state;
903
904 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
905 int error = (spa_has_checkpoint(spa)) ?
906 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
907 return (SET_ERROR(error));
908 }
909
910 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
911 vdev_state = rvd->vdev_state;
912 spa_config_exit(spa, SCL_STATE, FTAG);
913
914 if (vdev_state != VDEV_STATE_HEALTHY)
915 return (SET_ERROR(ENXIO));
916
917 ASSERT3U(spa_guid(spa), !=, *newguid);
918
919 return (0);
920 }
921
922 static void
923 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
924 {
925 uint64_t *newguid = arg;
926 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
927 uint64_t oldguid;
928 vdev_t *rvd = spa->spa_root_vdev;
929
930 oldguid = spa_guid(spa);
931
932 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
933 rvd->vdev_guid = *newguid;
934 rvd->vdev_guid_sum += (*newguid - oldguid);
935 vdev_config_dirty(rvd);
936 spa_config_exit(spa, SCL_STATE, FTAG);
937
938 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
939 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
940 }
941
942 /*
943 * Change the GUID for the pool. This is done so that we can later
944 * re-import a pool built from a clone of our own vdevs. We will modify
945 * the root vdev's guid, our own pool guid, and then mark all of our
946 * vdevs dirty. Note that we must make sure that all our vdevs are
947 * online when we do this, or else any vdevs that weren't present
948 * would be orphaned from our pool. We are also going to issue a
949 * sysevent to update any watchers.
950 */
951 int
952 spa_change_guid(spa_t *spa)
953 {
954 int error;
955 uint64_t guid;
956
957 mutex_enter(&spa->spa_vdev_top_lock);
958 mutex_enter(&spa_namespace_lock);
959 guid = spa_generate_guid(NULL);
960
961 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
962 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
963
964 if (error == 0) {
965 /*
966 * Clear the kobj flag from all the vdevs to allow
967 * vdev_cache_process_kobj_evt() to post events to all the
968 * vdevs since GUID is updated.
969 */
970 vdev_clear_kobj_evt(spa->spa_root_vdev);
971 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
972 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
973
974 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
975 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
976 }
977
978 mutex_exit(&spa_namespace_lock);
979 mutex_exit(&spa->spa_vdev_top_lock);
980
981 return (error);
982 }
983
984 /*
985 * ==========================================================================
986 * SPA state manipulation (open/create/destroy/import/export)
987 * ==========================================================================
988 */
989
990 static int
991 spa_error_entry_compare(const void *a, const void *b)
992 {
993 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
994 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
995 int ret;
996
997 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
998 sizeof (zbookmark_phys_t));
999
1000 return (TREE_ISIGN(ret));
1001 }
1002
1003 /*
1004 * Utility function which retrieves copies of the current logs and
1005 * re-initializes them in the process.
1006 */
1007 void
1008 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1009 {
1010 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1011
1012 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1013 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1014
1015 avl_create(&spa->spa_errlist_scrub,
1016 spa_error_entry_compare, sizeof (spa_error_entry_t),
1017 offsetof(spa_error_entry_t, se_avl));
1018 avl_create(&spa->spa_errlist_last,
1019 spa_error_entry_compare, sizeof (spa_error_entry_t),
1020 offsetof(spa_error_entry_t, se_avl));
1021 }
1022
1023 static void
1024 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1025 {
1026 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1027 enum zti_modes mode = ztip->zti_mode;
1028 uint_t value = ztip->zti_value;
1029 uint_t count = ztip->zti_count;
1030 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1031 uint_t cpus, flags = TASKQ_DYNAMIC;
1032 boolean_t batch = B_FALSE;
1033
1034 switch (mode) {
1035 case ZTI_MODE_FIXED:
1036 ASSERT3U(value, >, 0);
1037 break;
1038
1039 case ZTI_MODE_BATCH:
1040 batch = B_TRUE;
1041 flags |= TASKQ_THREADS_CPU_PCT;
1042 value = MIN(zio_taskq_batch_pct, 100);
1043 break;
1044
1045 case ZTI_MODE_SCALE:
1046 flags |= TASKQ_THREADS_CPU_PCT;
1047 /*
1048 * We want more taskqs to reduce lock contention, but we want
1049 * less for better request ordering and CPU utilization.
1050 */
1051 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1052 if (zio_taskq_batch_tpq > 0) {
1053 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1054 zio_taskq_batch_tpq);
1055 } else {
1056 /*
1057 * Prefer 6 threads per taskq, but no more taskqs
1058 * than threads in them on large systems. For 80%:
1059 *
1060 * taskq taskq total
1061 * cpus taskqs percent threads threads
1062 * ------- ------- ------- ------- -------
1063 * 1 1 80% 1 1
1064 * 2 1 80% 1 1
1065 * 4 1 80% 3 3
1066 * 8 2 40% 3 6
1067 * 16 3 27% 4 12
1068 * 32 5 16% 5 25
1069 * 64 7 11% 7 49
1070 * 128 10 8% 10 100
1071 * 256 14 6% 15 210
1072 */
1073 count = 1 + cpus / 6;
1074 while (count * count > cpus)
1075 count--;
1076 }
1077 /* Limit each taskq within 100% to not trigger assertion. */
1078 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1079 value = (zio_taskq_batch_pct + count / 2) / count;
1080 break;
1081
1082 case ZTI_MODE_NULL:
1083 tqs->stqs_count = 0;
1084 tqs->stqs_taskq = NULL;
1085 return;
1086
1087 default:
1088 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1089 "spa_activate()",
1090 zio_type_name[t], zio_taskq_types[q], mode, value);
1091 break;
1092 }
1093
1094 ASSERT3U(count, >, 0);
1095 tqs->stqs_count = count;
1096 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1097
1098 for (uint_t i = 0; i < count; i++) {
1099 taskq_t *tq;
1100 char name[32];
1101
1102 if (count > 1)
1103 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1104 zio_type_name[t], zio_taskq_types[q], i);
1105 else
1106 (void) snprintf(name, sizeof (name), "%s_%s",
1107 zio_type_name[t], zio_taskq_types[q]);
1108
1109 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1110 if (batch)
1111 flags |= TASKQ_DC_BATCH;
1112
1113 (void) zio_taskq_basedc;
1114 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1115 spa->spa_proc, zio_taskq_basedc, flags);
1116 } else {
1117 pri_t pri = maxclsyspri;
1118 /*
1119 * The write issue taskq can be extremely CPU
1120 * intensive. Run it at slightly less important
1121 * priority than the other taskqs.
1122 *
1123 * Under Linux and FreeBSD this means incrementing
1124 * the priority value as opposed to platforms like
1125 * illumos where it should be decremented.
1126 *
1127 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1128 * are equal then a difference between them is
1129 * insignificant.
1130 */
1131 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1132 #if defined(__linux__)
1133 pri++;
1134 #elif defined(__FreeBSD__)
1135 pri += 4;
1136 #else
1137 #error "unknown OS"
1138 #endif
1139 }
1140 tq = taskq_create_proc(name, value, pri, 50,
1141 INT_MAX, spa->spa_proc, flags);
1142 }
1143
1144 tqs->stqs_taskq[i] = tq;
1145 }
1146 }
1147
1148 static void
1149 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1150 {
1151 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1152
1153 if (tqs->stqs_taskq == NULL) {
1154 ASSERT3U(tqs->stqs_count, ==, 0);
1155 return;
1156 }
1157
1158 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1159 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1160 taskq_destroy(tqs->stqs_taskq[i]);
1161 }
1162
1163 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1164 tqs->stqs_taskq = NULL;
1165 }
1166
1167 /*
1168 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1169 * Note that a type may have multiple discrete taskqs to avoid lock contention
1170 * on the taskq itself. In that case we choose which taskq at random by using
1171 * the low bits of gethrtime().
1172 */
1173 void
1174 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1175 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1176 {
1177 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1178 taskq_t *tq;
1179
1180 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1181 ASSERT3U(tqs->stqs_count, !=, 0);
1182
1183 if (tqs->stqs_count == 1) {
1184 tq = tqs->stqs_taskq[0];
1185 } else {
1186 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1187 }
1188
1189 taskq_dispatch_ent(tq, func, arg, flags, ent);
1190 }
1191
1192 /*
1193 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1194 */
1195 void
1196 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1197 task_func_t *func, void *arg, uint_t flags)
1198 {
1199 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1200 taskq_t *tq;
1201 taskqid_t id;
1202
1203 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1204 ASSERT3U(tqs->stqs_count, !=, 0);
1205
1206 if (tqs->stqs_count == 1) {
1207 tq = tqs->stqs_taskq[0];
1208 } else {
1209 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1210 }
1211
1212 id = taskq_dispatch(tq, func, arg, flags);
1213 if (id)
1214 taskq_wait_id(tq, id);
1215 }
1216
1217 static void
1218 spa_create_zio_taskqs(spa_t *spa)
1219 {
1220 for (int t = 0; t < ZIO_TYPES; t++) {
1221 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1222 spa_taskqs_init(spa, t, q);
1223 }
1224 }
1225 }
1226
1227 /*
1228 * Disabled until spa_thread() can be adapted for Linux.
1229 */
1230 #undef HAVE_SPA_THREAD
1231
1232 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1233 static void
1234 spa_thread(void *arg)
1235 {
1236 psetid_t zio_taskq_psrset_bind = PS_NONE;
1237 callb_cpr_t cprinfo;
1238
1239 spa_t *spa = arg;
1240 user_t *pu = PTOU(curproc);
1241
1242 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1243 spa->spa_name);
1244
1245 ASSERT(curproc != &p0);
1246 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1247 "zpool-%s", spa->spa_name);
1248 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1249
1250 /* bind this thread to the requested psrset */
1251 if (zio_taskq_psrset_bind != PS_NONE) {
1252 pool_lock();
1253 mutex_enter(&cpu_lock);
1254 mutex_enter(&pidlock);
1255 mutex_enter(&curproc->p_lock);
1256
1257 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1258 0, NULL, NULL) == 0) {
1259 curthread->t_bind_pset = zio_taskq_psrset_bind;
1260 } else {
1261 cmn_err(CE_WARN,
1262 "Couldn't bind process for zfs pool \"%s\" to "
1263 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1264 }
1265
1266 mutex_exit(&curproc->p_lock);
1267 mutex_exit(&pidlock);
1268 mutex_exit(&cpu_lock);
1269 pool_unlock();
1270 }
1271
1272 if (zio_taskq_sysdc) {
1273 sysdc_thread_enter(curthread, 100, 0);
1274 }
1275
1276 spa->spa_proc = curproc;
1277 spa->spa_did = curthread->t_did;
1278
1279 spa_create_zio_taskqs(spa);
1280
1281 mutex_enter(&spa->spa_proc_lock);
1282 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1283
1284 spa->spa_proc_state = SPA_PROC_ACTIVE;
1285 cv_broadcast(&spa->spa_proc_cv);
1286
1287 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1288 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1289 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1290 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1291
1292 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1293 spa->spa_proc_state = SPA_PROC_GONE;
1294 spa->spa_proc = &p0;
1295 cv_broadcast(&spa->spa_proc_cv);
1296 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1297
1298 mutex_enter(&curproc->p_lock);
1299 lwp_exit();
1300 }
1301 #endif
1302
1303 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1304
1305 /*
1306 * Activate an uninitialized pool.
1307 */
1308 static void
1309 spa_activate(spa_t *spa, spa_mode_t mode)
1310 {
1311 metaslab_ops_t *msp = metaslab_allocator(spa);
1312 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1313
1314 spa->spa_state = POOL_STATE_ACTIVE;
1315 spa->spa_mode = mode;
1316 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1317
1318 spa->spa_normal_class = metaslab_class_create(spa, msp);
1319 spa->spa_log_class = metaslab_class_create(spa, msp);
1320 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1321 spa->spa_special_class = metaslab_class_create(spa, msp);
1322 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1323
1324 /* Try to create a covering process */
1325 mutex_enter(&spa->spa_proc_lock);
1326 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1327 ASSERT(spa->spa_proc == &p0);
1328 spa->spa_did = 0;
1329
1330 (void) spa_create_process;
1331 #ifdef HAVE_SPA_THREAD
1332 /* Only create a process if we're going to be around a while. */
1333 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1334 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1335 NULL, 0) == 0) {
1336 spa->spa_proc_state = SPA_PROC_CREATED;
1337 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1338 cv_wait(&spa->spa_proc_cv,
1339 &spa->spa_proc_lock);
1340 }
1341 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1342 ASSERT(spa->spa_proc != &p0);
1343 ASSERT(spa->spa_did != 0);
1344 } else {
1345 #ifdef _KERNEL
1346 cmn_err(CE_WARN,
1347 "Couldn't create process for zfs pool \"%s\"\n",
1348 spa->spa_name);
1349 #endif
1350 }
1351 }
1352 #endif /* HAVE_SPA_THREAD */
1353 mutex_exit(&spa->spa_proc_lock);
1354
1355 /* If we didn't create a process, we need to create our taskqs. */
1356 if (spa->spa_proc == &p0) {
1357 spa_create_zio_taskqs(spa);
1358 }
1359
1360 for (size_t i = 0; i < TXG_SIZE; i++) {
1361 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1362 ZIO_FLAG_CANFAIL);
1363 }
1364
1365 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1366 offsetof(vdev_t, vdev_config_dirty_node));
1367 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1368 offsetof(objset_t, os_evicting_node));
1369 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1370 offsetof(vdev_t, vdev_state_dirty_node));
1371
1372 txg_list_create(&spa->spa_vdev_txg_list, spa,
1373 offsetof(struct vdev, vdev_txg_node));
1374
1375 avl_create(&spa->spa_errlist_scrub,
1376 spa_error_entry_compare, sizeof (spa_error_entry_t),
1377 offsetof(spa_error_entry_t, se_avl));
1378 avl_create(&spa->spa_errlist_last,
1379 spa_error_entry_compare, sizeof (spa_error_entry_t),
1380 offsetof(spa_error_entry_t, se_avl));
1381 avl_create(&spa->spa_errlist_healed,
1382 spa_error_entry_compare, sizeof (spa_error_entry_t),
1383 offsetof(spa_error_entry_t, se_avl));
1384
1385 spa_activate_os(spa);
1386
1387 spa_keystore_init(&spa->spa_keystore);
1388
1389 /*
1390 * This taskq is used to perform zvol-minor-related tasks
1391 * asynchronously. This has several advantages, including easy
1392 * resolution of various deadlocks.
1393 *
1394 * The taskq must be single threaded to ensure tasks are always
1395 * processed in the order in which they were dispatched.
1396 *
1397 * A taskq per pool allows one to keep the pools independent.
1398 * This way if one pool is suspended, it will not impact another.
1399 *
1400 * The preferred location to dispatch a zvol minor task is a sync
1401 * task. In this context, there is easy access to the spa_t and minimal
1402 * error handling is required because the sync task must succeed.
1403 */
1404 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1405 1, INT_MAX, 0);
1406
1407 /*
1408 * The taskq to preload metaslabs.
1409 */
1410 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1411 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1412 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1413
1414 /*
1415 * Taskq dedicated to prefetcher threads: this is used to prevent the
1416 * pool traverse code from monopolizing the global (and limited)
1417 * system_taskq by inappropriately scheduling long running tasks on it.
1418 */
1419 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1420 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1421
1422 /*
1423 * The taskq to upgrade datasets in this pool. Currently used by
1424 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1425 */
1426 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1427 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1428 }
1429
1430 /*
1431 * Opposite of spa_activate().
1432 */
1433 static void
1434 spa_deactivate(spa_t *spa)
1435 {
1436 ASSERT(spa->spa_sync_on == B_FALSE);
1437 ASSERT(spa->spa_dsl_pool == NULL);
1438 ASSERT(spa->spa_root_vdev == NULL);
1439 ASSERT(spa->spa_async_zio_root == NULL);
1440 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1441
1442 spa_evicting_os_wait(spa);
1443
1444 if (spa->spa_zvol_taskq) {
1445 taskq_destroy(spa->spa_zvol_taskq);
1446 spa->spa_zvol_taskq = NULL;
1447 }
1448
1449 if (spa->spa_metaslab_taskq) {
1450 taskq_destroy(spa->spa_metaslab_taskq);
1451 spa->spa_metaslab_taskq = NULL;
1452 }
1453
1454 if (spa->spa_prefetch_taskq) {
1455 taskq_destroy(spa->spa_prefetch_taskq);
1456 spa->spa_prefetch_taskq = NULL;
1457 }
1458
1459 if (spa->spa_upgrade_taskq) {
1460 taskq_destroy(spa->spa_upgrade_taskq);
1461 spa->spa_upgrade_taskq = NULL;
1462 }
1463
1464 txg_list_destroy(&spa->spa_vdev_txg_list);
1465
1466 list_destroy(&spa->spa_config_dirty_list);
1467 list_destroy(&spa->spa_evicting_os_list);
1468 list_destroy(&spa->spa_state_dirty_list);
1469
1470 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1471
1472 for (int t = 0; t < ZIO_TYPES; t++) {
1473 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1474 spa_taskqs_fini(spa, t, q);
1475 }
1476 }
1477
1478 for (size_t i = 0; i < TXG_SIZE; i++) {
1479 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1480 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1481 spa->spa_txg_zio[i] = NULL;
1482 }
1483
1484 metaslab_class_destroy(spa->spa_normal_class);
1485 spa->spa_normal_class = NULL;
1486
1487 metaslab_class_destroy(spa->spa_log_class);
1488 spa->spa_log_class = NULL;
1489
1490 metaslab_class_destroy(spa->spa_embedded_log_class);
1491 spa->spa_embedded_log_class = NULL;
1492
1493 metaslab_class_destroy(spa->spa_special_class);
1494 spa->spa_special_class = NULL;
1495
1496 metaslab_class_destroy(spa->spa_dedup_class);
1497 spa->spa_dedup_class = NULL;
1498
1499 /*
1500 * If this was part of an import or the open otherwise failed, we may
1501 * still have errors left in the queues. Empty them just in case.
1502 */
1503 spa_errlog_drain(spa);
1504 avl_destroy(&spa->spa_errlist_scrub);
1505 avl_destroy(&spa->spa_errlist_last);
1506 avl_destroy(&spa->spa_errlist_healed);
1507
1508 spa_keystore_fini(&spa->spa_keystore);
1509
1510 spa->spa_state = POOL_STATE_UNINITIALIZED;
1511
1512 mutex_enter(&spa->spa_proc_lock);
1513 if (spa->spa_proc_state != SPA_PROC_NONE) {
1514 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1515 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1516 cv_broadcast(&spa->spa_proc_cv);
1517 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1518 ASSERT(spa->spa_proc != &p0);
1519 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1520 }
1521 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1522 spa->spa_proc_state = SPA_PROC_NONE;
1523 }
1524 ASSERT(spa->spa_proc == &p0);
1525 mutex_exit(&spa->spa_proc_lock);
1526
1527 /*
1528 * We want to make sure spa_thread() has actually exited the ZFS
1529 * module, so that the module can't be unloaded out from underneath
1530 * it.
1531 */
1532 if (spa->spa_did != 0) {
1533 thread_join(spa->spa_did);
1534 spa->spa_did = 0;
1535 }
1536
1537 spa_deactivate_os(spa);
1538
1539 }
1540
1541 /*
1542 * Verify a pool configuration, and construct the vdev tree appropriately. This
1543 * will create all the necessary vdevs in the appropriate layout, with each vdev
1544 * in the CLOSED state. This will prep the pool before open/creation/import.
1545 * All vdev validation is done by the vdev_alloc() routine.
1546 */
1547 int
1548 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1549 uint_t id, int atype)
1550 {
1551 nvlist_t **child;
1552 uint_t children;
1553 int error;
1554
1555 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1556 return (error);
1557
1558 if ((*vdp)->vdev_ops->vdev_op_leaf)
1559 return (0);
1560
1561 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1562 &child, &children);
1563
1564 if (error == ENOENT)
1565 return (0);
1566
1567 if (error) {
1568 vdev_free(*vdp);
1569 *vdp = NULL;
1570 return (SET_ERROR(EINVAL));
1571 }
1572
1573 for (int c = 0; c < children; c++) {
1574 vdev_t *vd;
1575 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1576 atype)) != 0) {
1577 vdev_free(*vdp);
1578 *vdp = NULL;
1579 return (error);
1580 }
1581 }
1582
1583 ASSERT(*vdp != NULL);
1584
1585 return (0);
1586 }
1587
1588 static boolean_t
1589 spa_should_flush_logs_on_unload(spa_t *spa)
1590 {
1591 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1592 return (B_FALSE);
1593
1594 if (!spa_writeable(spa))
1595 return (B_FALSE);
1596
1597 if (!spa->spa_sync_on)
1598 return (B_FALSE);
1599
1600 if (spa_state(spa) != POOL_STATE_EXPORTED)
1601 return (B_FALSE);
1602
1603 if (zfs_keep_log_spacemaps_at_export)
1604 return (B_FALSE);
1605
1606 return (B_TRUE);
1607 }
1608
1609 /*
1610 * Opens a transaction that will set the flag that will instruct
1611 * spa_sync to attempt to flush all the metaslabs for that txg.
1612 */
1613 static void
1614 spa_unload_log_sm_flush_all(spa_t *spa)
1615 {
1616 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1617 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1618
1619 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1620 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1621
1622 dmu_tx_commit(tx);
1623 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1624 }
1625
1626 static void
1627 spa_unload_log_sm_metadata(spa_t *spa)
1628 {
1629 void *cookie = NULL;
1630 spa_log_sm_t *sls;
1631 log_summary_entry_t *e;
1632
1633 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1634 &cookie)) != NULL) {
1635 VERIFY0(sls->sls_mscount);
1636 kmem_free(sls, sizeof (spa_log_sm_t));
1637 }
1638
1639 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1640 VERIFY0(e->lse_mscount);
1641 kmem_free(e, sizeof (log_summary_entry_t));
1642 }
1643
1644 spa->spa_unflushed_stats.sus_nblocks = 0;
1645 spa->spa_unflushed_stats.sus_memused = 0;
1646 spa->spa_unflushed_stats.sus_blocklimit = 0;
1647 }
1648
1649 static void
1650 spa_destroy_aux_threads(spa_t *spa)
1651 {
1652 if (spa->spa_condense_zthr != NULL) {
1653 zthr_destroy(spa->spa_condense_zthr);
1654 spa->spa_condense_zthr = NULL;
1655 }
1656 if (spa->spa_checkpoint_discard_zthr != NULL) {
1657 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1658 spa->spa_checkpoint_discard_zthr = NULL;
1659 }
1660 if (spa->spa_livelist_delete_zthr != NULL) {
1661 zthr_destroy(spa->spa_livelist_delete_zthr);
1662 spa->spa_livelist_delete_zthr = NULL;
1663 }
1664 if (spa->spa_livelist_condense_zthr != NULL) {
1665 zthr_destroy(spa->spa_livelist_condense_zthr);
1666 spa->spa_livelist_condense_zthr = NULL;
1667 }
1668 }
1669
1670 /*
1671 * Opposite of spa_load().
1672 */
1673 static void
1674 spa_unload(spa_t *spa)
1675 {
1676 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1677 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1678
1679 spa_import_progress_remove(spa_guid(spa));
1680 spa_load_note(spa, "UNLOADING");
1681
1682 spa_wake_waiters(spa);
1683
1684 /*
1685 * If we have set the spa_final_txg, we have already performed the
1686 * tasks below in spa_export_common(). We should not redo it here since
1687 * we delay the final TXGs beyond what spa_final_txg is set at.
1688 */
1689 if (spa->spa_final_txg == UINT64_MAX) {
1690 /*
1691 * If the log space map feature is enabled and the pool is
1692 * getting exported (but not destroyed), we want to spend some
1693 * time flushing as many metaslabs as we can in an attempt to
1694 * destroy log space maps and save import time.
1695 */
1696 if (spa_should_flush_logs_on_unload(spa))
1697 spa_unload_log_sm_flush_all(spa);
1698
1699 /*
1700 * Stop async tasks.
1701 */
1702 spa_async_suspend(spa);
1703
1704 if (spa->spa_root_vdev) {
1705 vdev_t *root_vdev = spa->spa_root_vdev;
1706 vdev_initialize_stop_all(root_vdev,
1707 VDEV_INITIALIZE_ACTIVE);
1708 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1709 vdev_autotrim_stop_all(spa);
1710 vdev_rebuild_stop_all(spa);
1711 }
1712 }
1713
1714 /*
1715 * Stop syncing.
1716 */
1717 if (spa->spa_sync_on) {
1718 txg_sync_stop(spa->spa_dsl_pool);
1719 spa->spa_sync_on = B_FALSE;
1720 }
1721
1722 /*
1723 * This ensures that there is no async metaslab prefetching
1724 * while we attempt to unload the spa.
1725 */
1726 taskq_wait(spa->spa_metaslab_taskq);
1727
1728 if (spa->spa_mmp.mmp_thread)
1729 mmp_thread_stop(spa);
1730
1731 /*
1732 * Wait for any outstanding async I/O to complete.
1733 */
1734 if (spa->spa_async_zio_root != NULL) {
1735 for (int i = 0; i < max_ncpus; i++)
1736 (void) zio_wait(spa->spa_async_zio_root[i]);
1737 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1738 spa->spa_async_zio_root = NULL;
1739 }
1740
1741 if (spa->spa_vdev_removal != NULL) {
1742 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1743 spa->spa_vdev_removal = NULL;
1744 }
1745
1746 spa_destroy_aux_threads(spa);
1747
1748 spa_condense_fini(spa);
1749
1750 bpobj_close(&spa->spa_deferred_bpobj);
1751
1752 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1753
1754 /*
1755 * Close all vdevs.
1756 */
1757 if (spa->spa_root_vdev)
1758 vdev_free(spa->spa_root_vdev);
1759 ASSERT(spa->spa_root_vdev == NULL);
1760
1761 /*
1762 * Close the dsl pool.
1763 */
1764 if (spa->spa_dsl_pool) {
1765 dsl_pool_close(spa->spa_dsl_pool);
1766 spa->spa_dsl_pool = NULL;
1767 spa->spa_meta_objset = NULL;
1768 }
1769
1770 ddt_unload(spa);
1771 brt_unload(spa);
1772 spa_unload_log_sm_metadata(spa);
1773
1774 /*
1775 * Drop and purge level 2 cache
1776 */
1777 spa_l2cache_drop(spa);
1778
1779 if (spa->spa_spares.sav_vdevs) {
1780 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1781 vdev_free(spa->spa_spares.sav_vdevs[i]);
1782 kmem_free(spa->spa_spares.sav_vdevs,
1783 spa->spa_spares.sav_count * sizeof (void *));
1784 spa->spa_spares.sav_vdevs = NULL;
1785 }
1786 if (spa->spa_spares.sav_config) {
1787 nvlist_free(spa->spa_spares.sav_config);
1788 spa->spa_spares.sav_config = NULL;
1789 }
1790 spa->spa_spares.sav_count = 0;
1791
1792 if (spa->spa_l2cache.sav_vdevs) {
1793 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1794 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1795 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1796 }
1797 kmem_free(spa->spa_l2cache.sav_vdevs,
1798 spa->spa_l2cache.sav_count * sizeof (void *));
1799 spa->spa_l2cache.sav_vdevs = NULL;
1800 }
1801 if (spa->spa_l2cache.sav_config) {
1802 nvlist_free(spa->spa_l2cache.sav_config);
1803 spa->spa_l2cache.sav_config = NULL;
1804 }
1805 spa->spa_l2cache.sav_count = 0;
1806
1807 spa->spa_async_suspended = 0;
1808
1809 spa->spa_indirect_vdevs_loaded = B_FALSE;
1810
1811 if (spa->spa_comment != NULL) {
1812 spa_strfree(spa->spa_comment);
1813 spa->spa_comment = NULL;
1814 }
1815 if (spa->spa_compatibility != NULL) {
1816 spa_strfree(spa->spa_compatibility);
1817 spa->spa_compatibility = NULL;
1818 }
1819
1820 spa_config_exit(spa, SCL_ALL, spa);
1821 }
1822
1823 /*
1824 * Load (or re-load) the current list of vdevs describing the active spares for
1825 * this pool. When this is called, we have some form of basic information in
1826 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1827 * then re-generate a more complete list including status information.
1828 */
1829 void
1830 spa_load_spares(spa_t *spa)
1831 {
1832 nvlist_t **spares;
1833 uint_t nspares;
1834 int i;
1835 vdev_t *vd, *tvd;
1836
1837 #ifndef _KERNEL
1838 /*
1839 * zdb opens both the current state of the pool and the
1840 * checkpointed state (if present), with a different spa_t.
1841 *
1842 * As spare vdevs are shared among open pools, we skip loading
1843 * them when we load the checkpointed state of the pool.
1844 */
1845 if (!spa_writeable(spa))
1846 return;
1847 #endif
1848
1849 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1850
1851 /*
1852 * First, close and free any existing spare vdevs.
1853 */
1854 if (spa->spa_spares.sav_vdevs) {
1855 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1856 vd = spa->spa_spares.sav_vdevs[i];
1857
1858 /* Undo the call to spa_activate() below */
1859 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1860 B_FALSE)) != NULL && tvd->vdev_isspare)
1861 spa_spare_remove(tvd);
1862 vdev_close(vd);
1863 vdev_free(vd);
1864 }
1865
1866 kmem_free(spa->spa_spares.sav_vdevs,
1867 spa->spa_spares.sav_count * sizeof (void *));
1868 }
1869
1870 if (spa->spa_spares.sav_config == NULL)
1871 nspares = 0;
1872 else
1873 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1874 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1875
1876 spa->spa_spares.sav_count = (int)nspares;
1877 spa->spa_spares.sav_vdevs = NULL;
1878
1879 if (nspares == 0)
1880 return;
1881
1882 /*
1883 * Construct the array of vdevs, opening them to get status in the
1884 * process. For each spare, there is potentially two different vdev_t
1885 * structures associated with it: one in the list of spares (used only
1886 * for basic validation purposes) and one in the active vdev
1887 * configuration (if it's spared in). During this phase we open and
1888 * validate each vdev on the spare list. If the vdev also exists in the
1889 * active configuration, then we also mark this vdev as an active spare.
1890 */
1891 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1892 KM_SLEEP);
1893 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1894 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1895 VDEV_ALLOC_SPARE) == 0);
1896 ASSERT(vd != NULL);
1897
1898 spa->spa_spares.sav_vdevs[i] = vd;
1899
1900 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1901 B_FALSE)) != NULL) {
1902 if (!tvd->vdev_isspare)
1903 spa_spare_add(tvd);
1904
1905 /*
1906 * We only mark the spare active if we were successfully
1907 * able to load the vdev. Otherwise, importing a pool
1908 * with a bad active spare would result in strange
1909 * behavior, because multiple pool would think the spare
1910 * is actively in use.
1911 *
1912 * There is a vulnerability here to an equally bizarre
1913 * circumstance, where a dead active spare is later
1914 * brought back to life (onlined or otherwise). Given
1915 * the rarity of this scenario, and the extra complexity
1916 * it adds, we ignore the possibility.
1917 */
1918 if (!vdev_is_dead(tvd))
1919 spa_spare_activate(tvd);
1920 }
1921
1922 vd->vdev_top = vd;
1923 vd->vdev_aux = &spa->spa_spares;
1924
1925 if (vdev_open(vd) != 0)
1926 continue;
1927
1928 if (vdev_validate_aux(vd) == 0)
1929 spa_spare_add(vd);
1930 }
1931
1932 /*
1933 * Recompute the stashed list of spares, with status information
1934 * this time.
1935 */
1936 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1937
1938 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1939 KM_SLEEP);
1940 for (i = 0; i < spa->spa_spares.sav_count; i++)
1941 spares[i] = vdev_config_generate(spa,
1942 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1943 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1944 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1945 spa->spa_spares.sav_count);
1946 for (i = 0; i < spa->spa_spares.sav_count; i++)
1947 nvlist_free(spares[i]);
1948 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1949 }
1950
1951 /*
1952 * Load (or re-load) the current list of vdevs describing the active l2cache for
1953 * this pool. When this is called, we have some form of basic information in
1954 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1955 * then re-generate a more complete list including status information.
1956 * Devices which are already active have their details maintained, and are
1957 * not re-opened.
1958 */
1959 void
1960 spa_load_l2cache(spa_t *spa)
1961 {
1962 nvlist_t **l2cache = NULL;
1963 uint_t nl2cache;
1964 int i, j, oldnvdevs;
1965 uint64_t guid;
1966 vdev_t *vd, **oldvdevs, **newvdevs;
1967 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1968
1969 #ifndef _KERNEL
1970 /*
1971 * zdb opens both the current state of the pool and the
1972 * checkpointed state (if present), with a different spa_t.
1973 *
1974 * As L2 caches are part of the ARC which is shared among open
1975 * pools, we skip loading them when we load the checkpointed
1976 * state of the pool.
1977 */
1978 if (!spa_writeable(spa))
1979 return;
1980 #endif
1981
1982 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1983
1984 oldvdevs = sav->sav_vdevs;
1985 oldnvdevs = sav->sav_count;
1986 sav->sav_vdevs = NULL;
1987 sav->sav_count = 0;
1988
1989 if (sav->sav_config == NULL) {
1990 nl2cache = 0;
1991 newvdevs = NULL;
1992 goto out;
1993 }
1994
1995 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1996 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1997 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1998
1999 /*
2000 * Process new nvlist of vdevs.
2001 */
2002 for (i = 0; i < nl2cache; i++) {
2003 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2004
2005 newvdevs[i] = NULL;
2006 for (j = 0; j < oldnvdevs; j++) {
2007 vd = oldvdevs[j];
2008 if (vd != NULL && guid == vd->vdev_guid) {
2009 /*
2010 * Retain previous vdev for add/remove ops.
2011 */
2012 newvdevs[i] = vd;
2013 oldvdevs[j] = NULL;
2014 break;
2015 }
2016 }
2017
2018 if (newvdevs[i] == NULL) {
2019 /*
2020 * Create new vdev
2021 */
2022 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2023 VDEV_ALLOC_L2CACHE) == 0);
2024 ASSERT(vd != NULL);
2025 newvdevs[i] = vd;
2026
2027 /*
2028 * Commit this vdev as an l2cache device,
2029 * even if it fails to open.
