]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Illumos #1949, #1953
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011 by Delphix. All rights reserved.
26 */
27
28 /*
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
32 */
33
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_disk.h>
46 #include <sys/metaslab.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/dmu_traverse.h>
52 #include <sys/dmu_objset.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dataset.h>
56 #include <sys/dsl_dir.h>
57 #include <sys/dsl_prop.h>
58 #include <sys/dsl_synctask.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/arc.h>
61 #include <sys/callb.h>
62 #include <sys/systeminfo.h>
63 #include <sys/spa_boot.h>
64 #include <sys/zfs_ioctl.h>
65 #include <sys/dsl_scan.h>
66
67 #ifdef _KERNEL
68 #include <sys/bootprops.h>
69 #include <sys/callb.h>
70 #include <sys/cpupart.h>
71 #include <sys/pool.h>
72 #include <sys/sysdc.h>
73 #include <sys/zone.h>
74 #endif /* _KERNEL */
75
76 #include "zfs_prop.h"
77 #include "zfs_comutil.h"
78
79 typedef enum zti_modes {
80 zti_mode_fixed, /* value is # of threads (min 1) */
81 zti_mode_online_percent, /* value is % of online CPUs */
82 zti_mode_batch, /* cpu-intensive; value is ignored */
83 zti_mode_null, /* don't create a taskq */
84 zti_nmodes
85 } zti_modes_t;
86
87 #define ZTI_FIX(n) { zti_mode_fixed, (n) }
88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) }
89 #define ZTI_BATCH { zti_mode_batch, 0 }
90 #define ZTI_NULL { zti_mode_null, 0 }
91
92 #define ZTI_ONE ZTI_FIX(1)
93
94 typedef struct zio_taskq_info {
95 enum zti_modes zti_mode;
96 uint_t zti_value;
97 } zio_taskq_info_t;
98
99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 "iss", "iss_h", "int", "int_h"
101 };
102
103 /*
104 * Define the taskq threads for the following I/O types:
105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106 */
107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(16), ZTI_FIX(5) },
112 { ZTI_PCT(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
115 };
116
117 static dsl_syncfunc_t spa_sync_props;
118 static boolean_t spa_has_active_shared_spare(spa_t *spa);
119 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
120 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
121 char **ereport);
122 static void spa_vdev_resilver_done(spa_t *spa);
123
124 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
125 id_t zio_taskq_psrset_bind = PS_NONE;
126 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
127 uint_t zio_taskq_basedc = 80; /* base duty cycle */
128
129 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
130
131 /*
132 * This (illegal) pool name is used when temporarily importing a spa_t in order
133 * to get the vdev stats associated with the imported devices.
134 */
135 #define TRYIMPORT_NAME "$import"
136
137 /*
138 * ==========================================================================
139 * SPA properties routines
140 * ==========================================================================
141 */
142
143 /*
144 * Add a (source=src, propname=propval) list to an nvlist.
145 */
146 static void
147 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
148 uint64_t intval, zprop_source_t src)
149 {
150 const char *propname = zpool_prop_to_name(prop);
151 nvlist_t *propval;
152
153 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
154 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
155
156 if (strval != NULL)
157 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
158 else
159 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
160
161 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
162 nvlist_free(propval);
163 }
164
165 /*
166 * Get property values from the spa configuration.
167 */
168 static void
169 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
170 {
171 uint64_t size;
172 uint64_t alloc;
173 uint64_t cap, version;
174 zprop_source_t src = ZPROP_SRC_NONE;
175 spa_config_dirent_t *dp;
176
177 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
178
179 if (spa->spa_root_vdev != NULL) {
180 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
181 size = metaslab_class_get_space(spa_normal_class(spa));
182 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
183 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
184 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
185 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
186 size - alloc, src);
187 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
188 (spa_mode(spa) == FREAD), src);
189
190 cap = (size == 0) ? 0 : (alloc * 100 / size);
191 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
192
193 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
194 ddt_get_pool_dedup_ratio(spa), src);
195
196 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
197 spa->spa_root_vdev->vdev_state, src);
198
199 version = spa_version(spa);
200 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
201 src = ZPROP_SRC_DEFAULT;
202 else
203 src = ZPROP_SRC_LOCAL;
204 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
205 }
206
207 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
208
209 if (spa->spa_root != NULL)
210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
211 0, ZPROP_SRC_LOCAL);
212
213 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
214 if (dp->scd_path == NULL) {
215 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
216 "none", 0, ZPROP_SRC_LOCAL);
217 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
218 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
219 dp->scd_path, 0, ZPROP_SRC_LOCAL);
220 }
221 }
222 }
223
224 /*
225 * Get zpool property values.
226 */
227 int
228 spa_prop_get(spa_t *spa, nvlist_t **nvp)
229 {
230 objset_t *mos = spa->spa_meta_objset;
231 zap_cursor_t zc;
232 zap_attribute_t za;
233 int err;
234
235 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
236 if (err)
237 return err;
238
239 mutex_enter(&spa->spa_props_lock);
240
241 /*
242 * Get properties from the spa config.
243 */
244 spa_prop_get_config(spa, nvp);
245
246 /* If no pool property object, no more prop to get. */
247 if (mos == NULL || spa->spa_pool_props_object == 0) {
248 mutex_exit(&spa->spa_props_lock);
249 goto out;
250 }
251
252 /*
253 * Get properties from the MOS pool property object.
