]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Fix concurrent resilvers initiated at same time
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_draid.h>
67 #include <sys/metaslab.h>
68 #include <sys/metaslab_impl.h>
69 #include <sys/mmp.h>
70 #include <sys/uberblock_impl.h>
71 #include <sys/txg.h>
72 #include <sys/avl.h>
73 #include <sys/bpobj.h>
74 #include <sys/dmu_traverse.h>
75 #include <sys/dmu_objset.h>
76 #include <sys/unique.h>
77 #include <sys/dsl_pool.h>
78 #include <sys/dsl_dataset.h>
79 #include <sys/dsl_dir.h>
80 #include <sys/dsl_prop.h>
81 #include <sys/dsl_synctask.h>
82 #include <sys/fs/zfs.h>
83 #include <sys/arc.h>
84 #include <sys/callb.h>
85 #include <sys/systeminfo.h>
86 #include <sys/zfs_ioctl.h>
87 #include <sys/dsl_scan.h>
88 #include <sys/zfeature.h>
89 #include <sys/dsl_destroy.h>
90 #include <sys/zvol.h>
91
92 #ifdef _KERNEL
93 #include <sys/fm/protocol.h>
94 #include <sys/fm/util.h>
95 #include <sys/callb.h>
96 #include <sys/zone.h>
97 #include <sys/vmsystm.h>
98 #endif /* _KERNEL */
99
100 #include "zfs_prop.h"
101 #include "zfs_comutil.h"
102
103 /*
104 * The interval, in seconds, at which failed configuration cache file writes
105 * should be retried.
106 */
107 int zfs_ccw_retry_interval = 300;
108
109 typedef enum zti_modes {
110 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
111 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
112 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
113 ZTI_MODE_NULL, /* don't create a taskq */
114 ZTI_NMODES
115 } zti_modes_t;
116
117 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
118 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
119 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
120 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
121 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
122
123 #define ZTI_N(n) ZTI_P(n, 1)
124 #define ZTI_ONE ZTI_N(1)
125
126 typedef struct zio_taskq_info {
127 zti_modes_t zti_mode;
128 uint_t zti_value;
129 uint_t zti_count;
130 } zio_taskq_info_t;
131
132 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
133 "iss", "iss_h", "int", "int_h"
134 };
135
136 /*
137 * This table defines the taskq settings for each ZFS I/O type. When
138 * initializing a pool, we use this table to create an appropriately sized
139 * taskq. Some operations are low volume and therefore have a small, static
140 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
141 * macros. Other operations process a large amount of data; the ZTI_BATCH
142 * macro causes us to create a taskq oriented for throughput. Some operations
143 * are so high frequency and short-lived that the taskq itself can become a
144 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
145 * additional degree of parallelism specified by the number of threads per-
146 * taskq and the number of taskqs; when dispatching an event in this case, the
147 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
148 * but with number of taskqs also scaling with number of CPUs.
149 *
150 * The different taskq priorities are to handle the different contexts (issue
151 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
152 * need to be handled with minimum delay.
153 */
154 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
155 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
156 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
157 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
158 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
159 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
160 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
161 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
162 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
163 };
164
165 static void spa_sync_version(void *arg, dmu_tx_t *tx);
166 static void spa_sync_props(void *arg, dmu_tx_t *tx);
167 static boolean_t spa_has_active_shared_spare(spa_t *spa);
168 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
169 const char **ereport);
170 static void spa_vdev_resilver_done(spa_t *spa);
171
172 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
173 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
174 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
175 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
176
177 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
178
179 /*
180 * Report any spa_load_verify errors found, but do not fail spa_load.
181 * This is used by zdb to analyze non-idle pools.
182 */
183 boolean_t spa_load_verify_dryrun = B_FALSE;
184
185 /*
186 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
187 * This is used by zdb for spacemaps verification.
188 */
189 boolean_t spa_mode_readable_spacemaps = B_FALSE;
190
191 /*
192 * This (illegal) pool name is used when temporarily importing a spa_t in order
193 * to get the vdev stats associated with the imported devices.
194 */
195 #define TRYIMPORT_NAME "$import"
196
197 /*
198 * For debugging purposes: print out vdev tree during pool import.
199 */
200 static int spa_load_print_vdev_tree = B_FALSE;
201
202 /*
203 * A non-zero value for zfs_max_missing_tvds means that we allow importing
204 * pools with missing top-level vdevs. This is strictly intended for advanced
205 * pool recovery cases since missing data is almost inevitable. Pools with
206 * missing devices can only be imported read-only for safety reasons, and their
207 * fail-mode will be automatically set to "continue".
208 *
209 * With 1 missing vdev we should be able to import the pool and mount all
210 * datasets. User data that was not modified after the missing device has been
211 * added should be recoverable. This means that snapshots created prior to the
212 * addition of that device should be completely intact.
213 *
214 * With 2 missing vdevs, some datasets may fail to mount since there are
215 * dataset statistics that are stored as regular metadata. Some data might be
216 * recoverable if those vdevs were added recently.
217 *
218 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
219 * may be missing entirely. Chances of data recovery are very low. Note that
220 * there are also risks of performing an inadvertent rewind as we might be
221 * missing all the vdevs with the latest uberblocks.
222 */
223 uint64_t zfs_max_missing_tvds = 0;
224
225 /*
226 * The parameters below are similar to zfs_max_missing_tvds but are only
227 * intended for a preliminary open of the pool with an untrusted config which
228 * might be incomplete or out-dated.
229 *
230 * We are more tolerant for pools opened from a cachefile since we could have
231 * an out-dated cachefile where a device removal was not registered.
232 * We could have set the limit arbitrarily high but in the case where devices
233 * are really missing we would want to return the proper error codes; we chose
234 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
235 * and we get a chance to retrieve the trusted config.
236 */
237 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
238
239 /*
240 * In the case where config was assembled by scanning device paths (/dev/dsks
241 * by default) we are less tolerant since all the existing devices should have
242 * been detected and we want spa_load to return the right error codes.
243 */
244 uint64_t zfs_max_missing_tvds_scan = 0;
245
246 /*
247 * Debugging aid that pauses spa_sync() towards the end.
248 */
249 static const boolean_t zfs_pause_spa_sync = B_FALSE;
250
251 /*
252 * Variables to indicate the livelist condense zthr func should wait at certain
253 * points for the livelist to be removed - used to test condense/destroy races
254 */
255 static int zfs_livelist_condense_zthr_pause = 0;
256 static int zfs_livelist_condense_sync_pause = 0;
257
258 /*
259 * Variables to track whether or not condense cancellation has been
260 * triggered in testing.
261 */
262 static int zfs_livelist_condense_sync_cancel = 0;
263 static int zfs_livelist_condense_zthr_cancel = 0;
264
265 /*
266 * Variable to track whether or not extra ALLOC blkptrs were added to a
267 * livelist entry while it was being condensed (caused by the way we track
268 * remapped blkptrs in dbuf_remap_impl)
269 */
270 static int zfs_livelist_condense_new_alloc = 0;
271
272 /*
273 * ==========================================================================
274 * SPA properties routines
275 * ==========================================================================
276 */
277
278 /*
279 * Add a (source=src, propname=propval) list to an nvlist.
280 */
281 static void
282 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
283 uint64_t intval, zprop_source_t src)
284 {
285 const char *propname = zpool_prop_to_name(prop);
286 nvlist_t *propval;
287
288 propval = fnvlist_alloc();
289 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
290
291 if (strval != NULL)
292 fnvlist_add_string(propval, ZPROP_VALUE, strval);
293 else
294 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
295
296 fnvlist_add_nvlist(nvl, propname, propval);
297 nvlist_free(propval);
298 }
299
300 /*
301 * Add a user property (source=src, propname=propval) to an nvlist.
302 */
303 static void
304 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
305 zprop_source_t src)
306 {
307 nvlist_t *propval;
308
309 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
310 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
311 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
312 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
313 nvlist_free(propval);
314 }
315
316 /*
317 * Get property values from the spa configuration.
318 */
319 static void
320 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
321 {
322 vdev_t *rvd = spa->spa_root_vdev;
323 dsl_pool_t *pool = spa->spa_dsl_pool;
324 uint64_t size, alloc, cap, version;
325 const zprop_source_t src = ZPROP_SRC_NONE;
326 spa_config_dirent_t *dp;
327 metaslab_class_t *mc = spa_normal_class(spa);
328
329 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
330
331 if (rvd != NULL) {
332 alloc = metaslab_class_get_alloc(mc);
333 alloc += metaslab_class_get_alloc(spa_special_class(spa));
334 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
335 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
336
337 size = metaslab_class_get_space(mc);
338 size += metaslab_class_get_space(spa_special_class(spa));
339 size += metaslab_class_get_space(spa_dedup_class(spa));
340 size += metaslab_class_get_space(spa_embedded_log_class(spa));
341
342 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
343 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
344 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
345 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
346 size - alloc, src);
347 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
348 spa->spa_checkpoint_info.sci_dspace, src);
349
350 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
351 metaslab_class_fragmentation(mc), src);
352 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
353 metaslab_class_expandable_space(mc), src);
354 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
355 (spa_mode(spa) == SPA_MODE_READ), src);
356
357 cap = (size == 0) ? 0 : (alloc * 100 / size);
358 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
359
360 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
361 ddt_get_pool_dedup_ratio(spa), src);
362 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
363 brt_get_used(spa), src);
364 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
365 brt_get_saved(spa), src);
366 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
367 brt_get_ratio(spa), src);
368
369 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
370 rvd->vdev_state, src);
371
372 version = spa_version(spa);
373 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
374 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
375 version, ZPROP_SRC_DEFAULT);
376 } else {
377 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
378 version, ZPROP_SRC_LOCAL);
379 }
380 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
381 NULL, spa_load_guid(spa), src);
382 }
383
384 if (pool != NULL) {
385 /*
386 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
387 * when opening pools before this version freedir will be NULL.
388 */
389 if (pool->dp_free_dir != NULL) {
390 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
391 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
392 src);
393 } else {
394 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
395 NULL, 0, src);
396 }
397
398 if (pool->dp_leak_dir != NULL) {
399 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
400 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
401 src);
402 } else {
403 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
404 NULL, 0, src);
405 }
406 }
407
408 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
409
410 if (spa->spa_comment != NULL) {
411 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
412 0, ZPROP_SRC_LOCAL);
413 }
414
415 if (spa->spa_compatibility != NULL) {
416 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
417 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
418 }
419
420 if (spa->spa_root != NULL)
421 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
422 0, ZPROP_SRC_LOCAL);
423
424 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
425 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
426 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
427 } else {
428 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
429 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
430 }
431
432 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
433 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
434 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
435 } else {
436 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
437 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
438 }
439
440 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
441 if (dp->scd_path == NULL) {
442 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
443 "none", 0, ZPROP_SRC_LOCAL);
444 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
445 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
446 dp->scd_path, 0, ZPROP_SRC_LOCAL);
447 }
448 }
449 }
450
451 /*
452 * Get zpool property values.
453 */
454 int
455 spa_prop_get(spa_t *spa, nvlist_t **nvp)
456 {
457 objset_t *mos = spa->spa_meta_objset;
458 zap_cursor_t zc;
459 zap_attribute_t za;
460 dsl_pool_t *dp;
461 int err;
462
463 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
464 if (err)
465 return (err);
466
467 dp = spa_get_dsl(spa);
468 dsl_pool_config_enter(dp, FTAG);
469 mutex_enter(&spa->spa_props_lock);
470
471 /*
472 * Get properties from the spa config.
473 */
474 spa_prop_get_config(spa, nvp);
475
476 /* If no pool property object, no more prop to get. */
477 if (mos == NULL || spa->spa_pool_props_object == 0)
478 goto out;
479
480 /*
481 * Get properties from the MOS pool property object.
482 */
483 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
484 (err = zap_cursor_retrieve(&zc, &za)) == 0;
485 zap_cursor_advance(&zc)) {
486 uint64_t intval = 0;
487 char *strval = NULL;
488 zprop_source_t src = ZPROP_SRC_DEFAULT;
489 zpool_prop_t prop;
490
491 if ((prop = zpool_name_to_prop(za.za_name)) ==
492 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
493 continue;
494
495 switch (za.za_integer_length) {
496 case 8:
497 /* integer property */
498 if (za.za_first_integer !=
499 zpool_prop_default_numeric(prop))
500 src = ZPROP_SRC_LOCAL;
501
502 if (prop == ZPOOL_PROP_BOOTFS) {
503 dsl_dataset_t *ds = NULL;
504
505 err = dsl_dataset_hold_obj(dp,
506 za.za_first_integer, FTAG, &ds);
507 if (err != 0)
508 break;
509
510 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
511 KM_SLEEP);
512 dsl_dataset_name(ds, strval);
513 dsl_dataset_rele(ds, FTAG);
514 } else {
515 strval = NULL;
516 intval = za.za_first_integer;
517 }
518
519 spa_prop_add_list(*nvp, prop, strval, intval, src);
520
521 if (strval != NULL)
522 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
523
524 break;
525
526 case 1:
527 /* string property */
528 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
529 err = zap_lookup(mos, spa->spa_pool_props_object,
530 za.za_name, 1, za.za_num_integers, strval);
531 if (err) {
532 kmem_free(strval, za.za_num_integers);
533 break;
534 }
535 if (prop != ZPOOL_PROP_INVAL) {
536 spa_prop_add_list(*nvp, prop, strval, 0, src);
537 } else {
538 src = ZPROP_SRC_LOCAL;
539 spa_prop_add_user(*nvp, za.za_name, strval,
540 src);
541 }
542 kmem_free(strval, za.za_num_integers);
543 break;
544
545 default:
546 break;
547 }
548 }
549 zap_cursor_fini(&zc);
550 out:
551 mutex_exit(&spa->spa_props_lock);
552 dsl_pool_config_exit(dp, FTAG);
553 if (err && err != ENOENT) {
554 nvlist_free(*nvp);
555 *nvp = NULL;
556 return (err);
557 }
558
559 return (0);
560 }
561
562 /*
563 * Validate the given pool properties nvlist and modify the list
564 * for the property values to be set.
565 */
566 static int
567 spa_prop_validate(spa_t *spa, nvlist_t *props)
568 {
569 nvpair_t *elem;
570 int error = 0, reset_bootfs = 0;
571 uint64_t objnum = 0;
572 boolean_t has_feature = B_FALSE;
573
574 elem = NULL;
575 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
576 uint64_t intval;
577 const char *strval, *slash, *check, *fname;
578 const char *propname = nvpair_name(elem);
579 zpool_prop_t prop = zpool_name_to_prop(propname);
580
581 switch (prop) {
582 case ZPOOL_PROP_INVAL:
583 /*
584 * Sanitize the input.
585 */
586 if (zfs_prop_user(propname)) {
587 if (strlen(propname) >= ZAP_MAXNAMELEN) {
588 error = SET_ERROR(ENAMETOOLONG);
589 break;
590 }
591
592 if (strlen(fnvpair_value_string(elem)) >=
593 ZAP_MAXVALUELEN) {
594 error = SET_ERROR(E2BIG);
595 break;
596 }
597 } else if (zpool_prop_feature(propname)) {
598 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
599 error = SET_ERROR(EINVAL);
600 break;
601 }
602
603 if (nvpair_value_uint64(elem, &intval) != 0) {
604 error = SET_ERROR(EINVAL);
605 break;
606 }
607
608 if (intval != 0) {
609 error = SET_ERROR(EINVAL);
610 break;
611 }
612
613 fname = strchr(propname, '@') + 1;
614 if (zfeature_lookup_name(fname, NULL) != 0) {
615 error = SET_ERROR(EINVAL);
616 break;
617 }
618
619 has_feature = B_TRUE;
620 } else {
621 error = SET_ERROR(EINVAL);
622 break;
623 }
624 break;
625
626 case ZPOOL_PROP_VERSION:
627 error = nvpair_value_uint64(elem, &intval);
628 if (!error &&
629 (intval < spa_version(spa) ||
630 intval > SPA_VERSION_BEFORE_FEATURES ||
631 has_feature))
632 error = SET_ERROR(EINVAL);
633 break;
634
635 case ZPOOL_PROP_DELEGATION:
636 case ZPOOL_PROP_AUTOREPLACE:
637 case ZPOOL_PROP_LISTSNAPS:
638 case ZPOOL_PROP_AUTOEXPAND:
639 case ZPOOL_PROP_AUTOTRIM:
640 error = nvpair_value_uint64(elem, &intval);
641 if (!error && intval > 1)
642 error = SET_ERROR(EINVAL);
643 break;
644
645 case ZPOOL_PROP_MULTIHOST:
646 error = nvpair_value_uint64(elem, &intval);
647 if (!error && intval > 1)
648 error = SET_ERROR(EINVAL);
649
650 if (!error) {
651 uint32_t hostid = zone_get_hostid(NULL);
652 if (hostid)
653 spa->spa_hostid = hostid;
654 else
655 error = SET_ERROR(ENOTSUP);
656 }
657
658 break;
659
660 case ZPOOL_PROP_BOOTFS:
661 /*
662 * If the pool version is less than SPA_VERSION_BOOTFS,
663 * or the pool is still being created (version == 0),
664 * the bootfs property cannot be set.
665 */
666 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
667 error = SET_ERROR(ENOTSUP);
668 break;
669 }
670
671 /*
672 * Make sure the vdev config is bootable
673 */
674 if (!vdev_is_bootable(spa->spa_root_vdev)) {
675 error = SET_ERROR(ENOTSUP);
676 break;
677 }
678
679 reset_bootfs = 1;
680
681 error = nvpair_value_string(elem, &strval);
682
683 if (!error) {
684 objset_t *os;
685
686 if (strval == NULL || strval[0] == '\0') {
687 objnum = zpool_prop_default_numeric(
688 ZPOOL_PROP_BOOTFS);
689 break;
690 }
691
692 error = dmu_objset_hold(strval, FTAG, &os);
693 if (error != 0)
694 break;
695
696 /* Must be ZPL. */
697 if (dmu_objset_type(os) != DMU_OST_ZFS) {
698 error = SET_ERROR(ENOTSUP);
699 } else {
700 objnum = dmu_objset_id(os);
701 }
702 dmu_objset_rele(os, FTAG);
703 }
704 break;
705
706 case ZPOOL_PROP_FAILUREMODE:
707 error = nvpair_value_uint64(elem, &intval);
708 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
709 error = SET_ERROR(EINVAL);
710
711 /*
712 * This is a special case which only occurs when
713 * the pool has completely failed. This allows
714 * the user to change the in-core failmode property
715 * without syncing it out to disk (I/Os might
716 * currently be blocked). We do this by returning
717 * EIO to the caller (spa_prop_set) to trick it
718 * into thinking we encountered a property validation
719 * error.
720 */
721 if (!error && spa_suspended(spa)) {
722 spa->spa_failmode = intval;
723 error = SET_ERROR(EIO);
724 }
725 break;
726
727 case ZPOOL_PROP_CACHEFILE:
728 if ((error = nvpair_value_string(elem, &strval)) != 0)
729 break;
730
731 if (strval[0] == '\0')
732 break;
733
734 if (strcmp(strval, "none") == 0)
735 break;
736
737 if (strval[0] != '/') {
738 error = SET_ERROR(EINVAL);
739 break;
740 }
741
742 slash = strrchr(strval, '/');
743 ASSERT(slash != NULL);
744
745 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
746 strcmp(slash, "/..") == 0)
747 error = SET_ERROR(EINVAL);
748 break;
749
750 case ZPOOL_PROP_COMMENT:
751 if ((error = nvpair_value_string(elem, &strval)) != 0)
752 break;
753 for (check = strval; *check != '\0'; check++) {
754 if (!isprint(*check)) {
755 error = SET_ERROR(EINVAL);
756 break;
757 }
758 }
759 if (strlen(strval) > ZPROP_MAX_COMMENT)
760 error = SET_ERROR(E2BIG);
761 break;
762
763 default:
764 break;
765 }
766
767 if (error)
768 break;
769 }
770
771 (void) nvlist_remove_all(props,
772 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
773
774 if (!error && reset_bootfs) {
775 error = nvlist_remove(props,
776 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
777
778 if (!error) {
779 error = nvlist_add_uint64(props,
780 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
781 }
782 }
783
784 return (error);
785 }
786
787 void
788 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
789 {
790 const char *cachefile;
791 spa_config_dirent_t *dp;
792
793 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
794 &cachefile) != 0)
795 return;
796
797 dp = kmem_alloc(sizeof (spa_config_dirent_t),
798 KM_SLEEP);
799
800 if (cachefile[0] == '\0')
801 dp->scd_path = spa_strdup(spa_config_path);
802 else if (strcmp(cachefile, "none") == 0)
803 dp->scd_path = NULL;
804 else
805 dp->scd_path = spa_strdup(cachefile);
806
807 list_insert_head(&spa->spa_config_list, dp);
808 if (need_sync)
809 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
810 }
811
812 int
813 spa_prop_set(spa_t *spa, nvlist_t *nvp)
814 {
815 int error;
816 nvpair_t *elem = NULL;
817 boolean_t need_sync = B_FALSE;
818
819 if ((error = spa_prop_validate(spa, nvp)) != 0)
820 return (error);
821
822 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
823 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
824
825 if (prop == ZPOOL_PROP_CACHEFILE ||
826 prop == ZPOOL_PROP_ALTROOT ||
827 prop == ZPOOL_PROP_READONLY)
828 continue;
829
830 if (prop == ZPOOL_PROP_INVAL &&
831 zfs_prop_user(nvpair_name(elem))) {
832 need_sync = B_TRUE;
833 break;
834 }
835
836 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
837 uint64_t ver = 0;
838
839 if (prop == ZPOOL_PROP_VERSION) {
840 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
841 } else {
842 ASSERT(zpool_prop_feature(nvpair_name(elem)));
843 ver = SPA_VERSION_FEATURES;
844 need_sync = B_TRUE;
845 }
846
847 /* Save time if the version is already set. */
848 if (ver == spa_version(spa))
849 continue;
850
851 /*
852 * In addition to the pool directory object, we might
853 * create the pool properties object, the features for
854 * read object, the features for write object, or the
855 * feature descriptions object.
856 */
857 error = dsl_sync_task(spa->spa_name, NULL,
858 spa_sync_version, &ver,
859 6, ZFS_SPACE_CHECK_RESERVED);
860 if (error)
861 return (error);
862 continue;
863 }
864
865 need_sync = B_TRUE;
866 break;
867 }
868
869 if (need_sync) {
870 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
871 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
872 }
873
874 return (0);
875 }
876
877 /*
878 * If the bootfs property value is dsobj, clear it.
879 */
880 void
881 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
882 {
883 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
884 VERIFY(zap_remove(spa->spa_meta_objset,
885 spa->spa_pool_props_object,
886 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
887 spa->spa_bootfs = 0;
888 }
889 }
890
891 static int
892 spa_change_guid_check(void *arg, dmu_tx_t *tx)
893 {
894 uint64_t *newguid __maybe_unused = arg;
895 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
896 vdev_t *rvd = spa->spa_root_vdev;
897 uint64_t vdev_state;
898
899 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
900 int error = (spa_has_checkpoint(spa)) ?
901 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
902 return (SET_ERROR(error));
903 }
904
905 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
906 vdev_state = rvd->vdev_state;
907 spa_config_exit(spa, SCL_STATE, FTAG);
908
909 if (vdev_state != VDEV_STATE_HEALTHY)
910 return (SET_ERROR(ENXIO));
911
912 ASSERT3U(spa_guid(spa), !=, *newguid);
913
914 return (0);
915 }
916
917 static void
918 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
919 {
920 uint64_t *newguid = arg;
921 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
922 uint64_t oldguid;
923 vdev_t *rvd = spa->spa_root_vdev;
924
925 oldguid = spa_guid(spa);
926
927 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
928 rvd->vdev_guid = *newguid;
929 rvd->vdev_guid_sum += (*newguid - oldguid);
930 vdev_config_dirty(rvd);
931 spa_config_exit(spa, SCL_STATE, FTAG);
932
933 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
934 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
935 }
936
937 /*
938 * Change the GUID for the pool. This is done so that we can later
939 * re-import a pool built from a clone of our own vdevs. We will modify
940 * the root vdev's guid, our own pool guid, and then mark all of our
941 * vdevs dirty. Note that we must make sure that all our vdevs are
942 * online when we do this, or else any vdevs that weren't present
943 * would be orphaned from our pool. We are also going to issue a
944 * sysevent to update any watchers.
945 */
946 int
947 spa_change_guid(spa_t *spa)
948 {
949 int error;
950 uint64_t guid;
951
952 mutex_enter(&spa->spa_vdev_top_lock);
953 mutex_enter(&spa_namespace_lock);
954 guid = spa_generate_guid(NULL);
955
956 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
957 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
958
959 if (error == 0) {
960 /*
961 * Clear the kobj flag from all the vdevs to allow
962 * vdev_cache_process_kobj_evt() to post events to all the
963 * vdevs since GUID is updated.
964 */
965 vdev_clear_kobj_evt(spa->spa_root_vdev);
966 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
967 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
968
969 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
970 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
971 }
972
973 mutex_exit(&spa_namespace_lock);
974 mutex_exit(&spa->spa_vdev_top_lock);
975
976 return (error);
977 }
978
979 /*
980 * ==========================================================================
981 * SPA state manipulation (open/create/destroy/import/export)
982 * ==========================================================================
983 */
984
985 static int
986 spa_error_entry_compare(const void *a, const void *b)
987 {
988 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
989 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
990 int ret;
991
992 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
993 sizeof (zbookmark_phys_t));
994
995 return (TREE_ISIGN(ret));
996 }
997
998 /*
999 * Utility function which retrieves copies of the current logs and
1000 * re-initializes them in the process.
1001 */
1002 void
1003 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1004 {
1005 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1006
1007 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1008 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1009
1010 avl_create(&spa->spa_errlist_scrub,
1011 spa_error_entry_compare, sizeof (spa_error_entry_t),
1012 offsetof(spa_error_entry_t, se_avl));
1013 avl_create(&spa->spa_errlist_last,
1014 spa_error_entry_compare, sizeof (spa_error_entry_t),
1015 offsetof(spa_error_entry_t, se_avl));
1016 }
1017
1018 static void
1019 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1020 {
1021 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1022 enum zti_modes mode = ztip->zti_mode;
1023 uint_t value = ztip->zti_value;
1024 uint_t count = ztip->zti_count;
1025 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1026 uint_t cpus, flags = TASKQ_DYNAMIC;
1027 boolean_t batch = B_FALSE;
1028
1029 switch (mode) {
1030 case ZTI_MODE_FIXED:
1031 ASSERT3U(value, >, 0);
1032 break;
1033
1034 case ZTI_MODE_BATCH:
1035 batch = B_TRUE;
1036 flags |= TASKQ_THREADS_CPU_PCT;
1037 value = MIN(zio_taskq_batch_pct, 100);
1038 break;
1039
1040 case ZTI_MODE_SCALE:
1041 flags |= TASKQ_THREADS_CPU_PCT;
1042 /*
1043 * We want more taskqs to reduce lock contention, but we want
1044 * less for better request ordering and CPU utilization.
1045 */
1046 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1047 if (zio_taskq_batch_tpq > 0) {
1048 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1049 zio_taskq_batch_tpq);
1050 } else {
1051 /*
1052 * Prefer 6 threads per taskq, but no more taskqs
1053 * than threads in them on large systems. For 80%:
1054 *
1055 * taskq taskq total
1056 * cpus taskqs percent threads threads
1057 * ------- ------- ------- ------- -------
1058 * 1 1 80% 1 1
1059 * 2 1 80% 1 1
1060 * 4 1 80% 3 3
1061 * 8 2 40% 3 6
1062 * 16 3 27% 4 12
1063 * 32 5 16% 5 25
1064 * 64 7 11% 7 49
1065 * 128 10 8% 10 100
1066 * 256 14 6% 15 210
1067 */
1068 count = 1 + cpus / 6;
1069 while (count * count > cpus)
1070 count--;
1071 }
1072 /* Limit each taskq within 100% to not trigger assertion. */
1073 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1074 value = (zio_taskq_batch_pct + count / 2) / count;
1075 break;
1076
1077 case ZTI_MODE_NULL:
1078 tqs->stqs_count = 0;
1079 tqs->stqs_taskq = NULL;
1080 return;
1081
1082 default:
1083 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1084 "spa_activate()",
1085 zio_type_name[t], zio_taskq_types[q], mode, value);
1086 break;
1087 }
1088
1089 ASSERT3U(count, >, 0);
1090 tqs->stqs_count = count;
1091 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1092
1093 for (uint_t i = 0; i < count; i++) {
1094 taskq_t *tq;
1095 char name[32];
1096
1097 if (count > 1)
1098 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1099 zio_type_name[t], zio_taskq_types[q], i);
1100 else
1101 (void) snprintf(name, sizeof (name), "%s_%s",
1102 zio_type_name[t], zio_taskq_types[q]);
1103
1104 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1105 if (batch)
1106 flags |= TASKQ_DC_BATCH;
1107
1108 (void) zio_taskq_basedc;
1109 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1110 spa->spa_proc, zio_taskq_basedc, flags);
1111 } else {
1112 pri_t pri = maxclsyspri;
1113 /*
1114 * The write issue taskq can be extremely CPU
1115 * intensive. Run it at slightly less important
1116 * priority than the other taskqs.
1117 *
1118 * Under Linux and FreeBSD this means incrementing
1119 * the priority value as opposed to platforms like
1120 * illumos where it should be decremented.
1121 *
1122 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1123 * are equal then a difference between them is
1124 * insignificant.
1125 */
1126 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1127 #if defined(__linux__)
1128 pri++;
1129 #elif defined(__FreeBSD__)
1130 pri += 4;
1131 #else
1132 #error "unknown OS"
1133 #endif
1134 }
1135 tq = taskq_create_proc(name, value, pri, 50,
1136 INT_MAX, spa->spa_proc, flags);
1137 }
1138
1139 tqs->stqs_taskq[i] = tq;
1140 }
1141 }
1142
1143 static void
1144 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1145 {
1146 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1147
1148 if (tqs->stqs_taskq == NULL) {
1149 ASSERT3U(tqs->stqs_count, ==, 0);
1150 return;
1151 }
1152
1153 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1154 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1155 taskq_destroy(tqs->stqs_taskq[i]);
1156 }
1157
1158 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1159 tqs->stqs_taskq = NULL;
1160 }
1161
1162 /*
1163 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1164 * Note that a type may have multiple discrete taskqs to avoid lock contention
1165 * on the taskq itself. In that case we choose which taskq at random by using
1166 * the low bits of gethrtime().
1167 */
1168 void
1169 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1170 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1171 {
1172 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1173 taskq_t *tq;
1174
1175 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1176 ASSERT3U(tqs->stqs_count, !=, 0);
1177
1178 if (tqs->stqs_count == 1) {
1179 tq = tqs->stqs_taskq[0];
1180 } else {
1181 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1182 }
1183
1184 taskq_dispatch_ent(tq, func, arg, flags, ent);
1185 }
1186
1187 /*
1188 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1189 */
1190 void
1191 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1192 task_func_t *func, void *arg, uint_t flags)
1193 {
1194 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1195 taskq_t *tq;
1196 taskqid_t id;
1197
1198 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1199 ASSERT3U(tqs->stqs_count, !=, 0);
1200
1201 if (tqs->stqs_count == 1) {
1202 tq = tqs->stqs_taskq[0];
1203 } else {
1204 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1205 }
1206
1207 id = taskq_dispatch(tq, func, arg, flags);
1208 if (id)
1209 taskq_wait_id(tq, id);
1210 }
1211
1212 static void
1213 spa_create_zio_taskqs(spa_t *spa)
1214 {
1215 for (int t = 0; t < ZIO_TYPES; t++) {
1216 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1217 spa_taskqs_init(spa, t, q);
1218 }
1219 }
1220 }
1221
1222 /*
1223 * Disabled until spa_thread() can be adapted for Linux.
1224 */
1225 #undef HAVE_SPA_THREAD
1226
1227 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1228 static void
1229 spa_thread(void *arg)
1230 {
1231 psetid_t zio_taskq_psrset_bind = PS_NONE;
1232 callb_cpr_t cprinfo;
1233
1234 spa_t *spa = arg;
1235 user_t *pu = PTOU(curproc);
1236
1237 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1238 spa->spa_name);
1239
1240 ASSERT(curproc != &p0);
1241 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1242 "zpool-%s", spa->spa_name);
1243 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1244
1245 /* bind this thread to the requested psrset */
1246 if (zio_taskq_psrset_bind != PS_NONE) {
1247 pool_lock();
1248 mutex_enter(&cpu_lock);
1249 mutex_enter(&pidlock);
1250 mutex_enter(&curproc->p_lock);
1251
1252 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1253 0, NULL, NULL) == 0) {
1254 curthread->t_bind_pset = zio_taskq_psrset_bind;
1255 } else {
1256 cmn_err(CE_WARN,
1257 "Couldn't bind process for zfs pool \"%s\" to "
1258 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1259 }
1260
1261 mutex_exit(&curproc->p_lock);
1262 mutex_exit(&pidlock);
1263 mutex_exit(&cpu_lock);
1264 pool_unlock();
1265 }
1266
1267 if (zio_taskq_sysdc) {
1268 sysdc_thread_enter(curthread, 100, 0);
1269 }
1270
1271 spa->spa_proc = curproc;
1272 spa->spa_did = curthread->t_did;
1273
1274 spa_create_zio_taskqs(spa);
1275
1276 mutex_enter(&spa->spa_proc_lock);
1277 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1278
1279 spa->spa_proc_state = SPA_PROC_ACTIVE;
1280 cv_broadcast(&spa->spa_proc_cv);
1281
1282 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1283 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1284 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1285 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1286
1287 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1288 spa->spa_proc_state = SPA_PROC_GONE;
1289 spa->spa_proc = &p0;
1290 cv_broadcast(&spa->spa_proc_cv);
1291 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1292
1293 mutex_enter(&curproc->p_lock);
1294 lwp_exit();
1295 }
1296 #endif
1297
1298 /*
1299 * Activate an uninitialized pool.
1300 */
1301 static void
1302 spa_activate(spa_t *spa, spa_mode_t mode)
1303 {
1304 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1305
1306 spa->spa_state = POOL_STATE_ACTIVE;
1307 spa->spa_mode = mode;
1308 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1309
1310 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1311 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1312 spa->spa_embedded_log_class =
1313 metaslab_class_create(spa, &zfs_metaslab_ops);
1314 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1315 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1316
1317 /* Try to create a covering process */
1318 mutex_enter(&spa->spa_proc_lock);
1319 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1320 ASSERT(spa->spa_proc == &p0);
1321 spa->spa_did = 0;
1322
1323 (void) spa_create_process;
1324 #ifdef HAVE_SPA_THREAD
1325 /* Only create a process if we're going to be around a while. */
1326 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1327 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1328 NULL, 0) == 0) {
1329 spa->spa_proc_state = SPA_PROC_CREATED;
1330 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1331 cv_wait(&spa->spa_proc_cv,
1332 &spa->spa_proc_lock);
1333 }
1334 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1335 ASSERT(spa->spa_proc != &p0);
1336 ASSERT(spa->spa_did != 0);
1337 } else {
1338 #ifdef _KERNEL
1339 cmn_err(CE_WARN,
1340 "Couldn't create process for zfs pool \"%s\"\n",
1341 spa->spa_name);
1342 #endif
1343 }
1344 }
1345 #endif /* HAVE_SPA_THREAD */
1346 mutex_exit(&spa->spa_proc_lock);
1347
1348 /* If we didn't create a process, we need to create our taskqs. */
1349 if (spa->spa_proc == &p0) {
1350 spa_create_zio_taskqs(spa);
1351 }
1352
1353 for (size_t i = 0; i < TXG_SIZE; i++) {
1354 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1355 ZIO_FLAG_CANFAIL);
1356 }
1357
1358 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1359 offsetof(vdev_t, vdev_config_dirty_node));
1360 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1361 offsetof(objset_t, os_evicting_node));
1362 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1363 offsetof(vdev_t, vdev_state_dirty_node));
1364
1365 txg_list_create(&spa->spa_vdev_txg_list, spa,
1366 offsetof(struct vdev, vdev_txg_node));
1367
1368 avl_create(&spa->spa_errlist_scrub,
1369 spa_error_entry_compare, sizeof (spa_error_entry_t),
1370 offsetof(spa_error_entry_t, se_avl));
1371 avl_create(&spa->spa_errlist_last,
1372 spa_error_entry_compare, sizeof (spa_error_entry_t),
1373 offsetof(spa_error_entry_t, se_avl));
1374 avl_create(&spa->spa_errlist_healed,
1375 spa_error_entry_compare, sizeof (spa_error_entry_t),
1376 offsetof(spa_error_entry_t, se_avl));
1377
1378 spa_activate_os(spa);
1379
1380 spa_keystore_init(&spa->spa_keystore);
1381
1382 /*
1383 * This taskq is used to perform zvol-minor-related tasks
1384 * asynchronously. This has several advantages, including easy
1385 * resolution of various deadlocks.
