]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Fix sync behavior for disk vdevs
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 */
29
30 /*
31 * SPA: Storage Pool Allocator
32 *
33 * This file contains all the routines used when modifying on-disk SPA state.
34 * This includes opening, importing, destroying, exporting a pool, and syncing a
35 * pool.
36 */
37
38 #include <sys/zfs_context.h>
39 #include <sys/fm/fs/zfs.h>
40 #include <sys/spa_impl.h>
41 #include <sys/zio.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu.h>
44 #include <sys/dmu_tx.h>
45 #include <sys/zap.h>
46 #include <sys/zil.h>
47 #include <sys/ddt.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/vdev_disk.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72 #include <sys/zvol.h>
73
74 #ifdef _KERNEL
75 #include <sys/bootprops.h>
76 #include <sys/callb.h>
77 #include <sys/cpupart.h>
78 #include <sys/pool.h>
79 #include <sys/sysdc.h>
80 #include <sys/zone.h>
81 #endif /* _KERNEL */
82
83 #include "zfs_prop.h"
84 #include "zfs_comutil.h"
85
86 /*
87 * The interval, in seconds, at which failed configuration cache file writes
88 * should be retried.
89 */
90 static int zfs_ccw_retry_interval = 300;
91
92 typedef enum zti_modes {
93 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
94 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
95 ZTI_MODE_NULL, /* don't create a taskq */
96 ZTI_NMODES
97 } zti_modes_t;
98
99 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
100 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
101 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
102 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
103
104 #define ZTI_N(n) ZTI_P(n, 1)
105 #define ZTI_ONE ZTI_N(1)
106
107 typedef struct zio_taskq_info {
108 zti_modes_t zti_mode;
109 uint_t zti_value;
110 uint_t zti_count;
111 } zio_taskq_info_t;
112
113 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
114 "iss", "iss_h", "int", "int_h"
115 };
116
117 /*
118 * This table defines the taskq settings for each ZFS I/O type. When
119 * initializing a pool, we use this table to create an appropriately sized
120 * taskq. Some operations are low volume and therefore have a small, static
121 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
122 * macros. Other operations process a large amount of data; the ZTI_BATCH
123 * macro causes us to create a taskq oriented for throughput. Some operations
124 * are so high frequency and short-lived that the taskq itself can become a a
125 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
126 * additional degree of parallelism specified by the number of threads per-
127 * taskq and the number of taskqs; when dispatching an event in this case, the
128 * particular taskq is chosen at random.
129 *
130 * The different taskq priorities are to handle the different contexts (issue
131 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
132 * need to be handled with minimum delay.
133 */
134 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
135 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
137 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
138 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
139 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
141 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
142 };
143
144 static void spa_sync_version(void *arg, dmu_tx_t *tx);
145 static void spa_sync_props(void *arg, dmu_tx_t *tx);
146 static boolean_t spa_has_active_shared_spare(spa_t *spa);
147 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
148 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
149 char **ereport);
150 static void spa_vdev_resilver_done(spa_t *spa);
151
152 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
153 id_t zio_taskq_psrset_bind = PS_NONE;
154 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
155 uint_t zio_taskq_basedc = 80; /* base duty cycle */
156
157 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
158
159 /*
160 * This (illegal) pool name is used when temporarily importing a spa_t in order
161 * to get the vdev stats associated with the imported devices.
162 */
163 #define TRYIMPORT_NAME "$import"
164
165 /*
166 * ==========================================================================
167 * SPA properties routines
168 * ==========================================================================
169 */
170
171 /*
172 * Add a (source=src, propname=propval) list to an nvlist.
173 */
174 static void
175 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
176 uint64_t intval, zprop_source_t src)
177 {
178 const char *propname = zpool_prop_to_name(prop);
179 nvlist_t *propval;
180
181 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
182 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
183
184 if (strval != NULL)
185 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
186 else
187 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
188
189 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
190 nvlist_free(propval);
191 }
192
193 /*
194 * Get property values from the spa configuration.
195 */
196 static void
197 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
198 {
199 vdev_t *rvd = spa->spa_root_vdev;
200 dsl_pool_t *pool = spa->spa_dsl_pool;
201 uint64_t size, alloc, cap, version;
202 zprop_source_t src = ZPROP_SRC_NONE;
203 spa_config_dirent_t *dp;
204 metaslab_class_t *mc = spa_normal_class(spa);
205
206 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207
208 if (rvd != NULL) {
209 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 size = metaslab_class_get_space(spa_normal_class(spa));
211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 size - alloc, src);
216
217 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
218 metaslab_class_fragmentation(mc), src);
219 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
220 metaslab_class_expandable_space(mc), src);
221 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
222 (spa_mode(spa) == FREAD), src);
223
224 cap = (size == 0) ? 0 : (alloc * 100 / size);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
228 ddt_get_pool_dedup_ratio(spa), src);
229
230 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
231 rvd->vdev_state, src);
232
233 version = spa_version(spa);
234 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
235 src = ZPROP_SRC_DEFAULT;
236 else
237 src = ZPROP_SRC_LOCAL;
238 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
239 }
240
241 if (pool != NULL) {
242 /*
243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
244 * when opening pools before this version freedir will be NULL.
245 */
246 if (pool->dp_free_dir != NULL) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
248 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
249 src);
250 } else {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
252 NULL, 0, src);
253 }
254
255 if (pool->dp_leak_dir != NULL) {
256 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
257 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
258 src);
259 } else {
260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 NULL, 0, src);
262 }
263 }
264
265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266
267 if (spa->spa_comment != NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 0, ZPROP_SRC_LOCAL);
270 }
271
272 if (spa->spa_root != NULL)
273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 0, ZPROP_SRC_LOCAL);
275
276 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
279 } else {
280 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
281 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
282 }
283
284 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
285 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
286 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
287 } else {
288 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
289 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
290 }
291
292 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
293 if (dp->scd_path == NULL) {
294 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
295 "none", 0, ZPROP_SRC_LOCAL);
296 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
297 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
298 dp->scd_path, 0, ZPROP_SRC_LOCAL);
299 }
300 }
301 }
302
303 /*
304 * Get zpool property values.
305 */
306 int
307 spa_prop_get(spa_t *spa, nvlist_t **nvp)
308 {
309 objset_t *mos = spa->spa_meta_objset;
310 zap_cursor_t zc;
311 zap_attribute_t za;
312 int err;
313
314 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
315 if (err)
316 return (err);
317
318 mutex_enter(&spa->spa_props_lock);
319
320 /*
321 * Get properties from the spa config.
322 */
323 spa_prop_get_config(spa, nvp);
324
325 /* If no pool property object, no more prop to get. */
326 if (mos == NULL || spa->spa_pool_props_object == 0) {
327 mutex_exit(&spa->spa_props_lock);
328 goto out;
329 }
330
331 /*
332 * Get properties from the MOS pool property object.
333 */
334 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
335 (err = zap_cursor_retrieve(&zc, &za)) == 0;
336 zap_cursor_advance(&zc)) {
337 uint64_t intval = 0;
338 char *strval = NULL;
339 zprop_source_t src = ZPROP_SRC_DEFAULT;
340 zpool_prop_t prop;
341
342 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
343 continue;
344
345 switch (za.za_integer_length) {
346 case 8:
347 /* integer property */
348 if (za.za_first_integer !=
349 zpool_prop_default_numeric(prop))
350 src = ZPROP_SRC_LOCAL;
351
352 if (prop == ZPOOL_PROP_BOOTFS) {
353 dsl_pool_t *dp;
354 dsl_dataset_t *ds = NULL;
355
356 dp = spa_get_dsl(spa);
357 dsl_pool_config_enter(dp, FTAG);
358 if ((err = dsl_dataset_hold_obj(dp,
359 za.za_first_integer, FTAG, &ds))) {
360 dsl_pool_config_exit(dp, FTAG);
361 break;
362 }
363
364 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
365 KM_SLEEP);
366 dsl_dataset_name(ds, strval);
367 dsl_dataset_rele(ds, FTAG);
368 dsl_pool_config_exit(dp, FTAG);
369 } else {
370 strval = NULL;
371 intval = za.za_first_integer;
372 }
373
374 spa_prop_add_list(*nvp, prop, strval, intval, src);
375
376 if (strval != NULL)
377 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
378
379 break;
380
381 case 1:
382 /* string property */
383 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
384 err = zap_lookup(mos, spa->spa_pool_props_object,
385 za.za_name, 1, za.za_num_integers, strval);
386 if (err) {
387 kmem_free(strval, za.za_num_integers);
388 break;
389 }
390 spa_prop_add_list(*nvp, prop, strval, 0, src);
391 kmem_free(strval, za.za_num_integers);
392 break;
393
394 default:
395 break;
396 }
397 }
398 zap_cursor_fini(&zc);
399 mutex_exit(&spa->spa_props_lock);
400 out:
401 if (err && err != ENOENT) {
402 nvlist_free(*nvp);
403 *nvp = NULL;
404 return (err);
405 }
406
407 return (0);
408 }
409
410 /*
411 * Validate the given pool properties nvlist and modify the list
412 * for the property values to be set.
413 */
414 static int
415 spa_prop_validate(spa_t *spa, nvlist_t *props)
416 {
417 nvpair_t *elem;
418 int error = 0, reset_bootfs = 0;
419 uint64_t objnum = 0;
420 boolean_t has_feature = B_FALSE;
421
422 elem = NULL;
423 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
424 uint64_t intval;
425 char *strval, *slash, *check, *fname;
426 const char *propname = nvpair_name(elem);
427 zpool_prop_t prop = zpool_name_to_prop(propname);
428
429 switch ((int)prop) {
430 case ZPROP_INVAL:
431 if (!zpool_prop_feature(propname)) {
432 error = SET_ERROR(EINVAL);
433 break;
434 }
435
436 /*
437 * Sanitize the input.
438 */
439 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
440 error = SET_ERROR(EINVAL);
441 break;
442 }
443
444 if (nvpair_value_uint64(elem, &intval) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
447 }
448
449 if (intval != 0) {
450 error = SET_ERROR(EINVAL);
451 break;
452 }
453
454 fname = strchr(propname, '@') + 1;
455 if (zfeature_lookup_name(fname, NULL) != 0) {
456 error = SET_ERROR(EINVAL);
457 break;
458 }
459
460 has_feature = B_TRUE;
461 break;
462
463 case ZPOOL_PROP_VERSION:
464 error = nvpair_value_uint64(elem, &intval);
465 if (!error &&
466 (intval < spa_version(spa) ||
467 intval > SPA_VERSION_BEFORE_FEATURES ||
468 has_feature))
469 error = SET_ERROR(EINVAL);
470 break;
471
472 case ZPOOL_PROP_DELEGATION:
473 case ZPOOL_PROP_AUTOREPLACE:
474 case ZPOOL_PROP_LISTSNAPS:
475 case ZPOOL_PROP_AUTOEXPAND:
476 error = nvpair_value_uint64(elem, &intval);
477 if (!error && intval > 1)
478 error = SET_ERROR(EINVAL);
479 break;
480
481 case ZPOOL_PROP_BOOTFS:
482 /*
483 * If the pool version is less than SPA_VERSION_BOOTFS,
484 * or the pool is still being created (version == 0),
485 * the bootfs property cannot be set.
486 */
487 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
488 error = SET_ERROR(ENOTSUP);
489 break;
490 }
491
492 /*
493 * Make sure the vdev config is bootable
494 */
495 if (!vdev_is_bootable(spa->spa_root_vdev)) {
496 error = SET_ERROR(ENOTSUP);
497 break;
498 }
499
500 reset_bootfs = 1;
501
502 error = nvpair_value_string(elem, &strval);
503
504 if (!error) {
505 objset_t *os;
506 uint64_t propval;
507
508 if (strval == NULL || strval[0] == '\0') {
509 objnum = zpool_prop_default_numeric(
510 ZPOOL_PROP_BOOTFS);
511 break;
512 }
513
514 error = dmu_objset_hold(strval, FTAG, &os);
515 if (error)
516 break;
517
518 /*
519 * Must be ZPL, and its property settings
520 * must be supported by GRUB (compression
521 * is not gzip, and large blocks or large
522 * dnodes are not used).
523 */
524
525 if (dmu_objset_type(os) != DMU_OST_ZFS) {
526 error = SET_ERROR(ENOTSUP);
527 } else if ((error =
528 dsl_prop_get_int_ds(dmu_objset_ds(os),
529 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
530 &propval)) == 0 &&
531 !BOOTFS_COMPRESS_VALID(propval)) {
532 error = SET_ERROR(ENOTSUP);
533 } else if ((error =
534 dsl_prop_get_int_ds(dmu_objset_ds(os),
535 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
536 &propval)) == 0 &&
537 propval > SPA_OLD_MAXBLOCKSIZE) {
538 error = SET_ERROR(ENOTSUP);
539 } else if ((error =
540 dsl_prop_get_int_ds(dmu_objset_ds(os),
541 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
542 &propval)) == 0 &&
543 propval != ZFS_DNSIZE_LEGACY) {
544 error = SET_ERROR(ENOTSUP);
545 } else {
546 objnum = dmu_objset_id(os);
547 }
548 dmu_objset_rele(os, FTAG);
549 }
550 break;
551
552 case ZPOOL_PROP_FAILUREMODE:
553 error = nvpair_value_uint64(elem, &intval);
554 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
555 intval > ZIO_FAILURE_MODE_PANIC))
556 error = SET_ERROR(EINVAL);
557
558 /*
559 * This is a special case which only occurs when
560 * the pool has completely failed. This allows
561 * the user to change the in-core failmode property
562 * without syncing it out to disk (I/Os might
563 * currently be blocked). We do this by returning
564 * EIO to the caller (spa_prop_set) to trick it
565 * into thinking we encountered a property validation
566 * error.
567 */
568 if (!error && spa_suspended(spa)) {
569 spa->spa_failmode = intval;
570 error = SET_ERROR(EIO);
571 }
572 break;
573
574 case ZPOOL_PROP_CACHEFILE:
575 if ((error = nvpair_value_string(elem, &strval)) != 0)
576 break;
577
578 if (strval[0] == '\0')
579 break;
580
581 if (strcmp(strval, "none") == 0)
582 break;
583
584 if (strval[0] != '/') {
585 error = SET_ERROR(EINVAL);
586 break;
587 }
588
589 slash = strrchr(strval, '/');
590 ASSERT(slash != NULL);
591
592 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
593 strcmp(slash, "/..") == 0)
594 error = SET_ERROR(EINVAL);
595 break;
596
597 case ZPOOL_PROP_COMMENT:
598 if ((error = nvpair_value_string(elem, &strval)) != 0)
599 break;
600 for (check = strval; *check != '\0'; check++) {
601 if (!isprint(*check)) {
602 error = SET_ERROR(EINVAL);
603 break;
604 }
605 }
606 if (strlen(strval) > ZPROP_MAX_COMMENT)
607 error = SET_ERROR(E2BIG);
608 break;
609
610 case ZPOOL_PROP_DEDUPDITTO:
611 if (spa_version(spa) < SPA_VERSION_DEDUP)
612 error = SET_ERROR(ENOTSUP);
613 else
614 error = nvpair_value_uint64(elem, &intval);
615 if (error == 0 &&
616 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
617 error = SET_ERROR(EINVAL);
618 break;
619
620 default:
621 break;
622 }
623
624 if (error)
625 break;
626 }
627
628 if (!error && reset_bootfs) {
629 error = nvlist_remove(props,
630 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
631
632 if (!error) {
633 error = nvlist_add_uint64(props,
634 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
635 }
636 }
637
638 return (error);
639 }
640
641 void
642 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
643 {
644 char *cachefile;
645 spa_config_dirent_t *dp;
646
647 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
648 &cachefile) != 0)
649 return;
650
651 dp = kmem_alloc(sizeof (spa_config_dirent_t),
652 KM_SLEEP);
653
654 if (cachefile[0] == '\0')
655 dp->scd_path = spa_strdup(spa_config_path);
656 else if (strcmp(cachefile, "none") == 0)
657 dp->scd_path = NULL;
658 else
659 dp->scd_path = spa_strdup(cachefile);
660
661 list_insert_head(&spa->spa_config_list, dp);
662 if (need_sync)
663 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
664 }
665
666 int
667 spa_prop_set(spa_t *spa, nvlist_t *nvp)
668 {
669 int error;
670 nvpair_t *elem = NULL;
671 boolean_t need_sync = B_FALSE;
672
673 if ((error = spa_prop_validate(spa, nvp)) != 0)
674 return (error);
675
676 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
677 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
678
679 if (prop == ZPOOL_PROP_CACHEFILE ||
680 prop == ZPOOL_PROP_ALTROOT ||
681 prop == ZPOOL_PROP_READONLY)
682 continue;
683
684 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
685 uint64_t ver;
686
687 if (prop == ZPOOL_PROP_VERSION) {
688 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
689 } else {
690 ASSERT(zpool_prop_feature(nvpair_name(elem)));
691 ver = SPA_VERSION_FEATURES;
692 need_sync = B_TRUE;
693 }
694
695 /* Save time if the version is already set. */
696 if (ver == spa_version(spa))
697 continue;
698
699 /*
700 * In addition to the pool directory object, we might
701 * create the pool properties object, the features for
702 * read object, the features for write object, or the
703 * feature descriptions object.
704 */
705 error = dsl_sync_task(spa->spa_name, NULL,
706 spa_sync_version, &ver,
707 6, ZFS_SPACE_CHECK_RESERVED);
708 if (error)
709 return (error);
710 continue;
711 }
712
713 need_sync = B_TRUE;
714 break;
715 }
716
717 if (need_sync) {
718 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
719 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
720 }
721
722 return (0);
723 }
724
725 /*
726 * If the bootfs property value is dsobj, clear it.
727 */
728 void
729 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
730 {
731 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
732 VERIFY(zap_remove(spa->spa_meta_objset,
733 spa->spa_pool_props_object,
734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
735 spa->spa_bootfs = 0;
736 }
737 }
738
739 /*ARGSUSED*/
740 static int
741 spa_change_guid_check(void *arg, dmu_tx_t *tx)
742 {
743 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
744 vdev_t *rvd = spa->spa_root_vdev;
745 uint64_t vdev_state;
746 ASSERTV(uint64_t *newguid = arg);
747
748 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
749 vdev_state = rvd->vdev_state;
750 spa_config_exit(spa, SCL_STATE, FTAG);
751
752 if (vdev_state != VDEV_STATE_HEALTHY)
753 return (SET_ERROR(ENXIO));
754
755 ASSERT3U(spa_guid(spa), !=, *newguid);
756
757 return (0);
758 }
759
760 static void
761 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
762 {
763 uint64_t *newguid = arg;
764 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
765 uint64_t oldguid;
766 vdev_t *rvd = spa->spa_root_vdev;
767
768 oldguid = spa_guid(spa);
769
770 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
771 rvd->vdev_guid = *newguid;
772 rvd->vdev_guid_sum += (*newguid - oldguid);
773 vdev_config_dirty(rvd);
774 spa_config_exit(spa, SCL_STATE, FTAG);
775
776 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
777 oldguid, *newguid);
778 }
779
780 /*
781 * Change the GUID for the pool. This is done so that we can later
782 * re-import a pool built from a clone of our own vdevs. We will modify
783 * the root vdev's guid, our own pool guid, and then mark all of our
784 * vdevs dirty. Note that we must make sure that all our vdevs are
785 * online when we do this, or else any vdevs that weren't present
786 * would be orphaned from our pool. We are also going to issue a
787 * sysevent to update any watchers.
788 */
789 int
790 spa_change_guid(spa_t *spa)
791 {
792 int error;
793 uint64_t guid;
794
795 mutex_enter(&spa->spa_vdev_top_lock);
796 mutex_enter(&spa_namespace_lock);
797 guid = spa_generate_guid(NULL);
798
799 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
800 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
801
802 if (error == 0) {
803 spa_config_sync(spa, B_FALSE, B_TRUE);
804 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
805 }
806
807 mutex_exit(&spa_namespace_lock);
808 mutex_exit(&spa->spa_vdev_top_lock);
809
810 return (error);
811 }
812
813 /*
814 * ==========================================================================
815 * SPA state manipulation (open/create/destroy/import/export)
816 * ==========================================================================
817 */
818
819 static int
820 spa_error_entry_compare(const void *a, const void *b)
821 {
822 spa_error_entry_t *sa = (spa_error_entry_t *)a;
823 spa_error_entry_t *sb = (spa_error_entry_t *)b;
824 int ret;
825
826 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
827 sizeof (zbookmark_phys_t));
828
829 if (ret < 0)
830 return (-1);
831 else if (ret > 0)
832 return (1);
833 else
834 return (0);
835 }
836
837 /*
838 * Utility function which retrieves copies of the current logs and
839 * re-initializes them in the process.
840 */
841 void
842 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
843 {
844 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
845
846 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
847 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
848
849 avl_create(&spa->spa_errlist_scrub,
850 spa_error_entry_compare, sizeof (spa_error_entry_t),
851 offsetof(spa_error_entry_t, se_avl));
852 avl_create(&spa->spa_errlist_last,
853 spa_error_entry_compare, sizeof (spa_error_entry_t),
854 offsetof(spa_error_entry_t, se_avl));
855 }
856
857 static void
858 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
859 {
860 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
861 enum zti_modes mode = ztip->zti_mode;
862 uint_t value = ztip->zti_value;
863 uint_t count = ztip->zti_count;
864 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
865 char name[32];
866 uint_t i, flags = TASKQ_DYNAMIC;
867 boolean_t batch = B_FALSE;
868
869 if (mode == ZTI_MODE_NULL) {
870 tqs->stqs_count = 0;
871 tqs->stqs_taskq = NULL;
872 return;
873 }
874
875 ASSERT3U(count, >, 0);
876
877 tqs->stqs_count = count;
878 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
879
880 switch (mode) {
881 case ZTI_MODE_FIXED:
882 ASSERT3U(value, >=, 1);
883 value = MAX(value, 1);
884 break;
885
886 case ZTI_MODE_BATCH:
887 batch = B_TRUE;
888 flags |= TASKQ_THREADS_CPU_PCT;
889 value = MIN(zio_taskq_batch_pct, 100);
890 break;
891
892 default:
893 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
894 "spa_activate()",
895 zio_type_name[t], zio_taskq_types[q], mode, value);
896 break;
897 }
898
899 for (i = 0; i < count; i++) {
900 taskq_t *tq;
901
902 if (count > 1) {
903 (void) snprintf(name, sizeof (name), "%s_%s_%u",
904 zio_type_name[t], zio_taskq_types[q], i);
905 } else {
906 (void) snprintf(name, sizeof (name), "%s_%s",
907 zio_type_name[t], zio_taskq_types[q]);
908 }
909
910 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
911 if (batch)
912 flags |= TASKQ_DC_BATCH;
913
914 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
915 spa->spa_proc, zio_taskq_basedc, flags);
916 } else {
917 pri_t pri = maxclsyspri;
918 /*
919 * The write issue taskq can be extremely CPU
920 * intensive. Run it at slightly less important
921 * priority than the other taskqs. Under Linux this
922 * means incrementing the priority value on platforms
923 * like illumos it should be decremented.
924 */
925 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
926 pri++;
927
928 tq = taskq_create_proc(name, value, pri, 50,
929 INT_MAX, spa->spa_proc, flags);
930 }
931
932 tqs->stqs_taskq[i] = tq;
933 }
934 }
935
936 static void
937 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
938 {
939 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
940 uint_t i;
941
942 if (tqs->stqs_taskq == NULL) {
943 ASSERT3U(tqs->stqs_count, ==, 0);
944 return;
945 }
946
947 for (i = 0; i < tqs->stqs_count; i++) {
948 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
949 taskq_destroy(tqs->stqs_taskq[i]);
950 }
951
952 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
953 tqs->stqs_taskq = NULL;
954 }
955
956 /*
957 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
958 * Note that a type may have multiple discrete taskqs to avoid lock contention
959 * on the taskq itself. In that case we choose which taskq at random by using
960 * the low bits of gethrtime().