254 */
255 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
256 (err = zap_cursor_retrieve(&zc, &za)) == 0;
257 zap_cursor_advance(&zc)) {
258 uint64_t intval = 0;
259 char *strval = NULL;
260 zprop_source_t src = ZPROP_SRC_DEFAULT;
261 zpool_prop_t prop;
262
263 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
264 continue;
265
266 switch (za.za_integer_length) {
267 case 8:
268 /* integer property */
269 if (za.za_first_integer !=
270 zpool_prop_default_numeric(prop))
271 src = ZPROP_SRC_LOCAL;
272
273 if (prop == ZPOOL_PROP_BOOTFS) {
274 dsl_pool_t *dp;
275 dsl_dataset_t *ds = NULL;
276
277 dp = spa_get_dsl(spa);
278 rw_enter(&dp->dp_config_rwlock, RW_READER);
279 if ((err = dsl_dataset_hold_obj(dp,
280 za.za_first_integer, FTAG, &ds))) {
281 rw_exit(&dp->dp_config_rwlock);
282 break;
283 }
284
285 strval = kmem_alloc(
286 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
287 KM_SLEEP);
288 dsl_dataset_name(ds, strval);
289 dsl_dataset_rele(ds, FTAG);
290 rw_exit(&dp->dp_config_rwlock);
291 } else {
292 strval = NULL;
293 intval = za.za_first_integer;
294 }
295
296 spa_prop_add_list(*nvp, prop, strval, intval, src);
297
298 if (strval != NULL)
299 kmem_free(strval,
300 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
301
302 break;
303
304 case 1:
305 /* string property */
306 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
307 err = zap_lookup(mos, spa->spa_pool_props_object,
308 za.za_name, 1, za.za_num_integers, strval);
309 if (err) {
310 kmem_free(strval, za.za_num_integers);
311 break;
312 }
313 spa_prop_add_list(*nvp, prop, strval, 0, src);
314 kmem_free(strval, za.za_num_integers);
315 break;
316
317 default:
318 break;
319 }
320 }
321 zap_cursor_fini(&zc);
322 mutex_exit(&spa->spa_props_lock);
323 out:
324 if (err && err != ENOENT) {
325 nvlist_free(*nvp);
326 *nvp = NULL;
327 return (err);
328 }
329
330 return (0);
331 }
332
333 /*
334 * Validate the given pool properties nvlist and modify the list
335 * for the property values to be set.
336 */
337 static int
338 spa_prop_validate(spa_t *spa, nvlist_t *props)
339 {
340 nvpair_t *elem;
341 int error = 0, reset_bootfs = 0;
342 uint64_t objnum = 0;
343
344 elem = NULL;
345 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
346 zpool_prop_t prop;
347 char *propname, *strval;
348 uint64_t intval;
349 objset_t *os;
350 char *slash;
351
352 propname = nvpair_name(elem);
353
354 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
355 return (EINVAL);
356
357 switch (prop) {
358 case ZPOOL_PROP_VERSION:
359 error = nvpair_value_uint64(elem, &intval);
360 if (!error &&
361 (intval < spa_version(spa) || intval > SPA_VERSION))
362 error = EINVAL;
363 break;
364
365 case ZPOOL_PROP_DELEGATION:
366 case ZPOOL_PROP_AUTOREPLACE:
367 case ZPOOL_PROP_LISTSNAPS:
368 case ZPOOL_PROP_AUTOEXPAND:
369 error = nvpair_value_uint64(elem, &intval);
370 if (!error && intval > 1)
371 error = EINVAL;
372 break;
373
374 case ZPOOL_PROP_BOOTFS:
375 /*
376 * If the pool version is less than SPA_VERSION_BOOTFS,
377 * or the pool is still being created (version == 0),
378 * the bootfs property cannot be set.
379 */
380 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
381 error = ENOTSUP;
382 break;
383 }
384
385 /*
386 * Make sure the vdev config is bootable
387 */
388 if (!vdev_is_bootable(spa->spa_root_vdev)) {
389 error = ENOTSUP;
390 break;
391 }
392
393 reset_bootfs = 1;
394
395 error = nvpair_value_string(elem, &strval);
396
397 if (!error) {
398 uint64_t compress;
399
400 if (strval == NULL || strval[0] == '\0') {
401 objnum = zpool_prop_default_numeric(
402 ZPOOL_PROP_BOOTFS);
403 break;
404 }
405
406 if ((error = dmu_objset_hold(strval,FTAG,&os)))
407 break;
408
409 /* Must be ZPL and not gzip compressed. */
410
411 if (dmu_objset_type(os) != DMU_OST_ZFS) {
412 error = ENOTSUP;
413 } else if ((error = dsl_prop_get_integer(strval,
414 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
415 &compress, NULL)) == 0 &&
416 !BOOTFS_COMPRESS_VALID(compress)) {
417 error = ENOTSUP;
418 } else {
419 objnum = dmu_objset_id(os);
420 }
421 dmu_objset_rele(os, FTAG);
422 }
423 break;
424
425 case ZPOOL_PROP_FAILUREMODE:
426 error = nvpair_value_uint64(elem, &intval);
427 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
428 intval > ZIO_FAILURE_MODE_PANIC))
429 error = EINVAL;
430
431 /*
432 * This is a special case which only occurs when
433 * the pool has completely failed. This allows
434 * the user to change the in-core failmode property
435 * without syncing it out to disk (I/Os might
436 * currently be blocked). We do this by returning
437 * EIO to the caller (spa_prop_set) to trick it
438 * into thinking we encountered a property validation
439 * error.