1386 *
1387 * The taskq must be single threaded to ensure tasks are always
1388 * processed in the order in which they were dispatched.
1389 *
1390 * A taskq per pool allows one to keep the pools independent.
1391 * This way if one pool is suspended, it will not impact another.
1392 *
1393 * The preferred location to dispatch a zvol minor task is a sync
1394 * task. In this context, there is easy access to the spa_t and minimal
1395 * error handling is required because the sync task must succeed.
1396 */
1397 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1398 1, INT_MAX, 0);
1399
1400 /*
1401 * Taskq dedicated to prefetcher threads: this is used to prevent the
1402 * pool traverse code from monopolizing the global (and limited)
1403 * system_taskq by inappropriately scheduling long running tasks on it.
1404 */
1405 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1406 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1407
1408 /*
1409 * The taskq to upgrade datasets in this pool. Currently used by
1410 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1411 */
1412 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1413 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1414 }
1415
1416 /*
1417 * Opposite of spa_activate().
1418 */
1419 static void
1420 spa_deactivate(spa_t *spa)
1421 {
1422 ASSERT(spa->spa_sync_on == B_FALSE);
1423 ASSERT(spa->spa_dsl_pool == NULL);
1424 ASSERT(spa->spa_root_vdev == NULL);
1425 ASSERT(spa->spa_async_zio_root == NULL);
1426 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1427
1428 spa_evicting_os_wait(spa);
1429
1430 if (spa->spa_zvol_taskq) {
1431 taskq_destroy(spa->spa_zvol_taskq);
1432 spa->spa_zvol_taskq = NULL;
1433 }
1434
1435 if (spa->spa_prefetch_taskq) {
1436 taskq_destroy(spa->spa_prefetch_taskq);
1437 spa->spa_prefetch_taskq = NULL;
1438 }
1439
1440 if (spa->spa_upgrade_taskq) {
1441 taskq_destroy(spa->spa_upgrade_taskq);
1442 spa->spa_upgrade_taskq = NULL;
1443 }
1444
1445 txg_list_destroy(&spa->spa_vdev_txg_list);
1446
1447 list_destroy(&spa->spa_config_dirty_list);
1448 list_destroy(&spa->spa_evicting_os_list);
1449 list_destroy(&spa->spa_state_dirty_list);
1450
1451 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1452
1453 for (int t = 0; t < ZIO_TYPES; t++) {
1454 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1455 spa_taskqs_fini(spa, t, q);
1456 }
1457 }
1458
1459 for (size_t i = 0; i < TXG_SIZE; i++) {
1460 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1461 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1462 spa->spa_txg_zio[i] = NULL;
1463 }
1464
1465 metaslab_class_destroy(spa->spa_normal_class);
1466 spa->spa_normal_class = NULL;
1467
1468 metaslab_class_destroy(spa->spa_log_class);
1469 spa->spa_log_class = NULL;
1470
1471 metaslab_class_destroy(spa->spa_embedded_log_class);
1472 spa->spa_embedded_log_class = NULL;
1473
1474 metaslab_class_destroy(spa->spa_special_class);
1475 spa->spa_special_class = NULL;
1476
1477 metaslab_class_destroy(spa->spa_dedup_class);
1478 spa->spa_dedup_class = NULL;
1479
1480 /*
1481 * If this was part of an import or the open otherwise failed, we may
1482 * still have errors left in the queues. Empty them just in case.
1483 */
1484 spa_errlog_drain(spa);
1485 avl_destroy(&spa->spa_errlist_scrub);
1486 avl_destroy(&spa->spa_errlist_last);
1487 avl_destroy(&spa->spa_errlist_healed);
1488
1489 spa_keystore_fini(&spa->spa_keystore);
1490
1491 spa->spa_state = POOL_STATE_UNINITIALIZED;
1492
1493 mutex_enter(&spa->spa_proc_lock);
1494 if (spa->spa_proc_state != SPA_PROC_NONE) {
1495 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1496 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1497 cv_broadcast(&spa->spa_proc_cv);
1498 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1499 ASSERT(spa->spa_proc != &p0);
1500 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1501 }
1502 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1503 spa->spa_proc_state = SPA_PROC_NONE;
1504 }
1505 ASSERT(spa->spa_proc == &p0);
1506 mutex_exit(&spa->spa_proc_lock);
1507
1508 /*
1509 * We want to make sure spa_thread() has actually exited the ZFS
1510 * module, so that the module can't be unloaded out from underneath
1511 * it.
1512 */
1513 if (spa->spa_did != 0) {
1514 thread_join(spa->spa_did);
1515 spa->spa_did = 0;
1516 }
1517
1518 spa_deactivate_os(spa);
1519
1520 }
1521
1522 /*
1523 * Verify a pool configuration, and construct the vdev tree appropriately. This
1524 * will create all the necessary vdevs in the appropriate layout, with each vdev
1525 * in the CLOSED state. This will prep the pool before open/creation/import.
1526 * All vdev validation is done by the vdev_alloc() routine.
1527 */
1528 int
1529 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1530 uint_t id, int atype)
1531 {
1532 nvlist_t **child;
1533 uint_t children;
1534 int error;
1535
1536 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1537 return (error);
1538
1539 if ((*vdp)->vdev_ops->vdev_op_leaf)
1540 return (0);
1541
1542 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1543 &child, &children);
1544
1545 if (error == ENOENT)
1546 return (0);
1547
1548 if (error) {
1549 vdev_free(*vdp);
1550 *vdp = NULL;
1551 return (SET_ERROR(EINVAL));
1552 }
1553
1554 for (int c = 0; c < children; c++) {
1555 vdev_t *vd;
1556 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1557 atype)) != 0) {
1558 vdev_free(*vdp);
1559 *vdp = NULL;
1560 return (error);
1561 }
1562 }
1563
1564 ASSERT(*vdp != NULL);
1565
1566 return (0);
1567 }
1568
1569 static boolean_t
1570 spa_should_flush_logs_on_unload(spa_t *spa)
1571 {
1572 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1573 return (B_FALSE);
1574
1575 if (!spa_writeable(spa))
1576 return (B_FALSE);
1577
1578 if (!spa->spa_sync_on)
1579 return (B_FALSE);
1580
1581 if (spa_state(spa) != POOL_STATE_EXPORTED)
1582 return (B_FALSE);
1583
1584 if (zfs_keep_log_spacemaps_at_export)
1585 return (B_FALSE);
1586
1587 return (B_TRUE);
1588 }
1589
1590 /*
1591 * Opens a transaction that will set the flag that will instruct
1592 * spa_sync to attempt to flush all the metaslabs for that txg.
1593 */
1594 static void
1595 spa_unload_log_sm_flush_all(spa_t *spa)
1596 {
1597 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1598 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1599
1600 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1601 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1602
1603 dmu_tx_commit(tx);
1604 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1605 }
1606
1607 static void
1608 spa_unload_log_sm_metadata(spa_t *spa)
1609 {
1610 void *cookie = NULL;
1611 spa_log_sm_t *sls;
1612 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1613 &cookie)) != NULL) {
1614 VERIFY0(sls->sls_mscount);
1615 kmem_free(sls, sizeof (spa_log_sm_t));
1616 }
1617
1618 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1619 e != NULL; e = list_head(&spa->spa_log_summary)) {
1620 VERIFY0(e->lse_mscount);
1621 list_remove(&spa->spa_log_summary, e);
1622 kmem_free(e, sizeof (log_summary_entry_t));
1623 }
1624
1625 spa->spa_unflushed_stats.sus_nblocks = 0;
1626 spa->spa_unflushed_stats.sus_memused = 0;
1627 spa->spa_unflushed_stats.sus_blocklimit = 0;
1628 }
1629
1630 static void
1631 spa_destroy_aux_threads(spa_t *spa)
1632 {
1633 if (spa->spa_condense_zthr != NULL) {
1634 zthr_destroy(spa->spa_condense_zthr);
1635 spa->spa_condense_zthr = NULL;
1636 }
1637 if (spa->spa_checkpoint_discard_zthr != NULL) {
1638 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1639 spa->spa_checkpoint_discard_zthr = NULL;
1640 }
1641 if (spa->spa_livelist_delete_zthr != NULL) {
1642 zthr_destroy(spa->spa_livelist_delete_zthr);
1643 spa->spa_livelist_delete_zthr = NULL;
1644 }
1645 if (spa->spa_livelist_condense_zthr != NULL) {
1646 zthr_destroy(spa->spa_livelist_condense_zthr);
1647 spa->spa_livelist_condense_zthr = NULL;
1648 }
1649 }
1650
1651 /*
1652 * Opposite of spa_load().
1653 */
1654 static void
1655 spa_unload(spa_t *spa)
1656 {
1657 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1658 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1659
1660 spa_import_progress_remove(spa_guid(spa));
1661 spa_load_note(spa, "UNLOADING");
1662
1663 spa_wake_waiters(spa);
1664
1665 /*
1666 * If we have set the spa_final_txg, we have already performed the
1667 * tasks below in spa_export_common(). We should not redo it here since
1668 * we delay the final TXGs beyond what spa_final_txg is set at.
1669 */
1670 if (spa->spa_final_txg == UINT64_MAX) {
1671 /*
1672 * If the log space map feature is enabled and the pool is
1673 * getting exported (but not destroyed), we want to spend some
1674 * time flushing as many metaslabs as we can in an attempt to
1675 * destroy log space maps and save import time.
1676 */
1677 if (spa_should_flush_logs_on_unload(spa))
1678 spa_unload_log_sm_flush_all(spa);
1679
1680 /*
1681 * Stop async tasks.
1682 */
1683 spa_async_suspend(spa);
1684
1685 if (spa->spa_root_vdev) {
1686 vdev_t *root_vdev = spa->spa_root_vdev;
1687 vdev_initialize_stop_all(root_vdev,
1688 VDEV_INITIALIZE_ACTIVE);
1689 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1690 vdev_autotrim_stop_all(spa);
1691 vdev_rebuild_stop_all(spa);
1692 }
1693 }
1694
1695 /*
1696 * Stop syncing.
1697 */
1698 if (spa->spa_sync_on) {
1699 txg_sync_stop(spa->spa_dsl_pool);
1700 spa->spa_sync_on = B_FALSE;
1701 }
1702
1703 /*
1704 * This ensures that there is no async metaslab prefetching
1705 * while we attempt to unload the spa.
1706 */
1707 if (spa->spa_root_vdev != NULL) {
1708 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1709 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1710 if (vc->vdev_mg != NULL)
1711 taskq_wait(vc->vdev_mg->mg_taskq);
1712 }
1713 }
1714
1715 if (spa->spa_mmp.mmp_thread)
1716 mmp_thread_stop(spa);
1717
1718 /*
1719 * Wait for any outstanding async I/O to complete.
1720 */
1721 if (spa->spa_async_zio_root != NULL) {
1722 for (int i = 0; i < max_ncpus; i++)
1723 (void) zio_wait(spa->spa_async_zio_root[i]);
1724 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1725 spa->spa_async_zio_root = NULL;
1726 }
1727
1728 if (spa->spa_vdev_removal != NULL) {
1729 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1730 spa->spa_vdev_removal = NULL;
1731 }
1732
1733 spa_destroy_aux_threads(spa);
1734
1735 spa_condense_fini(spa);
1736
1737 bpobj_close(&spa->spa_deferred_bpobj);
1738
1739 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1740
1741 /*
1742 * Close all vdevs.
1743 */
1744 if (spa->spa_root_vdev)
1745 vdev_free(spa->spa_root_vdev);
1746 ASSERT(spa->spa_root_vdev == NULL);
1747
1748 /*
1749 * Close the dsl pool.
1750 */
1751 if (spa->spa_dsl_pool) {
1752 dsl_pool_close(spa->spa_dsl_pool);
1753 spa->spa_dsl_pool = NULL;
1754 spa->spa_meta_objset = NULL;
1755 }
1756
1757 ddt_unload(spa);
1758 brt_unload(spa);
1759 spa_unload_log_sm_metadata(spa);
1760
1761 /*
1762 * Drop and purge level 2 cache
1763 */
1764 spa_l2cache_drop(spa);
1765
1766 if (spa->spa_spares.sav_vdevs) {
1767 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1768 vdev_free(spa->spa_spares.sav_vdevs[i]);
1769 kmem_free(spa->spa_spares.sav_vdevs,
1770 spa->spa_spares.sav_count * sizeof (void *));
1771 spa->spa_spares.sav_vdevs = NULL;
1772 }
1773 if (spa->spa_spares.sav_config) {
1774 nvlist_free(spa->spa_spares.sav_config);
1775 spa->spa_spares.sav_config = NULL;
1776 }
1777 spa->spa_spares.sav_count = 0;
1778
1779 if (spa->spa_l2cache.sav_vdevs) {
1780 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1781 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1782 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1783 }
1784 kmem_free(spa->spa_l2cache.sav_vdevs,
1785 spa->spa_l2cache.sav_count * sizeof (void *));
1786 spa->spa_l2cache.sav_vdevs = NULL;
1787 }
1788 if (spa->spa_l2cache.sav_config) {
1789 nvlist_free(spa->spa_l2cache.sav_config);
1790 spa->spa_l2cache.sav_config = NULL;
1791 }
1792 spa->spa_l2cache.sav_count = 0;
1793
1794 spa->spa_async_suspended = 0;
1795
1796 spa->spa_indirect_vdevs_loaded = B_FALSE;
1797
1798 if (spa->spa_comment != NULL) {
1799 spa_strfree(spa->spa_comment);
1800 spa->spa_comment = NULL;
1801 }
1802 if (spa->spa_compatibility != NULL) {
1803 spa_strfree(spa->spa_compatibility);
1804 spa->spa_compatibility = NULL;
1805 }
1806
1807 spa_config_exit(spa, SCL_ALL, spa);
1808 }
1809
1810 /*
1811 * Load (or re-load) the current list of vdevs describing the active spares for
1812 * this pool. When this is called, we have some form of basic information in
1813 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1814 * then re-generate a more complete list including status information.
1815 */
1816 void
1817 spa_load_spares(spa_t *spa)
1818 {
1819 nvlist_t **spares;
1820 uint_t nspares;
1821 int i;
1822 vdev_t *vd, *tvd;
1823
1824 #ifndef _KERNEL
1825 /*
1826 * zdb opens both the current state of the pool and the
1827 * checkpointed state (if present), with a different spa_t.
1828 *
1829 * As spare vdevs are shared among open pools, we skip loading
1830 * them when we load the checkpointed state of the pool.
1831 */
1832 if (!spa_writeable(spa))
1833 return;
1834 #endif
1835
1836 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1837
1838 /*
1839 * First, close and free any existing spare vdevs.
1840 */
1841 if (spa->spa_spares.sav_vdevs) {
1842 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1843 vd = spa->spa_spares.sav_vdevs[i];
1844
1845 /* Undo the call to spa_activate() below */
1846 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1847 B_FALSE)) != NULL && tvd->vdev_isspare)
1848 spa_spare_remove(tvd);
1849 vdev_close(vd);
1850 vdev_free(vd);
1851 }
1852
1853 kmem_free(spa->spa_spares.sav_vdevs,
1854 spa->spa_spares.sav_count * sizeof (void *));
1855 }
1856
1857 if (spa->spa_spares.sav_config == NULL)
1858 nspares = 0;
1859 else
1860 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1861 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1862
1863 spa->spa_spares.sav_count = (int)nspares;
1864 spa->spa_spares.sav_vdevs = NULL;
1865
1866 if (nspares == 0)
1867 return;
1868
1869 /*
1870 * Construct the array of vdevs, opening them to get status in the
1871 * process. For each spare, there is potentially two different vdev_t
1872 * structures associated with it: one in the list of spares (used only
1873 * for basic validation purposes) and one in the active vdev
1874 * configuration (if it's spared in). During this phase we open and
1875 * validate each vdev on the spare list. If the vdev also exists in the
1876 * active configuration, then we also mark this vdev as an active spare.
1877 */
1878 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1879 KM_SLEEP);
1880 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1881 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1882 VDEV_ALLOC_SPARE) == 0);
1883 ASSERT(vd != NULL);
1884
1885 spa->spa_spares.sav_vdevs[i] = vd;
1886
1887 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1888 B_FALSE)) != NULL) {
1889 if (!tvd->vdev_isspare)
1890 spa_spare_add(tvd);
1891
1892 /*
1893 * We only mark the spare active if we were successfully
1894 * able to load the vdev. Otherwise, importing a pool
1895 * with a bad active spare would result in strange
1896 * behavior, because multiple pool would think the spare
1897 * is actively in use.
1898 *
1899 * There is a vulnerability here to an equally bizarre
1900 * circumstance, where a dead active spare is later
1901 * brought back to life (onlined or otherwise). Given
1902 * the rarity of this scenario, and the extra complexity
1903 * it adds, we ignore the possibility.
1904 */
1905 if (!vdev_is_dead(tvd))
1906 spa_spare_activate(tvd);
1907 }
1908
1909 vd->vdev_top = vd;
1910 vd->vdev_aux = &spa->spa_spares;
1911
1912 if (vdev_open(vd) != 0)
1913 continue;
1914
1915 if (vdev_validate_aux(vd) == 0)
1916 spa_spare_add(vd);
1917 }
1918
1919 /*
1920 * Recompute the stashed list of spares, with status information
1921 * this time.
1922 */
1923 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1924
1925 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1926 KM_SLEEP);
1927 for (i = 0; i < spa->spa_spares.sav_count; i++)
1928 spares[i] = vdev_config_generate(spa,
1929 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1930 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1931 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1932 spa->spa_spares.sav_count);
1933 for (i = 0; i < spa->spa_spares.sav_count; i++)
1934 nvlist_free(spares[i]);
1935 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1936 }
1937
1938 /*
1939 * Load (or re-load) the current list of vdevs describing the active l2cache for
1940 * this pool. When this is called, we have some form of basic information in
1941 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1942 * then re-generate a more complete list including status information.
1943 * Devices which are already active have their details maintained, and are
1944 * not re-opened.
1945 */
1946 void
1947 spa_load_l2cache(spa_t *spa)
1948 {
1949 nvlist_t **l2cache = NULL;
1950 uint_t nl2cache;
1951 int i, j, oldnvdevs;
1952 uint64_t guid;
1953 vdev_t *vd, **oldvdevs, **newvdevs;
1954 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1955
1956 #ifndef _KERNEL
1957 /*
1958 * zdb opens both the current state of the pool and the
1959 * checkpointed state (if present), with a different spa_t.
1960 *
1961 * As L2 caches are part of the ARC which is shared among open
1962 * pools, we skip loading them when we load the checkpointed
1963 * state of the pool.
1964 */
1965 if (!spa_writeable(spa))
1966 return;
1967 #endif
1968
1969 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1970
1971 oldvdevs = sav->sav_vdevs;
1972 oldnvdevs = sav->sav_count;
1973 sav->sav_vdevs = NULL;
1974 sav->sav_count = 0;
1975
1976 if (sav->sav_config == NULL) {
1977 nl2cache = 0;
1978 newvdevs = NULL;
1979 goto out;
1980 }
1981
1982 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1983 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1984 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1985
1986 /*
1987 * Process new nvlist of vdevs.
1988 */
1989 for (i = 0; i < nl2cache; i++) {
1990 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1991
1992 newvdevs[i] = NULL;
1993 for (j = 0; j < oldnvdevs; j++) {
1994 vd = oldvdevs[j];
1995 if (vd != NULL && guid == vd->vdev_guid) {
1996 /*
1997 * Retain previous vdev for add/remove ops.
1998 */
1999 newvdevs[i] = vd;
2000 oldvdevs[j] = NULL;
2001 break;
2002 }
2003 }
2004
2005 if (newvdevs[i] == NULL) {
2006 /*
2007 * Create new vdev
2008 */
2009 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2010 VDEV_ALLOC_L2CACHE) == 0);
2011 ASSERT(vd != NULL);
2012 newvdevs[i] = vd;
2013
2014 /*
2015 * Commit this vdev as an l2cache device,
2016 * even if it fails to open.
2017 */
2018 spa_l2cache_add(vd);
2019
2020 vd->vdev_top = vd;
2021 vd->vdev_aux = sav;
2022
2023 spa_l2cache_activate(vd);
2024
2025 if (vdev_open(vd) != 0)
2026 continue;
2027
2028 (void) vdev_validate_aux(vd);
2029
2030 if (!vdev_is_dead(vd))
2031 l2arc_add_vdev(spa, vd);
2032
2033 /*
2034 * Upon cache device addition to a pool or pool
2035 * creation with a cache device or if the header
2036 * of the device is invalid we issue an async
2037 * TRIM command for the whole device which will
2038 * execute if l2arc_trim_ahead > 0.
2039 */
2040 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2041 }
2042 }
2043
2044 sav->sav_vdevs = newvdevs;
2045 sav->sav_count = (int)nl2cache;
2046
2047 /*
2048 * Recompute the stashed list of l2cache devices, with status
2049 * information this time.
2050 */
2051 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2052
2053 if (sav->sav_count > 0)
2054 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2055 KM_SLEEP);
2056 for (i = 0; i < sav->sav_count; i++)
2057 l2cache[i] = vdev_config_generate(spa,
2058 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2059 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2060 (const nvlist_t * const *)l2cache, sav->sav_count);
2061
2062 out:
2063 /*
2064 * Purge vdevs that were dropped
2065 */
2066 if (oldvdevs) {
2067 for (i = 0; i < oldnvdevs; i++) {
2068 uint64_t pool;
2069
2070 vd = oldvdevs[i];
2071 if (vd != NULL) {
2072 ASSERT(vd->vdev_isl2cache);
2073
2074 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2075 pool != 0ULL && l2arc_vdev_present(vd))
2076 l2arc_remove_vdev(vd);
2077 vdev_clear_stats(vd);
2078 vdev_free(vd);
2079 }
2080 }
2081
2082 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2083 }
2084
2085 for (i = 0; i < sav->sav_count; i++)
2086 nvlist_free(l2cache[i]);
2087 if (sav->sav_count)
2088 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2089 }
2090
2091 static int
2092 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2093 {
2094 dmu_buf_t *db;
2095 char *packed = NULL;
2096 size_t nvsize = 0;
2097 int error;
2098 *value = NULL;
2099
2100 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2101 if (error)
2102 return (error);
2103
2104 nvsize = *(uint64_t *)db->db_data;
2105 dmu_buf_rele(db, FTAG);
2106
2107 packed = vmem_alloc(nvsize, KM_SLEEP);
2108 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2109 DMU_READ_PREFETCH);
2110 if (error == 0)
2111 error = nvlist_unpack(packed, nvsize, value, 0);
2112 vmem_free(packed, nvsize);
2113
2114 return (error);
2115 }
2116
2117 /*
2118 * Concrete top-level vdevs that are not missing and are not logs. At every
2119 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2120 */
2121 static uint64_t
2122 spa_healthy_core_tvds(spa_t *spa)
2123 {
2124 vdev_t *rvd = spa->spa_root_vdev;
2125 uint64_t tvds = 0;
2126
2127 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2128 vdev_t *vd = rvd->vdev_child[i];
2129 if (vd->vdev_islog)
2130 continue;
2131 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2132 tvds++;
2133 }
2134
2135 return (tvds);
2136 }
2137
2138 /*
2139 * Checks to see if the given vdev could not be opened, in which case we post a
2140 * sysevent to notify the autoreplace code that the device has been removed.
2141 */
2142 static void
2143 spa_check_removed(vdev_t *vd)
2144 {
2145 for (uint64_t c = 0; c < vd->vdev_children; c++)
2146 spa_check_removed(vd->vdev_child[c]);
2147
2148 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2149 vdev_is_concrete(vd)) {
2150 zfs_post_autoreplace(vd->vdev_spa, vd);
2151 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2152 }
2153 }
2154
2155 static int
2156 spa_check_for_missing_logs(spa_t *spa)
2157 {
2158 vdev_t *rvd = spa->spa_root_vdev;
2159
2160 /*
2161 * If we're doing a normal import, then build up any additional
2162 * diagnostic information about missing log devices.
2163 * We'll pass this up to the user for further processing.
2164 */
2165 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2166 nvlist_t **child, *nv;
2167 uint64_t idx = 0;
2168
2169 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2170 KM_SLEEP);
2171 nv = fnvlist_alloc();
2172
2173 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2174 vdev_t *tvd = rvd->vdev_child[c];
2175
2176 /*
2177 * We consider a device as missing only if it failed
2178 * to open (i.e. offline or faulted is not considered
2179 * as missing).
2180 */
2181 if (tvd->vdev_islog &&
2182 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2183 child[idx++] = vdev_config_generate(spa, tvd,
2184 B_FALSE, VDEV_CONFIG_MISSING);
2185 }
2186 }
2187
2188 if (idx > 0) {
2189 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2190 (const nvlist_t * const *)child, idx);
2191 fnvlist_add_nvlist(spa->spa_load_info,
2192 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2193
2194 for (uint64_t i = 0; i < idx; i++)
2195 nvlist_free(child[i]);
2196 }
2197 nvlist_free(nv);
2198 kmem_free(child, rvd->vdev_children * sizeof (char **));
2199
2200 if (idx > 0) {
2201 spa_load_failed(spa, "some log devices are missing");
2202 vdev_dbgmsg_print_tree(rvd, 2);
2203 return (SET_ERROR(ENXIO));
2204 }
2205 } else {
2206 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2207 vdev_t *tvd = rvd->vdev_child[c];
2208
2209 if (tvd->vdev_islog &&
2210 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2211 spa_set_log_state(spa, SPA_LOG_CLEAR);
2212 spa_load_note(spa, "some log devices are "
2213 "missing, ZIL is dropped.");
2214 vdev_dbgmsg_print_tree(rvd, 2);
2215 break;
2216 }
2217 }
2218 }
2219
2220 return (0);
2221 }
2222
2223 /*
2224 * Check for missing log devices
2225 */
2226 static boolean_t
2227 spa_check_logs(spa_t *spa)
2228 {
2229 boolean_t rv = B_FALSE;
2230 dsl_pool_t *dp = spa_get_dsl(spa);
2231
2232 switch (spa->spa_log_state) {
2233 default:
2234 break;
2235 case SPA_LOG_MISSING:
2236 /* need to recheck in case slog has been restored */
2237 case SPA_LOG_UNKNOWN:
2238 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2239 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2240 if (rv)
2241 spa_set_log_state(spa, SPA_LOG_MISSING);
2242 break;
2243 }
2244 return (rv);
2245 }
2246
2247 /*
2248 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2249 */
2250 static boolean_t
2251 spa_passivate_log(spa_t *spa)
2252 {
2253 vdev_t *rvd = spa->spa_root_vdev;
2254 boolean_t slog_found = B_FALSE;
2255
2256 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2257
2258 for (int c = 0; c < rvd->vdev_children; c++) {
2259 vdev_t *tvd = rvd->vdev_child[c];
2260
2261 if (tvd->vdev_islog) {
2262 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2263 metaslab_group_passivate(tvd->vdev_mg);
2264 slog_found = B_TRUE;
2265 }
2266 }
2267
2268 return (slog_found);
2269 }
2270
2271 /*
2272 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2273 */
2274 static void
2275 spa_activate_log(spa_t *spa)
2276 {
2277 vdev_t *rvd = spa->spa_root_vdev;
2278
2279 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2280
2281 for (int c = 0; c < rvd->vdev_children; c++) {
2282 vdev_t *tvd = rvd->vdev_child[c];
2283
2284 if (tvd->vdev_islog) {
2285 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2286 metaslab_group_activate(tvd->vdev_mg);
2287 }
2288 }
2289 }
2290
2291 int
2292 spa_reset_logs(spa_t *spa)
2293 {
2294 int error;
2295
2296 error = dmu_objset_find(spa_name(spa), zil_reset,
2297 NULL, DS_FIND_CHILDREN);
2298 if (error == 0) {
2299 /*
2300 * We successfully offlined the log device, sync out the
2301 * current txg so that the "stubby" block can be removed
2302 * by zil_sync().
2303 */
2304 txg_wait_synced(spa->spa_dsl_pool, 0);
2305 }
2306 return (error);
2307 }
2308
2309 static void
2310 spa_aux_check_removed(spa_aux_vdev_t *sav)
2311 {
2312 for (int i = 0; i < sav->sav_count; i++)
2313 spa_check_removed(sav->sav_vdevs[i]);
2314 }
2315
2316 void
2317 spa_claim_notify(zio_t *zio)
2318 {
2319 spa_t *spa = zio->io_spa;
2320
2321 if (zio->io_error)
2322 return;
2323
2324 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2325 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2326 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2327 mutex_exit(&spa->spa_props_lock);
2328 }
2329
2330 typedef struct spa_load_error {
2331 boolean_t sle_verify_data;
2332 uint64_t sle_meta_count;
2333 uint64_t sle_data_count;
2334 } spa_load_error_t;
2335
2336 static void
2337 spa_load_verify_done(zio_t *zio)
2338 {
2339 blkptr_t *bp = zio->io_bp;
2340 spa_load_error_t *sle = zio->io_private;
2341 dmu_object_type_t type = BP_GET_TYPE(bp);
2342 int error = zio->io_error;
2343 spa_t *spa = zio->io_spa;
2344
2345 abd_free(zio->io_abd);
2346 if (error) {
2347 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2348 type != DMU_OT_INTENT_LOG)
2349 atomic_inc_64(&sle->sle_meta_count);
2350 else
2351 atomic_inc_64(&sle->sle_data_count);
2352 }
2353
2354 mutex_enter(&spa->spa_scrub_lock);
2355 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2356 cv_broadcast(&spa->spa_scrub_io_cv);
2357 mutex_exit(&spa->spa_scrub_lock);
2358 }
2359
2360 /*
2361 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2362 * By default, we set it to 1/16th of the arc.
2363 */
2364 static uint_t spa_load_verify_shift = 4;
2365 static int spa_load_verify_metadata = B_TRUE;
2366 static int spa_load_verify_data = B_TRUE;
2367
2368 static int
2369 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2370 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2371 {
2372 zio_t *rio = arg;
2373 spa_load_error_t *sle = rio->io_private;
2374
2375 (void) zilog, (void) dnp;
2376
2377 /*
2378 * Note: normally this routine will not be called if
2379 * spa_load_verify_metadata is not set. However, it may be useful
2380 * to manually set the flag after the traversal has begun.
2381 */
2382 if (!spa_load_verify_metadata)
2383 return (0);
2384
2385 /*
2386 * Sanity check the block pointer in order to detect obvious damage
2387 * before using the contents in subsequent checks or in zio_read().
2388 * When damaged consider it to be a metadata error since we cannot
2389 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2390 */
2391 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2392 atomic_inc_64(&sle->sle_meta_count);
2393 return (0);
2394 }
2395
2396 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2397 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2398 return (0);
2399
2400 if (!BP_IS_METADATA(bp) &&
2401 (!spa_load_verify_data || !sle->sle_verify_data))
2402 return (0);
2403
2404 uint64_t maxinflight_bytes =
2405 arc_target_bytes() >> spa_load_verify_shift;
2406 size_t size = BP_GET_PSIZE(bp);
2407
2408 mutex_enter(&spa->spa_scrub_lock);
2409 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2410 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2411 spa->spa_load_verify_bytes += size;
2412 mutex_exit(&spa->spa_scrub_lock);
2413
2414 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2415 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2416 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2417 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2418 return (0);
2419 }
2420
2421 static int
2422 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2423 {
2424 (void) dp, (void) arg;
2425
2426 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2427 return (SET_ERROR(ENAMETOOLONG));
2428
2429 return (0);
2430 }
2431
2432 static int
2433 spa_load_verify(spa_t *spa)
2434 {
2435 zio_t *rio;
2436 spa_load_error_t sle = { 0 };
2437 zpool_load_policy_t policy;
2438 boolean_t verify_ok = B_FALSE;
2439 int error = 0;
2440
2441 zpool_get_load_policy(spa->spa_config, &policy);
2442
2443 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2444 policy.zlp_maxmeta == UINT64_MAX)
2445 return (0);
2446
2447 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2448 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2449 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2450 DS_FIND_CHILDREN);
2451 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2452 if (error != 0)
2453 return (error);
2454
2455 /*
2456 * Verify data only if we are rewinding or error limit was set.
2457 * Otherwise nothing except dbgmsg care about it to waste time.
2458 */
2459 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2460 (policy.zlp_maxdata < UINT64_MAX);
2461
2462 rio = zio_root(spa, NULL, &sle,
2463 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2464
2465 if (spa_load_verify_metadata) {
2466 if (spa->spa_extreme_rewind) {
2467 spa_load_note(spa, "performing a complete scan of the "
2468 "pool since extreme rewind is on. This may take "
2469 "a very long time.\n (spa_load_verify_data=%u, "
2470 "spa_load_verify_metadata=%u)",
2471 spa_load_verify_data, spa_load_verify_metadata);
2472 }
2473
2474 error = traverse_pool(spa, spa->spa_verify_min_txg,
2475 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2476 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2477 }
2478
2479 (void) zio_wait(rio);
2480 ASSERT0(spa->spa_load_verify_bytes);
2481
2482 spa->spa_load_meta_errors = sle.sle_meta_count;
2483 spa->spa_load_data_errors = sle.sle_data_count;
2484
2485 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2486 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2487 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2488 (u_longlong_t)sle.sle_data_count);
2489 }
2490
2491 if (spa_load_verify_dryrun ||
2492 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2493 sle.sle_data_count <= policy.zlp_maxdata)) {
2494 int64_t loss = 0;
2495
2496 verify_ok = B_TRUE;
2497 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2498 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2499
2500 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2501 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2502 spa->spa_load_txg_ts);
2503 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2504 loss);
2505 fnvlist_add_uint64(spa->spa_load_info,
2506 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2507 fnvlist_add_uint64(spa->spa_load_info,
2508 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2509 } else {
2510 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2511 }
2512
2513 if (spa_load_verify_dryrun)
2514 return (0);
2515
2516 if (error) {
2517 if (error != ENXIO && error != EIO)
2518 error = SET_ERROR(EIO);
2519 return (error);
2520 }
2521
2522 return (verify_ok ? 0 : EIO);
2523 }
2524
2525 /*
2526 * Find a value in the pool props object.
2527 */
2528 static void
2529 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2530 {
2531 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2532 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2533 }
2534
2535 /*
2536 * Find a value in the pool directory object.
2537 */
2538 static int
2539 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2540 {
2541 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2542 name, sizeof (uint64_t), 1, val);
2543
2544 if (error != 0 && (error != ENOENT || log_enoent)) {
2545 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2546 "[error=%d]", name, error);
2547 }
2548
2549 return (error);
2550 }
2551
2552 static int
2553 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2554 {
2555 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2556 return (SET_ERROR(err));
2557 }
2558
2559 boolean_t
2560 spa_livelist_delete_check(spa_t *spa)
2561 {
2562 return (spa->spa_livelists_to_delete != 0);
2563 }
2564
2565 static boolean_t
2566 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2567 {
2568 (void) z;
2569 spa_t *spa = arg;
2570 return (spa_livelist_delete_check(spa));
2571 }
2572
2573 static int
2574 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2575 {
2576 spa_t *spa = arg;
2577 zio_free(spa, tx->tx_txg, bp);
2578 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2579 -bp_get_dsize_sync(spa, bp),
2580 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2581 return (0);
2582 }
2583
2584 static int
2585 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2586 {
2587 int err;
2588 zap_cursor_t zc;
2589 zap_attribute_t za;
2590 zap_cursor_init(&zc, os, zap_obj);
2591 err = zap_cursor_retrieve(&zc, &za);
2592 zap_cursor_fini(&zc);
2593 if (err == 0)
2594 *llp = za.za_first_integer;
2595 return (err);
2596 }
2597
2598 /*
2599 * Components of livelist deletion that must be performed in syncing
2600 * context: freeing block pointers and updating the pool-wide data
2601 * structures to indicate how much work is left to do
2602 */
2603 typedef struct sublist_delete_arg {
2604 spa_t *spa;
2605 dsl_deadlist_t *ll;
2606 uint64_t key;
2607 bplist_t *to_free;
2608 } sublist_delete_arg_t;
2609
2610 static void
2611 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2612 {
2613 sublist_delete_arg_t *sda = arg;
2614 spa_t *spa = sda->spa;
2615 dsl_deadlist_t *ll = sda->ll;
2616 uint64_t key = sda->key;
2617 bplist_t *to_free = sda->to_free;
2618
2619 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2620 dsl_deadlist_remove_entry(ll, key, tx);
2621 }
2622
2623 typedef struct livelist_delete_arg {
2624 spa_t *spa;
2625 uint64_t ll_obj;
2626 uint64_t zap_obj;
2627 } livelist_delete_arg_t;
2628
2629 static void
2630 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2631 {
2632 livelist_delete_arg_t *lda = arg;
2633 spa_t *spa = lda->spa;
2634 uint64_t ll_obj = lda->ll_obj;
2635 uint64_t zap_obj = lda->zap_obj;
2636 objset_t *mos = spa->spa_meta_objset;
2637 uint64_t count;
2638
2639 /* free the livelist and decrement the feature count */
2640 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2641 dsl_deadlist_free(mos, ll_obj, tx);
2642 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2643 VERIFY0(zap_count(mos, zap_obj, &count));
2644 if (count == 0) {
2645 /* no more livelists to delete */
2646 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2647 DMU_POOL_DELETED_CLONES, tx));
2648 VERIFY0(zap_destroy(mos, zap_obj, tx));
2649 spa->spa_livelists_to_delete = 0;
2650 spa_notify_waiters(spa);
2651 }
2652 }
2653
2654 /*
2655 * Load in the value for the livelist to be removed and open it. Then,
2656 * load its first sublist and determine which block pointers should actually
2657 * be freed. Then, call a synctask which performs the actual frees and updates
2658 * the pool-wide livelist data.