961 */
962 void
963 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
964 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
965 {
966 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
967 taskq_t *tq;
968
969 ASSERT3P(tqs->stqs_taskq, !=, NULL);
970 ASSERT3U(tqs->stqs_count, !=, 0);
971
972 if (tqs->stqs_count == 1) {
973 tq = tqs->stqs_taskq[0];
974 } else {
975 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
976 }
977
978 taskq_dispatch_ent(tq, func, arg, flags, ent);
979 }
980
981 /*
982 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
983 */
984 void
985 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
986 task_func_t *func, void *arg, uint_t flags)
987 {
988 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
989 taskq_t *tq;
990 taskqid_t id;
991
992 ASSERT3P(tqs->stqs_taskq, !=, NULL);
993 ASSERT3U(tqs->stqs_count, !=, 0);
994
995 if (tqs->stqs_count == 1) {
996 tq = tqs->stqs_taskq[0];
997 } else {
998 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
999 }
1000
1001 id = taskq_dispatch(tq, func, arg, flags);
1002 if (id)
1003 taskq_wait_id(tq, id);
1004 }
1005
1006 static void
1007 spa_create_zio_taskqs(spa_t *spa)
1008 {
1009 int t, q;
1010
1011 for (t = 0; t < ZIO_TYPES; t++) {
1012 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1013 spa_taskqs_init(spa, t, q);
1014 }
1015 }
1016 }
1017
1018 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1019 static void
1020 spa_thread(void *arg)
1021 {
1022 callb_cpr_t cprinfo;
1023
1024 spa_t *spa = arg;
1025 user_t *pu = PTOU(curproc);
1026
1027 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1028 spa->spa_name);
1029
1030 ASSERT(curproc != &p0);
1031 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1032 "zpool-%s", spa->spa_name);
1033 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1034
1035 /* bind this thread to the requested psrset */
1036 if (zio_taskq_psrset_bind != PS_NONE) {
1037 pool_lock();
1038 mutex_enter(&cpu_lock);
1039 mutex_enter(&pidlock);
1040 mutex_enter(&curproc->p_lock);
1041
1042 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1043 0, NULL, NULL) == 0) {
1044 curthread->t_bind_pset = zio_taskq_psrset_bind;
1045 } else {
1046 cmn_err(CE_WARN,
1047 "Couldn't bind process for zfs pool \"%s\" to "
1048 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1049 }
1050
1051 mutex_exit(&curproc->p_lock);
1052 mutex_exit(&pidlock);
1053 mutex_exit(&cpu_lock);
1054 pool_unlock();
1055 }
1056
1057 if (zio_taskq_sysdc) {
1058 sysdc_thread_enter(curthread, 100, 0);
1059 }
1060
1061 spa->spa_proc = curproc;
1062 spa->spa_did = curthread->t_did;
1063
1064 spa_create_zio_taskqs(spa);
1065
1066 mutex_enter(&spa->spa_proc_lock);
1067 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1068
1069 spa->spa_proc_state = SPA_PROC_ACTIVE;
1070 cv_broadcast(&spa->spa_proc_cv);
1071
1072 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1073 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1074 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1075 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1076
1077 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1078 spa->spa_proc_state = SPA_PROC_GONE;
1079 spa->spa_proc = &p0;
1080 cv_broadcast(&spa->spa_proc_cv);
1081 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1082
1083 mutex_enter(&curproc->p_lock);
1084 lwp_exit();
1085 }
1086 #endif
1087
1088 /*
1089 * Activate an uninitialized pool.
1090 */
1091 static void
1092 spa_activate(spa_t *spa, int mode)
1093 {
1094 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1095
1096 spa->spa_state = POOL_STATE_ACTIVE;
1097 spa->spa_mode = mode;
1098
1099 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1100 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1101
1102 /* Try to create a covering process */
1103 mutex_enter(&spa->spa_proc_lock);
1104 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1105 ASSERT(spa->spa_proc == &p0);
1106 spa->spa_did = 0;
1107
1108 #ifdef HAVE_SPA_THREAD
1109 /* Only create a process if we're going to be around a while. */
1110 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1111 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1112 NULL, 0) == 0) {
1113 spa->spa_proc_state = SPA_PROC_CREATED;
1114 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1115 cv_wait(&spa->spa_proc_cv,
1116 &spa->spa_proc_lock);
1117 }
1118 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1119 ASSERT(spa->spa_proc != &p0);
1120 ASSERT(spa->spa_did != 0);
1121 } else {
1122 #ifdef _KERNEL
1123 cmn_err(CE_WARN,
1124 "Couldn't create process for zfs pool \"%s\"\n",
1125 spa->spa_name);
1126 #endif
1127 }
1128 }
1129 #endif /* HAVE_SPA_THREAD */
1130 mutex_exit(&spa->spa_proc_lock);
1131
1132 /* If we didn't create a process, we need to create our taskqs. */
1133 if (spa->spa_proc == &p0) {
1134 spa_create_zio_taskqs(spa);
1135 }
1136
1137 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1138 offsetof(vdev_t, vdev_config_dirty_node));
1139 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1140 offsetof(objset_t, os_evicting_node));
1141 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1142 offsetof(vdev_t, vdev_state_dirty_node));
1143
1144 txg_list_create(&spa->spa_vdev_txg_list,
1145 offsetof(struct vdev, vdev_txg_node));
1146
1147 avl_create(&spa->spa_errlist_scrub,
1148 spa_error_entry_compare, sizeof (spa_error_entry_t),
1149 offsetof(spa_error_entry_t, se_avl));
1150 avl_create(&spa->spa_errlist_last,
1151 spa_error_entry_compare, sizeof (spa_error_entry_t),
1152 offsetof(spa_error_entry_t, se_avl));
1153
1154 /*
1155 * This taskq is used to perform zvol-minor-related tasks
1156 * asynchronously. This has several advantages, including easy
1157 * resolution of various deadlocks (zfsonlinux bug #3681).
1158 *
1159 * The taskq must be single threaded to ensure tasks are always
1160 * processed in the order in which they were dispatched.
1161 *
1162 * A taskq per pool allows one to keep the pools independent.
1163 * This way if one pool is suspended, it will not impact another.
1164 *
1165 * The preferred location to dispatch a zvol minor task is a sync
1166 * task. In this context, there is easy access to the spa_t and minimal
1167 * error handling is required because the sync task must succeed.
1168 */
1169 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1170 1, INT_MAX, 0);
1171 }
1172
1173 /*
1174 * Opposite of spa_activate().
1175 */
1176 static void
1177 spa_deactivate(spa_t *spa)
1178 {
1179 int t, q;
1180
1181 ASSERT(spa->spa_sync_on == B_FALSE);
1182 ASSERT(spa->spa_dsl_pool == NULL);
1183 ASSERT(spa->spa_root_vdev == NULL);
1184 ASSERT(spa->spa_async_zio_root == NULL);
1185 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1186
1187 spa_evicting_os_wait(spa);
1188
1189 if (spa->spa_zvol_taskq) {
1190 taskq_destroy(spa->spa_zvol_taskq);
1191 spa->spa_zvol_taskq = NULL;
1192 }
1193
1194 txg_list_destroy(&spa->spa_vdev_txg_list);
1195
1196 list_destroy(&spa->spa_config_dirty_list);
1197 list_destroy(&spa->spa_evicting_os_list);
1198 list_destroy(&spa->spa_state_dirty_list);
1199
1200 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1201
1202 for (t = 0; t < ZIO_TYPES; t++) {
1203 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1204 spa_taskqs_fini(spa, t, q);
1205 }
1206 }
1207
1208 metaslab_class_destroy(spa->spa_normal_class);
1209 spa->spa_normal_class = NULL;
1210
1211 metaslab_class_destroy(spa->spa_log_class);
1212 spa->spa_log_class = NULL;
1213
1214 /*
1215 * If this was part of an import or the open otherwise failed, we may
1216 * still have errors left in the queues. Empty them just in case.
1217 */
1218 spa_errlog_drain(spa);
1219
1220 avl_destroy(&spa->spa_errlist_scrub);
1221 avl_destroy(&spa->spa_errlist_last);
1222
1223 spa->spa_state = POOL_STATE_UNINITIALIZED;
1224
1225 mutex_enter(&spa->spa_proc_lock);
1226 if (spa->spa_proc_state != SPA_PROC_NONE) {
1227 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1228 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1229 cv_broadcast(&spa->spa_proc_cv);
1230 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1231 ASSERT(spa->spa_proc != &p0);
1232 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1233 }
1234 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1235 spa->spa_proc_state = SPA_PROC_NONE;
1236 }
1237 ASSERT(spa->spa_proc == &p0);
1238 mutex_exit(&spa->spa_proc_lock);
1239
1240 /*
1241 * We want to make sure spa_thread() has actually exited the ZFS
1242 * module, so that the module can't be unloaded out from underneath
1243 * it.
1244 */
1245 if (spa->spa_did != 0) {
1246 thread_join(spa->spa_did);
1247 spa->spa_did = 0;
1248 }
1249 }
1250
1251 /*
1252 * Verify a pool configuration, and construct the vdev tree appropriately. This
1253 * will create all the necessary vdevs in the appropriate layout, with each vdev
1254 * in the CLOSED state. This will prep the pool before open/creation/import.
1255 * All vdev validation is done by the vdev_alloc() routine.
1256 */
1257 static int
1258 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1259 uint_t id, int atype)
1260 {
1261 nvlist_t **child;
1262 uint_t children;
1263 int error;
1264 int c;
1265
1266 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1267 return (error);
1268
1269 if ((*vdp)->vdev_ops->vdev_op_leaf)
1270 return (0);
1271
1272 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1273 &child, &children);
1274
1275 if (error == ENOENT)
1276 return (0);
1277
1278 if (error) {
1279 vdev_free(*vdp);
1280 *vdp = NULL;
1281 return (SET_ERROR(EINVAL));
1282 }
1283
1284 for (c = 0; c < children; c++) {
1285 vdev_t *vd;
1286 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1287 atype)) != 0) {
1288 vdev_free(*vdp);
1289 *vdp = NULL;
1290 return (error);
1291 }
1292 }
1293
1294 ASSERT(*vdp != NULL);
1295
1296 return (0);
1297 }
1298
1299 /*
1300 * Opposite of spa_load().
1301 */
1302 static void
1303 spa_unload(spa_t *spa)
1304 {
1305 int i;
1306
1307 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1308
1309 /*
1310 * Stop async tasks.
1311 */
1312 spa_async_suspend(spa);
1313
1314 /*
1315 * Stop syncing.
1316 */
1317 if (spa->spa_sync_on) {
1318 txg_sync_stop(spa->spa_dsl_pool);
1319 spa->spa_sync_on = B_FALSE;
1320 }
1321
1322 /*
1323 * Wait for any outstanding async I/O to complete.
1324 */
1325 if (spa->spa_async_zio_root != NULL) {
1326 for (i = 0; i < max_ncpus; i++)
1327 (void) zio_wait(spa->spa_async_zio_root[i]);
1328 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1329 spa->spa_async_zio_root = NULL;
1330 }
1331
1332 bpobj_close(&spa->spa_deferred_bpobj);
1333
1334 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1335
1336 /*
1337 * Close all vdevs.
1338 */
1339 if (spa->spa_root_vdev)
1340 vdev_free(spa->spa_root_vdev);
1341 ASSERT(spa->spa_root_vdev == NULL);
1342
1343 /*
1344 * Close the dsl pool.
1345 */
1346 if (spa->spa_dsl_pool) {
1347 dsl_pool_close(spa->spa_dsl_pool);
1348 spa->spa_dsl_pool = NULL;
1349 spa->spa_meta_objset = NULL;
1350 }
1351
1352 ddt_unload(spa);
1353
1354
1355 /*
1356 * Drop and purge level 2 cache
1357 */
1358 spa_l2cache_drop(spa);
1359
1360 for (i = 0; i < spa->spa_spares.sav_count; i++)
1361 vdev_free(spa->spa_spares.sav_vdevs[i]);
1362 if (spa->spa_spares.sav_vdevs) {
1363 kmem_free(spa->spa_spares.sav_vdevs,
1364 spa->spa_spares.sav_count * sizeof (void *));
1365 spa->spa_spares.sav_vdevs = NULL;
1366 }
1367 if (spa->spa_spares.sav_config) {
1368 nvlist_free(spa->spa_spares.sav_config);
1369 spa->spa_spares.sav_config = NULL;
1370 }
1371 spa->spa_spares.sav_count = 0;
1372
1373 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1374 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1375 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1376 }
1377 if (spa->spa_l2cache.sav_vdevs) {
1378 kmem_free(spa->spa_l2cache.sav_vdevs,
1379 spa->spa_l2cache.sav_count * sizeof (void *));
1380 spa->spa_l2cache.sav_vdevs = NULL;
1381 }
1382 if (spa->spa_l2cache.sav_config) {
1383 nvlist_free(spa->spa_l2cache.sav_config);
1384 spa->spa_l2cache.sav_config = NULL;
1385 }
1386 spa->spa_l2cache.sav_count = 0;
1387
1388 spa->spa_async_suspended = 0;
1389
1390 if (spa->spa_comment != NULL) {
1391 spa_strfree(spa->spa_comment);
1392 spa->spa_comment = NULL;
1393 }
1394
1395 spa_config_exit(spa, SCL_ALL, FTAG);
1396 }
1397
1398 /*
1399 * Load (or re-load) the current list of vdevs describing the active spares for
1400 * this pool. When this is called, we have some form of basic information in
1401 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1402 * then re-generate a more complete list including status information.
1403 */
1404 static void
1405 spa_load_spares(spa_t *spa)
1406 {
1407 nvlist_t **spares;
1408 uint_t nspares;
1409 int i;
1410 vdev_t *vd, *tvd;
1411
1412 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1413
1414 /*
1415 * First, close and free any existing spare vdevs.
1416 */
1417 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1418 vd = spa->spa_spares.sav_vdevs[i];
1419
1420 /* Undo the call to spa_activate() below */
1421 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1422 B_FALSE)) != NULL && tvd->vdev_isspare)
1423 spa_spare_remove(tvd);
1424 vdev_close(vd);
1425 vdev_free(vd);
1426 }
1427
1428 if (spa->spa_spares.sav_vdevs)
1429 kmem_free(spa->spa_spares.sav_vdevs,
1430 spa->spa_spares.sav_count * sizeof (void *));
1431
1432 if (spa->spa_spares.sav_config == NULL)
1433 nspares = 0;
1434 else
1435 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1436 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1437
1438 spa->spa_spares.sav_count = (int)nspares;
1439 spa->spa_spares.sav_vdevs = NULL;
1440
1441 if (nspares == 0)
1442 return;
1443
1444 /*
1445 * Construct the array of vdevs, opening them to get status in the
1446 * process. For each spare, there is potentially two different vdev_t
1447 * structures associated with it: one in the list of spares (used only
1448 * for basic validation purposes) and one in the active vdev
1449 * configuration (if it's spared in). During this phase we open and
1450 * validate each vdev on the spare list. If the vdev also exists in the
1451 * active configuration, then we also mark this vdev as an active spare.
1452 */
1453 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1454 KM_SLEEP);
1455 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1456 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1457 VDEV_ALLOC_SPARE) == 0);
1458 ASSERT(vd != NULL);
1459
1460 spa->spa_spares.sav_vdevs[i] = vd;
1461
1462 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1463 B_FALSE)) != NULL) {
1464 if (!tvd->vdev_isspare)
1465 spa_spare_add(tvd);
1466
1467 /*
1468 * We only mark the spare active if we were successfully
1469 * able to load the vdev. Otherwise, importing a pool
1470 * with a bad active spare would result in strange
1471 * behavior, because multiple pool would think the spare
1472 * is actively in use.
1473 *
1474 * There is a vulnerability here to an equally bizarre
1475 * circumstance, where a dead active spare is later
1476 * brought back to life (onlined or otherwise). Given
1477 * the rarity of this scenario, and the extra complexity
1478 * it adds, we ignore the possibility.
1479 */
1480 if (!vdev_is_dead(tvd))
1481 spa_spare_activate(tvd);
1482 }
1483
1484 vd->vdev_top = vd;
1485 vd->vdev_aux = &spa->spa_spares;
1486
1487 if (vdev_open(vd) != 0)
1488 continue;
1489
1490 if (vdev_validate_aux(vd) == 0)
1491 spa_spare_add(vd);
1492 }
1493
1494 /*
1495 * Recompute the stashed list of spares, with status information
1496 * this time.
1497 */
1498 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1499 DATA_TYPE_NVLIST_ARRAY) == 0);
1500
1501 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1502 KM_SLEEP);
1503 for (i = 0; i < spa->spa_spares.sav_count; i++)
1504 spares[i] = vdev_config_generate(spa,
1505 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1506 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1507 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1508 for (i = 0; i < spa->spa_spares.sav_count; i++)
1509 nvlist_free(spares[i]);
1510 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1511 }
1512
1513 /*
1514 * Load (or re-load) the current list of vdevs describing the active l2cache for
1515 * this pool. When this is called, we have some form of basic information in
1516 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1517 * then re-generate a more complete list including status information.
1518 * Devices which are already active have their details maintained, and are
1519 * not re-opened.
1520 */
1521 static void
1522 spa_load_l2cache(spa_t *spa)
1523 {
1524 nvlist_t **l2cache;
1525 uint_t nl2cache;
1526 int i, j, oldnvdevs;
1527 uint64_t guid;
1528 vdev_t *vd, **oldvdevs, **newvdevs;
1529 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1530
1531 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1532
1533 if (sav->sav_config != NULL) {
1534 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1535 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1536 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1537 } else {
1538 nl2cache = 0;
1539 newvdevs = NULL;
1540 }
1541
1542 oldvdevs = sav->sav_vdevs;
1543 oldnvdevs = sav->sav_count;
1544 sav->sav_vdevs = NULL;
1545 sav->sav_count = 0;
1546
1547 /*
1548 * Process new nvlist of vdevs.
1549 */
1550 for (i = 0; i < nl2cache; i++) {
1551 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1552 &guid) == 0);
1553
1554 newvdevs[i] = NULL;
1555 for (j = 0; j < oldnvdevs; j++) {
1556 vd = oldvdevs[j];
1557 if (vd != NULL && guid == vd->vdev_guid) {
1558 /*
1559 * Retain previous vdev for add/remove ops.
1560 */
1561 newvdevs[i] = vd;
1562 oldvdevs[j] = NULL;
1563 break;
1564 }
1565 }
1566
1567 if (newvdevs[i] == NULL) {
1568 /*
1569 * Create new vdev
1570 */
1571 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1572 VDEV_ALLOC_L2CACHE) == 0);
1573 ASSERT(vd != NULL);
1574 newvdevs[i] = vd;
1575
1576 /*
1577 * Commit this vdev as an l2cache device,
1578 * even if it fails to open.
1579 */
1580 spa_l2cache_add(vd);
1581
1582 vd->vdev_top = vd;
1583 vd->vdev_aux = sav;
1584
1585 spa_l2cache_activate(vd);
1586
1587 if (vdev_open(vd) != 0)
1588 continue;
1589
1590 (void) vdev_validate_aux(vd);
1591
1592 if (!vdev_is_dead(vd))
1593 l2arc_add_vdev(spa, vd);
1594 }
1595 }
1596
1597 /*
1598 * Purge vdevs that were dropped
1599 */
1600 for (i = 0; i < oldnvdevs; i++) {
1601 uint64_t pool;
1602
1603 vd = oldvdevs[i];
1604 if (vd != NULL) {
1605 ASSERT(vd->vdev_isl2cache);
1606
1607 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1608 pool != 0ULL && l2arc_vdev_present(vd))
1609 l2arc_remove_vdev(vd);
1610 vdev_clear_stats(vd);
1611 vdev_free(vd);
1612 }
1613 }
1614
1615 if (oldvdevs)
1616 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1617
1618 if (sav->sav_config == NULL)
1619 goto out;
1620
1621 sav->sav_vdevs = newvdevs;
1622 sav->sav_count = (int)nl2cache;
1623
1624 /*
1625 * Recompute the stashed list of l2cache devices, with status
1626 * information this time.
1627 */
1628 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1629 DATA_TYPE_NVLIST_ARRAY) == 0);
1630
1631 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1632 for (i = 0; i < sav->sav_count; i++)
1633 l2cache[i] = vdev_config_generate(spa,
1634 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1635 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1636 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1637 out:
1638 for (i = 0; i < sav->sav_count; i++)
1639 nvlist_free(l2cache[i]);
1640 if (sav->sav_count)
1641 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1642 }
1643
1644 static int
1645 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1646 {
1647 dmu_buf_t *db;
1648 char *packed = NULL;
1649 size_t nvsize = 0;
1650 int error;
1651 *value = NULL;
1652
1653 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1654 if (error)
1655 return (error);
1656
1657 nvsize = *(uint64_t *)db->db_data;
1658 dmu_buf_rele(db, FTAG);
1659
1660 packed = vmem_alloc(nvsize, KM_SLEEP);
1661 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1662 DMU_READ_PREFETCH);
1663 if (error == 0)
1664 error = nvlist_unpack(packed, nvsize, value, 0);
1665 vmem_free(packed, nvsize);
1666
1667 return (error);
1668 }
1669
1670 /*
1671 * Checks to see if the given vdev could not be opened, in which case we post a
1672 * sysevent to notify the autoreplace code that the device has been removed.
1673 */
1674 static void
1675 spa_check_removed(vdev_t *vd)
1676 {
1677 int c;
1678
1679 for (c = 0; c < vd->vdev_children; c++)
1680 spa_check_removed(vd->vdev_child[c]);
1681
1682 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1683 !vd->vdev_ishole) {
1684 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1685 vd->vdev_spa, vd, NULL, 0, 0);
1686 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1687 }
1688 }
1689
1690 static void
1691 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1692 {
1693 uint64_t i;
1694
1695 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1696
1697 vd->vdev_top_zap = mvd->vdev_top_zap;
1698 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1699
1700 for (i = 0; i < vd->vdev_children; i++) {
1701 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1702 }
1703 }
1704
1705 /*
1706 * Validate the current config against the MOS config
1707 */
1708 static boolean_t
1709 spa_config_valid(spa_t *spa, nvlist_t *config)
1710 {
1711 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1712 nvlist_t *nv;
1713 int c, i;
1714
1715 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1716
1717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1718 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1719
1720 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1721
1722 /*
1723 * If we're doing a normal import, then build up any additional
1724 * diagnostic information about missing devices in this config.
1725 * We'll pass this up to the user for further processing.
1726 */
1727 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1728 nvlist_t **child, *nv;
1729 uint64_t idx = 0;
1730
1731 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1732 KM_SLEEP);
1733 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1734
1735 for (c = 0; c < rvd->vdev_children; c++) {
1736 vdev_t *tvd = rvd->vdev_child[c];
1737 vdev_t *mtvd = mrvd->vdev_child[c];
1738
1739 if (tvd->vdev_ops == &vdev_missing_ops &&
1740 mtvd->vdev_ops != &vdev_missing_ops &&
1741 mtvd->vdev_islog)
1742 child[idx++] = vdev_config_generate(spa, mtvd,
1743 B_FALSE, 0);
1744 }
1745
1746 if (idx) {
1747 VERIFY(nvlist_add_nvlist_array(nv,
1748 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1749 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1750 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1751
1752 for (i = 0; i < idx; i++)
1753 nvlist_free(child[i]);
1754 }
1755 nvlist_free(nv);
1756 kmem_free(child, rvd->vdev_children * sizeof (char **));
1757 }
1758
1759 /*
1760 * Compare the root vdev tree with the information we have
1761 * from the MOS config (mrvd). Check each top-level vdev
1762 * with the corresponding MOS config top-level (mtvd).
1763 */
1764 for (c = 0; c < rvd->vdev_children; c++) {
1765 vdev_t *tvd = rvd->vdev_child[c];
1766 vdev_t *mtvd = mrvd->vdev_child[c];
1767
1768 /*
1769 * Resolve any "missing" vdevs in the current configuration.
1770 * If we find that the MOS config has more accurate information
1771 * about the top-level vdev then use that vdev instead.
1772 */
1773 if (tvd->vdev_ops == &vdev_missing_ops &&
1774 mtvd->vdev_ops != &vdev_missing_ops) {
1775
1776 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1777 continue;
1778
1779 /*
1780 * Device specific actions.
1781 */
1782 if (mtvd->vdev_islog) {
1783 spa_set_log_state(spa, SPA_LOG_CLEAR);
1784 } else {
1785 /*
1786 * XXX - once we have 'readonly' pool
1787 * support we should be able to handle
1788 * missing data devices by transitioning
1789 * the pool to readonly.
1790 */
1791 continue;
1792 }
1793
1794 /*
1795 * Swap the missing vdev with the data we were
1796 * able to obtain from the MOS config.
1797 */
1798 vdev_remove_child(rvd, tvd);
1799 vdev_remove_child(mrvd, mtvd);
1800
1801 vdev_add_child(rvd, mtvd);
1802 vdev_add_child(mrvd, tvd);
1803
1804 spa_config_exit(spa, SCL_ALL, FTAG);
1805 vdev_load(mtvd);
1806 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1807
1808 vdev_reopen(rvd);
1809 } else {
1810 if (mtvd->vdev_islog) {
1811 /*
1812 * Load the slog device's state from the MOS
1813 * config since it's possible that the label
1814 * does not contain the most up-to-date
1815 * information.
1816 */
1817 vdev_load_log_state(tvd, mtvd);
1818 vdev_reopen(tvd);
1819 }
1820
1821 /*
1822 * Per-vdev ZAP info is stored exclusively in the MOS.
1823 */
1824 spa_config_valid_zaps(tvd, mtvd);
1825 }
1826 }
1827
1828 vdev_free(mrvd);
1829 spa_config_exit(spa, SCL_ALL, FTAG);
1830
1831 /*
1832 * Ensure we were able to validate the config.