440 */
441 if (!error && spa_suspended(spa)) {
442 spa->spa_failmode = intval;
443 error = EIO;
444 }
445 break;
446
447 case ZPOOL_PROP_CACHEFILE:
448 if ((error = nvpair_value_string(elem, &strval)) != 0)
449 break;
450
451 if (strval[0] == '\0')
452 break;
453
454 if (strcmp(strval, "none") == 0)
455 break;
456
457 if (strval[0] != '/') {
458 error = EINVAL;
459 break;
460 }
461
462 slash = strrchr(strval, '/');
463 ASSERT(slash != NULL);
464
465 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
466 strcmp(slash, "/..") == 0)
467 error = EINVAL;
468 break;
469
470 case ZPOOL_PROP_DEDUPDITTO:
471 if (spa_version(spa) < SPA_VERSION_DEDUP)
472 error = ENOTSUP;
473 else
474 error = nvpair_value_uint64(elem, &intval);
475 if (error == 0 &&
476 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
477 error = EINVAL;
478 break;
479
480 default:
481 break;
482 }
483
484 if (error)
485 break;
486 }
487
488 if (!error && reset_bootfs) {
489 error = nvlist_remove(props,
490 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
491
492 if (!error) {
493 error = nvlist_add_uint64(props,
494 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
495 }
496 }
497
498 return (error);
499 }
500
501 void
502 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
503 {
504 char *cachefile;
505 spa_config_dirent_t *dp;
506
507 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
508 &cachefile) != 0)
509 return;
510
511 dp = kmem_alloc(sizeof (spa_config_dirent_t),
512 KM_SLEEP);
513
514 if (cachefile[0] == '\0')
515 dp->scd_path = spa_strdup(spa_config_path);
516 else if (strcmp(cachefile, "none") == 0)
517 dp->scd_path = NULL;
518 else
519 dp->scd_path = spa_strdup(cachefile);
520
521 list_insert_head(&spa->spa_config_list, dp);
522 if (need_sync)
523 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
524 }
525
526 int
527 spa_prop_set(spa_t *spa, nvlist_t *nvp)
528 {
529 int error;
530 nvpair_t *elem;
531 boolean_t need_sync = B_FALSE;
532 zpool_prop_t prop;
533
534 if ((error = spa_prop_validate(spa, nvp)) != 0)
535 return (error);
536
537 elem = NULL;
538 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
539 if ((prop = zpool_name_to_prop(
540 nvpair_name(elem))) == ZPROP_INVAL)
541 return (EINVAL);
542
543 if (prop == ZPOOL_PROP_CACHEFILE ||
544 prop == ZPOOL_PROP_ALTROOT ||
545 prop == ZPOOL_PROP_READONLY)
546 continue;
547
548 need_sync = B_TRUE;
549 break;
550 }
551
552 if (need_sync)
553 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
554 spa, nvp, 3));
555 else
556 return (0);
557 }
558
559 /*
560 * If the bootfs property value is dsobj, clear it.
561 */
562 void
563 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
564 {
565 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
566 VERIFY(zap_remove(spa->spa_meta_objset,
567 spa->spa_pool_props_object,
568 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
569 spa->spa_bootfs = 0;
570 }
571 }
572
573 /*
574 * Change the GUID for the pool. This is done so that we can later
575 * re-import a pool built from a clone of our own vdevs. We will modify
576 * the root vdev's guid, our own pool guid, and then mark all of our
577 * vdevs dirty. Note that we must make sure that all our vdevs are
578 * online when we do this, or else any vdevs that weren't present
579 * would be orphaned from our pool. We are also going to issue a
580 * sysevent to update any watchers.
581 */
582 int
583 spa_change_guid(spa_t *spa)
584 {
585 uint64_t oldguid, newguid;
586 uint64_t txg;
587
588 if (!(spa_mode_global & FWRITE))
589 return (EROFS);
590
591 txg = spa_vdev_enter(spa);
592
593 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
594 return (spa_vdev_exit(spa, NULL, txg, ENXIO));
595
596 oldguid = spa_guid(spa);
597 newguid = spa_generate_guid(NULL);
598 ASSERT3U(oldguid, !=, newguid);
599
600 spa->spa_root_vdev->vdev_guid = newguid;
601 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
602
603 vdev_config_dirty(spa->spa_root_vdev);
604
605 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
606
607 return (spa_vdev_exit(spa, NULL, txg, 0));
608 }
609
610 /*
611 * ==========================================================================
612 * SPA state manipulation (open/create/destroy/import/export)
613 * ==========================================================================
614 */
615
616 static int
617 spa_error_entry_compare(const void *a, const void *b)
618 {
619 spa_error_entry_t *sa = (spa_error_entry_t *)a;
620 spa_error_entry_t *sb = (spa_error_entry_t *)b;
621 int ret;
622
623 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
624 sizeof (zbookmark_t));
625
626 if (ret < 0)
627 return (-1);
628 else if (ret > 0)
629 return (1);
630 else
631 return (0);
632 }
633
634 /*
635 * Utility function which retrieves copies of the current logs and
636 * re-initializes them in the process.