2659 */
2660 static void
2661 spa_livelist_delete_cb(void *arg, zthr_t *z)
2662 {
2663 spa_t *spa = arg;
2664 uint64_t ll_obj = 0, count;
2665 objset_t *mos = spa->spa_meta_objset;
2666 uint64_t zap_obj = spa->spa_livelists_to_delete;
2667 /*
2668 * Determine the next livelist to delete. This function should only
2669 * be called if there is at least one deleted clone.
2670 */
2671 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2672 VERIFY0(zap_count(mos, ll_obj, &count));
2673 if (count > 0) {
2674 dsl_deadlist_t *ll;
2675 dsl_deadlist_entry_t *dle;
2676 bplist_t to_free;
2677 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2678 dsl_deadlist_open(ll, mos, ll_obj);
2679 dle = dsl_deadlist_first(ll);
2680 ASSERT3P(dle, !=, NULL);
2681 bplist_create(&to_free);
2682 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2683 z, NULL);
2684 if (err == 0) {
2685 sublist_delete_arg_t sync_arg = {
2686 .spa = spa,
2687 .ll = ll,
2688 .key = dle->dle_mintxg,
2689 .to_free = &to_free
2690 };
2691 zfs_dbgmsg("deleting sublist (id %llu) from"
2692 " livelist %llu, %lld remaining",
2693 (u_longlong_t)dle->dle_bpobj.bpo_object,
2694 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2695 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2696 sublist_delete_sync, &sync_arg, 0,
2697 ZFS_SPACE_CHECK_DESTROY));
2698 } else {
2699 VERIFY3U(err, ==, EINTR);
2700 }
2701 bplist_clear(&to_free);
2702 bplist_destroy(&to_free);
2703 dsl_deadlist_close(ll);
2704 kmem_free(ll, sizeof (dsl_deadlist_t));
2705 } else {
2706 livelist_delete_arg_t sync_arg = {
2707 .spa = spa,
2708 .ll_obj = ll_obj,
2709 .zap_obj = zap_obj
2710 };
2711 zfs_dbgmsg("deletion of livelist %llu completed",
2712 (u_longlong_t)ll_obj);
2713 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2714 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2715 }
2716 }
2717
2718 static void
2719 spa_start_livelist_destroy_thread(spa_t *spa)
2720 {
2721 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2722 spa->spa_livelist_delete_zthr =
2723 zthr_create("z_livelist_destroy",
2724 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2725 minclsyspri);
2726 }
2727
2728 typedef struct livelist_new_arg {
2729 bplist_t *allocs;
2730 bplist_t *frees;
2731 } livelist_new_arg_t;
2732
2733 static int
2734 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2735 dmu_tx_t *tx)
2736 {
2737 ASSERT(tx == NULL);
2738 livelist_new_arg_t *lna = arg;
2739 if (bp_freed) {
2740 bplist_append(lna->frees, bp);
2741 } else {
2742 bplist_append(lna->allocs, bp);
2743 zfs_livelist_condense_new_alloc++;
2744 }
2745 return (0);
2746 }
2747
2748 typedef struct livelist_condense_arg {
2749 spa_t *spa;
2750 bplist_t to_keep;
2751 uint64_t first_size;
2752 uint64_t next_size;
2753 } livelist_condense_arg_t;
2754
2755 static void
2756 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2757 {
2758 livelist_condense_arg_t *lca = arg;
2759 spa_t *spa = lca->spa;
2760 bplist_t new_frees;
2761 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2762
2763 /* Have we been cancelled? */
2764 if (spa->spa_to_condense.cancelled) {
2765 zfs_livelist_condense_sync_cancel++;
2766 goto out;
2767 }
2768
2769 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2770 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2771 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2772
2773 /*
2774 * It's possible that the livelist was changed while the zthr was
2775 * running. Therefore, we need to check for new blkptrs in the two
2776 * entries being condensed and continue to track them in the livelist.
2777 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2778 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2779 * we need to sort them into two different bplists.
2780 */
2781 uint64_t first_obj = first->dle_bpobj.bpo_object;
2782 uint64_t next_obj = next->dle_bpobj.bpo_object;
2783 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2784 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2785
2786 bplist_create(&new_frees);
2787 livelist_new_arg_t new_bps = {
2788 .allocs = &lca->to_keep,
2789 .frees = &new_frees,
2790 };
2791
2792 if (cur_first_size > lca->first_size) {
2793 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2794 livelist_track_new_cb, &new_bps, lca->first_size));
2795 }
2796 if (cur_next_size > lca->next_size) {
2797 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2798 livelist_track_new_cb, &new_bps, lca->next_size));
2799 }
2800
2801 dsl_deadlist_clear_entry(first, ll, tx);
2802 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2803 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2804
2805 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2806 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2807 bplist_destroy(&new_frees);
2808
2809 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2810 dsl_dataset_name(ds, dsname);
2811 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2812 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2813 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2814 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2815 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2816 (u_longlong_t)cur_next_size,
2817 (u_longlong_t)first->dle_bpobj.bpo_object,
2818 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2819 out:
2820 dmu_buf_rele(ds->ds_dbuf, spa);
2821 spa->spa_to_condense.ds = NULL;
2822 bplist_clear(&lca->to_keep);
2823 bplist_destroy(&lca->to_keep);
2824 kmem_free(lca, sizeof (livelist_condense_arg_t));
2825 spa->spa_to_condense.syncing = B_FALSE;
2826 }
2827
2828 static void
2829 spa_livelist_condense_cb(void *arg, zthr_t *t)
2830 {
2831 while (zfs_livelist_condense_zthr_pause &&
2832 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2833 delay(1);
2834
2835 spa_t *spa = arg;
2836 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2837 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2838 uint64_t first_size, next_size;
2839
2840 livelist_condense_arg_t *lca =
2841 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2842 bplist_create(&lca->to_keep);
2843
2844 /*
2845 * Process the livelists (matching FREEs and ALLOCs) in open context
2846 * so we have minimal work in syncing context to condense.
2847 *
2848 * We save bpobj sizes (first_size and next_size) to use later in
2849 * syncing context to determine if entries were added to these sublists
2850 * while in open context. This is possible because the clone is still
2851 * active and open for normal writes and we want to make sure the new,
2852 * unprocessed blockpointers are inserted into the livelist normally.
2853 *
2854 * Note that dsl_process_sub_livelist() both stores the size number of
2855 * blockpointers and iterates over them while the bpobj's lock held, so
2856 * the sizes returned to us are consistent which what was actually
2857 * processed.
2858 */
2859 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2860 &first_size);
2861 if (err == 0)
2862 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2863 t, &next_size);
2864
2865 if (err == 0) {
2866 while (zfs_livelist_condense_sync_pause &&
2867 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2868 delay(1);
2869
2870 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2871 dmu_tx_mark_netfree(tx);
2872 dmu_tx_hold_space(tx, 1);
2873 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2874 if (err == 0) {
2875 /*
2876 * Prevent the condense zthr restarting before
2877 * the synctask completes.
2878 */
2879 spa->spa_to_condense.syncing = B_TRUE;
2880 lca->spa = spa;
2881 lca->first_size = first_size;
2882 lca->next_size = next_size;
2883 dsl_sync_task_nowait(spa_get_dsl(spa),
2884 spa_livelist_condense_sync, lca, tx);
2885 dmu_tx_commit(tx);
2886 return;
2887 }
2888 }
2889 /*
2890 * Condensing can not continue: either it was externally stopped or
2891 * we were unable to assign to a tx because the pool has run out of
2892 * space. In the second case, we'll just end up trying to condense
2893 * again in a later txg.
2894 */
2895 ASSERT(err != 0);
2896 bplist_clear(&lca->to_keep);
2897 bplist_destroy(&lca->to_keep);
2898 kmem_free(lca, sizeof (livelist_condense_arg_t));
2899 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2900 spa->spa_to_condense.ds = NULL;
2901 if (err == EINTR)
2902 zfs_livelist_condense_zthr_cancel++;
2903 }
2904
2905 /*
2906 * Check that there is something to condense but that a condense is not
2907 * already in progress and that condensing has not been cancelled.
2908 */
2909 static boolean_t
2910 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2911 {
2912 (void) z;
2913 spa_t *spa = arg;
2914 if ((spa->spa_to_condense.ds != NULL) &&
2915 (spa->spa_to_condense.syncing == B_FALSE) &&
2916 (spa->spa_to_condense.cancelled == B_FALSE)) {
2917 return (B_TRUE);
2918 }
2919 return (B_FALSE);
2920 }
2921
2922 static void
2923 spa_start_livelist_condensing_thread(spa_t *spa)
2924 {
2925 spa->spa_to_condense.ds = NULL;
2926 spa->spa_to_condense.first = NULL;
2927 spa->spa_to_condense.next = NULL;
2928 spa->spa_to_condense.syncing = B_FALSE;
2929 spa->spa_to_condense.cancelled = B_FALSE;
2930
2931 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2932 spa->spa_livelist_condense_zthr =
2933 zthr_create("z_livelist_condense",
2934 spa_livelist_condense_cb_check,
2935 spa_livelist_condense_cb, spa, minclsyspri);
2936 }
2937
2938 static void
2939 spa_spawn_aux_threads(spa_t *spa)
2940 {
2941 ASSERT(spa_writeable(spa));
2942
2943 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2944
2945 spa_start_indirect_condensing_thread(spa);
2946 spa_start_livelist_destroy_thread(spa);
2947 spa_start_livelist_condensing_thread(spa);
2948
2949 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2950 spa->spa_checkpoint_discard_zthr =
2951 zthr_create("z_checkpoint_discard",
2952 spa_checkpoint_discard_thread_check,
2953 spa_checkpoint_discard_thread, spa, minclsyspri);
2954 }
2955
2956 /*
2957 * Fix up config after a partly-completed split. This is done with the
2958 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2959 * pool have that entry in their config, but only the splitting one contains
2960 * a list of all the guids of the vdevs that are being split off.
2961 *
2962 * This function determines what to do with that list: either rejoin
2963 * all the disks to the pool, or complete the splitting process. To attempt
2964 * the rejoin, each disk that is offlined is marked online again, and
2965 * we do a reopen() call. If the vdev label for every disk that was
2966 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2967 * then we call vdev_split() on each disk, and complete the split.
2968 *
2969 * Otherwise we leave the config alone, with all the vdevs in place in
2970 * the original pool.
2971 */
2972 static void
2973 spa_try_repair(spa_t *spa, nvlist_t *config)
2974 {
2975 uint_t extracted;
2976 uint64_t *glist;
2977 uint_t i, gcount;
2978 nvlist_t *nvl;
2979 vdev_t **vd;
2980 boolean_t attempt_reopen;
2981
2982 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2983 return;
2984
2985 /* check that the config is complete */
2986 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2987 &glist, &gcount) != 0)
2988 return;
2989
2990 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2991
2992 /* attempt to online all the vdevs & validate */
2993 attempt_reopen = B_TRUE;
2994 for (i = 0; i < gcount; i++) {
2995 if (glist[i] == 0) /* vdev is hole */
2996 continue;
2997
2998 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2999 if (vd[i] == NULL) {
3000 /*
3001 * Don't bother attempting to reopen the disks;
3002 * just do the split.
3003 */
3004 attempt_reopen = B_FALSE;
3005 } else {
3006 /* attempt to re-online it */
3007 vd[i]->vdev_offline = B_FALSE;
3008 }
3009 }
3010
3011 if (attempt_reopen) {
3012 vdev_reopen(spa->spa_root_vdev);
3013
3014 /* check each device to see what state it's in */
3015 for (extracted = 0, i = 0; i < gcount; i++) {
3016 if (vd[i] != NULL &&
3017 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3018 break;
3019 ++extracted;
3020 }
3021 }
3022
3023 /*
3024 * If every disk has been moved to the new pool, or if we never
3025 * even attempted to look at them, then we split them off for
3026 * good.
3027 */
3028 if (!attempt_reopen || gcount == extracted) {
3029 for (i = 0; i < gcount; i++)
3030 if (vd[i] != NULL)
3031 vdev_split(vd[i]);
3032 vdev_reopen(spa->spa_root_vdev);
3033 }
3034
3035 kmem_free(vd, gcount * sizeof (vdev_t *));
3036 }
3037
3038 static int
3039 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3040 {
3041 const char *ereport = FM_EREPORT_ZFS_POOL;
3042 int error;
3043
3044 spa->spa_load_state = state;
3045 (void) spa_import_progress_set_state(spa_guid(spa),
3046 spa_load_state(spa));
3047
3048 gethrestime(&spa->spa_loaded_ts);
3049 error = spa_load_impl(spa, type, &ereport);
3050
3051 /*
3052 * Don't count references from objsets that are already closed
3053 * and are making their way through the eviction process.
3054 */
3055 spa_evicting_os_wait(spa);
3056 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3057 if (error) {
3058 if (error != EEXIST) {
3059 spa->spa_loaded_ts.tv_sec = 0;
3060 spa->spa_loaded_ts.tv_nsec = 0;
3061 }
3062 if (error != EBADF) {
3063 (void) zfs_ereport_post(ereport, spa,
3064 NULL, NULL, NULL, 0);
3065 }
3066 }
3067 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3068 spa->spa_ena = 0;
3069
3070 (void) spa_import_progress_set_state(spa_guid(spa),
3071 spa_load_state(spa));
3072
3073 return (error);
3074 }
3075
3076 #ifdef ZFS_DEBUG
3077 /*
3078 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3079 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3080 * spa's per-vdev ZAP list.
3081 */
3082 static uint64_t
3083 vdev_count_verify_zaps(vdev_t *vd)
3084 {
3085 spa_t *spa = vd->vdev_spa;
3086 uint64_t total = 0;
3087
3088 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3089 vd->vdev_root_zap != 0) {
3090 total++;
3091 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3092 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3093 }
3094 if (vd->vdev_top_zap != 0) {
3095 total++;
3096 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3097 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3098 }
3099 if (vd->vdev_leaf_zap != 0) {
3100 total++;
3101 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3102 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3103 }
3104
3105 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3106 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3107 }
3108
3109 return (total);
3110 }
3111 #else
3112 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3113 #endif
3114
3115 /*
3116 * Determine whether the activity check is required.
3117 */
3118 static boolean_t
3119 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3120 nvlist_t *config)
3121 {
3122 uint64_t state = 0;
3123 uint64_t hostid = 0;
3124 uint64_t tryconfig_txg = 0;
3125 uint64_t tryconfig_timestamp = 0;
3126 uint16_t tryconfig_mmp_seq = 0;
3127 nvlist_t *nvinfo;
3128
3129 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3130 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3131 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3132 &tryconfig_txg);
3133 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3134 &tryconfig_timestamp);
3135 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3136 &tryconfig_mmp_seq);
3137 }
3138
3139 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3140
3141 /*
3142 * Disable the MMP activity check - This is used by zdb which
3143 * is intended to be used on potentially active pools.
3144 */
3145 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3146 return (B_FALSE);
3147
3148 /*
3149 * Skip the activity check when the MMP feature is disabled.
3150 */
3151 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3152 return (B_FALSE);
3153
3154 /*
3155 * If the tryconfig_ values are nonzero, they are the results of an
3156 * earlier tryimport. If they all match the uberblock we just found,
3157 * then the pool has not changed and we return false so we do not test
3158 * a second time.
3159 */
3160 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3161 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3162 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3163 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3164 return (B_FALSE);
3165
3166 /*
3167 * Allow the activity check to be skipped when importing the pool
3168 * on the same host which last imported it. Since the hostid from
3169 * configuration may be stale use the one read from the label.
3170 */
3171 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3172 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3173
3174 if (hostid == spa_get_hostid(spa))
3175 return (B_FALSE);
3176
3177 /*
3178 * Skip the activity test when the pool was cleanly exported.
3179 */
3180 if (state != POOL_STATE_ACTIVE)
3181 return (B_FALSE);
3182
3183 return (B_TRUE);
3184 }
3185
3186 /*
3187 * Nanoseconds the activity check must watch for changes on-disk.
3188 */
3189 static uint64_t
3190 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3191 {
3192 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3193 uint64_t multihost_interval = MSEC2NSEC(
3194 MMP_INTERVAL_OK(zfs_multihost_interval));
3195 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3196 multihost_interval);
3197
3198 /*
3199 * Local tunables determine a minimum duration except for the case
3200 * where we know when the remote host will suspend the pool if MMP
3201 * writes do not land.
3202 *
3203 * See Big Theory comment at the top of mmp.c for the reasoning behind
3204 * these cases and times.
3205 */
3206
3207 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3208
3209 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3210 MMP_FAIL_INT(ub) > 0) {
3211
3212 /* MMP on remote host will suspend pool after failed writes */
3213 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3214 MMP_IMPORT_SAFETY_FACTOR / 100;
3215
3216 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3217 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3218 "import_intervals=%llu", (u_longlong_t)import_delay,
3219 (u_longlong_t)MMP_FAIL_INT(ub),
3220 (u_longlong_t)MMP_INTERVAL(ub),
3221 (u_longlong_t)import_intervals);
3222
3223 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3224 MMP_FAIL_INT(ub) == 0) {
3225
3226 /* MMP on remote host will never suspend pool */
3227 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3228 ub->ub_mmp_delay) * import_intervals);
3229
3230 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3231 "mmp_interval=%llu ub_mmp_delay=%llu "
3232 "import_intervals=%llu", (u_longlong_t)import_delay,
3233 (u_longlong_t)MMP_INTERVAL(ub),
3234 (u_longlong_t)ub->ub_mmp_delay,
3235 (u_longlong_t)import_intervals);
3236
3237 } else if (MMP_VALID(ub)) {
3238 /*
3239 * zfs-0.7 compatibility case
3240 */
3241
3242 import_delay = MAX(import_delay, (multihost_interval +
3243 ub->ub_mmp_delay) * import_intervals);
3244
3245 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3246 "import_intervals=%llu leaves=%u",
3247 (u_longlong_t)import_delay,
3248 (u_longlong_t)ub->ub_mmp_delay,
3249 (u_longlong_t)import_intervals,
3250 vdev_count_leaves(spa));
3251 } else {
3252 /* Using local tunings is the only reasonable option */
3253 zfs_dbgmsg("pool last imported on non-MMP aware "
3254 "host using import_delay=%llu multihost_interval=%llu "
3255 "import_intervals=%llu", (u_longlong_t)import_delay,
3256 (u_longlong_t)multihost_interval,
3257 (u_longlong_t)import_intervals);
3258 }
3259
3260 return (import_delay);
3261 }
3262
3263 /*
3264 * Perform the import activity check. If the user canceled the import or
3265 * we detected activity then fail.
3266 */
3267 static int
3268 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3269 {
3270 uint64_t txg = ub->ub_txg;
3271 uint64_t timestamp = ub->ub_timestamp;
3272 uint64_t mmp_config = ub->ub_mmp_config;
3273 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3274 uint64_t import_delay;
3275 hrtime_t import_expire;
3276 nvlist_t *mmp_label = NULL;
3277 vdev_t *rvd = spa->spa_root_vdev;
3278 kcondvar_t cv;
3279 kmutex_t mtx;
3280 int error = 0;
3281
3282 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3283 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3284 mutex_enter(&mtx);
3285
3286 /*
3287 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3288 * during the earlier tryimport. If the txg recorded there is 0 then
3289 * the pool is known to be active on another host.
3290 *
3291 * Otherwise, the pool might be in use on another host. Check for
3292 * changes in the uberblocks on disk if necessary.
3293 */
3294 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3295 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3296 ZPOOL_CONFIG_LOAD_INFO);
3297
3298 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3299 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3300 vdev_uberblock_load(rvd, ub, &mmp_label);
3301 error = SET_ERROR(EREMOTEIO);
3302 goto out;
3303 }
3304 }
3305
3306 import_delay = spa_activity_check_duration(spa, ub);
3307
3308 /* Add a small random factor in case of simultaneous imports (0-25%) */
3309 import_delay += import_delay * random_in_range(250) / 1000;
3310
3311 import_expire = gethrtime() + import_delay;
3312
3313 while (gethrtime() < import_expire) {
3314 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3315 NSEC2SEC(import_expire - gethrtime()));
3316
3317 vdev_uberblock_load(rvd, ub, &mmp_label);
3318
3319 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3320 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3321 zfs_dbgmsg("multihost activity detected "
3322 "txg %llu ub_txg %llu "
3323 "timestamp %llu ub_timestamp %llu "
3324 "mmp_config %#llx ub_mmp_config %#llx",
3325 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3326 (u_longlong_t)timestamp,
3327 (u_longlong_t)ub->ub_timestamp,
3328 (u_longlong_t)mmp_config,
3329 (u_longlong_t)ub->ub_mmp_config);
3330
3331 error = SET_ERROR(EREMOTEIO);
3332 break;
3333 }
3334
3335 if (mmp_label) {
3336 nvlist_free(mmp_label);
3337 mmp_label = NULL;
3338 }
3339
3340 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3341 if (error != -1) {
3342 error = SET_ERROR(EINTR);
3343 break;
3344 }
3345 error = 0;
3346 }
3347
3348 out:
3349 mutex_exit(&mtx);
3350 mutex_destroy(&mtx);
3351 cv_destroy(&cv);
3352
3353 /*
3354 * If the pool is determined to be active store the status in the
3355 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3356 * available from configuration read from disk store them as well.
3357 * This allows 'zpool import' to generate a more useful message.
3358 *
3359 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3360 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3361 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3362 */
3363 if (error == EREMOTEIO) {
3364 const char *hostname = "<unknown>";
3365 uint64_t hostid = 0;
3366
3367 if (mmp_label) {
3368 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3369 hostname = fnvlist_lookup_string(mmp_label,
3370 ZPOOL_CONFIG_HOSTNAME);
3371 fnvlist_add_string(spa->spa_load_info,
3372 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3373 }
3374
3375 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3376 hostid = fnvlist_lookup_uint64(mmp_label,
3377 ZPOOL_CONFIG_HOSTID);
3378 fnvlist_add_uint64(spa->spa_load_info,
3379 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3380 }
3381 }
3382
3383 fnvlist_add_uint64(spa->spa_load_info,
3384 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3385 fnvlist_add_uint64(spa->spa_load_info,
3386 ZPOOL_CONFIG_MMP_TXG, 0);
3387
3388 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3389 }
3390
3391 if (mmp_label)
3392 nvlist_free(mmp_label);
3393
3394 return (error);
3395 }
3396
3397 static int
3398 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3399 {
3400 uint64_t hostid;
3401 const char *hostname;
3402 uint64_t myhostid = 0;
3403
3404 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3405 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3406 hostname = fnvlist_lookup_string(mos_config,
3407 ZPOOL_CONFIG_HOSTNAME);
3408
3409 myhostid = zone_get_hostid(NULL);
3410
3411 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3412 cmn_err(CE_WARN, "pool '%s' could not be "
3413 "loaded as it was last accessed by "
3414 "another system (host: %s hostid: 0x%llx). "
3415 "See: https://openzfs.github.io/openzfs-docs/msg/"
3416 "ZFS-8000-EY",
3417 spa_name(spa), hostname, (u_longlong_t)hostid);
3418 spa_load_failed(spa, "hostid verification failed: pool "
3419 "last accessed by host: %s (hostid: 0x%llx)",
3420 hostname, (u_longlong_t)hostid);
3421 return (SET_ERROR(EBADF));
3422 }
3423 }
3424
3425 return (0);
3426 }
3427
3428 static int
3429 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3430 {
3431 int error = 0;
3432 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3433 int parse;
3434 vdev_t *rvd;
3435 uint64_t pool_guid;
3436 const char *comment;
3437 const char *compatibility;
3438
3439 /*
3440 * Versioning wasn't explicitly added to the label until later, so if
3441 * it's not present treat it as the initial version.
3442 */
3443 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3444 &spa->spa_ubsync.ub_version) != 0)
3445 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3446
3447 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3448 spa_load_failed(spa, "invalid config provided: '%s' missing",
3449 ZPOOL_CONFIG_POOL_GUID);
3450 return (SET_ERROR(EINVAL));
3451 }
3452
3453 /*
3454 * If we are doing an import, ensure that the pool is not already
3455 * imported by checking if its pool guid already exists in the
3456 * spa namespace.
3457 *
3458 * The only case that we allow an already imported pool to be
3459 * imported again, is when the pool is checkpointed and we want to
3460 * look at its checkpointed state from userland tools like zdb.
3461 */
3462 #ifdef _KERNEL
3463 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3464 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3465 spa_guid_exists(pool_guid, 0)) {
3466 #else
3467 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3468 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3469 spa_guid_exists(pool_guid, 0) &&
3470 !spa_importing_readonly_checkpoint(spa)) {
3471 #endif
3472 spa_load_failed(spa, "a pool with guid %llu is already open",
3473 (u_longlong_t)pool_guid);
3474 return (SET_ERROR(EEXIST));
3475 }
3476
3477 spa->spa_config_guid = pool_guid;
3478
3479 nvlist_free(spa->spa_load_info);
3480 spa->spa_load_info = fnvlist_alloc();
3481
3482 ASSERT(spa->spa_comment == NULL);
3483 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3484 spa->spa_comment = spa_strdup(comment);
3485
3486 ASSERT(spa->spa_compatibility == NULL);
3487 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3488 &compatibility) == 0)
3489 spa->spa_compatibility = spa_strdup(compatibility);
3490
3491 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3492 &spa->spa_config_txg);
3493
3494 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3495 spa->spa_config_splitting = fnvlist_dup(nvl);
3496
3497 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3498 spa_load_failed(spa, "invalid config provided: '%s' missing",
3499 ZPOOL_CONFIG_VDEV_TREE);
3500 return (SET_ERROR(EINVAL));
3501 }
3502
3503 /*
3504 * Create "The Godfather" zio to hold all async IOs
3505 */
3506 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3507 KM_SLEEP);
3508 for (int i = 0; i < max_ncpus; i++) {
3509 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3510 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3511 ZIO_FLAG_GODFATHER);
3512 }
3513
3514 /*
3515 * Parse the configuration into a vdev tree. We explicitly set the
3516 * value that will be returned by spa_version() since parsing the
3517 * configuration requires knowing the version number.
3518 */
3519 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3520 parse = (type == SPA_IMPORT_EXISTING ?
3521 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3522 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3523 spa_config_exit(spa, SCL_ALL, FTAG);
3524
3525 if (error != 0) {
3526 spa_load_failed(spa, "unable to parse config [error=%d]",
3527 error);
3528 return (error);
3529 }
3530
3531 ASSERT(spa->spa_root_vdev == rvd);
3532 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3533 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3534
3535 if (type != SPA_IMPORT_ASSEMBLE) {
3536 ASSERT(spa_guid(spa) == pool_guid);
3537 }
3538
3539 return (0);
3540 }
3541
3542 /*
3543 * Recursively open all vdevs in the vdev tree. This function is called twice:
3544 * first with the untrusted config, then with the trusted config.
3545 */
3546 static int
3547 spa_ld_open_vdevs(spa_t *spa)
3548 {
3549 int error = 0;
3550
3551 /*
3552 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3553 * missing/unopenable for the root vdev to be still considered openable.
3554 */
3555 if (spa->spa_trust_config) {
3556 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3557 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3558 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3559 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3560 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3561 } else {
3562 spa->spa_missing_tvds_allowed = 0;
3563 }
3564
3565 spa->spa_missing_tvds_allowed =
3566 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3567
3568 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3569 error = vdev_open(spa->spa_root_vdev);
3570 spa_config_exit(spa, SCL_ALL, FTAG);
3571
3572 if (spa->spa_missing_tvds != 0) {
3573 spa_load_note(spa, "vdev tree has %lld missing top-level "
3574 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3575 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3576 /*
3577 * Although theoretically we could allow users to open
3578 * incomplete pools in RW mode, we'd need to add a lot
3579 * of extra logic (e.g. adjust pool space to account
3580 * for missing vdevs).
3581 * This limitation also prevents users from accidentally
3582 * opening the pool in RW mode during data recovery and
3583 * damaging it further.
3584 */
3585 spa_load_note(spa, "pools with missing top-level "
3586 "vdevs can only be opened in read-only mode.");
3587 error = SET_ERROR(ENXIO);
3588 } else {
3589 spa_load_note(spa, "current settings allow for maximum "
3590 "%lld missing top-level vdevs at this stage.",
3591 (u_longlong_t)spa->spa_missing_tvds_allowed);
3592 }
3593 }
3594 if (error != 0) {
3595 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3596 error);
3597 }
3598 if (spa->spa_missing_tvds != 0 || error != 0)
3599 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3600
3601 return (error);
3602 }
3603
3604 /*
3605 * We need to validate the vdev labels against the configuration that
3606 * we have in hand. This function is called twice: first with an untrusted
3607 * config, then with a trusted config. The validation is more strict when the
3608 * config is trusted.
3609 */
3610 static int
3611 spa_ld_validate_vdevs(spa_t *spa)
3612 {
3613 int error = 0;
3614 vdev_t *rvd = spa->spa_root_vdev;
3615
3616 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3617 error = vdev_validate(rvd);
3618 spa_config_exit(spa, SCL_ALL, FTAG);
3619
3620 if (error != 0) {
3621 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3622 return (error);
3623 }
3624
3625 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3626 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3627 "some vdevs");
3628 vdev_dbgmsg_print_tree(rvd, 2);
3629 return (SET_ERROR(ENXIO));
3630 }
3631
3632 return (0);
3633 }
3634
3635 static void
3636 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3637 {
3638 spa->spa_state = POOL_STATE_ACTIVE;
3639 spa->spa_ubsync = spa->spa_uberblock;
3640 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3641 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3642 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3643 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3644 spa->spa_claim_max_txg = spa->spa_first_txg;
3645 spa->spa_prev_software_version = ub->ub_software_version;
3646 }
3647
3648 static int
3649 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3650 {
3651 vdev_t *rvd = spa->spa_root_vdev;
3652 nvlist_t *label;
3653 uberblock_t *ub = &spa->spa_uberblock;
3654 boolean_t activity_check = B_FALSE;
3655
3656 /*
3657 * If we are opening the checkpointed state of the pool by
3658 * rewinding to it, at this point we will have written the
3659 * checkpointed uberblock to the vdev labels, so searching
3660 * the labels will find the right uberblock. However, if
3661 * we are opening the checkpointed state read-only, we have
3662 * not modified the labels. Therefore, we must ignore the
3663 * labels and continue using the spa_uberblock that was set
3664 * by spa_ld_checkpoint_rewind.
3665 *
3666 * Note that it would be fine to ignore the labels when
3667 * rewinding (opening writeable) as well. However, if we
3668 * crash just after writing the labels, we will end up
3669 * searching the labels. Doing so in the common case means
3670 * that this code path gets exercised normally, rather than
3671 * just in the edge case.
3672 */
3673 if (ub->ub_checkpoint_txg != 0 &&
3674 spa_importing_readonly_checkpoint(spa)) {
3675 spa_ld_select_uberblock_done(spa, ub);
3676 return (0);
3677 }
3678
3679 /*
3680 * Find the best uberblock.
3681 */
3682 vdev_uberblock_load(rvd, ub, &label);
3683
3684 /*
3685 * If we weren't able to find a single valid uberblock, return failure.
3686 */
3687 if (ub->ub_txg == 0) {
3688 nvlist_free(label);
3689 spa_load_failed(spa, "no valid uberblock found");
3690 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3691 }
3692
3693 if (spa->spa_load_max_txg != UINT64_MAX) {
3694 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3695 (u_longlong_t)spa->spa_load_max_txg);
3696 }
3697 spa_load_note(spa, "using uberblock with txg=%llu",
3698 (u_longlong_t)ub->ub_txg);
3699
3700
3701 /*
3702 * For pools which have the multihost property on determine if the
3703 * pool is truly inactive and can be safely imported. Prevent
3704 * hosts which don't have a hostid set from importing the pool.
3705 */
3706 activity_check = spa_activity_check_required(spa, ub, label,
3707 spa->spa_config);
3708 if (activity_check) {
3709 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3710 spa_get_hostid(spa) == 0) {
3711 nvlist_free(label);
3712 fnvlist_add_uint64(spa->spa_load_info,
3713 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3714 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3715 }
3716
3717 int error = spa_activity_check(spa, ub, spa->spa_config);
3718 if (error) {
3719 nvlist_free(label);
3720 return (error);
3721 }
3722
3723 fnvlist_add_uint64(spa->spa_load_info,
3724 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3725 fnvlist_add_uint64(spa->spa_load_info,
3726 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3727 fnvlist_add_uint16(spa->spa_load_info,
3728 ZPOOL_CONFIG_MMP_SEQ,
3729 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3730 }
3731
3732 /*
3733 * If the pool has an unsupported version we can't open it.
3734 */
3735 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3736 nvlist_free(label);
3737 spa_load_failed(spa, "version %llu is not supported",
3738 (u_longlong_t)ub->ub_version);
3739 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3740 }
3741
3742 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3743 nvlist_t *features;
3744
3745 /*
3746 * If we weren't able to find what's necessary for reading the
3747 * MOS in the label, return failure.
3748 */
3749 if (label == NULL) {
3750 spa_load_failed(spa, "label config unavailable");
3751 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3752 ENXIO));
3753 }
3754
3755 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3756 &features) != 0) {
3757 nvlist_free(label);
3758 spa_load_failed(spa, "invalid label: '%s' missing",
3759 ZPOOL_CONFIG_FEATURES_FOR_READ);
3760 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3761 ENXIO));
3762 }
3763
3764 /*
3765 * Update our in-core representation with the definitive values
3766 * from the label.
3767 */
3768 nvlist_free(spa->spa_label_features);
3769 spa->spa_label_features = fnvlist_dup(features);
3770 }
3771
3772 nvlist_free(label);
3773
3774 /*
3775 * Look through entries in the label nvlist's features_for_read. If
3776 * there is a feature listed there which we don't understand then we
3777 * cannot open a pool.
3778 */
3779 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3780 nvlist_t *unsup_feat;
3781
3782 unsup_feat = fnvlist_alloc();
3783
3784 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3785 NULL); nvp != NULL;
3786 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3787 if (!zfeature_is_supported(nvpair_name(nvp))) {
3788 fnvlist_add_string(unsup_feat,
3789 nvpair_name(nvp), "");
3790 }
3791 }
3792
3793 if (!nvlist_empty(unsup_feat)) {
3794 fnvlist_add_nvlist(spa->spa_load_info,
3795 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3796 nvlist_free(unsup_feat);
3797 spa_load_failed(spa, "some features are unsupported");
3798 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3799 ENOTSUP));
3800 }
3801
3802 nvlist_free(unsup_feat);
3803 }
3804
3805 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3806 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3807 spa_try_repair(spa, spa->spa_config);
3808 spa_config_exit(spa, SCL_ALL, FTAG);
3809 nvlist_free(spa->spa_config_splitting);
3810 spa->spa_config_splitting = NULL;
3811 }
3812
3813 /*
3814 * Initialize internal SPA structures.
3815 */
3816 spa_ld_select_uberblock_done(spa, ub);
3817
3818 return (0);
3819 }
3820
3821 static int
3822 spa_ld_open_rootbp(spa_t *spa)
3823 {
3824 int error = 0;
3825 vdev_t *rvd = spa->spa_root_vdev;
3826
3827 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3828 if (error != 0) {
3829 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3830 "[error=%d]", error);
3831 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3832 }
3833 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3834
3835 return (0);
3836 }
3837
3838 static int
3839 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3840 boolean_t reloading)
3841 {
3842 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3843 nvlist_t *nv, *mos_config, *policy;
3844 int error = 0, copy_error;
3845 uint64_t healthy_tvds, healthy_tvds_mos;
3846 uint64_t mos_config_txg;
3847
3848 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3849 != 0)
3850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3851
3852 /*
3853 * If we're assembling a pool from a split, the config provided is
3854 * already trusted so there is nothing to do.
3855 */
3856 if (type == SPA_IMPORT_ASSEMBLE)
3857 return (0);
3858
3859 healthy_tvds = spa_healthy_core_tvds(spa);
3860
3861 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3862 != 0) {
3863 spa_load_failed(spa, "unable to retrieve MOS config");
3864 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3865 }
3866
3867 /*
3868 * If we are doing an open, pool owner wasn't verified yet, thus do
3869 * the verification here.