2030 */
2031 spa_l2cache_add(vd);
2032
2033 vd->vdev_top = vd;
2034 vd->vdev_aux = sav;
2035
2036 spa_l2cache_activate(vd);
2037
2038 if (vdev_open(vd) != 0)
2039 continue;
2040
2041 (void) vdev_validate_aux(vd);
2042
2043 if (!vdev_is_dead(vd))
2044 l2arc_add_vdev(spa, vd);
2045
2046 /*
2047 * Upon cache device addition to a pool or pool
2048 * creation with a cache device or if the header
2049 * of the device is invalid we issue an async
2050 * TRIM command for the whole device which will
2051 * execute if l2arc_trim_ahead > 0.
2052 */
2053 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2054 }
2055 }
2056
2057 sav->sav_vdevs = newvdevs;
2058 sav->sav_count = (int)nl2cache;
2059
2060 /*
2061 * Recompute the stashed list of l2cache devices, with status
2062 * information this time.
2063 */
2064 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2065
2066 if (sav->sav_count > 0)
2067 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2068 KM_SLEEP);
2069 for (i = 0; i < sav->sav_count; i++)
2070 l2cache[i] = vdev_config_generate(spa,
2071 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2072 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2073 (const nvlist_t * const *)l2cache, sav->sav_count);
2074
2075 out:
2076 /*
2077 * Purge vdevs that were dropped
2078 */
2079 if (oldvdevs) {
2080 for (i = 0; i < oldnvdevs; i++) {
2081 uint64_t pool;
2082
2083 vd = oldvdevs[i];
2084 if (vd != NULL) {
2085 ASSERT(vd->vdev_isl2cache);
2086
2087 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2088 pool != 0ULL && l2arc_vdev_present(vd))
2089 l2arc_remove_vdev(vd);
2090 vdev_clear_stats(vd);
2091 vdev_free(vd);
2092 }
2093 }
2094
2095 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2096 }
2097
2098 for (i = 0; i < sav->sav_count; i++)
2099 nvlist_free(l2cache[i]);
2100 if (sav->sav_count)
2101 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2102 }
2103
2104 static int
2105 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2106 {
2107 dmu_buf_t *db;
2108 char *packed = NULL;
2109 size_t nvsize = 0;
2110 int error;
2111 *value = NULL;
2112
2113 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2114 if (error)
2115 return (error);
2116
2117 nvsize = *(uint64_t *)db->db_data;
2118 dmu_buf_rele(db, FTAG);
2119
2120 packed = vmem_alloc(nvsize, KM_SLEEP);
2121 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2122 DMU_READ_PREFETCH);
2123 if (error == 0)
2124 error = nvlist_unpack(packed, nvsize, value, 0);
2125 vmem_free(packed, nvsize);
2126
2127 return (error);
2128 }
2129
2130 /*
2131 * Concrete top-level vdevs that are not missing and are not logs. At every
2132 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2133 */
2134 static uint64_t
2135 spa_healthy_core_tvds(spa_t *spa)
2136 {
2137 vdev_t *rvd = spa->spa_root_vdev;
2138 uint64_t tvds = 0;
2139
2140 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2141 vdev_t *vd = rvd->vdev_child[i];
2142 if (vd->vdev_islog)
2143 continue;
2144 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2145 tvds++;
2146 }
2147
2148 return (tvds);
2149 }
2150
2151 /*
2152 * Checks to see if the given vdev could not be opened, in which case we post a
2153 * sysevent to notify the autoreplace code that the device has been removed.
2154 */
2155 static void
2156 spa_check_removed(vdev_t *vd)
2157 {
2158 for (uint64_t c = 0; c < vd->vdev_children; c++)
2159 spa_check_removed(vd->vdev_child[c]);
2160
2161 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2162 vdev_is_concrete(vd)) {
2163 zfs_post_autoreplace(vd->vdev_spa, vd);
2164 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2165 }
2166 }
2167
2168 static int
2169 spa_check_for_missing_logs(spa_t *spa)
2170 {
2171 vdev_t *rvd = spa->spa_root_vdev;
2172
2173 /*
2174 * If we're doing a normal import, then build up any additional
2175 * diagnostic information about missing log devices.
2176 * We'll pass this up to the user for further processing.
2177 */
2178 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2179 nvlist_t **child, *nv;
2180 uint64_t idx = 0;
2181
2182 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2183 KM_SLEEP);
2184 nv = fnvlist_alloc();
2185
2186 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2187 vdev_t *tvd = rvd->vdev_child[c];
2188
2189 /*
2190 * We consider a device as missing only if it failed
2191 * to open (i.e. offline or faulted is not considered
2192 * as missing).
2193 */
2194 if (tvd->vdev_islog &&
2195 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2196 child[idx++] = vdev_config_generate(spa, tvd,
2197 B_FALSE, VDEV_CONFIG_MISSING);
2198 }
2199 }
2200
2201 if (idx > 0) {
2202 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2203 (const nvlist_t * const *)child, idx);
2204 fnvlist_add_nvlist(spa->spa_load_info,
2205 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2206
2207 for (uint64_t i = 0; i < idx; i++)
2208 nvlist_free(child[i]);
2209 }
2210 nvlist_free(nv);
2211 kmem_free(child, rvd->vdev_children * sizeof (char **));
2212
2213 if (idx > 0) {
2214 spa_load_failed(spa, "some log devices are missing");
2215 vdev_dbgmsg_print_tree(rvd, 2);
2216 return (SET_ERROR(ENXIO));
2217 }
2218 } else {
2219 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2220 vdev_t *tvd = rvd->vdev_child[c];
2221
2222 if (tvd->vdev_islog &&
2223 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2224 spa_set_log_state(spa, SPA_LOG_CLEAR);
2225 spa_load_note(spa, "some log devices are "
2226 "missing, ZIL is dropped.");
2227 vdev_dbgmsg_print_tree(rvd, 2);
2228 break;
2229 }
2230 }
2231 }
2232
2233 return (0);
2234 }
2235
2236 /*
2237 * Check for missing log devices
2238 */
2239 static boolean_t
2240 spa_check_logs(spa_t *spa)
2241 {
2242 boolean_t rv = B_FALSE;
2243 dsl_pool_t *dp = spa_get_dsl(spa);
2244
2245 switch (spa->spa_log_state) {
2246 default:
2247 break;
2248 case SPA_LOG_MISSING:
2249 /* need to recheck in case slog has been restored */
2250 case SPA_LOG_UNKNOWN:
2251 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2252 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2253 if (rv)
2254 spa_set_log_state(spa, SPA_LOG_MISSING);
2255 break;
2256 }
2257 return (rv);
2258 }
2259
2260 /*
2261 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2262 */
2263 static boolean_t
2264 spa_passivate_log(spa_t *spa)
2265 {
2266 vdev_t *rvd = spa->spa_root_vdev;
2267 boolean_t slog_found = B_FALSE;
2268
2269 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2270
2271 for (int c = 0; c < rvd->vdev_children; c++) {
2272 vdev_t *tvd = rvd->vdev_child[c];
2273
2274 if (tvd->vdev_islog) {
2275 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2276 metaslab_group_passivate(tvd->vdev_mg);
2277 slog_found = B_TRUE;
2278 }
2279 }
2280
2281 return (slog_found);
2282 }
2283
2284 /*
2285 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2286 */
2287 static void
2288 spa_activate_log(spa_t *spa)
2289 {
2290 vdev_t *rvd = spa->spa_root_vdev;
2291
2292 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2293
2294 for (int c = 0; c < rvd->vdev_children; c++) {
2295 vdev_t *tvd = rvd->vdev_child[c];
2296
2297 if (tvd->vdev_islog) {
2298 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2299 metaslab_group_activate(tvd->vdev_mg);
2300 }
2301 }
2302 }
2303
2304 int
2305 spa_reset_logs(spa_t *spa)
2306 {
2307 int error;
2308
2309 error = dmu_objset_find(spa_name(spa), zil_reset,
2310 NULL, DS_FIND_CHILDREN);
2311 if (error == 0) {
2312 /*
2313 * We successfully offlined the log device, sync out the
2314 * current txg so that the "stubby" block can be removed
2315 * by zil_sync().
2316 */
2317 txg_wait_synced(spa->spa_dsl_pool, 0);
2318 }
2319 return (error);
2320 }
2321
2322 static void
2323 spa_aux_check_removed(spa_aux_vdev_t *sav)
2324 {
2325 for (int i = 0; i < sav->sav_count; i++)
2326 spa_check_removed(sav->sav_vdevs[i]);
2327 }
2328
2329 void
2330 spa_claim_notify(zio_t *zio)
2331 {
2332 spa_t *spa = zio->io_spa;
2333
2334 if (zio->io_error)
2335 return;
2336
2337 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2338 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2339 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2340 mutex_exit(&spa->spa_props_lock);
2341 }
2342
2343 typedef struct spa_load_error {
2344 boolean_t sle_verify_data;
2345 uint64_t sle_meta_count;
2346 uint64_t sle_data_count;
2347 } spa_load_error_t;
2348
2349 static void
2350 spa_load_verify_done(zio_t *zio)
2351 {
2352 blkptr_t *bp = zio->io_bp;
2353 spa_load_error_t *sle = zio->io_private;
2354 dmu_object_type_t type = BP_GET_TYPE(bp);
2355 int error = zio->io_error;
2356 spa_t *spa = zio->io_spa;
2357
2358 abd_free(zio->io_abd);
2359 if (error) {
2360 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2361 type != DMU_OT_INTENT_LOG)
2362 atomic_inc_64(&sle->sle_meta_count);
2363 else
2364 atomic_inc_64(&sle->sle_data_count);
2365 }
2366
2367 mutex_enter(&spa->spa_scrub_lock);
2368 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2369 cv_broadcast(&spa->spa_scrub_io_cv);
2370 mutex_exit(&spa->spa_scrub_lock);
2371 }
2372
2373 /*
2374 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2375 * By default, we set it to 1/16th of the arc.
2376 */
2377 static uint_t spa_load_verify_shift = 4;
2378 static int spa_load_verify_metadata = B_TRUE;
2379 static int spa_load_verify_data = B_TRUE;
2380
2381 static int
2382 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2383 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2384 {
2385 zio_t *rio = arg;
2386 spa_load_error_t *sle = rio->io_private;
2387
2388 (void) zilog, (void) dnp;
2389
2390 /*
2391 * Note: normally this routine will not be called if
2392 * spa_load_verify_metadata is not set. However, it may be useful
2393 * to manually set the flag after the traversal has begun.
2394 */
2395 if (!spa_load_verify_metadata)
2396 return (0);
2397
2398 /*
2399 * Sanity check the block pointer in order to detect obvious damage
2400 * before using the contents in subsequent checks or in zio_read().
2401 * When damaged consider it to be a metadata error since we cannot
2402 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2403 */
2404 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2405 atomic_inc_64(&sle->sle_meta_count);
2406 return (0);
2407 }
2408
2409 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2410 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2411 return (0);
2412
2413 if (!BP_IS_METADATA(bp) &&
2414 (!spa_load_verify_data || !sle->sle_verify_data))
2415 return (0);
2416
2417 uint64_t maxinflight_bytes =
2418 arc_target_bytes() >> spa_load_verify_shift;
2419 size_t size = BP_GET_PSIZE(bp);
2420
2421 mutex_enter(&spa->spa_scrub_lock);
2422 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2423 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2424 spa->spa_load_verify_bytes += size;
2425 mutex_exit(&spa->spa_scrub_lock);
2426
2427 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2428 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2429 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2430 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2431 return (0);
2432 }
2433
2434 static int
2435 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2436 {
2437 (void) dp, (void) arg;
2438
2439 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2440 return (SET_ERROR(ENAMETOOLONG));
2441
2442 return (0);
2443 }
2444
2445 static int
2446 spa_load_verify(spa_t *spa)
2447 {
2448 zio_t *rio;
2449 spa_load_error_t sle = { 0 };
2450 zpool_load_policy_t policy;
2451 boolean_t verify_ok = B_FALSE;
2452 int error = 0;
2453
2454 zpool_get_load_policy(spa->spa_config, &policy);
2455
2456 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2457 policy.zlp_maxmeta == UINT64_MAX)
2458 return (0);
2459
2460 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2461 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2462 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2463 DS_FIND_CHILDREN);
2464 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2465 if (error != 0)
2466 return (error);
2467
2468 /*
2469 * Verify data only if we are rewinding or error limit was set.
2470 * Otherwise nothing except dbgmsg care about it to waste time.
2471 */
2472 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2473 (policy.zlp_maxdata < UINT64_MAX);
2474
2475 rio = zio_root(spa, NULL, &sle,
2476 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2477
2478 if (spa_load_verify_metadata) {
2479 if (spa->spa_extreme_rewind) {
2480 spa_load_note(spa, "performing a complete scan of the "
2481 "pool since extreme rewind is on. This may take "
2482 "a very long time.\n (spa_load_verify_data=%u, "
2483 "spa_load_verify_metadata=%u)",
2484 spa_load_verify_data, spa_load_verify_metadata);
2485 }
2486
2487 error = traverse_pool(spa, spa->spa_verify_min_txg,
2488 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2489 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2490 }
2491
2492 (void) zio_wait(rio);
2493 ASSERT0(spa->spa_load_verify_bytes);
2494
2495 spa->spa_load_meta_errors = sle.sle_meta_count;
2496 spa->spa_load_data_errors = sle.sle_data_count;
2497
2498 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2499 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2500 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2501 (u_longlong_t)sle.sle_data_count);
2502 }
2503
2504 if (spa_load_verify_dryrun ||
2505 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2506 sle.sle_data_count <= policy.zlp_maxdata)) {
2507 int64_t loss = 0;
2508
2509 verify_ok = B_TRUE;
2510 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2511 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2512
2513 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2514 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2515 spa->spa_load_txg_ts);
2516 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2517 loss);
2518 fnvlist_add_uint64(spa->spa_load_info,
2519 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2520 fnvlist_add_uint64(spa->spa_load_info,
2521 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2522 } else {
2523 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2524 }
2525
2526 if (spa_load_verify_dryrun)
2527 return (0);
2528
2529 if (error) {
2530 if (error != ENXIO && error != EIO)
2531 error = SET_ERROR(EIO);
2532 return (error);
2533 }
2534
2535 return (verify_ok ? 0 : EIO);
2536 }
2537
2538 /*
2539 * Find a value in the pool props object.
2540 */
2541 static void
2542 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2543 {
2544 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2545 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2546 }
2547
2548 /*
2549 * Find a value in the pool directory object.
2550 */
2551 static int
2552 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2553 {
2554 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2555 name, sizeof (uint64_t), 1, val);
2556
2557 if (error != 0 && (error != ENOENT || log_enoent)) {
2558 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2559 "[error=%d]", name, error);
2560 }
2561
2562 return (error);
2563 }
2564
2565 static int
2566 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2567 {
2568 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2569 return (SET_ERROR(err));
2570 }
2571
2572 boolean_t
2573 spa_livelist_delete_check(spa_t *spa)
2574 {
2575 return (spa->spa_livelists_to_delete != 0);
2576 }
2577
2578 static boolean_t
2579 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2580 {
2581 (void) z;
2582 spa_t *spa = arg;
2583 return (spa_livelist_delete_check(spa));
2584 }
2585
2586 static int
2587 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2588 {
2589 spa_t *spa = arg;
2590 zio_free(spa, tx->tx_txg, bp);
2591 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2592 -bp_get_dsize_sync(spa, bp),
2593 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2594 return (0);
2595 }
2596
2597 static int
2598 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2599 {
2600 int err;
2601 zap_cursor_t zc;
2602 zap_attribute_t za;
2603 zap_cursor_init(&zc, os, zap_obj);
2604 err = zap_cursor_retrieve(&zc, &za);
2605 zap_cursor_fini(&zc);
2606 if (err == 0)
2607 *llp = za.za_first_integer;
2608 return (err);
2609 }
2610
2611 /*
2612 * Components of livelist deletion that must be performed in syncing
2613 * context: freeing block pointers and updating the pool-wide data
2614 * structures to indicate how much work is left to do
2615 */
2616 typedef struct sublist_delete_arg {
2617 spa_t *spa;
2618 dsl_deadlist_t *ll;
2619 uint64_t key;
2620 bplist_t *to_free;
2621 } sublist_delete_arg_t;
2622
2623 static void
2624 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2625 {
2626 sublist_delete_arg_t *sda = arg;
2627 spa_t *spa = sda->spa;
2628 dsl_deadlist_t *ll = sda->ll;
2629 uint64_t key = sda->key;
2630 bplist_t *to_free = sda->to_free;
2631
2632 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2633 dsl_deadlist_remove_entry(ll, key, tx);
2634 }
2635
2636 typedef struct livelist_delete_arg {
2637 spa_t *spa;
2638 uint64_t ll_obj;
2639 uint64_t zap_obj;
2640 } livelist_delete_arg_t;
2641
2642 static void
2643 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2644 {
2645 livelist_delete_arg_t *lda = arg;
2646 spa_t *spa = lda->spa;
2647 uint64_t ll_obj = lda->ll_obj;
2648 uint64_t zap_obj = lda->zap_obj;
2649 objset_t *mos = spa->spa_meta_objset;
2650 uint64_t count;
2651
2652 /* free the livelist and decrement the feature count */
2653 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2654 dsl_deadlist_free(mos, ll_obj, tx);
2655 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2656 VERIFY0(zap_count(mos, zap_obj, &count));
2657 if (count == 0) {
2658 /* no more livelists to delete */
2659 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2660 DMU_POOL_DELETED_CLONES, tx));
2661 VERIFY0(zap_destroy(mos, zap_obj, tx));
2662 spa->spa_livelists_to_delete = 0;
2663 spa_notify_waiters(spa);
2664 }
2665 }
2666
2667 /*
2668 * Load in the value for the livelist to be removed and open it. Then,
2669 * load its first sublist and determine which block pointers should actually
2670 * be freed. Then, call a synctask which performs the actual frees and updates
2671 * the pool-wide livelist data.
2672 */
2673 static void
2674 spa_livelist_delete_cb(void *arg, zthr_t *z)
2675 {
2676 spa_t *spa = arg;
2677 uint64_t ll_obj = 0, count;
2678 objset_t *mos = spa->spa_meta_objset;
2679 uint64_t zap_obj = spa->spa_livelists_to_delete;
2680 /*
2681 * Determine the next livelist to delete. This function should only
2682 * be called if there is at least one deleted clone.
2683 */
2684 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2685 VERIFY0(zap_count(mos, ll_obj, &count));
2686 if (count > 0) {
2687 dsl_deadlist_t *ll;
2688 dsl_deadlist_entry_t *dle;
2689 bplist_t to_free;
2690 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2691 dsl_deadlist_open(ll, mos, ll_obj);
2692 dle = dsl_deadlist_first(ll);
2693 ASSERT3P(dle, !=, NULL);
2694 bplist_create(&to_free);
2695 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2696 z, NULL);
2697 if (err == 0) {
2698 sublist_delete_arg_t sync_arg = {
2699 .spa = spa,
2700 .ll = ll,
2701 .key = dle->dle_mintxg,
2702 .to_free = &to_free
2703 };
2704 zfs_dbgmsg("deleting sublist (id %llu) from"
2705 " livelist %llu, %lld remaining",
2706 (u_longlong_t)dle->dle_bpobj.bpo_object,
2707 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2708 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2709 sublist_delete_sync, &sync_arg, 0,
2710 ZFS_SPACE_CHECK_DESTROY));
2711 } else {
2712 VERIFY3U(err, ==, EINTR);
2713 }
2714 bplist_clear(&to_free);
2715 bplist_destroy(&to_free);
2716 dsl_deadlist_close(ll);
2717 kmem_free(ll, sizeof (dsl_deadlist_t));
2718 } else {
2719 livelist_delete_arg_t sync_arg = {
2720 .spa = spa,
2721 .ll_obj = ll_obj,
2722 .zap_obj = zap_obj
2723 };
2724 zfs_dbgmsg("deletion of livelist %llu completed",
2725 (u_longlong_t)ll_obj);
2726 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2727 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2728 }
2729 }
2730
2731 static void
2732 spa_start_livelist_destroy_thread(spa_t *spa)
2733 {
2734 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2735 spa->spa_livelist_delete_zthr =
2736 zthr_create("z_livelist_destroy",
2737 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2738 minclsyspri);
2739 }
2740
2741 typedef struct livelist_new_arg {
2742 bplist_t *allocs;
2743 bplist_t *frees;
2744 } livelist_new_arg_t;
2745
2746 static int
2747 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2748 dmu_tx_t *tx)
2749 {
2750 ASSERT(tx == NULL);
2751 livelist_new_arg_t *lna = arg;
2752 if (bp_freed) {
2753 bplist_append(lna->frees, bp);
2754 } else {
2755 bplist_append(lna->allocs, bp);
2756 zfs_livelist_condense_new_alloc++;
2757 }
2758 return (0);
2759 }
2760
2761 typedef struct livelist_condense_arg {
2762 spa_t *spa;
2763 bplist_t to_keep;
2764 uint64_t first_size;
2765 uint64_t next_size;
2766 } livelist_condense_arg_t;
2767
2768 static void
2769 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2770 {
2771 livelist_condense_arg_t *lca = arg;
2772 spa_t *spa = lca->spa;
2773 bplist_t new_frees;
2774 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2775
2776 /* Have we been cancelled? */
2777 if (spa->spa_to_condense.cancelled) {
2778 zfs_livelist_condense_sync_cancel++;
2779 goto out;
2780 }
2781
2782 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2783 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2784 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2785
2786 /*
2787 * It's possible that the livelist was changed while the zthr was
2788 * running. Therefore, we need to check for new blkptrs in the two
2789 * entries being condensed and continue to track them in the livelist.
2790 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2791 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2792 * we need to sort them into two different bplists.
2793 */
2794 uint64_t first_obj = first->dle_bpobj.bpo_object;
2795 uint64_t next_obj = next->dle_bpobj.bpo_object;
2796 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2797 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2798
2799 bplist_create(&new_frees);
2800 livelist_new_arg_t new_bps = {
2801 .allocs = &lca->to_keep,
2802 .frees = &new_frees,
2803 };
2804
2805 if (cur_first_size > lca->first_size) {
2806 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2807 livelist_track_new_cb, &new_bps, lca->first_size));
2808 }
2809 if (cur_next_size > lca->next_size) {
2810 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2811 livelist_track_new_cb, &new_bps, lca->next_size));
2812 }
2813
2814 dsl_deadlist_clear_entry(first, ll, tx);
2815 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2816 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2817
2818 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2819 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2820 bplist_destroy(&new_frees);
2821
2822 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2823 dsl_dataset_name(ds, dsname);
2824 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2825 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2826 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2827 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2828 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2829 (u_longlong_t)cur_next_size,
2830 (u_longlong_t)first->dle_bpobj.bpo_object,
2831 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2832 out:
2833 dmu_buf_rele(ds->ds_dbuf, spa);
2834 spa->spa_to_condense.ds = NULL;
2835 bplist_clear(&lca->to_keep);
2836 bplist_destroy(&lca->to_keep);
2837 kmem_free(lca, sizeof (livelist_condense_arg_t));
2838 spa->spa_to_condense.syncing = B_FALSE;
2839 }
2840
2841 static void
2842 spa_livelist_condense_cb(void *arg, zthr_t *t)
2843 {
2844 while (zfs_livelist_condense_zthr_pause &&
2845 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2846 delay(1);
2847
2848 spa_t *spa = arg;
2849 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2850 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2851 uint64_t first_size, next_size;
2852
2853 livelist_condense_arg_t *lca =
2854 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2855 bplist_create(&lca->to_keep);
2856
2857 /*
2858 * Process the livelists (matching FREEs and ALLOCs) in open context
2859 * so we have minimal work in syncing context to condense.
2860 *
2861 * We save bpobj sizes (first_size and next_size) to use later in
2862 * syncing context to determine if entries were added to these sublists
2863 * while in open context. This is possible because the clone is still
2864 * active and open for normal writes and we want to make sure the new,
2865 * unprocessed blockpointers are inserted into the livelist normally.
2866 *
2867 * Note that dsl_process_sub_livelist() both stores the size number of
2868 * blockpointers and iterates over them while the bpobj's lock held, so
2869 * the sizes returned to us are consistent which what was actually
2870 * processed.
2871 */
2872 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2873 &first_size);
2874 if (err == 0)
2875 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2876 t, &next_size);
2877
2878 if (err == 0) {
2879 while (zfs_livelist_condense_sync_pause &&
2880 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2881 delay(1);
2882
2883 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2884 dmu_tx_mark_netfree(tx);
2885 dmu_tx_hold_space(tx, 1);
2886 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2887 if (err == 0) {
2888 /*
2889 * Prevent the condense zthr restarting before
2890 * the synctask completes.
2891 */
2892 spa->spa_to_condense.syncing = B_TRUE;
2893 lca->spa = spa;
2894 lca->first_size = first_size;
2895 lca->next_size = next_size;
2896 dsl_sync_task_nowait(spa_get_dsl(spa),
2897 spa_livelist_condense_sync, lca, tx);
2898 dmu_tx_commit(tx);
2899 return;
2900 }
2901 }
2902 /*
2903 * Condensing can not continue: either it was externally stopped or
2904 * we were unable to assign to a tx because the pool has run out of
2905 * space. In the second case, we'll just end up trying to condense
2906 * again in a later txg.
2907 */
2908 ASSERT(err != 0);
2909 bplist_clear(&lca->to_keep);
2910 bplist_destroy(&lca->to_keep);
2911 kmem_free(lca, sizeof (livelist_condense_arg_t));
2912 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2913 spa->spa_to_condense.ds = NULL;
2914 if (err == EINTR)
2915 zfs_livelist_condense_zthr_cancel++;
2916 }
2917
2918 /*
2919 * Check that there is something to condense but that a condense is not
2920 * already in progress and that condensing has not been cancelled.
2921 */
2922 static boolean_t
2923 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2924 {
2925 (void) z;
2926 spa_t *spa = arg;
2927 if ((spa->spa_to_condense.ds != NULL) &&
2928 (spa->spa_to_condense.syncing == B_FALSE) &&
2929 (spa->spa_to_condense.cancelled == B_FALSE)) {
2930 return (B_TRUE);
2931 }
2932 return (B_FALSE);
2933 }
2934
2935 static void
2936 spa_start_livelist_condensing_thread(spa_t *spa)
2937 {
2938 spa->spa_to_condense.ds = NULL;
2939 spa->spa_to_condense.first = NULL;
2940 spa->spa_to_condense.next = NULL;
2941 spa->spa_to_condense.syncing = B_FALSE;
2942 spa->spa_to_condense.cancelled = B_FALSE;
2943
2944 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2945 spa->spa_livelist_condense_zthr =
2946 zthr_create("z_livelist_condense",
2947 spa_livelist_condense_cb_check,
2948 spa_livelist_condense_cb, spa, minclsyspri);
2949 }
2950
2951 static void
2952 spa_spawn_aux_threads(spa_t *spa)
2953 {
2954 ASSERT(spa_writeable(spa));
2955
2956 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2957
2958 spa_start_indirect_condensing_thread(spa);
2959 spa_start_livelist_destroy_thread(spa);
2960 spa_start_livelist_condensing_thread(spa);
2961
2962 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2963 spa->spa_checkpoint_discard_zthr =
2964 zthr_create("z_checkpoint_discard",
2965 spa_checkpoint_discard_thread_check,
2966 spa_checkpoint_discard_thread, spa, minclsyspri);
2967 }
2968
2969 /*
2970 * Fix up config after a partly-completed split. This is done with the
2971 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2972 * pool have that entry in their config, but only the splitting one contains
2973 * a list of all the guids of the vdevs that are being split off.
2974 *
2975 * This function determines what to do with that list: either rejoin
2976 * all the disks to the pool, or complete the splitting process. To attempt
2977 * the rejoin, each disk that is offlined is marked online again, and
2978 * we do a reopen() call. If the vdev label for every disk that was
2979 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2980 * then we call vdev_split() on each disk, and complete the split.
2981 *
2982 * Otherwise we leave the config alone, with all the vdevs in place in
2983 * the original pool.
2984 */
2985 static void
2986 spa_try_repair(spa_t *spa, nvlist_t *config)
2987 {
2988 uint_t extracted;
2989 uint64_t *glist;
2990 uint_t i, gcount;
2991 nvlist_t *nvl;
2992 vdev_t **vd;
2993 boolean_t attempt_reopen;
2994
2995 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2996 return;
2997
2998 /* check that the config is complete */
2999 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3000 &glist, &gcount) != 0)
3001 return;
3002
3003 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3004
3005 /* attempt to online all the vdevs & validate */
3006 attempt_reopen = B_TRUE;
3007 for (i = 0; i < gcount; i++) {
3008 if (glist[i] == 0) /* vdev is hole */
3009 continue;
3010
3011 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3012 if (vd[i] == NULL) {
3013 /*
3014 * Don't bother attempting to reopen the disks;
3015 * just do the split.
3016 */
3017 attempt_reopen = B_FALSE;
3018 } else {
3019 /* attempt to re-online it */
3020 vd[i]->vdev_offline = B_FALSE;
3021 }
3022 }
3023
3024 if (attempt_reopen) {
3025 vdev_reopen(spa->spa_root_vdev);
3026
3027 /* check each device to see what state it's in */
3028 for (extracted = 0, i = 0; i < gcount; i++) {
3029 if (vd[i] != NULL &&
3030 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3031 break;
3032 ++extracted;
3033 }
3034 }
3035
3036 /*
3037 * If every disk has been moved to the new pool, or if we never
3038 * even attempted to look at them, then we split them off for
3039 * good.
3040 */
3041 if (!attempt_reopen || gcount == extracted) {
3042 for (i = 0; i < gcount; i++)
3043 if (vd[i] != NULL)
3044 vdev_split(vd[i]);
3045 vdev_reopen(spa->spa_root_vdev);
3046 }
3047
3048 kmem_free(vd, gcount * sizeof (vdev_t *));
3049 }
3050
3051 static int
3052 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3053 {
3054 const char *ereport = FM_EREPORT_ZFS_POOL;
3055 int error;
3056
3057 spa->spa_load_state = state;
3058 (void) spa_import_progress_set_state(spa_guid(spa),
3059 spa_load_state(spa));
3060
3061 gethrestime(&spa->spa_loaded_ts);
3062 error = spa_load_impl(spa, type, &ereport);
3063
3064 /*
3065 * Don't count references from objsets that are already closed
3066 * and are making their way through the eviction process.
3067 */
3068 spa_evicting_os_wait(spa);
3069 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3070 if (error) {
3071 if (error != EEXIST) {
3072 spa->spa_loaded_ts.tv_sec = 0;
3073 spa->spa_loaded_ts.tv_nsec = 0;
3074 }
3075 if (error != EBADF) {
3076 (void) zfs_ereport_post(ereport, spa,
3077 NULL, NULL, NULL, 0);
3078 }
3079 }
3080 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3081 spa->spa_ena = 0;
3082
3083 (void) spa_import_progress_set_state(spa_guid(spa),
3084 spa_load_state(spa));
3085
3086 return (error);
3087 }
3088
3089 #ifdef ZFS_DEBUG
3090 /*
3091 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3092 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3093 * spa's per-vdev ZAP list.
3094 */
3095 static uint64_t
3096 vdev_count_verify_zaps(vdev_t *vd)
3097 {
3098 spa_t *spa = vd->vdev_spa;
3099 uint64_t total = 0;
3100
3101 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3102 vd->vdev_root_zap != 0) {
3103 total++;
3104 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3105 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3106 }
3107 if (vd->vdev_top_zap != 0) {
3108 total++;
3109 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3110 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3111 }
3112 if (vd->vdev_leaf_zap != 0) {
3113 total++;
3114 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3115 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3116 }
3117
3118 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3119 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3120 }
3121
3122 return (total);
3123 }
3124 #else
3125 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3126 #endif
3127
3128 /*
3129 * Determine whether the activity check is required.
3130 */
3131 static boolean_t
3132 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3133 nvlist_t *config)
3134 {
3135 uint64_t state = 0;
3136 uint64_t hostid = 0;
3137 uint64_t tryconfig_txg = 0;
3138 uint64_t tryconfig_timestamp = 0;
3139 uint16_t tryconfig_mmp_seq = 0;
3140 nvlist_t *nvinfo;
3141
3142 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3143 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3144 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3145 &tryconfig_txg);
3146 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3147 &tryconfig_timestamp);
3148 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3149 &tryconfig_mmp_seq);
3150 }
3151
3152 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3153
3154 /*
3155 * Disable the MMP activity check - This is used by zdb which
3156 * is intended to be used on potentially active pools.
3157 */
3158 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3159 return (B_FALSE);
3160
3161 /*
3162 * Skip the activity check when the MMP feature is disabled.
3163 */
3164 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3165 return (B_FALSE);
3166
3167 /*
3168 * If the tryconfig_ values are nonzero, they are the results of an
3169 * earlier tryimport. If they all match the uberblock we just found,
3170 * then the pool has not changed and we return false so we do not test
3171 * a second time.
3172 */
3173 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3174 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3175 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3176 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3177 return (B_FALSE);
3178
3179 /*
3180 * Allow the activity check to be skipped when importing the pool
3181 * on the same host which last imported it. Since the hostid from
3182 * configuration may be stale use the one read from the label.
3183 */
3184 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3185 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3186
3187 if (hostid == spa_get_hostid(spa))
3188 return (B_FALSE);
3189
3190 /*
3191 * Skip the activity test when the pool was cleanly exported.
3192 */
3193 if (state != POOL_STATE_ACTIVE)
3194 return (B_FALSE);
3195
3196 return (B_TRUE);
3197 }
3198
3199 /*
3200 * Nanoseconds the activity check must watch for changes on-disk.
3201 */
3202 static uint64_t
3203 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3204 {
3205 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3206 uint64_t multihost_interval = MSEC2NSEC(
3207 MMP_INTERVAL_OK(zfs_multihost_interval));
3208 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3209 multihost_interval);
3210
3211 /*
3212 * Local tunables determine a minimum duration except for the case
3213 * where we know when the remote host will suspend the pool if MMP
3214 * writes do not land.
3215 *
3216 * See Big Theory comment at the top of mmp.c for the reasoning behind
3217 * these cases and times.