637 */
638 void
639 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
640 {
641 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
642
643 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
644 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
645
646 avl_create(&spa->spa_errlist_scrub,
647 spa_error_entry_compare, sizeof (spa_error_entry_t),
648 offsetof(spa_error_entry_t, se_avl));
649 avl_create(&spa->spa_errlist_last,
650 spa_error_entry_compare, sizeof (spa_error_entry_t),
651 offsetof(spa_error_entry_t, se_avl));
652 }
653
654 static taskq_t *
655 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
656 uint_t value, uint_t flags)
657 {
658 boolean_t batch = B_FALSE;
659
660 switch (mode) {
661 case zti_mode_null:
662 return (NULL); /* no taskq needed */
663
664 case zti_mode_fixed:
665 ASSERT3U(value, >=, 1);
666 value = MAX(value, 1);
667 break;
668
669 case zti_mode_batch:
670 batch = B_TRUE;
671 flags |= TASKQ_THREADS_CPU_PCT;
672 value = zio_taskq_batch_pct;
673 break;
674
675 case zti_mode_online_percent:
676 flags |= TASKQ_THREADS_CPU_PCT;
677 break;
678
679 default:
680 panic("unrecognized mode for %s taskq (%u:%u) in "
681 "spa_activate()",
682 name, mode, value);
683 break;
684 }
685
686 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
687 if (batch)
688 flags |= TASKQ_DC_BATCH;
689
690 return (taskq_create_sysdc(name, value, 50, INT_MAX,
691 spa->spa_proc, zio_taskq_basedc, flags));
692 }
693 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
694 spa->spa_proc, flags));
695 }
696
697 static void
698 spa_create_zio_taskqs(spa_t *spa)
699 {
700 int t, q;
701
702 for (t = 0; t < ZIO_TYPES; t++) {
703 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
704 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
705 enum zti_modes mode = ztip->zti_mode;
706 uint_t value = ztip->zti_value;
707 uint_t flags = 0;
708 char name[32];
709
710 if (t == ZIO_TYPE_WRITE)
711 flags |= TASKQ_NORECLAIM;
712
713 (void) snprintf(name, sizeof (name),
714 "%s_%s", zio_type_name[t], zio_taskq_types[q]);
715
716 spa->spa_zio_taskq[t][q] =
717 spa_taskq_create(spa, name, mode, value, flags);
718 }
719 }
720 }
721
722 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
723 static void
724 spa_thread(void *arg)
725 {
726 callb_cpr_t cprinfo;
727
728 spa_t *spa = arg;
729 user_t *pu = PTOU(curproc);
730
731 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
732 spa->spa_name);
733
734 ASSERT(curproc != &p0);
735 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
736 "zpool-%s", spa->spa_name);
737 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
738
739 /* bind this thread to the requested psrset */
740 if (zio_taskq_psrset_bind != PS_NONE) {
741 pool_lock();
742 mutex_enter(&cpu_lock);
743 mutex_enter(&pidlock);
744 mutex_enter(&curproc->p_lock);
745
746 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
747 0, NULL, NULL) == 0) {
748 curthread->t_bind_pset = zio_taskq_psrset_bind;
749 } else {
750 cmn_err(CE_WARN,
751 "Couldn't bind process for zfs pool \"%s\" to "
752 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
753 }
754
755 mutex_exit(&curproc->p_lock);
756 mutex_exit(&pidlock);
757 mutex_exit(&cpu_lock);
758 pool_unlock();
759 }
760
761 if (zio_taskq_sysdc) {
762 sysdc_thread_enter(curthread, 100, 0);
763 }
764
765 spa->spa_proc = curproc;
766 spa->spa_did = curthread->t_did;
767
768 spa_create_zio_taskqs(spa);
769
770 mutex_enter(&spa->spa_proc_lock);
771 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
772
773 spa->spa_proc_state = SPA_PROC_ACTIVE;
774 cv_broadcast(&spa->spa_proc_cv);
775
776 CALLB_CPR_SAFE_BEGIN(&cprinfo);
777 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
778 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
779 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
780
781 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
782 spa->spa_proc_state = SPA_PROC_GONE;
783 spa->spa_proc = &p0;
784 cv_broadcast(&spa->spa_proc_cv);
785 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
786
787 mutex_enter(&curproc->p_lock);
788 lwp_exit();
789 }
790 #endif
791
792 /*
793 * Activate an uninitialized pool.
794 */
795 static void
796 spa_activate(spa_t *spa, int mode)
797 {
798 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
799
800 spa->spa_state = POOL_STATE_ACTIVE;
801 spa->spa_mode = mode;
802
803 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
804 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
805
806 /* Try to create a covering process */
807 mutex_enter(&spa->spa_proc_lock);
808 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
809 ASSERT(spa->spa_proc == &p0);
810 spa->spa_did = 0;
811
812 #ifdef HAVE_SPA_THREAD
813 /* Only create a process if we're going to be around a while. */
814 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
815 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
816 NULL, 0) == 0) {
817 spa->spa_proc_state = SPA_PROC_CREATED;
818 while (spa->spa_proc_state == SPA_PROC_CREATED) {
819 cv_wait(&spa->spa_proc_cv,
820 &spa->spa_proc_lock);
821 }
822 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
823 ASSERT(spa->spa_proc != &p0);
824 ASSERT(spa->spa_did != 0);
825 } else {
826 #ifdef _KERNEL
827 cmn_err(CE_WARN,
828 "Couldn't create process for zfs pool \"%s\"\n",
829 spa->spa_name);
830 #endif
831 }
832 }
833 #endif /* HAVE_SPA_THREAD */
834 mutex_exit(&spa->spa_proc_lock);
835
836 /* If we didn't create a process, we need to create our taskqs. */
837 if (spa->spa_proc == &p0) {
838 spa_create_zio_taskqs(spa);
839 }
840
841 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
842 offsetof(vdev_t, vdev_config_dirty_node));
843 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
844 offsetof(vdev_t, vdev_state_dirty_node));
845
846 txg_list_create(&spa->spa_vdev_txg_list,
847 offsetof(struct vdev, vdev_txg_node));
848
849 avl_create(&spa->spa_errlist_scrub,
850 spa_error_entry_compare, sizeof (spa_error_entry_t),
851 offsetof(spa_error_entry_t, se_avl));
852 avl_create(&spa->spa_errlist_last,
853 spa_error_entry_compare, sizeof (spa_error_entry_t),
854 offsetof(spa_error_entry_t, se_avl));
855 }
856
857 /*
858 * Opposite of spa_activate().