1833 */
1834 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1835 }
1836
1837 /*
1838 * Check for missing log devices
1839 */
1840 static boolean_t
1841 spa_check_logs(spa_t *spa)
1842 {
1843 boolean_t rv = B_FALSE;
1844 dsl_pool_t *dp = spa_get_dsl(spa);
1845
1846 switch (spa->spa_log_state) {
1847 default:
1848 break;
1849 case SPA_LOG_MISSING:
1850 /* need to recheck in case slog has been restored */
1851 case SPA_LOG_UNKNOWN:
1852 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1853 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1854 if (rv)
1855 spa_set_log_state(spa, SPA_LOG_MISSING);
1856 break;
1857 }
1858 return (rv);
1859 }
1860
1861 static boolean_t
1862 spa_passivate_log(spa_t *spa)
1863 {
1864 vdev_t *rvd = spa->spa_root_vdev;
1865 boolean_t slog_found = B_FALSE;
1866 int c;
1867
1868 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1869
1870 if (!spa_has_slogs(spa))
1871 return (B_FALSE);
1872
1873 for (c = 0; c < rvd->vdev_children; c++) {
1874 vdev_t *tvd = rvd->vdev_child[c];
1875 metaslab_group_t *mg = tvd->vdev_mg;
1876
1877 if (tvd->vdev_islog) {
1878 metaslab_group_passivate(mg);
1879 slog_found = B_TRUE;
1880 }
1881 }
1882
1883 return (slog_found);
1884 }
1885
1886 static void
1887 spa_activate_log(spa_t *spa)
1888 {
1889 vdev_t *rvd = spa->spa_root_vdev;
1890 int c;
1891
1892 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1893
1894 for (c = 0; c < rvd->vdev_children; c++) {
1895 vdev_t *tvd = rvd->vdev_child[c];
1896 metaslab_group_t *mg = tvd->vdev_mg;
1897
1898 if (tvd->vdev_islog)
1899 metaslab_group_activate(mg);
1900 }
1901 }
1902
1903 int
1904 spa_offline_log(spa_t *spa)
1905 {
1906 int error;
1907
1908 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1909 NULL, DS_FIND_CHILDREN);
1910 if (error == 0) {
1911 /*
1912 * We successfully offlined the log device, sync out the
1913 * current txg so that the "stubby" block can be removed
1914 * by zil_sync().
1915 */
1916 txg_wait_synced(spa->spa_dsl_pool, 0);
1917 }
1918 return (error);
1919 }
1920
1921 static void
1922 spa_aux_check_removed(spa_aux_vdev_t *sav)
1923 {
1924 int i;
1925
1926 for (i = 0; i < sav->sav_count; i++)
1927 spa_check_removed(sav->sav_vdevs[i]);
1928 }
1929
1930 void
1931 spa_claim_notify(zio_t *zio)
1932 {
1933 spa_t *spa = zio->io_spa;
1934
1935 if (zio->io_error)
1936 return;
1937
1938 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1939 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1940 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1941 mutex_exit(&spa->spa_props_lock);
1942 }
1943
1944 typedef struct spa_load_error {
1945 uint64_t sle_meta_count;
1946 uint64_t sle_data_count;
1947 } spa_load_error_t;
1948
1949 static void
1950 spa_load_verify_done(zio_t *zio)
1951 {
1952 blkptr_t *bp = zio->io_bp;
1953 spa_load_error_t *sle = zio->io_private;
1954 dmu_object_type_t type = BP_GET_TYPE(bp);
1955 int error = zio->io_error;
1956 spa_t *spa = zio->io_spa;
1957
1958 if (error) {
1959 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1960 type != DMU_OT_INTENT_LOG)
1961 atomic_inc_64(&sle->sle_meta_count);
1962 else
1963 atomic_inc_64(&sle->sle_data_count);
1964 }
1965 zio_data_buf_free(zio->io_data, zio->io_size);
1966
1967 mutex_enter(&spa->spa_scrub_lock);
1968 spa->spa_scrub_inflight--;
1969 cv_broadcast(&spa->spa_scrub_io_cv);
1970 mutex_exit(&spa->spa_scrub_lock);
1971 }
1972
1973 /*
1974 * Maximum number of concurrent scrub i/os to create while verifying
1975 * a pool while importing it.
1976 */
1977 int spa_load_verify_maxinflight = 10000;
1978 int spa_load_verify_metadata = B_TRUE;
1979 int spa_load_verify_data = B_TRUE;
1980
1981 /*ARGSUSED*/
1982 static int
1983 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1984 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1985 {
1986 zio_t *rio;
1987 size_t size;
1988 void *data;
1989
1990 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1991 return (0);
1992 /*
1993 * Note: normally this routine will not be called if
1994 * spa_load_verify_metadata is not set. However, it may be useful
1995 * to manually set the flag after the traversal has begun.
1996 */
1997 if (!spa_load_verify_metadata)
1998 return (0);
1999 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
2000 return (0);
2001
2002 rio = arg;
2003 size = BP_GET_PSIZE(bp);
2004 data = zio_data_buf_alloc(size);
2005
2006 mutex_enter(&spa->spa_scrub_lock);
2007 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2008 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2009 spa->spa_scrub_inflight++;
2010 mutex_exit(&spa->spa_scrub_lock);
2011
2012 zio_nowait(zio_read(rio, spa, bp, data, size,
2013 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2014 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2015 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2016 return (0);
2017 }
2018
2019 /* ARGSUSED */
2020 int
2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2022 {
2023 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2024 return (SET_ERROR(ENAMETOOLONG));
2025
2026 return (0);
2027 }
2028
2029 static int
2030 spa_load_verify(spa_t *spa)
2031 {
2032 zio_t *rio;
2033 spa_load_error_t sle = { 0 };
2034 zpool_rewind_policy_t policy;
2035 boolean_t verify_ok = B_FALSE;
2036 int error = 0;
2037
2038 zpool_get_rewind_policy(spa->spa_config, &policy);
2039
2040 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2041 return (0);
2042
2043 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2044 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2045 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2046 DS_FIND_CHILDREN);
2047 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2048 if (error != 0)
2049 return (error);
2050
2051 rio = zio_root(spa, NULL, &sle,
2052 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2053
2054 if (spa_load_verify_metadata) {
2055 error = traverse_pool(spa, spa->spa_verify_min_txg,
2056 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2057 spa_load_verify_cb, rio);
2058 }
2059
2060 (void) zio_wait(rio);
2061
2062 spa->spa_load_meta_errors = sle.sle_meta_count;
2063 spa->spa_load_data_errors = sle.sle_data_count;
2064
2065 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2066 sle.sle_data_count <= policy.zrp_maxdata) {
2067 int64_t loss = 0;
2068
2069 verify_ok = B_TRUE;
2070 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2071 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2072
2073 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2074 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2075 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2076 VERIFY(nvlist_add_int64(spa->spa_load_info,
2077 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2078 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2079 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2080 } else {
2081 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2082 }
2083
2084 if (error) {
2085 if (error != ENXIO && error != EIO)
2086 error = SET_ERROR(EIO);
2087 return (error);
2088 }
2089
2090 return (verify_ok ? 0 : EIO);
2091 }
2092
2093 /*
2094 * Find a value in the pool props object.
2095 */
2096 static void
2097 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2098 {
2099 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2100 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2101 }
2102
2103 /*
2104 * Find a value in the pool directory object.
2105 */
2106 static int
2107 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2108 {
2109 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2110 name, sizeof (uint64_t), 1, val));
2111 }
2112
2113 static int
2114 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2115 {
2116 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2117 return (err);
2118 }
2119
2120 /*
2121 * Fix up config after a partly-completed split. This is done with the
2122 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2123 * pool have that entry in their config, but only the splitting one contains
2124 * a list of all the guids of the vdevs that are being split off.
2125 *
2126 * This function determines what to do with that list: either rejoin
2127 * all the disks to the pool, or complete the splitting process. To attempt
2128 * the rejoin, each disk that is offlined is marked online again, and
2129 * we do a reopen() call. If the vdev label for every disk that was
2130 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2131 * then we call vdev_split() on each disk, and complete the split.
2132 *
2133 * Otherwise we leave the config alone, with all the vdevs in place in
2134 * the original pool.
2135 */
2136 static void
2137 spa_try_repair(spa_t *spa, nvlist_t *config)
2138 {
2139 uint_t extracted;
2140 uint64_t *glist;
2141 uint_t i, gcount;
2142 nvlist_t *nvl;
2143 vdev_t **vd;
2144 boolean_t attempt_reopen;
2145
2146 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2147 return;
2148
2149 /* check that the config is complete */
2150 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2151 &glist, &gcount) != 0)
2152 return;
2153
2154 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2155
2156 /* attempt to online all the vdevs & validate */
2157 attempt_reopen = B_TRUE;
2158 for (i = 0; i < gcount; i++) {
2159 if (glist[i] == 0) /* vdev is hole */
2160 continue;
2161
2162 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2163 if (vd[i] == NULL) {
2164 /*
2165 * Don't bother attempting to reopen the disks;
2166 * just do the split.
2167 */
2168 attempt_reopen = B_FALSE;
2169 } else {
2170 /* attempt to re-online it */
2171 vd[i]->vdev_offline = B_FALSE;
2172 }
2173 }
2174
2175 if (attempt_reopen) {
2176 vdev_reopen(spa->spa_root_vdev);
2177
2178 /* check each device to see what state it's in */
2179 for (extracted = 0, i = 0; i < gcount; i++) {
2180 if (vd[i] != NULL &&
2181 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2182 break;
2183 ++extracted;
2184 }
2185 }
2186
2187 /*
2188 * If every disk has been moved to the new pool, or if we never
2189 * even attempted to look at them, then we split them off for
2190 * good.
2191 */
2192 if (!attempt_reopen || gcount == extracted) {
2193 for (i = 0; i < gcount; i++)
2194 if (vd[i] != NULL)
2195 vdev_split(vd[i]);
2196 vdev_reopen(spa->spa_root_vdev);
2197 }
2198
2199 kmem_free(vd, gcount * sizeof (vdev_t *));
2200 }
2201
2202 static int
2203 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2204 boolean_t mosconfig)
2205 {
2206 nvlist_t *config = spa->spa_config;
2207 char *ereport = FM_EREPORT_ZFS_POOL;
2208 char *comment;
2209 int error;
2210 uint64_t pool_guid;
2211 nvlist_t *nvl;
2212
2213 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2214 return (SET_ERROR(EINVAL));
2215
2216 ASSERT(spa->spa_comment == NULL);
2217 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2218 spa->spa_comment = spa_strdup(comment);
2219
2220 /*
2221 * Versioning wasn't explicitly added to the label until later, so if
2222 * it's not present treat it as the initial version.
2223 */
2224 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2225 &spa->spa_ubsync.ub_version) != 0)
2226 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2227
2228 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2229 &spa->spa_config_txg);
2230
2231 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2232 spa_guid_exists(pool_guid, 0)) {
2233 error = SET_ERROR(EEXIST);
2234 } else {
2235 spa->spa_config_guid = pool_guid;
2236
2237 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2238 &nvl) == 0) {
2239 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2240 KM_SLEEP) == 0);
2241 }
2242
2243 nvlist_free(spa->spa_load_info);
2244 spa->spa_load_info = fnvlist_alloc();
2245
2246 gethrestime(&spa->spa_loaded_ts);
2247 error = spa_load_impl(spa, pool_guid, config, state, type,
2248 mosconfig, &ereport);
2249 }
2250
2251 /*
2252 * Don't count references from objsets that are already closed
2253 * and are making their way through the eviction process.
2254 */
2255 spa_evicting_os_wait(spa);
2256 spa->spa_minref = refcount_count(&spa->spa_refcount);
2257 if (error) {
2258 if (error != EEXIST) {
2259 spa->spa_loaded_ts.tv_sec = 0;
2260 spa->spa_loaded_ts.tv_nsec = 0;
2261 }
2262 if (error != EBADF) {
2263 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2264 }
2265 }
2266 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2267 spa->spa_ena = 0;
2268
2269 return (error);
2270 }
2271
2272 #ifdef ZFS_DEBUG
2273 /*
2274 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2275 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2276 * spa's per-vdev ZAP list.
2277 */
2278 static uint64_t
2279 vdev_count_verify_zaps(vdev_t *vd)
2280 {
2281 spa_t *spa = vd->vdev_spa;
2282 uint64_t total = 0;
2283 uint64_t i;
2284
2285 if (vd->vdev_top_zap != 0) {
2286 total++;
2287 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2288 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2289 }
2290 if (vd->vdev_leaf_zap != 0) {
2291 total++;
2292 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2293 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2294 }
2295
2296 for (i = 0; i < vd->vdev_children; i++) {
2297 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2298 }
2299
2300 return (total);
2301 }
2302 #endif
2303
2304 /*
2305 * Load an existing storage pool, using the pool's builtin spa_config as a
2306 * source of configuration information.
2307 */
2308 __attribute__((always_inline))
2309 static inline int
2310 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2311 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2312 char **ereport)
2313 {
2314 int error = 0;
2315 nvlist_t *nvroot = NULL;
2316 nvlist_t *label;
2317 vdev_t *rvd;
2318 uberblock_t *ub = &spa->spa_uberblock;
2319 uint64_t children, config_cache_txg = spa->spa_config_txg;
2320 int orig_mode = spa->spa_mode;
2321 int parse, i;
2322 uint64_t obj;
2323 boolean_t missing_feat_write = B_FALSE;
2324 nvlist_t *mos_config;
2325
2326 /*
2327 * If this is an untrusted config, access the pool in read-only mode.
2328 * This prevents things like resilvering recently removed devices.
2329 */
2330 if (!mosconfig)
2331 spa->spa_mode = FREAD;
2332
2333 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2334
2335 spa->spa_load_state = state;
2336
2337 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2338 return (SET_ERROR(EINVAL));
2339
2340 parse = (type == SPA_IMPORT_EXISTING ?
2341 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2342
2343 /*
2344 * Create "The Godfather" zio to hold all async IOs
2345 */
2346 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2347 KM_SLEEP);
2348 for (i = 0; i < max_ncpus; i++) {
2349 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2350 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2351 ZIO_FLAG_GODFATHER);
2352 }
2353
2354 /*
2355 * Parse the configuration into a vdev tree. We explicitly set the
2356 * value that will be returned by spa_version() since parsing the
2357 * configuration requires knowing the version number.
2358 */
2359 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2360 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2361 spa_config_exit(spa, SCL_ALL, FTAG);
2362
2363 if (error != 0)
2364 return (error);
2365
2366 ASSERT(spa->spa_root_vdev == rvd);
2367 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2368 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2369
2370 if (type != SPA_IMPORT_ASSEMBLE) {
2371 ASSERT(spa_guid(spa) == pool_guid);
2372 }
2373
2374 /*
2375 * Try to open all vdevs, loading each label in the process.
2376 */
2377 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2378 error = vdev_open(rvd);
2379 spa_config_exit(spa, SCL_ALL, FTAG);
2380 if (error != 0)
2381 return (error);
2382
2383 /*
2384 * We need to validate the vdev labels against the configuration that
2385 * we have in hand, which is dependent on the setting of mosconfig. If
2386 * mosconfig is true then we're validating the vdev labels based on
2387 * that config. Otherwise, we're validating against the cached config
2388 * (zpool.cache) that was read when we loaded the zfs module, and then
2389 * later we will recursively call spa_load() and validate against
2390 * the vdev config.
2391 *
2392 * If we're assembling a new pool that's been split off from an
2393 * existing pool, the labels haven't yet been updated so we skip
2394 * validation for now.
2395 */
2396 if (type != SPA_IMPORT_ASSEMBLE) {
2397 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2398 error = vdev_validate(rvd, mosconfig);
2399 spa_config_exit(spa, SCL_ALL, FTAG);
2400
2401 if (error != 0)
2402 return (error);
2403
2404 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2405 return (SET_ERROR(ENXIO));
2406 }
2407
2408 /*
2409 * Find the best uberblock.
2410 */
2411 vdev_uberblock_load(rvd, ub, &label);
2412
2413 /*
2414 * If we weren't able to find a single valid uberblock, return failure.
2415 */
2416 if (ub->ub_txg == 0) {
2417 nvlist_free(label);
2418 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2419 }
2420
2421 /*
2422 * If the pool has an unsupported version we can't open it.
2423 */
2424 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2425 nvlist_free(label);
2426 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2427 }
2428
2429 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2430 nvlist_t *features;
2431
2432 /*
2433 * If we weren't able to find what's necessary for reading the
2434 * MOS in the label, return failure.
2435 */
2436 if (label == NULL || nvlist_lookup_nvlist(label,
2437 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2438 nvlist_free(label);
2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2440 ENXIO));
2441 }
2442
2443 /*
2444 * Update our in-core representation with the definitive values
2445 * from the label.
2446 */
2447 nvlist_free(spa->spa_label_features);
2448 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2449 }
2450
2451 nvlist_free(label);
2452
2453 /*
2454 * Look through entries in the label nvlist's features_for_read. If
2455 * there is a feature listed there which we don't understand then we
2456 * cannot open a pool.
2457 */
2458 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2459 nvlist_t *unsup_feat;
2460 nvpair_t *nvp;
2461
2462 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2463 0);
2464
2465 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2466 nvp != NULL;
2467 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2468 if (!zfeature_is_supported(nvpair_name(nvp))) {
2469 VERIFY(nvlist_add_string(unsup_feat,
2470 nvpair_name(nvp), "") == 0);
2471 }
2472 }
2473
2474 if (!nvlist_empty(unsup_feat)) {
2475 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2476 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2477 nvlist_free(unsup_feat);
2478 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2479 ENOTSUP));
2480 }
2481
2482 nvlist_free(unsup_feat);
2483 }
2484
2485 /*
2486 * If the vdev guid sum doesn't match the uberblock, we have an
2487 * incomplete configuration. We first check to see if the pool
2488 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2489 * If it is, defer the vdev_guid_sum check till later so we
2490 * can handle missing vdevs.
2491 */
2492 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2493 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2494 rvd->vdev_guid_sum != ub->ub_guid_sum)
2495 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2496
2497 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2498 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2499 spa_try_repair(spa, config);
2500 spa_config_exit(spa, SCL_ALL, FTAG);
2501 nvlist_free(spa->spa_config_splitting);
2502 spa->spa_config_splitting = NULL;
2503 }
2504
2505 /*
2506 * Initialize internal SPA structures.
2507 */
2508 spa->spa_state = POOL_STATE_ACTIVE;
2509 spa->spa_ubsync = spa->spa_uberblock;
2510 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2511 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2512 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2513 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2514 spa->spa_claim_max_txg = spa->spa_first_txg;
2515 spa->spa_prev_software_version = ub->ub_software_version;
2516
2517 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2518 if (error)
2519 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2521
2522 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524
2525 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2526 boolean_t missing_feat_read = B_FALSE;
2527 nvlist_t *unsup_feat, *enabled_feat;
2528 spa_feature_t i;
2529
2530 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2531 &spa->spa_feat_for_read_obj) != 0) {
2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2533 }
2534
2535 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2536 &spa->spa_feat_for_write_obj) != 0) {
2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538 }
2539
2540 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2541 &spa->spa_feat_desc_obj) != 0) {
2542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543 }
2544
2545 enabled_feat = fnvlist_alloc();
2546 unsup_feat = fnvlist_alloc();
2547
2548 if (!spa_features_check(spa, B_FALSE,
2549 unsup_feat, enabled_feat))
2550 missing_feat_read = B_TRUE;
2551
2552 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2553 if (!spa_features_check(spa, B_TRUE,
2554 unsup_feat, enabled_feat)) {
2555 missing_feat_write = B_TRUE;
2556 }
2557 }
2558
2559 fnvlist_add_nvlist(spa->spa_load_info,
2560 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2561
2562 if (!nvlist_empty(unsup_feat)) {
2563 fnvlist_add_nvlist(spa->spa_load_info,
2564 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2565 }
2566
2567 fnvlist_free(enabled_feat);
2568 fnvlist_free(unsup_feat);
2569
2570 if (!missing_feat_read) {
2571 fnvlist_add_boolean(spa->spa_load_info,
2572 ZPOOL_CONFIG_CAN_RDONLY);
2573 }
2574
2575 /*
2576 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2577 * twofold: to determine whether the pool is available for
2578 * import in read-write mode and (if it is not) whether the
2579 * pool is available for import in read-only mode. If the pool
2580 * is available for import in read-write mode, it is displayed
2581 * as available in userland; if it is not available for import
2582 * in read-only mode, it is displayed as unavailable in
2583 * userland. If the pool is available for import in read-only
2584 * mode but not read-write mode, it is displayed as unavailable
2585 * in userland with a special note that the pool is actually
2586 * available for open in read-only mode.
2587 *
2588 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2589 * missing a feature for write, we must first determine whether
2590 * the pool can be opened read-only before returning to
2591 * userland in order to know whether to display the
2592 * abovementioned note.
2593 */
2594 if (missing_feat_read || (missing_feat_write &&
2595 spa_writeable(spa))) {
2596 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2597 ENOTSUP));
2598 }
2599
2600 /*
2601 * Load refcounts for ZFS features from disk into an in-memory
2602 * cache during SPA initialization.
2603 */
2604 for (i = 0; i < SPA_FEATURES; i++) {
2605 uint64_t refcount;
2606
2607 error = feature_get_refcount_from_disk(spa,
2608 &spa_feature_table[i], &refcount);
2609 if (error == 0) {
2610 spa->spa_feat_refcount_cache[i] = refcount;
2611 } else if (error == ENOTSUP) {
2612 spa->spa_feat_refcount_cache[i] =
2613 SPA_FEATURE_DISABLED;
2614 } else {
2615 return (spa_vdev_err(rvd,
2616 VDEV_AUX_CORRUPT_DATA, EIO));
2617 }
2618 }
2619 }
2620
2621 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2622 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2623 &spa->spa_feat_enabled_txg_obj) != 0)
2624 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2625 }
2626
2627 spa->spa_is_initializing = B_TRUE;
2628 error = dsl_pool_open(spa->spa_dsl_pool);
2629 spa->spa_is_initializing = B_FALSE;
2630 if (error != 0)
2631 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2632
2633 if (!mosconfig) {
2634 uint64_t hostid;
2635 nvlist_t *policy = NULL, *nvconfig;
2636
2637 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2639
2640 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2641 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2642 char *hostname;
2643 unsigned long myhostid = 0;
2644
2645 VERIFY(nvlist_lookup_string(nvconfig,
2646 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2647
2648 #ifdef _KERNEL
2649 myhostid = zone_get_hostid(NULL);
2650 #else /* _KERNEL */
2651 /*
2652 * We're emulating the system's hostid in userland, so
2653 * we can't use zone_get_hostid().
2654 */
2655 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2656 #endif /* _KERNEL */
2657 if (hostid != 0 && myhostid != 0 &&
2658 hostid != myhostid) {
2659 nvlist_free(nvconfig);
2660 cmn_err(CE_WARN, "pool '%s' could not be "
2661 "loaded as it was last accessed by another "
2662 "system (host: %s hostid: 0x%lx). See: "
2663 "http://zfsonlinux.org/msg/ZFS-8000-EY",
2664 spa_name(spa), hostname,
2665 (unsigned long)hostid);
2666 return (SET_ERROR(EBADF));
2667 }
2668 }
2669 if (nvlist_lookup_nvlist(spa->spa_config,
2670 ZPOOL_REWIND_POLICY, &policy) == 0)
2671 VERIFY(nvlist_add_nvlist(nvconfig,
2672 ZPOOL_REWIND_POLICY, policy) == 0);
2673
2674 spa_config_set(spa, nvconfig);
2675 spa_unload(spa);
2676 spa_deactivate(spa);
2677 spa_activate(spa, orig_mode);
2678
2679 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2680 }
2681
2682 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2683 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2684 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2685 if (error != 0)
2686 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2687
2688 /*
2689 * Load the bit that tells us to use the new accounting function
2690 * (raid-z deflation). If we have an older pool, this will not
2691 * be present.
2692 */
2693 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2694 if (error != 0 && error != ENOENT)
2695 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2696
2697 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2698 &spa->spa_creation_version);
2699 if (error != 0 && error != ENOENT)
2700 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2701
2702 /*
2703 * Load the persistent error log. If we have an older pool, this will
2704 * not be present.
2705 */
2706 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2707 if (error != 0 && error != ENOENT)
2708 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2709
2710 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2711 &spa->spa_errlog_scrub);
2712 if (error != 0 && error != ENOENT)
2713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2714
2715 /*
2716 * Load the history object. If we have an older pool, this
2717 * will not be present.
2718 */
2719 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2720 if (error != 0 && error != ENOENT)
2721 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2722
2723 /*
2724 * Load the per-vdev ZAP map. If we have an older pool, this will not
2725 * be present; in this case, defer its creation to a later time to
2726 * avoid dirtying the MOS this early / out of sync context. See
2727 * spa_sync_config_object.
2728 */
2729
2730 /* The sentinel is only available in the MOS config. */
2731 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2732 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2733
2734 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2735 &spa->spa_all_vdev_zaps);
2736
2737 if (error != ENOENT && error != 0) {
2738 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2739 } else if (error == 0 && !nvlist_exists(mos_config,
2740 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2741 /*
2742 * An older version of ZFS overwrote the sentinel value, so
2743 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2744 * destruction to later; see spa_sync_config_object.
2745 */
2746 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2747 /*
2748 * We're assuming that no vdevs have had their ZAPs created
2749 * before this. Better be sure of it.
2750 */
2751 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2752 }
2753 nvlist_free(mos_config);
2754
2755 /*
2756 * If we're assembling the pool from the split-off vdevs of
2757 * an existing pool, we don't want to attach the spares & cache
2758 * devices.
2759 */
2760
2761 /*
2762 * Load any hot spares for this pool.
2763 */
2764 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2765 if (error != 0 && error != ENOENT)
2766 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2767 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2768 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2769 if (load_nvlist(spa, spa->spa_spares.sav_object,
2770 &spa->spa_spares.sav_config) != 0)
2771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2772
2773 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2774 spa_load_spares(spa);
2775 spa_config_exit(spa, SCL_ALL, FTAG);
2776 } else if (error == 0) {
2777 spa->spa_spares.sav_sync = B_TRUE;
2778 }
2779
2780 /*
2781 * Load any level 2 ARC devices for this pool.