3218 */
3219
3220 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3221
3222 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3223 MMP_FAIL_INT(ub) > 0) {
3224
3225 /* MMP on remote host will suspend pool after failed writes */
3226 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3227 MMP_IMPORT_SAFETY_FACTOR / 100;
3228
3229 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3230 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3231 "import_intervals=%llu", (u_longlong_t)import_delay,
3232 (u_longlong_t)MMP_FAIL_INT(ub),
3233 (u_longlong_t)MMP_INTERVAL(ub),
3234 (u_longlong_t)import_intervals);
3235
3236 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3237 MMP_FAIL_INT(ub) == 0) {
3238
3239 /* MMP on remote host will never suspend pool */
3240 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3241 ub->ub_mmp_delay) * import_intervals);
3242
3243 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3244 "mmp_interval=%llu ub_mmp_delay=%llu "
3245 "import_intervals=%llu", (u_longlong_t)import_delay,
3246 (u_longlong_t)MMP_INTERVAL(ub),
3247 (u_longlong_t)ub->ub_mmp_delay,
3248 (u_longlong_t)import_intervals);
3249
3250 } else if (MMP_VALID(ub)) {
3251 /*
3252 * zfs-0.7 compatibility case
3253 */
3254
3255 import_delay = MAX(import_delay, (multihost_interval +
3256 ub->ub_mmp_delay) * import_intervals);
3257
3258 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3259 "import_intervals=%llu leaves=%u",
3260 (u_longlong_t)import_delay,
3261 (u_longlong_t)ub->ub_mmp_delay,
3262 (u_longlong_t)import_intervals,
3263 vdev_count_leaves(spa));
3264 } else {
3265 /* Using local tunings is the only reasonable option */
3266 zfs_dbgmsg("pool last imported on non-MMP aware "
3267 "host using import_delay=%llu multihost_interval=%llu "
3268 "import_intervals=%llu", (u_longlong_t)import_delay,
3269 (u_longlong_t)multihost_interval,
3270 (u_longlong_t)import_intervals);
3271 }
3272
3273 return (import_delay);
3274 }
3275
3276 /*
3277 * Perform the import activity check. If the user canceled the import or
3278 * we detected activity then fail.
3279 */
3280 static int
3281 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3282 {
3283 uint64_t txg = ub->ub_txg;
3284 uint64_t timestamp = ub->ub_timestamp;
3285 uint64_t mmp_config = ub->ub_mmp_config;
3286 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3287 uint64_t import_delay;
3288 hrtime_t import_expire;
3289 nvlist_t *mmp_label = NULL;
3290 vdev_t *rvd = spa->spa_root_vdev;
3291 kcondvar_t cv;
3292 kmutex_t mtx;
3293 int error = 0;
3294
3295 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3296 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3297 mutex_enter(&mtx);
3298
3299 /*
3300 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3301 * during the earlier tryimport. If the txg recorded there is 0 then
3302 * the pool is known to be active on another host.
3303 *
3304 * Otherwise, the pool might be in use on another host. Check for
3305 * changes in the uberblocks on disk if necessary.
3306 */
3307 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3308 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3309 ZPOOL_CONFIG_LOAD_INFO);
3310
3311 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3312 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3313 vdev_uberblock_load(rvd, ub, &mmp_label);
3314 error = SET_ERROR(EREMOTEIO);
3315 goto out;
3316 }
3317 }
3318
3319 import_delay = spa_activity_check_duration(spa, ub);
3320
3321 /* Add a small random factor in case of simultaneous imports (0-25%) */
3322 import_delay += import_delay * random_in_range(250) / 1000;
3323
3324 import_expire = gethrtime() + import_delay;
3325
3326 while (gethrtime() < import_expire) {
3327 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3328 NSEC2SEC(import_expire - gethrtime()));
3329
3330 vdev_uberblock_load(rvd, ub, &mmp_label);
3331
3332 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3333 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3334 zfs_dbgmsg("multihost activity detected "
3335 "txg %llu ub_txg %llu "
3336 "timestamp %llu ub_timestamp %llu "
3337 "mmp_config %#llx ub_mmp_config %#llx",
3338 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3339 (u_longlong_t)timestamp,
3340 (u_longlong_t)ub->ub_timestamp,
3341 (u_longlong_t)mmp_config,
3342 (u_longlong_t)ub->ub_mmp_config);
3343
3344 error = SET_ERROR(EREMOTEIO);
3345 break;
3346 }
3347
3348 if (mmp_label) {
3349 nvlist_free(mmp_label);
3350 mmp_label = NULL;
3351 }
3352
3353 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3354 if (error != -1) {
3355 error = SET_ERROR(EINTR);
3356 break;
3357 }
3358 error = 0;
3359 }
3360
3361 out:
3362 mutex_exit(&mtx);
3363 mutex_destroy(&mtx);
3364 cv_destroy(&cv);
3365
3366 /*
3367 * If the pool is determined to be active store the status in the
3368 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3369 * available from configuration read from disk store them as well.
3370 * This allows 'zpool import' to generate a more useful message.
3371 *
3372 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3373 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3374 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3375 */
3376 if (error == EREMOTEIO) {
3377 const char *hostname = "<unknown>";
3378 uint64_t hostid = 0;
3379
3380 if (mmp_label) {
3381 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3382 hostname = fnvlist_lookup_string(mmp_label,
3383 ZPOOL_CONFIG_HOSTNAME);
3384 fnvlist_add_string(spa->spa_load_info,
3385 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3386 }
3387
3388 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3389 hostid = fnvlist_lookup_uint64(mmp_label,
3390 ZPOOL_CONFIG_HOSTID);
3391 fnvlist_add_uint64(spa->spa_load_info,
3392 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3393 }
3394 }
3395
3396 fnvlist_add_uint64(spa->spa_load_info,
3397 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3398 fnvlist_add_uint64(spa->spa_load_info,
3399 ZPOOL_CONFIG_MMP_TXG, 0);
3400
3401 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3402 }
3403
3404 if (mmp_label)
3405 nvlist_free(mmp_label);
3406
3407 return (error);
3408 }
3409
3410 static int
3411 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3412 {
3413 uint64_t hostid;
3414 const char *hostname;
3415 uint64_t myhostid = 0;
3416
3417 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3418 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3419 hostname = fnvlist_lookup_string(mos_config,
3420 ZPOOL_CONFIG_HOSTNAME);
3421
3422 myhostid = zone_get_hostid(NULL);
3423
3424 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3425 cmn_err(CE_WARN, "pool '%s' could not be "
3426 "loaded as it was last accessed by "
3427 "another system (host: %s hostid: 0x%llx). "
3428 "See: https://openzfs.github.io/openzfs-docs/msg/"
3429 "ZFS-8000-EY",
3430 spa_name(spa), hostname, (u_longlong_t)hostid);
3431 spa_load_failed(spa, "hostid verification failed: pool "
3432 "last accessed by host: %s (hostid: 0x%llx)",
3433 hostname, (u_longlong_t)hostid);
3434 return (SET_ERROR(EBADF));
3435 }
3436 }
3437
3438 return (0);
3439 }
3440
3441 static int
3442 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3443 {
3444 int error = 0;
3445 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3446 int parse;
3447 vdev_t *rvd;
3448 uint64_t pool_guid;
3449 const char *comment;
3450 const char *compatibility;
3451
3452 /*
3453 * Versioning wasn't explicitly added to the label until later, so if
3454 * it's not present treat it as the initial version.
3455 */
3456 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3457 &spa->spa_ubsync.ub_version) != 0)
3458 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3459
3460 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3461 spa_load_failed(spa, "invalid config provided: '%s' missing",
3462 ZPOOL_CONFIG_POOL_GUID);
3463 return (SET_ERROR(EINVAL));
3464 }
3465
3466 /*
3467 * If we are doing an import, ensure that the pool is not already
3468 * imported by checking if its pool guid already exists in the
3469 * spa namespace.
3470 *
3471 * The only case that we allow an already imported pool to be
3472 * imported again, is when the pool is checkpointed and we want to
3473 * look at its checkpointed state from userland tools like zdb.
3474 */
3475 #ifdef _KERNEL
3476 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3477 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3478 spa_guid_exists(pool_guid, 0)) {
3479 #else
3480 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3481 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3482 spa_guid_exists(pool_guid, 0) &&
3483 !spa_importing_readonly_checkpoint(spa)) {
3484 #endif
3485 spa_load_failed(spa, "a pool with guid %llu is already open",
3486 (u_longlong_t)pool_guid);
3487 return (SET_ERROR(EEXIST));
3488 }
3489
3490 spa->spa_config_guid = pool_guid;
3491
3492 nvlist_free(spa->spa_load_info);
3493 spa->spa_load_info = fnvlist_alloc();
3494
3495 ASSERT(spa->spa_comment == NULL);
3496 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3497 spa->spa_comment = spa_strdup(comment);
3498
3499 ASSERT(spa->spa_compatibility == NULL);
3500 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3501 &compatibility) == 0)
3502 spa->spa_compatibility = spa_strdup(compatibility);
3503
3504 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3505 &spa->spa_config_txg);
3506
3507 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3508 spa->spa_config_splitting = fnvlist_dup(nvl);
3509
3510 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3511 spa_load_failed(spa, "invalid config provided: '%s' missing",
3512 ZPOOL_CONFIG_VDEV_TREE);
3513 return (SET_ERROR(EINVAL));
3514 }
3515
3516 /*
3517 * Create "The Godfather" zio to hold all async IOs
3518 */
3519 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3520 KM_SLEEP);
3521 for (int i = 0; i < max_ncpus; i++) {
3522 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3523 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3524 ZIO_FLAG_GODFATHER);
3525 }
3526
3527 /*
3528 * Parse the configuration into a vdev tree. We explicitly set the
3529 * value that will be returned by spa_version() since parsing the
3530 * configuration requires knowing the version number.
3531 */
3532 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3533 parse = (type == SPA_IMPORT_EXISTING ?
3534 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3535 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3536 spa_config_exit(spa, SCL_ALL, FTAG);
3537
3538 if (error != 0) {
3539 spa_load_failed(spa, "unable to parse config [error=%d]",
3540 error);
3541 return (error);
3542 }
3543
3544 ASSERT(spa->spa_root_vdev == rvd);
3545 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3546 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3547
3548 if (type != SPA_IMPORT_ASSEMBLE) {
3549 ASSERT(spa_guid(spa) == pool_guid);
3550 }
3551
3552 return (0);
3553 }
3554
3555 /*
3556 * Recursively open all vdevs in the vdev tree. This function is called twice:
3557 * first with the untrusted config, then with the trusted config.
3558 */
3559 static int
3560 spa_ld_open_vdevs(spa_t *spa)
3561 {
3562 int error = 0;
3563
3564 /*
3565 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3566 * missing/unopenable for the root vdev to be still considered openable.
3567 */
3568 if (spa->spa_trust_config) {
3569 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3570 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3571 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3572 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3573 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3574 } else {
3575 spa->spa_missing_tvds_allowed = 0;
3576 }
3577
3578 spa->spa_missing_tvds_allowed =
3579 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3580
3581 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3582 error = vdev_open(spa->spa_root_vdev);
3583 spa_config_exit(spa, SCL_ALL, FTAG);
3584
3585 if (spa->spa_missing_tvds != 0) {
3586 spa_load_note(spa, "vdev tree has %lld missing top-level "
3587 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3588 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3589 /*
3590 * Although theoretically we could allow users to open
3591 * incomplete pools in RW mode, we'd need to add a lot
3592 * of extra logic (e.g. adjust pool space to account
3593 * for missing vdevs).
3594 * This limitation also prevents users from accidentally
3595 * opening the pool in RW mode during data recovery and
3596 * damaging it further.
3597 */
3598 spa_load_note(spa, "pools with missing top-level "
3599 "vdevs can only be opened in read-only mode.");
3600 error = SET_ERROR(ENXIO);
3601 } else {
3602 spa_load_note(spa, "current settings allow for maximum "
3603 "%lld missing top-level vdevs at this stage.",
3604 (u_longlong_t)spa->spa_missing_tvds_allowed);
3605 }
3606 }
3607 if (error != 0) {
3608 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3609 error);
3610 }
3611 if (spa->spa_missing_tvds != 0 || error != 0)
3612 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3613
3614 return (error);
3615 }
3616
3617 /*
3618 * We need to validate the vdev labels against the configuration that
3619 * we have in hand. This function is called twice: first with an untrusted
3620 * config, then with a trusted config. The validation is more strict when the
3621 * config is trusted.
3622 */
3623 static int
3624 spa_ld_validate_vdevs(spa_t *spa)
3625 {
3626 int error = 0;
3627 vdev_t *rvd = spa->spa_root_vdev;
3628
3629 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3630 error = vdev_validate(rvd);
3631 spa_config_exit(spa, SCL_ALL, FTAG);
3632
3633 if (error != 0) {
3634 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3635 return (error);
3636 }
3637
3638 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3639 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3640 "some vdevs");
3641 vdev_dbgmsg_print_tree(rvd, 2);
3642 return (SET_ERROR(ENXIO));
3643 }
3644
3645 return (0);
3646 }
3647
3648 static void
3649 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3650 {
3651 spa->spa_state = POOL_STATE_ACTIVE;
3652 spa->spa_ubsync = spa->spa_uberblock;
3653 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3654 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3655 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3656 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3657 spa->spa_claim_max_txg = spa->spa_first_txg;
3658 spa->spa_prev_software_version = ub->ub_software_version;
3659 }
3660
3661 static int
3662 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3663 {
3664 vdev_t *rvd = spa->spa_root_vdev;
3665 nvlist_t *label;
3666 uberblock_t *ub = &spa->spa_uberblock;
3667 boolean_t activity_check = B_FALSE;
3668
3669 /*
3670 * If we are opening the checkpointed state of the pool by
3671 * rewinding to it, at this point we will have written the
3672 * checkpointed uberblock to the vdev labels, so searching
3673 * the labels will find the right uberblock. However, if
3674 * we are opening the checkpointed state read-only, we have
3675 * not modified the labels. Therefore, we must ignore the
3676 * labels and continue using the spa_uberblock that was set
3677 * by spa_ld_checkpoint_rewind.
3678 *
3679 * Note that it would be fine to ignore the labels when
3680 * rewinding (opening writeable) as well. However, if we
3681 * crash just after writing the labels, we will end up
3682 * searching the labels. Doing so in the common case means
3683 * that this code path gets exercised normally, rather than
3684 * just in the edge case.
3685 */
3686 if (ub->ub_checkpoint_txg != 0 &&
3687 spa_importing_readonly_checkpoint(spa)) {
3688 spa_ld_select_uberblock_done(spa, ub);
3689 return (0);
3690 }
3691
3692 /*
3693 * Find the best uberblock.
3694 */
3695 vdev_uberblock_load(rvd, ub, &label);
3696
3697 /*
3698 * If we weren't able to find a single valid uberblock, return failure.
3699 */
3700 if (ub->ub_txg == 0) {
3701 nvlist_free(label);
3702 spa_load_failed(spa, "no valid uberblock found");
3703 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3704 }
3705
3706 if (spa->spa_load_max_txg != UINT64_MAX) {
3707 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3708 (u_longlong_t)spa->spa_load_max_txg);
3709 }
3710 spa_load_note(spa, "using uberblock with txg=%llu",
3711 (u_longlong_t)ub->ub_txg);
3712
3713
3714 /*
3715 * For pools which have the multihost property on determine if the
3716 * pool is truly inactive and can be safely imported. Prevent
3717 * hosts which don't have a hostid set from importing the pool.
3718 */
3719 activity_check = spa_activity_check_required(spa, ub, label,
3720 spa->spa_config);
3721 if (activity_check) {
3722 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3723 spa_get_hostid(spa) == 0) {
3724 nvlist_free(label);
3725 fnvlist_add_uint64(spa->spa_load_info,
3726 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3727 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3728 }
3729
3730 int error = spa_activity_check(spa, ub, spa->spa_config);
3731 if (error) {
3732 nvlist_free(label);
3733 return (error);
3734 }
3735
3736 fnvlist_add_uint64(spa->spa_load_info,
3737 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3738 fnvlist_add_uint64(spa->spa_load_info,
3739 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3740 fnvlist_add_uint16(spa->spa_load_info,
3741 ZPOOL_CONFIG_MMP_SEQ,
3742 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3743 }
3744
3745 /*
3746 * If the pool has an unsupported version we can't open it.
3747 */
3748 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3749 nvlist_free(label);
3750 spa_load_failed(spa, "version %llu is not supported",
3751 (u_longlong_t)ub->ub_version);
3752 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3753 }
3754
3755 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3756 nvlist_t *features;
3757
3758 /*
3759 * If we weren't able to find what's necessary for reading the
3760 * MOS in the label, return failure.
3761 */
3762 if (label == NULL) {
3763 spa_load_failed(spa, "label config unavailable");
3764 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3765 ENXIO));
3766 }
3767
3768 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3769 &features) != 0) {
3770 nvlist_free(label);
3771 spa_load_failed(spa, "invalid label: '%s' missing",
3772 ZPOOL_CONFIG_FEATURES_FOR_READ);
3773 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3774 ENXIO));
3775 }
3776
3777 /*
3778 * Update our in-core representation with the definitive values
3779 * from the label.
3780 */
3781 nvlist_free(spa->spa_label_features);
3782 spa->spa_label_features = fnvlist_dup(features);
3783 }
3784
3785 nvlist_free(label);
3786
3787 /*
3788 * Look through entries in the label nvlist's features_for_read. If
3789 * there is a feature listed there which we don't understand then we
3790 * cannot open a pool.
3791 */
3792 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3793 nvlist_t *unsup_feat;
3794
3795 unsup_feat = fnvlist_alloc();
3796
3797 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3798 NULL); nvp != NULL;
3799 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3800 if (!zfeature_is_supported(nvpair_name(nvp))) {
3801 fnvlist_add_string(unsup_feat,
3802 nvpair_name(nvp), "");
3803 }
3804 }
3805
3806 if (!nvlist_empty(unsup_feat)) {
3807 fnvlist_add_nvlist(spa->spa_load_info,
3808 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3809 nvlist_free(unsup_feat);
3810 spa_load_failed(spa, "some features are unsupported");
3811 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3812 ENOTSUP));
3813 }
3814
3815 nvlist_free(unsup_feat);
3816 }
3817
3818 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3819 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3820 spa_try_repair(spa, spa->spa_config);
3821 spa_config_exit(spa, SCL_ALL, FTAG);
3822 nvlist_free(spa->spa_config_splitting);
3823 spa->spa_config_splitting = NULL;
3824 }
3825
3826 /*
3827 * Initialize internal SPA structures.
3828 */
3829 spa_ld_select_uberblock_done(spa, ub);
3830
3831 return (0);
3832 }
3833
3834 static int
3835 spa_ld_open_rootbp(spa_t *spa)
3836 {
3837 int error = 0;
3838 vdev_t *rvd = spa->spa_root_vdev;
3839
3840 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3841 if (error != 0) {
3842 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3843 "[error=%d]", error);
3844 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3845 }
3846 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3847
3848 return (0);
3849 }
3850
3851 static int
3852 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3853 boolean_t reloading)
3854 {
3855 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3856 nvlist_t *nv, *mos_config, *policy;
3857 int error = 0, copy_error;
3858 uint64_t healthy_tvds, healthy_tvds_mos;
3859 uint64_t mos_config_txg;
3860
3861 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3862 != 0)
3863 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3864
3865 /*
3866 * If we're assembling a pool from a split, the config provided is
3867 * already trusted so there is nothing to do.
3868 */
3869 if (type == SPA_IMPORT_ASSEMBLE)
3870 return (0);
3871
3872 healthy_tvds = spa_healthy_core_tvds(spa);
3873
3874 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3875 != 0) {
3876 spa_load_failed(spa, "unable to retrieve MOS config");
3877 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3878 }
3879
3880 /*
3881 * If we are doing an open, pool owner wasn't verified yet, thus do
3882 * the verification here.
3883 */
3884 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3885 error = spa_verify_host(spa, mos_config);
3886 if (error != 0) {
3887 nvlist_free(mos_config);
3888 return (error);
3889 }
3890 }
3891
3892 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3893
3894 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3895
3896 /*
3897 * Build a new vdev tree from the trusted config
3898 */
3899 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3900 if (error != 0) {
3901 nvlist_free(mos_config);
3902 spa_config_exit(spa, SCL_ALL, FTAG);
3903 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3904 error);
3905 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3906 }
3907
3908 /*
3909 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3910 * obtained by scanning /dev/dsk, then it will have the right vdev
3911 * paths. We update the trusted MOS config with this information.
3912 * We first try to copy the paths with vdev_copy_path_strict, which
3913 * succeeds only when both configs have exactly the same vdev tree.
3914 * If that fails, we fall back to a more flexible method that has a
3915 * best effort policy.
3916 */
3917 copy_error = vdev_copy_path_strict(rvd, mrvd);
3918 if (copy_error != 0 || spa_load_print_vdev_tree) {
3919 spa_load_note(spa, "provided vdev tree:");
3920 vdev_dbgmsg_print_tree(rvd, 2);
3921 spa_load_note(spa, "MOS vdev tree:");
3922 vdev_dbgmsg_print_tree(mrvd, 2);
3923 }
3924 if (copy_error != 0) {
3925 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3926 "back to vdev_copy_path_relaxed");
3927 vdev_copy_path_relaxed(rvd, mrvd);
3928 }
3929
3930 vdev_close(rvd);
3931 vdev_free(rvd);
3932 spa->spa_root_vdev = mrvd;
3933 rvd = mrvd;
3934 spa_config_exit(spa, SCL_ALL, FTAG);
3935
3936 /*
3937 * If 'zpool import' used a cached config, then the on-disk hostid and
3938 * hostname may be different to the cached config in ways that should
3939 * prevent import. Userspace can't discover this without a scan, but
3940 * we know, so we add these values to LOAD_INFO so the caller can know
3941 * the difference.
3942 *
3943 * Note that we have to do this before the config is regenerated,
3944 * because the new config will have the hostid and hostname for this
3945 * host, in readiness for import.
3946 */
3947 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
3948 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
3949 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
3950 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
3951 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
3952 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
3953
3954 /*
3955 * We will use spa_config if we decide to reload the spa or if spa_load
3956 * fails and we rewind. We must thus regenerate the config using the
3957 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3958 * pass settings on how to load the pool and is not stored in the MOS.
3959 * We copy it over to our new, trusted config.
3960 */
3961 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3962 ZPOOL_CONFIG_POOL_TXG);
3963 nvlist_free(mos_config);
3964 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3965 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3966 &policy) == 0)
3967 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3968 spa_config_set(spa, mos_config);
3969 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3970
3971 /*
3972 * Now that we got the config from the MOS, we should be more strict
3973 * in checking blkptrs and can make assumptions about the consistency
3974 * of the vdev tree. spa_trust_config must be set to true before opening
3975 * vdevs in order for them to be writeable.
3976 */
3977 spa->spa_trust_config = B_TRUE;
3978
3979 /*
3980 * Open and validate the new vdev tree
3981 */
3982 error = spa_ld_open_vdevs(spa);
3983 if (error != 0)
3984 return (error);
3985
3986 error = spa_ld_validate_vdevs(spa);
3987 if (error != 0)
3988 return (error);
3989
3990 if (copy_error != 0 || spa_load_print_vdev_tree) {
3991 spa_load_note(spa, "final vdev tree:");
3992 vdev_dbgmsg_print_tree(rvd, 2);
3993 }
3994
3995 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3996 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3997 /*
3998 * Sanity check to make sure that we are indeed loading the
3999 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4000 * in the config provided and they happened to be the only ones
4001 * to have the latest uberblock, we could involuntarily perform
4002 * an extreme rewind.
4003 */
4004 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4005 if (healthy_tvds_mos - healthy_tvds >=
4006 SPA_SYNC_MIN_VDEVS) {
4007 spa_load_note(spa, "config provided misses too many "
4008 "top-level vdevs compared to MOS (%lld vs %lld). ",
4009 (u_longlong_t)healthy_tvds,
4010 (u_longlong_t)healthy_tvds_mos);
4011 spa_load_note(spa, "vdev tree:");
4012 vdev_dbgmsg_print_tree(rvd, 2);
4013 if (reloading) {
4014 spa_load_failed(spa, "config was already "
4015 "provided from MOS. Aborting.");
4016 return (spa_vdev_err(rvd,
4017 VDEV_AUX_CORRUPT_DATA, EIO));
4018 }
4019 spa_load_note(spa, "spa must be reloaded using MOS "
4020 "config");
4021 return (SET_ERROR(EAGAIN));
4022 }
4023 }
4024
4025 error = spa_check_for_missing_logs(spa);
4026 if (error != 0)
4027 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4028
4029 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4030 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4031 "guid sum (%llu != %llu)",
4032 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4033 (u_longlong_t)rvd->vdev_guid_sum);
4034 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4035 ENXIO));
4036 }
4037
4038 return (0);
4039 }
4040
4041 static int
4042 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4043 {
4044 int error = 0;
4045 vdev_t *rvd = spa->spa_root_vdev;
4046
4047 /*
4048 * Everything that we read before spa_remove_init() must be stored
4049 * on concreted vdevs. Therefore we do this as early as possible.
4050 */
4051 error = spa_remove_init(spa);
4052 if (error != 0) {
4053 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4054 error);
4055 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4056 }
4057
4058 /*
4059 * Retrieve information needed to condense indirect vdev mappings.
4060 */
4061 error = spa_condense_init(spa);
4062 if (error != 0) {
4063 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4064 error);
4065 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4066 }
4067
4068 return (0);
4069 }
4070
4071 static int
4072 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4073 {
4074 int error = 0;
4075 vdev_t *rvd = spa->spa_root_vdev;
4076
4077 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4078 boolean_t missing_feat_read = B_FALSE;
4079 nvlist_t *unsup_feat, *enabled_feat;
4080
4081 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4082 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4083 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4084 }
4085
4086 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4087 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4088 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4089 }
4090
4091 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4092 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4093 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4094 }
4095
4096 enabled_feat = fnvlist_alloc();
4097 unsup_feat = fnvlist_alloc();
4098
4099 if (!spa_features_check(spa, B_FALSE,
4100 unsup_feat, enabled_feat))
4101 missing_feat_read = B_TRUE;
4102
4103 if (spa_writeable(spa) ||
4104 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4105 if (!spa_features_check(spa, B_TRUE,
4106 unsup_feat, enabled_feat)) {
4107 *missing_feat_writep = B_TRUE;
4108 }
4109 }
4110
4111 fnvlist_add_nvlist(spa->spa_load_info,
4112 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4113
4114 if (!nvlist_empty(unsup_feat)) {
4115 fnvlist_add_nvlist(spa->spa_load_info,
4116 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4117 }
4118
4119 fnvlist_free(enabled_feat);
4120 fnvlist_free(unsup_feat);
4121
4122 if (!missing_feat_read) {
4123 fnvlist_add_boolean(spa->spa_load_info,
4124 ZPOOL_CONFIG_CAN_RDONLY);
4125 }
4126
4127 /*
4128 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4129 * twofold: to determine whether the pool is available for
4130 * import in read-write mode and (if it is not) whether the
4131 * pool is available for import in read-only mode. If the pool
4132 * is available for import in read-write mode, it is displayed
4133 * as available in userland; if it is not available for import
4134 * in read-only mode, it is displayed as unavailable in
4135 * userland. If the pool is available for import in read-only
4136 * mode but not read-write mode, it is displayed as unavailable
4137 * in userland with a special note that the pool is actually
4138 * available for open in read-only mode.
4139 *
4140 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4141 * missing a feature for write, we must first determine whether
4142 * the pool can be opened read-only before returning to
4143 * userland in order to know whether to display the
4144 * abovementioned note.
4145 */
4146 if (missing_feat_read || (*missing_feat_writep &&
4147 spa_writeable(spa))) {
4148 spa_load_failed(spa, "pool uses unsupported features");
4149 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4150 ENOTSUP));
4151 }
4152
4153 /*
4154 * Load refcounts for ZFS features from disk into an in-memory
4155 * cache during SPA initialization.
4156 */
4157 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4158 uint64_t refcount;
4159
4160 error = feature_get_refcount_from_disk(spa,
4161 &spa_feature_table[i], &refcount);
4162 if (error == 0) {
4163 spa->spa_feat_refcount_cache[i] = refcount;
4164 } else if (error == ENOTSUP) {
4165 spa->spa_feat_refcount_cache[i] =
4166 SPA_FEATURE_DISABLED;
4167 } else {
4168 spa_load_failed(spa, "error getting refcount "
4169 "for feature %s [error=%d]",
4170 spa_feature_table[i].fi_guid, error);
4171 return (spa_vdev_err(rvd,
4172 VDEV_AUX_CORRUPT_DATA, EIO));
4173 }
4174 }
4175 }
4176
4177 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4178 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4179 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4180 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4181 }
4182
4183 /*
4184 * Encryption was added before bookmark_v2, even though bookmark_v2
4185 * is now a dependency. If this pool has encryption enabled without
4186 * bookmark_v2, trigger an errata message.
4187 */
4188 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4189 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4190 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4191 }
4192
4193 return (0);
4194 }
4195
4196 static int
4197 spa_ld_load_special_directories(spa_t *spa)
4198 {
4199 int error = 0;
4200 vdev_t *rvd = spa->spa_root_vdev;
4201
4202 spa->spa_is_initializing = B_TRUE;
4203 error = dsl_pool_open(spa->spa_dsl_pool);
4204 spa->spa_is_initializing = B_FALSE;
4205 if (error != 0) {
4206 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4207 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4208 }
4209
4210 return (0);
4211 }
4212
4213 static int
4214 spa_ld_get_props(spa_t *spa)
4215 {
4216 int error = 0;
4217 uint64_t obj;
4218 vdev_t *rvd = spa->spa_root_vdev;
4219
4220 /* Grab the checksum salt from the MOS. */
4221 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4222 DMU_POOL_CHECKSUM_SALT, 1,
4223 sizeof (spa->spa_cksum_salt.zcs_bytes),
4224 spa->spa_cksum_salt.zcs_bytes);
4225 if (error == ENOENT) {
4226 /* Generate a new salt for subsequent use */
4227 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4228 sizeof (spa->spa_cksum_salt.zcs_bytes));
4229 } else if (error != 0) {
4230 spa_load_failed(spa, "unable to retrieve checksum salt from "
4231 "MOS [error=%d]", error);
4232 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4233 }
4234
4235 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4236 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4237 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4238 if (error != 0) {
4239 spa_load_failed(spa, "error opening deferred-frees bpobj "
4240 "[error=%d]", error);
4241 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4242 }
4243
4244 /*
4245 * Load the bit that tells us to use the new accounting function
4246 * (raid-z deflation). If we have an older pool, this will not
4247 * be present.
4248 */
4249 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4250 if (error != 0 && error != ENOENT)
4251 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4252
4253 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4254 &spa->spa_creation_version, B_FALSE);
4255 if (error != 0 && error != ENOENT)
4256 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4257
4258 /*
4259 * Load the persistent error log. If we have an older pool, this will
4260 * not be present.
4261 */
4262 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4263 B_FALSE);
4264 if (error != 0 && error != ENOENT)
4265 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4266
4267 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4268 &spa->spa_errlog_scrub, B_FALSE);
4269 if (error != 0 && error != ENOENT)
4270 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4271
4272 /*
4273 * Load the livelist deletion field. If a livelist is queued for
4274 * deletion, indicate that in the spa
4275 */
4276 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4277 &spa->spa_livelists_to_delete, B_FALSE);
4278 if (error != 0 && error != ENOENT)
4279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4280
4281 /*
4282 * Load the history object. If we have an older pool, this
4283 * will not be present.
4284 */
4285 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4286 if (error != 0 && error != ENOENT)
4287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4288
4289 /*
4290 * Load the per-vdev ZAP map. If we have an older pool, this will not
4291 * be present; in this case, defer its creation to a later time to
4292 * avoid dirtying the MOS this early / out of sync context. See
4293 * spa_sync_config_object.
4294 */
4295
4296 /* The sentinel is only available in the MOS config. */
4297 nvlist_t *mos_config;
4298 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4299 spa_load_failed(spa, "unable to retrieve MOS config");
4300 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4301 }
4302
4303 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4304 &spa->spa_all_vdev_zaps, B_FALSE);
4305
4306 if (error == ENOENT) {
4307 VERIFY(!nvlist_exists(mos_config,
4308 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4309 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4310 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4311 } else if (error != 0) {
4312 nvlist_free(mos_config);
4313 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4314 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4315 /*
4316 * An older version of ZFS overwrote the sentinel value, so
4317 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4318 * destruction to later; see spa_sync_config_object.
4319 */
4320 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4321 /*
4322 * We're assuming that no vdevs have had their ZAPs created
4323 * before this. Better be sure of it.
4324 */
4325 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4326 }
4327 nvlist_free(mos_config);
4328
4329 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4330
4331 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4332 B_FALSE);
4333 if (error && error != ENOENT)
4334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4335
4336 if (error == 0) {
4337 uint64_t autoreplace = 0;
4338
4339 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4340 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4341 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4342 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4343 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4344 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4345 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4346 spa->spa_autoreplace = (autoreplace != 0);
4347 }
4348
4349 /*
4350 * If we are importing a pool with missing top-level vdevs,
4351 * we enforce that the pool doesn't panic or get suspended on
4352 * error since the likelihood of missing data is extremely high.
4353 */
4354 if (spa->spa_missing_tvds > 0 &&
4355 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4356 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4357 spa_load_note(spa, "forcing failmode to 'continue' "
4358 "as some top level vdevs are missing");
4359 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4360 }
4361
4362 return (0);
4363 }
4364
4365 static int
4366 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4367 {
4368 int error = 0;
4369 vdev_t *rvd = spa->spa_root_vdev;
4370
4371 /*
4372 * If we're assembling the pool from the split-off vdevs of
4373 * an existing pool, we don't want to attach the spares & cache
4374 * devices.
4375 */
4376
4377 /*
4378 * Load any hot spares for this pool.
4379 */
4380 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4381 B_FALSE);
4382 if (error != 0 && error != ENOENT)
4383 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4384 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4385 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4386 if (load_nvlist(spa, spa->spa_spares.sav_object,
4387 &spa->spa_spares.sav_config) != 0) {
4388 spa_load_failed(spa, "error loading spares nvlist");
4389 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4390 }
4391
4392 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4393 spa_load_spares(spa);
4394 spa_config_exit(spa, SCL_ALL, FTAG);
4395 } else if (error == 0) {
4396 spa->spa_spares.sav_sync = B_TRUE;
4397 }
4398
4399 /*
4400 * Load any level 2 ARC devices for this pool.