859 */
860 static void
861 spa_deactivate(spa_t *spa)
862 {
863 int t, q;
864
865 ASSERT(spa->spa_sync_on == B_FALSE);
866 ASSERT(spa->spa_dsl_pool == NULL);
867 ASSERT(spa->spa_root_vdev == NULL);
868 ASSERT(spa->spa_async_zio_root == NULL);
869 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
870
871 txg_list_destroy(&spa->spa_vdev_txg_list);
872
873 list_destroy(&spa->spa_config_dirty_list);
874 list_destroy(&spa->spa_state_dirty_list);
875
876 for (t = 0; t < ZIO_TYPES; t++) {
877 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
878 if (spa->spa_zio_taskq[t][q] != NULL)
879 taskq_destroy(spa->spa_zio_taskq[t][q]);
880 spa->spa_zio_taskq[t][q] = NULL;
881 }
882 }
883
884 metaslab_class_destroy(spa->spa_normal_class);
885 spa->spa_normal_class = NULL;
886
887 metaslab_class_destroy(spa->spa_log_class);
888 spa->spa_log_class = NULL;
889
890 /*
891 * If this was part of an import or the open otherwise failed, we may
892 * still have errors left in the queues. Empty them just in case.
893 */
894 spa_errlog_drain(spa);
895
896 avl_destroy(&spa->spa_errlist_scrub);
897 avl_destroy(&spa->spa_errlist_last);
898
899 spa->spa_state = POOL_STATE_UNINITIALIZED;
900
901 mutex_enter(&spa->spa_proc_lock);
902 if (spa->spa_proc_state != SPA_PROC_NONE) {
903 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
904 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
905 cv_broadcast(&spa->spa_proc_cv);
906 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
907 ASSERT(spa->spa_proc != &p0);
908 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
909 }
910 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
911 spa->spa_proc_state = SPA_PROC_NONE;
912 }
913 ASSERT(spa->spa_proc == &p0);
914 mutex_exit(&spa->spa_proc_lock);
915
916 /*
917 * We want to make sure spa_thread() has actually exited the ZFS
918 * module, so that the module can't be unloaded out from underneath
919 * it.
920 */
921 if (spa->spa_did != 0) {
922 thread_join(spa->spa_did);
923 spa->spa_did = 0;
924 }
925 }
926
927 /*
928 * Verify a pool configuration, and construct the vdev tree appropriately. This
929 * will create all the necessary vdevs in the appropriate layout, with each vdev
930 * in the CLOSED state. This will prep the pool before open/creation/import.
931 * All vdev validation is done by the vdev_alloc() routine.
932 */
933 static int
934 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
935 uint_t id, int atype)
936 {
937 nvlist_t **child;
938 uint_t children;
939 int error;
940 int c;
941
942 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
943 return (error);
944
945 if ((*vdp)->vdev_ops->vdev_op_leaf)
946 return (0);
947
948 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
949 &child, &children);
950
951 if (error == ENOENT)
952 return (0);
953
954 if (error) {
955 vdev_free(*vdp);
956 *vdp = NULL;
957 return (EINVAL);
958 }
959
960 for (c = 0; c < children; c++) {
961 vdev_t *vd;
962 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
963 atype)) != 0) {
964 vdev_free(*vdp);
965 *vdp = NULL;
966 return (error);
967 }
968 }
969
970 ASSERT(*vdp != NULL);
971
972 return (0);
973 }
974
975 /*
976 * Opposite of spa_load().
977 */
978 static void
979 spa_unload(spa_t *spa)
980 {
981 int i;
982
983 ASSERT(MUTEX_HELD(&spa_namespace_lock));
984
985 /*
986 * Stop async tasks.
987 */
988 spa_async_suspend(spa);
989
990 /*
991 * Stop syncing.
992 */
993 if (spa->spa_sync_on) {
994 txg_sync_stop(spa->spa_dsl_pool);
995 spa->spa_sync_on = B_FALSE;
996 }
997
998 /*
999 * Wait for any outstanding async I/O to complete.
1000 */
1001 if (spa->spa_async_zio_root != NULL) {
1002 (void) zio_wait(spa->spa_async_zio_root);
1003 spa->spa_async_zio_root = NULL;
1004 }
1005
1006 bpobj_close(&spa->spa_deferred_bpobj);
1007
1008 /*
1009 * Close the dsl pool.