3870 */
3871 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3872 error = spa_verify_host(spa, mos_config);
3873 if (error != 0) {
3874 nvlist_free(mos_config);
3875 return (error);
3876 }
3877 }
3878
3879 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3880
3881 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3882
3883 /*
3884 * Build a new vdev tree from the trusted config
3885 */
3886 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3887 if (error != 0) {
3888 nvlist_free(mos_config);
3889 spa_config_exit(spa, SCL_ALL, FTAG);
3890 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3891 error);
3892 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3893 }
3894
3895 /*
3896 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3897 * obtained by scanning /dev/dsk, then it will have the right vdev
3898 * paths. We update the trusted MOS config with this information.
3899 * We first try to copy the paths with vdev_copy_path_strict, which
3900 * succeeds only when both configs have exactly the same vdev tree.
3901 * If that fails, we fall back to a more flexible method that has a
3902 * best effort policy.
3903 */
3904 copy_error = vdev_copy_path_strict(rvd, mrvd);
3905 if (copy_error != 0 || spa_load_print_vdev_tree) {
3906 spa_load_note(spa, "provided vdev tree:");
3907 vdev_dbgmsg_print_tree(rvd, 2);
3908 spa_load_note(spa, "MOS vdev tree:");
3909 vdev_dbgmsg_print_tree(mrvd, 2);
3910 }
3911 if (copy_error != 0) {
3912 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3913 "back to vdev_copy_path_relaxed");
3914 vdev_copy_path_relaxed(rvd, mrvd);
3915 }
3916
3917 vdev_close(rvd);
3918 vdev_free(rvd);
3919 spa->spa_root_vdev = mrvd;
3920 rvd = mrvd;
3921 spa_config_exit(spa, SCL_ALL, FTAG);
3922
3923 /*
3924 * We will use spa_config if we decide to reload the spa or if spa_load
3925 * fails and we rewind. We must thus regenerate the config using the
3926 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3927 * pass settings on how to load the pool and is not stored in the MOS.
3928 * We copy it over to our new, trusted config.
3929 */
3930 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3931 ZPOOL_CONFIG_POOL_TXG);
3932 nvlist_free(mos_config);
3933 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3934 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3935 &policy) == 0)
3936 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3937 spa_config_set(spa, mos_config);
3938 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3939
3940 /*
3941 * Now that we got the config from the MOS, we should be more strict
3942 * in checking blkptrs and can make assumptions about the consistency
3943 * of the vdev tree. spa_trust_config must be set to true before opening
3944 * vdevs in order for them to be writeable.
3945 */
3946 spa->spa_trust_config = B_TRUE;
3947
3948 /*
3949 * Open and validate the new vdev tree
3950 */
3951 error = spa_ld_open_vdevs(spa);
3952 if (error != 0)
3953 return (error);
3954
3955 error = spa_ld_validate_vdevs(spa);
3956 if (error != 0)
3957 return (error);
3958
3959 if (copy_error != 0 || spa_load_print_vdev_tree) {
3960 spa_load_note(spa, "final vdev tree:");
3961 vdev_dbgmsg_print_tree(rvd, 2);
3962 }
3963
3964 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3965 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3966 /*
3967 * Sanity check to make sure that we are indeed loading the
3968 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3969 * in the config provided and they happened to be the only ones
3970 * to have the latest uberblock, we could involuntarily perform
3971 * an extreme rewind.
3972 */
3973 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3974 if (healthy_tvds_mos - healthy_tvds >=
3975 SPA_SYNC_MIN_VDEVS) {
3976 spa_load_note(spa, "config provided misses too many "
3977 "top-level vdevs compared to MOS (%lld vs %lld). ",
3978 (u_longlong_t)healthy_tvds,
3979 (u_longlong_t)healthy_tvds_mos);
3980 spa_load_note(spa, "vdev tree:");
3981 vdev_dbgmsg_print_tree(rvd, 2);
3982 if (reloading) {
3983 spa_load_failed(spa, "config was already "
3984 "provided from MOS. Aborting.");
3985 return (spa_vdev_err(rvd,
3986 VDEV_AUX_CORRUPT_DATA, EIO));
3987 }
3988 spa_load_note(spa, "spa must be reloaded using MOS "
3989 "config");
3990 return (SET_ERROR(EAGAIN));
3991 }
3992 }
3993
3994 error = spa_check_for_missing_logs(spa);
3995 if (error != 0)
3996 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3997
3998 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3999 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4000 "guid sum (%llu != %llu)",
4001 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4002 (u_longlong_t)rvd->vdev_guid_sum);
4003 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4004 ENXIO));
4005 }
4006
4007 return (0);
4008 }
4009
4010 static int
4011 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4012 {
4013 int error = 0;
4014 vdev_t *rvd = spa->spa_root_vdev;
4015
4016 /*
4017 * Everything that we read before spa_remove_init() must be stored
4018 * on concreted vdevs. Therefore we do this as early as possible.
4019 */
4020 error = spa_remove_init(spa);
4021 if (error != 0) {
4022 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4023 error);
4024 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4025 }
4026
4027 /*
4028 * Retrieve information needed to condense indirect vdev mappings.
4029 */
4030 error = spa_condense_init(spa);
4031 if (error != 0) {
4032 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4033 error);
4034 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4035 }
4036
4037 return (0);
4038 }
4039
4040 static int
4041 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4042 {
4043 int error = 0;
4044 vdev_t *rvd = spa->spa_root_vdev;
4045
4046 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4047 boolean_t missing_feat_read = B_FALSE;
4048 nvlist_t *unsup_feat, *enabled_feat;
4049
4050 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4051 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4052 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4053 }
4054
4055 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4056 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4057 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4058 }
4059
4060 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4061 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4062 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4063 }
4064
4065 enabled_feat = fnvlist_alloc();
4066 unsup_feat = fnvlist_alloc();
4067
4068 if (!spa_features_check(spa, B_FALSE,
4069 unsup_feat, enabled_feat))
4070 missing_feat_read = B_TRUE;
4071
4072 if (spa_writeable(spa) ||
4073 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4074 if (!spa_features_check(spa, B_TRUE,
4075 unsup_feat, enabled_feat)) {
4076 *missing_feat_writep = B_TRUE;
4077 }
4078 }
4079
4080 fnvlist_add_nvlist(spa->spa_load_info,
4081 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4082
4083 if (!nvlist_empty(unsup_feat)) {
4084 fnvlist_add_nvlist(spa->spa_load_info,
4085 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4086 }
4087
4088 fnvlist_free(enabled_feat);
4089 fnvlist_free(unsup_feat);
4090
4091 if (!missing_feat_read) {
4092 fnvlist_add_boolean(spa->spa_load_info,
4093 ZPOOL_CONFIG_CAN_RDONLY);
4094 }
4095
4096 /*
4097 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4098 * twofold: to determine whether the pool is available for
4099 * import in read-write mode and (if it is not) whether the
4100 * pool is available for import in read-only mode. If the pool
4101 * is available for import in read-write mode, it is displayed
4102 * as available in userland; if it is not available for import
4103 * in read-only mode, it is displayed as unavailable in
4104 * userland. If the pool is available for import in read-only
4105 * mode but not read-write mode, it is displayed as unavailable
4106 * in userland with a special note that the pool is actually
4107 * available for open in read-only mode.
4108 *
4109 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4110 * missing a feature for write, we must first determine whether
4111 * the pool can be opened read-only before returning to
4112 * userland in order to know whether to display the
4113 * abovementioned note.
4114 */
4115 if (missing_feat_read || (*missing_feat_writep &&
4116 spa_writeable(spa))) {
4117 spa_load_failed(spa, "pool uses unsupported features");
4118 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4119 ENOTSUP));
4120 }
4121
4122 /*
4123 * Load refcounts for ZFS features from disk into an in-memory
4124 * cache during SPA initialization.
4125 */
4126 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4127 uint64_t refcount;
4128
4129 error = feature_get_refcount_from_disk(spa,
4130 &spa_feature_table[i], &refcount);
4131 if (error == 0) {
4132 spa->spa_feat_refcount_cache[i] = refcount;
4133 } else if (error == ENOTSUP) {
4134 spa->spa_feat_refcount_cache[i] =
4135 SPA_FEATURE_DISABLED;
4136 } else {
4137 spa_load_failed(spa, "error getting refcount "
4138 "for feature %s [error=%d]",
4139 spa_feature_table[i].fi_guid, error);
4140 return (spa_vdev_err(rvd,
4141 VDEV_AUX_CORRUPT_DATA, EIO));
4142 }
4143 }
4144 }
4145
4146 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4147 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4148 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4149 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4150 }
4151
4152 /*
4153 * Encryption was added before bookmark_v2, even though bookmark_v2
4154 * is now a dependency. If this pool has encryption enabled without
4155 * bookmark_v2, trigger an errata message.
4156 */
4157 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4158 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4159 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4160 }
4161
4162 return (0);
4163 }
4164
4165 static int
4166 spa_ld_load_special_directories(spa_t *spa)
4167 {
4168 int error = 0;
4169 vdev_t *rvd = spa->spa_root_vdev;
4170
4171 spa->spa_is_initializing = B_TRUE;
4172 error = dsl_pool_open(spa->spa_dsl_pool);
4173 spa->spa_is_initializing = B_FALSE;
4174 if (error != 0) {
4175 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4176 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4177 }
4178
4179 return (0);
4180 }
4181
4182 static int
4183 spa_ld_get_props(spa_t *spa)
4184 {
4185 int error = 0;
4186 uint64_t obj;
4187 vdev_t *rvd = spa->spa_root_vdev;
4188
4189 /* Grab the checksum salt from the MOS. */
4190 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4191 DMU_POOL_CHECKSUM_SALT, 1,
4192 sizeof (spa->spa_cksum_salt.zcs_bytes),
4193 spa->spa_cksum_salt.zcs_bytes);
4194 if (error == ENOENT) {
4195 /* Generate a new salt for subsequent use */
4196 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4197 sizeof (spa->spa_cksum_salt.zcs_bytes));
4198 } else if (error != 0) {
4199 spa_load_failed(spa, "unable to retrieve checksum salt from "
4200 "MOS [error=%d]", error);
4201 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4202 }
4203
4204 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4205 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4206 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4207 if (error != 0) {
4208 spa_load_failed(spa, "error opening deferred-frees bpobj "
4209 "[error=%d]", error);
4210 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4211 }
4212
4213 /*
4214 * Load the bit that tells us to use the new accounting function
4215 * (raid-z deflation). If we have an older pool, this will not
4216 * be present.
4217 */
4218 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4219 if (error != 0 && error != ENOENT)
4220 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4221
4222 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4223 &spa->spa_creation_version, B_FALSE);
4224 if (error != 0 && error != ENOENT)
4225 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4226
4227 /*
4228 * Load the persistent error log. If we have an older pool, this will
4229 * not be present.
4230 */
4231 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4232 B_FALSE);
4233 if (error != 0 && error != ENOENT)
4234 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4235
4236 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4237 &spa->spa_errlog_scrub, B_FALSE);
4238 if (error != 0 && error != ENOENT)
4239 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4240
4241 /*
4242 * Load the livelist deletion field. If a livelist is queued for
4243 * deletion, indicate that in the spa
4244 */
4245 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4246 &spa->spa_livelists_to_delete, B_FALSE);
4247 if (error != 0 && error != ENOENT)
4248 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4249
4250 /*
4251 * Load the history object. If we have an older pool, this
4252 * will not be present.
4253 */
4254 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4255 if (error != 0 && error != ENOENT)
4256 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4257
4258 /*
4259 * Load the per-vdev ZAP map. If we have an older pool, this will not
4260 * be present; in this case, defer its creation to a later time to
4261 * avoid dirtying the MOS this early / out of sync context. See
4262 * spa_sync_config_object.
4263 */
4264
4265 /* The sentinel is only available in the MOS config. */
4266 nvlist_t *mos_config;
4267 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4268 spa_load_failed(spa, "unable to retrieve MOS config");
4269 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4270 }
4271
4272 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4273 &spa->spa_all_vdev_zaps, B_FALSE);
4274
4275 if (error == ENOENT) {
4276 VERIFY(!nvlist_exists(mos_config,
4277 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4278 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4279 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4280 } else if (error != 0) {
4281 nvlist_free(mos_config);
4282 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4283 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4284 /*
4285 * An older version of ZFS overwrote the sentinel value, so
4286 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4287 * destruction to later; see spa_sync_config_object.
4288 */
4289 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4290 /*
4291 * We're assuming that no vdevs have had their ZAPs created
4292 * before this. Better be sure of it.
4293 */
4294 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4295 }
4296 nvlist_free(mos_config);
4297
4298 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4299
4300 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4301 B_FALSE);
4302 if (error && error != ENOENT)
4303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4304
4305 if (error == 0) {
4306 uint64_t autoreplace = 0;
4307
4308 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4309 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4310 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4311 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4312 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4313 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4314 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4315 spa->spa_autoreplace = (autoreplace != 0);
4316 }
4317
4318 /*
4319 * If we are importing a pool with missing top-level vdevs,
4320 * we enforce that the pool doesn't panic or get suspended on
4321 * error since the likelihood of missing data is extremely high.
4322 */
4323 if (spa->spa_missing_tvds > 0 &&
4324 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4325 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4326 spa_load_note(spa, "forcing failmode to 'continue' "
4327 "as some top level vdevs are missing");
4328 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4329 }
4330
4331 return (0);
4332 }
4333
4334 static int
4335 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4336 {
4337 int error = 0;
4338 vdev_t *rvd = spa->spa_root_vdev;
4339
4340 /*
4341 * If we're assembling the pool from the split-off vdevs of
4342 * an existing pool, we don't want to attach the spares & cache
4343 * devices.
4344 */
4345
4346 /*
4347 * Load any hot spares for this pool.
4348 */
4349 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4350 B_FALSE);
4351 if (error != 0 && error != ENOENT)
4352 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4353 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4354 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4355 if (load_nvlist(spa, spa->spa_spares.sav_object,
4356 &spa->spa_spares.sav_config) != 0) {
4357 spa_load_failed(spa, "error loading spares nvlist");
4358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4359 }
4360
4361 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4362 spa_load_spares(spa);
4363 spa_config_exit(spa, SCL_ALL, FTAG);
4364 } else if (error == 0) {
4365 spa->spa_spares.sav_sync = B_TRUE;
4366 }
4367
4368 /*
4369 * Load any level 2 ARC devices for this pool.
4370 */
4371 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4372 &spa->spa_l2cache.sav_object, B_FALSE);
4373 if (error != 0 && error != ENOENT)
4374 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4375 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4376 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4377 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4378 &spa->spa_l2cache.sav_config) != 0) {
4379 spa_load_failed(spa, "error loading l2cache nvlist");
4380 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4381 }
4382
4383 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4384 spa_load_l2cache(spa);
4385 spa_config_exit(spa, SCL_ALL, FTAG);
4386 } else if (error == 0) {
4387 spa->spa_l2cache.sav_sync = B_TRUE;
4388 }
4389
4390 return (0);
4391 }
4392
4393 static int
4394 spa_ld_load_vdev_metadata(spa_t *spa)
4395 {
4396 int error = 0;
4397 vdev_t *rvd = spa->spa_root_vdev;
4398
4399 /*
4400 * If the 'multihost' property is set, then never allow a pool to
4401 * be imported when the system hostid is zero. The exception to
4402 * this rule is zdb which is always allowed to access pools.
4403 */
4404 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4405 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4406 fnvlist_add_uint64(spa->spa_load_info,
4407 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4408 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4409 }
4410
4411 /*
4412 * If the 'autoreplace' property is set, then post a resource notifying
4413 * the ZFS DE that it should not issue any faults for unopenable
4414 * devices. We also iterate over the vdevs, and post a sysevent for any
4415 * unopenable vdevs so that the normal autoreplace handler can take
4416 * over.
4417 */
4418 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4419 spa_check_removed(spa->spa_root_vdev);
4420 /*
4421 * For the import case, this is done in spa_import(), because
4422 * at this point we're using the spare definitions from
4423 * the MOS config, not necessarily from the userland config.
4424 */
4425 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4426 spa_aux_check_removed(&spa->spa_spares);
4427 spa_aux_check_removed(&spa->spa_l2cache);
4428 }
4429 }
4430
4431 /*
4432 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4433 */
4434 error = vdev_load(rvd);
4435 if (error != 0) {
4436 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4437 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4438 }
4439
4440 error = spa_ld_log_spacemaps(spa);
4441 if (error != 0) {
4442 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4443 error);
4444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4445 }
4446
4447 /*
4448 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4449 */
4450 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4451 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4452 spa_config_exit(spa, SCL_ALL, FTAG);
4453
4454 return (0);
4455 }
4456
4457 static int
4458 spa_ld_load_dedup_tables(spa_t *spa)
4459 {
4460 int error = 0;
4461 vdev_t *rvd = spa->spa_root_vdev;
4462
4463 error = ddt_load(spa);
4464 if (error != 0) {
4465 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4466 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4467 }
4468
4469 return (0);
4470 }
4471
4472 static int
4473 spa_ld_load_brt(spa_t *spa)
4474 {
4475 int error = 0;
4476 vdev_t *rvd = spa->spa_root_vdev;
4477
4478 error = brt_load(spa);
4479 if (error != 0) {
4480 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4481 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4482 }
4483
4484 return (0);
4485 }
4486
4487 static int
4488 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4489 {
4490 vdev_t *rvd = spa->spa_root_vdev;
4491
4492 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4493 boolean_t missing = spa_check_logs(spa);
4494 if (missing) {
4495 if (spa->spa_missing_tvds != 0) {
4496 spa_load_note(spa, "spa_check_logs failed "
4497 "so dropping the logs");
4498 } else {
4499 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4500 spa_load_failed(spa, "spa_check_logs failed");
4501 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4502 ENXIO));
4503 }
4504 }
4505 }
4506
4507 return (0);
4508 }
4509
4510 static int
4511 spa_ld_verify_pool_data(spa_t *spa)
4512 {
4513 int error = 0;
4514 vdev_t *rvd = spa->spa_root_vdev;
4515
4516 /*
4517 * We've successfully opened the pool, verify that we're ready
4518 * to start pushing transactions.
4519 */
4520 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4521 error = spa_load_verify(spa);
4522 if (error != 0) {
4523 spa_load_failed(spa, "spa_load_verify failed "
4524 "[error=%d]", error);
4525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4526 error));
4527 }
4528 }
4529
4530 return (0);
4531 }
4532
4533 static void
4534 spa_ld_claim_log_blocks(spa_t *spa)
4535 {
4536 dmu_tx_t *tx;
4537 dsl_pool_t *dp = spa_get_dsl(spa);
4538
4539 /*
4540 * Claim log blocks that haven't been committed yet.
4541 * This must all happen in a single txg.
4542 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4543 * invoked from zil_claim_log_block()'s i/o done callback.
4544 * Price of rollback is that we abandon the log.
4545 */
4546 spa->spa_claiming = B_TRUE;
4547
4548 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4549 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4550 zil_claim, tx, DS_FIND_CHILDREN);
4551 dmu_tx_commit(tx);
4552
4553 spa->spa_claiming = B_FALSE;
4554
4555 spa_set_log_state(spa, SPA_LOG_GOOD);
4556 }
4557
4558 static void
4559 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4560 boolean_t update_config_cache)
4561 {
4562 vdev_t *rvd = spa->spa_root_vdev;
4563 int need_update = B_FALSE;
4564
4565 /*
4566 * If the config cache is stale, or we have uninitialized
4567 * metaslabs (see spa_vdev_add()), then update the config.
4568 *
4569 * If this is a verbatim import, trust the current
4570 * in-core spa_config and update the disk labels.
4571 */
4572 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4573 spa->spa_load_state == SPA_LOAD_IMPORT ||
4574 spa->spa_load_state == SPA_LOAD_RECOVER ||
4575 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4576 need_update = B_TRUE;
4577
4578 for (int c = 0; c < rvd->vdev_children; c++)
4579 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4580 need_update = B_TRUE;
4581
4582 /*
4583 * Update the config cache asynchronously in case we're the
4584 * root pool, in which case the config cache isn't writable yet.
4585 */
4586 if (need_update)
4587 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4588 }
4589
4590 static void
4591 spa_ld_prepare_for_reload(spa_t *spa)
4592 {
4593 spa_mode_t mode = spa->spa_mode;
4594 int async_suspended = spa->spa_async_suspended;
4595
4596 spa_unload(spa);
4597 spa_deactivate(spa);
4598 spa_activate(spa, mode);
4599
4600 /*
4601 * We save the value of spa_async_suspended as it gets reset to 0 by
4602 * spa_unload(). We want to restore it back to the original value before
4603 * returning as we might be calling spa_async_resume() later.
4604 */
4605 spa->spa_async_suspended = async_suspended;
4606 }
4607
4608 static int
4609 spa_ld_read_checkpoint_txg(spa_t *spa)
4610 {
4611 uberblock_t checkpoint;
4612 int error = 0;
4613
4614 ASSERT0(spa->spa_checkpoint_txg);
4615 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4616
4617 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4618 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4619 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4620
4621 if (error == ENOENT)
4622 return (0);
4623
4624 if (error != 0)
4625 return (error);
4626
4627 ASSERT3U(checkpoint.ub_txg, !=, 0);
4628 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4629 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4630 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4631 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4632
4633 return (0);
4634 }
4635
4636 static int
4637 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4638 {
4639 int error = 0;
4640
4641 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4642 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4643
4644 /*
4645 * Never trust the config that is provided unless we are assembling
4646 * a pool following a split.
4647 * This means don't trust blkptrs and the vdev tree in general. This
4648 * also effectively puts the spa in read-only mode since
4649 * spa_writeable() checks for spa_trust_config to be true.
4650 * We will later load a trusted config from the MOS.
4651 */
4652 if (type != SPA_IMPORT_ASSEMBLE)
4653 spa->spa_trust_config = B_FALSE;
4654
4655 /*
4656 * Parse the config provided to create a vdev tree.
4657 */
4658 error = spa_ld_parse_config(spa, type);
4659 if (error != 0)
4660 return (error);
4661
4662 spa_import_progress_add(spa);
4663
4664 /*
4665 * Now that we have the vdev tree, try to open each vdev. This involves
4666 * opening the underlying physical device, retrieving its geometry and
4667 * probing the vdev with a dummy I/O. The state of each vdev will be set
4668 * based on the success of those operations. After this we'll be ready
4669 * to read from the vdevs.
4670 */
4671 error = spa_ld_open_vdevs(spa);
4672 if (error != 0)
4673 return (error);
4674
4675 /*
4676 * Read the label of each vdev and make sure that the GUIDs stored
4677 * there match the GUIDs in the config provided.
4678 * If we're assembling a new pool that's been split off from an
4679 * existing pool, the labels haven't yet been updated so we skip
4680 * validation for now.
4681 */
4682 if (type != SPA_IMPORT_ASSEMBLE) {
4683 error = spa_ld_validate_vdevs(spa);
4684 if (error != 0)
4685 return (error);
4686 }
4687
4688 /*
4689 * Read all vdev labels to find the best uberblock (i.e. latest,
4690 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4691 * get the list of features required to read blkptrs in the MOS from
4692 * the vdev label with the best uberblock and verify that our version
4693 * of zfs supports them all.
4694 */
4695 error = spa_ld_select_uberblock(spa, type);
4696 if (error != 0)
4697 return (error);
4698
4699 /*
4700 * Pass that uberblock to the dsl_pool layer which will open the root
4701 * blkptr. This blkptr points to the latest version of the MOS and will
4702 * allow us to read its contents.
4703 */
4704 error = spa_ld_open_rootbp(spa);
4705 if (error != 0)
4706 return (error);
4707
4708 return (0);
4709 }
4710
4711 static int
4712 spa_ld_checkpoint_rewind(spa_t *spa)
4713 {
4714 uberblock_t checkpoint;
4715 int error = 0;
4716
4717 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4718 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4719
4720 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4721 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4722 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4723
4724 if (error != 0) {
4725 spa_load_failed(spa, "unable to retrieve checkpointed "
4726 "uberblock from the MOS config [error=%d]", error);
4727
4728 if (error == ENOENT)
4729 error = ZFS_ERR_NO_CHECKPOINT;
4730
4731 return (error);
4732 }
4733
4734 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4735 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4736
4737 /*
4738 * We need to update the txg and timestamp of the checkpointed
4739 * uberblock to be higher than the latest one. This ensures that
4740 * the checkpointed uberblock is selected if we were to close and
4741 * reopen the pool right after we've written it in the vdev labels.
4742 * (also see block comment in vdev_uberblock_compare)
4743 */
4744 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4745 checkpoint.ub_timestamp = gethrestime_sec();
4746
4747 /*
4748 * Set current uberblock to be the checkpointed uberblock.
4749 */
4750 spa->spa_uberblock = checkpoint;
4751
4752 /*
4753 * If we are doing a normal rewind, then the pool is open for
4754 * writing and we sync the "updated" checkpointed uberblock to
4755 * disk. Once this is done, we've basically rewound the whole
4756 * pool and there is no way back.
4757 *
4758 * There are cases when we don't want to attempt and sync the
4759 * checkpointed uberblock to disk because we are opening a
4760 * pool as read-only. Specifically, verifying the checkpointed
4761 * state with zdb, and importing the checkpointed state to get
4762 * a "preview" of its content.
4763 */
4764 if (spa_writeable(spa)) {
4765 vdev_t *rvd = spa->spa_root_vdev;
4766
4767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4768 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4769 int svdcount = 0;
4770 int children = rvd->vdev_children;
4771 int c0 = random_in_range(children);
4772
4773 for (int c = 0; c < children; c++) {
4774 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4775
4776 /* Stop when revisiting the first vdev */
4777 if (c > 0 && svd[0] == vd)
4778 break;
4779
4780 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4781 !vdev_is_concrete(vd))
4782 continue;
4783
4784 svd[svdcount++] = vd;
4785 if (svdcount == SPA_SYNC_MIN_VDEVS)
4786 break;
4787 }
4788 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4789 if (error == 0)
4790 spa->spa_last_synced_guid = rvd->vdev_guid;
4791 spa_config_exit(spa, SCL_ALL, FTAG);
4792
4793 if (error != 0) {
4794 spa_load_failed(spa, "failed to write checkpointed "
4795 "uberblock to the vdev labels [error=%d]", error);
4796 return (error);
4797 }
4798 }
4799
4800 return (0);
4801 }
4802
4803 static int
4804 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4805 boolean_t *update_config_cache)
4806 {
4807 int error;
4808
4809 /*
4810 * Parse the config for pool, open and validate vdevs,
4811 * select an uberblock, and use that uberblock to open
4812 * the MOS.
4813 */
4814 error = spa_ld_mos_init(spa, type);
4815 if (error != 0)
4816 return (error);
4817
4818 /*
4819 * Retrieve the trusted config stored in the MOS and use it to create
4820 * a new, exact version of the vdev tree, then reopen all vdevs.
4821 */
4822 error = spa_ld_trusted_config(spa, type, B_FALSE);
4823 if (error == EAGAIN) {
4824 if (update_config_cache != NULL)
4825 *update_config_cache = B_TRUE;
4826
4827 /*
4828 * Redo the loading process with the trusted config if it is
4829 * too different from the untrusted config.
4830 */
4831 spa_ld_prepare_for_reload(spa);
4832 spa_load_note(spa, "RELOADING");
4833 error = spa_ld_mos_init(spa, type);
4834 if (error != 0)
4835 return (error);
4836
4837 error = spa_ld_trusted_config(spa, type, B_TRUE);
4838 if (error != 0)
4839 return (error);
4840
4841 } else if (error != 0) {
4842 return (error);
4843 }
4844
4845 return (0);
4846 }
4847
4848 /*
4849 * Load an existing storage pool, using the config provided. This config
4850 * describes which vdevs are part of the pool and is later validated against
4851 * partial configs present in each vdev's label and an entire copy of the
4852 * config stored in the MOS.
4853 */
4854 static int
4855 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4856 {
4857 int error = 0;
4858 boolean_t missing_feat_write = B_FALSE;
4859 boolean_t checkpoint_rewind =
4860 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4861 boolean_t update_config_cache = B_FALSE;
4862
4863 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4864 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4865
4866 spa_load_note(spa, "LOADING");
4867
4868 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4869 if (error != 0)
4870 return (error);
4871
4872 /*
4873 * If we are rewinding to the checkpoint then we need to repeat
4874 * everything we've done so far in this function but this time
4875 * selecting the checkpointed uberblock and using that to open
4876 * the MOS.
4877 */
4878 if (checkpoint_rewind) {
4879 /*
4880 * If we are rewinding to the checkpoint update config cache
4881 * anyway.
4882 */
4883 update_config_cache = B_TRUE;
4884
4885 /*
4886 * Extract the checkpointed uberblock from the current MOS
4887 * and use this as the pool's uberblock from now on. If the
4888 * pool is imported as writeable we also write the checkpoint
4889 * uberblock to the labels, making the rewind permanent.
4890 */
4891 error = spa_ld_checkpoint_rewind(spa);
4892 if (error != 0)
4893 return (error);
4894
4895 /*
4896 * Redo the loading process again with the
4897 * checkpointed uberblock.
4898 */
4899 spa_ld_prepare_for_reload(spa);
4900 spa_load_note(spa, "LOADING checkpointed uberblock");
4901 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4902 if (error != 0)
4903 return (error);
4904 }
4905
4906 /*
4907 * Retrieve the checkpoint txg if the pool has a checkpoint.
4908 */
4909 error = spa_ld_read_checkpoint_txg(spa);
4910 if (error != 0)
4911 return (error);
4912
4913 /*
4914 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4915 * from the pool and their contents were re-mapped to other vdevs. Note
4916 * that everything that we read before this step must have been
4917 * rewritten on concrete vdevs after the last device removal was
4918 * initiated. Otherwise we could be reading from indirect vdevs before
4919 * we have loaded their mappings.
4920 */
4921 error = spa_ld_open_indirect_vdev_metadata(spa);
4922 if (error != 0)
4923 return (error);
4924
4925 /*
4926 * Retrieve the full list of active features from the MOS and check if
4927 * they are all supported.
4928 */
4929 error = spa_ld_check_features(spa, &missing_feat_write);
4930 if (error != 0)
4931 return (error);
4932
4933 /*
4934 * Load several special directories from the MOS needed by the dsl_pool
4935 * layer.
4936 */
4937 error = spa_ld_load_special_directories(spa);
4938 if (error != 0)
4939 return (error);
4940
4941 /*
4942 * Retrieve pool properties from the MOS.
4943 */
4944 error = spa_ld_get_props(spa);
4945 if (error != 0)
4946 return (error);
4947
4948 /*
4949 * Retrieve the list of auxiliary devices - cache devices and spares -
4950 * and open them.
4951 */
4952 error = spa_ld_open_aux_vdevs(spa, type);
4953 if (error != 0)
4954 return (error);
4955
4956 /*
4957 * Load the metadata for all vdevs. Also check if unopenable devices
4958 * should be autoreplaced.
4959 */
4960 error = spa_ld_load_vdev_metadata(spa);
4961 if (error != 0)
4962 return (error);
4963
4964 error = spa_ld_load_dedup_tables(spa);
4965 if (error != 0)
4966 return (error);
4967
4968 error = spa_ld_load_brt(spa);
4969 if (error != 0)
4970 return (error);
4971
4972 /*
4973 * Verify the logs now to make sure we don't have any unexpected errors
4974 * when we claim log blocks later.
4975 */
4976 error = spa_ld_verify_logs(spa, type, ereport);
4977 if (error != 0)
4978 return (error);
4979
4980 if (missing_feat_write) {
4981 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4982
4983 /*
4984 * At this point, we know that we can open the pool in
4985 * read-only mode but not read-write mode. We now have enough
4986 * information and can return to userland.
4987 */
4988 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4989 ENOTSUP));
4990 }
4991
4992 /*
4993 * Traverse the last txgs to make sure the pool was left off in a safe
4994 * state. When performing an extreme rewind, we verify the whole pool,
4995 * which can take a very long time.
4996 */
4997 error = spa_ld_verify_pool_data(spa);
4998 if (error != 0)
4999 return (error);
5000
5001 /*
5002 * Calculate the deflated space for the pool. This must be done before
5003 * we write anything to the pool because we'd need to update the space
5004 * accounting using the deflated sizes.
5005 */
5006 spa_update_dspace(spa);
5007
5008 /*
5009 * We have now retrieved all the information we needed to open the
5010 * pool. If we are importing the pool in read-write mode, a few
5011 * additional steps must be performed to finish the import.
5012 */
5013 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5014 spa->spa_load_max_txg == UINT64_MAX)) {
5015 uint64_t config_cache_txg = spa->spa_config_txg;
5016
5017 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5018
5019 /*
5020 * In case of a checkpoint rewind, log the original txg
5021 * of the checkpointed uberblock.
5022 */
5023 if (checkpoint_rewind) {
5024 spa_history_log_internal(spa, "checkpoint rewind",
5025 NULL, "rewound state to txg=%llu",
5026 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5027 }
5028
5029 /*
5030 * Traverse the ZIL and claim all blocks.
5031 */
5032 spa_ld_claim_log_blocks(spa);
5033
5034 /*
5035 * Kick-off the syncing thread.
5036 */
5037 spa->spa_sync_on = B_TRUE;
5038 txg_sync_start(spa->spa_dsl_pool);
5039 mmp_thread_start(spa);
5040
5041 /*
5042 * Wait for all claims to sync. We sync up to the highest
5043 * claimed log block birth time so that claimed log blocks
5044 * don't appear to be from the future. spa_claim_max_txg
5045 * will have been set for us by ZIL traversal operations
5046 * performed above.
5047 */
5048 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5049
5050 /*
5051 * Check if we need to request an update of the config. On the
5052 * next sync, we would update the config stored in vdev labels
5053 * and the cachefile (by default /etc/zfs/zpool.cache).
5054 */
5055 spa_ld_check_for_config_update(spa, config_cache_txg,
5056 update_config_cache);
5057
5058 /*
5059 * Check if a rebuild was in progress and if so resume it.
5060 * Then check all DTLs to see if anything needs resilvering.
5061 * The resilver will be deferred if a rebuild was started.
5062 */
5063 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5064 vdev_rebuild_restart(spa);
5065 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5066 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5067 spa_async_request(spa, SPA_ASYNC_RESILVER);
5068 }
5069
5070 /*
5071 * Log the fact that we booted up (so that we can detect if
5072 * we rebooted in the middle of an operation).
5073 */
5074 spa_history_log_version(spa, "open", NULL);
5075
5076 spa_restart_removal(spa);
5077 spa_spawn_aux_threads(spa);
5078
5079 /*
5080 * Delete any inconsistent datasets.
5081 *
5082 * Note:
5083 * Since we may be issuing deletes for clones here,
5084 * we make sure to do so after we've spawned all the
5085 * auxiliary threads above (from which the livelist
5086 * deletion zthr is part of).
5087 */
5088 (void) dmu_objset_find(spa_name(spa),
5089 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5090
5091 /*
5092 * Clean up any stale temporary dataset userrefs.
5093 */
5094 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5095
5096 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5097 vdev_initialize_restart(spa->spa_root_vdev);
5098 vdev_trim_restart(spa->spa_root_vdev);
5099 vdev_autotrim_restart(spa);
5100 spa_config_exit(spa, SCL_CONFIG, FTAG);
5101 }
5102
5103 spa_import_progress_remove(spa_guid(spa));
5104 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5105
5106 spa_load_note(spa, "LOADED");
5107
5108 return (0);
5109 }
5110
5111 static int
5112 spa_load_retry(spa_t *spa, spa_load_state_t state)
5113 {
5114 spa_mode_t mode = spa->spa_mode;
5115
5116 spa_unload(spa);
5117 spa_deactivate(spa);
5118
5119 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5120
5121 spa_activate(spa, mode);
5122 spa_async_suspend(spa);
5123
5124 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5125 (u_longlong_t)spa->spa_load_max_txg);
5126
5127 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5128 }
5129
5130 /*
5131 * If spa_load() fails this function will try loading prior txg's. If
5132 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5133 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5134 * function will not rewind the pool and will return the same error as
5135 * spa_load().
5136 */
5137 static int
5138 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5139 int rewind_flags)
5140 {
5141 nvlist_t *loadinfo = NULL;
5142 nvlist_t *config = NULL;
5143 int load_error, rewind_error;
5144 uint64_t safe_rewind_txg;
5145 uint64_t min_txg;
5146
5147 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5148 spa->spa_load_max_txg = spa->spa_load_txg;
5149 spa_set_log_state(spa, SPA_LOG_CLEAR);
5150 } else {
5151 spa->spa_load_max_txg = max_request;
5152 if (max_request != UINT64_MAX)
5153 spa->spa_extreme_rewind = B_TRUE;
5154 }
5155
5156 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5157 if (load_error == 0)
5158 return (0);
5159 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5160 /*
5161 * When attempting checkpoint-rewind on a pool with no
5162 * checkpoint, we should not attempt to load uberblocks
5163 * from previous txgs when spa_load fails.