4401 */
4402 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4403 &spa->spa_l2cache.sav_object, B_FALSE);
4404 if (error != 0 && error != ENOENT)
4405 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4406 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4407 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4408 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4409 &spa->spa_l2cache.sav_config) != 0) {
4410 spa_load_failed(spa, "error loading l2cache nvlist");
4411 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4412 }
4413
4414 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4415 spa_load_l2cache(spa);
4416 spa_config_exit(spa, SCL_ALL, FTAG);
4417 } else if (error == 0) {
4418 spa->spa_l2cache.sav_sync = B_TRUE;
4419 }
4420
4421 return (0);
4422 }
4423
4424 static int
4425 spa_ld_load_vdev_metadata(spa_t *spa)
4426 {
4427 int error = 0;
4428 vdev_t *rvd = spa->spa_root_vdev;
4429
4430 /*
4431 * If the 'multihost' property is set, then never allow a pool to
4432 * be imported when the system hostid is zero. The exception to
4433 * this rule is zdb which is always allowed to access pools.
4434 */
4435 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4436 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4437 fnvlist_add_uint64(spa->spa_load_info,
4438 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4439 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4440 }
4441
4442 /*
4443 * If the 'autoreplace' property is set, then post a resource notifying
4444 * the ZFS DE that it should not issue any faults for unopenable
4445 * devices. We also iterate over the vdevs, and post a sysevent for any
4446 * unopenable vdevs so that the normal autoreplace handler can take
4447 * over.
4448 */
4449 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4450 spa_check_removed(spa->spa_root_vdev);
4451 /*
4452 * For the import case, this is done in spa_import(), because
4453 * at this point we're using the spare definitions from
4454 * the MOS config, not necessarily from the userland config.
4455 */
4456 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4457 spa_aux_check_removed(&spa->spa_spares);
4458 spa_aux_check_removed(&spa->spa_l2cache);
4459 }
4460 }
4461
4462 /*
4463 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4464 */
4465 error = vdev_load(rvd);
4466 if (error != 0) {
4467 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4469 }
4470
4471 error = spa_ld_log_spacemaps(spa);
4472 if (error != 0) {
4473 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4474 error);
4475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4476 }
4477
4478 /*
4479 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4480 */
4481 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4482 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4483 spa_config_exit(spa, SCL_ALL, FTAG);
4484
4485 return (0);
4486 }
4487
4488 static int
4489 spa_ld_load_dedup_tables(spa_t *spa)
4490 {
4491 int error = 0;
4492 vdev_t *rvd = spa->spa_root_vdev;
4493
4494 error = ddt_load(spa);
4495 if (error != 0) {
4496 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4497 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4498 }
4499
4500 return (0);
4501 }
4502
4503 static int
4504 spa_ld_load_brt(spa_t *spa)
4505 {
4506 int error = 0;
4507 vdev_t *rvd = spa->spa_root_vdev;
4508
4509 error = brt_load(spa);
4510 if (error != 0) {
4511 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4512 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4513 }
4514
4515 return (0);
4516 }
4517
4518 static int
4519 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4520 {
4521 vdev_t *rvd = spa->spa_root_vdev;
4522
4523 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4524 boolean_t missing = spa_check_logs(spa);
4525 if (missing) {
4526 if (spa->spa_missing_tvds != 0) {
4527 spa_load_note(spa, "spa_check_logs failed "
4528 "so dropping the logs");
4529 } else {
4530 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4531 spa_load_failed(spa, "spa_check_logs failed");
4532 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4533 ENXIO));
4534 }
4535 }
4536 }
4537
4538 return (0);
4539 }
4540
4541 static int
4542 spa_ld_verify_pool_data(spa_t *spa)
4543 {
4544 int error = 0;
4545 vdev_t *rvd = spa->spa_root_vdev;
4546
4547 /*
4548 * We've successfully opened the pool, verify that we're ready
4549 * to start pushing transactions.
4550 */
4551 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4552 error = spa_load_verify(spa);
4553 if (error != 0) {
4554 spa_load_failed(spa, "spa_load_verify failed "
4555 "[error=%d]", error);
4556 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4557 error));
4558 }
4559 }
4560
4561 return (0);
4562 }
4563
4564 static void
4565 spa_ld_claim_log_blocks(spa_t *spa)
4566 {
4567 dmu_tx_t *tx;
4568 dsl_pool_t *dp = spa_get_dsl(spa);
4569
4570 /*
4571 * Claim log blocks that haven't been committed yet.
4572 * This must all happen in a single txg.
4573 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4574 * invoked from zil_claim_log_block()'s i/o done callback.
4575 * Price of rollback is that we abandon the log.
4576 */
4577 spa->spa_claiming = B_TRUE;
4578
4579 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4580 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4581 zil_claim, tx, DS_FIND_CHILDREN);
4582 dmu_tx_commit(tx);
4583
4584 spa->spa_claiming = B_FALSE;
4585
4586 spa_set_log_state(spa, SPA_LOG_GOOD);
4587 }
4588
4589 static void
4590 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4591 boolean_t update_config_cache)
4592 {
4593 vdev_t *rvd = spa->spa_root_vdev;
4594 int need_update = B_FALSE;
4595
4596 /*
4597 * If the config cache is stale, or we have uninitialized
4598 * metaslabs (see spa_vdev_add()), then update the config.
4599 *
4600 * If this is a verbatim import, trust the current
4601 * in-core spa_config and update the disk labels.
4602 */
4603 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4604 spa->spa_load_state == SPA_LOAD_IMPORT ||
4605 spa->spa_load_state == SPA_LOAD_RECOVER ||
4606 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4607 need_update = B_TRUE;
4608
4609 for (int c = 0; c < rvd->vdev_children; c++)
4610 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4611 need_update = B_TRUE;
4612
4613 /*
4614 * Update the config cache asynchronously in case we're the
4615 * root pool, in which case the config cache isn't writable yet.
4616 */
4617 if (need_update)
4618 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4619 }
4620
4621 static void
4622 spa_ld_prepare_for_reload(spa_t *spa)
4623 {
4624 spa_mode_t mode = spa->spa_mode;
4625 int async_suspended = spa->spa_async_suspended;
4626
4627 spa_unload(spa);
4628 spa_deactivate(spa);
4629 spa_activate(spa, mode);
4630
4631 /*
4632 * We save the value of spa_async_suspended as it gets reset to 0 by
4633 * spa_unload(). We want to restore it back to the original value before
4634 * returning as we might be calling spa_async_resume() later.
4635 */
4636 spa->spa_async_suspended = async_suspended;
4637 }
4638
4639 static int
4640 spa_ld_read_checkpoint_txg(spa_t *spa)
4641 {
4642 uberblock_t checkpoint;
4643 int error = 0;
4644
4645 ASSERT0(spa->spa_checkpoint_txg);
4646 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4647
4648 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4649 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4650 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4651
4652 if (error == ENOENT)
4653 return (0);
4654
4655 if (error != 0)
4656 return (error);
4657
4658 ASSERT3U(checkpoint.ub_txg, !=, 0);
4659 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4660 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4661 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4662 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4663
4664 return (0);
4665 }
4666
4667 static int
4668 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4669 {
4670 int error = 0;
4671
4672 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4673 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4674
4675 /*
4676 * Never trust the config that is provided unless we are assembling
4677 * a pool following a split.
4678 * This means don't trust blkptrs and the vdev tree in general. This
4679 * also effectively puts the spa in read-only mode since
4680 * spa_writeable() checks for spa_trust_config to be true.
4681 * We will later load a trusted config from the MOS.
4682 */
4683 if (type != SPA_IMPORT_ASSEMBLE)
4684 spa->spa_trust_config = B_FALSE;
4685
4686 /*
4687 * Parse the config provided to create a vdev tree.
4688 */
4689 error = spa_ld_parse_config(spa, type);
4690 if (error != 0)
4691 return (error);
4692
4693 spa_import_progress_add(spa);
4694
4695 /*
4696 * Now that we have the vdev tree, try to open each vdev. This involves
4697 * opening the underlying physical device, retrieving its geometry and
4698 * probing the vdev with a dummy I/O. The state of each vdev will be set
4699 * based on the success of those operations. After this we'll be ready
4700 * to read from the vdevs.
4701 */
4702 error = spa_ld_open_vdevs(spa);
4703 if (error != 0)
4704 return (error);
4705
4706 /*
4707 * Read the label of each vdev and make sure that the GUIDs stored
4708 * there match the GUIDs in the config provided.
4709 * If we're assembling a new pool that's been split off from an
4710 * existing pool, the labels haven't yet been updated so we skip
4711 * validation for now.
4712 */
4713 if (type != SPA_IMPORT_ASSEMBLE) {
4714 error = spa_ld_validate_vdevs(spa);
4715 if (error != 0)
4716 return (error);
4717 }
4718
4719 /*
4720 * Read all vdev labels to find the best uberblock (i.e. latest,
4721 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4722 * get the list of features required to read blkptrs in the MOS from
4723 * the vdev label with the best uberblock and verify that our version
4724 * of zfs supports them all.
4725 */
4726 error = spa_ld_select_uberblock(spa, type);
4727 if (error != 0)
4728 return (error);
4729
4730 /*
4731 * Pass that uberblock to the dsl_pool layer which will open the root
4732 * blkptr. This blkptr points to the latest version of the MOS and will
4733 * allow us to read its contents.
4734 */
4735 error = spa_ld_open_rootbp(spa);
4736 if (error != 0)
4737 return (error);
4738
4739 return (0);
4740 }
4741
4742 static int
4743 spa_ld_checkpoint_rewind(spa_t *spa)
4744 {
4745 uberblock_t checkpoint;
4746 int error = 0;
4747
4748 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4749 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4750
4751 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4752 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4753 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4754
4755 if (error != 0) {
4756 spa_load_failed(spa, "unable to retrieve checkpointed "
4757 "uberblock from the MOS config [error=%d]", error);
4758
4759 if (error == ENOENT)
4760 error = ZFS_ERR_NO_CHECKPOINT;
4761
4762 return (error);
4763 }
4764
4765 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4766 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4767
4768 /*
4769 * We need to update the txg and timestamp of the checkpointed
4770 * uberblock to be higher than the latest one. This ensures that
4771 * the checkpointed uberblock is selected if we were to close and
4772 * reopen the pool right after we've written it in the vdev labels.
4773 * (also see block comment in vdev_uberblock_compare)
4774 */
4775 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4776 checkpoint.ub_timestamp = gethrestime_sec();
4777
4778 /*
4779 * Set current uberblock to be the checkpointed uberblock.
4780 */
4781 spa->spa_uberblock = checkpoint;
4782
4783 /*
4784 * If we are doing a normal rewind, then the pool is open for
4785 * writing and we sync the "updated" checkpointed uberblock to
4786 * disk. Once this is done, we've basically rewound the whole
4787 * pool and there is no way back.
4788 *
4789 * There are cases when we don't want to attempt and sync the
4790 * checkpointed uberblock to disk because we are opening a
4791 * pool as read-only. Specifically, verifying the checkpointed
4792 * state with zdb, and importing the checkpointed state to get
4793 * a "preview" of its content.
4794 */
4795 if (spa_writeable(spa)) {
4796 vdev_t *rvd = spa->spa_root_vdev;
4797
4798 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4799 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4800 int svdcount = 0;
4801 int children = rvd->vdev_children;
4802 int c0 = random_in_range(children);
4803
4804 for (int c = 0; c < children; c++) {
4805 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4806
4807 /* Stop when revisiting the first vdev */
4808 if (c > 0 && svd[0] == vd)
4809 break;
4810
4811 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4812 !vdev_is_concrete(vd))
4813 continue;
4814
4815 svd[svdcount++] = vd;
4816 if (svdcount == SPA_SYNC_MIN_VDEVS)
4817 break;
4818 }
4819 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4820 if (error == 0)
4821 spa->spa_last_synced_guid = rvd->vdev_guid;
4822 spa_config_exit(spa, SCL_ALL, FTAG);
4823
4824 if (error != 0) {
4825 spa_load_failed(spa, "failed to write checkpointed "
4826 "uberblock to the vdev labels [error=%d]", error);
4827 return (error);
4828 }
4829 }
4830
4831 return (0);
4832 }
4833
4834 static int
4835 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4836 boolean_t *update_config_cache)
4837 {
4838 int error;
4839
4840 /*
4841 * Parse the config for pool, open and validate vdevs,
4842 * select an uberblock, and use that uberblock to open
4843 * the MOS.
4844 */
4845 error = spa_ld_mos_init(spa, type);
4846 if (error != 0)
4847 return (error);
4848
4849 /*
4850 * Retrieve the trusted config stored in the MOS and use it to create
4851 * a new, exact version of the vdev tree, then reopen all vdevs.
4852 */
4853 error = spa_ld_trusted_config(spa, type, B_FALSE);
4854 if (error == EAGAIN) {
4855 if (update_config_cache != NULL)
4856 *update_config_cache = B_TRUE;
4857
4858 /*
4859 * Redo the loading process with the trusted config if it is
4860 * too different from the untrusted config.
4861 */
4862 spa_ld_prepare_for_reload(spa);
4863 spa_load_note(spa, "RELOADING");
4864 error = spa_ld_mos_init(spa, type);
4865 if (error != 0)
4866 return (error);
4867
4868 error = spa_ld_trusted_config(spa, type, B_TRUE);
4869 if (error != 0)
4870 return (error);
4871
4872 } else if (error != 0) {
4873 return (error);
4874 }
4875
4876 return (0);
4877 }
4878
4879 /*
4880 * Load an existing storage pool, using the config provided. This config
4881 * describes which vdevs are part of the pool and is later validated against
4882 * partial configs present in each vdev's label and an entire copy of the
4883 * config stored in the MOS.
4884 */
4885 static int
4886 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4887 {
4888 int error = 0;
4889 boolean_t missing_feat_write = B_FALSE;
4890 boolean_t checkpoint_rewind =
4891 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4892 boolean_t update_config_cache = B_FALSE;
4893
4894 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4895 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4896
4897 spa_load_note(spa, "LOADING");
4898
4899 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4900 if (error != 0)
4901 return (error);
4902
4903 /*
4904 * If we are rewinding to the checkpoint then we need to repeat
4905 * everything we've done so far in this function but this time
4906 * selecting the checkpointed uberblock and using that to open
4907 * the MOS.
4908 */
4909 if (checkpoint_rewind) {
4910 /*
4911 * If we are rewinding to the checkpoint update config cache
4912 * anyway.
4913 */
4914 update_config_cache = B_TRUE;
4915
4916 /*
4917 * Extract the checkpointed uberblock from the current MOS
4918 * and use this as the pool's uberblock from now on. If the
4919 * pool is imported as writeable we also write the checkpoint
4920 * uberblock to the labels, making the rewind permanent.
4921 */
4922 error = spa_ld_checkpoint_rewind(spa);
4923 if (error != 0)
4924 return (error);
4925
4926 /*
4927 * Redo the loading process again with the
4928 * checkpointed uberblock.
4929 */
4930 spa_ld_prepare_for_reload(spa);
4931 spa_load_note(spa, "LOADING checkpointed uberblock");
4932 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4933 if (error != 0)
4934 return (error);
4935 }
4936
4937 /*
4938 * Retrieve the checkpoint txg if the pool has a checkpoint.
4939 */
4940 error = spa_ld_read_checkpoint_txg(spa);
4941 if (error != 0)
4942 return (error);
4943
4944 /*
4945 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4946 * from the pool and their contents were re-mapped to other vdevs. Note
4947 * that everything that we read before this step must have been
4948 * rewritten on concrete vdevs after the last device removal was
4949 * initiated. Otherwise we could be reading from indirect vdevs before
4950 * we have loaded their mappings.
4951 */
4952 error = spa_ld_open_indirect_vdev_metadata(spa);
4953 if (error != 0)
4954 return (error);
4955
4956 /*
4957 * Retrieve the full list of active features from the MOS and check if
4958 * they are all supported.
4959 */
4960 error = spa_ld_check_features(spa, &missing_feat_write);
4961 if (error != 0)
4962 return (error);
4963
4964 /*
4965 * Load several special directories from the MOS needed by the dsl_pool
4966 * layer.
4967 */
4968 error = spa_ld_load_special_directories(spa);
4969 if (error != 0)
4970 return (error);
4971
4972 /*
4973 * Retrieve pool properties from the MOS.
4974 */
4975 error = spa_ld_get_props(spa);
4976 if (error != 0)
4977 return (error);
4978
4979 /*
4980 * Retrieve the list of auxiliary devices - cache devices and spares -
4981 * and open them.
4982 */
4983 error = spa_ld_open_aux_vdevs(spa, type);
4984 if (error != 0)
4985 return (error);
4986
4987 /*
4988 * Load the metadata for all vdevs. Also check if unopenable devices
4989 * should be autoreplaced.
4990 */
4991 error = spa_ld_load_vdev_metadata(spa);
4992 if (error != 0)
4993 return (error);
4994
4995 error = spa_ld_load_dedup_tables(spa);
4996 if (error != 0)
4997 return (error);
4998
4999 error = spa_ld_load_brt(spa);
5000 if (error != 0)
5001 return (error);
5002
5003 /*
5004 * Verify the logs now to make sure we don't have any unexpected errors
5005 * when we claim log blocks later.
5006 */
5007 error = spa_ld_verify_logs(spa, type, ereport);
5008 if (error != 0)
5009 return (error);
5010
5011 if (missing_feat_write) {
5012 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5013
5014 /*
5015 * At this point, we know that we can open the pool in
5016 * read-only mode but not read-write mode. We now have enough
5017 * information and can return to userland.
5018 */
5019 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5020 ENOTSUP));
5021 }
5022
5023 /*
5024 * Traverse the last txgs to make sure the pool was left off in a safe
5025 * state. When performing an extreme rewind, we verify the whole pool,
5026 * which can take a very long time.
5027 */
5028 error = spa_ld_verify_pool_data(spa);
5029 if (error != 0)
5030 return (error);
5031
5032 /*
5033 * Calculate the deflated space for the pool. This must be done before
5034 * we write anything to the pool because we'd need to update the space
5035 * accounting using the deflated sizes.
5036 */
5037 spa_update_dspace(spa);
5038
5039 /*
5040 * We have now retrieved all the information we needed to open the
5041 * pool. If we are importing the pool in read-write mode, a few
5042 * additional steps must be performed to finish the import.
5043 */
5044 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5045 spa->spa_load_max_txg == UINT64_MAX)) {
5046 uint64_t config_cache_txg = spa->spa_config_txg;
5047
5048 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5049
5050 /*
5051 * In case of a checkpoint rewind, log the original txg
5052 * of the checkpointed uberblock.
5053 */
5054 if (checkpoint_rewind) {
5055 spa_history_log_internal(spa, "checkpoint rewind",
5056 NULL, "rewound state to txg=%llu",
5057 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5058 }
5059
5060 /*
5061 * Traverse the ZIL and claim all blocks.
5062 */
5063 spa_ld_claim_log_blocks(spa);
5064
5065 /*
5066 * Kick-off the syncing thread.
5067 */
5068 spa->spa_sync_on = B_TRUE;
5069 txg_sync_start(spa->spa_dsl_pool);
5070 mmp_thread_start(spa);
5071
5072 /*
5073 * Wait for all claims to sync. We sync up to the highest
5074 * claimed log block birth time so that claimed log blocks
5075 * don't appear to be from the future. spa_claim_max_txg
5076 * will have been set for us by ZIL traversal operations
5077 * performed above.
5078 */
5079 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5080
5081 /*
5082 * Check if we need to request an update of the config. On the
5083 * next sync, we would update the config stored in vdev labels
5084 * and the cachefile (by default /etc/zfs/zpool.cache).
5085 */
5086 spa_ld_check_for_config_update(spa, config_cache_txg,
5087 update_config_cache);
5088
5089 /*
5090 * Check if a rebuild was in progress and if so resume it.
5091 * Then check all DTLs to see if anything needs resilvering.
5092 * The resilver will be deferred if a rebuild was started.
5093 */
5094 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5095 vdev_rebuild_restart(spa);
5096 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5097 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5098 spa_async_request(spa, SPA_ASYNC_RESILVER);
5099 }
5100
5101 /*
5102 * Log the fact that we booted up (so that we can detect if
5103 * we rebooted in the middle of an operation).
5104 */
5105 spa_history_log_version(spa, "open", NULL);
5106
5107 spa_restart_removal(spa);
5108 spa_spawn_aux_threads(spa);
5109
5110 /*
5111 * Delete any inconsistent datasets.
5112 *
5113 * Note:
5114 * Since we may be issuing deletes for clones here,
5115 * we make sure to do so after we've spawned all the
5116 * auxiliary threads above (from which the livelist
5117 * deletion zthr is part of).
5118 */
5119 (void) dmu_objset_find(spa_name(spa),
5120 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5121
5122 /*
5123 * Clean up any stale temporary dataset userrefs.
5124 */
5125 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5126
5127 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5128 vdev_initialize_restart(spa->spa_root_vdev);
5129 vdev_trim_restart(spa->spa_root_vdev);
5130 vdev_autotrim_restart(spa);
5131 spa_config_exit(spa, SCL_CONFIG, FTAG);
5132 }
5133
5134 spa_import_progress_remove(spa_guid(spa));
5135 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5136
5137 spa_load_note(spa, "LOADED");
5138
5139 return (0);
5140 }
5141
5142 static int
5143 spa_load_retry(spa_t *spa, spa_load_state_t state)
5144 {
5145 spa_mode_t mode = spa->spa_mode;
5146
5147 spa_unload(spa);
5148 spa_deactivate(spa);
5149
5150 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5151
5152 spa_activate(spa, mode);
5153 spa_async_suspend(spa);
5154
5155 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5156 (u_longlong_t)spa->spa_load_max_txg);
5157
5158 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5159 }
5160
5161 /*
5162 * If spa_load() fails this function will try loading prior txg's. If
5163 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5164 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5165 * function will not rewind the pool and will return the same error as
5166 * spa_load().
5167 */
5168 static int
5169 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5170 int rewind_flags)
5171 {
5172 nvlist_t *loadinfo = NULL;
5173 nvlist_t *config = NULL;
5174 int load_error, rewind_error;
5175 uint64_t safe_rewind_txg;
5176 uint64_t min_txg;
5177
5178 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5179 spa->spa_load_max_txg = spa->spa_load_txg;
5180 spa_set_log_state(spa, SPA_LOG_CLEAR);
5181 } else {
5182 spa->spa_load_max_txg = max_request;
5183 if (max_request != UINT64_MAX)
5184 spa->spa_extreme_rewind = B_TRUE;
5185 }
5186
5187 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5188 if (load_error == 0)
5189 return (0);
5190 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5191 /*
5192 * When attempting checkpoint-rewind on a pool with no
5193 * checkpoint, we should not attempt to load uberblocks
5194 * from previous txgs when spa_load fails.
5195 */
5196 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5197 spa_import_progress_remove(spa_guid(spa));
5198 return (load_error);
5199 }
5200
5201 if (spa->spa_root_vdev != NULL)
5202 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5203
5204 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5205 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5206
5207 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5208 nvlist_free(config);
5209 spa_import_progress_remove(spa_guid(spa));
5210 return (load_error);
5211 }
5212
5213 if (state == SPA_LOAD_RECOVER) {
5214 /* Price of rolling back is discarding txgs, including log */
5215 spa_set_log_state(spa, SPA_LOG_CLEAR);
5216 } else {
5217 /*
5218 * If we aren't rolling back save the load info from our first
5219 * import attempt so that we can restore it after attempting
5220 * to rewind.
5221 */
5222 loadinfo = spa->spa_load_info;
5223 spa->spa_load_info = fnvlist_alloc();
5224 }
5225
5226 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5227 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5228 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5229 TXG_INITIAL : safe_rewind_txg;
5230
5231 /*
5232 * Continue as long as we're finding errors, we're still within
5233 * the acceptable rewind range, and we're still finding uberblocks
5234 */
5235 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5236 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5237 if (spa->spa_load_max_txg < safe_rewind_txg)
5238 spa->spa_extreme_rewind = B_TRUE;
5239 rewind_error = spa_load_retry(spa, state);
5240 }
5241
5242 spa->spa_extreme_rewind = B_FALSE;
5243 spa->spa_load_max_txg = UINT64_MAX;
5244
5245 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5246 spa_config_set(spa, config);
5247 else
5248 nvlist_free(config);
5249
5250 if (state == SPA_LOAD_RECOVER) {
5251 ASSERT3P(loadinfo, ==, NULL);
5252 spa_import_progress_remove(spa_guid(spa));
5253 return (rewind_error);
5254 } else {
5255 /* Store the rewind info as part of the initial load info */
5256 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5257 spa->spa_load_info);
5258
5259 /* Restore the initial load info */
5260 fnvlist_free(spa->spa_load_info);
5261 spa->spa_load_info = loadinfo;
5262
5263 spa_import_progress_remove(spa_guid(spa));
5264 return (load_error);
5265 }
5266 }
5267
5268 /*
5269 * Pool Open/Import
5270 *
5271 * The import case is identical to an open except that the configuration is sent
5272 * down from userland, instead of grabbed from the configuration cache. For the
5273 * case of an open, the pool configuration will exist in the
5274 * POOL_STATE_UNINITIALIZED state.
5275 *
5276 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5277 * the same time open the pool, without having to keep around the spa_t in some
5278 * ambiguous state.
5279 */
5280 static int
5281 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5282 nvlist_t *nvpolicy, nvlist_t **config)
5283 {
5284 spa_t *spa;
5285 spa_load_state_t state = SPA_LOAD_OPEN;
5286 int error;
5287 int locked = B_FALSE;
5288 int firstopen = B_FALSE;
5289
5290 *spapp = NULL;
5291
5292 /*
5293 * As disgusting as this is, we need to support recursive calls to this
5294 * function because dsl_dir_open() is called during spa_load(), and ends
5295 * up calling spa_open() again. The real fix is to figure out how to
5296 * avoid dsl_dir_open() calling this in the first place.
5297 */
5298 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5299 mutex_enter(&spa_namespace_lock);
5300 locked = B_TRUE;
5301 }
5302
5303 if ((spa = spa_lookup(pool)) == NULL) {
5304 if (locked)
5305 mutex_exit(&spa_namespace_lock);
5306 return (SET_ERROR(ENOENT));
5307 }
5308
5309 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5310 zpool_load_policy_t policy;
5311
5312 firstopen = B_TRUE;
5313
5314 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5315 &policy);
5316 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5317 state = SPA_LOAD_RECOVER;
5318
5319 spa_activate(spa, spa_mode_global);
5320
5321 if (state != SPA_LOAD_RECOVER)
5322 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5323 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5324
5325 zfs_dbgmsg("spa_open_common: opening %s", pool);
5326 error = spa_load_best(spa, state, policy.zlp_txg,
5327 policy.zlp_rewind);
5328
5329 if (error == EBADF) {
5330 /*
5331 * If vdev_validate() returns failure (indicated by
5332 * EBADF), it indicates that one of the vdevs indicates
5333 * that the pool has been exported or destroyed. If
5334 * this is the case, the config cache is out of sync and
5335 * we should remove the pool from the namespace.
5336 */
5337 spa_unload(spa);
5338 spa_deactivate(spa);
5339 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5340 spa_remove(spa);
5341 if (locked)
5342 mutex_exit(&spa_namespace_lock);
5343 return (SET_ERROR(ENOENT));
5344 }
5345
5346 if (error) {
5347 /*
5348 * We can't open the pool, but we still have useful
5349 * information: the state of each vdev after the
5350 * attempted vdev_open(). Return this to the user.
5351 */
5352 if (config != NULL && spa->spa_config) {
5353 *config = fnvlist_dup(spa->spa_config);
5354 fnvlist_add_nvlist(*config,
5355 ZPOOL_CONFIG_LOAD_INFO,
5356 spa->spa_load_info);
5357 }
5358 spa_unload(spa);
5359 spa_deactivate(spa);
5360 spa->spa_last_open_failed = error;
5361 if (locked)
5362 mutex_exit(&spa_namespace_lock);
5363 *spapp = NULL;
5364 return (error);
5365 }
5366 }
5367
5368 spa_open_ref(spa, tag);
5369
5370 if (config != NULL)
5371 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5372
5373 /*
5374 * If we've recovered the pool, pass back any information we
5375 * gathered while doing the load.
5376 */
5377 if (state == SPA_LOAD_RECOVER && config != NULL) {
5378 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5379 spa->spa_load_info);
5380 }
5381
5382 if (locked) {
5383 spa->spa_last_open_failed = 0;
5384 spa->spa_last_ubsync_txg = 0;
5385 spa->spa_load_txg = 0;
5386 mutex_exit(&spa_namespace_lock);
5387 }
5388
5389 if (firstopen)
5390 zvol_create_minors_recursive(spa_name(spa));
5391
5392 *spapp = spa;
5393
5394 return (0);
5395 }
5396
5397 int
5398 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5399 nvlist_t *policy, nvlist_t **config)
5400 {
5401 return (spa_open_common(name, spapp, tag, policy, config));
5402 }
5403
5404 int
5405 spa_open(const char *name, spa_t **spapp, const void *tag)
5406 {
5407 return (spa_open_common(name, spapp, tag, NULL, NULL));
5408 }
5409
5410 /*
5411 * Lookup the given spa_t, incrementing the inject count in the process,
5412 * preventing it from being exported or destroyed.
5413 */
5414 spa_t *
5415 spa_inject_addref(char *name)
5416 {
5417 spa_t *spa;
5418
5419 mutex_enter(&spa_namespace_lock);
5420 if ((spa = spa_lookup(name)) == NULL) {
5421 mutex_exit(&spa_namespace_lock);
5422 return (NULL);
5423 }
5424 spa->spa_inject_ref++;
5425 mutex_exit(&spa_namespace_lock);
5426
5427 return (spa);
5428 }
5429
5430 void
5431 spa_inject_delref(spa_t *spa)
5432 {
5433 mutex_enter(&spa_namespace_lock);
5434 spa->spa_inject_ref--;
5435 mutex_exit(&spa_namespace_lock);
5436 }
5437
5438 /*
5439 * Add spares device information to the nvlist.
5440 */
5441 static void
5442 spa_add_spares(spa_t *spa, nvlist_t *config)
5443 {
5444 nvlist_t **spares;
5445 uint_t i, nspares;
5446 nvlist_t *nvroot;
5447 uint64_t guid;
5448 vdev_stat_t *vs;
5449 uint_t vsc;
5450 uint64_t pool;
5451
5452 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5453
5454 if (spa->spa_spares.sav_count == 0)
5455 return;
5456
5457 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5458 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5459 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5460 if (nspares != 0) {
5461 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5462 (const nvlist_t * const *)spares, nspares);
5463 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5464 &spares, &nspares));
5465
5466 /*
5467 * Go through and find any spares which have since been
5468 * repurposed as an active spare. If this is the case, update
5469 * their status appropriately.
5470 */
5471 for (i = 0; i < nspares; i++) {
5472 guid = fnvlist_lookup_uint64(spares[i],
5473 ZPOOL_CONFIG_GUID);
5474 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5475 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5476 if (spa_spare_exists(guid, &pool, NULL) &&
5477 pool != 0ULL) {
5478 vs->vs_state = VDEV_STATE_CANT_OPEN;
5479 vs->vs_aux = VDEV_AUX_SPARED;
5480 } else {
5481 vs->vs_state =
5482 spa->spa_spares.sav_vdevs[i]->vdev_state;
5483 }
5484 }
5485 }
5486 }
5487
5488 /*
5489 * Add l2cache device information to the nvlist, including vdev stats.
5490 */
5491 static void
5492 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5493 {
5494 nvlist_t **l2cache;
5495 uint_t i, j, nl2cache;
5496 nvlist_t *nvroot;
5497 uint64_t guid;
5498 vdev_t *vd;
5499 vdev_stat_t *vs;
5500 uint_t vsc;
5501
5502 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5503
5504 if (spa->spa_l2cache.sav_count == 0)
5505 return;
5506
5507 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5508 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5509 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5510 if (nl2cache != 0) {
5511 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5512 (const nvlist_t * const *)l2cache, nl2cache);
5513 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5514 &l2cache, &nl2cache));
5515
5516 /*
5517 * Update level 2 cache device stats.
5518 */
5519
5520 for (i = 0; i < nl2cache; i++) {
5521 guid = fnvlist_lookup_uint64(l2cache[i],
5522 ZPOOL_CONFIG_GUID);
5523
5524 vd = NULL;
5525 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5526 if (guid ==
5527 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5528 vd = spa->spa_l2cache.sav_vdevs[j];
5529 break;
5530 }
5531 }
5532 ASSERT(vd != NULL);
5533
5534 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5535 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5536 vdev_get_stats(vd, vs);
5537 vdev_config_generate_stats(vd, l2cache[i]);
5538
5539 }
5540 }
5541 }
5542
5543 static void
5544 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5545 {
5546 zap_cursor_t zc;
5547 zap_attribute_t za;
5548
5549 if (spa->spa_feat_for_read_obj != 0) {
5550 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5551 spa->spa_feat_for_read_obj);
5552 zap_cursor_retrieve(&zc, &za) == 0;
5553 zap_cursor_advance(&zc)) {
5554 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5555 za.za_num_integers == 1);
5556 VERIFY0(nvlist_add_uint64(features, za.za_name,
5557 za.za_first_integer));
5558 }
5559 zap_cursor_fini(&zc);
5560 }
5561
5562 if (spa->spa_feat_for_write_obj != 0) {
5563 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5564 spa->spa_feat_for_write_obj);
5565 zap_cursor_retrieve(&zc, &za) == 0;
5566 zap_cursor_advance(&zc)) {
5567 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5568 za.za_num_integers == 1);
5569 VERIFY0(nvlist_add_uint64(features, za.za_name,
5570 za.za_first_integer));
5571 }
5572 zap_cursor_fini(&zc);
5573 }
5574 }
5575
5576 static void
5577 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5578 {
5579 int i;
5580
5581 for (i = 0; i < SPA_FEATURES; i++) {
5582 zfeature_info_t feature = spa_feature_table[i];
5583 uint64_t refcount;
5584
5585 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5586 continue;
5587
5588 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5589 }
5590 }
5591
5592 /*
5593 * Store a list of pool features and their reference counts in the
5594 * config.