1010 */
1011 if (spa->spa_dsl_pool) {
1012 dsl_pool_close(spa->spa_dsl_pool);
1013 spa->spa_dsl_pool = NULL;
1014 spa->spa_meta_objset = NULL;
1015 }
1016
1017 ddt_unload(spa);
1018
1019 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1020
1021 /*
1022 * Drop and purge level 2 cache
1023 */
1024 spa_l2cache_drop(spa);
1025
1026 /*
1027 * Close all vdevs.
1028 */
1029 if (spa->spa_root_vdev)
1030 vdev_free(spa->spa_root_vdev);
1031 ASSERT(spa->spa_root_vdev == NULL);
1032
1033 for (i = 0; i < spa->spa_spares.sav_count; i++)
1034 vdev_free(spa->spa_spares.sav_vdevs[i]);
1035 if (spa->spa_spares.sav_vdevs) {
1036 kmem_free(spa->spa_spares.sav_vdevs,
1037 spa->spa_spares.sav_count * sizeof (void *));
1038 spa->spa_spares.sav_vdevs = NULL;
1039 }
1040 if (spa->spa_spares.sav_config) {
1041 nvlist_free(spa->spa_spares.sav_config);
1042 spa->spa_spares.sav_config = NULL;
1043 }
1044 spa->spa_spares.sav_count = 0;
1045
1046 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1047 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1048 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1049 }
1050 if (spa->spa_l2cache.sav_vdevs) {
1051 kmem_free(spa->spa_l2cache.sav_vdevs,
1052 spa->spa_l2cache.sav_count * sizeof (void *));
1053 spa->spa_l2cache.sav_vdevs = NULL;
1054 }
1055 if (spa->spa_l2cache.sav_config) {
1056 nvlist_free(spa->spa_l2cache.sav_config);
1057 spa->spa_l2cache.sav_config = NULL;
1058 }
1059 spa->spa_l2cache.sav_count = 0;
1060
1061 spa->spa_async_suspended = 0;
1062
1063 spa_config_exit(spa, SCL_ALL, FTAG);
1064 }
1065
1066 /*
1067 * Load (or re-load) the current list of vdevs describing the active spares for
1068 * this pool. When this is called, we have some form of basic information in
1069 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1070 * then re-generate a more complete list including status information.
1071 */
1072 static void
1073 spa_load_spares(spa_t *spa)
1074 {
1075 nvlist_t **spares;
1076 uint_t nspares;
1077 int i;
1078 vdev_t *vd, *tvd;
1079
1080 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1081
1082 /*
1083 * First, close and free any existing spare vdevs.
1084 */
1085 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1086 vd = spa->spa_spares.sav_vdevs[i];
1087
1088 /* Undo the call to spa_activate() below */
1089 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1090 B_FALSE)) != NULL && tvd->vdev_isspare)
1091 spa_spare_remove(tvd);
1092 vdev_close(vd);
1093 vdev_free(vd);
1094 }
1095
1096 if (spa->spa_spares.sav_vdevs)
1097 kmem_free(spa->spa_spares.sav_vdevs,
1098 spa->spa_spares.sav_count * sizeof (void *));
1099
1100 if (spa->spa_spares.sav_config == NULL)
1101 nspares = 0;
1102 else
1103 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1104 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1105
1106 spa->spa_spares.sav_count = (int)nspares;
1107 spa->spa_spares.sav_vdevs = NULL;
1108
1109 if (nspares == 0)
1110 return;
1111
1112 /*
1113 * Construct the array of vdevs, opening them to get status in the
1114 * process. For each spare, there is potentially two different vdev_t
1115 * structures associated with it: one in the list of spares (used only
1116 * for basic validation purposes) and one in the active vdev
1117 * configuration (if it's spared in). During this phase we open and
1118 * validate each vdev on the spare list. If the vdev also exists in the
1119 * active configuration, then we also mark this vdev as an active spare.
1120 */
1121 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1122 KM_SLEEP);
1123 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1124 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1125 VDEV_ALLOC_SPARE) == 0);
1126 ASSERT(vd != NULL);
1127
1128 spa->spa_spares.sav_vdevs[i] = vd;
1129
1130 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1131 B_FALSE)) != NULL) {
1132 if (!tvd->vdev_isspare)
1133 spa_spare_add(tvd);
1134
1135 /*
1136 * We only mark the spare active if we were successfully
1137 * able to load the vdev. Otherwise, importing a pool
1138 * with a bad active spare would result in strange
1139 * behavior, because multiple pool would think the spare
1140 * is actively in use.
1141 *
1142 * There is a vulnerability here to an equally bizarre
1143 * circumstance, where a dead active spare is later
1144 * brought back to life (onlined or otherwise). Given
1145 * the rarity of this scenario, and the extra complexity
1146 * it adds, we ignore the possibility.
1147 */
1148 if (!vdev_is_dead(tvd))
1149 spa_spare_activate(tvd);
1150 }
1151
1152 vd->vdev_top = vd;
1153 vd->vdev_aux = &spa->spa_spares;
1154
1155 if (vdev_open(vd) != 0)
1156 continue;
1157
1158 if (vdev_validate_aux(vd) == 0)
1159 spa_spare_add(vd);
1160 }
1161
1162 /*
1163 * Recompute the stashed list of spares, with status information
1164 * this time.
1165 */
1166 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1167 DATA_TYPE_NVLIST_ARRAY) == 0);
1168
1169 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1170 KM_SLEEP);
1171 for (i = 0; i < spa->spa_spares.sav_count; i++)
1172 spares[i] = vdev_config_generate(spa,
1173 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1174 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1175 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1176 for (i = 0; i < spa->spa_spares.sav_count; i++)
1177 nvlist_free(spares[i]);
1178 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1179 }
1180
1181 /*
1182 * Load (or re-load) the current list of vdevs describing the active l2cache for
1183 * this pool. When this is called, we have some form of basic information in
1184 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1185 * then re-generate a more complete list including status information.