2782 */
2783 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2784 &spa->spa_l2cache.sav_object);
2785 if (error != 0 && error != ENOENT)
2786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2787 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2788 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2789 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2790 &spa->spa_l2cache.sav_config) != 0)
2791 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2792
2793 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2794 spa_load_l2cache(spa);
2795 spa_config_exit(spa, SCL_ALL, FTAG);
2796 } else if (error == 0) {
2797 spa->spa_l2cache.sav_sync = B_TRUE;
2798 }
2799
2800 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2801
2802 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2803 if (error && error != ENOENT)
2804 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2805
2806 if (error == 0) {
2807 uint64_t autoreplace = 0;
2808
2809 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2810 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2811 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2812 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2813 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2814 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2815 &spa->spa_dedup_ditto);
2816
2817 spa->spa_autoreplace = (autoreplace != 0);
2818 }
2819
2820 /*
2821 * If the 'autoreplace' property is set, then post a resource notifying
2822 * the ZFS DE that it should not issue any faults for unopenable
2823 * devices. We also iterate over the vdevs, and post a sysevent for any
2824 * unopenable vdevs so that the normal autoreplace handler can take
2825 * over.
2826 */
2827 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2828 spa_check_removed(spa->spa_root_vdev);
2829 /*
2830 * For the import case, this is done in spa_import(), because
2831 * at this point we're using the spare definitions from
2832 * the MOS config, not necessarily from the userland config.
2833 */
2834 if (state != SPA_LOAD_IMPORT) {
2835 spa_aux_check_removed(&spa->spa_spares);
2836 spa_aux_check_removed(&spa->spa_l2cache);
2837 }
2838 }
2839
2840 /*
2841 * Load the vdev state for all toplevel vdevs.
2842 */
2843 vdev_load(rvd);
2844
2845 /*
2846 * Propagate the leaf DTLs we just loaded all the way up the tree.
2847 */
2848 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2849 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2850 spa_config_exit(spa, SCL_ALL, FTAG);
2851
2852 /*
2853 * Load the DDTs (dedup tables).
2854 */
2855 error = ddt_load(spa);
2856 if (error != 0)
2857 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2858
2859 spa_update_dspace(spa);
2860
2861 /*
2862 * Validate the config, using the MOS config to fill in any
2863 * information which might be missing. If we fail to validate
2864 * the config then declare the pool unfit for use. If we're
2865 * assembling a pool from a split, the log is not transferred
2866 * over.
2867 */
2868 if (type != SPA_IMPORT_ASSEMBLE) {
2869 nvlist_t *nvconfig;
2870
2871 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2873
2874 if (!spa_config_valid(spa, nvconfig)) {
2875 nvlist_free(nvconfig);
2876 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2877 ENXIO));
2878 }
2879 nvlist_free(nvconfig);
2880
2881 /*
2882 * Now that we've validated the config, check the state of the
2883 * root vdev. If it can't be opened, it indicates one or
2884 * more toplevel vdevs are faulted.
2885 */
2886 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2887 return (SET_ERROR(ENXIO));
2888
2889 if (spa_writeable(spa) && spa_check_logs(spa)) {
2890 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2891 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2892 }
2893 }
2894
2895 if (missing_feat_write) {
2896 ASSERT(state == SPA_LOAD_TRYIMPORT);
2897
2898 /*
2899 * At this point, we know that we can open the pool in
2900 * read-only mode but not read-write mode. We now have enough
2901 * information and can return to userland.
2902 */
2903 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2904 }
2905
2906 /*
2907 * We've successfully opened the pool, verify that we're ready
2908 * to start pushing transactions.
2909 */
2910 if (state != SPA_LOAD_TRYIMPORT) {
2911 if ((error = spa_load_verify(spa)))
2912 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2913 error));
2914 }
2915
2916 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2917 spa->spa_load_max_txg == UINT64_MAX)) {
2918 dmu_tx_t *tx;
2919 int need_update = B_FALSE;
2920 dsl_pool_t *dp = spa_get_dsl(spa);
2921 int c;
2922
2923 ASSERT(state != SPA_LOAD_TRYIMPORT);
2924
2925 /*
2926 * Claim log blocks that haven't been committed yet.
2927 * This must all happen in a single txg.
2928 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2929 * invoked from zil_claim_log_block()'s i/o done callback.
2930 * Price of rollback is that we abandon the log.
2931 */
2932 spa->spa_claiming = B_TRUE;
2933
2934 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2935 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2936 zil_claim, tx, DS_FIND_CHILDREN);
2937 dmu_tx_commit(tx);
2938
2939 spa->spa_claiming = B_FALSE;
2940
2941 spa_set_log_state(spa, SPA_LOG_GOOD);
2942 spa->spa_sync_on = B_TRUE;
2943 txg_sync_start(spa->spa_dsl_pool);
2944
2945 /*
2946 * Wait for all claims to sync. We sync up to the highest
2947 * claimed log block birth time so that claimed log blocks
2948 * don't appear to be from the future. spa_claim_max_txg
2949 * will have been set for us by either zil_check_log_chain()
2950 * (invoked from spa_check_logs()) or zil_claim() above.
2951 */
2952 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2953
2954 /*
2955 * If the config cache is stale, or we have uninitialized
2956 * metaslabs (see spa_vdev_add()), then update the config.
2957 *
2958 * If this is a verbatim import, trust the current
2959 * in-core spa_config and update the disk labels.
2960 */
2961 if (config_cache_txg != spa->spa_config_txg ||
2962 state == SPA_LOAD_IMPORT ||
2963 state == SPA_LOAD_RECOVER ||
2964 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2965 need_update = B_TRUE;
2966
2967 for (c = 0; c < rvd->vdev_children; c++)
2968 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2969 need_update = B_TRUE;
2970
2971 /*
2972 * Update the config cache asychronously in case we're the
2973 * root pool, in which case the config cache isn't writable yet.
2974 */
2975 if (need_update)
2976 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2977
2978 /*
2979 * Check all DTLs to see if anything needs resilvering.
2980 */
2981 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2982 vdev_resilver_needed(rvd, NULL, NULL))
2983 spa_async_request(spa, SPA_ASYNC_RESILVER);
2984
2985 /*
2986 * Log the fact that we booted up (so that we can detect if
2987 * we rebooted in the middle of an operation).
2988 */
2989 spa_history_log_version(spa, "open");
2990
2991 /*
2992 * Delete any inconsistent datasets.
2993 */
2994 (void) dmu_objset_find(spa_name(spa),
2995 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2996
2997 /*
2998 * Clean up any stale temporary dataset userrefs.
2999 */
3000 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3001 }
3002
3003 return (0);
3004 }
3005
3006 static int
3007 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3008 {
3009 int mode = spa->spa_mode;
3010
3011 spa_unload(spa);
3012 spa_deactivate(spa);
3013
3014 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3015
3016 spa_activate(spa, mode);
3017 spa_async_suspend(spa);
3018
3019 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3020 }
3021
3022 /*
3023 * If spa_load() fails this function will try loading prior txg's. If
3024 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3025 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3026 * function will not rewind the pool and will return the same error as
3027 * spa_load().
3028 */
3029 static int
3030 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3031 uint64_t max_request, int rewind_flags)
3032 {
3033 nvlist_t *loadinfo = NULL;
3034 nvlist_t *config = NULL;
3035 int load_error, rewind_error;
3036 uint64_t safe_rewind_txg;
3037 uint64_t min_txg;
3038
3039 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3040 spa->spa_load_max_txg = spa->spa_load_txg;
3041 spa_set_log_state(spa, SPA_LOG_CLEAR);
3042 } else {
3043 spa->spa_load_max_txg = max_request;
3044 if (max_request != UINT64_MAX)
3045 spa->spa_extreme_rewind = B_TRUE;
3046 }
3047
3048 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3049 mosconfig);
3050 if (load_error == 0)
3051 return (0);
3052
3053 if (spa->spa_root_vdev != NULL)
3054 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3055
3056 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3057 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3058
3059 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3060 nvlist_free(config);
3061 return (load_error);
3062 }
3063
3064 if (state == SPA_LOAD_RECOVER) {
3065 /* Price of rolling back is discarding txgs, including log */
3066 spa_set_log_state(spa, SPA_LOG_CLEAR);
3067 } else {
3068 /*
3069 * If we aren't rolling back save the load info from our first
3070 * import attempt so that we can restore it after attempting
3071 * to rewind.
3072 */
3073 loadinfo = spa->spa_load_info;
3074 spa->spa_load_info = fnvlist_alloc();
3075 }
3076
3077 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3078 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3079 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3080 TXG_INITIAL : safe_rewind_txg;
3081
3082 /*
3083 * Continue as long as we're finding errors, we're still within
3084 * the acceptable rewind range, and we're still finding uberblocks
3085 */
3086 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3087 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3088 if (spa->spa_load_max_txg < safe_rewind_txg)
3089 spa->spa_extreme_rewind = B_TRUE;
3090 rewind_error = spa_load_retry(spa, state, mosconfig);
3091 }
3092
3093 spa->spa_extreme_rewind = B_FALSE;
3094 spa->spa_load_max_txg = UINT64_MAX;
3095
3096 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3097 spa_config_set(spa, config);
3098
3099 if (state == SPA_LOAD_RECOVER) {
3100 ASSERT3P(loadinfo, ==, NULL);
3101 return (rewind_error);
3102 } else {
3103 /* Store the rewind info as part of the initial load info */
3104 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3105 spa->spa_load_info);
3106
3107 /* Restore the initial load info */
3108 fnvlist_free(spa->spa_load_info);
3109 spa->spa_load_info = loadinfo;
3110
3111 return (load_error);
3112 }
3113 }
3114
3115 /*
3116 * Pool Open/Import
3117 *
3118 * The import case is identical to an open except that the configuration is sent
3119 * down from userland, instead of grabbed from the configuration cache. For the
3120 * case of an open, the pool configuration will exist in the
3121 * POOL_STATE_UNINITIALIZED state.
3122 *
3123 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3124 * the same time open the pool, without having to keep around the spa_t in some
3125 * ambiguous state.
3126 */
3127 static int
3128 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3129 nvlist_t **config)
3130 {
3131 spa_t *spa;
3132 spa_load_state_t state = SPA_LOAD_OPEN;
3133 int error;
3134 int locked = B_FALSE;
3135 int firstopen = B_FALSE;
3136
3137 *spapp = NULL;
3138
3139 /*
3140 * As disgusting as this is, we need to support recursive calls to this
3141 * function because dsl_dir_open() is called during spa_load(), and ends
3142 * up calling spa_open() again. The real fix is to figure out how to
3143 * avoid dsl_dir_open() calling this in the first place.
3144 */
3145 if (mutex_owner(&spa_namespace_lock) != curthread) {
3146 mutex_enter(&spa_namespace_lock);
3147 locked = B_TRUE;
3148 }
3149
3150 if ((spa = spa_lookup(pool)) == NULL) {
3151 if (locked)
3152 mutex_exit(&spa_namespace_lock);
3153 return (SET_ERROR(ENOENT));
3154 }
3155
3156 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3157 zpool_rewind_policy_t policy;
3158
3159 firstopen = B_TRUE;
3160
3161 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3162 &policy);
3163 if (policy.zrp_request & ZPOOL_DO_REWIND)
3164 state = SPA_LOAD_RECOVER;
3165
3166 spa_activate(spa, spa_mode_global);
3167
3168 if (state != SPA_LOAD_RECOVER)
3169 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3170
3171 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3172 policy.zrp_request);
3173
3174 if (error == EBADF) {
3175 /*
3176 * If vdev_validate() returns failure (indicated by
3177 * EBADF), it indicates that one of the vdevs indicates
3178 * that the pool has been exported or destroyed. If
3179 * this is the case, the config cache is out of sync and
3180 * we should remove the pool from the namespace.
3181 */
3182 spa_unload(spa);
3183 spa_deactivate(spa);
3184 spa_config_sync(spa, B_TRUE, B_TRUE);
3185 spa_remove(spa);
3186 if (locked)
3187 mutex_exit(&spa_namespace_lock);
3188 return (SET_ERROR(ENOENT));
3189 }
3190
3191 if (error) {
3192 /*
3193 * We can't open the pool, but we still have useful
3194 * information: the state of each vdev after the
3195 * attempted vdev_open(). Return this to the user.
3196 */
3197 if (config != NULL && spa->spa_config) {
3198 VERIFY(nvlist_dup(spa->spa_config, config,
3199 KM_SLEEP) == 0);
3200 VERIFY(nvlist_add_nvlist(*config,
3201 ZPOOL_CONFIG_LOAD_INFO,
3202 spa->spa_load_info) == 0);
3203 }
3204 spa_unload(spa);
3205 spa_deactivate(spa);
3206 spa->spa_last_open_failed = error;
3207 if (locked)
3208 mutex_exit(&spa_namespace_lock);
3209 *spapp = NULL;
3210 return (error);
3211 }
3212 }
3213
3214 spa_open_ref(spa, tag);
3215
3216 if (config != NULL)
3217 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3218
3219 /*
3220 * If we've recovered the pool, pass back any information we
3221 * gathered while doing the load.
3222 */
3223 if (state == SPA_LOAD_RECOVER) {
3224 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3225 spa->spa_load_info) == 0);
3226 }
3227
3228 if (locked) {
3229 spa->spa_last_open_failed = 0;
3230 spa->spa_last_ubsync_txg = 0;
3231 spa->spa_load_txg = 0;
3232 mutex_exit(&spa_namespace_lock);
3233 }
3234
3235 if (firstopen)
3236 zvol_create_minors(spa, spa_name(spa), B_TRUE);
3237
3238 *spapp = spa;
3239
3240 return (0);
3241 }
3242
3243 int
3244 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3245 nvlist_t **config)
3246 {
3247 return (spa_open_common(name, spapp, tag, policy, config));
3248 }
3249
3250 int
3251 spa_open(const char *name, spa_t **spapp, void *tag)
3252 {
3253 return (spa_open_common(name, spapp, tag, NULL, NULL));
3254 }
3255
3256 /*
3257 * Lookup the given spa_t, incrementing the inject count in the process,
3258 * preventing it from being exported or destroyed.
3259 */
3260 spa_t *
3261 spa_inject_addref(char *name)
3262 {
3263 spa_t *spa;
3264
3265 mutex_enter(&spa_namespace_lock);
3266 if ((spa = spa_lookup(name)) == NULL) {
3267 mutex_exit(&spa_namespace_lock);
3268 return (NULL);
3269 }
3270 spa->spa_inject_ref++;
3271 mutex_exit(&spa_namespace_lock);
3272
3273 return (spa);
3274 }
3275
3276 void
3277 spa_inject_delref(spa_t *spa)
3278 {
3279 mutex_enter(&spa_namespace_lock);
3280 spa->spa_inject_ref--;
3281 mutex_exit(&spa_namespace_lock);
3282 }
3283
3284 /*
3285 * Add spares device information to the nvlist.
3286 */
3287 static void
3288 spa_add_spares(spa_t *spa, nvlist_t *config)
3289 {
3290 nvlist_t **spares;
3291 uint_t i, nspares;
3292 nvlist_t *nvroot;
3293 uint64_t guid;
3294 vdev_stat_t *vs;
3295 uint_t vsc;
3296 uint64_t pool;
3297
3298 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3299
3300 if (spa->spa_spares.sav_count == 0)
3301 return;
3302
3303 VERIFY(nvlist_lookup_nvlist(config,
3304 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3305 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3306 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3307 if (nspares != 0) {
3308 VERIFY(nvlist_add_nvlist_array(nvroot,
3309 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3310 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3311 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3312
3313 /*
3314 * Go through and find any spares which have since been
3315 * repurposed as an active spare. If this is the case, update
3316 * their status appropriately.
3317 */
3318 for (i = 0; i < nspares; i++) {
3319 VERIFY(nvlist_lookup_uint64(spares[i],
3320 ZPOOL_CONFIG_GUID, &guid) == 0);
3321 if (spa_spare_exists(guid, &pool, NULL) &&
3322 pool != 0ULL) {
3323 VERIFY(nvlist_lookup_uint64_array(
3324 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3325 (uint64_t **)&vs, &vsc) == 0);
3326 vs->vs_state = VDEV_STATE_CANT_OPEN;
3327 vs->vs_aux = VDEV_AUX_SPARED;
3328 }
3329 }
3330 }
3331 }
3332
3333 /*
3334 * Add l2cache device information to the nvlist, including vdev stats.
3335 */
3336 static void
3337 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3338 {
3339 nvlist_t **l2cache;
3340 uint_t i, j, nl2cache;
3341 nvlist_t *nvroot;
3342 uint64_t guid;
3343 vdev_t *vd;
3344 vdev_stat_t *vs;
3345 uint_t vsc;
3346
3347 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3348
3349 if (spa->spa_l2cache.sav_count == 0)
3350 return;
3351
3352 VERIFY(nvlist_lookup_nvlist(config,
3353 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3354 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3355 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3356 if (nl2cache != 0) {
3357 VERIFY(nvlist_add_nvlist_array(nvroot,
3358 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3359 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3360 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3361
3362 /*
3363 * Update level 2 cache device stats.
3364 */
3365
3366 for (i = 0; i < nl2cache; i++) {
3367 VERIFY(nvlist_lookup_uint64(l2cache[i],
3368 ZPOOL_CONFIG_GUID, &guid) == 0);
3369
3370 vd = NULL;
3371 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3372 if (guid ==
3373 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3374 vd = spa->spa_l2cache.sav_vdevs[j];
3375 break;
3376 }
3377 }
3378 ASSERT(vd != NULL);
3379
3380 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3381 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3382 == 0);
3383 vdev_get_stats(vd, vs);
3384 vdev_config_generate_stats(vd, l2cache[i]);
3385
3386 }
3387 }
3388 }
3389
3390 static void
3391 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3392 {
3393 zap_cursor_t zc;
3394 zap_attribute_t za;
3395
3396 if (spa->spa_feat_for_read_obj != 0) {
3397 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3398 spa->spa_feat_for_read_obj);
3399 zap_cursor_retrieve(&zc, &za) == 0;
3400 zap_cursor_advance(&zc)) {
3401 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3402 za.za_num_integers == 1);
3403 VERIFY0(nvlist_add_uint64(features, za.za_name,
3404 za.za_first_integer));
3405 }
3406 zap_cursor_fini(&zc);
3407 }
3408
3409 if (spa->spa_feat_for_write_obj != 0) {
3410 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3411 spa->spa_feat_for_write_obj);
3412 zap_cursor_retrieve(&zc, &za) == 0;
3413 zap_cursor_advance(&zc)) {
3414 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3415 za.za_num_integers == 1);
3416 VERIFY0(nvlist_add_uint64(features, za.za_name,
3417 za.za_first_integer));
3418 }
3419 zap_cursor_fini(&zc);
3420 }
3421 }
3422
3423 static void
3424 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3425 {
3426 int i;
3427
3428 for (i = 0; i < SPA_FEATURES; i++) {
3429 zfeature_info_t feature = spa_feature_table[i];
3430 uint64_t refcount;
3431
3432 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3433 continue;
3434
3435 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3436 }
3437 }
3438
3439 /*
3440 * Store a list of pool features and their reference counts in the
3441 * config.
3442 *
3443 * The first time this is called on a spa, allocate a new nvlist, fetch
3444 * the pool features and reference counts from disk, then save the list
3445 * in the spa. In subsequent calls on the same spa use the saved nvlist
3446 * and refresh its values from the cached reference counts. This
3447 * ensures we don't block here on I/O on a suspended pool so 'zpool
3448 * clear' can resume the pool.
3449 */
3450 static void
3451 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3452 {
3453 nvlist_t *features;
3454
3455 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3456
3457 mutex_enter(&spa->spa_feat_stats_lock);
3458 features = spa->spa_feat_stats;
3459
3460 if (features != NULL) {
3461 spa_feature_stats_from_cache(spa, features);
3462 } else {
3463 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3464 spa->spa_feat_stats = features;
3465 spa_feature_stats_from_disk(spa, features);
3466 }
3467
3468 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3469 features));
3470
3471 mutex_exit(&spa->spa_feat_stats_lock);
3472 }
3473
3474 int
3475 spa_get_stats(const char *name, nvlist_t **config,
3476 char *altroot, size_t buflen)
3477 {
3478 int error;
3479 spa_t *spa;
3480
3481 *config = NULL;
3482 error = spa_open_common(name, &spa, FTAG, NULL, config);
3483
3484 if (spa != NULL) {
3485 /*
3486 * This still leaves a window of inconsistency where the spares
3487 * or l2cache devices could change and the config would be
3488 * self-inconsistent.
3489 */
3490 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3491
3492 if (*config != NULL) {
3493 uint64_t loadtimes[2];
3494
3495 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3496 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3497 VERIFY(nvlist_add_uint64_array(*config,
3498 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3499
3500 VERIFY(nvlist_add_uint64(*config,
3501 ZPOOL_CONFIG_ERRCOUNT,
3502 spa_get_errlog_size(spa)) == 0);
3503
3504 if (spa_suspended(spa))
3505 VERIFY(nvlist_add_uint64(*config,
3506 ZPOOL_CONFIG_SUSPENDED,
3507 spa->spa_failmode) == 0);
3508
3509 spa_add_spares(spa, *config);
3510 spa_add_l2cache(spa, *config);
3511 spa_add_feature_stats(spa, *config);
3512 }
3513 }
3514
3515 /*
3516 * We want to get the alternate root even for faulted pools, so we cheat
3517 * and call spa_lookup() directly.
3518 */
3519 if (altroot) {
3520 if (spa == NULL) {
3521 mutex_enter(&spa_namespace_lock);
3522 spa = spa_lookup(name);
3523 if (spa)
3524 spa_altroot(spa, altroot, buflen);
3525 else
3526 altroot[0] = '\0';
3527 spa = NULL;
3528 mutex_exit(&spa_namespace_lock);
3529 } else {
3530 spa_altroot(spa, altroot, buflen);
3531 }
3532 }
3533
3534 if (spa != NULL) {
3535 spa_config_exit(spa, SCL_CONFIG, FTAG);
3536 spa_close(spa, FTAG);
3537 }
3538
3539 return (error);
3540 }
3541
3542 /*
3543 * Validate that the auxiliary device array is well formed. We must have an
3544 * array of nvlists, each which describes a valid leaf vdev. If this is an
3545 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3546 * specified, as long as they are well-formed.
3547 */
3548 static int
3549 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3550 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3551 vdev_labeltype_t label)
3552 {
3553 nvlist_t **dev;
3554 uint_t i, ndev;
3555 vdev_t *vd;
3556 int error;
3557
3558 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3559
3560 /*
3561 * It's acceptable to have no devs specified.
3562 */
3563 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3564 return (0);
3565
3566 if (ndev == 0)
3567 return (SET_ERROR(EINVAL));
3568
3569 /*
3570 * Make sure the pool is formatted with a version that supports this
3571 * device type.
3572 */
3573 if (spa_version(spa) < version)
3574 return (SET_ERROR(ENOTSUP));
3575
3576 /*
3577 * Set the pending device list so we correctly handle device in-use
3578 * checking.
3579 */
3580 sav->sav_pending = dev;
3581 sav->sav_npending = ndev;
3582
3583 for (i = 0; i < ndev; i++) {
3584 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3585 mode)) != 0)
3586 goto out;
3587
3588 if (!vd->vdev_ops->vdev_op_leaf) {
3589 vdev_free(vd);
3590 error = SET_ERROR(EINVAL);
3591 goto out;
3592 }
3593
3594 /*
3595 * The L2ARC currently only supports disk devices in
3596 * kernel context. For user-level testing, we allow it.
3597 */
3598 #ifdef _KERNEL
3599 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3600 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3601 error = SET_ERROR(ENOTBLK);
3602 vdev_free(vd);
3603 goto out;
3604 }
3605 #endif
3606 vd->vdev_top = vd;
3607
3608 if ((error = vdev_open(vd)) == 0 &&
3609 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3610 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3611 vd->vdev_guid) == 0);
3612 }
3613
3614 vdev_free(vd);
3615
3616 if (error &&
3617 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3618 goto out;
3619 else
3620 error = 0;
3621 }
3622
3623 out:
3624 sav->sav_pending = NULL;
3625 sav->sav_npending = 0;
3626 return (error);
3627 }
3628
3629 static int
3630 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3631 {
3632 int error;
3633
3634 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3635
3636 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3637 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3638 VDEV_LABEL_SPARE)) != 0) {
3639 return (error);
3640 }
3641
3642 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3643 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3644 VDEV_LABEL_L2CACHE));
3645 }
3646
3647 static void
3648 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3649 const char *config)
3650 {
3651 int i;
3652
3653 if (sav->sav_config != NULL) {
3654 nvlist_t **olddevs;
3655 uint_t oldndevs;
3656 nvlist_t **newdevs;
3657
3658 /*
3659 * Generate new dev list by concatentating with the
3660 * current dev list.
3661 */
3662 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3663 &olddevs, &oldndevs) == 0);
3664
3665 newdevs = kmem_alloc(sizeof (void *) *
3666 (ndevs + oldndevs), KM_SLEEP);
3667 for (i = 0; i < oldndevs; i++)
3668 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3669 KM_SLEEP) == 0);
3670 for (i = 0; i < ndevs; i++)
3671 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3672 KM_SLEEP) == 0);
3673
3674 VERIFY(nvlist_remove(sav->sav_config, config,
3675 DATA_TYPE_NVLIST_ARRAY) == 0);
3676
3677 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3678 config, newdevs, ndevs + oldndevs) == 0);
3679 for (i = 0; i < oldndevs + ndevs; i++)
3680 nvlist_free(newdevs[i]);
3681 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3682 } else {
3683 /*
3684 * Generate a new dev list.