5595 *
5596 * The first time this is called on a spa, allocate a new nvlist, fetch
5597 * the pool features and reference counts from disk, then save the list
5598 * in the spa. In subsequent calls on the same spa use the saved nvlist
5599 * and refresh its values from the cached reference counts. This
5600 * ensures we don't block here on I/O on a suspended pool so 'zpool
5601 * clear' can resume the pool.
5602 */
5603 static void
5604 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5605 {
5606 nvlist_t *features;
5607
5608 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5609
5610 mutex_enter(&spa->spa_feat_stats_lock);
5611 features = spa->spa_feat_stats;
5612
5613 if (features != NULL) {
5614 spa_feature_stats_from_cache(spa, features);
5615 } else {
5616 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5617 spa->spa_feat_stats = features;
5618 spa_feature_stats_from_disk(spa, features);
5619 }
5620
5621 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5622 features));
5623
5624 mutex_exit(&spa->spa_feat_stats_lock);
5625 }
5626
5627 int
5628 spa_get_stats(const char *name, nvlist_t **config,
5629 char *altroot, size_t buflen)
5630 {
5631 int error;
5632 spa_t *spa;
5633
5634 *config = NULL;
5635 error = spa_open_common(name, &spa, FTAG, NULL, config);
5636
5637 if (spa != NULL) {
5638 /*
5639 * This still leaves a window of inconsistency where the spares
5640 * or l2cache devices could change and the config would be
5641 * self-inconsistent.
5642 */
5643 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5644
5645 if (*config != NULL) {
5646 uint64_t loadtimes[2];
5647
5648 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5649 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5650 fnvlist_add_uint64_array(*config,
5651 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5652
5653 fnvlist_add_uint64(*config,
5654 ZPOOL_CONFIG_ERRCOUNT,
5655 spa_approx_errlog_size(spa));
5656
5657 if (spa_suspended(spa)) {
5658 fnvlist_add_uint64(*config,
5659 ZPOOL_CONFIG_SUSPENDED,
5660 spa->spa_failmode);
5661 fnvlist_add_uint64(*config,
5662 ZPOOL_CONFIG_SUSPENDED_REASON,
5663 spa->spa_suspended);
5664 }
5665
5666 spa_add_spares(spa, *config);
5667 spa_add_l2cache(spa, *config);
5668 spa_add_feature_stats(spa, *config);
5669 }
5670 }
5671
5672 /*
5673 * We want to get the alternate root even for faulted pools, so we cheat
5674 * and call spa_lookup() directly.
5675 */
5676 if (altroot) {
5677 if (spa == NULL) {
5678 mutex_enter(&spa_namespace_lock);
5679 spa = spa_lookup(name);
5680 if (spa)
5681 spa_altroot(spa, altroot, buflen);
5682 else
5683 altroot[0] = '\0';
5684 spa = NULL;
5685 mutex_exit(&spa_namespace_lock);
5686 } else {
5687 spa_altroot(spa, altroot, buflen);
5688 }
5689 }
5690
5691 if (spa != NULL) {
5692 spa_config_exit(spa, SCL_CONFIG, FTAG);
5693 spa_close(spa, FTAG);
5694 }
5695
5696 return (error);
5697 }
5698
5699 /*
5700 * Validate that the auxiliary device array is well formed. We must have an
5701 * array of nvlists, each which describes a valid leaf vdev. If this is an
5702 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5703 * specified, as long as they are well-formed.
5704 */
5705 static int
5706 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5707 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5708 vdev_labeltype_t label)
5709 {
5710 nvlist_t **dev;
5711 uint_t i, ndev;
5712 vdev_t *vd;
5713 int error;
5714
5715 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5716
5717 /*
5718 * It's acceptable to have no devs specified.
5719 */
5720 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5721 return (0);
5722
5723 if (ndev == 0)
5724 return (SET_ERROR(EINVAL));
5725
5726 /*
5727 * Make sure the pool is formatted with a version that supports this
5728 * device type.
5729 */
5730 if (spa_version(spa) < version)
5731 return (SET_ERROR(ENOTSUP));
5732
5733 /*
5734 * Set the pending device list so we correctly handle device in-use
5735 * checking.
5736 */
5737 sav->sav_pending = dev;
5738 sav->sav_npending = ndev;
5739
5740 for (i = 0; i < ndev; i++) {
5741 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5742 mode)) != 0)
5743 goto out;
5744
5745 if (!vd->vdev_ops->vdev_op_leaf) {
5746 vdev_free(vd);
5747 error = SET_ERROR(EINVAL);
5748 goto out;
5749 }
5750
5751 vd->vdev_top = vd;
5752
5753 if ((error = vdev_open(vd)) == 0 &&
5754 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5755 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5756 vd->vdev_guid);
5757 }
5758
5759 vdev_free(vd);
5760
5761 if (error &&
5762 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5763 goto out;
5764 else
5765 error = 0;
5766 }
5767
5768 out:
5769 sav->sav_pending = NULL;
5770 sav->sav_npending = 0;
5771 return (error);
5772 }
5773
5774 static int
5775 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5776 {
5777 int error;
5778
5779 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5780
5781 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5782 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5783 VDEV_LABEL_SPARE)) != 0) {
5784 return (error);
5785 }
5786
5787 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5788 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5789 VDEV_LABEL_L2CACHE));
5790 }
5791
5792 static void
5793 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5794 const char *config)
5795 {
5796 int i;
5797
5798 if (sav->sav_config != NULL) {
5799 nvlist_t **olddevs;
5800 uint_t oldndevs;
5801 nvlist_t **newdevs;
5802
5803 /*
5804 * Generate new dev list by concatenating with the
5805 * current dev list.
5806 */
5807 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5808 &olddevs, &oldndevs));
5809
5810 newdevs = kmem_alloc(sizeof (void *) *
5811 (ndevs + oldndevs), KM_SLEEP);
5812 for (i = 0; i < oldndevs; i++)
5813 newdevs[i] = fnvlist_dup(olddevs[i]);
5814 for (i = 0; i < ndevs; i++)
5815 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5816
5817 fnvlist_remove(sav->sav_config, config);
5818
5819 fnvlist_add_nvlist_array(sav->sav_config, config,
5820 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5821 for (i = 0; i < oldndevs + ndevs; i++)
5822 nvlist_free(newdevs[i]);
5823 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5824 } else {
5825 /*
5826 * Generate a new dev list.
5827 */
5828 sav->sav_config = fnvlist_alloc();
5829 fnvlist_add_nvlist_array(sav->sav_config, config,
5830 (const nvlist_t * const *)devs, ndevs);
5831 }
5832 }
5833
5834 /*
5835 * Stop and drop level 2 ARC devices
5836 */
5837 void
5838 spa_l2cache_drop(spa_t *spa)
5839 {
5840 vdev_t *vd;
5841 int i;
5842 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5843
5844 for (i = 0; i < sav->sav_count; i++) {
5845 uint64_t pool;
5846
5847 vd = sav->sav_vdevs[i];
5848 ASSERT(vd != NULL);
5849
5850 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5851 pool != 0ULL && l2arc_vdev_present(vd))
5852 l2arc_remove_vdev(vd);
5853 }
5854 }
5855
5856 /*
5857 * Verify encryption parameters for spa creation. If we are encrypting, we must
5858 * have the encryption feature flag enabled.
5859 */
5860 static int
5861 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5862 boolean_t has_encryption)
5863 {
5864 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5865 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5866 !has_encryption)
5867 return (SET_ERROR(ENOTSUP));
5868
5869 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5870 }
5871
5872 /*
5873 * Pool Creation
5874 */
5875 int
5876 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5877 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5878 {
5879 spa_t *spa;
5880 const char *altroot = NULL;
5881 vdev_t *rvd;
5882 dsl_pool_t *dp;
5883 dmu_tx_t *tx;
5884 int error = 0;
5885 uint64_t txg = TXG_INITIAL;
5886 nvlist_t **spares, **l2cache;
5887 uint_t nspares, nl2cache;
5888 uint64_t version, obj, ndraid = 0;
5889 boolean_t has_features;
5890 boolean_t has_encryption;
5891 boolean_t has_allocclass;
5892 spa_feature_t feat;
5893 const char *feat_name;
5894 const char *poolname;
5895 nvlist_t *nvl;
5896
5897 if (props == NULL ||
5898 nvlist_lookup_string(props, "tname", &poolname) != 0)
5899 poolname = (char *)pool;
5900
5901 /*
5902 * If this pool already exists, return failure.
5903 */
5904 mutex_enter(&spa_namespace_lock);
5905 if (spa_lookup(poolname) != NULL) {
5906 mutex_exit(&spa_namespace_lock);
5907 return (SET_ERROR(EEXIST));
5908 }
5909
5910 /*
5911 * Allocate a new spa_t structure.
5912 */
5913 nvl = fnvlist_alloc();
5914 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5915 (void) nvlist_lookup_string(props,
5916 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5917 spa = spa_add(poolname, nvl, altroot);
5918 fnvlist_free(nvl);
5919 spa_activate(spa, spa_mode_global);
5920
5921 if (props && (error = spa_prop_validate(spa, props))) {
5922 spa_deactivate(spa);
5923 spa_remove(spa);
5924 mutex_exit(&spa_namespace_lock);
5925 return (error);
5926 }
5927
5928 /*
5929 * Temporary pool names should never be written to disk.
5930 */
5931 if (poolname != pool)
5932 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5933
5934 has_features = B_FALSE;
5935 has_encryption = B_FALSE;
5936 has_allocclass = B_FALSE;
5937 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5938 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5939 if (zpool_prop_feature(nvpair_name(elem))) {
5940 has_features = B_TRUE;
5941
5942 feat_name = strchr(nvpair_name(elem), '@') + 1;
5943 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5944 if (feat == SPA_FEATURE_ENCRYPTION)
5945 has_encryption = B_TRUE;
5946 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5947 has_allocclass = B_TRUE;
5948 }
5949 }
5950
5951 /* verify encryption params, if they were provided */
5952 if (dcp != NULL) {
5953 error = spa_create_check_encryption_params(dcp, has_encryption);
5954 if (error != 0) {
5955 spa_deactivate(spa);
5956 spa_remove(spa);
5957 mutex_exit(&spa_namespace_lock);
5958 return (error);
5959 }
5960 }
5961 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5962 spa_deactivate(spa);
5963 spa_remove(spa);
5964 mutex_exit(&spa_namespace_lock);
5965 return (ENOTSUP);
5966 }
5967
5968 if (has_features || nvlist_lookup_uint64(props,
5969 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5970 version = SPA_VERSION;
5971 }
5972 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5973
5974 spa->spa_first_txg = txg;
5975 spa->spa_uberblock.ub_txg = txg - 1;
5976 spa->spa_uberblock.ub_version = version;
5977 spa->spa_ubsync = spa->spa_uberblock;
5978 spa->spa_load_state = SPA_LOAD_CREATE;
5979 spa->spa_removing_phys.sr_state = DSS_NONE;
5980 spa->spa_removing_phys.sr_removing_vdev = -1;
5981 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5982 spa->spa_indirect_vdevs_loaded = B_TRUE;
5983
5984 /*
5985 * Create "The Godfather" zio to hold all async IOs
5986 */
5987 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5988 KM_SLEEP);
5989 for (int i = 0; i < max_ncpus; i++) {
5990 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5991 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5992 ZIO_FLAG_GODFATHER);
5993 }
5994
5995 /*
5996 * Create the root vdev.
5997 */
5998 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5999
6000 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6001
6002 ASSERT(error != 0 || rvd != NULL);
6003 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6004
6005 if (error == 0 && !zfs_allocatable_devs(nvroot))
6006 error = SET_ERROR(EINVAL);
6007
6008 if (error == 0 &&
6009 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6010 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6011 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6012 /*
6013 * instantiate the metaslab groups (this will dirty the vdevs)
6014 * we can no longer error exit past this point
6015 */
6016 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6017 vdev_t *vd = rvd->vdev_child[c];
6018
6019 vdev_metaslab_set_size(vd);
6020 vdev_expand(vd, txg);
6021 }
6022 }
6023
6024 spa_config_exit(spa, SCL_ALL, FTAG);
6025
6026 if (error != 0) {
6027 spa_unload(spa);
6028 spa_deactivate(spa);
6029 spa_remove(spa);
6030 mutex_exit(&spa_namespace_lock);
6031 return (error);
6032 }
6033
6034 /*
6035 * Get the list of spares, if specified.
6036 */
6037 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6038 &spares, &nspares) == 0) {
6039 spa->spa_spares.sav_config = fnvlist_alloc();
6040 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6041 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6042 nspares);
6043 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6044 spa_load_spares(spa);
6045 spa_config_exit(spa, SCL_ALL, FTAG);
6046 spa->spa_spares.sav_sync = B_TRUE;
6047 }
6048
6049 /*
6050 * Get the list of level 2 cache devices, if specified.
6051 */
6052 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6053 &l2cache, &nl2cache) == 0) {
6054 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6055 NV_UNIQUE_NAME, KM_SLEEP));
6056 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6057 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6058 nl2cache);
6059 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6060 spa_load_l2cache(spa);
6061 spa_config_exit(spa, SCL_ALL, FTAG);
6062 spa->spa_l2cache.sav_sync = B_TRUE;
6063 }
6064
6065 spa->spa_is_initializing = B_TRUE;
6066 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6067 spa->spa_is_initializing = B_FALSE;
6068
6069 /*
6070 * Create DDTs (dedup tables).
6071 */
6072 ddt_create(spa);
6073 /*
6074 * Create BRT table and BRT table object.
6075 */
6076 brt_create(spa);
6077
6078 spa_update_dspace(spa);
6079
6080 tx = dmu_tx_create_assigned(dp, txg);
6081
6082 /*
6083 * Create the pool's history object.
6084 */
6085 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6086 spa_history_create_obj(spa, tx);
6087
6088 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6089 spa_history_log_version(spa, "create", tx);
6090
6091 /*
6092 * Create the pool config object.
6093 */
6094 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6095 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6096 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6097
6098 if (zap_add(spa->spa_meta_objset,
6099 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6100 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6101 cmn_err(CE_PANIC, "failed to add pool config");
6102 }
6103
6104 if (zap_add(spa->spa_meta_objset,
6105 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6106 sizeof (uint64_t), 1, &version, tx) != 0) {
6107 cmn_err(CE_PANIC, "failed to add pool version");
6108 }
6109
6110 /* Newly created pools with the right version are always deflated. */
6111 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6112 spa->spa_deflate = TRUE;
6113 if (zap_add(spa->spa_meta_objset,
6114 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6115 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6116 cmn_err(CE_PANIC, "failed to add deflate");
6117 }
6118 }
6119
6120 /*
6121 * Create the deferred-free bpobj. Turn off compression
6122 * because sync-to-convergence takes longer if the blocksize
6123 * keeps changing.
6124 */
6125 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6126 dmu_object_set_compress(spa->spa_meta_objset, obj,
6127 ZIO_COMPRESS_OFF, tx);
6128 if (zap_add(spa->spa_meta_objset,
6129 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6130 sizeof (uint64_t), 1, &obj, tx) != 0) {
6131 cmn_err(CE_PANIC, "failed to add bpobj");
6132 }
6133 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6134 spa->spa_meta_objset, obj));
6135
6136 /*
6137 * Generate some random noise for salted checksums to operate on.
6138 */
6139 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6140 sizeof (spa->spa_cksum_salt.zcs_bytes));
6141
6142 /*
6143 * Set pool properties.
6144 */
6145 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6146 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6147 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6148 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6149 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6150 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6151
6152 if (props != NULL) {
6153 spa_configfile_set(spa, props, B_FALSE);
6154 spa_sync_props(props, tx);
6155 }
6156
6157 for (int i = 0; i < ndraid; i++)
6158 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6159
6160 dmu_tx_commit(tx);
6161
6162 spa->spa_sync_on = B_TRUE;
6163 txg_sync_start(dp);
6164 mmp_thread_start(spa);
6165 txg_wait_synced(dp, txg);
6166
6167 spa_spawn_aux_threads(spa);
6168
6169 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6170
6171 /*
6172 * Don't count references from objsets that are already closed
6173 * and are making their way through the eviction process.
6174 */
6175 spa_evicting_os_wait(spa);
6176 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6177 spa->spa_load_state = SPA_LOAD_NONE;
6178
6179 spa_import_os(spa);
6180
6181 mutex_exit(&spa_namespace_lock);
6182
6183 return (0);
6184 }
6185
6186 /*
6187 * Import a non-root pool into the system.
6188 */
6189 int
6190 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6191 {
6192 spa_t *spa;
6193 const char *altroot = NULL;
6194 spa_load_state_t state = SPA_LOAD_IMPORT;
6195 zpool_load_policy_t policy;
6196 spa_mode_t mode = spa_mode_global;
6197 uint64_t readonly = B_FALSE;
6198 int error;
6199 nvlist_t *nvroot;
6200 nvlist_t **spares, **l2cache;
6201 uint_t nspares, nl2cache;
6202
6203 /*
6204 * If a pool with this name exists, return failure.
6205 */
6206 mutex_enter(&spa_namespace_lock);
6207 if (spa_lookup(pool) != NULL) {
6208 mutex_exit(&spa_namespace_lock);
6209 return (SET_ERROR(EEXIST));
6210 }
6211
6212 /*
6213 * Create and initialize the spa structure.
6214 */
6215 (void) nvlist_lookup_string(props,
6216 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6217 (void) nvlist_lookup_uint64(props,
6218 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6219 if (readonly)
6220 mode = SPA_MODE_READ;
6221 spa = spa_add(pool, config, altroot);
6222 spa->spa_import_flags = flags;
6223
6224 /*
6225 * Verbatim import - Take a pool and insert it into the namespace
6226 * as if it had been loaded at boot.
6227 */
6228 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6229 if (props != NULL)
6230 spa_configfile_set(spa, props, B_FALSE);
6231
6232 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6233 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6234 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6235 mutex_exit(&spa_namespace_lock);
6236 return (0);
6237 }
6238
6239 spa_activate(spa, mode);
6240
6241 /*
6242 * Don't start async tasks until we know everything is healthy.
6243 */
6244 spa_async_suspend(spa);
6245
6246 zpool_get_load_policy(config, &policy);
6247 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6248 state = SPA_LOAD_RECOVER;
6249
6250 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6251
6252 if (state != SPA_LOAD_RECOVER) {
6253 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6254 zfs_dbgmsg("spa_import: importing %s", pool);
6255 } else {
6256 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6257 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6258 }
6259 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6260
6261 /*
6262 * Propagate anything learned while loading the pool and pass it
6263 * back to caller (i.e. rewind info, missing devices, etc).
6264 */
6265 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6266
6267 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6268 /*
6269 * Toss any existing sparelist, as it doesn't have any validity
6270 * anymore, and conflicts with spa_has_spare().
6271 */
6272 if (spa->spa_spares.sav_config) {
6273 nvlist_free(spa->spa_spares.sav_config);
6274 spa->spa_spares.sav_config = NULL;
6275 spa_load_spares(spa);
6276 }
6277 if (spa->spa_l2cache.sav_config) {
6278 nvlist_free(spa->spa_l2cache.sav_config);
6279 spa->spa_l2cache.sav_config = NULL;
6280 spa_load_l2cache(spa);
6281 }
6282
6283 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6284 spa_config_exit(spa, SCL_ALL, FTAG);
6285
6286 if (props != NULL)
6287 spa_configfile_set(spa, props, B_FALSE);
6288
6289 if (error != 0 || (props && spa_writeable(spa) &&
6290 (error = spa_prop_set(spa, props)))) {
6291 spa_unload(spa);
6292 spa_deactivate(spa);
6293 spa_remove(spa);
6294 mutex_exit(&spa_namespace_lock);
6295 return (error);
6296 }
6297
6298 spa_async_resume(spa);
6299
6300 /*
6301 * Override any spares and level 2 cache devices as specified by
6302 * the user, as these may have correct device names/devids, etc.
6303 */
6304 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6305 &spares, &nspares) == 0) {
6306 if (spa->spa_spares.sav_config)
6307 fnvlist_remove(spa->spa_spares.sav_config,
6308 ZPOOL_CONFIG_SPARES);
6309 else
6310 spa->spa_spares.sav_config = fnvlist_alloc();
6311 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6312 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6313 nspares);
6314 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6315 spa_load_spares(spa);
6316 spa_config_exit(spa, SCL_ALL, FTAG);
6317 spa->spa_spares.sav_sync = B_TRUE;
6318 }
6319 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6320 &l2cache, &nl2cache) == 0) {
6321 if (spa->spa_l2cache.sav_config)
6322 fnvlist_remove(spa->spa_l2cache.sav_config,
6323 ZPOOL_CONFIG_L2CACHE);
6324 else
6325 spa->spa_l2cache.sav_config = fnvlist_alloc();
6326 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6327 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6328 nl2cache);
6329 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6330 spa_load_l2cache(spa);
6331 spa_config_exit(spa, SCL_ALL, FTAG);
6332 spa->spa_l2cache.sav_sync = B_TRUE;
6333 }
6334
6335 /*
6336 * Check for any removed devices.
6337 */
6338 if (spa->spa_autoreplace) {
6339 spa_aux_check_removed(&spa->spa_spares);
6340 spa_aux_check_removed(&spa->spa_l2cache);
6341 }
6342
6343 if (spa_writeable(spa)) {
6344 /*
6345 * Update the config cache to include the newly-imported pool.
6346 */
6347 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6348 }
6349
6350 /*
6351 * It's possible that the pool was expanded while it was exported.
6352 * We kick off an async task to handle this for us.
6353 */
6354 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6355
6356 spa_history_log_version(spa, "import", NULL);
6357
6358 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6359
6360 mutex_exit(&spa_namespace_lock);
6361
6362 zvol_create_minors_recursive(pool);
6363
6364 spa_import_os(spa);
6365
6366 return (0);
6367 }
6368
6369 nvlist_t *
6370 spa_tryimport(nvlist_t *tryconfig)
6371 {
6372 nvlist_t *config = NULL;
6373 const char *poolname, *cachefile;
6374 spa_t *spa;
6375 uint64_t state;
6376 int error;
6377 zpool_load_policy_t policy;
6378
6379 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6380 return (NULL);
6381
6382 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6383 return (NULL);
6384
6385 /*
6386 * Create and initialize the spa structure.
6387 */
6388 mutex_enter(&spa_namespace_lock);
6389 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6390 spa_activate(spa, SPA_MODE_READ);
6391
6392 /*
6393 * Rewind pool if a max txg was provided.
6394 */
6395 zpool_get_load_policy(spa->spa_config, &policy);
6396 if (policy.zlp_txg != UINT64_MAX) {
6397 spa->spa_load_max_txg = policy.zlp_txg;
6398 spa->spa_extreme_rewind = B_TRUE;
6399 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6400 poolname, (longlong_t)policy.zlp_txg);
6401 } else {
6402 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6403 }
6404
6405 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6406 == 0) {
6407 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6408 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6409 } else {
6410 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6411 }
6412
6413 /*
6414 * spa_import() relies on a pool config fetched by spa_try_import()
6415 * for spare/cache devices. Import flags are not passed to
6416 * spa_tryimport(), which makes it return early due to a missing log
6417 * device and missing retrieving the cache device and spare eventually.
6418 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6419 * the correct configuration regardless of the missing log device.
6420 */
6421 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6422
6423 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6424
6425 /*
6426 * If 'tryconfig' was at least parsable, return the current config.
6427 */
6428 if (spa->spa_root_vdev != NULL) {
6429 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6430 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6431 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6432 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6433 spa->spa_uberblock.ub_timestamp);
6434 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6435 spa->spa_load_info);
6436 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6437 spa->spa_errata);
6438
6439 /*
6440 * If the bootfs property exists on this pool then we
6441 * copy it out so that external consumers can tell which
6442 * pools are bootable.
6443 */
6444 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6445 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6446
6447 /*
6448 * We have to play games with the name since the
6449 * pool was opened as TRYIMPORT_NAME.
6450 */
6451 if (dsl_dsobj_to_dsname(spa_name(spa),
6452 spa->spa_bootfs, tmpname) == 0) {
6453 char *cp;
6454 char *dsname;
6455
6456 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6457
6458 cp = strchr(tmpname, '/');
6459 if (cp == NULL) {
6460 (void) strlcpy(dsname, tmpname,
6461 MAXPATHLEN);
6462 } else {
6463 (void) snprintf(dsname, MAXPATHLEN,
6464 "%s/%s", poolname, ++cp);
6465 }
6466 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6467 dsname);
6468 kmem_free(dsname, MAXPATHLEN);
6469 }
6470 kmem_free(tmpname, MAXPATHLEN);
6471 }
6472
6473 /*
6474 * Add the list of hot spares and level 2 cache devices.
6475 */
6476 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6477 spa_add_spares(spa, config);
6478 spa_add_l2cache(spa, config);
6479 spa_config_exit(spa, SCL_CONFIG, FTAG);
6480 }
6481
6482 spa_unload(spa);
6483 spa_deactivate(spa);
6484 spa_remove(spa);
6485 mutex_exit(&spa_namespace_lock);
6486
6487 return (config);
6488 }
6489
6490 /*
6491 * Pool export/destroy
6492 *
6493 * The act of destroying or exporting a pool is very simple. We make sure there
6494 * is no more pending I/O and any references to the pool are gone. Then, we
6495 * update the pool state and sync all the labels to disk, removing the
6496 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6497 * we don't sync the labels or remove the configuration cache.
6498 */
6499 static int
6500 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6501 boolean_t force, boolean_t hardforce)
6502 {
6503 int error;
6504 spa_t *spa;
6505
6506 if (oldconfig)
6507 *oldconfig = NULL;
6508
6509 if (!(spa_mode_global & SPA_MODE_WRITE))
6510 return (SET_ERROR(EROFS));
6511
6512 mutex_enter(&spa_namespace_lock);
6513 if ((spa = spa_lookup(pool)) == NULL) {
6514 mutex_exit(&spa_namespace_lock);
6515 return (SET_ERROR(ENOENT));
6516 }
6517
6518 if (spa->spa_is_exporting) {
6519 /* the pool is being exported by another thread */
6520 mutex_exit(&spa_namespace_lock);
6521 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6522 }
6523 spa->spa_is_exporting = B_TRUE;
6524
6525 /*
6526 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6527 * reacquire the namespace lock, and see if we can export.
6528 */
6529 spa_open_ref(spa, FTAG);
6530 mutex_exit(&spa_namespace_lock);
6531 spa_async_suspend(spa);
6532 if (spa->spa_zvol_taskq) {
6533 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6534 taskq_wait(spa->spa_zvol_taskq);
6535 }
6536 mutex_enter(&spa_namespace_lock);
6537 spa_close(spa, FTAG);
6538
6539 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6540 goto export_spa;
6541 /*
6542 * The pool will be in core if it's openable, in which case we can
6543 * modify its state. Objsets may be open only because they're dirty,
6544 * so we have to force it to sync before checking spa_refcnt.
6545 */
6546 if (spa->spa_sync_on) {
6547 txg_wait_synced(spa->spa_dsl_pool, 0);
6548 spa_evicting_os_wait(spa);
6549 }
6550
6551 /*
6552 * A pool cannot be exported or destroyed if there are active
6553 * references. If we are resetting a pool, allow references by
6554 * fault injection handlers.
6555 */
6556 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6557 error = SET_ERROR(EBUSY);
6558 goto fail;
6559 }
6560
6561 if (spa->spa_sync_on) {
6562 vdev_t *rvd = spa->spa_root_vdev;
6563 /*
6564 * A pool cannot be exported if it has an active shared spare.
6565 * This is to prevent other pools stealing the active spare
6566 * from an exported pool. At user's own will, such pool can
6567 * be forcedly exported.
6568 */
6569 if (!force && new_state == POOL_STATE_EXPORTED &&
6570 spa_has_active_shared_spare(spa)) {
6571 error = SET_ERROR(EXDEV);
6572 goto fail;
6573 }
6574
6575 /*
6576 * We're about to export or destroy this pool. Make sure
6577 * we stop all initialization and trim activity here before
6578 * we set the spa_final_txg. This will ensure that all
6579 * dirty data resulting from the initialization is
6580 * committed to disk before we unload the pool.
6581 */
6582 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6583 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6584 vdev_autotrim_stop_all(spa);
6585 vdev_rebuild_stop_all(spa);
6586
6587 /*
6588 * We want this to be reflected on every label,
6589 * so mark them all dirty. spa_unload() will do the
6590 * final sync that pushes these changes out.
6591 */
6592 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6593 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6594 spa->spa_state = new_state;
6595 vdev_config_dirty(rvd);
6596 spa_config_exit(spa, SCL_ALL, FTAG);
6597 }
6598
6599 /*
6600 * If the log space map feature is enabled and the pool is
6601 * getting exported (but not destroyed), we want to spend some
6602 * time flushing as many metaslabs as we can in an attempt to
6603 * destroy log space maps and save import time. This has to be
6604 * done before we set the spa_final_txg, otherwise
6605 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6606 * spa_should_flush_logs_on_unload() should be called after
6607 * spa_state has been set to the new_state.
6608 */
6609 if (spa_should_flush_logs_on_unload(spa))
6610 spa_unload_log_sm_flush_all(spa);
6611
6612 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6613 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6614 spa->spa_final_txg = spa_last_synced_txg(spa) +
6615 TXG_DEFER_SIZE + 1;
6616 spa_config_exit(spa, SCL_ALL, FTAG);
6617 }
6618 }
6619
6620 export_spa:
6621 spa_export_os(spa);
6622
6623 if (new_state == POOL_STATE_DESTROYED)
6624 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6625 else if (new_state == POOL_STATE_EXPORTED)
6626 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6627
6628 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6629 spa_unload(spa);
6630 spa_deactivate(spa);
6631 }
6632
6633 if (oldconfig && spa->spa_config)
6634 *oldconfig = fnvlist_dup(spa->spa_config);
6635
6636 if (new_state != POOL_STATE_UNINITIALIZED) {
6637 if (!hardforce)
6638 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6639 spa_remove(spa);
6640 } else {
6641 /*
6642 * If spa_remove() is not called for this spa_t and
6643 * there is any possibility that it can be reused,
6644 * we make sure to reset the exporting flag.
6645 */
6646 spa->spa_is_exporting = B_FALSE;
6647 }
6648
6649 mutex_exit(&spa_namespace_lock);
6650 return (0);
6651
6652 fail:
6653 spa->spa_is_exporting = B_FALSE;
6654 spa_async_resume(spa);
6655 mutex_exit(&spa_namespace_lock);
6656 return (error);
6657 }
6658
6659 /*
6660 * Destroy a storage pool.
6661 */
6662 int
6663 spa_destroy(const char *pool)
6664 {
6665 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6666 B_FALSE, B_FALSE));
6667 }
6668
6669 /*
6670 * Export a storage pool.
6671 */
6672 int
6673 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6674 boolean_t hardforce)
6675 {
6676 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6677 force, hardforce));
6678 }
6679
6680 /*
6681 * Similar to spa_export(), this unloads the spa_t without actually removing it
6682 * from the namespace in any way.
6683 */
6684 int
6685 spa_reset(const char *pool)
6686 {
6687 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6688 B_FALSE, B_FALSE));
6689 }
6690
6691 /*
6692 * ==========================================================================
6693 * Device manipulation
6694 * ==========================================================================
6695 */
6696
6697 /*
6698 * This is called as a synctask to increment the draid feature flag
6699 */
6700 static void
6701 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6702 {
6703 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6704 int draid = (int)(uintptr_t)arg;
6705
6706 for (int c = 0; c < draid; c++)
6707 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6708 }
6709
6710 /*
6711 * Add a device to a storage pool.
6712 */
6713 int
6714 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6715 {
6716 uint64_t txg, ndraid = 0;
6717 int error;
6718 vdev_t *rvd = spa->spa_root_vdev;
6719 vdev_t *vd, *tvd;
6720 nvlist_t **spares, **l2cache;
6721 uint_t nspares, nl2cache;
6722
6723 ASSERT(spa_writeable(spa));
6724
6725 txg = spa_vdev_enter(spa);
6726
6727 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6728 VDEV_ALLOC_ADD)) != 0)
6729 return (spa_vdev_exit(spa, NULL, txg, error));
6730
6731 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6732
6733 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6734 &nspares) != 0)
6735 nspares = 0;
6736
6737 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6738 &nl2cache) != 0)
6739 nl2cache = 0;
6740
6741 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6742 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6743
6744 if (vd->vdev_children != 0 &&
6745 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6746 return (spa_vdev_exit(spa, vd, txg, error));
6747 }
6748
6749 /*
6750 * The virtual dRAID spares must be added after vdev tree is created
6751 * and the vdev guids are generated. The guid of their associated
6752 * dRAID is stored in the config and used when opening the spare.
6753 */
6754 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6755 rvd->vdev_children)) == 0) {
6756 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6757 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6758 nspares = 0;
6759 } else {
6760 return (spa_vdev_exit(spa, vd, txg, error));
6761 }
6762
6763 /*
6764 * We must validate the spares and l2cache devices after checking the
6765 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6766 */
6767 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6768 return (spa_vdev_exit(spa, vd, txg, error));
6769
6770 /*
6771 * If we are in the middle of a device removal, we can only add
6772 * devices which match the existing devices in the pool.
6773 * If we are in the middle of a removal, or have some indirect
6774 * vdevs, we can not add raidz or dRAID top levels.