1186 * Devices which are already active have their details maintained, and are
1187 * not re-opened.
1188 */
1189 static void
1190 spa_load_l2cache(spa_t *spa)
1191 {
1192 nvlist_t **l2cache;
1193 uint_t nl2cache;
1194 int i, j, oldnvdevs;
1195 uint64_t guid;
1196 vdev_t *vd, **oldvdevs, **newvdevs = NULL;
1197 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1198
1199 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1200
1201 if (sav->sav_config != NULL) {
1202 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1203 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1204 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1205 } else {
1206 nl2cache = 0;
1207 }
1208
1209 oldvdevs = sav->sav_vdevs;
1210 oldnvdevs = sav->sav_count;
1211 sav->sav_vdevs = NULL;
1212 sav->sav_count = 0;
1213
1214 /*
1215 * Process new nvlist of vdevs.
1216 */
1217 for (i = 0; i < nl2cache; i++) {
1218 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1219 &guid) == 0);
1220
1221 newvdevs[i] = NULL;
1222 for (j = 0; j < oldnvdevs; j++) {
1223 vd = oldvdevs[j];
1224 if (vd != NULL && guid == vd->vdev_guid) {
1225 /*
1226 * Retain previous vdev for add/remove ops.
1227 */
1228 newvdevs[i] = vd;
1229 oldvdevs[j] = NULL;
1230 break;
1231 }
1232 }
1233
1234 if (newvdevs[i] == NULL) {
1235 /*
1236 * Create new vdev
1237 */
1238 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1239 VDEV_ALLOC_L2CACHE) == 0);
1240 ASSERT(vd != NULL);
1241 newvdevs[i] = vd;
1242
1243 /*
1244 * Commit this vdev as an l2cache device,
1245 * even if it fails to open.
1246 */
1247 spa_l2cache_add(vd);
1248
1249 vd->vdev_top = vd;
1250 vd->vdev_aux = sav;
1251
1252 spa_l2cache_activate(vd);
1253
1254 if (vdev_open(vd) != 0)
1255 continue;
1256
1257 (void) vdev_validate_aux(vd);
1258
1259 if (!vdev_is_dead(vd))
1260 l2arc_add_vdev(spa, vd);
1261 }
1262 }
1263
1264 /*
1265 * Purge vdevs that were dropped
1266 */
1267 for (i = 0; i < oldnvdevs; i++) {
1268 uint64_t pool;
1269
1270 vd = oldvdevs[i];
1271 if (vd != NULL) {
1272 ASSERT(vd->vdev_isl2cache);
1273
1274 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1275 pool != 0ULL && l2arc_vdev_present(vd))
1276 l2arc_remove_vdev(vd);
1277 vdev_clear_stats(vd);
1278 vdev_free(vd);
1279 }
1280 }
1281
1282 if (oldvdevs)
1283 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1284
1285 if (sav->sav_config == NULL)
1286 goto out;
1287
1288 sav->sav_vdevs = newvdevs;
1289 sav->sav_count = (int)nl2cache;
1290
1291 /*
1292 * Recompute the stashed list of l2cache devices, with status
1293 * information this time.
1294 */
1295 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1296 DATA_TYPE_NVLIST_ARRAY) == 0);
1297
1298 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1299 for (i = 0; i < sav->sav_count; i++)
1300 l2cache[i] = vdev_config_generate(spa,
1301 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1302 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1303 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1304 out:
1305 for (i = 0; i < sav->sav_count; i++)
1306 nvlist_free(l2cache[i]);
1307 if (sav->sav_count)
1308 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1309 }
1310
1311 static int
1312 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1313 {
1314 dmu_buf_t *db;
1315 char *packed = NULL;
1316 size_t nvsize = 0;
1317 int error;
1318 *value = NULL;
1319
1320 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1321 nvsize = *(uint64_t *)db->db_data;
1322 dmu_buf_rele(db, FTAG);
1323
1324 packed = kmem_alloc(nvsize, KM_SLEEP | KM_NODEBUG);
1325 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1326 DMU_READ_PREFETCH);
1327 if (error == 0)
1328 error = nvlist_unpack(packed, nvsize, value, 0);
1329 kmem_free(packed, nvsize);
1330
1331 return (error);
1332 }
1333
1334 /*
1335 * Checks to see if the given vdev could not be opened, in which case we post a
1336 * sysevent to notify the autoreplace code that the device has been removed.
1337 */
1338 static void
1339 spa_check_removed(vdev_t *vd)
1340 {
1341 int c;
1342
1343 for (c = 0; c < vd->vdev_children; c++)
1344 spa_check_removed(vd->vdev_child[c]);
1345
1346 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1347 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1348 vd->vdev_spa, vd, NULL, 0, 0);
1349 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1350 }
1351 }
1352
1353 /*
1354 * Validate the current config against the MOS config
1355 */
1356 static boolean_t
1357 spa_config_valid(spa_t *spa, nvlist_t *config)
1358 {
1359 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1360 nvlist_t *nv;
1361 int c, i;
1362
1363 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1364
1365 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1366 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1367
1368 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1369
1370 /*
1371 * If we're doing a normal import, then build up any additional
1372 * diagnostic information about missing devices in this config.