5164 */
5165 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5166 spa_import_progress_remove(spa_guid(spa));
5167 return (load_error);
5168 }
5169
5170 if (spa->spa_root_vdev != NULL)
5171 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5172
5173 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5174 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5175
5176 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5177 nvlist_free(config);
5178 spa_import_progress_remove(spa_guid(spa));
5179 return (load_error);
5180 }
5181
5182 if (state == SPA_LOAD_RECOVER) {
5183 /* Price of rolling back is discarding txgs, including log */
5184 spa_set_log_state(spa, SPA_LOG_CLEAR);
5185 } else {
5186 /*
5187 * If we aren't rolling back save the load info from our first
5188 * import attempt so that we can restore it after attempting
5189 * to rewind.
5190 */
5191 loadinfo = spa->spa_load_info;
5192 spa->spa_load_info = fnvlist_alloc();
5193 }
5194
5195 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5196 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5197 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5198 TXG_INITIAL : safe_rewind_txg;
5199
5200 /*
5201 * Continue as long as we're finding errors, we're still within
5202 * the acceptable rewind range, and we're still finding uberblocks
5203 */
5204 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5205 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5206 if (spa->spa_load_max_txg < safe_rewind_txg)
5207 spa->spa_extreme_rewind = B_TRUE;
5208 rewind_error = spa_load_retry(spa, state);
5209 }
5210
5211 spa->spa_extreme_rewind = B_FALSE;
5212 spa->spa_load_max_txg = UINT64_MAX;
5213
5214 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5215 spa_config_set(spa, config);
5216 else
5217 nvlist_free(config);
5218
5219 if (state == SPA_LOAD_RECOVER) {
5220 ASSERT3P(loadinfo, ==, NULL);
5221 spa_import_progress_remove(spa_guid(spa));
5222 return (rewind_error);
5223 } else {
5224 /* Store the rewind info as part of the initial load info */
5225 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5226 spa->spa_load_info);
5227
5228 /* Restore the initial load info */
5229 fnvlist_free(spa->spa_load_info);
5230 spa->spa_load_info = loadinfo;
5231
5232 spa_import_progress_remove(spa_guid(spa));
5233 return (load_error);
5234 }
5235 }
5236
5237 /*
5238 * Pool Open/Import
5239 *
5240 * The import case is identical to an open except that the configuration is sent
5241 * down from userland, instead of grabbed from the configuration cache. For the
5242 * case of an open, the pool configuration will exist in the
5243 * POOL_STATE_UNINITIALIZED state.
5244 *
5245 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5246 * the same time open the pool, without having to keep around the spa_t in some
5247 * ambiguous state.
5248 */
5249 static int
5250 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5251 nvlist_t *nvpolicy, nvlist_t **config)
5252 {
5253 spa_t *spa;
5254 spa_load_state_t state = SPA_LOAD_OPEN;
5255 int error;
5256 int locked = B_FALSE;
5257 int firstopen = B_FALSE;
5258
5259 *spapp = NULL;
5260
5261 /*
5262 * As disgusting as this is, we need to support recursive calls to this
5263 * function because dsl_dir_open() is called during spa_load(), and ends
5264 * up calling spa_open() again. The real fix is to figure out how to
5265 * avoid dsl_dir_open() calling this in the first place.
5266 */
5267 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5268 mutex_enter(&spa_namespace_lock);
5269 locked = B_TRUE;
5270 }
5271
5272 if ((spa = spa_lookup(pool)) == NULL) {
5273 if (locked)
5274 mutex_exit(&spa_namespace_lock);
5275 return (SET_ERROR(ENOENT));
5276 }
5277
5278 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5279 zpool_load_policy_t policy;
5280
5281 firstopen = B_TRUE;
5282
5283 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5284 &policy);
5285 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5286 state = SPA_LOAD_RECOVER;
5287
5288 spa_activate(spa, spa_mode_global);
5289
5290 if (state != SPA_LOAD_RECOVER)
5291 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5292 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5293
5294 zfs_dbgmsg("spa_open_common: opening %s", pool);
5295 error = spa_load_best(spa, state, policy.zlp_txg,
5296 policy.zlp_rewind);
5297
5298 if (error == EBADF) {
5299 /*
5300 * If vdev_validate() returns failure (indicated by
5301 * EBADF), it indicates that one of the vdevs indicates
5302 * that the pool has been exported or destroyed. If
5303 * this is the case, the config cache is out of sync and
5304 * we should remove the pool from the namespace.
5305 */
5306 spa_unload(spa);
5307 spa_deactivate(spa);
5308 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5309 spa_remove(spa);
5310 if (locked)
5311 mutex_exit(&spa_namespace_lock);
5312 return (SET_ERROR(ENOENT));
5313 }
5314
5315 if (error) {
5316 /*
5317 * We can't open the pool, but we still have useful
5318 * information: the state of each vdev after the
5319 * attempted vdev_open(). Return this to the user.
5320 */
5321 if (config != NULL && spa->spa_config) {
5322 *config = fnvlist_dup(spa->spa_config);
5323 fnvlist_add_nvlist(*config,
5324 ZPOOL_CONFIG_LOAD_INFO,
5325 spa->spa_load_info);
5326 }
5327 spa_unload(spa);
5328 spa_deactivate(spa);
5329 spa->spa_last_open_failed = error;
5330 if (locked)
5331 mutex_exit(&spa_namespace_lock);
5332 *spapp = NULL;
5333 return (error);
5334 }
5335 }
5336
5337 spa_open_ref(spa, tag);
5338
5339 if (config != NULL)
5340 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5341
5342 /*
5343 * If we've recovered the pool, pass back any information we
5344 * gathered while doing the load.
5345 */
5346 if (state == SPA_LOAD_RECOVER && config != NULL) {
5347 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5348 spa->spa_load_info);
5349 }
5350
5351 if (locked) {
5352 spa->spa_last_open_failed = 0;
5353 spa->spa_last_ubsync_txg = 0;
5354 spa->spa_load_txg = 0;
5355 mutex_exit(&spa_namespace_lock);
5356 }
5357
5358 if (firstopen)
5359 zvol_create_minors_recursive(spa_name(spa));
5360
5361 *spapp = spa;
5362
5363 return (0);
5364 }
5365
5366 int
5367 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5368 nvlist_t *policy, nvlist_t **config)
5369 {
5370 return (spa_open_common(name, spapp, tag, policy, config));
5371 }
5372
5373 int
5374 spa_open(const char *name, spa_t **spapp, const void *tag)
5375 {
5376 return (spa_open_common(name, spapp, tag, NULL, NULL));
5377 }
5378
5379 /*
5380 * Lookup the given spa_t, incrementing the inject count in the process,
5381 * preventing it from being exported or destroyed.
5382 */
5383 spa_t *
5384 spa_inject_addref(char *name)
5385 {
5386 spa_t *spa;
5387
5388 mutex_enter(&spa_namespace_lock);
5389 if ((spa = spa_lookup(name)) == NULL) {
5390 mutex_exit(&spa_namespace_lock);
5391 return (NULL);
5392 }
5393 spa->spa_inject_ref++;
5394 mutex_exit(&spa_namespace_lock);
5395
5396 return (spa);
5397 }
5398
5399 void
5400 spa_inject_delref(spa_t *spa)
5401 {
5402 mutex_enter(&spa_namespace_lock);
5403 spa->spa_inject_ref--;
5404 mutex_exit(&spa_namespace_lock);
5405 }
5406
5407 /*
5408 * Add spares device information to the nvlist.
5409 */
5410 static void
5411 spa_add_spares(spa_t *spa, nvlist_t *config)
5412 {
5413 nvlist_t **spares;
5414 uint_t i, nspares;
5415 nvlist_t *nvroot;
5416 uint64_t guid;
5417 vdev_stat_t *vs;
5418 uint_t vsc;
5419 uint64_t pool;
5420
5421 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5422
5423 if (spa->spa_spares.sav_count == 0)
5424 return;
5425
5426 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5427 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5428 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5429 if (nspares != 0) {
5430 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5431 (const nvlist_t * const *)spares, nspares);
5432 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5433 &spares, &nspares));
5434
5435 /*
5436 * Go through and find any spares which have since been
5437 * repurposed as an active spare. If this is the case, update
5438 * their status appropriately.
5439 */
5440 for (i = 0; i < nspares; i++) {
5441 guid = fnvlist_lookup_uint64(spares[i],
5442 ZPOOL_CONFIG_GUID);
5443 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5444 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5445 if (spa_spare_exists(guid, &pool, NULL) &&
5446 pool != 0ULL) {
5447 vs->vs_state = VDEV_STATE_CANT_OPEN;
5448 vs->vs_aux = VDEV_AUX_SPARED;
5449 } else {
5450 vs->vs_state =
5451 spa->spa_spares.sav_vdevs[i]->vdev_state;
5452 }
5453 }
5454 }
5455 }
5456
5457 /*
5458 * Add l2cache device information to the nvlist, including vdev stats.
5459 */
5460 static void
5461 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5462 {
5463 nvlist_t **l2cache;
5464 uint_t i, j, nl2cache;
5465 nvlist_t *nvroot;
5466 uint64_t guid;
5467 vdev_t *vd;
5468 vdev_stat_t *vs;
5469 uint_t vsc;
5470
5471 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5472
5473 if (spa->spa_l2cache.sav_count == 0)
5474 return;
5475
5476 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5477 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5478 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5479 if (nl2cache != 0) {
5480 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5481 (const nvlist_t * const *)l2cache, nl2cache);
5482 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5483 &l2cache, &nl2cache));
5484
5485 /*
5486 * Update level 2 cache device stats.
5487 */
5488
5489 for (i = 0; i < nl2cache; i++) {
5490 guid = fnvlist_lookup_uint64(l2cache[i],
5491 ZPOOL_CONFIG_GUID);
5492
5493 vd = NULL;
5494 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5495 if (guid ==
5496 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5497 vd = spa->spa_l2cache.sav_vdevs[j];
5498 break;
5499 }
5500 }
5501 ASSERT(vd != NULL);
5502
5503 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5504 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5505 vdev_get_stats(vd, vs);
5506 vdev_config_generate_stats(vd, l2cache[i]);
5507
5508 }
5509 }
5510 }
5511
5512 static void
5513 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5514 {
5515 zap_cursor_t zc;
5516 zap_attribute_t za;
5517
5518 if (spa->spa_feat_for_read_obj != 0) {
5519 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5520 spa->spa_feat_for_read_obj);
5521 zap_cursor_retrieve(&zc, &za) == 0;
5522 zap_cursor_advance(&zc)) {
5523 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5524 za.za_num_integers == 1);
5525 VERIFY0(nvlist_add_uint64(features, za.za_name,
5526 za.za_first_integer));
5527 }
5528 zap_cursor_fini(&zc);
5529 }
5530
5531 if (spa->spa_feat_for_write_obj != 0) {
5532 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5533 spa->spa_feat_for_write_obj);
5534 zap_cursor_retrieve(&zc, &za) == 0;
5535 zap_cursor_advance(&zc)) {
5536 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5537 za.za_num_integers == 1);
5538 VERIFY0(nvlist_add_uint64(features, za.za_name,
5539 za.za_first_integer));
5540 }
5541 zap_cursor_fini(&zc);
5542 }
5543 }
5544
5545 static void
5546 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5547 {
5548 int i;
5549
5550 for (i = 0; i < SPA_FEATURES; i++) {
5551 zfeature_info_t feature = spa_feature_table[i];
5552 uint64_t refcount;
5553
5554 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5555 continue;
5556
5557 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5558 }
5559 }
5560
5561 /*
5562 * Store a list of pool features and their reference counts in the
5563 * config.
5564 *
5565 * The first time this is called on a spa, allocate a new nvlist, fetch
5566 * the pool features and reference counts from disk, then save the list
5567 * in the spa. In subsequent calls on the same spa use the saved nvlist
5568 * and refresh its values from the cached reference counts. This
5569 * ensures we don't block here on I/O on a suspended pool so 'zpool
5570 * clear' can resume the pool.
5571 */
5572 static void
5573 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5574 {
5575 nvlist_t *features;
5576
5577 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5578
5579 mutex_enter(&spa->spa_feat_stats_lock);
5580 features = spa->spa_feat_stats;
5581
5582 if (features != NULL) {
5583 spa_feature_stats_from_cache(spa, features);
5584 } else {
5585 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5586 spa->spa_feat_stats = features;
5587 spa_feature_stats_from_disk(spa, features);
5588 }
5589
5590 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5591 features));
5592
5593 mutex_exit(&spa->spa_feat_stats_lock);
5594 }
5595
5596 int
5597 spa_get_stats(const char *name, nvlist_t **config,
5598 char *altroot, size_t buflen)
5599 {
5600 int error;
5601 spa_t *spa;
5602
5603 *config = NULL;
5604 error = spa_open_common(name, &spa, FTAG, NULL, config);
5605
5606 if (spa != NULL) {
5607 /*
5608 * This still leaves a window of inconsistency where the spares
5609 * or l2cache devices could change and the config would be
5610 * self-inconsistent.
5611 */
5612 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5613
5614 if (*config != NULL) {
5615 uint64_t loadtimes[2];
5616
5617 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5618 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5619 fnvlist_add_uint64_array(*config,
5620 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5621
5622 fnvlist_add_uint64(*config,
5623 ZPOOL_CONFIG_ERRCOUNT,
5624 spa_approx_errlog_size(spa));
5625
5626 if (spa_suspended(spa)) {
5627 fnvlist_add_uint64(*config,
5628 ZPOOL_CONFIG_SUSPENDED,
5629 spa->spa_failmode);
5630 fnvlist_add_uint64(*config,
5631 ZPOOL_CONFIG_SUSPENDED_REASON,
5632 spa->spa_suspended);
5633 }
5634
5635 spa_add_spares(spa, *config);
5636 spa_add_l2cache(spa, *config);
5637 spa_add_feature_stats(spa, *config);
5638 }
5639 }
5640
5641 /*
5642 * We want to get the alternate root even for faulted pools, so we cheat
5643 * and call spa_lookup() directly.
5644 */
5645 if (altroot) {
5646 if (spa == NULL) {
5647 mutex_enter(&spa_namespace_lock);
5648 spa = spa_lookup(name);
5649 if (spa)
5650 spa_altroot(spa, altroot, buflen);
5651 else
5652 altroot[0] = '\0';
5653 spa = NULL;
5654 mutex_exit(&spa_namespace_lock);
5655 } else {
5656 spa_altroot(spa, altroot, buflen);
5657 }
5658 }
5659
5660 if (spa != NULL) {
5661 spa_config_exit(spa, SCL_CONFIG, FTAG);
5662 spa_close(spa, FTAG);
5663 }
5664
5665 return (error);
5666 }
5667
5668 /*
5669 * Validate that the auxiliary device array is well formed. We must have an
5670 * array of nvlists, each which describes a valid leaf vdev. If this is an
5671 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5672 * specified, as long as they are well-formed.
5673 */
5674 static int
5675 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5676 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5677 vdev_labeltype_t label)
5678 {
5679 nvlist_t **dev;
5680 uint_t i, ndev;
5681 vdev_t *vd;
5682 int error;
5683
5684 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5685
5686 /*
5687 * It's acceptable to have no devs specified.
5688 */
5689 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5690 return (0);
5691
5692 if (ndev == 0)
5693 return (SET_ERROR(EINVAL));
5694
5695 /*
5696 * Make sure the pool is formatted with a version that supports this
5697 * device type.
5698 */
5699 if (spa_version(spa) < version)
5700 return (SET_ERROR(ENOTSUP));
5701
5702 /*
5703 * Set the pending device list so we correctly handle device in-use
5704 * checking.
5705 */
5706 sav->sav_pending = dev;
5707 sav->sav_npending = ndev;
5708
5709 for (i = 0; i < ndev; i++) {
5710 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5711 mode)) != 0)
5712 goto out;
5713
5714 if (!vd->vdev_ops->vdev_op_leaf) {
5715 vdev_free(vd);
5716 error = SET_ERROR(EINVAL);
5717 goto out;
5718 }
5719
5720 vd->vdev_top = vd;
5721
5722 if ((error = vdev_open(vd)) == 0 &&
5723 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5724 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5725 vd->vdev_guid);
5726 }
5727
5728 vdev_free(vd);
5729
5730 if (error &&
5731 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5732 goto out;
5733 else
5734 error = 0;
5735 }
5736
5737 out:
5738 sav->sav_pending = NULL;
5739 sav->sav_npending = 0;
5740 return (error);
5741 }
5742
5743 static int
5744 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5745 {
5746 int error;
5747
5748 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5749
5750 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5751 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5752 VDEV_LABEL_SPARE)) != 0) {
5753 return (error);
5754 }
5755
5756 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5757 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5758 VDEV_LABEL_L2CACHE));
5759 }
5760
5761 static void
5762 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5763 const char *config)
5764 {
5765 int i;
5766
5767 if (sav->sav_config != NULL) {
5768 nvlist_t **olddevs;
5769 uint_t oldndevs;
5770 nvlist_t **newdevs;
5771
5772 /*
5773 * Generate new dev list by concatenating with the
5774 * current dev list.
5775 */
5776 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5777 &olddevs, &oldndevs));
5778
5779 newdevs = kmem_alloc(sizeof (void *) *
5780 (ndevs + oldndevs), KM_SLEEP);
5781 for (i = 0; i < oldndevs; i++)
5782 newdevs[i] = fnvlist_dup(olddevs[i]);
5783 for (i = 0; i < ndevs; i++)
5784 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5785
5786 fnvlist_remove(sav->sav_config, config);
5787
5788 fnvlist_add_nvlist_array(sav->sav_config, config,
5789 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5790 for (i = 0; i < oldndevs + ndevs; i++)
5791 nvlist_free(newdevs[i]);
5792 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5793 } else {
5794 /*
5795 * Generate a new dev list.
5796 */
5797 sav->sav_config = fnvlist_alloc();
5798 fnvlist_add_nvlist_array(sav->sav_config, config,
5799 (const nvlist_t * const *)devs, ndevs);
5800 }
5801 }
5802
5803 /*
5804 * Stop and drop level 2 ARC devices
5805 */
5806 void
5807 spa_l2cache_drop(spa_t *spa)
5808 {
5809 vdev_t *vd;
5810 int i;
5811 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5812
5813 for (i = 0; i < sav->sav_count; i++) {
5814 uint64_t pool;
5815
5816 vd = sav->sav_vdevs[i];
5817 ASSERT(vd != NULL);
5818
5819 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5820 pool != 0ULL && l2arc_vdev_present(vd))
5821 l2arc_remove_vdev(vd);
5822 }
5823 }
5824
5825 /*
5826 * Verify encryption parameters for spa creation. If we are encrypting, we must
5827 * have the encryption feature flag enabled.
5828 */
5829 static int
5830 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5831 boolean_t has_encryption)
5832 {
5833 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5834 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5835 !has_encryption)
5836 return (SET_ERROR(ENOTSUP));
5837
5838 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5839 }
5840
5841 /*
5842 * Pool Creation
5843 */
5844 int
5845 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5846 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5847 {
5848 spa_t *spa;
5849 const char *altroot = NULL;
5850 vdev_t *rvd;
5851 dsl_pool_t *dp;
5852 dmu_tx_t *tx;
5853 int error = 0;
5854 uint64_t txg = TXG_INITIAL;
5855 nvlist_t **spares, **l2cache;
5856 uint_t nspares, nl2cache;
5857 uint64_t version, obj, ndraid = 0;
5858 boolean_t has_features;
5859 boolean_t has_encryption;
5860 boolean_t has_allocclass;
5861 spa_feature_t feat;
5862 const char *feat_name;
5863 const char *poolname;
5864 nvlist_t *nvl;
5865
5866 if (props == NULL ||
5867 nvlist_lookup_string(props, "tname", &poolname) != 0)
5868 poolname = (char *)pool;
5869
5870 /*
5871 * If this pool already exists, return failure.
5872 */
5873 mutex_enter(&spa_namespace_lock);
5874 if (spa_lookup(poolname) != NULL) {
5875 mutex_exit(&spa_namespace_lock);
5876 return (SET_ERROR(EEXIST));
5877 }
5878
5879 /*
5880 * Allocate a new spa_t structure.
5881 */
5882 nvl = fnvlist_alloc();
5883 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5884 (void) nvlist_lookup_string(props,
5885 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5886 spa = spa_add(poolname, nvl, altroot);
5887 fnvlist_free(nvl);
5888 spa_activate(spa, spa_mode_global);
5889
5890 if (props && (error = spa_prop_validate(spa, props))) {
5891 spa_deactivate(spa);
5892 spa_remove(spa);
5893 mutex_exit(&spa_namespace_lock);
5894 return (error);
5895 }
5896
5897 /*
5898 * Temporary pool names should never be written to disk.
5899 */
5900 if (poolname != pool)
5901 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5902
5903 has_features = B_FALSE;
5904 has_encryption = B_FALSE;
5905 has_allocclass = B_FALSE;
5906 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5907 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5908 if (zpool_prop_feature(nvpair_name(elem))) {
5909 has_features = B_TRUE;
5910
5911 feat_name = strchr(nvpair_name(elem), '@') + 1;
5912 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5913 if (feat == SPA_FEATURE_ENCRYPTION)
5914 has_encryption = B_TRUE;
5915 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5916 has_allocclass = B_TRUE;
5917 }
5918 }
5919
5920 /* verify encryption params, if they were provided */
5921 if (dcp != NULL) {
5922 error = spa_create_check_encryption_params(dcp, has_encryption);
5923 if (error != 0) {
5924 spa_deactivate(spa);
5925 spa_remove(spa);
5926 mutex_exit(&spa_namespace_lock);
5927 return (error);
5928 }
5929 }
5930 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5931 spa_deactivate(spa);
5932 spa_remove(spa);
5933 mutex_exit(&spa_namespace_lock);
5934 return (ENOTSUP);
5935 }
5936
5937 if (has_features || nvlist_lookup_uint64(props,
5938 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5939 version = SPA_VERSION;
5940 }
5941 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5942
5943 spa->spa_first_txg = txg;
5944 spa->spa_uberblock.ub_txg = txg - 1;
5945 spa->spa_uberblock.ub_version = version;
5946 spa->spa_ubsync = spa->spa_uberblock;
5947 spa->spa_load_state = SPA_LOAD_CREATE;
5948 spa->spa_removing_phys.sr_state = DSS_NONE;
5949 spa->spa_removing_phys.sr_removing_vdev = -1;
5950 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5951 spa->spa_indirect_vdevs_loaded = B_TRUE;
5952
5953 /*
5954 * Create "The Godfather" zio to hold all async IOs
5955 */
5956 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5957 KM_SLEEP);
5958 for (int i = 0; i < max_ncpus; i++) {
5959 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5960 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5961 ZIO_FLAG_GODFATHER);
5962 }
5963
5964 /*
5965 * Create the root vdev.
5966 */
5967 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5968
5969 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5970
5971 ASSERT(error != 0 || rvd != NULL);
5972 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5973
5974 if (error == 0 && !zfs_allocatable_devs(nvroot))
5975 error = SET_ERROR(EINVAL);
5976
5977 if (error == 0 &&
5978 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5979 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5980 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5981 /*
5982 * instantiate the metaslab groups (this will dirty the vdevs)
5983 * we can no longer error exit past this point
5984 */
5985 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5986 vdev_t *vd = rvd->vdev_child[c];
5987
5988 vdev_metaslab_set_size(vd);
5989 vdev_expand(vd, txg);
5990 }
5991 }
5992
5993 spa_config_exit(spa, SCL_ALL, FTAG);
5994
5995 if (error != 0) {
5996 spa_unload(spa);
5997 spa_deactivate(spa);
5998 spa_remove(spa);
5999 mutex_exit(&spa_namespace_lock);
6000 return (error);
6001 }
6002
6003 /*
6004 * Get the list of spares, if specified.
6005 */
6006 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6007 &spares, &nspares) == 0) {
6008 spa->spa_spares.sav_config = fnvlist_alloc();
6009 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6010 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6011 nspares);
6012 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6013 spa_load_spares(spa);
6014 spa_config_exit(spa, SCL_ALL, FTAG);
6015 spa->spa_spares.sav_sync = B_TRUE;
6016 }
6017
6018 /*
6019 * Get the list of level 2 cache devices, if specified.
6020 */
6021 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6022 &l2cache, &nl2cache) == 0) {
6023 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6024 NV_UNIQUE_NAME, KM_SLEEP));
6025 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6026 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6027 nl2cache);
6028 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6029 spa_load_l2cache(spa);
6030 spa_config_exit(spa, SCL_ALL, FTAG);
6031 spa->spa_l2cache.sav_sync = B_TRUE;
6032 }
6033
6034 spa->spa_is_initializing = B_TRUE;
6035 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6036 spa->spa_is_initializing = B_FALSE;
6037
6038 /*
6039 * Create DDTs (dedup tables).
6040 */
6041 ddt_create(spa);
6042 /*
6043 * Create BRT table and BRT table object.
6044 */
6045 brt_create(spa);
6046
6047 spa_update_dspace(spa);
6048
6049 tx = dmu_tx_create_assigned(dp, txg);
6050
6051 /*
6052 * Create the pool's history object.
6053 */
6054 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6055 spa_history_create_obj(spa, tx);
6056
6057 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6058 spa_history_log_version(spa, "create", tx);
6059
6060 /*
6061 * Create the pool config object.
6062 */
6063 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6064 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6065 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6066
6067 if (zap_add(spa->spa_meta_objset,
6068 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6069 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6070 cmn_err(CE_PANIC, "failed to add pool config");
6071 }
6072
6073 if (zap_add(spa->spa_meta_objset,
6074 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6075 sizeof (uint64_t), 1, &version, tx) != 0) {
6076 cmn_err(CE_PANIC, "failed to add pool version");
6077 }
6078
6079 /* Newly created pools with the right version are always deflated. */
6080 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6081 spa->spa_deflate = TRUE;
6082 if (zap_add(spa->spa_meta_objset,
6083 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6084 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6085 cmn_err(CE_PANIC, "failed to add deflate");
6086 }
6087 }
6088
6089 /*
6090 * Create the deferred-free bpobj. Turn off compression
6091 * because sync-to-convergence takes longer if the blocksize
6092 * keeps changing.
6093 */
6094 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6095 dmu_object_set_compress(spa->spa_meta_objset, obj,
6096 ZIO_COMPRESS_OFF, tx);
6097 if (zap_add(spa->spa_meta_objset,
6098 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6099 sizeof (uint64_t), 1, &obj, tx) != 0) {
6100 cmn_err(CE_PANIC, "failed to add bpobj");
6101 }
6102 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6103 spa->spa_meta_objset, obj));
6104
6105 /*
6106 * Generate some random noise for salted checksums to operate on.
6107 */
6108 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6109 sizeof (spa->spa_cksum_salt.zcs_bytes));
6110
6111 /*
6112 * Set pool properties.
6113 */
6114 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6115 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6116 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6117 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6118 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6119 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6120
6121 if (props != NULL) {
6122 spa_configfile_set(spa, props, B_FALSE);
6123 spa_sync_props(props, tx);
6124 }
6125
6126 for (int i = 0; i < ndraid; i++)
6127 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6128
6129 dmu_tx_commit(tx);
6130
6131 spa->spa_sync_on = B_TRUE;
6132 txg_sync_start(dp);
6133 mmp_thread_start(spa);
6134 txg_wait_synced(dp, txg);
6135
6136 spa_spawn_aux_threads(spa);
6137
6138 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6139
6140 /*
6141 * Don't count references from objsets that are already closed
6142 * and are making their way through the eviction process.
6143 */
6144 spa_evicting_os_wait(spa);
6145 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6146 spa->spa_load_state = SPA_LOAD_NONE;
6147
6148 spa_import_os(spa);
6149
6150 mutex_exit(&spa_namespace_lock);
6151
6152 return (0);
6153 }
6154
6155 /*
6156 * Import a non-root pool into the system.
6157 */
6158 int
6159 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6160 {
6161 spa_t *spa;
6162 const char *altroot = NULL;
6163 spa_load_state_t state = SPA_LOAD_IMPORT;
6164 zpool_load_policy_t policy;
6165 spa_mode_t mode = spa_mode_global;
6166 uint64_t readonly = B_FALSE;
6167 int error;
6168 nvlist_t *nvroot;
6169 nvlist_t **spares, **l2cache;
6170 uint_t nspares, nl2cache;
6171
6172 /*
6173 * If a pool with this name exists, return failure.
6174 */
6175 mutex_enter(&spa_namespace_lock);
6176 if (spa_lookup(pool) != NULL) {
6177 mutex_exit(&spa_namespace_lock);
6178 return (SET_ERROR(EEXIST));
6179 }
6180
6181 /*
6182 * Create and initialize the spa structure.
6183 */
6184 (void) nvlist_lookup_string(props,
6185 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6186 (void) nvlist_lookup_uint64(props,
6187 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6188 if (readonly)
6189 mode = SPA_MODE_READ;
6190 spa = spa_add(pool, config, altroot);
6191 spa->spa_import_flags = flags;
6192
6193 /*
6194 * Verbatim import - Take a pool and insert it into the namespace
6195 * as if it had been loaded at boot.
6196 */
6197 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6198 if (props != NULL)
6199 spa_configfile_set(spa, props, B_FALSE);
6200
6201 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6202 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6203 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6204 mutex_exit(&spa_namespace_lock);
6205 return (0);
6206 }
6207
6208 spa_activate(spa, mode);
6209
6210 /*
6211 * Don't start async tasks until we know everything is healthy.
6212 */
6213 spa_async_suspend(spa);
6214
6215 zpool_get_load_policy(config, &policy);
6216 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6217 state = SPA_LOAD_RECOVER;
6218
6219 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6220
6221 if (state != SPA_LOAD_RECOVER) {
6222 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6223 zfs_dbgmsg("spa_import: importing %s", pool);
6224 } else {
6225 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6226 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6227 }
6228 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6229
6230 /*
6231 * Propagate anything learned while loading the pool and pass it
6232 * back to caller (i.e. rewind info, missing devices, etc).
6233 */
6234 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6235
6236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6237 /*
6238 * Toss any existing sparelist, as it doesn't have any validity
6239 * anymore, and conflicts with spa_has_spare().
6240 */
6241 if (spa->spa_spares.sav_config) {
6242 nvlist_free(spa->spa_spares.sav_config);
6243 spa->spa_spares.sav_config = NULL;
6244 spa_load_spares(spa);
6245 }
6246 if (spa->spa_l2cache.sav_config) {
6247 nvlist_free(spa->spa_l2cache.sav_config);
6248 spa->spa_l2cache.sav_config = NULL;
6249 spa_load_l2cache(spa);
6250 }
6251
6252 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6253 spa_config_exit(spa, SCL_ALL, FTAG);
6254
6255 if (props != NULL)
6256 spa_configfile_set(spa, props, B_FALSE);
6257
6258 if (error != 0 || (props && spa_writeable(spa) &&
6259 (error = spa_prop_set(spa, props)))) {
6260 spa_unload(spa);
6261 spa_deactivate(spa);
6262 spa_remove(spa);
6263 mutex_exit(&spa_namespace_lock);
6264 return (error);
6265 }
6266
6267 spa_async_resume(spa);
6268
6269 /*
6270 * Override any spares and level 2 cache devices as specified by
6271 * the user, as these may have correct device names/devids, etc.
6272 */
6273 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6274 &spares, &nspares) == 0) {
6275 if (spa->spa_spares.sav_config)
6276 fnvlist_remove(spa->spa_spares.sav_config,
6277 ZPOOL_CONFIG_SPARES);
6278 else
6279 spa->spa_spares.sav_config = fnvlist_alloc();
6280 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6281 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6282 nspares);
6283 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6284 spa_load_spares(spa);
6285 spa_config_exit(spa, SCL_ALL, FTAG);
6286 spa->spa_spares.sav_sync = B_TRUE;
6287 }
6288 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6289 &l2cache, &nl2cache) == 0) {
6290 if (spa->spa_l2cache.sav_config)
6291 fnvlist_remove(spa->spa_l2cache.sav_config,
6292 ZPOOL_CONFIG_L2CACHE);
6293 else
6294 spa->spa_l2cache.sav_config = fnvlist_alloc();
6295 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6296 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6297 nl2cache);
6298 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6299 spa_load_l2cache(spa);
6300 spa_config_exit(spa, SCL_ALL, FTAG);
6301 spa->spa_l2cache.sav_sync = B_TRUE;
6302 }
6303
6304 /*
6305 * Check for any removed devices.
6306 */
6307 if (spa->spa_autoreplace) {
6308 spa_aux_check_removed(&spa->spa_spares);
6309 spa_aux_check_removed(&spa->spa_l2cache);
6310 }
6311
6312 if (spa_writeable(spa)) {
6313 /*
6314 * Update the config cache to include the newly-imported pool.
6315 */
6316 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6317 }
6318
6319 /*
6320 * It's possible that the pool was expanded while it was exported.
6321 * We kick off an async task to handle this for us.
6322 */
6323 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6324
6325 spa_history_log_version(spa, "import", NULL);
6326
6327 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6328
6329 mutex_exit(&spa_namespace_lock);
6330
6331 zvol_create_minors_recursive(pool);
6332
6333 spa_import_os(spa);
6334
6335 return (0);
6336 }
6337
6338 nvlist_t *
6339 spa_tryimport(nvlist_t *tryconfig)
6340 {
6341 nvlist_t *config = NULL;
6342 const char *poolname, *cachefile;
6343 spa_t *spa;
6344 uint64_t state;
6345 int error;
6346 zpool_load_policy_t policy;
6347
6348 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6349 return (NULL);
6350
6351 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6352 return (NULL);
6353
6354 /*
6355 * Create and initialize the spa structure.
6356 */
6357 mutex_enter(&spa_namespace_lock);
6358 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6359 spa_activate(spa, SPA_MODE_READ);
6360
6361 /*
6362 * Rewind pool if a max txg was provided.
6363 */
6364 zpool_get_load_policy(spa->spa_config, &policy);
6365 if (policy.zlp_txg != UINT64_MAX) {
6366 spa->spa_load_max_txg = policy.zlp_txg;
6367 spa->spa_extreme_rewind = B_TRUE;
6368 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6369 poolname, (longlong_t)policy.zlp_txg);
6370 } else {
6371 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6372 }
6373
6374 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6375 == 0) {
6376 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6377 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6378 } else {
6379 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6380 }
6381
6382 /*
6383 * spa_import() relies on a pool config fetched by spa_try_import()
6384 * for spare/cache devices. Import flags are not passed to
6385 * spa_tryimport(), which makes it return early due to a missing log
6386 * device and missing retrieving the cache device and spare eventually.
6387 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6388 * the correct configuration regardless of the missing log device.
6389 */
6390 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6391
6392 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6393
6394 /*
6395 * If 'tryconfig' was at least parsable, return the current config.
6396 */
6397 if (spa->spa_root_vdev != NULL) {
6398 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6399 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6400 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6401 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6402 spa->spa_uberblock.ub_timestamp);
6403 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6404 spa->spa_load_info);
6405 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6406 spa->spa_errata);
6407
6408 /*
6409 * If the bootfs property exists on this pool then we
6410 * copy it out so that external consumers can tell which
6411 * pools are bootable.
6412 */
6413 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6414 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6415
6416 /*
6417 * We have to play games with the name since the
6418 * pool was opened as TRYIMPORT_NAME.
6419 */
6420 if (dsl_dsobj_to_dsname(spa_name(spa),
6421 spa->spa_bootfs, tmpname) == 0) {
6422 char *cp;
6423 char *dsname;
6424
6425 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6426
6427 cp = strchr(tmpname, '/');
6428 if (cp == NULL) {
6429 (void) strlcpy(dsname, tmpname,
6430 MAXPATHLEN);
6431 } else {
6432 (void) snprintf(dsname, MAXPATHLEN,
6433 "%s/%s", poolname, ++cp);
6434 }
6435 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6436 dsname);
6437 kmem_free(dsname, MAXPATHLEN);
6438 }
6439 kmem_free(tmpname, MAXPATHLEN);
6440 }
6441
6442 /*
6443 * Add the list of hot spares and level 2 cache devices.
6444 */
6445 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6446 spa_add_spares(spa, config);
6447 spa_add_l2cache(spa, config);
6448 spa_config_exit(spa, SCL_CONFIG, FTAG);
6449 }
6450
6451 spa_unload(spa);
6452 spa_deactivate(spa);
6453 spa_remove(spa);
6454 mutex_exit(&spa_namespace_lock);
6455
6456 return (config);
6457 }
6458
6459 /*
6460 * Pool export/destroy
6461 *
6462 * The act of destroying or exporting a pool is very simple. We make sure there
6463 * is no more pending I/O and any references to the pool are gone. Then, we
6464 * update the pool state and sync all the labels to disk, removing the
6465 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6466 * we don't sync the labels or remove the configuration cache.
6467 */
6468 static int
6469 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6470 boolean_t force, boolean_t hardforce)
6471 {
6472 int error;
6473 spa_t *spa;
6474
6475 if (oldconfig)
6476 *oldconfig = NULL;
6477
6478 if (!(spa_mode_global & SPA_MODE_WRITE))
6479 return (SET_ERROR(EROFS));
6480
6481 mutex_enter(&spa_namespace_lock);
6482 if ((spa = spa_lookup(pool)) == NULL) {
6483 mutex_exit(&spa_namespace_lock);
6484 return (SET_ERROR(ENOENT));
6485 }
6486
6487 if (spa->spa_is_exporting) {
6488 /* the pool is being exported by another thread */
6489 mutex_exit(&spa_namespace_lock);
6490 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6491 }
6492 spa->spa_is_exporting = B_TRUE;
6493
6494 /*
6495 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6496 * reacquire the namespace lock, and see if we can export.