6775 */
6776 if (spa->spa_vdev_removal != NULL ||
6777 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6778 for (int c = 0; c < vd->vdev_children; c++) {
6779 tvd = vd->vdev_child[c];
6780 if (spa->spa_vdev_removal != NULL &&
6781 tvd->vdev_ashift != spa->spa_max_ashift) {
6782 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6783 }
6784 /* Fail if top level vdev is raidz or a dRAID */
6785 if (vdev_get_nparity(tvd) != 0)
6786 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6787
6788 /*
6789 * Need the top level mirror to be
6790 * a mirror of leaf vdevs only
6791 */
6792 if (tvd->vdev_ops == &vdev_mirror_ops) {
6793 for (uint64_t cid = 0;
6794 cid < tvd->vdev_children; cid++) {
6795 vdev_t *cvd = tvd->vdev_child[cid];
6796 if (!cvd->vdev_ops->vdev_op_leaf) {
6797 return (spa_vdev_exit(spa, vd,
6798 txg, EINVAL));
6799 }
6800 }
6801 }
6802 }
6803 }
6804
6805 for (int c = 0; c < vd->vdev_children; c++) {
6806 tvd = vd->vdev_child[c];
6807 vdev_remove_child(vd, tvd);
6808 tvd->vdev_id = rvd->vdev_children;
6809 vdev_add_child(rvd, tvd);
6810 vdev_config_dirty(tvd);
6811 }
6812
6813 if (nspares != 0) {
6814 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6815 ZPOOL_CONFIG_SPARES);
6816 spa_load_spares(spa);
6817 spa->spa_spares.sav_sync = B_TRUE;
6818 }
6819
6820 if (nl2cache != 0) {
6821 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6822 ZPOOL_CONFIG_L2CACHE);
6823 spa_load_l2cache(spa);
6824 spa->spa_l2cache.sav_sync = B_TRUE;
6825 }
6826
6827 /*
6828 * We can't increment a feature while holding spa_vdev so we
6829 * have to do it in a synctask.
6830 */
6831 if (ndraid != 0) {
6832 dmu_tx_t *tx;
6833
6834 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6835 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6836 (void *)(uintptr_t)ndraid, tx);
6837 dmu_tx_commit(tx);
6838 }
6839
6840 /*
6841 * We have to be careful when adding new vdevs to an existing pool.
6842 * If other threads start allocating from these vdevs before we
6843 * sync the config cache, and we lose power, then upon reboot we may
6844 * fail to open the pool because there are DVAs that the config cache
6845 * can't translate. Therefore, we first add the vdevs without
6846 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6847 * and then let spa_config_update() initialize the new metaslabs.
6848 *
6849 * spa_load() checks for added-but-not-initialized vdevs, so that
6850 * if we lose power at any point in this sequence, the remaining
6851 * steps will be completed the next time we load the pool.
6852 */
6853 (void) spa_vdev_exit(spa, vd, txg, 0);
6854
6855 mutex_enter(&spa_namespace_lock);
6856 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6857 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6858 mutex_exit(&spa_namespace_lock);
6859
6860 return (0);
6861 }
6862
6863 /*
6864 * Attach a device to a mirror. The arguments are the path to any device
6865 * in the mirror, and the nvroot for the new device. If the path specifies
6866 * a device that is not mirrored, we automatically insert the mirror vdev.
6867 *
6868 * If 'replacing' is specified, the new device is intended to replace the
6869 * existing device; in this case the two devices are made into their own
6870 * mirror using the 'replacing' vdev, which is functionally identical to
6871 * the mirror vdev (it actually reuses all the same ops) but has a few
6872 * extra rules: you can't attach to it after it's been created, and upon
6873 * completion of resilvering, the first disk (the one being replaced)
6874 * is automatically detached.
6875 *
6876 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6877 * should be performed instead of traditional healing reconstruction. From
6878 * an administrators perspective these are both resilver operations.
6879 */
6880 int
6881 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6882 int rebuild)
6883 {
6884 uint64_t txg, dtl_max_txg;
6885 vdev_t *rvd = spa->spa_root_vdev;
6886 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6887 vdev_ops_t *pvops;
6888 char *oldvdpath, *newvdpath;
6889 int newvd_isspare;
6890 int error;
6891
6892 ASSERT(spa_writeable(spa));
6893
6894 txg = spa_vdev_enter(spa);
6895
6896 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6897
6898 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6899 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6900 error = (spa_has_checkpoint(spa)) ?
6901 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6902 return (spa_vdev_exit(spa, NULL, txg, error));
6903 }
6904
6905 if (rebuild) {
6906 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6907 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6908
6909 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
6910 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
6911 return (spa_vdev_exit(spa, NULL, txg,
6912 ZFS_ERR_RESILVER_IN_PROGRESS));
6913 }
6914 } else {
6915 if (vdev_rebuild_active(rvd))
6916 return (spa_vdev_exit(spa, NULL, txg,
6917 ZFS_ERR_REBUILD_IN_PROGRESS));
6918 }
6919
6920 if (spa->spa_vdev_removal != NULL)
6921 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6922
6923 if (oldvd == NULL)
6924 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6925
6926 if (!oldvd->vdev_ops->vdev_op_leaf)
6927 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6928
6929 pvd = oldvd->vdev_parent;
6930
6931 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6932 VDEV_ALLOC_ATTACH) != 0)
6933 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6934
6935 if (newrootvd->vdev_children != 1)
6936 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6937
6938 newvd = newrootvd->vdev_child[0];
6939
6940 if (!newvd->vdev_ops->vdev_op_leaf)
6941 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6942
6943 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6944 return (spa_vdev_exit(spa, newrootvd, txg, error));
6945
6946 /*
6947 * log, dedup and special vdevs should not be replaced by spares.
6948 */
6949 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6950 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6951 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6952 }
6953
6954 /*
6955 * A dRAID spare can only replace a child of its parent dRAID vdev.
6956 */
6957 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6958 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6959 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6960 }
6961
6962 if (rebuild) {
6963 /*
6964 * For rebuilds, the top vdev must support reconstruction
6965 * using only space maps. This means the only allowable
6966 * vdevs types are the root vdev, a mirror, or dRAID.
6967 */
6968 tvd = pvd;
6969 if (pvd->vdev_top != NULL)
6970 tvd = pvd->vdev_top;
6971
6972 if (tvd->vdev_ops != &vdev_mirror_ops &&
6973 tvd->vdev_ops != &vdev_root_ops &&
6974 tvd->vdev_ops != &vdev_draid_ops) {
6975 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6976 }
6977 }
6978
6979 if (!replacing) {
6980 /*
6981 * For attach, the only allowable parent is a mirror or the root
6982 * vdev.
6983 */
6984 if (pvd->vdev_ops != &vdev_mirror_ops &&
6985 pvd->vdev_ops != &vdev_root_ops)
6986 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6987
6988 pvops = &vdev_mirror_ops;
6989 } else {
6990 /*
6991 * Active hot spares can only be replaced by inactive hot
6992 * spares.
6993 */
6994 if (pvd->vdev_ops == &vdev_spare_ops &&
6995 oldvd->vdev_isspare &&
6996 !spa_has_spare(spa, newvd->vdev_guid))
6997 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6998
6999 /*
7000 * If the source is a hot spare, and the parent isn't already a
7001 * spare, then we want to create a new hot spare. Otherwise, we
7002 * want to create a replacing vdev. The user is not allowed to
7003 * attach to a spared vdev child unless the 'isspare' state is
7004 * the same (spare replaces spare, non-spare replaces
7005 * non-spare).
7006 */
7007 if (pvd->vdev_ops == &vdev_replacing_ops &&
7008 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7009 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7010 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7011 newvd->vdev_isspare != oldvd->vdev_isspare) {
7012 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7013 }
7014
7015 if (newvd->vdev_isspare)
7016 pvops = &vdev_spare_ops;
7017 else
7018 pvops = &vdev_replacing_ops;
7019 }
7020
7021 /*
7022 * Make sure the new device is big enough.
7023 */
7024 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
7025 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7026
7027 /*
7028 * The new device cannot have a higher alignment requirement
7029 * than the top-level vdev.
7030 */
7031 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7032 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7033
7034 /*
7035 * If this is an in-place replacement, update oldvd's path and devid
7036 * to make it distinguishable from newvd, and unopenable from now on.
7037 */
7038 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
7039 spa_strfree(oldvd->vdev_path);
7040 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
7041 KM_SLEEP);
7042 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
7043 "%s/%s", newvd->vdev_path, "old");
7044 if (oldvd->vdev_devid != NULL) {
7045 spa_strfree(oldvd->vdev_devid);
7046 oldvd->vdev_devid = NULL;
7047 }
7048 }
7049
7050 /*
7051 * If the parent is not a mirror, or if we're replacing, insert the new
7052 * mirror/replacing/spare vdev above oldvd.
7053 */
7054 if (pvd->vdev_ops != pvops)
7055 pvd = vdev_add_parent(oldvd, pvops);
7056
7057 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7058 ASSERT(pvd->vdev_ops == pvops);
7059 ASSERT(oldvd->vdev_parent == pvd);
7060
7061 /*
7062 * Extract the new device from its root and add it to pvd.
7063 */
7064 vdev_remove_child(newrootvd, newvd);
7065 newvd->vdev_id = pvd->vdev_children;
7066 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7067 vdev_add_child(pvd, newvd);
7068
7069 /*
7070 * Reevaluate the parent vdev state.
7071 */
7072 vdev_propagate_state(pvd);
7073
7074 tvd = newvd->vdev_top;
7075 ASSERT(pvd->vdev_top == tvd);
7076 ASSERT(tvd->vdev_parent == rvd);
7077
7078 vdev_config_dirty(tvd);
7079
7080 /*
7081 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7082 * for any dmu_sync-ed blocks. It will propagate upward when
7083 * spa_vdev_exit() calls vdev_dtl_reassess().
7084 */
7085 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7086
7087 vdev_dtl_dirty(newvd, DTL_MISSING,
7088 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
7089
7090 if (newvd->vdev_isspare) {
7091 spa_spare_activate(newvd);
7092 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7093 }
7094
7095 oldvdpath = spa_strdup(oldvd->vdev_path);
7096 newvdpath = spa_strdup(newvd->vdev_path);
7097 newvd_isspare = newvd->vdev_isspare;
7098
7099 /*
7100 * Mark newvd's DTL dirty in this txg.
7101 */
7102 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7103
7104 /*
7105 * Schedule the resilver or rebuild to restart in the future. We do
7106 * this to ensure that dmu_sync-ed blocks have been stitched into the
7107 * respective datasets.
7108 */
7109 if (rebuild) {
7110 newvd->vdev_rebuild_txg = txg;
7111
7112 vdev_rebuild(tvd);
7113 } else {
7114 newvd->vdev_resilver_txg = txg;
7115
7116 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7117 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7118 vdev_defer_resilver(newvd);
7119 } else {
7120 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7121 dtl_max_txg);
7122 }
7123 }
7124
7125 if (spa->spa_bootfs)
7126 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7127
7128 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7129
7130 /*
7131 * Commit the config
7132 */
7133 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7134
7135 spa_history_log_internal(spa, "vdev attach", NULL,
7136 "%s vdev=%s %s vdev=%s",
7137 replacing && newvd_isspare ? "spare in" :
7138 replacing ? "replace" : "attach", newvdpath,
7139 replacing ? "for" : "to", oldvdpath);
7140
7141 spa_strfree(oldvdpath);
7142 spa_strfree(newvdpath);
7143
7144 return (0);
7145 }
7146
7147 /*
7148 * Detach a device from a mirror or replacing vdev.
7149 *
7150 * If 'replace_done' is specified, only detach if the parent
7151 * is a replacing or a spare vdev.
7152 */
7153 int
7154 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7155 {
7156 uint64_t txg;
7157 int error;
7158 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7159 vdev_t *vd, *pvd, *cvd, *tvd;
7160 boolean_t unspare = B_FALSE;
7161 uint64_t unspare_guid = 0;
7162 char *vdpath;
7163
7164 ASSERT(spa_writeable(spa));
7165
7166 txg = spa_vdev_detach_enter(spa, guid);
7167
7168 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7169
7170 /*
7171 * Besides being called directly from the userland through the
7172 * ioctl interface, spa_vdev_detach() can be potentially called
7173 * at the end of spa_vdev_resilver_done().
7174 *
7175 * In the regular case, when we have a checkpoint this shouldn't
7176 * happen as we never empty the DTLs of a vdev during the scrub
7177 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7178 * should never get here when we have a checkpoint.
7179 *
7180 * That said, even in a case when we checkpoint the pool exactly
7181 * as spa_vdev_resilver_done() calls this function everything
7182 * should be fine as the resilver will return right away.
7183 */
7184 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7185 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7186 error = (spa_has_checkpoint(spa)) ?
7187 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7188 return (spa_vdev_exit(spa, NULL, txg, error));
7189 }
7190
7191 if (vd == NULL)
7192 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7193
7194 if (!vd->vdev_ops->vdev_op_leaf)
7195 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7196
7197 pvd = vd->vdev_parent;
7198
7199 /*
7200 * If the parent/child relationship is not as expected, don't do it.
7201 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7202 * vdev that's replacing B with C. The user's intent in replacing
7203 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7204 * the replace by detaching C, the expected behavior is to end up
7205 * M(A,B). But suppose that right after deciding to detach C,
7206 * the replacement of B completes. We would have M(A,C), and then
7207 * ask to detach C, which would leave us with just A -- not what
7208 * the user wanted. To prevent this, we make sure that the
7209 * parent/child relationship hasn't changed -- in this example,
7210 * that C's parent is still the replacing vdev R.
7211 */
7212 if (pvd->vdev_guid != pguid && pguid != 0)
7213 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7214
7215 /*
7216 * Only 'replacing' or 'spare' vdevs can be replaced.
7217 */
7218 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7219 pvd->vdev_ops != &vdev_spare_ops)
7220 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7221
7222 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7223 spa_version(spa) >= SPA_VERSION_SPARES);
7224
7225 /*
7226 * Only mirror, replacing, and spare vdevs support detach.
7227 */
7228 if (pvd->vdev_ops != &vdev_replacing_ops &&
7229 pvd->vdev_ops != &vdev_mirror_ops &&
7230 pvd->vdev_ops != &vdev_spare_ops)
7231 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7232
7233 /*
7234 * If this device has the only valid copy of some data,
7235 * we cannot safely detach it.
7236 */
7237 if (vdev_dtl_required(vd))
7238 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7239
7240 ASSERT(pvd->vdev_children >= 2);
7241
7242 /*
7243 * If we are detaching the second disk from a replacing vdev, then
7244 * check to see if we changed the original vdev's path to have "/old"
7245 * at the end in spa_vdev_attach(). If so, undo that change now.
7246 */
7247 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7248 vd->vdev_path != NULL) {
7249 size_t len = strlen(vd->vdev_path);
7250
7251 for (int c = 0; c < pvd->vdev_children; c++) {
7252 cvd = pvd->vdev_child[c];
7253
7254 if (cvd == vd || cvd->vdev_path == NULL)
7255 continue;
7256
7257 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7258 strcmp(cvd->vdev_path + len, "/old") == 0) {
7259 spa_strfree(cvd->vdev_path);
7260 cvd->vdev_path = spa_strdup(vd->vdev_path);
7261 break;
7262 }
7263 }
7264 }
7265
7266 /*
7267 * If we are detaching the original disk from a normal spare, then it
7268 * implies that the spare should become a real disk, and be removed
7269 * from the active spare list for the pool. dRAID spares on the
7270 * other hand are coupled to the pool and thus should never be removed
7271 * from the spares list.
7272 */
7273 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7274 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7275
7276 if (last_cvd->vdev_isspare &&
7277 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7278 unspare = B_TRUE;
7279 }
7280 }
7281
7282 /*
7283 * Erase the disk labels so the disk can be used for other things.
7284 * This must be done after all other error cases are handled,
7285 * but before we disembowel vd (so we can still do I/O to it).
7286 * But if we can't do it, don't treat the error as fatal --
7287 * it may be that the unwritability of the disk is the reason
7288 * it's being detached!
7289 */
7290 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7291
7292 /*
7293 * Remove vd from its parent and compact the parent's children.
7294 */
7295 vdev_remove_child(pvd, vd);
7296 vdev_compact_children(pvd);
7297
7298 /*
7299 * Remember one of the remaining children so we can get tvd below.
7300 */
7301 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7302
7303 /*
7304 * If we need to remove the remaining child from the list of hot spares,
7305 * do it now, marking the vdev as no longer a spare in the process.
7306 * We must do this before vdev_remove_parent(), because that can
7307 * change the GUID if it creates a new toplevel GUID. For a similar
7308 * reason, we must remove the spare now, in the same txg as the detach;
7309 * otherwise someone could attach a new sibling, change the GUID, and
7310 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7311 */
7312 if (unspare) {
7313 ASSERT(cvd->vdev_isspare);
7314 spa_spare_remove(cvd);
7315 unspare_guid = cvd->vdev_guid;
7316 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7317 cvd->vdev_unspare = B_TRUE;
7318 }
7319
7320 /*
7321 * If the parent mirror/replacing vdev only has one child,
7322 * the parent is no longer needed. Remove it from the tree.
7323 */
7324 if (pvd->vdev_children == 1) {
7325 if (pvd->vdev_ops == &vdev_spare_ops)
7326 cvd->vdev_unspare = B_FALSE;
7327 vdev_remove_parent(cvd);
7328 }
7329
7330 /*
7331 * We don't set tvd until now because the parent we just removed
7332 * may have been the previous top-level vdev.
7333 */
7334 tvd = cvd->vdev_top;
7335 ASSERT(tvd->vdev_parent == rvd);
7336
7337 /*
7338 * Reevaluate the parent vdev state.
7339 */
7340 vdev_propagate_state(cvd);
7341
7342 /*
7343 * If the 'autoexpand' property is set on the pool then automatically
7344 * try to expand the size of the pool. For example if the device we
7345 * just detached was smaller than the others, it may be possible to
7346 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7347 * first so that we can obtain the updated sizes of the leaf vdevs.
7348 */
7349 if (spa->spa_autoexpand) {
7350 vdev_reopen(tvd);
7351 vdev_expand(tvd, txg);
7352 }
7353
7354 vdev_config_dirty(tvd);
7355
7356 /*
7357 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7358 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7359 * But first make sure we're not on any *other* txg's DTL list, to
7360 * prevent vd from being accessed after it's freed.
7361 */
7362 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7363 for (int t = 0; t < TXG_SIZE; t++)
7364 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7365 vd->vdev_detached = B_TRUE;
7366 vdev_dirty(tvd, VDD_DTL, vd, txg);
7367
7368 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7369 spa_notify_waiters(spa);
7370
7371 /* hang on to the spa before we release the lock */
7372 spa_open_ref(spa, FTAG);
7373
7374 error = spa_vdev_exit(spa, vd, txg, 0);
7375
7376 spa_history_log_internal(spa, "detach", NULL,
7377 "vdev=%s", vdpath);
7378 spa_strfree(vdpath);
7379
7380 /*
7381 * If this was the removal of the original device in a hot spare vdev,
7382 * then we want to go through and remove the device from the hot spare
7383 * list of every other pool.
7384 */
7385 if (unspare) {
7386 spa_t *altspa = NULL;
7387
7388 mutex_enter(&spa_namespace_lock);
7389 while ((altspa = spa_next(altspa)) != NULL) {
7390 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7391 altspa == spa)
7392 continue;
7393
7394 spa_open_ref(altspa, FTAG);
7395 mutex_exit(&spa_namespace_lock);
7396 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7397 mutex_enter(&spa_namespace_lock);
7398 spa_close(altspa, FTAG);
7399 }
7400 mutex_exit(&spa_namespace_lock);
7401
7402 /* search the rest of the vdevs for spares to remove */
7403 spa_vdev_resilver_done(spa);
7404 }
7405
7406 /* all done with the spa; OK to release */
7407 mutex_enter(&spa_namespace_lock);
7408 spa_close(spa, FTAG);
7409 mutex_exit(&spa_namespace_lock);
7410
7411 return (error);
7412 }
7413
7414 static int
7415 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7416 list_t *vd_list)
7417 {
7418 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7419
7420 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7421
7422 /* Look up vdev and ensure it's a leaf. */
7423 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7424 if (vd == NULL || vd->vdev_detached) {
7425 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7426 return (SET_ERROR(ENODEV));
7427 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7428 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7429 return (SET_ERROR(EINVAL));
7430 } else if (!vdev_writeable(vd)) {
7431 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7432 return (SET_ERROR(EROFS));
7433 }
7434 mutex_enter(&vd->vdev_initialize_lock);
7435 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7436
7437 /*
7438 * When we activate an initialize action we check to see
7439 * if the vdev_initialize_thread is NULL. We do this instead
7440 * of using the vdev_initialize_state since there might be
7441 * a previous initialization process which has completed but
7442 * the thread is not exited.
7443 */
7444 if (cmd_type == POOL_INITIALIZE_START &&
7445 (vd->vdev_initialize_thread != NULL ||
7446 vd->vdev_top->vdev_removing)) {
7447 mutex_exit(&vd->vdev_initialize_lock);
7448 return (SET_ERROR(EBUSY));
7449 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7450 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7451 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7452 mutex_exit(&vd->vdev_initialize_lock);
7453 return (SET_ERROR(ESRCH));
7454 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7455 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7456 mutex_exit(&vd->vdev_initialize_lock);
7457 return (SET_ERROR(ESRCH));
7458 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7459 vd->vdev_initialize_thread != NULL) {
7460 mutex_exit(&vd->vdev_initialize_lock);
7461 return (SET_ERROR(EBUSY));
7462 }
7463
7464 switch (cmd_type) {
7465 case POOL_INITIALIZE_START:
7466 vdev_initialize(vd);
7467 break;
7468 case POOL_INITIALIZE_CANCEL:
7469 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7470 break;
7471 case POOL_INITIALIZE_SUSPEND:
7472 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7473 break;
7474 case POOL_INITIALIZE_UNINIT:
7475 vdev_uninitialize(vd);
7476 break;
7477 default:
7478 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7479 }
7480 mutex_exit(&vd->vdev_initialize_lock);
7481
7482 return (0);
7483 }
7484
7485 int
7486 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7487 nvlist_t *vdev_errlist)
7488 {
7489 int total_errors = 0;
7490 list_t vd_list;
7491
7492 list_create(&vd_list, sizeof (vdev_t),
7493 offsetof(vdev_t, vdev_initialize_node));
7494
7495 /*
7496 * We hold the namespace lock through the whole function
7497 * to prevent any changes to the pool while we're starting or
7498 * stopping initialization. The config and state locks are held so that
7499 * we can properly assess the vdev state before we commit to
7500 * the initializing operation.
7501 */
7502 mutex_enter(&spa_namespace_lock);
7503
7504 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7505 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7506 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7507
7508 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7509 &vd_list);
7510 if (error != 0) {
7511 char guid_as_str[MAXNAMELEN];
7512
7513 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7514 "%llu", (unsigned long long)vdev_guid);
7515 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7516 total_errors++;
7517 }
7518 }
7519
7520 /* Wait for all initialize threads to stop. */
7521 vdev_initialize_stop_wait(spa, &vd_list);
7522
7523 /* Sync out the initializing state */
7524 txg_wait_synced(spa->spa_dsl_pool, 0);
7525 mutex_exit(&spa_namespace_lock);
7526
7527 list_destroy(&vd_list);
7528
7529 return (total_errors);
7530 }
7531
7532 static int
7533 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7534 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7535 {
7536 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7537
7538 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7539
7540 /* Look up vdev and ensure it's a leaf. */
7541 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7542 if (vd == NULL || vd->vdev_detached) {
7543 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7544 return (SET_ERROR(ENODEV));
7545 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7546 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7547 return (SET_ERROR(EINVAL));
7548 } else if (!vdev_writeable(vd)) {
7549 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7550 return (SET_ERROR(EROFS));
7551 } else if (!vd->vdev_has_trim) {
7552 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7553 return (SET_ERROR(EOPNOTSUPP));
7554 } else if (secure && !vd->vdev_has_securetrim) {
7555 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7556 return (SET_ERROR(EOPNOTSUPP));
7557 }
7558 mutex_enter(&vd->vdev_trim_lock);
7559 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7560
7561 /*
7562 * When we activate a TRIM action we check to see if the
7563 * vdev_trim_thread is NULL. We do this instead of using the
7564 * vdev_trim_state since there might be a previous TRIM process
7565 * which has completed but the thread is not exited.
7566 */
7567 if (cmd_type == POOL_TRIM_START &&
7568 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7569 mutex_exit(&vd->vdev_trim_lock);
7570 return (SET_ERROR(EBUSY));
7571 } else if (cmd_type == POOL_TRIM_CANCEL &&
7572 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7573 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7574 mutex_exit(&vd->vdev_trim_lock);
7575 return (SET_ERROR(ESRCH));
7576 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7577 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7578 mutex_exit(&vd->vdev_trim_lock);
7579 return (SET_ERROR(ESRCH));
7580 }
7581
7582 switch (cmd_type) {
7583 case POOL_TRIM_START:
7584 vdev_trim(vd, rate, partial, secure);
7585 break;
7586 case POOL_TRIM_CANCEL:
7587 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7588 break;
7589 case POOL_TRIM_SUSPEND:
7590 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7591 break;
7592 default:
7593 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7594 }
7595 mutex_exit(&vd->vdev_trim_lock);
7596
7597 return (0);
7598 }
7599
7600 /*
7601 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7602 * TRIM threads for each child vdev. These threads pass over all of the free
7603 * space in the vdev's metaslabs and issues TRIM commands for that space.
7604 */
7605 int
7606 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7607 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7608 {
7609 int total_errors = 0;
7610 list_t vd_list;
7611
7612 list_create(&vd_list, sizeof (vdev_t),
7613 offsetof(vdev_t, vdev_trim_node));
7614
7615 /*
7616 * We hold the namespace lock through the whole function
7617 * to prevent any changes to the pool while we're starting or
7618 * stopping TRIM. The config and state locks are held so that
7619 * we can properly assess the vdev state before we commit to
7620 * the TRIM operation.
7621 */
7622 mutex_enter(&spa_namespace_lock);
7623
7624 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7625 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7626 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7627
7628 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7629 rate, partial, secure, &vd_list);
7630 if (error != 0) {
7631 char guid_as_str[MAXNAMELEN];
7632
7633 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7634 "%llu", (unsigned long long)vdev_guid);
7635 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7636 total_errors++;
7637 }
7638 }
7639
7640 /* Wait for all TRIM threads to stop. */
7641 vdev_trim_stop_wait(spa, &vd_list);
7642
7643 /* Sync out the TRIM state */
7644 txg_wait_synced(spa->spa_dsl_pool, 0);
7645 mutex_exit(&spa_namespace_lock);
7646
7647 list_destroy(&vd_list);
7648
7649 return (total_errors);
7650 }
7651
7652 /*
7653 * Split a set of devices from their mirrors, and create a new pool from them.
7654 */
7655 int
7656 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7657 nvlist_t *props, boolean_t exp)
7658 {
7659 int error = 0;
7660 uint64_t txg, *glist;
7661 spa_t *newspa;
7662 uint_t c, children, lastlog;
7663 nvlist_t **child, *nvl, *tmp;
7664 dmu_tx_t *tx;
7665 const char *altroot = NULL;
7666 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7667 boolean_t activate_slog;
7668
7669 ASSERT(spa_writeable(spa));
7670
7671 txg = spa_vdev_enter(spa);
7672
7673 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7674 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7675 error = (spa_has_checkpoint(spa)) ?
7676 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7677 return (spa_vdev_exit(spa, NULL, txg, error));
7678 }
7679
7680 /* clear the log and flush everything up to now */
7681 activate_slog = spa_passivate_log(spa);
7682 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7683 error = spa_reset_logs(spa);
7684 txg = spa_vdev_config_enter(spa);
7685
7686 if (activate_slog)
7687 spa_activate_log(spa);
7688
7689 if (error != 0)
7690 return (spa_vdev_exit(spa, NULL, txg, error));
7691
7692 /* check new spa name before going any further */
7693 if (spa_lookup(newname) != NULL)
7694 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7695
7696 /*
7697 * scan through all the children to ensure they're all mirrors
7698 */
7699 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7700 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7701 &children) != 0)
7702 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7703
7704 /* first, check to ensure we've got the right child count */
7705 rvd = spa->spa_root_vdev;
7706 lastlog = 0;
7707 for (c = 0; c < rvd->vdev_children; c++) {
7708 vdev_t *vd = rvd->vdev_child[c];
7709
7710 /* don't count the holes & logs as children */
7711 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7712 !vdev_is_concrete(vd))) {
7713 if (lastlog == 0)
7714 lastlog = c;
7715 continue;
7716 }
7717
7718 lastlog = 0;
7719 }
7720 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7721 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7722
7723 /* next, ensure no spare or cache devices are part of the split */
7724 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7725 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7726 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7727
7728 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7729 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7730
7731 /* then, loop over each vdev and validate it */
7732 for (c = 0; c < children; c++) {
7733 uint64_t is_hole = 0;
7734
7735 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7736 &is_hole);
7737
7738 if (is_hole != 0) {
7739 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7740 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7741 continue;
7742 } else {
7743 error = SET_ERROR(EINVAL);
7744 break;
7745 }
7746 }
7747
7748 /* deal with indirect vdevs */
7749 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7750 &vdev_indirect_ops)
7751 continue;
7752
7753 /* which disk is going to be split? */
7754 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7755 &glist[c]) != 0) {
7756 error = SET_ERROR(EINVAL);
7757 break;
7758 }
7759
7760 /* look it up in the spa */
7761 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7762 if (vml[c] == NULL) {
7763 error = SET_ERROR(ENODEV);
7764 break;
7765 }
7766
7767 /* make sure there's nothing stopping the split */
7768 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7769 vml[c]->vdev_islog ||
7770 !vdev_is_concrete(vml[c]) ||
7771 vml[c]->vdev_isspare ||
7772 vml[c]->vdev_isl2cache ||
7773 !vdev_writeable(vml[c]) ||
7774 vml[c]->vdev_children != 0 ||
7775 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7776 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7777 error = SET_ERROR(EINVAL);
7778 break;
7779 }
7780
7781 if (vdev_dtl_required(vml[c]) ||
7782 vdev_resilver_needed(vml[c], NULL, NULL)) {
7783 error = SET_ERROR(EBUSY);
7784 break;
7785 }
7786
7787 /* we need certain info from the top level */
7788 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7789 vml[c]->vdev_top->vdev_ms_array);
7790 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7791 vml[c]->vdev_top->vdev_ms_shift);
7792 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7793 vml[c]->vdev_top->vdev_asize);
7794 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7795 vml[c]->vdev_top->vdev_ashift);
7796
7797 /* transfer per-vdev ZAPs */
7798 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7799 VERIFY0(nvlist_add_uint64(child[c],
7800 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7801
7802 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7803 VERIFY0(nvlist_add_uint64(child[c],
7804 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7805 vml[c]->vdev_parent->vdev_top_zap));
7806 }
7807
7808 if (error != 0) {
7809 kmem_free(vml, children * sizeof (vdev_t *));
7810 kmem_free(glist, children * sizeof (uint64_t));
7811 return (spa_vdev_exit(spa, NULL, txg, error));
7812 }
7813
7814 /* stop writers from using the disks */
7815 for (c = 0; c < children; c++) {
7816 if (vml[c] != NULL)
7817 vml[c]->vdev_offline = B_TRUE;
7818 }
7819 vdev_reopen(spa->spa_root_vdev);
7820
7821 /*
7822 * Temporarily record the splitting vdevs in the spa config. This
7823 * will disappear once the config is regenerated.
7824 */
7825 nvl = fnvlist_alloc();
7826 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7827 kmem_free(glist, children * sizeof (uint64_t));
7828
7829 mutex_enter(&spa->spa_props_lock);
7830 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7831 mutex_exit(&spa->spa_props_lock);
7832 spa->spa_config_splitting = nvl;
7833 vdev_config_dirty(spa->spa_root_vdev);
7834
7835 /* configure and create the new pool */
7836 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7837 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7838 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7839 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7840 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7841 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7842 spa_generate_guid(NULL));
7843 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7844 (void) nvlist_lookup_string(props,
7845 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7846
7847 /* add the new pool to the namespace */
7848 newspa = spa_add(newname, config, altroot);
7849 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7850 newspa->spa_config_txg = spa->spa_config_txg;
7851 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7852
7853 /* release the spa config lock, retaining the namespace lock */
7854 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7855
7856 if (zio_injection_enabled)
7857 zio_handle_panic_injection(spa, FTAG, 1);
7858
7859 spa_activate(newspa, spa_mode_global);
7860 spa_async_suspend(newspa);
7861
7862 /*
7863 * Temporarily stop the initializing and TRIM activity. We set the
7864 * state to ACTIVE so that we know to resume initializing or TRIM
7865 * once the split has completed.
7866 */
7867 list_t vd_initialize_list;
7868 list_create(&vd_initialize_list, sizeof (vdev_t),
7869 offsetof(vdev_t, vdev_initialize_node));
7870
7871 list_t vd_trim_list;
7872 list_create(&vd_trim_list, sizeof (vdev_t),
7873 offsetof(vdev_t, vdev_trim_node));
7874
7875 for (c = 0; c < children; c++) {
7876 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7877 mutex_enter(&vml[c]->vdev_initialize_lock);
7878 vdev_initialize_stop(vml[c],
7879 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7880 mutex_exit(&vml[c]->vdev_initialize_lock);
7881
7882 mutex_enter(&vml[c]->vdev_trim_lock);
7883 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7884 mutex_exit(&vml[c]->vdev_trim_lock);
7885 }
7886 }
7887
7888 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7889 vdev_trim_stop_wait(spa, &vd_trim_list);
7890
7891 list_destroy(&vd_initialize_list);
7892 list_destroy(&vd_trim_list);
7893
7894 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7895 newspa->spa_is_splitting = B_TRUE;
7896
7897 /* create the new pool from the disks of the original pool */
7898 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7899 if (error)
7900 goto out;
7901
7902 /* if that worked, generate a real config for the new pool */
7903 if (newspa->spa_root_vdev != NULL) {
7904 newspa->spa_config_splitting = fnvlist_alloc();
7905 fnvlist_add_uint64(newspa->spa_config_splitting,
7906 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7907 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7908 B_TRUE));
7909 }
7910
7911 /* set the props */
7912 if (props != NULL) {
7913 spa_configfile_set(newspa, props, B_FALSE);
7914 error = spa_prop_set(newspa, props);
7915 if (error)
7916 goto out;
7917 }
7918
7919 /* flush everything */
7920 txg = spa_vdev_config_enter(newspa);
7921 vdev_config_dirty(newspa->spa_root_vdev);
7922 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7923
7924 if (zio_injection_enabled)
7925 zio_handle_panic_injection(spa, FTAG, 2);
7926
7927 spa_async_resume(newspa);
7928
7929 /* finally, update the original pool's config */
7930 txg = spa_vdev_config_enter(spa);
7931 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7932 error = dmu_tx_assign(tx, TXG_WAIT);
7933 if (error != 0)
7934 dmu_tx_abort(tx);
7935 for (c = 0; c < children; c++) {
7936 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7937 vdev_t *tvd = vml[c]->vdev_top;
7938
7939 /*
7940 * Need to be sure the detachable VDEV is not
7941 * on any *other* txg's DTL list to prevent it
7942 * from being accessed after it's freed.