3685 */
3686 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3687 KM_SLEEP) == 0);
3688 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3689 devs, ndevs) == 0);
3690 }
3691 }
3692
3693 /*
3694 * Stop and drop level 2 ARC devices
3695 */
3696 void
3697 spa_l2cache_drop(spa_t *spa)
3698 {
3699 vdev_t *vd;
3700 int i;
3701 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3702
3703 for (i = 0; i < sav->sav_count; i++) {
3704 uint64_t pool;
3705
3706 vd = sav->sav_vdevs[i];
3707 ASSERT(vd != NULL);
3708
3709 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3710 pool != 0ULL && l2arc_vdev_present(vd))
3711 l2arc_remove_vdev(vd);
3712 }
3713 }
3714
3715 /*
3716 * Pool Creation
3717 */
3718 int
3719 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3720 nvlist_t *zplprops)
3721 {
3722 spa_t *spa;
3723 char *altroot = NULL;
3724 vdev_t *rvd;
3725 dsl_pool_t *dp;
3726 dmu_tx_t *tx;
3727 int error = 0;
3728 uint64_t txg = TXG_INITIAL;
3729 nvlist_t **spares, **l2cache;
3730 uint_t nspares, nl2cache;
3731 uint64_t version, obj;
3732 boolean_t has_features;
3733 nvpair_t *elem;
3734 int c, i;
3735 char *poolname;
3736 nvlist_t *nvl;
3737
3738 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
3739 poolname = (char *)pool;
3740
3741 /*
3742 * If this pool already exists, return failure.
3743 */
3744 mutex_enter(&spa_namespace_lock);
3745 if (spa_lookup(poolname) != NULL) {
3746 mutex_exit(&spa_namespace_lock);
3747 return (SET_ERROR(EEXIST));
3748 }
3749
3750 /*
3751 * Allocate a new spa_t structure.
3752 */
3753 nvl = fnvlist_alloc();
3754 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
3755 (void) nvlist_lookup_string(props,
3756 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3757 spa = spa_add(poolname, nvl, altroot);
3758 fnvlist_free(nvl);
3759 spa_activate(spa, spa_mode_global);
3760
3761 if (props && (error = spa_prop_validate(spa, props))) {
3762 spa_deactivate(spa);
3763 spa_remove(spa);
3764 mutex_exit(&spa_namespace_lock);
3765 return (error);
3766 }
3767
3768 /*
3769 * Temporary pool names should never be written to disk.
3770 */
3771 if (poolname != pool)
3772 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
3773
3774 has_features = B_FALSE;
3775 for (elem = nvlist_next_nvpair(props, NULL);
3776 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3777 if (zpool_prop_feature(nvpair_name(elem)))
3778 has_features = B_TRUE;
3779 }
3780
3781 if (has_features || nvlist_lookup_uint64(props,
3782 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3783 version = SPA_VERSION;
3784 }
3785 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3786
3787 spa->spa_first_txg = txg;
3788 spa->spa_uberblock.ub_txg = txg - 1;
3789 spa->spa_uberblock.ub_version = version;
3790 spa->spa_ubsync = spa->spa_uberblock;
3791
3792 /*
3793 * Create "The Godfather" zio to hold all async IOs
3794 */
3795 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3796 KM_SLEEP);
3797 for (i = 0; i < max_ncpus; i++) {
3798 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3799 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3800 ZIO_FLAG_GODFATHER);
3801 }
3802
3803 /*
3804 * Create the root vdev.
3805 */
3806 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3807
3808 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3809
3810 ASSERT(error != 0 || rvd != NULL);
3811 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3812
3813 if (error == 0 && !zfs_allocatable_devs(nvroot))
3814 error = SET_ERROR(EINVAL);
3815
3816 if (error == 0 &&
3817 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3818 (error = spa_validate_aux(spa, nvroot, txg,
3819 VDEV_ALLOC_ADD)) == 0) {
3820 for (c = 0; c < rvd->vdev_children; c++) {
3821 vdev_metaslab_set_size(rvd->vdev_child[c]);
3822 vdev_expand(rvd->vdev_child[c], txg);
3823 }
3824 }
3825
3826 spa_config_exit(spa, SCL_ALL, FTAG);
3827
3828 if (error != 0) {
3829 spa_unload(spa);
3830 spa_deactivate(spa);
3831 spa_remove(spa);
3832 mutex_exit(&spa_namespace_lock);
3833 return (error);
3834 }
3835
3836 /*
3837 * Get the list of spares, if specified.
3838 */
3839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3840 &spares, &nspares) == 0) {
3841 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3842 KM_SLEEP) == 0);
3843 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3844 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3845 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3846 spa_load_spares(spa);
3847 spa_config_exit(spa, SCL_ALL, FTAG);
3848 spa->spa_spares.sav_sync = B_TRUE;
3849 }
3850
3851 /*
3852 * Get the list of level 2 cache devices, if specified.
3853 */
3854 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3855 &l2cache, &nl2cache) == 0) {
3856 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3857 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3858 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3859 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3860 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3861 spa_load_l2cache(spa);
3862 spa_config_exit(spa, SCL_ALL, FTAG);
3863 spa->spa_l2cache.sav_sync = B_TRUE;
3864 }
3865
3866 spa->spa_is_initializing = B_TRUE;
3867 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3868 spa->spa_meta_objset = dp->dp_meta_objset;
3869 spa->spa_is_initializing = B_FALSE;
3870
3871 /*
3872 * Create DDTs (dedup tables).
3873 */
3874 ddt_create(spa);
3875
3876 spa_update_dspace(spa);
3877
3878 tx = dmu_tx_create_assigned(dp, txg);
3879
3880 /*
3881 * Create the pool config object.
3882 */
3883 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3884 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3885 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3886
3887 if (zap_add(spa->spa_meta_objset,
3888 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3889 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3890 cmn_err(CE_PANIC, "failed to add pool config");
3891 }
3892
3893 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3894 spa_feature_create_zap_objects(spa, tx);
3895
3896 if (zap_add(spa->spa_meta_objset,
3897 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3898 sizeof (uint64_t), 1, &version, tx) != 0) {
3899 cmn_err(CE_PANIC, "failed to add pool version");
3900 }
3901
3902 /* Newly created pools with the right version are always deflated. */
3903 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3904 spa->spa_deflate = TRUE;
3905 if (zap_add(spa->spa_meta_objset,
3906 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3907 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3908 cmn_err(CE_PANIC, "failed to add deflate");
3909 }
3910 }
3911
3912 /*
3913 * Create the deferred-free bpobj. Turn off compression
3914 * because sync-to-convergence takes longer if the blocksize
3915 * keeps changing.
3916 */
3917 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3918 dmu_object_set_compress(spa->spa_meta_objset, obj,
3919 ZIO_COMPRESS_OFF, tx);
3920 if (zap_add(spa->spa_meta_objset,
3921 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3922 sizeof (uint64_t), 1, &obj, tx) != 0) {
3923 cmn_err(CE_PANIC, "failed to add bpobj");
3924 }
3925 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3926 spa->spa_meta_objset, obj));
3927
3928 /*
3929 * Create the pool's history object.
3930 */
3931 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3932 spa_history_create_obj(spa, tx);
3933
3934 /*
3935 * Set pool properties.
3936 */
3937 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3938 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3939 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3940 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3941
3942 if (props != NULL) {
3943 spa_configfile_set(spa, props, B_FALSE);
3944 spa_sync_props(props, tx);
3945 }
3946
3947 dmu_tx_commit(tx);
3948
3949 spa->spa_sync_on = B_TRUE;
3950 txg_sync_start(spa->spa_dsl_pool);
3951
3952 /*
3953 * We explicitly wait for the first transaction to complete so that our
3954 * bean counters are appropriately updated.
3955 */
3956 txg_wait_synced(spa->spa_dsl_pool, txg);
3957
3958 spa_config_sync(spa, B_FALSE, B_TRUE);
3959
3960 spa_history_log_version(spa, "create");
3961
3962 /*
3963 * Don't count references from objsets that are already closed
3964 * and are making their way through the eviction process.
3965 */
3966 spa_evicting_os_wait(spa);
3967 spa->spa_minref = refcount_count(&spa->spa_refcount);
3968
3969 mutex_exit(&spa_namespace_lock);
3970
3971 return (0);
3972 }
3973
3974 #if defined(_KERNEL) && !defined(__linux__)
3975 /*
3976 * Get the root pool information from the root disk, then import the root pool
3977 * during the system boot up time.
3978 */
3979 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3980
3981 static nvlist_t *
3982 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3983 {
3984 nvlist_t *config;
3985 nvlist_t *nvtop, *nvroot;
3986 uint64_t pgid;
3987
3988 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3989 return (NULL);
3990
3991 /*
3992 * Add this top-level vdev to the child array.
3993 */
3994 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3995 &nvtop) == 0);
3996 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3997 &pgid) == 0);
3998 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3999
4000 /*
4001 * Put this pool's top-level vdevs into a root vdev.
4002 */
4003 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4004 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4005 VDEV_TYPE_ROOT) == 0);
4006 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4007 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4008 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4009 &nvtop, 1) == 0);
4010
4011 /*
4012 * Replace the existing vdev_tree with the new root vdev in
4013 * this pool's configuration (remove the old, add the new).
4014 */
4015 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4016 nvlist_free(nvroot);
4017 return (config);
4018 }
4019
4020 /*
4021 * Walk the vdev tree and see if we can find a device with "better"
4022 * configuration. A configuration is "better" if the label on that
4023 * device has a more recent txg.
4024 */
4025 static void
4026 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4027 {
4028 int c;
4029
4030 for (c = 0; c < vd->vdev_children; c++)
4031 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4032
4033 if (vd->vdev_ops->vdev_op_leaf) {
4034 nvlist_t *label;
4035 uint64_t label_txg;
4036
4037 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4038 &label) != 0)
4039 return;
4040
4041 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4042 &label_txg) == 0);
4043
4044 /*
4045 * Do we have a better boot device?
4046 */
4047 if (label_txg > *txg) {
4048 *txg = label_txg;
4049 *avd = vd;
4050 }
4051 nvlist_free(label);
4052 }
4053 }
4054
4055 /*
4056 * Import a root pool.
4057 *
4058 * For x86. devpath_list will consist of devid and/or physpath name of
4059 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4060 * The GRUB "findroot" command will return the vdev we should boot.
4061 *
4062 * For Sparc, devpath_list consists the physpath name of the booting device
4063 * no matter the rootpool is a single device pool or a mirrored pool.
4064 * e.g.
4065 * "/pci@1f,0/ide@d/disk@0,0:a"
4066 */
4067 int
4068 spa_import_rootpool(char *devpath, char *devid)
4069 {
4070 spa_t *spa;
4071 vdev_t *rvd, *bvd, *avd = NULL;
4072 nvlist_t *config, *nvtop;
4073 uint64_t guid, txg;
4074 char *pname;
4075 int error;
4076
4077 /*
4078 * Read the label from the boot device and generate a configuration.
4079 */
4080 config = spa_generate_rootconf(devpath, devid, &guid);
4081 #if defined(_OBP) && defined(_KERNEL)
4082 if (config == NULL) {
4083 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4084 /* iscsi boot */
4085 get_iscsi_bootpath_phy(devpath);
4086 config = spa_generate_rootconf(devpath, devid, &guid);
4087 }
4088 }
4089 #endif
4090 if (config == NULL) {
4091 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4092 devpath);
4093 return (SET_ERROR(EIO));
4094 }
4095
4096 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4097 &pname) == 0);
4098 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4099
4100 mutex_enter(&spa_namespace_lock);
4101 if ((spa = spa_lookup(pname)) != NULL) {
4102 /*
4103 * Remove the existing root pool from the namespace so that we
4104 * can replace it with the correct config we just read in.
4105 */
4106 spa_remove(spa);
4107 }
4108
4109 spa = spa_add(pname, config, NULL);
4110 spa->spa_is_root = B_TRUE;
4111 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4112
4113 /*
4114 * Build up a vdev tree based on the boot device's label config.
4115 */
4116 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4117 &nvtop) == 0);
4118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4119 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4120 VDEV_ALLOC_ROOTPOOL);
4121 spa_config_exit(spa, SCL_ALL, FTAG);
4122 if (error) {
4123 mutex_exit(&spa_namespace_lock);
4124 nvlist_free(config);
4125 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4126 pname);
4127 return (error);
4128 }
4129
4130 /*
4131 * Get the boot vdev.
4132 */
4133 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4134 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4135 (u_longlong_t)guid);
4136 error = SET_ERROR(ENOENT);
4137 goto out;
4138 }
4139
4140 /*
4141 * Determine if there is a better boot device.
4142 */
4143 avd = bvd;
4144 spa_alt_rootvdev(rvd, &avd, &txg);
4145 if (avd != bvd) {
4146 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4147 "try booting from '%s'", avd->vdev_path);
4148 error = SET_ERROR(EINVAL);
4149 goto out;
4150 }
4151
4152 /*
4153 * If the boot device is part of a spare vdev then ensure that
4154 * we're booting off the active spare.
4155 */
4156 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4157 !bvd->vdev_isspare) {
4158 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4159 "try booting from '%s'",
4160 bvd->vdev_parent->
4161 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4162 error = SET_ERROR(EINVAL);
4163 goto out;
4164 }
4165
4166 error = 0;
4167 out:
4168 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4169 vdev_free(rvd);
4170 spa_config_exit(spa, SCL_ALL, FTAG);
4171 mutex_exit(&spa_namespace_lock);
4172
4173 nvlist_free(config);
4174 return (error);
4175 }
4176
4177 #endif /* defined(_KERNEL) && !defined(__linux__) */
4178
4179 /*
4180 * Import a non-root pool into the system.
4181 */
4182 int
4183 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4184 {
4185 spa_t *spa;
4186 char *altroot = NULL;
4187 spa_load_state_t state = SPA_LOAD_IMPORT;
4188 zpool_rewind_policy_t policy;
4189 uint64_t mode = spa_mode_global;
4190 uint64_t readonly = B_FALSE;
4191 int error;
4192 nvlist_t *nvroot;
4193 nvlist_t **spares, **l2cache;
4194 uint_t nspares, nl2cache;
4195
4196 /*
4197 * If a pool with this name exists, return failure.
4198 */
4199 mutex_enter(&spa_namespace_lock);
4200 if (spa_lookup(pool) != NULL) {
4201 mutex_exit(&spa_namespace_lock);
4202 return (SET_ERROR(EEXIST));
4203 }
4204
4205 /*
4206 * Create and initialize the spa structure.
4207 */
4208 (void) nvlist_lookup_string(props,
4209 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4210 (void) nvlist_lookup_uint64(props,
4211 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4212 if (readonly)
4213 mode = FREAD;
4214 spa = spa_add(pool, config, altroot);
4215 spa->spa_import_flags = flags;
4216
4217 /*
4218 * Verbatim import - Take a pool and insert it into the namespace
4219 * as if it had been loaded at boot.
4220 */
4221 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4222 if (props != NULL)
4223 spa_configfile_set(spa, props, B_FALSE);
4224
4225 spa_config_sync(spa, B_FALSE, B_TRUE);
4226
4227 mutex_exit(&spa_namespace_lock);
4228 return (0);
4229 }
4230
4231 spa_activate(spa, mode);
4232
4233 /*
4234 * Don't start async tasks until we know everything is healthy.
4235 */
4236 spa_async_suspend(spa);
4237
4238 zpool_get_rewind_policy(config, &policy);
4239 if (policy.zrp_request & ZPOOL_DO_REWIND)
4240 state = SPA_LOAD_RECOVER;
4241
4242 /*
4243 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4244 * because the user-supplied config is actually the one to trust when
4245 * doing an import.
4246 */
4247 if (state != SPA_LOAD_RECOVER)
4248 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4249
4250 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4251 policy.zrp_request);
4252
4253 /*
4254 * Propagate anything learned while loading the pool and pass it
4255 * back to caller (i.e. rewind info, missing devices, etc).
4256 */
4257 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4258 spa->spa_load_info) == 0);
4259
4260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4261 /*
4262 * Toss any existing sparelist, as it doesn't have any validity
4263 * anymore, and conflicts with spa_has_spare().
4264 */
4265 if (spa->spa_spares.sav_config) {
4266 nvlist_free(spa->spa_spares.sav_config);
4267 spa->spa_spares.sav_config = NULL;
4268 spa_load_spares(spa);
4269 }
4270 if (spa->spa_l2cache.sav_config) {
4271 nvlist_free(spa->spa_l2cache.sav_config);
4272 spa->spa_l2cache.sav_config = NULL;
4273 spa_load_l2cache(spa);
4274 }
4275
4276 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4277 &nvroot) == 0);
4278 if (error == 0)
4279 error = spa_validate_aux(spa, nvroot, -1ULL,
4280 VDEV_ALLOC_SPARE);
4281 if (error == 0)
4282 error = spa_validate_aux(spa, nvroot, -1ULL,
4283 VDEV_ALLOC_L2CACHE);
4284 spa_config_exit(spa, SCL_ALL, FTAG);
4285
4286 if (props != NULL)
4287 spa_configfile_set(spa, props, B_FALSE);
4288
4289 if (error != 0 || (props && spa_writeable(spa) &&
4290 (error = spa_prop_set(spa, props)))) {
4291 spa_unload(spa);
4292 spa_deactivate(spa);
4293 spa_remove(spa);
4294 mutex_exit(&spa_namespace_lock);
4295 return (error);
4296 }
4297
4298 spa_async_resume(spa);
4299
4300 /*
4301 * Override any spares and level 2 cache devices as specified by
4302 * the user, as these may have correct device names/devids, etc.
4303 */
4304 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4305 &spares, &nspares) == 0) {
4306 if (spa->spa_spares.sav_config)
4307 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4308 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4309 else
4310 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4311 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4312 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4313 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4314 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4315 spa_load_spares(spa);
4316 spa_config_exit(spa, SCL_ALL, FTAG);
4317 spa->spa_spares.sav_sync = B_TRUE;
4318 }
4319 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4320 &l2cache, &nl2cache) == 0) {
4321 if (spa->spa_l2cache.sav_config)
4322 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4323 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4324 else
4325 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4326 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4327 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4328 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4329 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4330 spa_load_l2cache(spa);
4331 spa_config_exit(spa, SCL_ALL, FTAG);
4332 spa->spa_l2cache.sav_sync = B_TRUE;
4333 }
4334
4335 /*
4336 * Check for any removed devices.
4337 */
4338 if (spa->spa_autoreplace) {
4339 spa_aux_check_removed(&spa->spa_spares);
4340 spa_aux_check_removed(&spa->spa_l2cache);
4341 }
4342
4343 if (spa_writeable(spa)) {
4344 /*
4345 * Update the config cache to include the newly-imported pool.
4346 */
4347 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4348 }
4349
4350 /*
4351 * It's possible that the pool was expanded while it was exported.
4352 * We kick off an async task to handle this for us.
4353 */
4354 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4355
4356 mutex_exit(&spa_namespace_lock);
4357 spa_history_log_version(spa, "import");
4358 zvol_create_minors(spa, pool, B_TRUE);
4359
4360 return (0);
4361 }
4362
4363 nvlist_t *
4364 spa_tryimport(nvlist_t *tryconfig)
4365 {
4366 nvlist_t *config = NULL;
4367 char *poolname;
4368 spa_t *spa;
4369 uint64_t state;
4370 int error;
4371
4372 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4373 return (NULL);
4374
4375 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4376 return (NULL);
4377
4378 /*
4379 * Create and initialize the spa structure.
4380 */
4381 mutex_enter(&spa_namespace_lock);
4382 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4383 spa_activate(spa, FREAD);
4384
4385 /*
4386 * Pass off the heavy lifting to spa_load().
4387 * Pass TRUE for mosconfig because the user-supplied config
4388 * is actually the one to trust when doing an import.
4389 */
4390 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4391
4392 /*
4393 * If 'tryconfig' was at least parsable, return the current config.
4394 */
4395 if (spa->spa_root_vdev != NULL) {
4396 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4397 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4398 poolname) == 0);
4399 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4400 state) == 0);
4401 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4402 spa->spa_uberblock.ub_timestamp) == 0);
4403 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4404 spa->spa_load_info) == 0);
4405 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4406 spa->spa_errata) == 0);
4407
4408 /*
4409 * If the bootfs property exists on this pool then we
4410 * copy it out so that external consumers can tell which
4411 * pools are bootable.
4412 */
4413 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4414 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4415
4416 /*
4417 * We have to play games with the name since the
4418 * pool was opened as TRYIMPORT_NAME.
4419 */
4420 if (dsl_dsobj_to_dsname(spa_name(spa),
4421 spa->spa_bootfs, tmpname) == 0) {
4422 char *cp;
4423 char *dsname;
4424
4425 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4426
4427 cp = strchr(tmpname, '/');
4428 if (cp == NULL) {
4429 (void) strlcpy(dsname, tmpname,
4430 MAXPATHLEN);
4431 } else {
4432 (void) snprintf(dsname, MAXPATHLEN,
4433 "%s/%s", poolname, ++cp);
4434 }
4435 VERIFY(nvlist_add_string(config,
4436 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4437 kmem_free(dsname, MAXPATHLEN);
4438 }
4439 kmem_free(tmpname, MAXPATHLEN);
4440 }
4441
4442 /*
4443 * Add the list of hot spares and level 2 cache devices.
4444 */
4445 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4446 spa_add_spares(spa, config);
4447 spa_add_l2cache(spa, config);
4448 spa_config_exit(spa, SCL_CONFIG, FTAG);
4449 }
4450
4451 spa_unload(spa);
4452 spa_deactivate(spa);
4453 spa_remove(spa);
4454 mutex_exit(&spa_namespace_lock);
4455
4456 return (config);
4457 }
4458
4459 /*
4460 * Pool export/destroy
4461 *
4462 * The act of destroying or exporting a pool is very simple. We make sure there
4463 * is no more pending I/O and any references to the pool are gone. Then, we
4464 * update the pool state and sync all the labels to disk, removing the
4465 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4466 * we don't sync the labels or remove the configuration cache.
4467 */
4468 static int
4469 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4470 boolean_t force, boolean_t hardforce)
4471 {
4472 spa_t *spa;
4473
4474 if (oldconfig)
4475 *oldconfig = NULL;
4476
4477 if (!(spa_mode_global & FWRITE))
4478 return (SET_ERROR(EROFS));
4479
4480 mutex_enter(&spa_namespace_lock);
4481 if ((spa = spa_lookup(pool)) == NULL) {
4482 mutex_exit(&spa_namespace_lock);
4483 return (SET_ERROR(ENOENT));
4484 }
4485
4486 /*
4487 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4488 * reacquire the namespace lock, and see if we can export.
4489 */
4490 spa_open_ref(spa, FTAG);
4491 mutex_exit(&spa_namespace_lock);
4492 spa_async_suspend(spa);
4493 if (spa->spa_zvol_taskq) {
4494 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
4495 taskq_wait(spa->spa_zvol_taskq);
4496 }
4497 mutex_enter(&spa_namespace_lock);
4498 spa_close(spa, FTAG);
4499
4500 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4501 goto export_spa;
4502 /*
4503 * The pool will be in core if it's openable, in which case we can
4504 * modify its state. Objsets may be open only because they're dirty,
4505 * so we have to force it to sync before checking spa_refcnt.
4506 */
4507 if (spa->spa_sync_on) {
4508 txg_wait_synced(spa->spa_dsl_pool, 0);
4509 spa_evicting_os_wait(spa);
4510 }
4511
4512 /*
4513 * A pool cannot be exported or destroyed if there are active
4514 * references. If we are resetting a pool, allow references by
4515 * fault injection handlers.
4516 */
4517 if (!spa_refcount_zero(spa) ||
4518 (spa->spa_inject_ref != 0 &&
4519 new_state != POOL_STATE_UNINITIALIZED)) {
4520 spa_async_resume(spa);
4521 mutex_exit(&spa_namespace_lock);
4522 return (SET_ERROR(EBUSY));
4523 }
4524
4525 if (spa->spa_sync_on) {
4526 /*
4527 * A pool cannot be exported if it has an active shared spare.
4528 * This is to prevent other pools stealing the active spare
4529 * from an exported pool. At user's own will, such pool can
4530 * be forcedly exported.
4531 */
4532 if (!force && new_state == POOL_STATE_EXPORTED &&
4533 spa_has_active_shared_spare(spa)) {
4534 spa_async_resume(spa);
4535 mutex_exit(&spa_namespace_lock);
4536 return (SET_ERROR(EXDEV));
4537 }
4538
4539 /*
4540 * We want this to be reflected on every label,
4541 * so mark them all dirty. spa_unload() will do the
4542 * final sync that pushes these changes out.
4543 */
4544 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4545 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4546 spa->spa_state = new_state;
4547 spa->spa_final_txg = spa_last_synced_txg(spa) +
4548 TXG_DEFER_SIZE + 1;
4549 vdev_config_dirty(spa->spa_root_vdev);
4550 spa_config_exit(spa, SCL_ALL, FTAG);
4551 }
4552 }
4553
4554 export_spa:
4555 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4556
4557 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4558 spa_unload(spa);
4559 spa_deactivate(spa);
4560 }
4561
4562 if (oldconfig && spa->spa_config)
4563 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4564
4565 if (new_state != POOL_STATE_UNINITIALIZED) {
4566 if (!hardforce)
4567 spa_config_sync(spa, B_TRUE, B_TRUE);
4568 spa_remove(spa);
4569 }
4570 mutex_exit(&spa_namespace_lock);
4571
4572 return (0);
4573 }
4574
4575 /*
4576 * Destroy a storage pool.