6497 */
6498 spa_open_ref(spa, FTAG);
6499 mutex_exit(&spa_namespace_lock);
6500 spa_async_suspend(spa);
6501 if (spa->spa_zvol_taskq) {
6502 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6503 taskq_wait(spa->spa_zvol_taskq);
6504 }
6505 mutex_enter(&spa_namespace_lock);
6506 spa_close(spa, FTAG);
6507
6508 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6509 goto export_spa;
6510 /*
6511 * The pool will be in core if it's openable, in which case we can
6512 * modify its state. Objsets may be open only because they're dirty,
6513 * so we have to force it to sync before checking spa_refcnt.
6514 */
6515 if (spa->spa_sync_on) {
6516 txg_wait_synced(spa->spa_dsl_pool, 0);
6517 spa_evicting_os_wait(spa);
6518 }
6519
6520 /*
6521 * A pool cannot be exported or destroyed if there are active
6522 * references. If we are resetting a pool, allow references by
6523 * fault injection handlers.
6524 */
6525 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6526 error = SET_ERROR(EBUSY);
6527 goto fail;
6528 }
6529
6530 if (spa->spa_sync_on) {
6531 vdev_t *rvd = spa->spa_root_vdev;
6532 /*
6533 * A pool cannot be exported if it has an active shared spare.
6534 * This is to prevent other pools stealing the active spare
6535 * from an exported pool. At user's own will, such pool can
6536 * be forcedly exported.
6537 */
6538 if (!force && new_state == POOL_STATE_EXPORTED &&
6539 spa_has_active_shared_spare(spa)) {
6540 error = SET_ERROR(EXDEV);
6541 goto fail;
6542 }
6543
6544 /*
6545 * We're about to export or destroy this pool. Make sure
6546 * we stop all initialization and trim activity here before
6547 * we set the spa_final_txg. This will ensure that all
6548 * dirty data resulting from the initialization is
6549 * committed to disk before we unload the pool.
6550 */
6551 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6552 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6553 vdev_autotrim_stop_all(spa);
6554 vdev_rebuild_stop_all(spa);
6555
6556 /*
6557 * We want this to be reflected on every label,
6558 * so mark them all dirty. spa_unload() will do the
6559 * final sync that pushes these changes out.
6560 */
6561 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6562 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6563 spa->spa_state = new_state;
6564 vdev_config_dirty(rvd);
6565 spa_config_exit(spa, SCL_ALL, FTAG);
6566 }
6567
6568 /*
6569 * If the log space map feature is enabled and the pool is
6570 * getting exported (but not destroyed), we want to spend some
6571 * time flushing as many metaslabs as we can in an attempt to
6572 * destroy log space maps and save import time. This has to be
6573 * done before we set the spa_final_txg, otherwise
6574 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6575 * spa_should_flush_logs_on_unload() should be called after
6576 * spa_state has been set to the new_state.
6577 */
6578 if (spa_should_flush_logs_on_unload(spa))
6579 spa_unload_log_sm_flush_all(spa);
6580
6581 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6582 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6583 spa->spa_final_txg = spa_last_synced_txg(spa) +
6584 TXG_DEFER_SIZE + 1;
6585 spa_config_exit(spa, SCL_ALL, FTAG);
6586 }
6587 }
6588
6589 export_spa:
6590 spa_export_os(spa);
6591
6592 if (new_state == POOL_STATE_DESTROYED)
6593 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6594 else if (new_state == POOL_STATE_EXPORTED)
6595 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6596
6597 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6598 spa_unload(spa);
6599 spa_deactivate(spa);
6600 }
6601
6602 if (oldconfig && spa->spa_config)
6603 *oldconfig = fnvlist_dup(spa->spa_config);
6604
6605 if (new_state != POOL_STATE_UNINITIALIZED) {
6606 if (!hardforce)
6607 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6608 spa_remove(spa);
6609 } else {
6610 /*
6611 * If spa_remove() is not called for this spa_t and
6612 * there is any possibility that it can be reused,
6613 * we make sure to reset the exporting flag.
6614 */
6615 spa->spa_is_exporting = B_FALSE;
6616 }
6617
6618 mutex_exit(&spa_namespace_lock);
6619 return (0);
6620
6621 fail:
6622 spa->spa_is_exporting = B_FALSE;
6623 spa_async_resume(spa);
6624 mutex_exit(&spa_namespace_lock);
6625 return (error);
6626 }
6627
6628 /*
6629 * Destroy a storage pool.
6630 */
6631 int
6632 spa_destroy(const char *pool)
6633 {
6634 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6635 B_FALSE, B_FALSE));
6636 }
6637
6638 /*
6639 * Export a storage pool.
6640 */
6641 int
6642 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6643 boolean_t hardforce)
6644 {
6645 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6646 force, hardforce));
6647 }
6648
6649 /*
6650 * Similar to spa_export(), this unloads the spa_t without actually removing it
6651 * from the namespace in any way.
6652 */
6653 int
6654 spa_reset(const char *pool)
6655 {
6656 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6657 B_FALSE, B_FALSE));
6658 }
6659
6660 /*
6661 * ==========================================================================
6662 * Device manipulation
6663 * ==========================================================================
6664 */
6665
6666 /*
6667 * This is called as a synctask to increment the draid feature flag
6668 */
6669 static void
6670 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6671 {
6672 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6673 int draid = (int)(uintptr_t)arg;
6674
6675 for (int c = 0; c < draid; c++)
6676 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6677 }
6678
6679 /*
6680 * Add a device to a storage pool.
6681 */
6682 int
6683 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6684 {
6685 uint64_t txg, ndraid = 0;
6686 int error;
6687 vdev_t *rvd = spa->spa_root_vdev;
6688 vdev_t *vd, *tvd;
6689 nvlist_t **spares, **l2cache;
6690 uint_t nspares, nl2cache;
6691
6692 ASSERT(spa_writeable(spa));
6693
6694 txg = spa_vdev_enter(spa);
6695
6696 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6697 VDEV_ALLOC_ADD)) != 0)
6698 return (spa_vdev_exit(spa, NULL, txg, error));
6699
6700 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6701
6702 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6703 &nspares) != 0)
6704 nspares = 0;
6705
6706 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6707 &nl2cache) != 0)
6708 nl2cache = 0;
6709
6710 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6711 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6712
6713 if (vd->vdev_children != 0 &&
6714 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6715 return (spa_vdev_exit(spa, vd, txg, error));
6716 }
6717
6718 /*
6719 * The virtual dRAID spares must be added after vdev tree is created
6720 * and the vdev guids are generated. The guid of their associated
6721 * dRAID is stored in the config and used when opening the spare.
6722 */
6723 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6724 rvd->vdev_children)) == 0) {
6725 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6726 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6727 nspares = 0;
6728 } else {
6729 return (spa_vdev_exit(spa, vd, txg, error));
6730 }
6731
6732 /*
6733 * We must validate the spares and l2cache devices after checking the
6734 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6735 */
6736 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6737 return (spa_vdev_exit(spa, vd, txg, error));
6738
6739 /*
6740 * If we are in the middle of a device removal, we can only add
6741 * devices which match the existing devices in the pool.
6742 * If we are in the middle of a removal, or have some indirect
6743 * vdevs, we can not add raidz or dRAID top levels.
6744 */
6745 if (spa->spa_vdev_removal != NULL ||
6746 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6747 for (int c = 0; c < vd->vdev_children; c++) {
6748 tvd = vd->vdev_child[c];
6749 if (spa->spa_vdev_removal != NULL &&
6750 tvd->vdev_ashift != spa->spa_max_ashift) {
6751 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6752 }
6753 /* Fail if top level vdev is raidz or a dRAID */
6754 if (vdev_get_nparity(tvd) != 0)
6755 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6756
6757 /*
6758 * Need the top level mirror to be
6759 * a mirror of leaf vdevs only
6760 */
6761 if (tvd->vdev_ops == &vdev_mirror_ops) {
6762 for (uint64_t cid = 0;
6763 cid < tvd->vdev_children; cid++) {
6764 vdev_t *cvd = tvd->vdev_child[cid];
6765 if (!cvd->vdev_ops->vdev_op_leaf) {
6766 return (spa_vdev_exit(spa, vd,
6767 txg, EINVAL));
6768 }
6769 }
6770 }
6771 }
6772 }
6773
6774 for (int c = 0; c < vd->vdev_children; c++) {
6775 tvd = vd->vdev_child[c];
6776 vdev_remove_child(vd, tvd);
6777 tvd->vdev_id = rvd->vdev_children;
6778 vdev_add_child(rvd, tvd);
6779 vdev_config_dirty(tvd);
6780 }
6781
6782 if (nspares != 0) {
6783 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6784 ZPOOL_CONFIG_SPARES);
6785 spa_load_spares(spa);
6786 spa->spa_spares.sav_sync = B_TRUE;
6787 }
6788
6789 if (nl2cache != 0) {
6790 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6791 ZPOOL_CONFIG_L2CACHE);
6792 spa_load_l2cache(spa);
6793 spa->spa_l2cache.sav_sync = B_TRUE;
6794 }
6795
6796 /*
6797 * We can't increment a feature while holding spa_vdev so we
6798 * have to do it in a synctask.
6799 */
6800 if (ndraid != 0) {
6801 dmu_tx_t *tx;
6802
6803 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6804 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6805 (void *)(uintptr_t)ndraid, tx);
6806 dmu_tx_commit(tx);
6807 }
6808
6809 /*
6810 * We have to be careful when adding new vdevs to an existing pool.
6811 * If other threads start allocating from these vdevs before we
6812 * sync the config cache, and we lose power, then upon reboot we may
6813 * fail to open the pool because there are DVAs that the config cache
6814 * can't translate. Therefore, we first add the vdevs without
6815 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6816 * and then let spa_config_update() initialize the new metaslabs.
6817 *
6818 * spa_load() checks for added-but-not-initialized vdevs, so that
6819 * if we lose power at any point in this sequence, the remaining
6820 * steps will be completed the next time we load the pool.
6821 */
6822 (void) spa_vdev_exit(spa, vd, txg, 0);
6823
6824 mutex_enter(&spa_namespace_lock);
6825 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6826 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6827 mutex_exit(&spa_namespace_lock);
6828
6829 return (0);
6830 }
6831
6832 /*
6833 * Attach a device to a mirror. The arguments are the path to any device
6834 * in the mirror, and the nvroot for the new device. If the path specifies
6835 * a device that is not mirrored, we automatically insert the mirror vdev.
6836 *
6837 * If 'replacing' is specified, the new device is intended to replace the
6838 * existing device; in this case the two devices are made into their own
6839 * mirror using the 'replacing' vdev, which is functionally identical to
6840 * the mirror vdev (it actually reuses all the same ops) but has a few
6841 * extra rules: you can't attach to it after it's been created, and upon
6842 * completion of resilvering, the first disk (the one being replaced)
6843 * is automatically detached.
6844 *
6845 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6846 * should be performed instead of traditional healing reconstruction. From
6847 * an administrators perspective these are both resilver operations.
6848 */
6849 int
6850 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6851 int rebuild)
6852 {
6853 uint64_t txg, dtl_max_txg;
6854 vdev_t *rvd = spa->spa_root_vdev;
6855 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6856 vdev_ops_t *pvops;
6857 char *oldvdpath, *newvdpath;
6858 int newvd_isspare;
6859 int error;
6860
6861 ASSERT(spa_writeable(spa));
6862
6863 txg = spa_vdev_enter(spa);
6864
6865 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6866
6867 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6868 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6869 error = (spa_has_checkpoint(spa)) ?
6870 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6871 return (spa_vdev_exit(spa, NULL, txg, error));
6872 }
6873
6874 if (rebuild) {
6875 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6876 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6877
6878 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
6879 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
6880 return (spa_vdev_exit(spa, NULL, txg,
6881 ZFS_ERR_RESILVER_IN_PROGRESS));
6882 }
6883 } else {
6884 if (vdev_rebuild_active(rvd))
6885 return (spa_vdev_exit(spa, NULL, txg,
6886 ZFS_ERR_REBUILD_IN_PROGRESS));
6887 }
6888
6889 if (spa->spa_vdev_removal != NULL)
6890 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6891
6892 if (oldvd == NULL)
6893 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6894
6895 if (!oldvd->vdev_ops->vdev_op_leaf)
6896 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6897
6898 pvd = oldvd->vdev_parent;
6899
6900 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6901 VDEV_ALLOC_ATTACH) != 0)
6902 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6903
6904 if (newrootvd->vdev_children != 1)
6905 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6906
6907 newvd = newrootvd->vdev_child[0];
6908
6909 if (!newvd->vdev_ops->vdev_op_leaf)
6910 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6911
6912 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6913 return (spa_vdev_exit(spa, newrootvd, txg, error));
6914
6915 /*
6916 * log, dedup and special vdevs should not be replaced by spares.
6917 */
6918 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6919 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6920 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6921 }
6922
6923 /*
6924 * A dRAID spare can only replace a child of its parent dRAID vdev.
6925 */
6926 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6927 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6928 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6929 }
6930
6931 if (rebuild) {
6932 /*
6933 * For rebuilds, the top vdev must support reconstruction
6934 * using only space maps. This means the only allowable
6935 * vdevs types are the root vdev, a mirror, or dRAID.
6936 */
6937 tvd = pvd;
6938 if (pvd->vdev_top != NULL)
6939 tvd = pvd->vdev_top;
6940
6941 if (tvd->vdev_ops != &vdev_mirror_ops &&
6942 tvd->vdev_ops != &vdev_root_ops &&
6943 tvd->vdev_ops != &vdev_draid_ops) {
6944 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6945 }
6946 }
6947
6948 if (!replacing) {
6949 /*
6950 * For attach, the only allowable parent is a mirror or the root
6951 * vdev.
6952 */
6953 if (pvd->vdev_ops != &vdev_mirror_ops &&
6954 pvd->vdev_ops != &vdev_root_ops)
6955 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6956
6957 pvops = &vdev_mirror_ops;
6958 } else {
6959 /*
6960 * Active hot spares can only be replaced by inactive hot
6961 * spares.
6962 */
6963 if (pvd->vdev_ops == &vdev_spare_ops &&
6964 oldvd->vdev_isspare &&
6965 !spa_has_spare(spa, newvd->vdev_guid))
6966 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6967
6968 /*
6969 * If the source is a hot spare, and the parent isn't already a
6970 * spare, then we want to create a new hot spare. Otherwise, we
6971 * want to create a replacing vdev. The user is not allowed to
6972 * attach to a spared vdev child unless the 'isspare' state is
6973 * the same (spare replaces spare, non-spare replaces
6974 * non-spare).
6975 */
6976 if (pvd->vdev_ops == &vdev_replacing_ops &&
6977 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6978 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6979 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6980 newvd->vdev_isspare != oldvd->vdev_isspare) {
6981 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6982 }
6983
6984 if (newvd->vdev_isspare)
6985 pvops = &vdev_spare_ops;
6986 else
6987 pvops = &vdev_replacing_ops;
6988 }
6989
6990 /*
6991 * Make sure the new device is big enough.
6992 */
6993 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6994 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6995
6996 /*
6997 * The new device cannot have a higher alignment requirement
6998 * than the top-level vdev.
6999 */
7000 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7001 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7002
7003 /*
7004 * If this is an in-place replacement, update oldvd's path and devid
7005 * to make it distinguishable from newvd, and unopenable from now on.
7006 */
7007 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
7008 spa_strfree(oldvd->vdev_path);
7009 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
7010 KM_SLEEP);
7011 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
7012 "%s/%s", newvd->vdev_path, "old");
7013 if (oldvd->vdev_devid != NULL) {
7014 spa_strfree(oldvd->vdev_devid);
7015 oldvd->vdev_devid = NULL;
7016 }
7017 }
7018
7019 /*
7020 * If the parent is not a mirror, or if we're replacing, insert the new
7021 * mirror/replacing/spare vdev above oldvd.
7022 */
7023 if (pvd->vdev_ops != pvops)
7024 pvd = vdev_add_parent(oldvd, pvops);
7025
7026 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7027 ASSERT(pvd->vdev_ops == pvops);
7028 ASSERT(oldvd->vdev_parent == pvd);
7029
7030 /*
7031 * Extract the new device from its root and add it to pvd.
7032 */
7033 vdev_remove_child(newrootvd, newvd);
7034 newvd->vdev_id = pvd->vdev_children;
7035 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7036 vdev_add_child(pvd, newvd);
7037
7038 /*
7039 * Reevaluate the parent vdev state.
7040 */
7041 vdev_propagate_state(pvd);
7042
7043 tvd = newvd->vdev_top;
7044 ASSERT(pvd->vdev_top == tvd);
7045 ASSERT(tvd->vdev_parent == rvd);
7046
7047 vdev_config_dirty(tvd);
7048
7049 /*
7050 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7051 * for any dmu_sync-ed blocks. It will propagate upward when
7052 * spa_vdev_exit() calls vdev_dtl_reassess().
7053 */
7054 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7055
7056 vdev_dtl_dirty(newvd, DTL_MISSING,
7057 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
7058
7059 if (newvd->vdev_isspare) {
7060 spa_spare_activate(newvd);
7061 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7062 }
7063
7064 oldvdpath = spa_strdup(oldvd->vdev_path);
7065 newvdpath = spa_strdup(newvd->vdev_path);
7066 newvd_isspare = newvd->vdev_isspare;
7067
7068 /*
7069 * Mark newvd's DTL dirty in this txg.
7070 */
7071 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7072
7073 /*
7074 * Schedule the resilver or rebuild to restart in the future. We do
7075 * this to ensure that dmu_sync-ed blocks have been stitched into the
7076 * respective datasets.
7077 */
7078 if (rebuild) {
7079 newvd->vdev_rebuild_txg = txg;
7080
7081 vdev_rebuild(tvd);
7082 } else {
7083 newvd->vdev_resilver_txg = txg;
7084
7085 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7086 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7087 vdev_defer_resilver(newvd);
7088 } else {
7089 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7090 dtl_max_txg);
7091 }
7092 }
7093
7094 if (spa->spa_bootfs)
7095 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7096
7097 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7098
7099 /*
7100 * Commit the config
7101 */
7102 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7103
7104 spa_history_log_internal(spa, "vdev attach", NULL,
7105 "%s vdev=%s %s vdev=%s",
7106 replacing && newvd_isspare ? "spare in" :
7107 replacing ? "replace" : "attach", newvdpath,
7108 replacing ? "for" : "to", oldvdpath);
7109
7110 spa_strfree(oldvdpath);
7111 spa_strfree(newvdpath);
7112
7113 return (0);
7114 }
7115
7116 /*
7117 * Detach a device from a mirror or replacing vdev.
7118 *
7119 * If 'replace_done' is specified, only detach if the parent
7120 * is a replacing or a spare vdev.
7121 */
7122 int
7123 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7124 {
7125 uint64_t txg;
7126 int error;
7127 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7128 vdev_t *vd, *pvd, *cvd, *tvd;
7129 boolean_t unspare = B_FALSE;
7130 uint64_t unspare_guid = 0;
7131 char *vdpath;
7132
7133 ASSERT(spa_writeable(spa));
7134
7135 txg = spa_vdev_detach_enter(spa, guid);
7136
7137 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7138
7139 /*
7140 * Besides being called directly from the userland through the
7141 * ioctl interface, spa_vdev_detach() can be potentially called
7142 * at the end of spa_vdev_resilver_done().
7143 *
7144 * In the regular case, when we have a checkpoint this shouldn't
7145 * happen as we never empty the DTLs of a vdev during the scrub
7146 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7147 * should never get here when we have a checkpoint.
7148 *
7149 * That said, even in a case when we checkpoint the pool exactly
7150 * as spa_vdev_resilver_done() calls this function everything
7151 * should be fine as the resilver will return right away.
7152 */
7153 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7154 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7155 error = (spa_has_checkpoint(spa)) ?
7156 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7157 return (spa_vdev_exit(spa, NULL, txg, error));
7158 }
7159
7160 if (vd == NULL)
7161 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7162
7163 if (!vd->vdev_ops->vdev_op_leaf)
7164 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7165
7166 pvd = vd->vdev_parent;
7167
7168 /*
7169 * If the parent/child relationship is not as expected, don't do it.
7170 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7171 * vdev that's replacing B with C. The user's intent in replacing
7172 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7173 * the replace by detaching C, the expected behavior is to end up
7174 * M(A,B). But suppose that right after deciding to detach C,
7175 * the replacement of B completes. We would have M(A,C), and then
7176 * ask to detach C, which would leave us with just A -- not what
7177 * the user wanted. To prevent this, we make sure that the
7178 * parent/child relationship hasn't changed -- in this example,
7179 * that C's parent is still the replacing vdev R.
7180 */
7181 if (pvd->vdev_guid != pguid && pguid != 0)
7182 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7183
7184 /*
7185 * Only 'replacing' or 'spare' vdevs can be replaced.
7186 */
7187 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7188 pvd->vdev_ops != &vdev_spare_ops)
7189 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7190
7191 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7192 spa_version(spa) >= SPA_VERSION_SPARES);
7193
7194 /*
7195 * Only mirror, replacing, and spare vdevs support detach.
7196 */
7197 if (pvd->vdev_ops != &vdev_replacing_ops &&
7198 pvd->vdev_ops != &vdev_mirror_ops &&
7199 pvd->vdev_ops != &vdev_spare_ops)
7200 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7201
7202 /*
7203 * If this device has the only valid copy of some data,
7204 * we cannot safely detach it.
7205 */
7206 if (vdev_dtl_required(vd))
7207 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7208
7209 ASSERT(pvd->vdev_children >= 2);
7210
7211 /*
7212 * If we are detaching the second disk from a replacing vdev, then
7213 * check to see if we changed the original vdev's path to have "/old"
7214 * at the end in spa_vdev_attach(). If so, undo that change now.
7215 */
7216 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7217 vd->vdev_path != NULL) {
7218 size_t len = strlen(vd->vdev_path);
7219
7220 for (int c = 0; c < pvd->vdev_children; c++) {
7221 cvd = pvd->vdev_child[c];
7222
7223 if (cvd == vd || cvd->vdev_path == NULL)
7224 continue;
7225
7226 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7227 strcmp(cvd->vdev_path + len, "/old") == 0) {
7228 spa_strfree(cvd->vdev_path);
7229 cvd->vdev_path = spa_strdup(vd->vdev_path);
7230 break;
7231 }
7232 }
7233 }
7234
7235 /*
7236 * If we are detaching the original disk from a normal spare, then it
7237 * implies that the spare should become a real disk, and be removed
7238 * from the active spare list for the pool. dRAID spares on the
7239 * other hand are coupled to the pool and thus should never be removed
7240 * from the spares list.
7241 */
7242 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7243 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7244
7245 if (last_cvd->vdev_isspare &&
7246 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7247 unspare = B_TRUE;
7248 }
7249 }
7250
7251 /*
7252 * Erase the disk labels so the disk can be used for other things.
7253 * This must be done after all other error cases are handled,
7254 * but before we disembowel vd (so we can still do I/O to it).
7255 * But if we can't do it, don't treat the error as fatal --
7256 * it may be that the unwritability of the disk is the reason
7257 * it's being detached!
7258 */
7259 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7260
7261 /*
7262 * Remove vd from its parent and compact the parent's children.
7263 */
7264 vdev_remove_child(pvd, vd);
7265 vdev_compact_children(pvd);
7266
7267 /*
7268 * Remember one of the remaining children so we can get tvd below.
7269 */
7270 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7271
7272 /*
7273 * If we need to remove the remaining child from the list of hot spares,
7274 * do it now, marking the vdev as no longer a spare in the process.
7275 * We must do this before vdev_remove_parent(), because that can
7276 * change the GUID if it creates a new toplevel GUID. For a similar
7277 * reason, we must remove the spare now, in the same txg as the detach;
7278 * otherwise someone could attach a new sibling, change the GUID, and
7279 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7280 */
7281 if (unspare) {
7282 ASSERT(cvd->vdev_isspare);
7283 spa_spare_remove(cvd);
7284 unspare_guid = cvd->vdev_guid;
7285 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7286 cvd->vdev_unspare = B_TRUE;
7287 }
7288
7289 /*
7290 * If the parent mirror/replacing vdev only has one child,
7291 * the parent is no longer needed. Remove it from the tree.
7292 */
7293 if (pvd->vdev_children == 1) {
7294 if (pvd->vdev_ops == &vdev_spare_ops)
7295 cvd->vdev_unspare = B_FALSE;
7296 vdev_remove_parent(cvd);
7297 }
7298
7299 /*
7300 * We don't set tvd until now because the parent we just removed
7301 * may have been the previous top-level vdev.
7302 */
7303 tvd = cvd->vdev_top;
7304 ASSERT(tvd->vdev_parent == rvd);
7305
7306 /*
7307 * Reevaluate the parent vdev state.
7308 */
7309 vdev_propagate_state(cvd);
7310
7311 /*
7312 * If the 'autoexpand' property is set on the pool then automatically
7313 * try to expand the size of the pool. For example if the device we
7314 * just detached was smaller than the others, it may be possible to
7315 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7316 * first so that we can obtain the updated sizes of the leaf vdevs.
7317 */
7318 if (spa->spa_autoexpand) {
7319 vdev_reopen(tvd);
7320 vdev_expand(tvd, txg);
7321 }
7322
7323 vdev_config_dirty(tvd);
7324
7325 /*
7326 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7327 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7328 * But first make sure we're not on any *other* txg's DTL list, to
7329 * prevent vd from being accessed after it's freed.
7330 */
7331 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7332 for (int t = 0; t < TXG_SIZE; t++)
7333 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7334 vd->vdev_detached = B_TRUE;
7335 vdev_dirty(tvd, VDD_DTL, vd, txg);
7336
7337 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7338 spa_notify_waiters(spa);
7339
7340 /* hang on to the spa before we release the lock */
7341 spa_open_ref(spa, FTAG);
7342
7343 error = spa_vdev_exit(spa, vd, txg, 0);
7344
7345 spa_history_log_internal(spa, "detach", NULL,
7346 "vdev=%s", vdpath);
7347 spa_strfree(vdpath);
7348
7349 /*
7350 * If this was the removal of the original device in a hot spare vdev,
7351 * then we want to go through and remove the device from the hot spare
7352 * list of every other pool.
7353 */
7354 if (unspare) {
7355 spa_t *altspa = NULL;
7356
7357 mutex_enter(&spa_namespace_lock);
7358 while ((altspa = spa_next(altspa)) != NULL) {
7359 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7360 altspa == spa)
7361 continue;
7362
7363 spa_open_ref(altspa, FTAG);
7364 mutex_exit(&spa_namespace_lock);
7365 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7366 mutex_enter(&spa_namespace_lock);
7367 spa_close(altspa, FTAG);
7368 }
7369 mutex_exit(&spa_namespace_lock);
7370
7371 /* search the rest of the vdevs for spares to remove */
7372 spa_vdev_resilver_done(spa);
7373 }
7374
7375 /* all done with the spa; OK to release */
7376 mutex_enter(&spa_namespace_lock);
7377 spa_close(spa, FTAG);
7378 mutex_exit(&spa_namespace_lock);
7379
7380 return (error);
7381 }
7382
7383 static int
7384 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7385 list_t *vd_list)
7386 {
7387 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7388
7389 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7390
7391 /* Look up vdev and ensure it's a leaf. */
7392 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7393 if (vd == NULL || vd->vdev_detached) {
7394 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7395 return (SET_ERROR(ENODEV));
7396 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7397 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7398 return (SET_ERROR(EINVAL));
7399 } else if (!vdev_writeable(vd)) {
7400 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7401 return (SET_ERROR(EROFS));
7402 }
7403 mutex_enter(&vd->vdev_initialize_lock);
7404 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7405
7406 /*
7407 * When we activate an initialize action we check to see
7408 * if the vdev_initialize_thread is NULL. We do this instead
7409 * of using the vdev_initialize_state since there might be
7410 * a previous initialization process which has completed but
7411 * the thread is not exited.
7412 */
7413 if (cmd_type == POOL_INITIALIZE_START &&
7414 (vd->vdev_initialize_thread != NULL ||
7415 vd->vdev_top->vdev_removing)) {
7416 mutex_exit(&vd->vdev_initialize_lock);
7417 return (SET_ERROR(EBUSY));
7418 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7419 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7420 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7421 mutex_exit(&vd->vdev_initialize_lock);
7422 return (SET_ERROR(ESRCH));
7423 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7424 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7425 mutex_exit(&vd->vdev_initialize_lock);
7426 return (SET_ERROR(ESRCH));
7427 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7428 vd->vdev_initialize_thread != NULL) {
7429 mutex_exit(&vd->vdev_initialize_lock);
7430 return (SET_ERROR(EBUSY));
7431 }
7432
7433 switch (cmd_type) {
7434 case POOL_INITIALIZE_START:
7435 vdev_initialize(vd);
7436 break;
7437 case POOL_INITIALIZE_CANCEL:
7438 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7439 break;
7440 case POOL_INITIALIZE_SUSPEND:
7441 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7442 break;
7443 case POOL_INITIALIZE_UNINIT:
7444 vdev_uninitialize(vd);
7445 break;
7446 default:
7447 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7448 }
7449 mutex_exit(&vd->vdev_initialize_lock);
7450
7451 return (0);
7452 }
7453
7454 int
7455 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7456 nvlist_t *vdev_errlist)
7457 {
7458 int total_errors = 0;
7459 list_t vd_list;
7460
7461 list_create(&vd_list, sizeof (vdev_t),
7462 offsetof(vdev_t, vdev_initialize_node));
7463
7464 /*
7465 * We hold the namespace lock through the whole function
7466 * to prevent any changes to the pool while we're starting or
7467 * stopping initialization. The config and state locks are held so that
7468 * we can properly assess the vdev state before we commit to
7469 * the initializing operation.
7470 */
7471 mutex_enter(&spa_namespace_lock);
7472
7473 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7474 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7475 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7476
7477 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7478 &vd_list);
7479 if (error != 0) {
7480 char guid_as_str[MAXNAMELEN];
7481
7482 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7483 "%llu", (unsigned long long)vdev_guid);
7484 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7485 total_errors++;
7486 }
7487 }
7488
7489 /* Wait for all initialize threads to stop. */
7490 vdev_initialize_stop_wait(spa, &vd_list);
7491
7492 /* Sync out the initializing state */
7493 txg_wait_synced(spa->spa_dsl_pool, 0);
7494 mutex_exit(&spa_namespace_lock);
7495
7496 list_destroy(&vd_list);
7497
7498 return (total_errors);
7499 }
7500
7501 static int
7502 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7503 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7504 {
7505 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7506
7507 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7508
7509 /* Look up vdev and ensure it's a leaf. */
7510 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7511 if (vd == NULL || vd->vdev_detached) {
7512 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7513 return (SET_ERROR(ENODEV));
7514 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7515 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7516 return (SET_ERROR(EINVAL));
7517 } else if (!vdev_writeable(vd)) {
7518 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7519 return (SET_ERROR(EROFS));
7520 } else if (!vd->vdev_has_trim) {
7521 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7522 return (SET_ERROR(EOPNOTSUPP));
7523 } else if (secure && !vd->vdev_has_securetrim) {
7524 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7525 return (SET_ERROR(EOPNOTSUPP));
7526 }
7527 mutex_enter(&vd->vdev_trim_lock);
7528 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7529
7530 /*
7531 * When we activate a TRIM action we check to see if the
7532 * vdev_trim_thread is NULL. We do this instead of using the
7533 * vdev_trim_state since there might be a previous TRIM process
7534 * which has completed but the thread is not exited.
7535 */
7536 if (cmd_type == POOL_TRIM_START &&
7537 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7538 mutex_exit(&vd->vdev_trim_lock);
7539 return (SET_ERROR(EBUSY));
7540 } else if (cmd_type == POOL_TRIM_CANCEL &&
7541 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7542 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7543 mutex_exit(&vd->vdev_trim_lock);
7544 return (SET_ERROR(ESRCH));
7545 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7546 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7547 mutex_exit(&vd->vdev_trim_lock);
7548 return (SET_ERROR(ESRCH));
7549 }
7550
7551 switch (cmd_type) {
7552 case POOL_TRIM_START:
7553 vdev_trim(vd, rate, partial, secure);
7554 break;
7555 case POOL_TRIM_CANCEL:
7556 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7557 break;
7558 case POOL_TRIM_SUSPEND:
7559 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7560 break;
7561 default:
7562 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7563 }
7564 mutex_exit(&vd->vdev_trim_lock);
7565
7566 return (0);
7567 }
7568
7569 /*
7570 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7571 * TRIM threads for each child vdev. These threads pass over all of the free
7572 * space in the vdev's metaslabs and issues TRIM commands for that space.
7573 */
7574 int
7575 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7576 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7577 {
7578 int total_errors = 0;
7579 list_t vd_list;
7580
7581 list_create(&vd_list, sizeof (vdev_t),
7582 offsetof(vdev_t, vdev_trim_node));
7583
7584 /*
7585 * We hold the namespace lock through the whole function
7586 * to prevent any changes to the pool while we're starting or
7587 * stopping TRIM. The config and state locks are held so that
7588 * we can properly assess the vdev state before we commit to
7589 * the TRIM operation.
7590 */
7591 mutex_enter(&spa_namespace_lock);
7592
7593 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7594 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7595 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7596
7597 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7598 rate, partial, secure, &vd_list);
7599 if (error != 0) {
7600 char guid_as_str[MAXNAMELEN];
7601
7602 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7603 "%llu", (unsigned long long)vdev_guid);
7604 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7605 total_errors++;
7606 }
7607 }
7608
7609 /* Wait for all TRIM threads to stop. */
7610 vdev_trim_stop_wait(spa, &vd_list);
7611
7612 /* Sync out the TRIM state */
7613 txg_wait_synced(spa->spa_dsl_pool, 0);
7614 mutex_exit(&spa_namespace_lock);
7615
7616 list_destroy(&vd_list);
7617
7618 return (total_errors);
7619 }
7620
7621 /*
7622 * Split a set of devices from their mirrors, and create a new pool from them.
7623 */
7624 int
7625 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7626 nvlist_t *props, boolean_t exp)
7627 {
7628 int error = 0;
7629 uint64_t txg, *glist;
7630 spa_t *newspa;
7631 uint_t c, children, lastlog;
7632 nvlist_t **child, *nvl, *tmp;
7633 dmu_tx_t *tx;
7634 const char *altroot = NULL;
7635 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7636 boolean_t activate_slog;
7637
7638 ASSERT(spa_writeable(spa));
7639
7640 txg = spa_vdev_enter(spa);
7641
7642 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7643 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7644 error = (spa_has_checkpoint(spa)) ?
7645 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7646 return (spa_vdev_exit(spa, NULL, txg, error));
7647 }
7648
7649 /* clear the log and flush everything up to now */
7650 activate_slog = spa_passivate_log(spa);
7651 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7652 error = spa_reset_logs(spa);
7653 txg = spa_vdev_config_enter(spa);
7654
7655 if (activate_slog)
7656 spa_activate_log(spa);
7657
7658 if (error != 0)
7659 return (spa_vdev_exit(spa, NULL, txg, error));
7660
7661 /* check new spa name before going any further */
7662 if (spa_lookup(newname) != NULL)
7663 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7664
7665 /*
7666 * scan through all the children to ensure they're all mirrors
7667 */
7668 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7669 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7670 &children) != 0)
7671 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7672
7673 /* first, check to ensure we've got the right child count */
7674 rvd = spa->spa_root_vdev;
7675 lastlog = 0;
7676 for (c = 0; c < rvd->vdev_children; c++) {
7677 vdev_t *vd = rvd->vdev_child[c];
7678
7679 /* don't count the holes & logs as children */
7680 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7681 !vdev_is_concrete(vd))) {
7682 if (lastlog == 0)
7683 lastlog = c;
7684 continue;
7685 }
7686
7687 lastlog = 0;
7688 }
7689 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7690 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7691
7692 /* next, ensure no spare or cache devices are part of the split */
7693 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7694 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7695 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7696
7697 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7698 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7699
7700 /* then, loop over each vdev and validate it */
7701 for (c = 0; c < children; c++) {
7702 uint64_t is_hole = 0;
7703
7704 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7705 &is_hole);
7706
7707 if (is_hole != 0) {
7708 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7709 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7710 continue;
7711 } else {
7712 error = SET_ERROR(EINVAL);
7713 break;
7714 }
7715 }
7716
7717 /* deal with indirect vdevs */
7718 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7719 &vdev_indirect_ops)
7720 continue;
7721
7722 /* which disk is going to be split? */
7723 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7724 &glist[c]) != 0) {
7725 error = SET_ERROR(EINVAL);
7726 break;
7727 }
7728
7729 /* look it up in the spa */
7730 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7731 if (vml[c] == NULL) {
7732 error = SET_ERROR(ENODEV);
7733 break;
7734 }
7735
7736 /* make sure there's nothing stopping the split */
7737 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7738 vml[c]->vdev_islog ||
7739 !vdev_is_concrete(vml[c]) ||
7740 vml[c]->vdev_isspare ||
7741 vml[c]->vdev_isl2cache ||
7742 !vdev_writeable(vml[c]) ||
7743 vml[c]->vdev_children != 0 ||
7744 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7745 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7746 error = SET_ERROR(EINVAL);
7747 break;
7748 }
7749
7750 if (vdev_dtl_required(vml[c]) ||
7751 vdev_resilver_needed(vml[c], NULL, NULL)) {
7752 error = SET_ERROR(EBUSY);
7753 break;
7754 }
7755
7756 /* we need certain info from the top level */
7757 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7758 vml[c]->vdev_top->vdev_ms_array);
7759 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7760 vml[c]->vdev_top->vdev_ms_shift);
7761 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7762 vml[c]->vdev_top->vdev_asize);
7763 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7764 vml[c]->vdev_top->vdev_ashift);
7765
7766 /* transfer per-vdev ZAPs */
7767 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7768 VERIFY0(nvlist_add_uint64(child[c],
7769 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7770
7771 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7772 VERIFY0(nvlist_add_uint64(child[c],
7773 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7774 vml[c]->vdev_parent->vdev_top_zap));
7775 }
7776
7777 if (error != 0) {
7778 kmem_free(vml, children * sizeof (vdev_t *));
7779 kmem_free(glist, children * sizeof (uint64_t));
7780 return (spa_vdev_exit(spa, NULL, txg, error));
7781 }
7782
7783 /* stop writers from using the disks */
7784 for (c = 0; c < children; c++) {
7785 if (vml[c] != NULL)
7786 vml[c]->vdev_offline = B_TRUE;
7787 }
7788 vdev_reopen(spa->spa_root_vdev);
7789
7790 /*
7791 * Temporarily record the splitting vdevs in the spa config. This
7792 * will disappear once the config is regenerated.