7943 */
7944 for (int t = 0; t < TXG_SIZE; t++) {
7945 (void) txg_list_remove_this(
7946 &tvd->vdev_dtl_list, vml[c], t);
7947 }
7948
7949 vdev_split(vml[c]);
7950 if (error == 0)
7951 spa_history_log_internal(spa, "detach", tx,
7952 "vdev=%s", vml[c]->vdev_path);
7953
7954 vdev_free(vml[c]);
7955 }
7956 }
7957 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7958 vdev_config_dirty(spa->spa_root_vdev);
7959 spa->spa_config_splitting = NULL;
7960 nvlist_free(nvl);
7961 if (error == 0)
7962 dmu_tx_commit(tx);
7963 (void) spa_vdev_exit(spa, NULL, txg, 0);
7964
7965 if (zio_injection_enabled)
7966 zio_handle_panic_injection(spa, FTAG, 3);
7967
7968 /* split is complete; log a history record */
7969 spa_history_log_internal(newspa, "split", NULL,
7970 "from pool %s", spa_name(spa));
7971
7972 newspa->spa_is_splitting = B_FALSE;
7973 kmem_free(vml, children * sizeof (vdev_t *));
7974
7975 /* if we're not going to mount the filesystems in userland, export */
7976 if (exp)
7977 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7978 B_FALSE, B_FALSE);
7979
7980 return (error);
7981
7982 out:
7983 spa_unload(newspa);
7984 spa_deactivate(newspa);
7985 spa_remove(newspa);
7986
7987 txg = spa_vdev_config_enter(spa);
7988
7989 /* re-online all offlined disks */
7990 for (c = 0; c < children; c++) {
7991 if (vml[c] != NULL)
7992 vml[c]->vdev_offline = B_FALSE;
7993 }
7994
7995 /* restart initializing or trimming disks as necessary */
7996 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7997 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7998 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7999
8000 vdev_reopen(spa->spa_root_vdev);
8001
8002 nvlist_free(spa->spa_config_splitting);
8003 spa->spa_config_splitting = NULL;
8004 (void) spa_vdev_exit(spa, NULL, txg, error);
8005
8006 kmem_free(vml, children * sizeof (vdev_t *));
8007 return (error);
8008 }
8009
8010 /*
8011 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8012 * currently spared, so we can detach it.
8013 */
8014 static vdev_t *
8015 spa_vdev_resilver_done_hunt(vdev_t *vd)
8016 {
8017 vdev_t *newvd, *oldvd;
8018
8019 for (int c = 0; c < vd->vdev_children; c++) {
8020 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8021 if (oldvd != NULL)
8022 return (oldvd);
8023 }
8024
8025 /*
8026 * Check for a completed replacement. We always consider the first
8027 * vdev in the list to be the oldest vdev, and the last one to be
8028 * the newest (see spa_vdev_attach() for how that works). In
8029 * the case where the newest vdev is faulted, we will not automatically
8030 * remove it after a resilver completes. This is OK as it will require
8031 * user intervention to determine which disk the admin wishes to keep.
8032 */
8033 if (vd->vdev_ops == &vdev_replacing_ops) {
8034 ASSERT(vd->vdev_children > 1);
8035
8036 newvd = vd->vdev_child[vd->vdev_children - 1];
8037 oldvd = vd->vdev_child[0];
8038
8039 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8040 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8041 !vdev_dtl_required(oldvd))
8042 return (oldvd);
8043 }
8044
8045 /*
8046 * Check for a completed resilver with the 'unspare' flag set.
8047 * Also potentially update faulted state.
8048 */
8049 if (vd->vdev_ops == &vdev_spare_ops) {
8050 vdev_t *first = vd->vdev_child[0];
8051 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8052
8053 if (last->vdev_unspare) {
8054 oldvd = first;
8055 newvd = last;
8056 } else if (first->vdev_unspare) {
8057 oldvd = last;
8058 newvd = first;
8059 } else {
8060 oldvd = NULL;
8061 }
8062
8063 if (oldvd != NULL &&
8064 vdev_dtl_empty(newvd, DTL_MISSING) &&
8065 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8066 !vdev_dtl_required(oldvd))
8067 return (oldvd);
8068
8069 vdev_propagate_state(vd);
8070
8071 /*
8072 * If there are more than two spares attached to a disk,
8073 * and those spares are not required, then we want to
8074 * attempt to free them up now so that they can be used
8075 * by other pools. Once we're back down to a single
8076 * disk+spare, we stop removing them.
8077 */
8078 if (vd->vdev_children > 2) {
8079 newvd = vd->vdev_child[1];
8080
8081 if (newvd->vdev_isspare && last->vdev_isspare &&
8082 vdev_dtl_empty(last, DTL_MISSING) &&
8083 vdev_dtl_empty(last, DTL_OUTAGE) &&
8084 !vdev_dtl_required(newvd))
8085 return (newvd);
8086 }
8087 }
8088
8089 return (NULL);
8090 }
8091
8092 static void
8093 spa_vdev_resilver_done(spa_t *spa)
8094 {
8095 vdev_t *vd, *pvd, *ppvd;
8096 uint64_t guid, sguid, pguid, ppguid;
8097
8098 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8099
8100 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8101 pvd = vd->vdev_parent;
8102 ppvd = pvd->vdev_parent;
8103 guid = vd->vdev_guid;
8104 pguid = pvd->vdev_guid;
8105 ppguid = ppvd->vdev_guid;
8106 sguid = 0;
8107 /*
8108 * If we have just finished replacing a hot spared device, then
8109 * we need to detach the parent's first child (the original hot
8110 * spare) as well.
8111 */
8112 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8113 ppvd->vdev_children == 2) {
8114 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8115 sguid = ppvd->vdev_child[1]->vdev_guid;
8116 }
8117 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8118
8119 spa_config_exit(spa, SCL_ALL, FTAG);
8120 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8121 return;
8122 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8123 return;
8124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8125 }
8126
8127 spa_config_exit(spa, SCL_ALL, FTAG);
8128
8129 /*
8130 * If a detach was not performed above replace waiters will not have
8131 * been notified. In which case we must do so now.
8132 */
8133 spa_notify_waiters(spa);
8134 }
8135
8136 /*
8137 * Update the stored path or FRU for this vdev.
8138 */
8139 static int
8140 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8141 boolean_t ispath)
8142 {
8143 vdev_t *vd;
8144 boolean_t sync = B_FALSE;
8145
8146 ASSERT(spa_writeable(spa));
8147
8148 spa_vdev_state_enter(spa, SCL_ALL);
8149
8150 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8151 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8152
8153 if (!vd->vdev_ops->vdev_op_leaf)
8154 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8155
8156 if (ispath) {
8157 if (strcmp(value, vd->vdev_path) != 0) {
8158 spa_strfree(vd->vdev_path);
8159 vd->vdev_path = spa_strdup(value);
8160 sync = B_TRUE;
8161 }
8162 } else {
8163 if (vd->vdev_fru == NULL) {
8164 vd->vdev_fru = spa_strdup(value);
8165 sync = B_TRUE;
8166 } else if (strcmp(value, vd->vdev_fru) != 0) {
8167 spa_strfree(vd->vdev_fru);
8168 vd->vdev_fru = spa_strdup(value);
8169 sync = B_TRUE;
8170 }
8171 }
8172
8173 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8174 }
8175
8176 int
8177 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8178 {
8179 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8180 }
8181
8182 int
8183 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8184 {
8185 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8186 }
8187
8188 /*
8189 * ==========================================================================
8190 * SPA Scanning
8191 * ==========================================================================
8192 */
8193 int
8194 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8195 {
8196 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8197
8198 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8199 return (SET_ERROR(EBUSY));
8200
8201 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8202 }
8203
8204 int
8205 spa_scan_stop(spa_t *spa)
8206 {
8207 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8208 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8209 return (SET_ERROR(EBUSY));
8210
8211 return (dsl_scan_cancel(spa->spa_dsl_pool));
8212 }
8213
8214 int
8215 spa_scan(spa_t *spa, pool_scan_func_t func)
8216 {
8217 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8218
8219 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8220 return (SET_ERROR(ENOTSUP));
8221
8222 if (func == POOL_SCAN_RESILVER &&
8223 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8224 return (SET_ERROR(ENOTSUP));
8225
8226 /*
8227 * If a resilver was requested, but there is no DTL on a
8228 * writeable leaf device, we have nothing to do.
8229 */
8230 if (func == POOL_SCAN_RESILVER &&
8231 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8232 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8233 return (0);
8234 }
8235
8236 if (func == POOL_SCAN_ERRORSCRUB &&
8237 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8238 return (SET_ERROR(ENOTSUP));
8239
8240 return (dsl_scan(spa->spa_dsl_pool, func));
8241 }
8242
8243 /*
8244 * ==========================================================================
8245 * SPA async task processing
8246 * ==========================================================================
8247 */
8248
8249 static void
8250 spa_async_remove(spa_t *spa, vdev_t *vd)
8251 {
8252 if (vd->vdev_remove_wanted) {
8253 vd->vdev_remove_wanted = B_FALSE;
8254 vd->vdev_delayed_close = B_FALSE;
8255 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8256
8257 /*
8258 * We want to clear the stats, but we don't want to do a full
8259 * vdev_clear() as that will cause us to throw away
8260 * degraded/faulted state as well as attempt to reopen the
8261 * device, all of which is a waste.
8262 */
8263 vd->vdev_stat.vs_read_errors = 0;
8264 vd->vdev_stat.vs_write_errors = 0;
8265 vd->vdev_stat.vs_checksum_errors = 0;
8266
8267 vdev_state_dirty(vd->vdev_top);
8268
8269 /* Tell userspace that the vdev is gone. */
8270 zfs_post_remove(spa, vd);
8271 }
8272
8273 for (int c = 0; c < vd->vdev_children; c++)
8274 spa_async_remove(spa, vd->vdev_child[c]);
8275 }
8276
8277 static void
8278 spa_async_probe(spa_t *spa, vdev_t *vd)
8279 {
8280 if (vd->vdev_probe_wanted) {
8281 vd->vdev_probe_wanted = B_FALSE;
8282 vdev_reopen(vd); /* vdev_open() does the actual probe */
8283 }
8284
8285 for (int c = 0; c < vd->vdev_children; c++)
8286 spa_async_probe(spa, vd->vdev_child[c]);
8287 }
8288
8289 static void
8290 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8291 {
8292 if (!spa->spa_autoexpand)
8293 return;
8294
8295 for (int c = 0; c < vd->vdev_children; c++) {
8296 vdev_t *cvd = vd->vdev_child[c];
8297 spa_async_autoexpand(spa, cvd);
8298 }
8299
8300 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8301 return;
8302
8303 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8304 }
8305
8306 static __attribute__((noreturn)) void
8307 spa_async_thread(void *arg)
8308 {
8309 spa_t *spa = (spa_t *)arg;
8310 dsl_pool_t *dp = spa->spa_dsl_pool;
8311 int tasks;
8312
8313 ASSERT(spa->spa_sync_on);
8314
8315 mutex_enter(&spa->spa_async_lock);
8316 tasks = spa->spa_async_tasks;
8317 spa->spa_async_tasks = 0;
8318 mutex_exit(&spa->spa_async_lock);
8319
8320 /*
8321 * See if the config needs to be updated.
8322 */
8323 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8324 uint64_t old_space, new_space;
8325
8326 mutex_enter(&spa_namespace_lock);
8327 old_space = metaslab_class_get_space(spa_normal_class(spa));
8328 old_space += metaslab_class_get_space(spa_special_class(spa));
8329 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8330 old_space += metaslab_class_get_space(
8331 spa_embedded_log_class(spa));
8332
8333 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8334
8335 new_space = metaslab_class_get_space(spa_normal_class(spa));
8336 new_space += metaslab_class_get_space(spa_special_class(spa));
8337 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8338 new_space += metaslab_class_get_space(
8339 spa_embedded_log_class(spa));
8340 mutex_exit(&spa_namespace_lock);
8341
8342 /*
8343 * If the pool grew as a result of the config update,
8344 * then log an internal history event.
8345 */
8346 if (new_space != old_space) {
8347 spa_history_log_internal(spa, "vdev online", NULL,
8348 "pool '%s' size: %llu(+%llu)",
8349 spa_name(spa), (u_longlong_t)new_space,
8350 (u_longlong_t)(new_space - old_space));
8351 }
8352 }
8353
8354 /*
8355 * See if any devices need to be marked REMOVED.
8356 */
8357 if (tasks & SPA_ASYNC_REMOVE) {
8358 spa_vdev_state_enter(spa, SCL_NONE);
8359 spa_async_remove(spa, spa->spa_root_vdev);
8360 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8361 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8362 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8363 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8364 (void) spa_vdev_state_exit(spa, NULL, 0);
8365 }
8366
8367 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8368 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8369 spa_async_autoexpand(spa, spa->spa_root_vdev);
8370 spa_config_exit(spa, SCL_CONFIG, FTAG);
8371 }
8372
8373 /*
8374 * See if any devices need to be probed.
8375 */
8376 if (tasks & SPA_ASYNC_PROBE) {
8377 spa_vdev_state_enter(spa, SCL_NONE);
8378 spa_async_probe(spa, spa->spa_root_vdev);
8379 (void) spa_vdev_state_exit(spa, NULL, 0);
8380 }
8381
8382 /*
8383 * If any devices are done replacing, detach them.
8384 */
8385 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8386 tasks & SPA_ASYNC_REBUILD_DONE ||
8387 tasks & SPA_ASYNC_DETACH_SPARE) {
8388 spa_vdev_resilver_done(spa);
8389 }
8390
8391 /*
8392 * Kick off a resilver.
8393 */
8394 if (tasks & SPA_ASYNC_RESILVER &&
8395 !vdev_rebuild_active(spa->spa_root_vdev) &&
8396 (!dsl_scan_resilvering(dp) ||
8397 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8398 dsl_scan_restart_resilver(dp, 0);
8399
8400 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8401 mutex_enter(&spa_namespace_lock);
8402 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8403 vdev_initialize_restart(spa->spa_root_vdev);
8404 spa_config_exit(spa, SCL_CONFIG, FTAG);
8405 mutex_exit(&spa_namespace_lock);
8406 }
8407
8408 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8409 mutex_enter(&spa_namespace_lock);
8410 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8411 vdev_trim_restart(spa->spa_root_vdev);
8412 spa_config_exit(spa, SCL_CONFIG, FTAG);
8413 mutex_exit(&spa_namespace_lock);
8414 }
8415
8416 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8417 mutex_enter(&spa_namespace_lock);
8418 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8419 vdev_autotrim_restart(spa);
8420 spa_config_exit(spa, SCL_CONFIG, FTAG);
8421 mutex_exit(&spa_namespace_lock);
8422 }
8423
8424 /*
8425 * Kick off L2 cache whole device TRIM.
8426 */
8427 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8428 mutex_enter(&spa_namespace_lock);
8429 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8430 vdev_trim_l2arc(spa);
8431 spa_config_exit(spa, SCL_CONFIG, FTAG);
8432 mutex_exit(&spa_namespace_lock);
8433 }
8434
8435 /*
8436 * Kick off L2 cache rebuilding.
8437 */
8438 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8439 mutex_enter(&spa_namespace_lock);
8440 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8441 l2arc_spa_rebuild_start(spa);
8442 spa_config_exit(spa, SCL_L2ARC, FTAG);
8443 mutex_exit(&spa_namespace_lock);
8444 }
8445
8446 /*
8447 * Let the world know that we're done.
8448 */
8449 mutex_enter(&spa->spa_async_lock);
8450 spa->spa_async_thread = NULL;
8451 cv_broadcast(&spa->spa_async_cv);
8452 mutex_exit(&spa->spa_async_lock);
8453 thread_exit();
8454 }
8455
8456 void
8457 spa_async_suspend(spa_t *spa)
8458 {
8459 mutex_enter(&spa->spa_async_lock);
8460 spa->spa_async_suspended++;
8461 while (spa->spa_async_thread != NULL)
8462 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8463 mutex_exit(&spa->spa_async_lock);
8464
8465 spa_vdev_remove_suspend(spa);
8466
8467 zthr_t *condense_thread = spa->spa_condense_zthr;
8468 if (condense_thread != NULL)
8469 zthr_cancel(condense_thread);
8470
8471 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8472 if (discard_thread != NULL)
8473 zthr_cancel(discard_thread);
8474
8475 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8476 if (ll_delete_thread != NULL)
8477 zthr_cancel(ll_delete_thread);
8478
8479 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8480 if (ll_condense_thread != NULL)
8481 zthr_cancel(ll_condense_thread);
8482 }
8483
8484 void
8485 spa_async_resume(spa_t *spa)
8486 {
8487 mutex_enter(&spa->spa_async_lock);
8488 ASSERT(spa->spa_async_suspended != 0);
8489 spa->spa_async_suspended--;
8490 mutex_exit(&spa->spa_async_lock);
8491 spa_restart_removal(spa);
8492
8493 zthr_t *condense_thread = spa->spa_condense_zthr;
8494 if (condense_thread != NULL)
8495 zthr_resume(condense_thread);
8496
8497 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8498 if (discard_thread != NULL)
8499 zthr_resume(discard_thread);
8500
8501 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8502 if (ll_delete_thread != NULL)
8503 zthr_resume(ll_delete_thread);
8504
8505 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8506 if (ll_condense_thread != NULL)
8507 zthr_resume(ll_condense_thread);
8508 }
8509
8510 static boolean_t
8511 spa_async_tasks_pending(spa_t *spa)
8512 {
8513 uint_t non_config_tasks;
8514 uint_t config_task;
8515 boolean_t config_task_suspended;
8516
8517 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8518 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8519 if (spa->spa_ccw_fail_time == 0) {
8520 config_task_suspended = B_FALSE;
8521 } else {
8522 config_task_suspended =
8523 (gethrtime() - spa->spa_ccw_fail_time) <
8524 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8525 }
8526
8527 return (non_config_tasks || (config_task && !config_task_suspended));
8528 }
8529
8530 static void
8531 spa_async_dispatch(spa_t *spa)
8532 {
8533 mutex_enter(&spa->spa_async_lock);
8534 if (spa_async_tasks_pending(spa) &&
8535 !spa->spa_async_suspended &&
8536 spa->spa_async_thread == NULL)
8537 spa->spa_async_thread = thread_create(NULL, 0,
8538 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8539 mutex_exit(&spa->spa_async_lock);
8540 }
8541
8542 void
8543 spa_async_request(spa_t *spa, int task)
8544 {
8545 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8546 mutex_enter(&spa->spa_async_lock);
8547 spa->spa_async_tasks |= task;
8548 mutex_exit(&spa->spa_async_lock);
8549 }
8550
8551 int
8552 spa_async_tasks(spa_t *spa)
8553 {
8554 return (spa->spa_async_tasks);
8555 }
8556
8557 /*
8558 * ==========================================================================
8559 * SPA syncing routines
8560 * ==========================================================================
8561 */
8562
8563
8564 static int
8565 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8566 dmu_tx_t *tx)
8567 {
8568 bpobj_t *bpo = arg;
8569 bpobj_enqueue(bpo, bp, bp_freed, tx);
8570 return (0);
8571 }
8572
8573 int
8574 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8575 {
8576 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8577 }
8578
8579 int
8580 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8581 {
8582 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8583 }
8584
8585 static int
8586 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8587 {
8588 zio_t *pio = arg;
8589
8590 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8591 pio->io_flags));
8592 return (0);
8593 }
8594
8595 static int
8596 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8597 dmu_tx_t *tx)
8598 {
8599 ASSERT(!bp_freed);
8600 return (spa_free_sync_cb(arg, bp, tx));
8601 }
8602
8603 /*
8604 * Note: this simple function is not inlined to make it easier to dtrace the
8605 * amount of time spent syncing frees.
8606 */
8607 static void
8608 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8609 {
8610 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8611 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8612 VERIFY(zio_wait(zio) == 0);
8613 }
8614
8615 /*
8616 * Note: this simple function is not inlined to make it easier to dtrace the
8617 * amount of time spent syncing deferred frees.
8618 */
8619 static void
8620 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8621 {
8622 if (spa_sync_pass(spa) != 1)
8623 return;
8624
8625 /*
8626 * Note:
8627 * If the log space map feature is active, we stop deferring
8628 * frees to the next TXG and therefore running this function
8629 * would be considered a no-op as spa_deferred_bpobj should
8630 * not have any entries.
8631 *
8632 * That said we run this function anyway (instead of returning
8633 * immediately) for the edge-case scenario where we just
8634 * activated the log space map feature in this TXG but we have
8635 * deferred frees from the previous TXG.
8636 */
8637 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8638 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8639 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8640 VERIFY0(zio_wait(zio));
8641 }
8642
8643 static void
8644 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8645 {
8646 char *packed = NULL;
8647 size_t bufsize;
8648 size_t nvsize = 0;
8649 dmu_buf_t *db;
8650
8651 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8652
8653 /*
8654 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8655 * information. This avoids the dmu_buf_will_dirty() path and
8656 * saves us a pre-read to get data we don't actually care about.
8657 */
8658 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8659 packed = vmem_alloc(bufsize, KM_SLEEP);
8660
8661 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8662 KM_SLEEP) == 0);
8663 memset(packed + nvsize, 0, bufsize - nvsize);
8664
8665 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8666
8667 vmem_free(packed, bufsize);
8668
8669 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8670 dmu_buf_will_dirty(db, tx);
8671 *(uint64_t *)db->db_data = nvsize;
8672 dmu_buf_rele(db, FTAG);
8673 }
8674
8675 static void
8676 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8677 const char *config, const char *entry)
8678 {
8679 nvlist_t *nvroot;
8680 nvlist_t **list;
8681 int i;
8682
8683 if (!sav->sav_sync)
8684 return;
8685
8686 /*
8687 * Update the MOS nvlist describing the list of available devices.
8688 * spa_validate_aux() will have already made sure this nvlist is
8689 * valid and the vdevs are labeled appropriately.
8690 */
8691 if (sav->sav_object == 0) {
8692 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8693 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8694 sizeof (uint64_t), tx);
8695 VERIFY(zap_update(spa->spa_meta_objset,
8696 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8697 &sav->sav_object, tx) == 0);
8698 }
8699
8700 nvroot = fnvlist_alloc();
8701 if (sav->sav_count == 0) {
8702 fnvlist_add_nvlist_array(nvroot, config,
8703 (const nvlist_t * const *)NULL, 0);
8704 } else {
8705 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8706 for (i = 0; i < sav->sav_count; i++)
8707 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8708 B_FALSE, VDEV_CONFIG_L2CACHE);
8709 fnvlist_add_nvlist_array(nvroot, config,
8710 (const nvlist_t * const *)list, sav->sav_count);
8711 for (i = 0; i < sav->sav_count; i++)
8712 nvlist_free(list[i]);
8713 kmem_free(list, sav->sav_count * sizeof (void *));
8714 }
8715
8716 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8717 nvlist_free(nvroot);
8718
8719 sav->sav_sync = B_FALSE;
8720 }
8721
8722 /*
8723 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8724 * The all-vdev ZAP must be empty.
8725 */
8726 static void
8727 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8728 {
8729 spa_t *spa = vd->vdev_spa;
8730
8731 if (vd->vdev_root_zap != 0 &&
8732 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8733 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8734 vd->vdev_root_zap, tx));
8735 }
8736 if (vd->vdev_top_zap != 0) {
8737 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8738 vd->vdev_top_zap, tx));
8739 }
8740 if (vd->vdev_leaf_zap != 0) {
8741 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8742 vd->vdev_leaf_zap, tx));
8743 }
8744 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8745 spa_avz_build(vd->vdev_child[i], avz, tx);
8746 }
8747 }
8748
8749 static void
8750 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8751 {
8752 nvlist_t *config;
8753
8754 /*
8755 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8756 * its config may not be dirty but we still need to build per-vdev ZAPs.
8757 * Similarly, if the pool is being assembled (e.g. after a split), we
8758 * need to rebuild the AVZ although the config may not be dirty.
8759 */
8760 if (list_is_empty(&spa->spa_config_dirty_list) &&
8761 spa->spa_avz_action == AVZ_ACTION_NONE)
8762 return;
8763
8764 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8765
8766 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8767 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8768 spa->spa_all_vdev_zaps != 0);
8769
8770 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8771 /* Make and build the new AVZ */
8772 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8773 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8774 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8775
8776 /* Diff old AVZ with new one */
8777 zap_cursor_t zc;
8778 zap_attribute_t za;
8779
8780 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8781 spa->spa_all_vdev_zaps);
8782 zap_cursor_retrieve(&zc, &za) == 0;
8783 zap_cursor_advance(&zc)) {
8784 uint64_t vdzap = za.za_first_integer;
8785 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8786 vdzap) == ENOENT) {
8787 /*
8788 * ZAP is listed in old AVZ but not in new one;
8789 * destroy it
8790 */
8791 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8792 tx));
8793 }
8794 }
8795
8796 zap_cursor_fini(&zc);
8797
8798 /* Destroy the old AVZ */
8799 VERIFY0(zap_destroy(spa->spa_meta_objset,
8800 spa->spa_all_vdev_zaps, tx));
8801
8802 /* Replace the old AVZ in the dir obj with the new one */
8803 VERIFY0(zap_update(spa->spa_meta_objset,
8804 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8805 sizeof (new_avz), 1, &new_avz, tx));
8806
8807 spa->spa_all_vdev_zaps = new_avz;
8808 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8809 zap_cursor_t zc;
8810 zap_attribute_t za;
8811
8812 /* Walk through the AVZ and destroy all listed ZAPs */
8813 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8814 spa->spa_all_vdev_zaps);
8815 zap_cursor_retrieve(&zc, &za) == 0;
8816 zap_cursor_advance(&zc)) {
8817 uint64_t zap = za.za_first_integer;
8818 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8819 }
8820
8821 zap_cursor_fini(&zc);
8822
8823 /* Destroy and unlink the AVZ itself */
8824 VERIFY0(zap_destroy(spa->spa_meta_objset,
8825 spa->spa_all_vdev_zaps, tx));
8826 VERIFY0(zap_remove(spa->spa_meta_objset,
8827 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8828 spa->spa_all_vdev_zaps = 0;
8829 }
8830
8831 if (spa->spa_all_vdev_zaps == 0) {
8832 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8833 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8834 DMU_POOL_VDEV_ZAP_MAP, tx);
8835 }
8836 spa->spa_avz_action = AVZ_ACTION_NONE;
8837
8838 /* Create ZAPs for vdevs that don't have them. */
8839 vdev_construct_zaps(spa->spa_root_vdev, tx);
8840
8841 config = spa_config_generate(spa, spa->spa_root_vdev,
8842 dmu_tx_get_txg(tx), B_FALSE);
8843
8844 /*
8845 * If we're upgrading the spa version then make sure that
8846 * the config object gets updated with the correct version.
8847 */
8848 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8849 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8850 spa->spa_uberblock.ub_version);
8851
8852 spa_config_exit(spa, SCL_STATE, FTAG);
8853
8854 nvlist_free(spa->spa_config_syncing);
8855 spa->spa_config_syncing = config;
8856
8857 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8858 }
8859
8860 static void
8861 spa_sync_version(void *arg, dmu_tx_t *tx)
8862 {
8863 uint64_t *versionp = arg;
8864 uint64_t version = *versionp;
8865 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8866
8867 /*
8868 * Setting the version is special cased when first creating the pool.
8869 */
8870 ASSERT(tx->tx_txg != TXG_INITIAL);
8871
8872 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8873 ASSERT(version >= spa_version(spa));
8874
8875 spa->spa_uberblock.ub_version = version;
8876 vdev_config_dirty(spa->spa_root_vdev);
8877 spa_history_log_internal(spa, "set", tx, "version=%lld",
8878 (longlong_t)version);
8879 }
8880
8881 /*
8882 * Set zpool properties.
8883 */
8884 static void
8885 spa_sync_props(void *arg, dmu_tx_t *tx)
8886 {
8887 nvlist_t *nvp = arg;
8888 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8889 objset_t *mos = spa->spa_meta_objset;
8890 nvpair_t *elem = NULL;
8891
8892 mutex_enter(&spa->spa_props_lock);
8893
8894 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8895 uint64_t intval;
8896 const char *strval, *fname;
8897 zpool_prop_t prop;
8898 const char *propname;
8899 const char *elemname = nvpair_name(elem);
8900 zprop_type_t proptype;
8901 spa_feature_t fid;
8902
8903 switch (prop = zpool_name_to_prop(elemname)) {
8904 case ZPOOL_PROP_VERSION:
8905 intval = fnvpair_value_uint64(elem);
8906 /*
8907 * The version is synced separately before other
8908 * properties and should be correct by now.
8909 */
8910 ASSERT3U(spa_version(spa), >=, intval);
8911 break;
8912
8913 case ZPOOL_PROP_ALTROOT:
8914 /*
8915 * 'altroot' is a non-persistent property. It should
8916 * have been set temporarily at creation or import time.
8917 */
8918 ASSERT(spa->spa_root != NULL);
8919 break;
8920
8921 case ZPOOL_PROP_READONLY:
8922 case ZPOOL_PROP_CACHEFILE:
8923 /*
8924 * 'readonly' and 'cachefile' are also non-persistent
8925 * properties.
8926 */
8927 break;
8928 case ZPOOL_PROP_COMMENT:
8929 strval = fnvpair_value_string(elem);
8930 if (spa->spa_comment != NULL)
8931 spa_strfree(spa->spa_comment);
8932 spa->spa_comment = spa_strdup(strval);
8933 /*
8934 * We need to dirty the configuration on all the vdevs
8935 * so that their labels get updated. We also need to
8936 * update the cache file to keep it in sync with the
8937 * MOS version. It's unnecessary to do this for pool
8938 * creation since the vdev's configuration has already
8939 * been dirtied.
8940 */
8941 if (tx->tx_txg != TXG_INITIAL) {
8942 vdev_config_dirty(spa->spa_root_vdev);
8943 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8944 }
8945 spa_history_log_internal(spa, "set", tx,
8946 "%s=%s", elemname, strval);
8947 break;
8948 case ZPOOL_PROP_COMPATIBILITY:
8949 strval = fnvpair_value_string(elem);
8950 if (spa->spa_compatibility != NULL)
8951 spa_strfree(spa->spa_compatibility);
8952 spa->spa_compatibility = spa_strdup(strval);
8953 /*
8954 * Dirty the configuration on vdevs as above.
8955 */
8956 if (tx->tx_txg != TXG_INITIAL) {
8957 vdev_config_dirty(spa->spa_root_vdev);
8958 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8959 }
8960
8961 spa_history_log_internal(spa, "set", tx,
8962 "%s=%s", nvpair_name(elem), strval);
8963 break;
8964
8965 case ZPOOL_PROP_INVAL:
8966 if (zpool_prop_feature(elemname)) {
8967 fname = strchr(elemname, '@') + 1;
8968 VERIFY0(zfeature_lookup_name(fname, &fid));
8969
8970 spa_feature_enable(spa, fid, tx);
8971 spa_history_log_internal(spa, "set", tx,
8972 "%s=enabled", elemname);
8973 break;
8974 } else if (!zfs_prop_user(elemname)) {
8975 ASSERT(zpool_prop_feature(elemname));
8976 break;
8977 }
8978 zfs_fallthrough;
8979 default:
8980 /*
8981 * Set pool property values in the poolprops mos object.
8982 */
8983 if (spa->spa_pool_props_object == 0) {
8984 spa->spa_pool_props_object =
8985 zap_create_link(mos, DMU_OT_POOL_PROPS,
8986 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8987 tx);
8988 }
8989
8990 /* normalize the property name */
8991 if (prop == ZPOOL_PROP_INVAL) {
8992 propname = elemname;
8993 proptype = PROP_TYPE_STRING;
8994 } else {
8995 propname = zpool_prop_to_name(prop);
8996 proptype = zpool_prop_get_type(prop);
8997 }
8998
8999 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9000 ASSERT(proptype == PROP_TYPE_STRING);
9001 strval = fnvpair_value_string(elem);
9002 VERIFY0(zap_update(mos,
9003 spa->spa_pool_props_object, propname,
9004 1, strlen(strval) + 1, strval, tx));
9005 spa_history_log_internal(spa, "set", tx,
9006 "%s=%s", elemname, strval);
9007 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9008 intval = fnvpair_value_uint64(elem);
9009
9010 if (proptype == PROP_TYPE_INDEX) {
9011 const char *unused;
9012 VERIFY0(zpool_prop_index_to_string(
9013 prop, intval, &unused));
9014 }
9015 VERIFY0(zap_update(mos,
9016 spa->spa_pool_props_object, propname,
9017 8, 1, &intval, tx));
9018 spa_history_log_internal(spa, "set", tx,
9019 "%s=%lld", elemname,
9020 (longlong_t)intval);
9021
9022 switch (prop) {
9023 case ZPOOL_PROP_DELEGATION:
9024 spa->spa_delegation = intval;
9025 break;
9026 case ZPOOL_PROP_BOOTFS:
9027 spa->spa_bootfs = intval;
9028 break;
9029 case ZPOOL_PROP_FAILUREMODE:
9030 spa->spa_failmode = intval;
9031 break;
9032 case ZPOOL_PROP_AUTOTRIM:
9033 spa->spa_autotrim = intval;
9034 spa_async_request(spa,
9035 SPA_ASYNC_AUTOTRIM_RESTART);
9036 break;
9037 case ZPOOL_PROP_AUTOEXPAND:
9038 spa->spa_autoexpand = intval;
9039 if (tx->tx_txg != TXG_INITIAL)
9040 spa_async_request(spa,
9041 SPA_ASYNC_AUTOEXPAND);
9042 break;
9043 case ZPOOL_PROP_MULTIHOST:
9044 spa->spa_multihost = intval;
9045 break;
9046 default:
9047 break;
9048 }
9049 } else {
9050 ASSERT(0); /* not allowed */
9051 }
9052 }
9053
9054 }
9055
9056 mutex_exit(&spa->spa_props_lock);
9057 }
9058
9059 /*
9060 * Perform one-time upgrade on-disk changes. spa_version() does not
9061 * reflect the new version this txg, so there must be no changes this
9062 * txg to anything that the upgrade code depends on after it executes.