4577 */
4578 int
4579 spa_destroy(char *pool)
4580 {
4581 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4582 B_FALSE, B_FALSE));
4583 }
4584
4585 /*
4586 * Export a storage pool.
4587 */
4588 int
4589 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4590 boolean_t hardforce)
4591 {
4592 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4593 force, hardforce));
4594 }
4595
4596 /*
4597 * Similar to spa_export(), this unloads the spa_t without actually removing it
4598 * from the namespace in any way.
4599 */
4600 int
4601 spa_reset(char *pool)
4602 {
4603 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4604 B_FALSE, B_FALSE));
4605 }
4606
4607 /*
4608 * ==========================================================================
4609 * Device manipulation
4610 * ==========================================================================
4611 */
4612
4613 /*
4614 * Add a device to a storage pool.
4615 */
4616 int
4617 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4618 {
4619 uint64_t txg, id;
4620 int error;
4621 vdev_t *rvd = spa->spa_root_vdev;
4622 vdev_t *vd, *tvd;
4623 nvlist_t **spares, **l2cache;
4624 uint_t nspares, nl2cache;
4625 int c;
4626
4627 ASSERT(spa_writeable(spa));
4628
4629 txg = spa_vdev_enter(spa);
4630
4631 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4632 VDEV_ALLOC_ADD)) != 0)
4633 return (spa_vdev_exit(spa, NULL, txg, error));
4634
4635 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4636
4637 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4638 &nspares) != 0)
4639 nspares = 0;
4640
4641 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4642 &nl2cache) != 0)
4643 nl2cache = 0;
4644
4645 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4646 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4647
4648 if (vd->vdev_children != 0 &&
4649 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4650 return (spa_vdev_exit(spa, vd, txg, error));
4651
4652 /*
4653 * We must validate the spares and l2cache devices after checking the
4654 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4655 */
4656 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4657 return (spa_vdev_exit(spa, vd, txg, error));
4658
4659 /*
4660 * Transfer each new top-level vdev from vd to rvd.
4661 */
4662 for (c = 0; c < vd->vdev_children; c++) {
4663
4664 /*
4665 * Set the vdev id to the first hole, if one exists.
4666 */
4667 for (id = 0; id < rvd->vdev_children; id++) {
4668 if (rvd->vdev_child[id]->vdev_ishole) {
4669 vdev_free(rvd->vdev_child[id]);
4670 break;
4671 }
4672 }
4673 tvd = vd->vdev_child[c];
4674 vdev_remove_child(vd, tvd);
4675 tvd->vdev_id = id;
4676 vdev_add_child(rvd, tvd);
4677 vdev_config_dirty(tvd);
4678 }
4679
4680 if (nspares != 0) {
4681 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4682 ZPOOL_CONFIG_SPARES);
4683 spa_load_spares(spa);
4684 spa->spa_spares.sav_sync = B_TRUE;
4685 }
4686
4687 if (nl2cache != 0) {
4688 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4689 ZPOOL_CONFIG_L2CACHE);
4690 spa_load_l2cache(spa);
4691 spa->spa_l2cache.sav_sync = B_TRUE;
4692 }
4693
4694 /*
4695 * We have to be careful when adding new vdevs to an existing pool.
4696 * If other threads start allocating from these vdevs before we
4697 * sync the config cache, and we lose power, then upon reboot we may
4698 * fail to open the pool because there are DVAs that the config cache
4699 * can't translate. Therefore, we first add the vdevs without
4700 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4701 * and then let spa_config_update() initialize the new metaslabs.
4702 *
4703 * spa_load() checks for added-but-not-initialized vdevs, so that
4704 * if we lose power at any point in this sequence, the remaining
4705 * steps will be completed the next time we load the pool.
4706 */
4707 (void) spa_vdev_exit(spa, vd, txg, 0);
4708
4709 mutex_enter(&spa_namespace_lock);
4710 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4711 mutex_exit(&spa_namespace_lock);
4712
4713 return (0);
4714 }
4715
4716 /*
4717 * Attach a device to a mirror. The arguments are the path to any device
4718 * in the mirror, and the nvroot for the new device. If the path specifies
4719 * a device that is not mirrored, we automatically insert the mirror vdev.
4720 *
4721 * If 'replacing' is specified, the new device is intended to replace the
4722 * existing device; in this case the two devices are made into their own
4723 * mirror using the 'replacing' vdev, which is functionally identical to
4724 * the mirror vdev (it actually reuses all the same ops) but has a few
4725 * extra rules: you can't attach to it after it's been created, and upon
4726 * completion of resilvering, the first disk (the one being replaced)
4727 * is automatically detached.
4728 */
4729 int
4730 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4731 {
4732 uint64_t txg, dtl_max_txg;
4733 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4734 vdev_ops_t *pvops;
4735 char *oldvdpath, *newvdpath;
4736 int newvd_isspare;
4737 int error;
4738 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4739
4740 ASSERT(spa_writeable(spa));
4741
4742 txg = spa_vdev_enter(spa);
4743
4744 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4745
4746 if (oldvd == NULL)
4747 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4748
4749 if (!oldvd->vdev_ops->vdev_op_leaf)
4750 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4751
4752 pvd = oldvd->vdev_parent;
4753
4754 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4755 VDEV_ALLOC_ATTACH)) != 0)
4756 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4757
4758 if (newrootvd->vdev_children != 1)
4759 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4760
4761 newvd = newrootvd->vdev_child[0];
4762
4763 if (!newvd->vdev_ops->vdev_op_leaf)
4764 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4765
4766 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4767 return (spa_vdev_exit(spa, newrootvd, txg, error));
4768
4769 /*
4770 * Spares can't replace logs
4771 */
4772 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4773 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4774
4775 if (!replacing) {
4776 /*
4777 * For attach, the only allowable parent is a mirror or the root
4778 * vdev.
4779 */
4780 if (pvd->vdev_ops != &vdev_mirror_ops &&
4781 pvd->vdev_ops != &vdev_root_ops)
4782 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4783
4784 pvops = &vdev_mirror_ops;
4785 } else {
4786 /*
4787 * Active hot spares can only be replaced by inactive hot
4788 * spares.
4789 */
4790 if (pvd->vdev_ops == &vdev_spare_ops &&
4791 oldvd->vdev_isspare &&
4792 !spa_has_spare(spa, newvd->vdev_guid))
4793 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4794
4795 /*
4796 * If the source is a hot spare, and the parent isn't already a
4797 * spare, then we want to create a new hot spare. Otherwise, we
4798 * want to create a replacing vdev. The user is not allowed to
4799 * attach to a spared vdev child unless the 'isspare' state is
4800 * the same (spare replaces spare, non-spare replaces
4801 * non-spare).
4802 */
4803 if (pvd->vdev_ops == &vdev_replacing_ops &&
4804 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4805 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4806 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4807 newvd->vdev_isspare != oldvd->vdev_isspare) {
4808 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4809 }
4810
4811 if (newvd->vdev_isspare)
4812 pvops = &vdev_spare_ops;
4813 else
4814 pvops = &vdev_replacing_ops;
4815 }
4816
4817 /*
4818 * Make sure the new device is big enough.
4819 */
4820 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4821 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4822
4823 /*
4824 * The new device cannot have a higher alignment requirement
4825 * than the top-level vdev.
4826 */
4827 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4828 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4829
4830 /*
4831 * If this is an in-place replacement, update oldvd's path and devid
4832 * to make it distinguishable from newvd, and unopenable from now on.
4833 */
4834 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4835 spa_strfree(oldvd->vdev_path);
4836 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4837 KM_SLEEP);
4838 (void) sprintf(oldvd->vdev_path, "%s/%s",
4839 newvd->vdev_path, "old");
4840 if (oldvd->vdev_devid != NULL) {
4841 spa_strfree(oldvd->vdev_devid);
4842 oldvd->vdev_devid = NULL;
4843 }
4844 }
4845
4846 /* mark the device being resilvered */
4847 newvd->vdev_resilver_txg = txg;
4848
4849 /*
4850 * If the parent is not a mirror, or if we're replacing, insert the new
4851 * mirror/replacing/spare vdev above oldvd.
4852 */
4853 if (pvd->vdev_ops != pvops)
4854 pvd = vdev_add_parent(oldvd, pvops);
4855
4856 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4857 ASSERT(pvd->vdev_ops == pvops);
4858 ASSERT(oldvd->vdev_parent == pvd);
4859
4860 /*
4861 * Extract the new device from its root and add it to pvd.
4862 */
4863 vdev_remove_child(newrootvd, newvd);
4864 newvd->vdev_id = pvd->vdev_children;
4865 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4866 vdev_add_child(pvd, newvd);
4867
4868 tvd = newvd->vdev_top;
4869 ASSERT(pvd->vdev_top == tvd);
4870 ASSERT(tvd->vdev_parent == rvd);
4871
4872 vdev_config_dirty(tvd);
4873
4874 /*
4875 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4876 * for any dmu_sync-ed blocks. It will propagate upward when
4877 * spa_vdev_exit() calls vdev_dtl_reassess().
4878 */
4879 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4880
4881 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4882 dtl_max_txg - TXG_INITIAL);
4883
4884 if (newvd->vdev_isspare) {
4885 spa_spare_activate(newvd);
4886 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4887 }
4888
4889 oldvdpath = spa_strdup(oldvd->vdev_path);
4890 newvdpath = spa_strdup(newvd->vdev_path);
4891 newvd_isspare = newvd->vdev_isspare;
4892
4893 /*
4894 * Mark newvd's DTL dirty in this txg.
4895 */
4896 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4897
4898 /*
4899 * Schedule the resilver to restart in the future. We do this to
4900 * ensure that dmu_sync-ed blocks have been stitched into the
4901 * respective datasets.
4902 */
4903 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4904
4905 /*
4906 * Commit the config
4907 */
4908 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4909
4910 spa_history_log_internal(spa, "vdev attach", NULL,
4911 "%s vdev=%s %s vdev=%s",
4912 replacing && newvd_isspare ? "spare in" :
4913 replacing ? "replace" : "attach", newvdpath,
4914 replacing ? "for" : "to", oldvdpath);
4915
4916 spa_strfree(oldvdpath);
4917 spa_strfree(newvdpath);
4918
4919 if (spa->spa_bootfs)
4920 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4921
4922 return (0);
4923 }
4924
4925 /*
4926 * Detach a device from a mirror or replacing vdev.
4927 *
4928 * If 'replace_done' is specified, only detach if the parent
4929 * is a replacing vdev.
4930 */
4931 int
4932 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4933 {
4934 uint64_t txg;
4935 int error;
4936 vdev_t *vd, *pvd, *cvd, *tvd;
4937 boolean_t unspare = B_FALSE;
4938 uint64_t unspare_guid = 0;
4939 char *vdpath;
4940 int c, t;
4941 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4942 ASSERT(spa_writeable(spa));
4943
4944 txg = spa_vdev_enter(spa);
4945
4946 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4947
4948 if (vd == NULL)
4949 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4950
4951 if (!vd->vdev_ops->vdev_op_leaf)
4952 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4953
4954 pvd = vd->vdev_parent;
4955
4956 /*
4957 * If the parent/child relationship is not as expected, don't do it.
4958 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4959 * vdev that's replacing B with C. The user's intent in replacing
4960 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4961 * the replace by detaching C, the expected behavior is to end up
4962 * M(A,B). But suppose that right after deciding to detach C,
4963 * the replacement of B completes. We would have M(A,C), and then
4964 * ask to detach C, which would leave us with just A -- not what
4965 * the user wanted. To prevent this, we make sure that the
4966 * parent/child relationship hasn't changed -- in this example,
4967 * that C's parent is still the replacing vdev R.
4968 */
4969 if (pvd->vdev_guid != pguid && pguid != 0)
4970 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4971
4972 /*
4973 * Only 'replacing' or 'spare' vdevs can be replaced.
4974 */
4975 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4976 pvd->vdev_ops != &vdev_spare_ops)
4977 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4978
4979 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4980 spa_version(spa) >= SPA_VERSION_SPARES);
4981
4982 /*
4983 * Only mirror, replacing, and spare vdevs support detach.
4984 */
4985 if (pvd->vdev_ops != &vdev_replacing_ops &&
4986 pvd->vdev_ops != &vdev_mirror_ops &&
4987 pvd->vdev_ops != &vdev_spare_ops)
4988 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4989
4990 /*
4991 * If this device has the only valid copy of some data,
4992 * we cannot safely detach it.
4993 */
4994 if (vdev_dtl_required(vd))
4995 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4996
4997 ASSERT(pvd->vdev_children >= 2);
4998
4999 /*
5000 * If we are detaching the second disk from a replacing vdev, then
5001 * check to see if we changed the original vdev's path to have "/old"
5002 * at the end in spa_vdev_attach(). If so, undo that change now.
5003 */
5004 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5005 vd->vdev_path != NULL) {
5006 size_t len = strlen(vd->vdev_path);
5007
5008 for (c = 0; c < pvd->vdev_children; c++) {
5009 cvd = pvd->vdev_child[c];
5010
5011 if (cvd == vd || cvd->vdev_path == NULL)
5012 continue;
5013
5014 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5015 strcmp(cvd->vdev_path + len, "/old") == 0) {
5016 spa_strfree(cvd->vdev_path);
5017 cvd->vdev_path = spa_strdup(vd->vdev_path);
5018 break;
5019 }
5020 }
5021 }
5022
5023 /*
5024 * If we are detaching the original disk from a spare, then it implies
5025 * that the spare should become a real disk, and be removed from the
5026 * active spare list for the pool.
5027 */
5028 if (pvd->vdev_ops == &vdev_spare_ops &&
5029 vd->vdev_id == 0 &&
5030 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5031 unspare = B_TRUE;
5032
5033 /*
5034 * Erase the disk labels so the disk can be used for other things.
5035 * This must be done after all other error cases are handled,
5036 * but before we disembowel vd (so we can still do I/O to it).
5037 * But if we can't do it, don't treat the error as fatal --
5038 * it may be that the unwritability of the disk is the reason
5039 * it's being detached!
5040 */
5041 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5042
5043 /*
5044 * Remove vd from its parent and compact the parent's children.
5045 */
5046 vdev_remove_child(pvd, vd);
5047 vdev_compact_children(pvd);
5048
5049 /*
5050 * Remember one of the remaining children so we can get tvd below.
5051 */
5052 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5053
5054 /*
5055 * If we need to remove the remaining child from the list of hot spares,
5056 * do it now, marking the vdev as no longer a spare in the process.
5057 * We must do this before vdev_remove_parent(), because that can
5058 * change the GUID if it creates a new toplevel GUID. For a similar
5059 * reason, we must remove the spare now, in the same txg as the detach;
5060 * otherwise someone could attach a new sibling, change the GUID, and
5061 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5062 */
5063 if (unspare) {
5064 ASSERT(cvd->vdev_isspare);
5065 spa_spare_remove(cvd);
5066 unspare_guid = cvd->vdev_guid;
5067 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5068 cvd->vdev_unspare = B_TRUE;
5069 }
5070
5071 /*
5072 * If the parent mirror/replacing vdev only has one child,
5073 * the parent is no longer needed. Remove it from the tree.
5074 */
5075 if (pvd->vdev_children == 1) {
5076 if (pvd->vdev_ops == &vdev_spare_ops)
5077 cvd->vdev_unspare = B_FALSE;
5078 vdev_remove_parent(cvd);
5079 }
5080
5081
5082 /*
5083 * We don't set tvd until now because the parent we just removed
5084 * may have been the previous top-level vdev.
5085 */
5086 tvd = cvd->vdev_top;
5087 ASSERT(tvd->vdev_parent == rvd);
5088
5089 /*
5090 * Reevaluate the parent vdev state.
5091 */
5092 vdev_propagate_state(cvd);
5093
5094 /*
5095 * If the 'autoexpand' property is set on the pool then automatically
5096 * try to expand the size of the pool. For example if the device we
5097 * just detached was smaller than the others, it may be possible to
5098 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5099 * first so that we can obtain the updated sizes of the leaf vdevs.
5100 */
5101 if (spa->spa_autoexpand) {
5102 vdev_reopen(tvd);
5103 vdev_expand(tvd, txg);
5104 }
5105
5106 vdev_config_dirty(tvd);
5107
5108 /*
5109 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5110 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5111 * But first make sure we're not on any *other* txg's DTL list, to
5112 * prevent vd from being accessed after it's freed.
5113 */
5114 vdpath = spa_strdup(vd->vdev_path);
5115 for (t = 0; t < TXG_SIZE; t++)
5116 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5117 vd->vdev_detached = B_TRUE;
5118 vdev_dirty(tvd, VDD_DTL, vd, txg);
5119
5120 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
5121
5122 /* hang on to the spa before we release the lock */
5123 spa_open_ref(spa, FTAG);
5124
5125 error = spa_vdev_exit(spa, vd, txg, 0);
5126
5127 spa_history_log_internal(spa, "detach", NULL,
5128 "vdev=%s", vdpath);
5129 spa_strfree(vdpath);
5130
5131 /*
5132 * If this was the removal of the original device in a hot spare vdev,
5133 * then we want to go through and remove the device from the hot spare
5134 * list of every other pool.
5135 */
5136 if (unspare) {
5137 spa_t *altspa = NULL;
5138
5139 mutex_enter(&spa_namespace_lock);
5140 while ((altspa = spa_next(altspa)) != NULL) {
5141 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5142 altspa == spa)
5143 continue;
5144
5145 spa_open_ref(altspa, FTAG);
5146 mutex_exit(&spa_namespace_lock);
5147 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5148 mutex_enter(&spa_namespace_lock);
5149 spa_close(altspa, FTAG);
5150 }
5151 mutex_exit(&spa_namespace_lock);
5152
5153 /* search the rest of the vdevs for spares to remove */
5154 spa_vdev_resilver_done(spa);
5155 }
5156
5157 /* all done with the spa; OK to release */
5158 mutex_enter(&spa_namespace_lock);
5159 spa_close(spa, FTAG);
5160 mutex_exit(&spa_namespace_lock);
5161
5162 return (error);
5163 }
5164
5165 /*
5166 * Split a set of devices from their mirrors, and create a new pool from them.
5167 */
5168 int
5169 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5170 nvlist_t *props, boolean_t exp)
5171 {
5172 int error = 0;
5173 uint64_t txg, *glist;
5174 spa_t *newspa;
5175 uint_t c, children, lastlog;
5176 nvlist_t **child, *nvl, *tmp;
5177 dmu_tx_t *tx;
5178 char *altroot = NULL;
5179 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5180 boolean_t activate_slog;
5181
5182 ASSERT(spa_writeable(spa));
5183
5184 txg = spa_vdev_enter(spa);
5185
5186 /* clear the log and flush everything up to now */
5187 activate_slog = spa_passivate_log(spa);
5188 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5189 error = spa_offline_log(spa);
5190 txg = spa_vdev_config_enter(spa);
5191
5192 if (activate_slog)
5193 spa_activate_log(spa);
5194
5195 if (error != 0)
5196 return (spa_vdev_exit(spa, NULL, txg, error));
5197
5198 /* check new spa name before going any further */
5199 if (spa_lookup(newname) != NULL)
5200 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5201
5202 /*
5203 * scan through all the children to ensure they're all mirrors
5204 */
5205 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5206 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5207 &children) != 0)
5208 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5209
5210 /* first, check to ensure we've got the right child count */
5211 rvd = spa->spa_root_vdev;
5212 lastlog = 0;
5213 for (c = 0; c < rvd->vdev_children; c++) {
5214 vdev_t *vd = rvd->vdev_child[c];
5215
5216 /* don't count the holes & logs as children */
5217 if (vd->vdev_islog || vd->vdev_ishole) {
5218 if (lastlog == 0)
5219 lastlog = c;
5220 continue;
5221 }
5222
5223 lastlog = 0;
5224 }
5225 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5226 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5227
5228 /* next, ensure no spare or cache devices are part of the split */
5229 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5230 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5231 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5232
5233 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5234 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5235
5236 /* then, loop over each vdev and validate it */
5237 for (c = 0; c < children; c++) {
5238 uint64_t is_hole = 0;
5239
5240 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5241 &is_hole);
5242
5243 if (is_hole != 0) {
5244 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5245 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5246 continue;
5247 } else {
5248 error = SET_ERROR(EINVAL);
5249 break;
5250 }
5251 }
5252
5253 /* which disk is going to be split? */
5254 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5255 &glist[c]) != 0) {
5256 error = SET_ERROR(EINVAL);
5257 break;
5258 }
5259
5260 /* look it up in the spa */
5261 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5262 if (vml[c] == NULL) {
5263 error = SET_ERROR(ENODEV);
5264 break;
5265 }
5266
5267 /* make sure there's nothing stopping the split */
5268 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5269 vml[c]->vdev_islog ||
5270 vml[c]->vdev_ishole ||
5271 vml[c]->vdev_isspare ||
5272 vml[c]->vdev_isl2cache ||
5273 !vdev_writeable(vml[c]) ||
5274 vml[c]->vdev_children != 0 ||
5275 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5276 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5277 error = SET_ERROR(EINVAL);
5278 break;
5279 }
5280
5281 if (vdev_dtl_required(vml[c])) {
5282 error = SET_ERROR(EBUSY);
5283 break;
5284 }
5285
5286 /* we need certain info from the top level */
5287 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5288 vml[c]->vdev_top->vdev_ms_array) == 0);
5289 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5290 vml[c]->vdev_top->vdev_ms_shift) == 0);
5291 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5292 vml[c]->vdev_top->vdev_asize) == 0);
5293 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5294 vml[c]->vdev_top->vdev_ashift) == 0);
5295
5296 /* transfer per-vdev ZAPs */
5297 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5298 VERIFY0(nvlist_add_uint64(child[c],
5299 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5300
5301 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5302 VERIFY0(nvlist_add_uint64(child[c],
5303 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5304 vml[c]->vdev_parent->vdev_top_zap));
5305 }
5306
5307 if (error != 0) {
5308 kmem_free(vml, children * sizeof (vdev_t *));
5309 kmem_free(glist, children * sizeof (uint64_t));
5310 return (spa_vdev_exit(spa, NULL, txg, error));
5311 }
5312
5313 /* stop writers from using the disks */
5314 for (c = 0; c < children; c++) {
5315 if (vml[c] != NULL)
5316 vml[c]->vdev_offline = B_TRUE;
5317 }
5318 vdev_reopen(spa->spa_root_vdev);
5319
5320 /*
5321 * Temporarily record the splitting vdevs in the spa config. This
5322 * will disappear once the config is regenerated.
5323 */
5324 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5325 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5326 glist, children) == 0);
5327 kmem_free(glist, children * sizeof (uint64_t));
5328
5329 mutex_enter(&spa->spa_props_lock);
5330 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5331 nvl) == 0);
5332 mutex_exit(&spa->spa_props_lock);
5333 spa->spa_config_splitting = nvl;
5334 vdev_config_dirty(spa->spa_root_vdev);
5335
5336 /* configure and create the new pool */
5337 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5338 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5339 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5340 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5341 spa_version(spa)) == 0);
5342 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5343 spa->spa_config_txg) == 0);
5344 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5345 spa_generate_guid(NULL)) == 0);
5346 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5347 (void) nvlist_lookup_string(props,
5348 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5349
5350 /* add the new pool to the namespace */
5351 newspa = spa_add(newname, config, altroot);
5352 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5353 newspa->spa_config_txg = spa->spa_config_txg;
5354 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5355
5356 /* release the spa config lock, retaining the namespace lock */
5357 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5358
5359 if (zio_injection_enabled)
5360 zio_handle_panic_injection(spa, FTAG, 1);
5361
5362 spa_activate(newspa, spa_mode_global);
5363 spa_async_suspend(newspa);
5364
5365 /* create the new pool from the disks of the original pool */
5366 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5367 if (error)
5368 goto out;
5369
5370 /* if that worked, generate a real config for the new pool */
5371 if (newspa->spa_root_vdev != NULL) {
5372 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5373 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5374 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5375 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5376 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5377 B_TRUE));
5378 }
5379
5380 /* set the props */
5381 if (props != NULL) {
5382 spa_configfile_set(newspa, props, B_FALSE);
5383 error = spa_prop_set(newspa, props);
5384 if (error)
5385 goto out;
5386 }
5387
5388 /* flush everything */
5389 txg = spa_vdev_config_enter(newspa);
5390 vdev_config_dirty(newspa->spa_root_vdev);
5391 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5392
5393 if (zio_injection_enabled)
5394 zio_handle_panic_injection(spa, FTAG, 2);
5395
5396 spa_async_resume(newspa);
5397
5398 /* finally, update the original pool's config */
5399 txg = spa_vdev_config_enter(spa);
5400 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5401 error = dmu_tx_assign(tx, TXG_WAIT);
5402 if (error != 0)
5403 dmu_tx_abort(tx);
5404 for (c = 0; c < children; c++) {
5405 if (vml[c] != NULL) {
5406 vdev_split(vml[c]);
5407 if (error == 0)
5408 spa_history_log_internal(spa, "detach", tx,
5409 "vdev=%s", vml[c]->vdev_path);
5410
5411 vdev_free(vml[c]);
5412 }
5413 }
5414 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5415 vdev_config_dirty(spa->spa_root_vdev);
5416 spa->spa_config_splitting = NULL;
5417 nvlist_free(nvl);
5418 if (error == 0)
5419 dmu_tx_commit(tx);
5420 (void) spa_vdev_exit(spa, NULL, txg, 0);
5421
5422 if (zio_injection_enabled)
5423 zio_handle_panic_injection(spa, FTAG, 3);
5424
5425 /* split is complete; log a history record */
5426 spa_history_log_internal(newspa, "split", NULL,
5427 "from pool %s", spa_name(spa));
5428
5429 kmem_free(vml, children * sizeof (vdev_t *));
5430
5431 /* if we're not going to mount the filesystems in userland, export */
5432 if (exp)
5433 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5434 B_FALSE, B_FALSE);
5435
5436 return (error);
5437
5438 out:
5439 spa_unload(newspa);
5440 spa_deactivate(newspa);
5441 spa_remove(newspa);
5442
5443 txg = spa_vdev_config_enter(spa);
5444
5445 /* re-online all offlined disks */
5446 for (c = 0; c < children; c++) {
5447 if (vml[c] != NULL)
5448 vml[c]->vdev_offline = B_FALSE;
5449 }
5450 vdev_reopen(spa->spa_root_vdev);
5451
5452 nvlist_free(spa->spa_config_splitting);
5453 spa->spa_config_splitting = NULL;
5454 (void) spa_vdev_exit(spa, NULL, txg, error);
5455
5456 kmem_free(vml, children * sizeof (vdev_t *));
5457 return (error);
5458 }
5459
5460 static nvlist_t *
5461 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5462 {
5463 int i;
5464
5465 for (i = 0; i < count; i++) {
5466 uint64_t guid;
5467
5468 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5469 &guid) == 0);
5470
5471 if (guid == target_guid)
5472 return (nvpp[i]);
5473 }
5474
5475 return (NULL);
5476 }
5477
5478 static void
5479 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5480 nvlist_t *dev_to_remove)
5481 {
5482 nvlist_t **newdev = NULL;
5483 int i, j;
5484
5485 if (count > 1)
5486 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5487
5488 for (i = 0, j = 0; i < count; i++) {
5489 if (dev[i] == dev_to_remove)
5490 continue;
5491 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5492 }
5493
5494 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5495 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5496
5497 for (i = 0; i < count - 1; i++)
5498 nvlist_free(newdev[i]);
5499
5500 if (count > 1)
5501 kmem_free(newdev, (count - 1) * sizeof (void *));
5502 }
5503
5504 /*
5505 * Evacuate the device.