7793 */
7794 nvl = fnvlist_alloc();
7795 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7796 kmem_free(glist, children * sizeof (uint64_t));
7797
7798 mutex_enter(&spa->spa_props_lock);
7799 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7800 mutex_exit(&spa->spa_props_lock);
7801 spa->spa_config_splitting = nvl;
7802 vdev_config_dirty(spa->spa_root_vdev);
7803
7804 /* configure and create the new pool */
7805 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7806 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7807 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7808 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7809 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7810 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7811 spa_generate_guid(NULL));
7812 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7813 (void) nvlist_lookup_string(props,
7814 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7815
7816 /* add the new pool to the namespace */
7817 newspa = spa_add(newname, config, altroot);
7818 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7819 newspa->spa_config_txg = spa->spa_config_txg;
7820 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7821
7822 /* release the spa config lock, retaining the namespace lock */
7823 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7824
7825 if (zio_injection_enabled)
7826 zio_handle_panic_injection(spa, FTAG, 1);
7827
7828 spa_activate(newspa, spa_mode_global);
7829 spa_async_suspend(newspa);
7830
7831 /*
7832 * Temporarily stop the initializing and TRIM activity. We set the
7833 * state to ACTIVE so that we know to resume initializing or TRIM
7834 * once the split has completed.
7835 */
7836 list_t vd_initialize_list;
7837 list_create(&vd_initialize_list, sizeof (vdev_t),
7838 offsetof(vdev_t, vdev_initialize_node));
7839
7840 list_t vd_trim_list;
7841 list_create(&vd_trim_list, sizeof (vdev_t),
7842 offsetof(vdev_t, vdev_trim_node));
7843
7844 for (c = 0; c < children; c++) {
7845 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7846 mutex_enter(&vml[c]->vdev_initialize_lock);
7847 vdev_initialize_stop(vml[c],
7848 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7849 mutex_exit(&vml[c]->vdev_initialize_lock);
7850
7851 mutex_enter(&vml[c]->vdev_trim_lock);
7852 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7853 mutex_exit(&vml[c]->vdev_trim_lock);
7854 }
7855 }
7856
7857 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7858 vdev_trim_stop_wait(spa, &vd_trim_list);
7859
7860 list_destroy(&vd_initialize_list);
7861 list_destroy(&vd_trim_list);
7862
7863 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7864 newspa->spa_is_splitting = B_TRUE;
7865
7866 /* create the new pool from the disks of the original pool */
7867 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7868 if (error)
7869 goto out;
7870
7871 /* if that worked, generate a real config for the new pool */
7872 if (newspa->spa_root_vdev != NULL) {
7873 newspa->spa_config_splitting = fnvlist_alloc();
7874 fnvlist_add_uint64(newspa->spa_config_splitting,
7875 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7876 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7877 B_TRUE));
7878 }
7879
7880 /* set the props */
7881 if (props != NULL) {
7882 spa_configfile_set(newspa, props, B_FALSE);
7883 error = spa_prop_set(newspa, props);
7884 if (error)
7885 goto out;
7886 }
7887
7888 /* flush everything */
7889 txg = spa_vdev_config_enter(newspa);
7890 vdev_config_dirty(newspa->spa_root_vdev);
7891 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7892
7893 if (zio_injection_enabled)
7894 zio_handle_panic_injection(spa, FTAG, 2);
7895
7896 spa_async_resume(newspa);
7897
7898 /* finally, update the original pool's config */
7899 txg = spa_vdev_config_enter(spa);
7900 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7901 error = dmu_tx_assign(tx, TXG_WAIT);
7902 if (error != 0)
7903 dmu_tx_abort(tx);
7904 for (c = 0; c < children; c++) {
7905 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7906 vdev_t *tvd = vml[c]->vdev_top;
7907
7908 /*
7909 * Need to be sure the detachable VDEV is not
7910 * on any *other* txg's DTL list to prevent it
7911 * from being accessed after it's freed.
7912 */
7913 for (int t = 0; t < TXG_SIZE; t++) {
7914 (void) txg_list_remove_this(
7915 &tvd->vdev_dtl_list, vml[c], t);
7916 }
7917
7918 vdev_split(vml[c]);
7919 if (error == 0)
7920 spa_history_log_internal(spa, "detach", tx,
7921 "vdev=%s", vml[c]->vdev_path);
7922
7923 vdev_free(vml[c]);
7924 }
7925 }
7926 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7927 vdev_config_dirty(spa->spa_root_vdev);
7928 spa->spa_config_splitting = NULL;
7929 nvlist_free(nvl);
7930 if (error == 0)
7931 dmu_tx_commit(tx);
7932 (void) spa_vdev_exit(spa, NULL, txg, 0);
7933
7934 if (zio_injection_enabled)
7935 zio_handle_panic_injection(spa, FTAG, 3);
7936
7937 /* split is complete; log a history record */
7938 spa_history_log_internal(newspa, "split", NULL,
7939 "from pool %s", spa_name(spa));
7940
7941 newspa->spa_is_splitting = B_FALSE;
7942 kmem_free(vml, children * sizeof (vdev_t *));
7943
7944 /* if we're not going to mount the filesystems in userland, export */
7945 if (exp)
7946 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7947 B_FALSE, B_FALSE);
7948
7949 return (error);
7950
7951 out:
7952 spa_unload(newspa);
7953 spa_deactivate(newspa);
7954 spa_remove(newspa);
7955
7956 txg = spa_vdev_config_enter(spa);
7957
7958 /* re-online all offlined disks */
7959 for (c = 0; c < children; c++) {
7960 if (vml[c] != NULL)
7961 vml[c]->vdev_offline = B_FALSE;
7962 }
7963
7964 /* restart initializing or trimming disks as necessary */
7965 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7966 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7967 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7968
7969 vdev_reopen(spa->spa_root_vdev);
7970
7971 nvlist_free(spa->spa_config_splitting);
7972 spa->spa_config_splitting = NULL;
7973 (void) spa_vdev_exit(spa, NULL, txg, error);
7974
7975 kmem_free(vml, children * sizeof (vdev_t *));
7976 return (error);
7977 }
7978
7979 /*
7980 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7981 * currently spared, so we can detach it.
7982 */
7983 static vdev_t *
7984 spa_vdev_resilver_done_hunt(vdev_t *vd)
7985 {
7986 vdev_t *newvd, *oldvd;
7987
7988 for (int c = 0; c < vd->vdev_children; c++) {
7989 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7990 if (oldvd != NULL)
7991 return (oldvd);
7992 }
7993
7994 /*
7995 * Check for a completed replacement. We always consider the first
7996 * vdev in the list to be the oldest vdev, and the last one to be
7997 * the newest (see spa_vdev_attach() for how that works). In
7998 * the case where the newest vdev is faulted, we will not automatically
7999 * remove it after a resilver completes. This is OK as it will require
8000 * user intervention to determine which disk the admin wishes to keep.
8001 */
8002 if (vd->vdev_ops == &vdev_replacing_ops) {
8003 ASSERT(vd->vdev_children > 1);
8004
8005 newvd = vd->vdev_child[vd->vdev_children - 1];
8006 oldvd = vd->vdev_child[0];
8007
8008 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8009 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8010 !vdev_dtl_required(oldvd))
8011 return (oldvd);
8012 }
8013
8014 /*
8015 * Check for a completed resilver with the 'unspare' flag set.
8016 * Also potentially update faulted state.
8017 */
8018 if (vd->vdev_ops == &vdev_spare_ops) {
8019 vdev_t *first = vd->vdev_child[0];
8020 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8021
8022 if (last->vdev_unspare) {
8023 oldvd = first;
8024 newvd = last;
8025 } else if (first->vdev_unspare) {
8026 oldvd = last;
8027 newvd = first;
8028 } else {
8029 oldvd = NULL;
8030 }
8031
8032 if (oldvd != NULL &&
8033 vdev_dtl_empty(newvd, DTL_MISSING) &&
8034 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8035 !vdev_dtl_required(oldvd))
8036 return (oldvd);
8037
8038 vdev_propagate_state(vd);
8039
8040 /*
8041 * If there are more than two spares attached to a disk,
8042 * and those spares are not required, then we want to
8043 * attempt to free them up now so that they can be used
8044 * by other pools. Once we're back down to a single
8045 * disk+spare, we stop removing them.
8046 */
8047 if (vd->vdev_children > 2) {
8048 newvd = vd->vdev_child[1];
8049
8050 if (newvd->vdev_isspare && last->vdev_isspare &&
8051 vdev_dtl_empty(last, DTL_MISSING) &&
8052 vdev_dtl_empty(last, DTL_OUTAGE) &&
8053 !vdev_dtl_required(newvd))
8054 return (newvd);
8055 }
8056 }
8057
8058 return (NULL);
8059 }
8060
8061 static void
8062 spa_vdev_resilver_done(spa_t *spa)
8063 {
8064 vdev_t *vd, *pvd, *ppvd;
8065 uint64_t guid, sguid, pguid, ppguid;
8066
8067 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8068
8069 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8070 pvd = vd->vdev_parent;
8071 ppvd = pvd->vdev_parent;
8072 guid = vd->vdev_guid;
8073 pguid = pvd->vdev_guid;
8074 ppguid = ppvd->vdev_guid;
8075 sguid = 0;
8076 /*
8077 * If we have just finished replacing a hot spared device, then
8078 * we need to detach the parent's first child (the original hot
8079 * spare) as well.
8080 */
8081 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8082 ppvd->vdev_children == 2) {
8083 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8084 sguid = ppvd->vdev_child[1]->vdev_guid;
8085 }
8086 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8087
8088 spa_config_exit(spa, SCL_ALL, FTAG);
8089 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8090 return;
8091 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8092 return;
8093 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8094 }
8095
8096 spa_config_exit(spa, SCL_ALL, FTAG);
8097
8098 /*
8099 * If a detach was not performed above replace waiters will not have
8100 * been notified. In which case we must do so now.
8101 */
8102 spa_notify_waiters(spa);
8103 }
8104
8105 /*
8106 * Update the stored path or FRU for this vdev.
8107 */
8108 static int
8109 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8110 boolean_t ispath)
8111 {
8112 vdev_t *vd;
8113 boolean_t sync = B_FALSE;
8114
8115 ASSERT(spa_writeable(spa));
8116
8117 spa_vdev_state_enter(spa, SCL_ALL);
8118
8119 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8120 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8121
8122 if (!vd->vdev_ops->vdev_op_leaf)
8123 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8124
8125 if (ispath) {
8126 if (strcmp(value, vd->vdev_path) != 0) {
8127 spa_strfree(vd->vdev_path);
8128 vd->vdev_path = spa_strdup(value);
8129 sync = B_TRUE;
8130 }
8131 } else {
8132 if (vd->vdev_fru == NULL) {
8133 vd->vdev_fru = spa_strdup(value);
8134 sync = B_TRUE;
8135 } else if (strcmp(value, vd->vdev_fru) != 0) {
8136 spa_strfree(vd->vdev_fru);
8137 vd->vdev_fru = spa_strdup(value);
8138 sync = B_TRUE;
8139 }
8140 }
8141
8142 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8143 }
8144
8145 int
8146 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8147 {
8148 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8149 }
8150
8151 int
8152 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8153 {
8154 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8155 }
8156
8157 /*
8158 * ==========================================================================
8159 * SPA Scanning
8160 * ==========================================================================
8161 */
8162 int
8163 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8164 {
8165 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8166
8167 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8168 return (SET_ERROR(EBUSY));
8169
8170 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8171 }
8172
8173 int
8174 spa_scan_stop(spa_t *spa)
8175 {
8176 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8177 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8178 return (SET_ERROR(EBUSY));
8179
8180 return (dsl_scan_cancel(spa->spa_dsl_pool));
8181 }
8182
8183 int
8184 spa_scan(spa_t *spa, pool_scan_func_t func)
8185 {
8186 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8187
8188 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8189 return (SET_ERROR(ENOTSUP));
8190
8191 if (func == POOL_SCAN_RESILVER &&
8192 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8193 return (SET_ERROR(ENOTSUP));
8194
8195 /*
8196 * If a resilver was requested, but there is no DTL on a
8197 * writeable leaf device, we have nothing to do.
8198 */
8199 if (func == POOL_SCAN_RESILVER &&
8200 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8201 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8202 return (0);
8203 }
8204
8205 if (func == POOL_SCAN_ERRORSCRUB &&
8206 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8207 return (SET_ERROR(ENOTSUP));
8208
8209 return (dsl_scan(spa->spa_dsl_pool, func));
8210 }
8211
8212 /*
8213 * ==========================================================================
8214 * SPA async task processing
8215 * ==========================================================================
8216 */
8217
8218 static void
8219 spa_async_remove(spa_t *spa, vdev_t *vd)
8220 {
8221 if (vd->vdev_remove_wanted) {
8222 vd->vdev_remove_wanted = B_FALSE;
8223 vd->vdev_delayed_close = B_FALSE;
8224 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8225
8226 /*
8227 * We want to clear the stats, but we don't want to do a full
8228 * vdev_clear() as that will cause us to throw away
8229 * degraded/faulted state as well as attempt to reopen the
8230 * device, all of which is a waste.
8231 */
8232 vd->vdev_stat.vs_read_errors = 0;
8233 vd->vdev_stat.vs_write_errors = 0;
8234 vd->vdev_stat.vs_checksum_errors = 0;
8235
8236 vdev_state_dirty(vd->vdev_top);
8237
8238 /* Tell userspace that the vdev is gone. */
8239 zfs_post_remove(spa, vd);
8240 }
8241
8242 for (int c = 0; c < vd->vdev_children; c++)
8243 spa_async_remove(spa, vd->vdev_child[c]);
8244 }
8245
8246 static void
8247 spa_async_probe(spa_t *spa, vdev_t *vd)
8248 {
8249 if (vd->vdev_probe_wanted) {
8250 vd->vdev_probe_wanted = B_FALSE;
8251 vdev_reopen(vd); /* vdev_open() does the actual probe */
8252 }
8253
8254 for (int c = 0; c < vd->vdev_children; c++)
8255 spa_async_probe(spa, vd->vdev_child[c]);
8256 }
8257
8258 static void
8259 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8260 {
8261 if (!spa->spa_autoexpand)
8262 return;
8263
8264 for (int c = 0; c < vd->vdev_children; c++) {
8265 vdev_t *cvd = vd->vdev_child[c];
8266 spa_async_autoexpand(spa, cvd);
8267 }
8268
8269 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8270 return;
8271
8272 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8273 }
8274
8275 static __attribute__((noreturn)) void
8276 spa_async_thread(void *arg)
8277 {
8278 spa_t *spa = (spa_t *)arg;
8279 dsl_pool_t *dp = spa->spa_dsl_pool;
8280 int tasks;
8281
8282 ASSERT(spa->spa_sync_on);
8283
8284 mutex_enter(&spa->spa_async_lock);
8285 tasks = spa->spa_async_tasks;
8286 spa->spa_async_tasks = 0;
8287 mutex_exit(&spa->spa_async_lock);
8288
8289 /*
8290 * See if the config needs to be updated.
8291 */
8292 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8293 uint64_t old_space, new_space;
8294
8295 mutex_enter(&spa_namespace_lock);
8296 old_space = metaslab_class_get_space(spa_normal_class(spa));
8297 old_space += metaslab_class_get_space(spa_special_class(spa));
8298 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8299 old_space += metaslab_class_get_space(
8300 spa_embedded_log_class(spa));
8301
8302 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8303
8304 new_space = metaslab_class_get_space(spa_normal_class(spa));
8305 new_space += metaslab_class_get_space(spa_special_class(spa));
8306 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8307 new_space += metaslab_class_get_space(
8308 spa_embedded_log_class(spa));
8309 mutex_exit(&spa_namespace_lock);
8310
8311 /*
8312 * If the pool grew as a result of the config update,
8313 * then log an internal history event.
8314 */
8315 if (new_space != old_space) {
8316 spa_history_log_internal(spa, "vdev online", NULL,
8317 "pool '%s' size: %llu(+%llu)",
8318 spa_name(spa), (u_longlong_t)new_space,
8319 (u_longlong_t)(new_space - old_space));
8320 }
8321 }
8322
8323 /*
8324 * See if any devices need to be marked REMOVED.
8325 */
8326 if (tasks & SPA_ASYNC_REMOVE) {
8327 spa_vdev_state_enter(spa, SCL_NONE);
8328 spa_async_remove(spa, spa->spa_root_vdev);
8329 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8330 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8331 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8332 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8333 (void) spa_vdev_state_exit(spa, NULL, 0);
8334 }
8335
8336 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8337 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8338 spa_async_autoexpand(spa, spa->spa_root_vdev);
8339 spa_config_exit(spa, SCL_CONFIG, FTAG);
8340 }
8341
8342 /*
8343 * See if any devices need to be probed.
8344 */
8345 if (tasks & SPA_ASYNC_PROBE) {
8346 spa_vdev_state_enter(spa, SCL_NONE);
8347 spa_async_probe(spa, spa->spa_root_vdev);
8348 (void) spa_vdev_state_exit(spa, NULL, 0);
8349 }
8350
8351 /*
8352 * If any devices are done replacing, detach them.
8353 */
8354 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8355 tasks & SPA_ASYNC_REBUILD_DONE ||
8356 tasks & SPA_ASYNC_DETACH_SPARE) {
8357 spa_vdev_resilver_done(spa);
8358 }
8359
8360 /*
8361 * Kick off a resilver.
8362 */
8363 if (tasks & SPA_ASYNC_RESILVER &&
8364 !vdev_rebuild_active(spa->spa_root_vdev) &&
8365 (!dsl_scan_resilvering(dp) ||
8366 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8367 dsl_scan_restart_resilver(dp, 0);
8368
8369 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8370 mutex_enter(&spa_namespace_lock);
8371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8372 vdev_initialize_restart(spa->spa_root_vdev);
8373 spa_config_exit(spa, SCL_CONFIG, FTAG);
8374 mutex_exit(&spa_namespace_lock);
8375 }
8376
8377 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8378 mutex_enter(&spa_namespace_lock);
8379 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8380 vdev_trim_restart(spa->spa_root_vdev);
8381 spa_config_exit(spa, SCL_CONFIG, FTAG);
8382 mutex_exit(&spa_namespace_lock);
8383 }
8384
8385 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8386 mutex_enter(&spa_namespace_lock);
8387 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8388 vdev_autotrim_restart(spa);
8389 spa_config_exit(spa, SCL_CONFIG, FTAG);
8390 mutex_exit(&spa_namespace_lock);
8391 }
8392
8393 /*
8394 * Kick off L2 cache whole device TRIM.
8395 */
8396 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8397 mutex_enter(&spa_namespace_lock);
8398 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8399 vdev_trim_l2arc(spa);
8400 spa_config_exit(spa, SCL_CONFIG, FTAG);
8401 mutex_exit(&spa_namespace_lock);
8402 }
8403
8404 /*
8405 * Kick off L2 cache rebuilding.
8406 */
8407 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8408 mutex_enter(&spa_namespace_lock);
8409 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8410 l2arc_spa_rebuild_start(spa);
8411 spa_config_exit(spa, SCL_L2ARC, FTAG);
8412 mutex_exit(&spa_namespace_lock);
8413 }
8414
8415 /*
8416 * Let the world know that we're done.
8417 */
8418 mutex_enter(&spa->spa_async_lock);
8419 spa->spa_async_thread = NULL;
8420 cv_broadcast(&spa->spa_async_cv);
8421 mutex_exit(&spa->spa_async_lock);
8422 thread_exit();
8423 }
8424
8425 void
8426 spa_async_suspend(spa_t *spa)
8427 {
8428 mutex_enter(&spa->spa_async_lock);
8429 spa->spa_async_suspended++;
8430 while (spa->spa_async_thread != NULL)
8431 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8432 mutex_exit(&spa->spa_async_lock);
8433
8434 spa_vdev_remove_suspend(spa);
8435
8436 zthr_t *condense_thread = spa->spa_condense_zthr;
8437 if (condense_thread != NULL)
8438 zthr_cancel(condense_thread);
8439
8440 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8441 if (discard_thread != NULL)
8442 zthr_cancel(discard_thread);
8443
8444 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8445 if (ll_delete_thread != NULL)
8446 zthr_cancel(ll_delete_thread);
8447
8448 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8449 if (ll_condense_thread != NULL)
8450 zthr_cancel(ll_condense_thread);
8451 }
8452
8453 void
8454 spa_async_resume(spa_t *spa)
8455 {
8456 mutex_enter(&spa->spa_async_lock);
8457 ASSERT(spa->spa_async_suspended != 0);
8458 spa->spa_async_suspended--;
8459 mutex_exit(&spa->spa_async_lock);
8460 spa_restart_removal(spa);
8461
8462 zthr_t *condense_thread = spa->spa_condense_zthr;
8463 if (condense_thread != NULL)
8464 zthr_resume(condense_thread);
8465
8466 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8467 if (discard_thread != NULL)
8468 zthr_resume(discard_thread);
8469
8470 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8471 if (ll_delete_thread != NULL)
8472 zthr_resume(ll_delete_thread);
8473
8474 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8475 if (ll_condense_thread != NULL)
8476 zthr_resume(ll_condense_thread);
8477 }
8478
8479 static boolean_t
8480 spa_async_tasks_pending(spa_t *spa)
8481 {
8482 uint_t non_config_tasks;
8483 uint_t config_task;
8484 boolean_t config_task_suspended;
8485
8486 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8487 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8488 if (spa->spa_ccw_fail_time == 0) {
8489 config_task_suspended = B_FALSE;
8490 } else {
8491 config_task_suspended =
8492 (gethrtime() - spa->spa_ccw_fail_time) <
8493 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8494 }
8495
8496 return (non_config_tasks || (config_task && !config_task_suspended));
8497 }
8498
8499 static void
8500 spa_async_dispatch(spa_t *spa)
8501 {
8502 mutex_enter(&spa->spa_async_lock);
8503 if (spa_async_tasks_pending(spa) &&
8504 !spa->spa_async_suspended &&
8505 spa->spa_async_thread == NULL)
8506 spa->spa_async_thread = thread_create(NULL, 0,
8507 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8508 mutex_exit(&spa->spa_async_lock);
8509 }
8510
8511 void
8512 spa_async_request(spa_t *spa, int task)
8513 {
8514 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8515 mutex_enter(&spa->spa_async_lock);
8516 spa->spa_async_tasks |= task;
8517 mutex_exit(&spa->spa_async_lock);
8518 }
8519
8520 int
8521 spa_async_tasks(spa_t *spa)
8522 {
8523 return (spa->spa_async_tasks);
8524 }
8525
8526 /*
8527 * ==========================================================================
8528 * SPA syncing routines
8529 * ==========================================================================
8530 */
8531
8532
8533 static int
8534 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8535 dmu_tx_t *tx)
8536 {
8537 bpobj_t *bpo = arg;
8538 bpobj_enqueue(bpo, bp, bp_freed, tx);
8539 return (0);
8540 }
8541
8542 int
8543 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8544 {
8545 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8546 }
8547
8548 int
8549 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8550 {
8551 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8552 }
8553
8554 static int
8555 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8556 {
8557 zio_t *pio = arg;
8558
8559 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8560 pio->io_flags));
8561 return (0);
8562 }
8563
8564 static int
8565 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8566 dmu_tx_t *tx)
8567 {
8568 ASSERT(!bp_freed);
8569 return (spa_free_sync_cb(arg, bp, tx));
8570 }
8571
8572 /*
8573 * Note: this simple function is not inlined to make it easier to dtrace the
8574 * amount of time spent syncing frees.
8575 */
8576 static void
8577 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8578 {
8579 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8580 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8581 VERIFY(zio_wait(zio) == 0);
8582 }
8583
8584 /*
8585 * Note: this simple function is not inlined to make it easier to dtrace the
8586 * amount of time spent syncing deferred frees.
8587 */
8588 static void
8589 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8590 {
8591 if (spa_sync_pass(spa) != 1)
8592 return;
8593
8594 /*
8595 * Note:
8596 * If the log space map feature is active, we stop deferring
8597 * frees to the next TXG and therefore running this function
8598 * would be considered a no-op as spa_deferred_bpobj should
8599 * not have any entries.
8600 *
8601 * That said we run this function anyway (instead of returning
8602 * immediately) for the edge-case scenario where we just
8603 * activated the log space map feature in this TXG but we have
8604 * deferred frees from the previous TXG.
8605 */
8606 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8607 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8608 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8609 VERIFY0(zio_wait(zio));
8610 }
8611
8612 static void
8613 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8614 {
8615 char *packed = NULL;
8616 size_t bufsize;
8617 size_t nvsize = 0;
8618 dmu_buf_t *db;
8619
8620 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8621
8622 /*
8623 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8624 * information. This avoids the dmu_buf_will_dirty() path and
8625 * saves us a pre-read to get data we don't actually care about.
8626 */
8627 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8628 packed = vmem_alloc(bufsize, KM_SLEEP);
8629
8630 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8631 KM_SLEEP) == 0);
8632 memset(packed + nvsize, 0, bufsize - nvsize);
8633
8634 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8635
8636 vmem_free(packed, bufsize);
8637
8638 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8639 dmu_buf_will_dirty(db, tx);
8640 *(uint64_t *)db->db_data = nvsize;
8641 dmu_buf_rele(db, FTAG);
8642 }
8643
8644 static void
8645 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8646 const char *config, const char *entry)
8647 {
8648 nvlist_t *nvroot;
8649 nvlist_t **list;
8650 int i;
8651
8652 if (!sav->sav_sync)
8653 return;
8654
8655 /*
8656 * Update the MOS nvlist describing the list of available devices.
8657 * spa_validate_aux() will have already made sure this nvlist is
8658 * valid and the vdevs are labeled appropriately.
8659 */
8660 if (sav->sav_object == 0) {
8661 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8662 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8663 sizeof (uint64_t), tx);
8664 VERIFY(zap_update(spa->spa_meta_objset,
8665 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8666 &sav->sav_object, tx) == 0);
8667 }
8668
8669 nvroot = fnvlist_alloc();
8670 if (sav->sav_count == 0) {
8671 fnvlist_add_nvlist_array(nvroot, config,
8672 (const nvlist_t * const *)NULL, 0);
8673 } else {
8674 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8675 for (i = 0; i < sav->sav_count; i++)
8676 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8677 B_FALSE, VDEV_CONFIG_L2CACHE);
8678 fnvlist_add_nvlist_array(nvroot, config,
8679 (const nvlist_t * const *)list, sav->sav_count);
8680 for (i = 0; i < sav->sav_count; i++)
8681 nvlist_free(list[i]);
8682 kmem_free(list, sav->sav_count * sizeof (void *));
8683 }
8684
8685 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8686 nvlist_free(nvroot);
8687
8688 sav->sav_sync = B_FALSE;
8689 }
8690
8691 /*
8692 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8693 * The all-vdev ZAP must be empty.
8694 */
8695 static void
8696 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8697 {
8698 spa_t *spa = vd->vdev_spa;
8699
8700 if (vd->vdev_root_zap != 0 &&
8701 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8702 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8703 vd->vdev_root_zap, tx));
8704 }
8705 if (vd->vdev_top_zap != 0) {
8706 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8707 vd->vdev_top_zap, tx));
8708 }
8709 if (vd->vdev_leaf_zap != 0) {
8710 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8711 vd->vdev_leaf_zap, tx));
8712 }
8713 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8714 spa_avz_build(vd->vdev_child[i], avz, tx);
8715 }
8716 }
8717
8718 static void
8719 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8720 {
8721 nvlist_t *config;
8722
8723 /*
8724 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8725 * its config may not be dirty but we still need to build per-vdev ZAPs.
8726 * Similarly, if the pool is being assembled (e.g. after a split), we
8727 * need to rebuild the AVZ although the config may not be dirty.
8728 */
8729 if (list_is_empty(&spa->spa_config_dirty_list) &&
8730 spa->spa_avz_action == AVZ_ACTION_NONE)
8731 return;
8732
8733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8734
8735 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8736 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8737 spa->spa_all_vdev_zaps != 0);
8738
8739 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8740 /* Make and build the new AVZ */
8741 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8742 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8743 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8744
8745 /* Diff old AVZ with new one */
8746 zap_cursor_t zc;
8747 zap_attribute_t za;
8748
8749 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8750 spa->spa_all_vdev_zaps);
8751 zap_cursor_retrieve(&zc, &za) == 0;
8752 zap_cursor_advance(&zc)) {
8753 uint64_t vdzap = za.za_first_integer;
8754 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8755 vdzap) == ENOENT) {
8756 /*
8757 * ZAP is listed in old AVZ but not in new one;
8758 * destroy it
8759 */
8760 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8761 tx));
8762 }
8763 }
8764
8765 zap_cursor_fini(&zc);
8766
8767 /* Destroy the old AVZ */
8768 VERIFY0(zap_destroy(spa->spa_meta_objset,
8769 spa->spa_all_vdev_zaps, tx));
8770
8771 /* Replace the old AVZ in the dir obj with the new one */
8772 VERIFY0(zap_update(spa->spa_meta_objset,
8773 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8774 sizeof (new_avz), 1, &new_avz, tx));
8775
8776 spa->spa_all_vdev_zaps = new_avz;
8777 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8778 zap_cursor_t zc;
8779 zap_attribute_t za;
8780
8781 /* Walk through the AVZ and destroy all listed ZAPs */
8782 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8783 spa->spa_all_vdev_zaps);
8784 zap_cursor_retrieve(&zc, &za) == 0;
8785 zap_cursor_advance(&zc)) {
8786 uint64_t zap = za.za_first_integer;
8787 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8788 }
8789
8790 zap_cursor_fini(&zc);
8791
8792 /* Destroy and unlink the AVZ itself */
8793 VERIFY0(zap_destroy(spa->spa_meta_objset,
8794 spa->spa_all_vdev_zaps, tx));
8795 VERIFY0(zap_remove(spa->spa_meta_objset,
8796 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8797 spa->spa_all_vdev_zaps = 0;
8798 }
8799
8800 if (spa->spa_all_vdev_zaps == 0) {
8801 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8802 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8803 DMU_POOL_VDEV_ZAP_MAP, tx);
8804 }
8805 spa->spa_avz_action = AVZ_ACTION_NONE;
8806
8807 /* Create ZAPs for vdevs that don't have them. */
8808 vdev_construct_zaps(spa->spa_root_vdev, tx);
8809
8810 config = spa_config_generate(spa, spa->spa_root_vdev,
8811 dmu_tx_get_txg(tx), B_FALSE);
8812
8813 /*
8814 * If we're upgrading the spa version then make sure that
8815 * the config object gets updated with the correct version.
8816 */
8817 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8818 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8819 spa->spa_uberblock.ub_version);
8820
8821 spa_config_exit(spa, SCL_STATE, FTAG);
8822
8823 nvlist_free(spa->spa_config_syncing);
8824 spa->spa_config_syncing = config;
8825
8826 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8827 }
8828
8829 static void
8830 spa_sync_version(void *arg, dmu_tx_t *tx)
8831 {
8832 uint64_t *versionp = arg;
8833 uint64_t version = *versionp;
8834 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8835
8836 /*
8837 * Setting the version is special cased when first creating the pool.
8838 */
8839 ASSERT(tx->tx_txg != TXG_INITIAL);
8840
8841 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8842 ASSERT(version >= spa_version(spa));
8843
8844 spa->spa_uberblock.ub_version = version;
8845 vdev_config_dirty(spa->spa_root_vdev);
8846 spa_history_log_internal(spa, "set", tx, "version=%lld",
8847 (longlong_t)version);
8848 }
8849
8850 /*
8851 * Set zpool properties.
8852 */
8853 static void
8854 spa_sync_props(void *arg, dmu_tx_t *tx)
8855 {
8856 nvlist_t *nvp = arg;
8857 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8858 objset_t *mos = spa->spa_meta_objset;
8859 nvpair_t *elem = NULL;
8860
8861 mutex_enter(&spa->spa_props_lock);
8862
8863 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8864 uint64_t intval;
8865 const char *strval, *fname;
8866 zpool_prop_t prop;
8867 const char *propname;
8868 const char *elemname = nvpair_name(elem);
8869 zprop_type_t proptype;
8870 spa_feature_t fid;
8871
8872 switch (prop = zpool_name_to_prop(elemname)) {
8873 case ZPOOL_PROP_VERSION:
8874 intval = fnvpair_value_uint64(elem);
8875 /*
8876 * The version is synced separately before other
8877 * properties and should be correct by now.
8878 */
8879 ASSERT3U(spa_version(spa), >=, intval);
8880 break;
8881
8882 case ZPOOL_PROP_ALTROOT:
8883 /*
8884 * 'altroot' is a non-persistent property. It should
8885 * have been set temporarily at creation or import time.
8886 */
8887 ASSERT(spa->spa_root != NULL);
8888 break;
8889
8890 case ZPOOL_PROP_READONLY:
8891 case ZPOOL_PROP_CACHEFILE:
8892 /*
8893 * 'readonly' and 'cachefile' are also non-persistent
8894 * properties.
8895 */
8896 break;
8897 case ZPOOL_PROP_COMMENT:
8898 strval = fnvpair_value_string(elem);
8899 if (spa->spa_comment != NULL)
8900 spa_strfree(spa->spa_comment);
8901 spa->spa_comment = spa_strdup(strval);
8902 /*
8903 * We need to dirty the configuration on all the vdevs
8904 * so that their labels get updated. We also need to
8905 * update the cache file to keep it in sync with the
8906 * MOS version. It's unnecessary to do this for pool
8907 * creation since the vdev's configuration has already
8908 * been dirtied.
8909 */
8910 if (tx->tx_txg != TXG_INITIAL) {
8911 vdev_config_dirty(spa->spa_root_vdev);
8912 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8913 }
8914 spa_history_log_internal(spa, "set", tx,
8915 "%s=%s", elemname, strval);
8916 break;
8917 case ZPOOL_PROP_COMPATIBILITY:
8918 strval = fnvpair_value_string(elem);
8919 if (spa->spa_compatibility != NULL)
8920 spa_strfree(spa->spa_compatibility);
8921 spa->spa_compatibility = spa_strdup(strval);
8922 /*
8923 * Dirty the configuration on vdevs as above.
8924 */
8925 if (tx->tx_txg != TXG_INITIAL) {
8926 vdev_config_dirty(spa->spa_root_vdev);
8927 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8928 }
8929
8930 spa_history_log_internal(spa, "set", tx,
8931 "%s=%s", nvpair_name(elem), strval);
8932 break;
8933
8934 case ZPOOL_PROP_INVAL:
8935 if (zpool_prop_feature(elemname)) {
8936 fname = strchr(elemname, '@') + 1;
8937 VERIFY0(zfeature_lookup_name(fname, &fid));
8938
8939 spa_feature_enable(spa, fid, tx);
8940 spa_history_log_internal(spa, "set", tx,
8941 "%s=enabled", elemname);
8942 break;
8943 } else if (!zfs_prop_user(elemname)) {
8944 ASSERT(zpool_prop_feature(elemname));
8945 break;
8946 }
8947 zfs_fallthrough;
8948 default:
8949 /*
8950 * Set pool property values in the poolprops mos object.