9063 * Therefore this must be called after dsl_pool_sync() does the sync
9064 * tasks.
9065 */
9066 static void
9067 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9068 {
9069 if (spa_sync_pass(spa) != 1)
9070 return;
9071
9072 dsl_pool_t *dp = spa->spa_dsl_pool;
9073 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9074
9075 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9076 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9077 dsl_pool_create_origin(dp, tx);
9078
9079 /* Keeping the origin open increases spa_minref */
9080 spa->spa_minref += 3;
9081 }
9082
9083 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9084 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9085 dsl_pool_upgrade_clones(dp, tx);
9086 }
9087
9088 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9089 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9090 dsl_pool_upgrade_dir_clones(dp, tx);
9091
9092 /* Keeping the freedir open increases spa_minref */
9093 spa->spa_minref += 3;
9094 }
9095
9096 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9097 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9098 spa_feature_create_zap_objects(spa, tx);
9099 }
9100
9101 /*
9102 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9103 * when possibility to use lz4 compression for metadata was added
9104 * Old pools that have this feature enabled must be upgraded to have
9105 * this feature active
9106 */
9107 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9108 boolean_t lz4_en = spa_feature_is_enabled(spa,
9109 SPA_FEATURE_LZ4_COMPRESS);
9110 boolean_t lz4_ac = spa_feature_is_active(spa,
9111 SPA_FEATURE_LZ4_COMPRESS);
9112
9113 if (lz4_en && !lz4_ac)
9114 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9115 }
9116
9117 /*
9118 * If we haven't written the salt, do so now. Note that the
9119 * feature may not be activated yet, but that's fine since
9120 * the presence of this ZAP entry is backwards compatible.
9121 */
9122 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9123 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9124 VERIFY0(zap_add(spa->spa_meta_objset,
9125 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9126 sizeof (spa->spa_cksum_salt.zcs_bytes),
9127 spa->spa_cksum_salt.zcs_bytes, tx));
9128 }
9129
9130 rrw_exit(&dp->dp_config_rwlock, FTAG);
9131 }
9132
9133 static void
9134 vdev_indirect_state_sync_verify(vdev_t *vd)
9135 {
9136 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9137 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9138
9139 if (vd->vdev_ops == &vdev_indirect_ops) {
9140 ASSERT(vim != NULL);
9141 ASSERT(vib != NULL);
9142 }
9143
9144 uint64_t obsolete_sm_object = 0;
9145 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9146 if (obsolete_sm_object != 0) {
9147 ASSERT(vd->vdev_obsolete_sm != NULL);
9148 ASSERT(vd->vdev_removing ||
9149 vd->vdev_ops == &vdev_indirect_ops);
9150 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9151 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9152 ASSERT3U(obsolete_sm_object, ==,
9153 space_map_object(vd->vdev_obsolete_sm));
9154 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9155 space_map_allocated(vd->vdev_obsolete_sm));
9156 }
9157 ASSERT(vd->vdev_obsolete_segments != NULL);
9158
9159 /*
9160 * Since frees / remaps to an indirect vdev can only
9161 * happen in syncing context, the obsolete segments
9162 * tree must be empty when we start syncing.
9163 */
9164 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9165 }
9166
9167 /*
9168 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9169 * async write queue depth in case it changed. The max queue depth will
9170 * not change in the middle of syncing out this txg.
9171 */
9172 static void
9173 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9174 {
9175 ASSERT(spa_writeable(spa));
9176
9177 vdev_t *rvd = spa->spa_root_vdev;
9178 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9179 zfs_vdev_queue_depth_pct / 100;
9180 metaslab_class_t *normal = spa_normal_class(spa);
9181 metaslab_class_t *special = spa_special_class(spa);
9182 metaslab_class_t *dedup = spa_dedup_class(spa);
9183
9184 uint64_t slots_per_allocator = 0;
9185 for (int c = 0; c < rvd->vdev_children; c++) {
9186 vdev_t *tvd = rvd->vdev_child[c];
9187
9188 metaslab_group_t *mg = tvd->vdev_mg;
9189 if (mg == NULL || !metaslab_group_initialized(mg))
9190 continue;
9191
9192 metaslab_class_t *mc = mg->mg_class;
9193 if (mc != normal && mc != special && mc != dedup)
9194 continue;
9195
9196 /*
9197 * It is safe to do a lock-free check here because only async
9198 * allocations look at mg_max_alloc_queue_depth, and async
9199 * allocations all happen from spa_sync().
9200 */
9201 for (int i = 0; i < mg->mg_allocators; i++) {
9202 ASSERT0(zfs_refcount_count(
9203 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9204 }
9205 mg->mg_max_alloc_queue_depth = max_queue_depth;
9206
9207 for (int i = 0; i < mg->mg_allocators; i++) {
9208 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9209 zfs_vdev_def_queue_depth;
9210 }
9211 slots_per_allocator += zfs_vdev_def_queue_depth;
9212 }
9213
9214 for (int i = 0; i < spa->spa_alloc_count; i++) {
9215 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9216 mca_alloc_slots));
9217 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9218 mca_alloc_slots));
9219 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9220 mca_alloc_slots));
9221 normal->mc_allocator[i].mca_alloc_max_slots =
9222 slots_per_allocator;
9223 special->mc_allocator[i].mca_alloc_max_slots =
9224 slots_per_allocator;
9225 dedup->mc_allocator[i].mca_alloc_max_slots =
9226 slots_per_allocator;
9227 }
9228 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9229 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9230 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9231 }
9232
9233 static void
9234 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9235 {
9236 ASSERT(spa_writeable(spa));
9237
9238 vdev_t *rvd = spa->spa_root_vdev;
9239 for (int c = 0; c < rvd->vdev_children; c++) {
9240 vdev_t *vd = rvd->vdev_child[c];
9241 vdev_indirect_state_sync_verify(vd);
9242
9243 if (vdev_indirect_should_condense(vd)) {
9244 spa_condense_indirect_start_sync(vd, tx);
9245 break;
9246 }
9247 }
9248 }
9249
9250 static void
9251 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9252 {
9253 objset_t *mos = spa->spa_meta_objset;
9254 dsl_pool_t *dp = spa->spa_dsl_pool;
9255 uint64_t txg = tx->tx_txg;
9256 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9257
9258 do {
9259 int pass = ++spa->spa_sync_pass;
9260
9261 spa_sync_config_object(spa, tx);
9262 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9263 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9264 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9265 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9266 spa_errlog_sync(spa, txg);
9267 dsl_pool_sync(dp, txg);
9268
9269 if (pass < zfs_sync_pass_deferred_free ||
9270 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9271 /*
9272 * If the log space map feature is active we don't
9273 * care about deferred frees and the deferred bpobj
9274 * as the log space map should effectively have the
9275 * same results (i.e. appending only to one object).
9276 */
9277 spa_sync_frees(spa, free_bpl, tx);
9278 } else {
9279 /*
9280 * We can not defer frees in pass 1, because
9281 * we sync the deferred frees later in pass 1.
9282 */
9283 ASSERT3U(pass, >, 1);
9284 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9285 &spa->spa_deferred_bpobj, tx);
9286 }
9287
9288 brt_sync(spa, txg);
9289 ddt_sync(spa, txg);
9290 dsl_scan_sync(dp, tx);
9291 dsl_errorscrub_sync(dp, tx);
9292 svr_sync(spa, tx);
9293 spa_sync_upgrades(spa, tx);
9294
9295 spa_flush_metaslabs(spa, tx);
9296
9297 vdev_t *vd = NULL;
9298 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9299 != NULL)
9300 vdev_sync(vd, txg);
9301
9302 /*
9303 * Note: We need to check if the MOS is dirty because we could
9304 * have marked the MOS dirty without updating the uberblock
9305 * (e.g. if we have sync tasks but no dirty user data). We need
9306 * to check the uberblock's rootbp because it is updated if we
9307 * have synced out dirty data (though in this case the MOS will
9308 * most likely also be dirty due to second order effects, we
9309 * don't want to rely on that here).
9310 */
9311 if (pass == 1 &&
9312 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9313 !dmu_objset_is_dirty(mos, txg)) {
9314 /*
9315 * Nothing changed on the first pass, therefore this
9316 * TXG is a no-op. Avoid syncing deferred frees, so
9317 * that we can keep this TXG as a no-op.
9318 */
9319 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9320 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9321 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9322 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9323 break;
9324 }
9325
9326 spa_sync_deferred_frees(spa, tx);
9327 } while (dmu_objset_is_dirty(mos, txg));
9328 }
9329
9330 /*
9331 * Rewrite the vdev configuration (which includes the uberblock) to
9332 * commit the transaction group.
9333 *
9334 * If there are no dirty vdevs, we sync the uberblock to a few random
9335 * top-level vdevs that are known to be visible in the config cache
9336 * (see spa_vdev_add() for a complete description). If there *are* dirty
9337 * vdevs, sync the uberblock to all vdevs.
9338 */
9339 static void
9340 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9341 {
9342 vdev_t *rvd = spa->spa_root_vdev;
9343 uint64_t txg = tx->tx_txg;
9344
9345 for (;;) {
9346 int error = 0;
9347
9348 /*
9349 * We hold SCL_STATE to prevent vdev open/close/etc.
9350 * while we're attempting to write the vdev labels.
9351 */
9352 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9353
9354 if (list_is_empty(&spa->spa_config_dirty_list)) {
9355 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9356 int svdcount = 0;
9357 int children = rvd->vdev_children;
9358 int c0 = random_in_range(children);
9359
9360 for (int c = 0; c < children; c++) {
9361 vdev_t *vd =
9362 rvd->vdev_child[(c0 + c) % children];
9363
9364 /* Stop when revisiting the first vdev */
9365 if (c > 0 && svd[0] == vd)
9366 break;
9367
9368 if (vd->vdev_ms_array == 0 ||
9369 vd->vdev_islog ||
9370 !vdev_is_concrete(vd))
9371 continue;
9372
9373 svd[svdcount++] = vd;
9374 if (svdcount == SPA_SYNC_MIN_VDEVS)
9375 break;
9376 }
9377 error = vdev_config_sync(svd, svdcount, txg);
9378 } else {
9379 error = vdev_config_sync(rvd->vdev_child,
9380 rvd->vdev_children, txg);
9381 }
9382
9383 if (error == 0)
9384 spa->spa_last_synced_guid = rvd->vdev_guid;
9385
9386 spa_config_exit(spa, SCL_STATE, FTAG);
9387
9388 if (error == 0)
9389 break;
9390 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9391 zio_resume_wait(spa);
9392 }
9393 }
9394
9395 /*
9396 * Sync the specified transaction group. New blocks may be dirtied as
9397 * part of the process, so we iterate until it converges.
9398 */
9399 void
9400 spa_sync(spa_t *spa, uint64_t txg)
9401 {
9402 vdev_t *vd = NULL;
9403
9404 VERIFY(spa_writeable(spa));
9405
9406 /*
9407 * Wait for i/os issued in open context that need to complete
9408 * before this txg syncs.
9409 */
9410 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9411 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9412 ZIO_FLAG_CANFAIL);
9413
9414 /*
9415 * Now that there can be no more cloning in this transaction group,
9416 * but we are still before issuing frees, we can process pending BRT
9417 * updates.
9418 */
9419 brt_pending_apply(spa, txg);
9420
9421 /*
9422 * Lock out configuration changes.
9423 */
9424 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9425
9426 spa->spa_syncing_txg = txg;
9427 spa->spa_sync_pass = 0;
9428
9429 for (int i = 0; i < spa->spa_alloc_count; i++) {
9430 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9431 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9432 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9433 }
9434
9435 /*
9436 * If there are any pending vdev state changes, convert them
9437 * into config changes that go out with this transaction group.
9438 */
9439 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9440 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9441 /* Avoid holding the write lock unless actually necessary */
9442 if (vd->vdev_aux == NULL) {
9443 vdev_state_clean(vd);
9444 vdev_config_dirty(vd);
9445 continue;
9446 }
9447 /*
9448 * We need the write lock here because, for aux vdevs,
9449 * calling vdev_config_dirty() modifies sav_config.
9450 * This is ugly and will become unnecessary when we
9451 * eliminate the aux vdev wart by integrating all vdevs
9452 * into the root vdev tree.
9453 */
9454 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9455 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9456 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9457 vdev_state_clean(vd);
9458 vdev_config_dirty(vd);
9459 }
9460 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9461 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9462 }
9463 spa_config_exit(spa, SCL_STATE, FTAG);
9464
9465 dsl_pool_t *dp = spa->spa_dsl_pool;
9466 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9467
9468 spa->spa_sync_starttime = gethrtime();
9469 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9470 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9471 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9472 NSEC_TO_TICK(spa->spa_deadman_synctime));
9473
9474 /*
9475 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9476 * set spa_deflate if we have no raid-z vdevs.
9477 */
9478 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9479 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9480 vdev_t *rvd = spa->spa_root_vdev;
9481
9482 int i;
9483 for (i = 0; i < rvd->vdev_children; i++) {
9484 vd = rvd->vdev_child[i];
9485 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9486 break;
9487 }
9488 if (i == rvd->vdev_children) {
9489 spa->spa_deflate = TRUE;
9490 VERIFY0(zap_add(spa->spa_meta_objset,
9491 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9492 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9493 }
9494 }
9495
9496 spa_sync_adjust_vdev_max_queue_depth(spa);
9497
9498 spa_sync_condense_indirect(spa, tx);
9499
9500 spa_sync_iterate_to_convergence(spa, tx);
9501
9502 #ifdef ZFS_DEBUG
9503 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9504 /*
9505 * Make sure that the number of ZAPs for all the vdevs matches
9506 * the number of ZAPs in the per-vdev ZAP list. This only gets
9507 * called if the config is dirty; otherwise there may be
9508 * outstanding AVZ operations that weren't completed in
9509 * spa_sync_config_object.
9510 */
9511 uint64_t all_vdev_zap_entry_count;
9512 ASSERT0(zap_count(spa->spa_meta_objset,
9513 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9514 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9515 all_vdev_zap_entry_count);
9516 }
9517 #endif
9518
9519 if (spa->spa_vdev_removal != NULL) {
9520 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9521 }
9522
9523 spa_sync_rewrite_vdev_config(spa, tx);
9524 dmu_tx_commit(tx);
9525
9526 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9527 spa->spa_deadman_tqid = 0;
9528
9529 /*
9530 * Clear the dirty config list.
9531 */
9532 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9533 vdev_config_clean(vd);
9534
9535 /*
9536 * Now that the new config has synced transactionally,
9537 * let it become visible to the config cache.
9538 */
9539 if (spa->spa_config_syncing != NULL) {
9540 spa_config_set(spa, spa->spa_config_syncing);
9541 spa->spa_config_txg = txg;
9542 spa->spa_config_syncing = NULL;
9543 }
9544
9545 dsl_pool_sync_done(dp, txg);
9546
9547 for (int i = 0; i < spa->spa_alloc_count; i++) {
9548 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9549 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9550 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9551 }
9552
9553 /*
9554 * Update usable space statistics.
9555 */
9556 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9557 != NULL)
9558 vdev_sync_done(vd, txg);
9559
9560 metaslab_class_evict_old(spa->spa_normal_class, txg);
9561 metaslab_class_evict_old(spa->spa_log_class, txg);
9562
9563 spa_sync_close_syncing_log_sm(spa);
9564
9565 spa_update_dspace(spa);
9566
9567 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9568 vdev_autotrim_kick(spa);
9569
9570 /*
9571 * It had better be the case that we didn't dirty anything
9572 * since vdev_config_sync().
9573 */
9574 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9575 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9576 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9577
9578 while (zfs_pause_spa_sync)
9579 delay(1);
9580
9581 spa->spa_sync_pass = 0;
9582
9583 /*
9584 * Update the last synced uberblock here. We want to do this at
9585 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9586 * will be guaranteed that all the processing associated with
9587 * that txg has been completed.
9588 */
9589 spa->spa_ubsync = spa->spa_uberblock;
9590 spa_config_exit(spa, SCL_CONFIG, FTAG);
9591
9592 spa_handle_ignored_writes(spa);
9593
9594 /*
9595 * If any async tasks have been requested, kick them off.
9596 */
9597 spa_async_dispatch(spa);
9598 }
9599
9600 /*
9601 * Sync all pools. We don't want to hold the namespace lock across these
9602 * operations, so we take a reference on the spa_t and drop the lock during the
9603 * sync.
9604 */
9605 void
9606 spa_sync_allpools(void)
9607 {
9608 spa_t *spa = NULL;
9609 mutex_enter(&spa_namespace_lock);
9610 while ((spa = spa_next(spa)) != NULL) {
9611 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9612 !spa_writeable(spa) || spa_suspended(spa))
9613 continue;
9614 spa_open_ref(spa, FTAG);
9615 mutex_exit(&spa_namespace_lock);
9616 txg_wait_synced(spa_get_dsl(spa), 0);
9617 mutex_enter(&spa_namespace_lock);
9618 spa_close(spa, FTAG);
9619 }
9620 mutex_exit(&spa_namespace_lock);
9621 }
9622
9623 /*
9624 * ==========================================================================
9625 * Miscellaneous routines
9626 * ==========================================================================
9627 */
9628
9629 /*
9630 * Remove all pools in the system.
9631 */
9632 void
9633 spa_evict_all(void)
9634 {
9635 spa_t *spa;
9636
9637 /*
9638 * Remove all cached state. All pools should be closed now,
9639 * so every spa in the AVL tree should be unreferenced.
9640 */
9641 mutex_enter(&spa_namespace_lock);
9642 while ((spa = spa_next(NULL)) != NULL) {
9643 /*
9644 * Stop async tasks. The async thread may need to detach
9645 * a device that's been replaced, which requires grabbing
9646 * spa_namespace_lock, so we must drop it here.
9647 */
9648 spa_open_ref(spa, FTAG);
9649 mutex_exit(&spa_namespace_lock);
9650 spa_async_suspend(spa);
9651 mutex_enter(&spa_namespace_lock);
9652 spa_close(spa, FTAG);
9653
9654 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9655 spa_unload(spa);
9656 spa_deactivate(spa);
9657 }
9658 spa_remove(spa);
9659 }
9660 mutex_exit(&spa_namespace_lock);
9661 }
9662
9663 vdev_t *
9664 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9665 {
9666 vdev_t *vd;
9667 int i;
9668
9669 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9670 return (vd);
9671
9672 if (aux) {
9673 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9674 vd = spa->spa_l2cache.sav_vdevs[i];
9675 if (vd->vdev_guid == guid)
9676 return (vd);
9677 }
9678
9679 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9680 vd = spa->spa_spares.sav_vdevs[i];
9681 if (vd->vdev_guid == guid)
9682 return (vd);
9683 }
9684 }
9685
9686 return (NULL);
9687 }
9688
9689 void
9690 spa_upgrade(spa_t *spa, uint64_t version)
9691 {
9692 ASSERT(spa_writeable(spa));
9693
9694 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9695
9696 /*
9697 * This should only be called for a non-faulted pool, and since a
9698 * future version would result in an unopenable pool, this shouldn't be
9699 * possible.
9700 */
9701 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9702 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9703
9704 spa->spa_uberblock.ub_version = version;
9705 vdev_config_dirty(spa->spa_root_vdev);
9706
9707 spa_config_exit(spa, SCL_ALL, FTAG);
9708
9709 txg_wait_synced(spa_get_dsl(spa), 0);
9710 }
9711
9712 static boolean_t
9713 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9714 {
9715 (void) spa;
9716 int i;
9717 uint64_t vdev_guid;
9718
9719 for (i = 0; i < sav->sav_count; i++)
9720 if (sav->sav_vdevs[i]->vdev_guid == guid)
9721 return (B_TRUE);
9722
9723 for (i = 0; i < sav->sav_npending; i++) {
9724 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9725 &vdev_guid) == 0 && vdev_guid == guid)
9726 return (B_TRUE);
9727 }
9728
9729 return (B_FALSE);
9730 }
9731
9732 boolean_t
9733 spa_has_l2cache(spa_t *spa, uint64_t guid)
9734 {
9735 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9736 }
9737
9738 boolean_t
9739 spa_has_spare(spa_t *spa, uint64_t guid)
9740 {
9741 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9742 }
9743
9744 /*
9745 * Check if a pool has an active shared spare device.
9746 * Note: reference count of an active spare is 2, as a spare and as a replace
9747 */
9748 static boolean_t
9749 spa_has_active_shared_spare(spa_t *spa)
9750 {
9751 int i, refcnt;
9752 uint64_t pool;
9753 spa_aux_vdev_t *sav = &spa->spa_spares;
9754
9755 for (i = 0; i < sav->sav_count; i++) {
9756 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9757 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9758 refcnt > 2)
9759 return (B_TRUE);
9760 }
9761
9762 return (B_FALSE);
9763 }
9764
9765 uint64_t
9766 spa_total_metaslabs(spa_t *spa)
9767 {
9768 vdev_t *rvd = spa->spa_root_vdev;
9769
9770 uint64_t m = 0;
9771 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9772 vdev_t *vd = rvd->vdev_child[c];
9773 if (!vdev_is_concrete(vd))
9774 continue;
9775 m += vd->vdev_ms_count;
9776 }
9777 return (m);
9778 }
9779
9780 /*
9781 * Notify any waiting threads that some activity has switched from being in-
9782 * progress to not-in-progress so that the thread can wake up and determine
9783 * whether it is finished waiting.
9784 */
9785 void
9786 spa_notify_waiters(spa_t *spa)
9787 {
9788 /*
9789 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9790 * happening between the waiting thread's check and cv_wait.
9791 */
9792 mutex_enter(&spa->spa_activities_lock);
9793 cv_broadcast(&spa->spa_activities_cv);
9794 mutex_exit(&spa->spa_activities_lock);
9795 }
9796
9797 /*
9798 * Notify any waiting threads that the pool is exporting, and then block until
9799 * they are finished using the spa_t.
9800 */
9801 void
9802 spa_wake_waiters(spa_t *spa)
9803 {
9804 mutex_enter(&spa->spa_activities_lock);
9805 spa->spa_waiters_cancel = B_TRUE;
9806 cv_broadcast(&spa->spa_activities_cv);
9807 while (spa->spa_waiters != 0)
9808 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9809 spa->spa_waiters_cancel = B_FALSE;
9810 mutex_exit(&spa->spa_activities_lock);
9811 }
9812
9813 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9814 static boolean_t
9815 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9816 {
9817 spa_t *spa = vd->vdev_spa;
9818
9819 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9820 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9821 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9822 activity == ZPOOL_WAIT_TRIM);
9823
9824 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9825 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9826
9827 mutex_exit(&spa->spa_activities_lock);
9828 mutex_enter(lock);
9829 mutex_enter(&spa->spa_activities_lock);
9830
9831 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9832 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9833 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9834 mutex_exit(lock);
9835
9836 if (in_progress)
9837 return (B_TRUE);
9838
9839 for (int i = 0; i < vd->vdev_children; i++) {
9840 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9841 activity))
9842 return (B_TRUE);
9843 }
9844
9845 return (B_FALSE);
9846 }
9847
9848 /*
9849 * If use_guid is true, this checks whether the vdev specified by guid is
9850 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9851 * is being initialized/trimmed. The caller must hold the config lock and
9852 * spa_activities_lock.
9853 */
9854 static int
9855 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9856 zpool_wait_activity_t activity, boolean_t *in_progress)
9857 {
9858 mutex_exit(&spa->spa_activities_lock);
9859 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9860 mutex_enter(&spa->spa_activities_lock);
9861
9862 vdev_t *vd;
9863 if (use_guid) {
9864 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9865 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9866 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9867 return (EINVAL);
9868 }
9869 } else {
9870 vd = spa->spa_root_vdev;
9871 }
9872
9873 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9874
9875 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9876 return (0);
9877 }
9878
9879 /*
9880 * Locking for waiting threads
9881 * ---------------------------
9882 *
9883 * Waiting threads need a way to check whether a given activity is in progress,
9884 * and then, if it is, wait for it to complete. Each activity will have some
9885 * in-memory representation of the relevant on-disk state which can be used to
9886 * determine whether or not the activity is in progress. The in-memory state and
9887 * the locking used to protect it will be different for each activity, and may
9888 * not be suitable for use with a cvar (e.g., some state is protected by the
9889 * config lock). To allow waiting threads to wait without any races, another
9890 * lock, spa_activities_lock, is used.
9891 *
9892 * When the state is checked, both the activity-specific lock (if there is one)
9893 * and spa_activities_lock are held. In some cases, the activity-specific lock
9894 * is acquired explicitly (e.g. the config lock). In others, the locking is
9895 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9896 * thread releases the activity-specific lock and, if the activity is in
9897 * progress, then cv_waits using spa_activities_lock.
9898 *
9899 * The waiting thread is woken when another thread, one completing some
9900 * activity, updates the state of the activity and then calls
9901 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9902 * needs to hold its activity-specific lock when updating the state, and this
9903 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9904 *
9905 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9906 * and because it is held when the waiting thread checks the state of the
9907 * activity, it can never be the case that the completing thread both updates
9908 * the activity state and cv_broadcasts in between the waiting thread's check
9909 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9910 *
9911 * In order to prevent deadlock, when the waiting thread does its check, in some
9912 * cases it will temporarily drop spa_activities_lock in order to acquire the
9913 * activity-specific lock. The order in which spa_activities_lock and the
9914 * activity specific lock are acquired in the waiting thread is determined by
9915 * the order in which they are acquired in the completing thread; if the
9916 * completing thread calls spa_notify_waiters with the activity-specific lock
9917 * held, then the waiting thread must also acquire the activity-specific lock
9918 * first.
9919 */
9920
9921 static int
9922 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9923 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9924 {
9925 int error = 0;
9926
9927 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9928
9929 switch (activity) {
9930 case ZPOOL_WAIT_CKPT_DISCARD:
9931 *in_progress =
9932 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9933 zap_contains(spa_meta_objset(spa),
9934 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9935 ENOENT);
9936 break;
9937 case ZPOOL_WAIT_FREE:
9938 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9939 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9940 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9941 spa_livelist_delete_check(spa));
9942 break;
9943 case ZPOOL_WAIT_INITIALIZE:
9944 case ZPOOL_WAIT_TRIM:
9945 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9946 activity, in_progress);
9947 break;
9948 case ZPOOL_WAIT_REPLACE:
9949 mutex_exit(&spa->spa_activities_lock);
9950 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9951 mutex_enter(&spa->spa_activities_lock);
9952
9953 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9954 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9955 break;
9956 case ZPOOL_WAIT_REMOVE:
9957 *in_progress = (spa->spa_removing_phys.sr_state ==
9958 DSS_SCANNING);
9959 break;
9960 case ZPOOL_WAIT_RESILVER:
9961 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9962 break;
9963 zfs_fallthrough;
9964 case ZPOOL_WAIT_SCRUB:
9965 {
9966 boolean_t scanning, paused, is_scrub;
9967 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9968
9969 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9970 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9971 paused = dsl_scan_is_paused_scrub(scn);
9972 *in_progress = (scanning && !paused &&
9973 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9974 break;
9975 }
9976 default:
9977 panic("unrecognized value for activity %d", activity);
9978 }
9979
9980 return (error);
9981 }
9982
9983 static int
9984 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9985 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9986 {
9987 /*
9988 * The tag is used to distinguish between instances of an activity.
9989 * 'initialize' and 'trim' are the only activities that we use this for.
9990 * The other activities can only have a single instance in progress in a
9991 * pool at one time, making the tag unnecessary.
9992 *
9993 * There can be multiple devices being replaced at once, but since they
9994 * all finish once resilvering finishes, we don't bother keeping track
9995 * of them individually, we just wait for them all to finish.
9996 */
9997 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9998 activity != ZPOOL_WAIT_TRIM)
9999 return (EINVAL);
10000
10001 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10002 return (EINVAL);
10003
10004 spa_t *spa;
10005 int error = spa_open(pool, &spa, FTAG);
10006 if (error != 0)
10007 return (error);
10008
10009 /*
10010 * Increment the spa's waiter count so that we can call spa_close and
10011 * still ensure that the spa_t doesn't get freed before this thread is
10012 * finished with it when the pool is exported. We want to call spa_close
10013 * before we start waiting because otherwise the additional ref would
10014 * prevent the pool from being exported or destroyed throughout the
10015 * potentially long wait.
10016 */
10017 mutex_enter(&spa->spa_activities_lock);
10018 spa->spa_waiters++;
10019 spa_close(spa, FTAG);
10020
10021 *waited = B_FALSE;
10022 for (;;) {
10023 boolean_t in_progress;
10024 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10025 &in_progress);
10026
10027 if (error || !in_progress || spa->spa_waiters_cancel)
10028 break;
10029
10030 *waited = B_TRUE;
10031
10032 if (cv_wait_sig(&spa->spa_activities_cv,
10033 &spa->spa_activities_lock) == 0) {
10034 error = EINTR;
10035 break;
10036 }
10037 }
10038
10039 spa->spa_waiters--;
10040 cv_signal(&spa->spa_waiters_cv);
10041 mutex_exit(&spa->spa_activities_lock);
10042
10043 return (error);
10044 }
10045
10046 /*
10047 * Wait for a particular instance of the specified activity to complete, where
10048 * the instance is identified by 'tag'
10049 */
10050 int
10051 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10052 boolean_t *waited)
10053 {
10054 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10055 }
10056
10057 /*
10058 * Wait for all instances of the specified activity complete
10059 */
10060 int
10061 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10062 {
10063
10064 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10065 }
10066
10067 sysevent_t *
10068 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10069 {
10070 sysevent_t *ev = NULL;
10071 #ifdef _KERNEL
10072 nvlist_t *resource;
10073
10074 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10075 if (resource) {
10076 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10077 ev->resource = resource;
10078 }
10079 #else
10080 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10081 #endif
10082 return (ev);
10083 }
10084
10085 void
10086 spa_event_post(sysevent_t *ev)
10087 {
10088 #ifdef _KERNEL
10089 if (ev) {
10090 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10091 kmem_free(ev, sizeof (*ev));
10092 }
10093 #else
10094 (void) ev;
10095 #endif
10096 }
10097
10098 /*
10099 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10100 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10101 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10102 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10103 * or zdb as real changes.
10104 */
10105 void
10106 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10107 {
10108 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10109 }
10110
10111 /* state manipulation functions */
10112 EXPORT_SYMBOL(spa_open);
10113 EXPORT_SYMBOL(spa_open_rewind);
10114 EXPORT_SYMBOL(spa_get_stats);
10115 EXPORT_SYMBOL(spa_create);
10116 EXPORT_SYMBOL(spa_import);
10117 EXPORT_SYMBOL(spa_tryimport);
10118 EXPORT_SYMBOL(spa_destroy);
10119 EXPORT_SYMBOL(spa_export);
10120 EXPORT_SYMBOL(spa_reset);
10121 EXPORT_SYMBOL(spa_async_request);
10122 EXPORT_SYMBOL(spa_async_suspend);
10123 EXPORT_SYMBOL(spa_async_resume);
10124 EXPORT_SYMBOL(spa_inject_addref);
10125 EXPORT_SYMBOL(spa_inject_delref);
10126 EXPORT_SYMBOL(spa_scan_stat_init);
10127 EXPORT_SYMBOL(spa_scan_get_stats);
10128
10129 /* device manipulation */
10130 EXPORT_SYMBOL(spa_vdev_add);
10131 EXPORT_SYMBOL(spa_vdev_attach);
10132 EXPORT_SYMBOL(spa_vdev_detach);
10133 EXPORT_SYMBOL(spa_vdev_setpath);
10134 EXPORT_SYMBOL(spa_vdev_setfru);
10135 EXPORT_SYMBOL(spa_vdev_split_mirror);
10136
10137 /* spare statech is global across all pools) */
10138 EXPORT_SYMBOL(spa_spare_add);
10139 EXPORT_SYMBOL(spa_spare_remove);
10140 EXPORT_SYMBOL(spa_spare_exists);
10141 EXPORT_SYMBOL(spa_spare_activate);
10142
10143 /* L2ARC statech is global across all pools) */
10144 EXPORT_SYMBOL(spa_l2cache_add);
10145 EXPORT_SYMBOL(spa_l2cache_remove);
10146 EXPORT_SYMBOL(spa_l2cache_exists);
10147 EXPORT_SYMBOL(spa_l2cache_activate);
10148 EXPORT_SYMBOL(spa_l2cache_drop);
10149
10150 /* scanning */
10151 EXPORT_SYMBOL(spa_scan);
10152 EXPORT_SYMBOL(spa_scan_stop);
10153
10154 /* spa syncing */
10155 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10156 EXPORT_SYMBOL(spa_sync_allpools);
10157
10158 /* properties */
10159 EXPORT_SYMBOL(spa_prop_set);
10160 EXPORT_SYMBOL(spa_prop_get);
10161 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10162
10163 /* asynchronous event notification */
10164 EXPORT_SYMBOL(spa_event_notify);
10165
10166 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10167 "Percentage of CPUs to run a metaslab preload taskq");
10168
10169 /* BEGIN CSTYLED */
10170 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10171 "log2 fraction of arc that can be used by inflight I/Os when "
10172 "verifying pool during import");
10173 /* END CSTYLED */
10174
10175 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10176 "Set to traverse metadata on pool import");
10177
10178 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10179 "Set to traverse data on pool import");
10180
10181 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10182 "Print vdev tree to zfs_dbgmsg during pool import");
10183
10184 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10185 "Percentage of CPUs to run an IO worker thread");
10186
10187 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10188 "Number of threads per IO worker taskqueue");
10189
10190 /* BEGIN CSTYLED */
10191 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10192 "Allow importing pool with up to this number of missing top-level "
10193 "vdevs (in read-only mode)");
10194 /* END CSTYLED */
10195
10196 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10197 ZMOD_RW, "Set the livelist condense zthr to pause");
10198
10199 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10200 ZMOD_RW, "Set the livelist condense synctask to pause");
10201
10202 /* BEGIN CSTYLED */
10203 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10204 INT, ZMOD_RW,
10205 "Whether livelist condensing was canceled in the synctask");
10206
10207 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10208 INT, ZMOD_RW,
10209 "Whether livelist condensing was canceled in the zthr function");
10210
10211 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10212 ZMOD_RW,
10213 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10214 "was being condensed");
10215 /* END CSTYLED */