5506 */
5507 static int
5508 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5509 {
5510 uint64_t txg;
5511 int error = 0;
5512
5513 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5514 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5515 ASSERT(vd == vd->vdev_top);
5516
5517 /*
5518 * Evacuate the device. We don't hold the config lock as writer
5519 * since we need to do I/O but we do keep the
5520 * spa_namespace_lock held. Once this completes the device
5521 * should no longer have any blocks allocated on it.
5522 */
5523 if (vd->vdev_islog) {
5524 if (vd->vdev_stat.vs_alloc != 0)
5525 error = spa_offline_log(spa);
5526 } else {
5527 error = SET_ERROR(ENOTSUP);
5528 }
5529
5530 if (error)
5531 return (error);
5532
5533 /*
5534 * The evacuation succeeded. Remove any remaining MOS metadata
5535 * associated with this vdev, and wait for these changes to sync.
5536 */
5537 ASSERT0(vd->vdev_stat.vs_alloc);
5538 txg = spa_vdev_config_enter(spa);
5539 vd->vdev_removing = B_TRUE;
5540 vdev_dirty_leaves(vd, VDD_DTL, txg);
5541 vdev_config_dirty(vd);
5542 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5543
5544 return (0);
5545 }
5546
5547 /*
5548 * Complete the removal by cleaning up the namespace.
5549 */
5550 static void
5551 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5552 {
5553 vdev_t *rvd = spa->spa_root_vdev;
5554 uint64_t id = vd->vdev_id;
5555 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5556
5557 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5558 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5559 ASSERT(vd == vd->vdev_top);
5560
5561 /*
5562 * Only remove any devices which are empty.
5563 */
5564 if (vd->vdev_stat.vs_alloc != 0)
5565 return;
5566
5567 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5568
5569 if (list_link_active(&vd->vdev_state_dirty_node))
5570 vdev_state_clean(vd);
5571 if (list_link_active(&vd->vdev_config_dirty_node))
5572 vdev_config_clean(vd);
5573
5574 vdev_free(vd);
5575
5576 if (last_vdev) {
5577 vdev_compact_children(rvd);
5578 } else {
5579 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5580 vdev_add_child(rvd, vd);
5581 }
5582 vdev_config_dirty(rvd);
5583
5584 /*
5585 * Reassess the health of our root vdev.
5586 */
5587 vdev_reopen(rvd);
5588 }
5589
5590 /*
5591 * Remove a device from the pool -
5592 *
5593 * Removing a device from the vdev namespace requires several steps
5594 * and can take a significant amount of time. As a result we use
5595 * the spa_vdev_config_[enter/exit] functions which allow us to
5596 * grab and release the spa_config_lock while still holding the namespace
5597 * lock. During each step the configuration is synced out.
5598 *
5599 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5600 * devices.
5601 */
5602 int
5603 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5604 {
5605 vdev_t *vd;
5606 metaslab_group_t *mg;
5607 nvlist_t **spares, **l2cache, *nv;
5608 uint64_t txg = 0;
5609 uint_t nspares, nl2cache;
5610 int error = 0;
5611 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5612
5613 ASSERT(spa_writeable(spa));
5614
5615 if (!locked)
5616 txg = spa_vdev_enter(spa);
5617
5618 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5619
5620 if (spa->spa_spares.sav_vdevs != NULL &&
5621 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5622 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5623 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5624 /*
5625 * Only remove the hot spare if it's not currently in use
5626 * in this pool.
5627 */
5628 if (vd == NULL || unspare) {
5629 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5630 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5631 spa_load_spares(spa);
5632 spa->spa_spares.sav_sync = B_TRUE;
5633 } else {
5634 error = SET_ERROR(EBUSY);
5635 }
5636 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5637 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5638 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5639 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5640 /*
5641 * Cache devices can always be removed.
5642 */
5643 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5644 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5645 spa_load_l2cache(spa);
5646 spa->spa_l2cache.sav_sync = B_TRUE;
5647 } else if (vd != NULL && vd->vdev_islog) {
5648 ASSERT(!locked);
5649 ASSERT(vd == vd->vdev_top);
5650
5651 mg = vd->vdev_mg;
5652
5653 /*
5654 * Stop allocating from this vdev.
5655 */
5656 metaslab_group_passivate(mg);
5657
5658 /*
5659 * Wait for the youngest allocations and frees to sync,
5660 * and then wait for the deferral of those frees to finish.
5661 */
5662 spa_vdev_config_exit(spa, NULL,
5663 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5664
5665 /*
5666 * Attempt to evacuate the vdev.
5667 */
5668 error = spa_vdev_remove_evacuate(spa, vd);
5669
5670 txg = spa_vdev_config_enter(spa);
5671
5672 /*
5673 * If we couldn't evacuate the vdev, unwind.
5674 */
5675 if (error) {
5676 metaslab_group_activate(mg);
5677 return (spa_vdev_exit(spa, NULL, txg, error));
5678 }
5679
5680 /*
5681 * Clean up the vdev namespace.
5682 */
5683 spa_vdev_remove_from_namespace(spa, vd);
5684
5685 } else if (vd != NULL) {
5686 /*
5687 * Normal vdevs cannot be removed (yet).
5688 */
5689 error = SET_ERROR(ENOTSUP);
5690 } else {
5691 /*
5692 * There is no vdev of any kind with the specified guid.
5693 */
5694 error = SET_ERROR(ENOENT);
5695 }
5696
5697 if (!locked)
5698 return (spa_vdev_exit(spa, NULL, txg, error));
5699
5700 return (error);
5701 }
5702
5703 /*
5704 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5705 * currently spared, so we can detach it.
5706 */
5707 static vdev_t *
5708 spa_vdev_resilver_done_hunt(vdev_t *vd)
5709 {
5710 vdev_t *newvd, *oldvd;
5711 int c;
5712
5713 for (c = 0; c < vd->vdev_children; c++) {
5714 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5715 if (oldvd != NULL)
5716 return (oldvd);
5717 }
5718
5719 /*
5720 * Check for a completed replacement. We always consider the first
5721 * vdev in the list to be the oldest vdev, and the last one to be
5722 * the newest (see spa_vdev_attach() for how that works). In
5723 * the case where the newest vdev is faulted, we will not automatically
5724 * remove it after a resilver completes. This is OK as it will require
5725 * user intervention to determine which disk the admin wishes to keep.
5726 */
5727 if (vd->vdev_ops == &vdev_replacing_ops) {
5728 ASSERT(vd->vdev_children > 1);
5729
5730 newvd = vd->vdev_child[vd->vdev_children - 1];
5731 oldvd = vd->vdev_child[0];
5732
5733 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5734 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5735 !vdev_dtl_required(oldvd))
5736 return (oldvd);
5737 }
5738
5739 /*
5740 * Check for a completed resilver with the 'unspare' flag set.
5741 */
5742 if (vd->vdev_ops == &vdev_spare_ops) {
5743 vdev_t *first = vd->vdev_child[0];
5744 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5745
5746 if (last->vdev_unspare) {
5747 oldvd = first;
5748 newvd = last;
5749 } else if (first->vdev_unspare) {
5750 oldvd = last;
5751 newvd = first;
5752 } else {
5753 oldvd = NULL;
5754 }
5755
5756 if (oldvd != NULL &&
5757 vdev_dtl_empty(newvd, DTL_MISSING) &&
5758 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5759 !vdev_dtl_required(oldvd))
5760 return (oldvd);
5761
5762 /*
5763 * If there are more than two spares attached to a disk,
5764 * and those spares are not required, then we want to
5765 * attempt to free them up now so that they can be used
5766 * by other pools. Once we're back down to a single
5767 * disk+spare, we stop removing them.
5768 */
5769 if (vd->vdev_children > 2) {
5770 newvd = vd->vdev_child[1];
5771
5772 if (newvd->vdev_isspare && last->vdev_isspare &&
5773 vdev_dtl_empty(last, DTL_MISSING) &&
5774 vdev_dtl_empty(last, DTL_OUTAGE) &&
5775 !vdev_dtl_required(newvd))
5776 return (newvd);
5777 }
5778 }
5779
5780 return (NULL);
5781 }
5782
5783 static void
5784 spa_vdev_resilver_done(spa_t *spa)
5785 {
5786 vdev_t *vd, *pvd, *ppvd;
5787 uint64_t guid, sguid, pguid, ppguid;
5788
5789 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5790
5791 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5792 pvd = vd->vdev_parent;
5793 ppvd = pvd->vdev_parent;
5794 guid = vd->vdev_guid;
5795 pguid = pvd->vdev_guid;
5796 ppguid = ppvd->vdev_guid;
5797 sguid = 0;
5798 /*
5799 * If we have just finished replacing a hot spared device, then
5800 * we need to detach the parent's first child (the original hot
5801 * spare) as well.
5802 */
5803 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5804 ppvd->vdev_children == 2) {
5805 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5806 sguid = ppvd->vdev_child[1]->vdev_guid;
5807 }
5808 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5809
5810 spa_config_exit(spa, SCL_ALL, FTAG);
5811 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5812 return;
5813 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5814 return;
5815 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5816 }
5817
5818 spa_config_exit(spa, SCL_ALL, FTAG);
5819 }
5820
5821 /*
5822 * Update the stored path or FRU for this vdev.
5823 */
5824 int
5825 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5826 boolean_t ispath)
5827 {
5828 vdev_t *vd;
5829 boolean_t sync = B_FALSE;
5830
5831 ASSERT(spa_writeable(spa));
5832
5833 spa_vdev_state_enter(spa, SCL_ALL);
5834
5835 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5836 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5837
5838 if (!vd->vdev_ops->vdev_op_leaf)
5839 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5840
5841 if (ispath) {
5842 if (strcmp(value, vd->vdev_path) != 0) {
5843 spa_strfree(vd->vdev_path);
5844 vd->vdev_path = spa_strdup(value);
5845 sync = B_TRUE;
5846 }
5847 } else {
5848 if (vd->vdev_fru == NULL) {
5849 vd->vdev_fru = spa_strdup(value);
5850 sync = B_TRUE;
5851 } else if (strcmp(value, vd->vdev_fru) != 0) {
5852 spa_strfree(vd->vdev_fru);
5853 vd->vdev_fru = spa_strdup(value);
5854 sync = B_TRUE;
5855 }
5856 }
5857
5858 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5859 }
5860
5861 int
5862 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5863 {
5864 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5865 }
5866
5867 int
5868 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5869 {
5870 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5871 }
5872
5873 /*
5874 * ==========================================================================
5875 * SPA Scanning
5876 * ==========================================================================
5877 */
5878
5879 int
5880 spa_scan_stop(spa_t *spa)
5881 {
5882 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5883 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5884 return (SET_ERROR(EBUSY));
5885 return (dsl_scan_cancel(spa->spa_dsl_pool));
5886 }
5887
5888 int
5889 spa_scan(spa_t *spa, pool_scan_func_t func)
5890 {
5891 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5892
5893 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5894 return (SET_ERROR(ENOTSUP));
5895
5896 /*
5897 * If a resilver was requested, but there is no DTL on a
5898 * writeable leaf device, we have nothing to do.
5899 */
5900 if (func == POOL_SCAN_RESILVER &&
5901 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5902 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5903 return (0);
5904 }
5905
5906 return (dsl_scan(spa->spa_dsl_pool, func));
5907 }
5908
5909 /*
5910 * ==========================================================================
5911 * SPA async task processing
5912 * ==========================================================================
5913 */
5914
5915 static void
5916 spa_async_remove(spa_t *spa, vdev_t *vd)
5917 {
5918 int c;
5919
5920 if (vd->vdev_remove_wanted) {
5921 vd->vdev_remove_wanted = B_FALSE;
5922 vd->vdev_delayed_close = B_FALSE;
5923 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5924
5925 /*
5926 * We want to clear the stats, but we don't want to do a full
5927 * vdev_clear() as that will cause us to throw away
5928 * degraded/faulted state as well as attempt to reopen the
5929 * device, all of which is a waste.
5930 */
5931 vd->vdev_stat.vs_read_errors = 0;
5932 vd->vdev_stat.vs_write_errors = 0;
5933 vd->vdev_stat.vs_checksum_errors = 0;
5934
5935 vdev_state_dirty(vd->vdev_top);
5936 }
5937
5938 for (c = 0; c < vd->vdev_children; c++)
5939 spa_async_remove(spa, vd->vdev_child[c]);
5940 }
5941
5942 static void
5943 spa_async_probe(spa_t *spa, vdev_t *vd)
5944 {
5945 int c;
5946
5947 if (vd->vdev_probe_wanted) {
5948 vd->vdev_probe_wanted = B_FALSE;
5949 vdev_reopen(vd); /* vdev_open() does the actual probe */
5950 }
5951
5952 for (c = 0; c < vd->vdev_children; c++)
5953 spa_async_probe(spa, vd->vdev_child[c]);
5954 }
5955
5956 static void
5957 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5958 {
5959 int c;
5960
5961 if (!spa->spa_autoexpand)
5962 return;
5963
5964 for (c = 0; c < vd->vdev_children; c++) {
5965 vdev_t *cvd = vd->vdev_child[c];
5966 spa_async_autoexpand(spa, cvd);
5967 }
5968
5969 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5970 return;
5971
5972 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5973 }
5974
5975 static void
5976 spa_async_thread(spa_t *spa)
5977 {
5978 int tasks, i;
5979
5980 ASSERT(spa->spa_sync_on);
5981
5982 mutex_enter(&spa->spa_async_lock);
5983 tasks = spa->spa_async_tasks;
5984 spa->spa_async_tasks = 0;
5985 mutex_exit(&spa->spa_async_lock);
5986
5987 /*
5988 * See if the config needs to be updated.
5989 */
5990 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5991 uint64_t old_space, new_space;
5992
5993 mutex_enter(&spa_namespace_lock);
5994 old_space = metaslab_class_get_space(spa_normal_class(spa));
5995 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5996 new_space = metaslab_class_get_space(spa_normal_class(spa));
5997 mutex_exit(&spa_namespace_lock);
5998
5999 /*
6000 * If the pool grew as a result of the config update,
6001 * then log an internal history event.
6002 */
6003 if (new_space != old_space) {
6004 spa_history_log_internal(spa, "vdev online", NULL,
6005 "pool '%s' size: %llu(+%llu)",
6006 spa_name(spa), new_space, new_space - old_space);
6007 }
6008 }
6009
6010 /*
6011 * See if any devices need to be marked REMOVED.
6012 */
6013 if (tasks & SPA_ASYNC_REMOVE) {
6014 spa_vdev_state_enter(spa, SCL_NONE);
6015 spa_async_remove(spa, spa->spa_root_vdev);
6016 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
6017 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6018 for (i = 0; i < spa->spa_spares.sav_count; i++)
6019 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6020 (void) spa_vdev_state_exit(spa, NULL, 0);
6021 }
6022
6023 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6024 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6025 spa_async_autoexpand(spa, spa->spa_root_vdev);
6026 spa_config_exit(spa, SCL_CONFIG, FTAG);
6027 }
6028
6029 /*
6030 * See if any devices need to be probed.
6031 */
6032 if (tasks & SPA_ASYNC_PROBE) {
6033 spa_vdev_state_enter(spa, SCL_NONE);
6034 spa_async_probe(spa, spa->spa_root_vdev);
6035 (void) spa_vdev_state_exit(spa, NULL, 0);
6036 }
6037
6038 /*
6039 * If any devices are done replacing, detach them.
6040 */
6041 if (tasks & SPA_ASYNC_RESILVER_DONE)
6042 spa_vdev_resilver_done(spa);
6043
6044 /*
6045 * Kick off a resilver.
6046 */
6047 if (tasks & SPA_ASYNC_RESILVER)
6048 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6049
6050 /*
6051 * Let the world know that we're done.
6052 */
6053 mutex_enter(&spa->spa_async_lock);
6054 spa->spa_async_thread = NULL;
6055 cv_broadcast(&spa->spa_async_cv);
6056 mutex_exit(&spa->spa_async_lock);
6057 thread_exit();
6058 }
6059
6060 void
6061 spa_async_suspend(spa_t *spa)
6062 {
6063 mutex_enter(&spa->spa_async_lock);
6064 spa->spa_async_suspended++;
6065 while (spa->spa_async_thread != NULL)
6066 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6067 mutex_exit(&spa->spa_async_lock);
6068 }
6069
6070 void
6071 spa_async_resume(spa_t *spa)
6072 {
6073 mutex_enter(&spa->spa_async_lock);
6074 ASSERT(spa->spa_async_suspended != 0);
6075 spa->spa_async_suspended--;
6076 mutex_exit(&spa->spa_async_lock);
6077 }
6078
6079 static boolean_t
6080 spa_async_tasks_pending(spa_t *spa)
6081 {
6082 uint_t non_config_tasks;
6083 uint_t config_task;
6084 boolean_t config_task_suspended;
6085
6086 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6087 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6088 if (spa->spa_ccw_fail_time == 0) {
6089 config_task_suspended = B_FALSE;
6090 } else {
6091 config_task_suspended =
6092 (gethrtime() - spa->spa_ccw_fail_time) <
6093 (zfs_ccw_retry_interval * NANOSEC);
6094 }
6095
6096 return (non_config_tasks || (config_task && !config_task_suspended));
6097 }
6098
6099 static void
6100 spa_async_dispatch(spa_t *spa)
6101 {
6102 mutex_enter(&spa->spa_async_lock);
6103 if (spa_async_tasks_pending(spa) &&
6104 !spa->spa_async_suspended &&
6105 spa->spa_async_thread == NULL &&
6106 rootdir != NULL)
6107 spa->spa_async_thread = thread_create(NULL, 0,
6108 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6109 mutex_exit(&spa->spa_async_lock);
6110 }
6111
6112 void
6113 spa_async_request(spa_t *spa, int task)
6114 {
6115 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6116 mutex_enter(&spa->spa_async_lock);
6117 spa->spa_async_tasks |= task;
6118 mutex_exit(&spa->spa_async_lock);
6119 }
6120
6121 /*
6122 * ==========================================================================
6123 * SPA syncing routines
6124 * ==========================================================================
6125 */
6126
6127 static int
6128 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6129 {
6130 bpobj_t *bpo = arg;
6131 bpobj_enqueue(bpo, bp, tx);
6132 return (0);
6133 }
6134
6135 static int
6136 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6137 {
6138 zio_t *zio = arg;
6139
6140 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6141 zio->io_flags));
6142 return (0);
6143 }
6144
6145 /*
6146 * Note: this simple function is not inlined to make it easier to dtrace the
6147 * amount of time spent syncing frees.
6148 */
6149 static void
6150 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6151 {
6152 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6153 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6154 VERIFY(zio_wait(zio) == 0);
6155 }
6156
6157 /*
6158 * Note: this simple function is not inlined to make it easier to dtrace the
6159 * amount of time spent syncing deferred frees.
6160 */
6161 static void
6162 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6163 {
6164 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6165 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6166 spa_free_sync_cb, zio, tx), ==, 0);
6167 VERIFY0(zio_wait(zio));
6168 }
6169
6170 static void
6171 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6172 {
6173 char *packed = NULL;
6174 size_t bufsize;
6175 size_t nvsize = 0;
6176 dmu_buf_t *db;
6177
6178 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6179
6180 /*
6181 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6182 * information. This avoids the dmu_buf_will_dirty() path and
6183 * saves us a pre-read to get data we don't actually care about.
6184 */
6185 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6186 packed = vmem_alloc(bufsize, KM_SLEEP);
6187
6188 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6189 KM_SLEEP) == 0);
6190 bzero(packed + nvsize, bufsize - nvsize);
6191
6192 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6193
6194 vmem_free(packed, bufsize);
6195
6196 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6197 dmu_buf_will_dirty(db, tx);
6198 *(uint64_t *)db->db_data = nvsize;
6199 dmu_buf_rele(db, FTAG);
6200 }
6201
6202 static void
6203 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6204 const char *config, const char *entry)
6205 {
6206 nvlist_t *nvroot;
6207 nvlist_t **list;
6208 int i;
6209
6210 if (!sav->sav_sync)
6211 return;
6212
6213 /*
6214 * Update the MOS nvlist describing the list of available devices.
6215 * spa_validate_aux() will have already made sure this nvlist is
6216 * valid and the vdevs are labeled appropriately.
6217 */
6218 if (sav->sav_object == 0) {
6219 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6220 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6221 sizeof (uint64_t), tx);
6222 VERIFY(zap_update(spa->spa_meta_objset,
6223 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6224 &sav->sav_object, tx) == 0);
6225 }
6226
6227 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6228 if (sav->sav_count == 0) {
6229 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6230 } else {
6231 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6232 for (i = 0; i < sav->sav_count; i++)
6233 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6234 B_FALSE, VDEV_CONFIG_L2CACHE);
6235 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6236 sav->sav_count) == 0);
6237 for (i = 0; i < sav->sav_count; i++)
6238 nvlist_free(list[i]);
6239 kmem_free(list, sav->sav_count * sizeof (void *));
6240 }
6241
6242 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6243 nvlist_free(nvroot);
6244
6245 sav->sav_sync = B_FALSE;
6246 }
6247
6248 /*
6249 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6250 * The all-vdev ZAP must be empty.
6251 */
6252 static void
6253 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6254 {
6255 spa_t *spa = vd->vdev_spa;
6256 uint64_t i;
6257
6258 if (vd->vdev_top_zap != 0) {
6259 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6260 vd->vdev_top_zap, tx));
6261 }
6262 if (vd->vdev_leaf_zap != 0) {
6263 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6264 vd->vdev_leaf_zap, tx));
6265 }
6266 for (i = 0; i < vd->vdev_children; i++) {
6267 spa_avz_build(vd->vdev_child[i], avz, tx);
6268 }
6269 }
6270
6271 static void
6272 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6273 {
6274 nvlist_t *config;
6275
6276 /*
6277 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6278 * its config may not be dirty but we still need to build per-vdev ZAPs.
6279 * Similarly, if the pool is being assembled (e.g. after a split), we
6280 * need to rebuild the AVZ although the config may not be dirty.