8951 */
8952 if (spa->spa_pool_props_object == 0) {
8953 spa->spa_pool_props_object =
8954 zap_create_link(mos, DMU_OT_POOL_PROPS,
8955 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8956 tx);
8957 }
8958
8959 /* normalize the property name */
8960 if (prop == ZPOOL_PROP_INVAL) {
8961 propname = elemname;
8962 proptype = PROP_TYPE_STRING;
8963 } else {
8964 propname = zpool_prop_to_name(prop);
8965 proptype = zpool_prop_get_type(prop);
8966 }
8967
8968 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8969 ASSERT(proptype == PROP_TYPE_STRING);
8970 strval = fnvpair_value_string(elem);
8971 VERIFY0(zap_update(mos,
8972 spa->spa_pool_props_object, propname,
8973 1, strlen(strval) + 1, strval, tx));
8974 spa_history_log_internal(spa, "set", tx,
8975 "%s=%s", elemname, strval);
8976 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8977 intval = fnvpair_value_uint64(elem);
8978
8979 if (proptype == PROP_TYPE_INDEX) {
8980 const char *unused;
8981 VERIFY0(zpool_prop_index_to_string(
8982 prop, intval, &unused));
8983 }
8984 VERIFY0(zap_update(mos,
8985 spa->spa_pool_props_object, propname,
8986 8, 1, &intval, tx));
8987 spa_history_log_internal(spa, "set", tx,
8988 "%s=%lld", elemname,
8989 (longlong_t)intval);
8990
8991 switch (prop) {
8992 case ZPOOL_PROP_DELEGATION:
8993 spa->spa_delegation = intval;
8994 break;
8995 case ZPOOL_PROP_BOOTFS:
8996 spa->spa_bootfs = intval;
8997 break;
8998 case ZPOOL_PROP_FAILUREMODE:
8999 spa->spa_failmode = intval;
9000 break;
9001 case ZPOOL_PROP_AUTOTRIM:
9002 spa->spa_autotrim = intval;
9003 spa_async_request(spa,
9004 SPA_ASYNC_AUTOTRIM_RESTART);
9005 break;
9006 case ZPOOL_PROP_AUTOEXPAND:
9007 spa->spa_autoexpand = intval;
9008 if (tx->tx_txg != TXG_INITIAL)
9009 spa_async_request(spa,
9010 SPA_ASYNC_AUTOEXPAND);
9011 break;
9012 case ZPOOL_PROP_MULTIHOST:
9013 spa->spa_multihost = intval;
9014 break;
9015 default:
9016 break;
9017 }
9018 } else {
9019 ASSERT(0); /* not allowed */
9020 }
9021 }
9022
9023 }
9024
9025 mutex_exit(&spa->spa_props_lock);
9026 }
9027
9028 /*
9029 * Perform one-time upgrade on-disk changes. spa_version() does not
9030 * reflect the new version this txg, so there must be no changes this
9031 * txg to anything that the upgrade code depends on after it executes.
9032 * Therefore this must be called after dsl_pool_sync() does the sync
9033 * tasks.
9034 */
9035 static void
9036 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9037 {
9038 if (spa_sync_pass(spa) != 1)
9039 return;
9040
9041 dsl_pool_t *dp = spa->spa_dsl_pool;
9042 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9043
9044 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9045 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9046 dsl_pool_create_origin(dp, tx);
9047
9048 /* Keeping the origin open increases spa_minref */
9049 spa->spa_minref += 3;
9050 }
9051
9052 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9053 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9054 dsl_pool_upgrade_clones(dp, tx);
9055 }
9056
9057 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9058 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9059 dsl_pool_upgrade_dir_clones(dp, tx);
9060
9061 /* Keeping the freedir open increases spa_minref */
9062 spa->spa_minref += 3;
9063 }
9064
9065 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9066 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9067 spa_feature_create_zap_objects(spa, tx);
9068 }
9069
9070 /*
9071 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9072 * when possibility to use lz4 compression for metadata was added
9073 * Old pools that have this feature enabled must be upgraded to have
9074 * this feature active
9075 */
9076 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9077 boolean_t lz4_en = spa_feature_is_enabled(spa,
9078 SPA_FEATURE_LZ4_COMPRESS);
9079 boolean_t lz4_ac = spa_feature_is_active(spa,
9080 SPA_FEATURE_LZ4_COMPRESS);
9081
9082 if (lz4_en && !lz4_ac)
9083 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9084 }
9085
9086 /*
9087 * If we haven't written the salt, do so now. Note that the
9088 * feature may not be activated yet, but that's fine since
9089 * the presence of this ZAP entry is backwards compatible.
9090 */
9091 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9092 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9093 VERIFY0(zap_add(spa->spa_meta_objset,
9094 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9095 sizeof (spa->spa_cksum_salt.zcs_bytes),
9096 spa->spa_cksum_salt.zcs_bytes, tx));
9097 }
9098
9099 rrw_exit(&dp->dp_config_rwlock, FTAG);
9100 }
9101
9102 static void
9103 vdev_indirect_state_sync_verify(vdev_t *vd)
9104 {
9105 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9106 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9107
9108 if (vd->vdev_ops == &vdev_indirect_ops) {
9109 ASSERT(vim != NULL);
9110 ASSERT(vib != NULL);
9111 }
9112
9113 uint64_t obsolete_sm_object = 0;
9114 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9115 if (obsolete_sm_object != 0) {
9116 ASSERT(vd->vdev_obsolete_sm != NULL);
9117 ASSERT(vd->vdev_removing ||
9118 vd->vdev_ops == &vdev_indirect_ops);
9119 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9120 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9121 ASSERT3U(obsolete_sm_object, ==,
9122 space_map_object(vd->vdev_obsolete_sm));
9123 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9124 space_map_allocated(vd->vdev_obsolete_sm));
9125 }
9126 ASSERT(vd->vdev_obsolete_segments != NULL);
9127
9128 /*
9129 * Since frees / remaps to an indirect vdev can only
9130 * happen in syncing context, the obsolete segments
9131 * tree must be empty when we start syncing.
9132 */
9133 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9134 }
9135
9136 /*
9137 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9138 * async write queue depth in case it changed. The max queue depth will
9139 * not change in the middle of syncing out this txg.
9140 */
9141 static void
9142 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9143 {
9144 ASSERT(spa_writeable(spa));
9145
9146 vdev_t *rvd = spa->spa_root_vdev;
9147 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9148 zfs_vdev_queue_depth_pct / 100;
9149 metaslab_class_t *normal = spa_normal_class(spa);
9150 metaslab_class_t *special = spa_special_class(spa);
9151 metaslab_class_t *dedup = spa_dedup_class(spa);
9152
9153 uint64_t slots_per_allocator = 0;
9154 for (int c = 0; c < rvd->vdev_children; c++) {
9155 vdev_t *tvd = rvd->vdev_child[c];
9156
9157 metaslab_group_t *mg = tvd->vdev_mg;
9158 if (mg == NULL || !metaslab_group_initialized(mg))
9159 continue;
9160
9161 metaslab_class_t *mc = mg->mg_class;
9162 if (mc != normal && mc != special && mc != dedup)
9163 continue;
9164
9165 /*
9166 * It is safe to do a lock-free check here because only async
9167 * allocations look at mg_max_alloc_queue_depth, and async
9168 * allocations all happen from spa_sync().
9169 */
9170 for (int i = 0; i < mg->mg_allocators; i++) {
9171 ASSERT0(zfs_refcount_count(
9172 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9173 }
9174 mg->mg_max_alloc_queue_depth = max_queue_depth;
9175
9176 for (int i = 0; i < mg->mg_allocators; i++) {
9177 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9178 zfs_vdev_def_queue_depth;
9179 }
9180 slots_per_allocator += zfs_vdev_def_queue_depth;
9181 }
9182
9183 for (int i = 0; i < spa->spa_alloc_count; i++) {
9184 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9185 mca_alloc_slots));
9186 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9187 mca_alloc_slots));
9188 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9189 mca_alloc_slots));
9190 normal->mc_allocator[i].mca_alloc_max_slots =
9191 slots_per_allocator;
9192 special->mc_allocator[i].mca_alloc_max_slots =
9193 slots_per_allocator;
9194 dedup->mc_allocator[i].mca_alloc_max_slots =
9195 slots_per_allocator;
9196 }
9197 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9198 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9199 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9200 }
9201
9202 static void
9203 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9204 {
9205 ASSERT(spa_writeable(spa));
9206
9207 vdev_t *rvd = spa->spa_root_vdev;
9208 for (int c = 0; c < rvd->vdev_children; c++) {
9209 vdev_t *vd = rvd->vdev_child[c];
9210 vdev_indirect_state_sync_verify(vd);
9211
9212 if (vdev_indirect_should_condense(vd)) {
9213 spa_condense_indirect_start_sync(vd, tx);
9214 break;
9215 }
9216 }
9217 }
9218
9219 static void
9220 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9221 {
9222 objset_t *mos = spa->spa_meta_objset;
9223 dsl_pool_t *dp = spa->spa_dsl_pool;
9224 uint64_t txg = tx->tx_txg;
9225 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9226
9227 do {
9228 int pass = ++spa->spa_sync_pass;
9229
9230 spa_sync_config_object(spa, tx);
9231 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9232 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9233 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9234 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9235 spa_errlog_sync(spa, txg);
9236 dsl_pool_sync(dp, txg);
9237
9238 if (pass < zfs_sync_pass_deferred_free ||
9239 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9240 /*
9241 * If the log space map feature is active we don't
9242 * care about deferred frees and the deferred bpobj
9243 * as the log space map should effectively have the
9244 * same results (i.e. appending only to one object).
9245 */
9246 spa_sync_frees(spa, free_bpl, tx);
9247 } else {
9248 /*
9249 * We can not defer frees in pass 1, because
9250 * we sync the deferred frees later in pass 1.
9251 */
9252 ASSERT3U(pass, >, 1);
9253 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9254 &spa->spa_deferred_bpobj, tx);
9255 }
9256
9257 brt_sync(spa, txg);
9258 ddt_sync(spa, txg);
9259 dsl_scan_sync(dp, tx);
9260 dsl_errorscrub_sync(dp, tx);
9261 svr_sync(spa, tx);
9262 spa_sync_upgrades(spa, tx);
9263
9264 spa_flush_metaslabs(spa, tx);
9265
9266 vdev_t *vd = NULL;
9267 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9268 != NULL)
9269 vdev_sync(vd, txg);
9270
9271 /*
9272 * Note: We need to check if the MOS is dirty because we could
9273 * have marked the MOS dirty without updating the uberblock
9274 * (e.g. if we have sync tasks but no dirty user data). We need
9275 * to check the uberblock's rootbp because it is updated if we
9276 * have synced out dirty data (though in this case the MOS will
9277 * most likely also be dirty due to second order effects, we
9278 * don't want to rely on that here).
9279 */
9280 if (pass == 1 &&
9281 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9282 !dmu_objset_is_dirty(mos, txg)) {
9283 /*
9284 * Nothing changed on the first pass, therefore this
9285 * TXG is a no-op. Avoid syncing deferred frees, so
9286 * that we can keep this TXG as a no-op.
9287 */
9288 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9289 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9290 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9291 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9292 break;
9293 }
9294
9295 spa_sync_deferred_frees(spa, tx);
9296 } while (dmu_objset_is_dirty(mos, txg));
9297 }
9298
9299 /*
9300 * Rewrite the vdev configuration (which includes the uberblock) to
9301 * commit the transaction group.
9302 *
9303 * If there are no dirty vdevs, we sync the uberblock to a few random
9304 * top-level vdevs that are known to be visible in the config cache
9305 * (see spa_vdev_add() for a complete description). If there *are* dirty
9306 * vdevs, sync the uberblock to all vdevs.
9307 */
9308 static void
9309 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9310 {
9311 vdev_t *rvd = spa->spa_root_vdev;
9312 uint64_t txg = tx->tx_txg;
9313
9314 for (;;) {
9315 int error = 0;
9316
9317 /*
9318 * We hold SCL_STATE to prevent vdev open/close/etc.
9319 * while we're attempting to write the vdev labels.
9320 */
9321 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9322
9323 if (list_is_empty(&spa->spa_config_dirty_list)) {
9324 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9325 int svdcount = 0;
9326 int children = rvd->vdev_children;
9327 int c0 = random_in_range(children);
9328
9329 for (int c = 0; c < children; c++) {
9330 vdev_t *vd =
9331 rvd->vdev_child[(c0 + c) % children];
9332
9333 /* Stop when revisiting the first vdev */
9334 if (c > 0 && svd[0] == vd)
9335 break;
9336
9337 if (vd->vdev_ms_array == 0 ||
9338 vd->vdev_islog ||
9339 !vdev_is_concrete(vd))
9340 continue;
9341
9342 svd[svdcount++] = vd;
9343 if (svdcount == SPA_SYNC_MIN_VDEVS)
9344 break;
9345 }
9346 error = vdev_config_sync(svd, svdcount, txg);
9347 } else {
9348 error = vdev_config_sync(rvd->vdev_child,
9349 rvd->vdev_children, txg);
9350 }
9351
9352 if (error == 0)
9353 spa->spa_last_synced_guid = rvd->vdev_guid;
9354
9355 spa_config_exit(spa, SCL_STATE, FTAG);
9356
9357 if (error == 0)
9358 break;
9359 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9360 zio_resume_wait(spa);
9361 }
9362 }
9363
9364 /*
9365 * Sync the specified transaction group. New blocks may be dirtied as
9366 * part of the process, so we iterate until it converges.
9367 */
9368 void
9369 spa_sync(spa_t *spa, uint64_t txg)
9370 {
9371 vdev_t *vd = NULL;
9372
9373 VERIFY(spa_writeable(spa));
9374
9375 /*
9376 * Wait for i/os issued in open context that need to complete
9377 * before this txg syncs.
9378 */
9379 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9380 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9381 ZIO_FLAG_CANFAIL);
9382
9383 /*
9384 * Now that there can be no more cloning in this transaction group,
9385 * but we are still before issuing frees, we can process pending BRT
9386 * updates.
9387 */
9388 brt_pending_apply(spa, txg);
9389
9390 /*
9391 * Lock out configuration changes.
9392 */
9393 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9394
9395 spa->spa_syncing_txg = txg;
9396 spa->spa_sync_pass = 0;
9397
9398 for (int i = 0; i < spa->spa_alloc_count; i++) {
9399 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9400 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9401 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9402 }
9403
9404 /*
9405 * If there are any pending vdev state changes, convert them
9406 * into config changes that go out with this transaction group.
9407 */
9408 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9409 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9410 /* Avoid holding the write lock unless actually necessary */
9411 if (vd->vdev_aux == NULL) {
9412 vdev_state_clean(vd);
9413 vdev_config_dirty(vd);
9414 continue;
9415 }
9416 /*
9417 * We need the write lock here because, for aux vdevs,
9418 * calling vdev_config_dirty() modifies sav_config.
9419 * This is ugly and will become unnecessary when we
9420 * eliminate the aux vdev wart by integrating all vdevs
9421 * into the root vdev tree.
9422 */
9423 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9424 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9425 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9426 vdev_state_clean(vd);
9427 vdev_config_dirty(vd);
9428 }
9429 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9430 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9431 }
9432 spa_config_exit(spa, SCL_STATE, FTAG);
9433
9434 dsl_pool_t *dp = spa->spa_dsl_pool;
9435 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9436
9437 spa->spa_sync_starttime = gethrtime();
9438 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9439 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9440 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9441 NSEC_TO_TICK(spa->spa_deadman_synctime));
9442
9443 /*
9444 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9445 * set spa_deflate if we have no raid-z vdevs.
9446 */
9447 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9448 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9449 vdev_t *rvd = spa->spa_root_vdev;
9450
9451 int i;
9452 for (i = 0; i < rvd->vdev_children; i++) {
9453 vd = rvd->vdev_child[i];
9454 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9455 break;
9456 }
9457 if (i == rvd->vdev_children) {
9458 spa->spa_deflate = TRUE;
9459 VERIFY0(zap_add(spa->spa_meta_objset,
9460 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9461 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9462 }
9463 }
9464
9465 spa_sync_adjust_vdev_max_queue_depth(spa);
9466
9467 spa_sync_condense_indirect(spa, tx);
9468
9469 spa_sync_iterate_to_convergence(spa, tx);
9470
9471 #ifdef ZFS_DEBUG
9472 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9473 /*
9474 * Make sure that the number of ZAPs for all the vdevs matches
9475 * the number of ZAPs in the per-vdev ZAP list. This only gets
9476 * called if the config is dirty; otherwise there may be
9477 * outstanding AVZ operations that weren't completed in
9478 * spa_sync_config_object.
9479 */
9480 uint64_t all_vdev_zap_entry_count;
9481 ASSERT0(zap_count(spa->spa_meta_objset,
9482 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9483 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9484 all_vdev_zap_entry_count);
9485 }
9486 #endif
9487
9488 if (spa->spa_vdev_removal != NULL) {
9489 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9490 }
9491
9492 spa_sync_rewrite_vdev_config(spa, tx);
9493 dmu_tx_commit(tx);
9494
9495 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9496 spa->spa_deadman_tqid = 0;
9497
9498 /*
9499 * Clear the dirty config list.
9500 */
9501 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9502 vdev_config_clean(vd);
9503
9504 /*
9505 * Now that the new config has synced transactionally,
9506 * let it become visible to the config cache.
9507 */
9508 if (spa->spa_config_syncing != NULL) {
9509 spa_config_set(spa, spa->spa_config_syncing);
9510 spa->spa_config_txg = txg;
9511 spa->spa_config_syncing = NULL;
9512 }
9513
9514 dsl_pool_sync_done(dp, txg);
9515
9516 for (int i = 0; i < spa->spa_alloc_count; i++) {
9517 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9518 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9519 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9520 }
9521
9522 /*
9523 * Update usable space statistics.
9524 */
9525 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9526 != NULL)
9527 vdev_sync_done(vd, txg);
9528
9529 metaslab_class_evict_old(spa->spa_normal_class, txg);
9530 metaslab_class_evict_old(spa->spa_log_class, txg);
9531
9532 spa_sync_close_syncing_log_sm(spa);
9533
9534 spa_update_dspace(spa);
9535
9536 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9537 vdev_autotrim_kick(spa);
9538
9539 /*
9540 * It had better be the case that we didn't dirty anything
9541 * since vdev_config_sync().
9542 */
9543 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9544 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9545 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9546
9547 while (zfs_pause_spa_sync)
9548 delay(1);
9549
9550 spa->spa_sync_pass = 0;
9551
9552 /*
9553 * Update the last synced uberblock here. We want to do this at
9554 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9555 * will be guaranteed that all the processing associated with
9556 * that txg has been completed.
9557 */
9558 spa->spa_ubsync = spa->spa_uberblock;
9559 spa_config_exit(spa, SCL_CONFIG, FTAG);
9560
9561 spa_handle_ignored_writes(spa);
9562
9563 /*
9564 * If any async tasks have been requested, kick them off.
9565 */
9566 spa_async_dispatch(spa);
9567 }
9568
9569 /*
9570 * Sync all pools. We don't want to hold the namespace lock across these
9571 * operations, so we take a reference on the spa_t and drop the lock during the
9572 * sync.
9573 */
9574 void
9575 spa_sync_allpools(void)
9576 {
9577 spa_t *spa = NULL;
9578 mutex_enter(&spa_namespace_lock);
9579 while ((spa = spa_next(spa)) != NULL) {
9580 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9581 !spa_writeable(spa) || spa_suspended(spa))
9582 continue;
9583 spa_open_ref(spa, FTAG);
9584 mutex_exit(&spa_namespace_lock);
9585 txg_wait_synced(spa_get_dsl(spa), 0);
9586 mutex_enter(&spa_namespace_lock);
9587 spa_close(spa, FTAG);
9588 }
9589 mutex_exit(&spa_namespace_lock);
9590 }
9591
9592 /*
9593 * ==========================================================================
9594 * Miscellaneous routines
9595 * ==========================================================================
9596 */
9597
9598 /*
9599 * Remove all pools in the system.
9600 */
9601 void
9602 spa_evict_all(void)
9603 {
9604 spa_t *spa;
9605
9606 /*
9607 * Remove all cached state. All pools should be closed now,
9608 * so every spa in the AVL tree should be unreferenced.
9609 */
9610 mutex_enter(&spa_namespace_lock);
9611 while ((spa = spa_next(NULL)) != NULL) {
9612 /*
9613 * Stop async tasks. The async thread may need to detach
9614 * a device that's been replaced, which requires grabbing
9615 * spa_namespace_lock, so we must drop it here.
9616 */
9617 spa_open_ref(spa, FTAG);
9618 mutex_exit(&spa_namespace_lock);
9619 spa_async_suspend(spa);
9620 mutex_enter(&spa_namespace_lock);
9621 spa_close(spa, FTAG);
9622
9623 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9624 spa_unload(spa);
9625 spa_deactivate(spa);
9626 }
9627 spa_remove(spa);
9628 }
9629 mutex_exit(&spa_namespace_lock);
9630 }
9631
9632 vdev_t *
9633 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9634 {
9635 vdev_t *vd;
9636 int i;
9637
9638 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9639 return (vd);
9640
9641 if (aux) {
9642 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9643 vd = spa->spa_l2cache.sav_vdevs[i];
9644 if (vd->vdev_guid == guid)
9645 return (vd);
9646 }
9647
9648 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9649 vd = spa->spa_spares.sav_vdevs[i];
9650 if (vd->vdev_guid == guid)
9651 return (vd);
9652 }
9653 }
9654
9655 return (NULL);
9656 }
9657
9658 void
9659 spa_upgrade(spa_t *spa, uint64_t version)
9660 {
9661 ASSERT(spa_writeable(spa));
9662
9663 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9664
9665 /*
9666 * This should only be called for a non-faulted pool, and since a
9667 * future version would result in an unopenable pool, this shouldn't be
9668 * possible.
9669 */
9670 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9671 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9672
9673 spa->spa_uberblock.ub_version = version;
9674 vdev_config_dirty(spa->spa_root_vdev);
9675
9676 spa_config_exit(spa, SCL_ALL, FTAG);
9677
9678 txg_wait_synced(spa_get_dsl(spa), 0);
9679 }
9680
9681 static boolean_t
9682 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9683 {
9684 (void) spa;
9685 int i;
9686 uint64_t vdev_guid;
9687
9688 for (i = 0; i < sav->sav_count; i++)
9689 if (sav->sav_vdevs[i]->vdev_guid == guid)
9690 return (B_TRUE);
9691
9692 for (i = 0; i < sav->sav_npending; i++) {
9693 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9694 &vdev_guid) == 0 && vdev_guid == guid)
9695 return (B_TRUE);
9696 }
9697
9698 return (B_FALSE);
9699 }
9700
9701 boolean_t
9702 spa_has_l2cache(spa_t *spa, uint64_t guid)
9703 {
9704 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9705 }
9706
9707 boolean_t
9708 spa_has_spare(spa_t *spa, uint64_t guid)
9709 {
9710 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9711 }
9712
9713 /*
9714 * Check if a pool has an active shared spare device.
9715 * Note: reference count of an active spare is 2, as a spare and as a replace
9716 */
9717 static boolean_t
9718 spa_has_active_shared_spare(spa_t *spa)
9719 {
9720 int i, refcnt;
9721 uint64_t pool;
9722 spa_aux_vdev_t *sav = &spa->spa_spares;
9723
9724 for (i = 0; i < sav->sav_count; i++) {
9725 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9726 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9727 refcnt > 2)
9728 return (B_TRUE);
9729 }
9730
9731 return (B_FALSE);
9732 }
9733
9734 uint64_t
9735 spa_total_metaslabs(spa_t *spa)
9736 {
9737 vdev_t *rvd = spa->spa_root_vdev;
9738
9739 uint64_t m = 0;
9740 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9741 vdev_t *vd = rvd->vdev_child[c];
9742 if (!vdev_is_concrete(vd))
9743 continue;
9744 m += vd->vdev_ms_count;
9745 }
9746 return (m);
9747 }
9748
9749 /*
9750 * Notify any waiting threads that some activity has switched from being in-
9751 * progress to not-in-progress so that the thread can wake up and determine
9752 * whether it is finished waiting.
9753 */
9754 void
9755 spa_notify_waiters(spa_t *spa)
9756 {
9757 /*
9758 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9759 * happening between the waiting thread's check and cv_wait.
9760 */
9761 mutex_enter(&spa->spa_activities_lock);
9762 cv_broadcast(&spa->spa_activities_cv);
9763 mutex_exit(&spa->spa_activities_lock);
9764 }
9765
9766 /*
9767 * Notify any waiting threads that the pool is exporting, and then block until
9768 * they are finished using the spa_t.
9769 */
9770 void
9771 spa_wake_waiters(spa_t *spa)
9772 {
9773 mutex_enter(&spa->spa_activities_lock);
9774 spa->spa_waiters_cancel = B_TRUE;
9775 cv_broadcast(&spa->spa_activities_cv);
9776 while (spa->spa_waiters != 0)
9777 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9778 spa->spa_waiters_cancel = B_FALSE;
9779 mutex_exit(&spa->spa_activities_lock);
9780 }
9781
9782 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9783 static boolean_t
9784 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9785 {
9786 spa_t *spa = vd->vdev_spa;
9787
9788 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9789 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9790 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9791 activity == ZPOOL_WAIT_TRIM);
9792
9793 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9794 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9795
9796 mutex_exit(&spa->spa_activities_lock);
9797 mutex_enter(lock);
9798 mutex_enter(&spa->spa_activities_lock);
9799
9800 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9801 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9802 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9803 mutex_exit(lock);
9804
9805 if (in_progress)
9806 return (B_TRUE);
9807
9808 for (int i = 0; i < vd->vdev_children; i++) {
9809 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9810 activity))
9811 return (B_TRUE);
9812 }
9813
9814 return (B_FALSE);
9815 }
9816
9817 /*
9818 * If use_guid is true, this checks whether the vdev specified by guid is
9819 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9820 * is being initialized/trimmed. The caller must hold the config lock and
9821 * spa_activities_lock.
9822 */
9823 static int
9824 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9825 zpool_wait_activity_t activity, boolean_t *in_progress)
9826 {
9827 mutex_exit(&spa->spa_activities_lock);
9828 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9829 mutex_enter(&spa->spa_activities_lock);
9830
9831 vdev_t *vd;
9832 if (use_guid) {
9833 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9834 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9835 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9836 return (EINVAL);
9837 }
9838 } else {
9839 vd = spa->spa_root_vdev;
9840 }
9841
9842 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9843
9844 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9845 return (0);
9846 }
9847
9848 /*
9849 * Locking for waiting threads
9850 * ---------------------------
9851 *
9852 * Waiting threads need a way to check whether a given activity is in progress,
9853 * and then, if it is, wait for it to complete. Each activity will have some
9854 * in-memory representation of the relevant on-disk state which can be used to
9855 * determine whether or not the activity is in progress. The in-memory state and
9856 * the locking used to protect it will be different for each activity, and may
9857 * not be suitable for use with a cvar (e.g., some state is protected by the
9858 * config lock). To allow waiting threads to wait without any races, another
9859 * lock, spa_activities_lock, is used.
9860 *
9861 * When the state is checked, both the activity-specific lock (if there is one)
9862 * and spa_activities_lock are held. In some cases, the activity-specific lock
9863 * is acquired explicitly (e.g. the config lock). In others, the locking is
9864 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9865 * thread releases the activity-specific lock and, if the activity is in
9866 * progress, then cv_waits using spa_activities_lock.
9867 *
9868 * The waiting thread is woken when another thread, one completing some
9869 * activity, updates the state of the activity and then calls
9870 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9871 * needs to hold its activity-specific lock when updating the state, and this
9872 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9873 *
9874 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9875 * and because it is held when the waiting thread checks the state of the
9876 * activity, it can never be the case that the completing thread both updates
9877 * the activity state and cv_broadcasts in between the waiting thread's check
9878 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9879 *
9880 * In order to prevent deadlock, when the waiting thread does its check, in some
9881 * cases it will temporarily drop spa_activities_lock in order to acquire the
9882 * activity-specific lock. The order in which spa_activities_lock and the
9883 * activity specific lock are acquired in the waiting thread is determined by
9884 * the order in which they are acquired in the completing thread; if the
9885 * completing thread calls spa_notify_waiters with the activity-specific lock
9886 * held, then the waiting thread must also acquire the activity-specific lock
9887 * first.
9888 */
9889
9890 static int
9891 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9892 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9893 {
9894 int error = 0;
9895
9896 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9897
9898 switch (activity) {
9899 case ZPOOL_WAIT_CKPT_DISCARD:
9900 *in_progress =
9901 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9902 zap_contains(spa_meta_objset(spa),
9903 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9904 ENOENT);
9905 break;
9906 case ZPOOL_WAIT_FREE:
9907 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9908 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9909 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9910 spa_livelist_delete_check(spa));
9911 break;
9912 case ZPOOL_WAIT_INITIALIZE:
9913 case ZPOOL_WAIT_TRIM:
9914 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9915 activity, in_progress);
9916 break;
9917 case ZPOOL_WAIT_REPLACE:
9918 mutex_exit(&spa->spa_activities_lock);
9919 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9920 mutex_enter(&spa->spa_activities_lock);
9921
9922 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9923 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9924 break;
9925 case ZPOOL_WAIT_REMOVE:
9926 *in_progress = (spa->spa_removing_phys.sr_state ==
9927 DSS_SCANNING);
9928 break;
9929 case ZPOOL_WAIT_RESILVER:
9930 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9931 break;
9932 zfs_fallthrough;
9933 case ZPOOL_WAIT_SCRUB:
9934 {
9935 boolean_t scanning, paused, is_scrub;
9936 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9937
9938 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9939 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9940 paused = dsl_scan_is_paused_scrub(scn);
9941 *in_progress = (scanning && !paused &&
9942 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9943 break;
9944 }
9945 default:
9946 panic("unrecognized value for activity %d", activity);
9947 }
9948
9949 return (error);
9950 }
9951
9952 static int
9953 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9954 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9955 {
9956 /*
9957 * The tag is used to distinguish between instances of an activity.
9958 * 'initialize' and 'trim' are the only activities that we use this for.
9959 * The other activities can only have a single instance in progress in a
9960 * pool at one time, making the tag unnecessary.
9961 *
9962 * There can be multiple devices being replaced at once, but since they
9963 * all finish once resilvering finishes, we don't bother keeping track
9964 * of them individually, we just wait for them all to finish.
9965 */
9966 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9967 activity != ZPOOL_WAIT_TRIM)
9968 return (EINVAL);
9969
9970 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9971 return (EINVAL);
9972
9973 spa_t *spa;
9974 int error = spa_open(pool, &spa, FTAG);
9975 if (error != 0)
9976 return (error);
9977
9978 /*
9979 * Increment the spa's waiter count so that we can call spa_close and
9980 * still ensure that the spa_t doesn't get freed before this thread is
9981 * finished with it when the pool is exported. We want to call spa_close
9982 * before we start waiting because otherwise the additional ref would
9983 * prevent the pool from being exported or destroyed throughout the
9984 * potentially long wait.
9985 */
9986 mutex_enter(&spa->spa_activities_lock);
9987 spa->spa_waiters++;
9988 spa_close(spa, FTAG);
9989
9990 *waited = B_FALSE;
9991 for (;;) {
9992 boolean_t in_progress;
9993 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9994 &in_progress);
9995
9996 if (error || !in_progress || spa->spa_waiters_cancel)
9997 break;
9998
9999 *waited = B_TRUE;
10000
10001 if (cv_wait_sig(&spa->spa_activities_cv,
10002 &spa->spa_activities_lock) == 0) {
10003 error = EINTR;
10004 break;
10005 }
10006 }
10007
10008 spa->spa_waiters--;
10009 cv_signal(&spa->spa_waiters_cv);
10010 mutex_exit(&spa->spa_activities_lock);
10011
10012 return (error);
10013 }
10014
10015 /*
10016 * Wait for a particular instance of the specified activity to complete, where
10017 * the instance is identified by 'tag'
10018 */
10019 int
10020 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10021 boolean_t *waited)
10022 {
10023 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10024 }
10025
10026 /*
10027 * Wait for all instances of the specified activity complete
10028 */
10029 int
10030 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10031 {
10032
10033 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10034 }
10035
10036 sysevent_t *
10037 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10038 {
10039 sysevent_t *ev = NULL;
10040 #ifdef _KERNEL
10041 nvlist_t *resource;
10042
10043 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10044 if (resource) {
10045 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10046 ev->resource = resource;
10047 }
10048 #else
10049 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10050 #endif
10051 return (ev);
10052 }
10053
10054 void
10055 spa_event_post(sysevent_t *ev)
10056 {
10057 #ifdef _KERNEL
10058 if (ev) {
10059 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10060 kmem_free(ev, sizeof (*ev));
10061 }
10062 #else
10063 (void) ev;
10064 #endif
10065 }
10066
10067 /*
10068 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10069 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10070 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10071 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10072 * or zdb as real changes.
10073 */
10074 void
10075 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10076 {
10077 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10078 }
10079
10080 /* state manipulation functions */
10081 EXPORT_SYMBOL(spa_open);
10082 EXPORT_SYMBOL(spa_open_rewind);
10083 EXPORT_SYMBOL(spa_get_stats);
10084 EXPORT_SYMBOL(spa_create);
10085 EXPORT_SYMBOL(spa_import);
10086 EXPORT_SYMBOL(spa_tryimport);
10087 EXPORT_SYMBOL(spa_destroy);
10088 EXPORT_SYMBOL(spa_export);
10089 EXPORT_SYMBOL(spa_reset);
10090 EXPORT_SYMBOL(spa_async_request);
10091 EXPORT_SYMBOL(spa_async_suspend);
10092 EXPORT_SYMBOL(spa_async_resume);
10093 EXPORT_SYMBOL(spa_inject_addref);
10094 EXPORT_SYMBOL(spa_inject_delref);
10095 EXPORT_SYMBOL(spa_scan_stat_init);
10096 EXPORT_SYMBOL(spa_scan_get_stats);
10097
10098 /* device manipulation */
10099 EXPORT_SYMBOL(spa_vdev_add);
10100 EXPORT_SYMBOL(spa_vdev_attach);
10101 EXPORT_SYMBOL(spa_vdev_detach);
10102 EXPORT_SYMBOL(spa_vdev_setpath);
10103 EXPORT_SYMBOL(spa_vdev_setfru);
10104 EXPORT_SYMBOL(spa_vdev_split_mirror);
10105
10106 /* spare statech is global across all pools) */
10107 EXPORT_SYMBOL(spa_spare_add);
10108 EXPORT_SYMBOL(spa_spare_remove);
10109 EXPORT_SYMBOL(spa_spare_exists);
10110 EXPORT_SYMBOL(spa_spare_activate);
10111
10112 /* L2ARC statech is global across all pools) */
10113 EXPORT_SYMBOL(spa_l2cache_add);
10114 EXPORT_SYMBOL(spa_l2cache_remove);
10115 EXPORT_SYMBOL(spa_l2cache_exists);
10116 EXPORT_SYMBOL(spa_l2cache_activate);
10117 EXPORT_SYMBOL(spa_l2cache_drop);
10118
10119 /* scanning */
10120 EXPORT_SYMBOL(spa_scan);
10121 EXPORT_SYMBOL(spa_scan_stop);
10122
10123 /* spa syncing */
10124 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10125 EXPORT_SYMBOL(spa_sync_allpools);
10126
10127 /* properties */
10128 EXPORT_SYMBOL(spa_prop_set);
10129 EXPORT_SYMBOL(spa_prop_get);
10130 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10131
10132 /* asynchronous event notification */
10133 EXPORT_SYMBOL(spa_event_notify);
10134
10135 /* BEGIN CSTYLED */
10136 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10137 "log2 fraction of arc that can be used by inflight I/Os when "
10138 "verifying pool during import");
10139 /* END CSTYLED */
10140
10141 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10142 "Set to traverse metadata on pool import");
10143
10144 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10145 "Set to traverse data on pool import");
10146
10147 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10148 "Print vdev tree to zfs_dbgmsg during pool import");
10149
10150 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10151 "Percentage of CPUs to run an IO worker thread");
10152
10153 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10154 "Number of threads per IO worker taskqueue");
10155
10156 /* BEGIN CSTYLED */
10157 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10158 "Allow importing pool with up to this number of missing top-level "
10159 "vdevs (in read-only mode)");
10160 /* END CSTYLED */
10161
10162 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10163 ZMOD_RW, "Set the livelist condense zthr to pause");
10164
10165 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10166 ZMOD_RW, "Set the livelist condense synctask to pause");
10167
10168 /* BEGIN CSTYLED */
10169 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10170 INT, ZMOD_RW,
10171 "Whether livelist condensing was canceled in the synctask");
10172
10173 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10174 INT, ZMOD_RW,
10175 "Whether livelist condensing was canceled in the zthr function");
10176
10177 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10178 ZMOD_RW,
10179 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10180 "was being condensed");
10181 /* END CSTYLED */