6281 */
6282 if (list_is_empty(&spa->spa_config_dirty_list) &&
6283 spa->spa_avz_action == AVZ_ACTION_NONE)
6284 return;
6285
6286 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6287
6288 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6289 spa->spa_all_vdev_zaps != 0);
6290
6291 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6292 zap_cursor_t zc;
6293 zap_attribute_t za;
6294
6295 /* Make and build the new AVZ */
6296 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6297 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6298 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6299
6300 /* Diff old AVZ with new one */
6301 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6302 spa->spa_all_vdev_zaps);
6303 zap_cursor_retrieve(&zc, &za) == 0;
6304 zap_cursor_advance(&zc)) {
6305 uint64_t vdzap = za.za_first_integer;
6306 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6307 vdzap) == ENOENT) {
6308 /*
6309 * ZAP is listed in old AVZ but not in new one;
6310 * destroy it
6311 */
6312 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6313 tx));
6314 }
6315 }
6316
6317 zap_cursor_fini(&zc);
6318
6319 /* Destroy the old AVZ */
6320 VERIFY0(zap_destroy(spa->spa_meta_objset,
6321 spa->spa_all_vdev_zaps, tx));
6322
6323 /* Replace the old AVZ in the dir obj with the new one */
6324 VERIFY0(zap_update(spa->spa_meta_objset,
6325 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6326 sizeof (new_avz), 1, &new_avz, tx));
6327
6328 spa->spa_all_vdev_zaps = new_avz;
6329 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6330 zap_cursor_t zc;
6331 zap_attribute_t za;
6332
6333 /* Walk through the AVZ and destroy all listed ZAPs */
6334 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6335 spa->spa_all_vdev_zaps);
6336 zap_cursor_retrieve(&zc, &za) == 0;
6337 zap_cursor_advance(&zc)) {
6338 uint64_t zap = za.za_first_integer;
6339 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6340 }
6341
6342 zap_cursor_fini(&zc);
6343
6344 /* Destroy and unlink the AVZ itself */
6345 VERIFY0(zap_destroy(spa->spa_meta_objset,
6346 spa->spa_all_vdev_zaps, tx));
6347 VERIFY0(zap_remove(spa->spa_meta_objset,
6348 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6349 spa->spa_all_vdev_zaps = 0;
6350 }
6351
6352 if (spa->spa_all_vdev_zaps == 0) {
6353 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6354 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6355 DMU_POOL_VDEV_ZAP_MAP, tx);
6356 }
6357 spa->spa_avz_action = AVZ_ACTION_NONE;
6358
6359 /* Create ZAPs for vdevs that don't have them. */
6360 vdev_construct_zaps(spa->spa_root_vdev, tx);
6361
6362 config = spa_config_generate(spa, spa->spa_root_vdev,
6363 dmu_tx_get_txg(tx), B_FALSE);
6364
6365 /*
6366 * If we're upgrading the spa version then make sure that
6367 * the config object gets updated with the correct version.
6368 */
6369 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6370 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6371 spa->spa_uberblock.ub_version);
6372
6373 spa_config_exit(spa, SCL_STATE, FTAG);
6374
6375 nvlist_free(spa->spa_config_syncing);
6376 spa->spa_config_syncing = config;
6377
6378 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6379 }
6380
6381 static void
6382 spa_sync_version(void *arg, dmu_tx_t *tx)
6383 {
6384 uint64_t *versionp = arg;
6385 uint64_t version = *versionp;
6386 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6387
6388 /*
6389 * Setting the version is special cased when first creating the pool.
6390 */
6391 ASSERT(tx->tx_txg != TXG_INITIAL);
6392
6393 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6394 ASSERT(version >= spa_version(spa));
6395
6396 spa->spa_uberblock.ub_version = version;
6397 vdev_config_dirty(spa->spa_root_vdev);
6398 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6399 }
6400
6401 /*
6402 * Set zpool properties.
6403 */
6404 static void
6405 spa_sync_props(void *arg, dmu_tx_t *tx)
6406 {
6407 nvlist_t *nvp = arg;
6408 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6409 objset_t *mos = spa->spa_meta_objset;
6410 nvpair_t *elem = NULL;
6411
6412 mutex_enter(&spa->spa_props_lock);
6413
6414 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6415 uint64_t intval;
6416 char *strval, *fname;
6417 zpool_prop_t prop;
6418 const char *propname;
6419 zprop_type_t proptype;
6420 spa_feature_t fid;
6421
6422 prop = zpool_name_to_prop(nvpair_name(elem));
6423 switch ((int)prop) {
6424 case ZPROP_INVAL:
6425 /*
6426 * We checked this earlier in spa_prop_validate().
6427 */
6428 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6429
6430 fname = strchr(nvpair_name(elem), '@') + 1;
6431 VERIFY0(zfeature_lookup_name(fname, &fid));
6432
6433 spa_feature_enable(spa, fid, tx);
6434 spa_history_log_internal(spa, "set", tx,
6435 "%s=enabled", nvpair_name(elem));
6436 break;
6437
6438 case ZPOOL_PROP_VERSION:
6439 intval = fnvpair_value_uint64(elem);
6440 /*
6441 * The version is synced seperatly before other
6442 * properties and should be correct by now.
6443 */
6444 ASSERT3U(spa_version(spa), >=, intval);
6445 break;
6446
6447 case ZPOOL_PROP_ALTROOT:
6448 /*
6449 * 'altroot' is a non-persistent property. It should
6450 * have been set temporarily at creation or import time.
6451 */
6452 ASSERT(spa->spa_root != NULL);
6453 break;
6454
6455 case ZPOOL_PROP_READONLY:
6456 case ZPOOL_PROP_CACHEFILE:
6457 /*
6458 * 'readonly' and 'cachefile' are also non-persisitent
6459 * properties.
6460 */
6461 break;
6462 case ZPOOL_PROP_COMMENT:
6463 strval = fnvpair_value_string(elem);
6464 if (spa->spa_comment != NULL)
6465 spa_strfree(spa->spa_comment);
6466 spa->spa_comment = spa_strdup(strval);
6467 /*
6468 * We need to dirty the configuration on all the vdevs
6469 * so that their labels get updated. It's unnecessary
6470 * to do this for pool creation since the vdev's
6471 * configuratoin has already been dirtied.
6472 */
6473 if (tx->tx_txg != TXG_INITIAL)
6474 vdev_config_dirty(spa->spa_root_vdev);
6475 spa_history_log_internal(spa, "set", tx,
6476 "%s=%s", nvpair_name(elem), strval);
6477 break;
6478 default:
6479 /*
6480 * Set pool property values in the poolprops mos object.
6481 */
6482 if (spa->spa_pool_props_object == 0) {
6483 spa->spa_pool_props_object =
6484 zap_create_link(mos, DMU_OT_POOL_PROPS,
6485 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6486 tx);
6487 }
6488
6489 /* normalize the property name */
6490 propname = zpool_prop_to_name(prop);
6491 proptype = zpool_prop_get_type(prop);
6492
6493 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6494 ASSERT(proptype == PROP_TYPE_STRING);
6495 strval = fnvpair_value_string(elem);
6496 VERIFY0(zap_update(mos,
6497 spa->spa_pool_props_object, propname,
6498 1, strlen(strval) + 1, strval, tx));
6499 spa_history_log_internal(spa, "set", tx,
6500 "%s=%s", nvpair_name(elem), strval);
6501 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6502 intval = fnvpair_value_uint64(elem);
6503
6504 if (proptype == PROP_TYPE_INDEX) {
6505 const char *unused;
6506 VERIFY0(zpool_prop_index_to_string(
6507 prop, intval, &unused));
6508 }
6509 VERIFY0(zap_update(mos,
6510 spa->spa_pool_props_object, propname,
6511 8, 1, &intval, tx));
6512 spa_history_log_internal(spa, "set", tx,
6513 "%s=%lld", nvpair_name(elem), intval);
6514 } else {
6515 ASSERT(0); /* not allowed */
6516 }
6517
6518 switch (prop) {
6519 case ZPOOL_PROP_DELEGATION:
6520 spa->spa_delegation = intval;
6521 break;
6522 case ZPOOL_PROP_BOOTFS:
6523 spa->spa_bootfs = intval;
6524 break;
6525 case ZPOOL_PROP_FAILUREMODE:
6526 spa->spa_failmode = intval;
6527 break;
6528 case ZPOOL_PROP_AUTOEXPAND:
6529 spa->spa_autoexpand = intval;
6530 if (tx->tx_txg != TXG_INITIAL)
6531 spa_async_request(spa,
6532 SPA_ASYNC_AUTOEXPAND);
6533 break;
6534 case ZPOOL_PROP_DEDUPDITTO:
6535 spa->spa_dedup_ditto = intval;
6536 break;
6537 default:
6538 break;
6539 }
6540 }
6541
6542 }
6543
6544 mutex_exit(&spa->spa_props_lock);
6545 }
6546
6547 /*
6548 * Perform one-time upgrade on-disk changes. spa_version() does not
6549 * reflect the new version this txg, so there must be no changes this
6550 * txg to anything that the upgrade code depends on after it executes.
6551 * Therefore this must be called after dsl_pool_sync() does the sync
6552 * tasks.
6553 */
6554 static void
6555 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6556 {
6557 dsl_pool_t *dp = spa->spa_dsl_pool;
6558
6559 ASSERT(spa->spa_sync_pass == 1);
6560
6561 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6562
6563 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6564 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6565 dsl_pool_create_origin(dp, tx);
6566
6567 /* Keeping the origin open increases spa_minref */
6568 spa->spa_minref += 3;
6569 }
6570
6571 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6572 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6573 dsl_pool_upgrade_clones(dp, tx);
6574 }
6575
6576 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6577 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6578 dsl_pool_upgrade_dir_clones(dp, tx);
6579
6580 /* Keeping the freedir open increases spa_minref */
6581 spa->spa_minref += 3;
6582 }
6583
6584 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6585 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6586 spa_feature_create_zap_objects(spa, tx);
6587 }
6588
6589 /*
6590 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6591 * when possibility to use lz4 compression for metadata was added
6592 * Old pools that have this feature enabled must be upgraded to have
6593 * this feature active
6594 */
6595 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6596 boolean_t lz4_en = spa_feature_is_enabled(spa,
6597 SPA_FEATURE_LZ4_COMPRESS);
6598 boolean_t lz4_ac = spa_feature_is_active(spa,
6599 SPA_FEATURE_LZ4_COMPRESS);
6600
6601 if (lz4_en && !lz4_ac)
6602 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6603 }
6604 rrw_exit(&dp->dp_config_rwlock, FTAG);
6605 }
6606
6607 /*
6608 * Sync the specified transaction group. New blocks may be dirtied as
6609 * part of the process, so we iterate until it converges.
6610 */
6611 void
6612 spa_sync(spa_t *spa, uint64_t txg)
6613 {
6614 dsl_pool_t *dp = spa->spa_dsl_pool;
6615 objset_t *mos = spa->spa_meta_objset;
6616 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6617 vdev_t *rvd = spa->spa_root_vdev;
6618 vdev_t *vd;
6619 dmu_tx_t *tx;
6620 int error;
6621 int c;
6622
6623 VERIFY(spa_writeable(spa));
6624
6625 /*
6626 * Lock out configuration changes.
6627 */
6628 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6629
6630 spa->spa_syncing_txg = txg;
6631 spa->spa_sync_pass = 0;
6632
6633 /*
6634 * If there are any pending vdev state changes, convert them
6635 * into config changes that go out with this transaction group.
6636 */
6637 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6638 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6639 /*
6640 * We need the write lock here because, for aux vdevs,
6641 * calling vdev_config_dirty() modifies sav_config.
6642 * This is ugly and will become unnecessary when we
6643 * eliminate the aux vdev wart by integrating all vdevs
6644 * into the root vdev tree.
6645 */
6646 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6647 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6648 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6649 vdev_state_clean(vd);
6650 vdev_config_dirty(vd);
6651 }
6652 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6653 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6654 }
6655 spa_config_exit(spa, SCL_STATE, FTAG);
6656
6657 tx = dmu_tx_create_assigned(dp, txg);
6658
6659 spa->spa_sync_starttime = gethrtime();
6660 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6661 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6662 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6663 NSEC_TO_TICK(spa->spa_deadman_synctime));
6664
6665 /*
6666 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6667 * set spa_deflate if we have no raid-z vdevs.
6668 */
6669 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6670 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6671 int i;
6672
6673 for (i = 0; i < rvd->vdev_children; i++) {
6674 vd = rvd->vdev_child[i];
6675 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6676 break;
6677 }
6678 if (i == rvd->vdev_children) {
6679 spa->spa_deflate = TRUE;
6680 VERIFY(0 == zap_add(spa->spa_meta_objset,
6681 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6682 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6683 }
6684 }
6685
6686 /*
6687 * Iterate to convergence.
6688 */
6689 do {
6690 int pass = ++spa->spa_sync_pass;
6691
6692 spa_sync_config_object(spa, tx);
6693 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6694 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6695 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6696 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6697 spa_errlog_sync(spa, txg);
6698 dsl_pool_sync(dp, txg);
6699
6700 if (pass < zfs_sync_pass_deferred_free) {
6701 spa_sync_frees(spa, free_bpl, tx);
6702 } else {
6703 /*
6704 * We can not defer frees in pass 1, because
6705 * we sync the deferred frees later in pass 1.
6706 */
6707 ASSERT3U(pass, >, 1);
6708 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6709 &spa->spa_deferred_bpobj, tx);
6710 }
6711
6712 ddt_sync(spa, txg);
6713 dsl_scan_sync(dp, tx);
6714
6715 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6716 vdev_sync(vd, txg);
6717
6718 if (pass == 1) {
6719 spa_sync_upgrades(spa, tx);
6720 ASSERT3U(txg, >=,
6721 spa->spa_uberblock.ub_rootbp.blk_birth);
6722 /*
6723 * Note: We need to check if the MOS is dirty
6724 * because we could have marked the MOS dirty
6725 * without updating the uberblock (e.g. if we
6726 * have sync tasks but no dirty user data). We
6727 * need to check the uberblock's rootbp because
6728 * it is updated if we have synced out dirty
6729 * data (though in this case the MOS will most
6730 * likely also be dirty due to second order
6731 * effects, we don't want to rely on that here).
6732 */
6733 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6734 !dmu_objset_is_dirty(mos, txg)) {
6735 /*
6736 * Nothing changed on the first pass,
6737 * therefore this TXG is a no-op. Avoid
6738 * syncing deferred frees, so that we
6739 * can keep this TXG as a no-op.
6740 */
6741 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6742 txg));
6743 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6744 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6745 break;
6746 }
6747 spa_sync_deferred_frees(spa, tx);
6748 }
6749
6750 } while (dmu_objset_is_dirty(mos, txg));
6751
6752 #ifdef ZFS_DEBUG
6753 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6754 /*
6755 * Make sure that the number of ZAPs for all the vdevs matches
6756 * the number of ZAPs in the per-vdev ZAP list. This only gets
6757 * called if the config is dirty; otherwise there may be
6758 * outstanding AVZ operations that weren't completed in
6759 * spa_sync_config_object.
6760 */
6761 uint64_t all_vdev_zap_entry_count;
6762 ASSERT0(zap_count(spa->spa_meta_objset,
6763 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6764 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6765 all_vdev_zap_entry_count);
6766 }
6767 #endif
6768
6769 /*
6770 * Rewrite the vdev configuration (which includes the uberblock)
6771 * to commit the transaction group.
6772 *
6773 * If there are no dirty vdevs, we sync the uberblock to a few
6774 * random top-level vdevs that are known to be visible in the
6775 * config cache (see spa_vdev_add() for a complete description).
6776 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6777 */
6778 for (;;) {
6779 /*
6780 * We hold SCL_STATE to prevent vdev open/close/etc.
6781 * while we're attempting to write the vdev labels.
6782 */
6783 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6784
6785 if (list_is_empty(&spa->spa_config_dirty_list)) {
6786 vdev_t *svd[SPA_DVAS_PER_BP];
6787 int svdcount = 0;
6788 int children = rvd->vdev_children;
6789 int c0 = spa_get_random(children);
6790
6791 for (c = 0; c < children; c++) {
6792 vd = rvd->vdev_child[(c0 + c) % children];
6793 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6794 continue;
6795 svd[svdcount++] = vd;
6796 if (svdcount == SPA_DVAS_PER_BP)
6797 break;
6798 }
6799 error = vdev_config_sync(svd, svdcount, txg);
6800 } else {
6801 error = vdev_config_sync(rvd->vdev_child,
6802 rvd->vdev_children, txg);
6803 }
6804
6805 if (error == 0)
6806 spa->spa_last_synced_guid = rvd->vdev_guid;
6807
6808 spa_config_exit(spa, SCL_STATE, FTAG);
6809
6810 if (error == 0)
6811 break;
6812 zio_suspend(spa, NULL);
6813 zio_resume_wait(spa);
6814 }
6815 dmu_tx_commit(tx);
6816
6817 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6818 spa->spa_deadman_tqid = 0;
6819
6820 /*
6821 * Clear the dirty config list.
6822 */
6823 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6824 vdev_config_clean(vd);
6825
6826 /*
6827 * Now that the new config has synced transactionally,
6828 * let it become visible to the config cache.
6829 */
6830 if (spa->spa_config_syncing != NULL) {
6831 spa_config_set(spa, spa->spa_config_syncing);
6832 spa->spa_config_txg = txg;
6833 spa->spa_config_syncing = NULL;
6834 }
6835
6836 spa->spa_ubsync = spa->spa_uberblock;
6837
6838 dsl_pool_sync_done(dp, txg);
6839
6840 /*
6841 * Update usable space statistics.
6842 */
6843 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6844 vdev_sync_done(vd, txg);
6845
6846 spa_update_dspace(spa);
6847
6848 /*
6849 * It had better be the case that we didn't dirty anything
6850 * since vdev_config_sync().
6851 */
6852 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6853 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6854 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6855
6856 spa->spa_sync_pass = 0;
6857
6858 spa_config_exit(spa, SCL_CONFIG, FTAG);
6859
6860 spa_handle_ignored_writes(spa);
6861
6862 /*
6863 * If any async tasks have been requested, kick them off.
6864 */
6865 spa_async_dispatch(spa);
6866 }
6867
6868 /*
6869 * Sync all pools. We don't want to hold the namespace lock across these
6870 * operations, so we take a reference on the spa_t and drop the lock during the
6871 * sync.
6872 */
6873 void
6874 spa_sync_allpools(void)
6875 {
6876 spa_t *spa = NULL;
6877 mutex_enter(&spa_namespace_lock);
6878 while ((spa = spa_next(spa)) != NULL) {
6879 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6880 !spa_writeable(spa) || spa_suspended(spa))
6881 continue;
6882 spa_open_ref(spa, FTAG);
6883 mutex_exit(&spa_namespace_lock);
6884 txg_wait_synced(spa_get_dsl(spa), 0);
6885 mutex_enter(&spa_namespace_lock);
6886 spa_close(spa, FTAG);
6887 }
6888 mutex_exit(&spa_namespace_lock);
6889 }
6890
6891 /*
6892 * ==========================================================================
6893 * Miscellaneous routines
6894 * ==========================================================================
6895 */
6896
6897 /*
6898 * Remove all pools in the system.
6899 */
6900 void
6901 spa_evict_all(void)
6902 {
6903 spa_t *spa;
6904
6905 /*
6906 * Remove all cached state. All pools should be closed now,
6907 * so every spa in the AVL tree should be unreferenced.
6908 */
6909 mutex_enter(&spa_namespace_lock);
6910 while ((spa = spa_next(NULL)) != NULL) {
6911 /*
6912 * Stop async tasks. The async thread may need to detach
6913 * a device that's been replaced, which requires grabbing
6914 * spa_namespace_lock, so we must drop it here.
6915 */
6916 spa_open_ref(spa, FTAG);
6917 mutex_exit(&spa_namespace_lock);
6918 spa_async_suspend(spa);
6919 mutex_enter(&spa_namespace_lock);
6920 spa_close(spa, FTAG);
6921
6922 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6923 spa_unload(spa);
6924 spa_deactivate(spa);
6925 }
6926 spa_remove(spa);
6927 }
6928 mutex_exit(&spa_namespace_lock);
6929 }
6930
6931 vdev_t *
6932 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6933 {
6934 vdev_t *vd;
6935 int i;
6936
6937 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6938 return (vd);
6939
6940 if (aux) {
6941 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6942 vd = spa->spa_l2cache.sav_vdevs[i];
6943 if (vd->vdev_guid == guid)
6944 return (vd);
6945 }
6946
6947 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6948 vd = spa->spa_spares.sav_vdevs[i];
6949 if (vd->vdev_guid == guid)
6950 return (vd);
6951 }
6952 }
6953
6954 return (NULL);
6955 }
6956
6957 void
6958 spa_upgrade(spa_t *spa, uint64_t version)
6959 {
6960 ASSERT(spa_writeable(spa));
6961
6962 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6963
6964 /*
6965 * This should only be called for a non-faulted pool, and since a
6966 * future version would result in an unopenable pool, this shouldn't be
6967 * possible.
6968 */
6969 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6970 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6971
6972 spa->spa_uberblock.ub_version = version;
6973 vdev_config_dirty(spa->spa_root_vdev);
6974
6975 spa_config_exit(spa, SCL_ALL, FTAG);
6976
6977 txg_wait_synced(spa_get_dsl(spa), 0);
6978 }
6979
6980 boolean_t
6981 spa_has_spare(spa_t *spa, uint64_t guid)
6982 {
6983 int i;
6984 uint64_t spareguid;
6985 spa_aux_vdev_t *sav = &spa->spa_spares;
6986
6987 for (i = 0; i < sav->sav_count; i++)
6988 if (sav->sav_vdevs[i]->vdev_guid == guid)
6989 return (B_TRUE);
6990
6991 for (i = 0; i < sav->sav_npending; i++) {
6992 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6993 &spareguid) == 0 && spareguid == guid)
6994 return (B_TRUE);
6995 }
6996
6997 return (B_FALSE);
6998 }
6999
7000 /*
7001 * Check if a pool has an active shared spare device.
7002 * Note: reference count of an active spare is 2, as a spare and as a replace
7003 */
7004 static boolean_t
7005 spa_has_active_shared_spare(spa_t *spa)
7006 {
7007 int i, refcnt;
7008 uint64_t pool;
7009 spa_aux_vdev_t *sav = &spa->spa_spares;
7010
7011 for (i = 0; i < sav->sav_count; i++) {
7012 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7013 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7014 refcnt > 2)
7015 return (B_TRUE);
7016 }
7017
7018 return (B_FALSE);
7019 }
7020
7021 /*
7022 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
7023 * filled in from the spa and (optionally) the vdev. This doesn't do anything
7024 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7025 * or zdb as real changes.
7026 */
7027 void
7028 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7029 {
7030 #ifdef _KERNEL
7031 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
7032 #endif
7033 }
7034
7035 #if defined(_KERNEL) && defined(HAVE_SPL)
7036 /* state manipulation functions */
7037 EXPORT_SYMBOL(spa_open);
7038 EXPORT_SYMBOL(spa_open_rewind);
7039 EXPORT_SYMBOL(spa_get_stats);
7040 EXPORT_SYMBOL(spa_create);
7041 EXPORT_SYMBOL(spa_import);
7042 EXPORT_SYMBOL(spa_tryimport);
7043 EXPORT_SYMBOL(spa_destroy);
7044 EXPORT_SYMBOL(spa_export);
7045 EXPORT_SYMBOL(spa_reset);
7046 EXPORT_SYMBOL(spa_async_request);
7047 EXPORT_SYMBOL(spa_async_suspend);
7048 EXPORT_SYMBOL(spa_async_resume);
7049 EXPORT_SYMBOL(spa_inject_addref);
7050 EXPORT_SYMBOL(spa_inject_delref);
7051 EXPORT_SYMBOL(spa_scan_stat_init);
7052 EXPORT_SYMBOL(spa_scan_get_stats);
7053
7054 /* device maniion */
7055 EXPORT_SYMBOL(spa_vdev_add);
7056 EXPORT_SYMBOL(spa_vdev_attach);
7057 EXPORT_SYMBOL(spa_vdev_detach);
7058 EXPORT_SYMBOL(spa_vdev_remove);
7059 EXPORT_SYMBOL(spa_vdev_setpath);
7060 EXPORT_SYMBOL(spa_vdev_setfru);
7061 EXPORT_SYMBOL(spa_vdev_split_mirror);
7062
7063 /* spare statech is global across all pools) */
7064 EXPORT_SYMBOL(spa_spare_add);
7065 EXPORT_SYMBOL(spa_spare_remove);
7066 EXPORT_SYMBOL(spa_spare_exists);
7067 EXPORT_SYMBOL(spa_spare_activate);
7068
7069 /* L2ARC statech is global across all pools) */
7070 EXPORT_SYMBOL(spa_l2cache_add);
7071 EXPORT_SYMBOL(spa_l2cache_remove);
7072 EXPORT_SYMBOL(spa_l2cache_exists);
7073 EXPORT_SYMBOL(spa_l2cache_activate);
7074 EXPORT_SYMBOL(spa_l2cache_drop);
7075
7076 /* scanning */
7077 EXPORT_SYMBOL(spa_scan);
7078 EXPORT_SYMBOL(spa_scan_stop);
7079
7080 /* spa syncing */
7081 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
7082 EXPORT_SYMBOL(spa_sync_allpools);
7083
7084 /* properties */
7085 EXPORT_SYMBOL(spa_prop_set);
7086 EXPORT_SYMBOL(spa_prop_get);
7087 EXPORT_SYMBOL(spa_prop_clear_bootfs);
7088
7089 /* asynchronous event notification */
7090 EXPORT_SYMBOL(spa_event_notify);
7091 #endif
7092
7093 #if defined(_KERNEL) && defined(HAVE_SPL)
7094 module_param(spa_load_verify_maxinflight, int, 0644);
7095 MODULE_PARM_DESC(spa_load_verify_maxinflight,
7096 "Max concurrent traversal I/Os while verifying pool during import -X");
7097
7098 module_param(spa_load_verify_metadata, int, 0644);
7099 MODULE_PARM_DESC(spa_load_verify_metadata,
7100 "Set to traverse metadata on pool import");
7101
7102 module_param(spa_load_verify_data, int, 0644);
7103 MODULE_PARM_DESC(spa_load_verify_data,
7104 "Set to traverse data on pool import");
7105
7106 module_param(zio_taskq_batch_pct, uint, 0444);
7107 MODULE_PARM_DESC(zio_taskq_batch_pct,
7108 "Percentage of CPUs to run an IO worker thread");
7109
7110 #endif