1373 * We'll pass this up to the user for further processing.
1374 */
1375 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1376 nvlist_t **child, *nv;
1377 uint64_t idx = 0;
1378
1379 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1380 KM_SLEEP);
1381 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1382
1383 for (c = 0; c < rvd->vdev_children; c++) {
1384 vdev_t *tvd = rvd->vdev_child[c];
1385 vdev_t *mtvd = mrvd->vdev_child[c];
1386
1387 if (tvd->vdev_ops == &vdev_missing_ops &&
1388 mtvd->vdev_ops != &vdev_missing_ops &&
1389 mtvd->vdev_islog)
1390 child[idx++] = vdev_config_generate(spa, mtvd,
1391 B_FALSE, 0);
1392 }
1393
1394 if (idx) {
1395 VERIFY(nvlist_add_nvlist_array(nv,
1396 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1397 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1398 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1399
1400 for (i = 0; i < idx; i++)
1401 nvlist_free(child[i]);
1402 }
1403 nvlist_free(nv);
1404 kmem_free(child, rvd->vdev_children * sizeof (char **));
1405 }
1406
1407 /*
1408 * Compare the root vdev tree with the information we have
1409 * from the MOS config (mrvd). Check each top-level vdev
1410 * with the corresponding MOS config top-level (mtvd).
1411 */
1412 for (c = 0; c < rvd->vdev_children; c++) {
1413 vdev_t *tvd = rvd->vdev_child[c];
1414 vdev_t *mtvd = mrvd->vdev_child[c];
1415
1416 /*
1417 * Resolve any "missing" vdevs in the current configuration.
1418 * If we find that the MOS config has more accurate information
1419 * about the top-level vdev then use that vdev instead.
1420 */
1421 if (tvd->vdev_ops == &vdev_missing_ops &&
1422 mtvd->vdev_ops != &vdev_missing_ops) {
1423
1424 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1425 continue;
1426
1427 /*
1428 * Device specific actions.
1429 */
1430 if (mtvd->vdev_islog) {
1431 spa_set_log_state(spa, SPA_LOG_CLEAR);
1432 } else {
1433 /*
1434 * XXX - once we have 'readonly' pool
1435 * support we should be able to handle
1436 * missing data devices by transitioning
1437 * the pool to readonly.
1438 */
1439 continue;
1440 }
1441
1442 /*
1443 * Swap the missing vdev with the data we were
1444 * able to obtain from the MOS config.
1445 */
1446 vdev_remove_child(rvd, tvd);
1447 vdev_remove_child(mrvd, mtvd);
1448
1449 vdev_add_child(rvd, mtvd);
1450 vdev_add_child(mrvd, tvd);
1451
1452 spa_config_exit(spa, SCL_ALL, FTAG);
1453 vdev_load(mtvd);
1454 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1455
1456 vdev_reopen(rvd);
1457 } else if (mtvd->vdev_islog) {
1458 /*
1459 * Load the slog device's state from the MOS config
1460 * since it's possible that the label does not
1461 * contain the most up-to-date information.
1462 */
1463 vdev_load_log_state(tvd, mtvd);
1464 vdev_reopen(tvd);
1465 }
1466 }
1467 vdev_free(mrvd);
1468 spa_config_exit(spa, SCL_ALL, FTAG);
1469
1470 /*
1471 * Ensure we were able to validate the config.
1472 */
1473 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1474 }
1475
1476 /*
1477 * Check for missing log devices
1478 */
1479 static int
1480 spa_check_logs(spa_t *spa)
1481 {
1482 switch (spa->spa_log_state) {
1483 default:
1484 break;
1485 case SPA_LOG_MISSING:
1486 /* need to recheck in case slog has been restored */
1487 case SPA_LOG_UNKNOWN:
1488 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1489 DS_FIND_CHILDREN)) {
1490 spa_set_log_state(spa, SPA_LOG_MISSING);
1491 return (1);
1492 }
1493 break;
1494 }
1495 return (0);
1496 }
1497
1498 static boolean_t
1499 spa_passivate_log(spa_t *spa)
1500 {
1501 vdev_t *rvd = spa->spa_root_vdev;
1502 boolean_t slog_found = B_FALSE;
1503 int c;
1504
1505 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1506
1507 if (!spa_has_slogs(spa))
1508 return (B_FALSE);
1509
1510 for (c = 0; c < rvd->vdev_children; c++) {
1511 vdev_t *tvd = rvd->vdev_child[c];
1512 metaslab_group_t *mg = tvd->vdev_mg;
1513
1514 if (tvd->vdev_islog) {
1515 metaslab_group_passivate(mg);
1516 slog_found = B_TRUE;
1517 }
1518 }
1519
1520 return (slog_found);
1521 }
1522
1523 static void
1524 spa_activate_log(spa_t *spa)
1525 {
1526 vdev_t *rvd = spa->spa_root_vdev;
1527 int c;
1528
1529 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1530
1531 for (c = 0; c < rvd->vdev_children; c++) {
1532 vdev_t *tvd = rvd->vdev_child[c];
1533 metaslab_group_t *mg = tvd->vdev_mg;
1534
1535 if (tvd->vdev_islog)
1536 metaslab_group_activate(mg);
1537 }
1538 }
1539
1540 int
1541 spa_offline_log(spa_t *spa)
1542 {
1543 int error = 0;
1544
1545 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1546 NULL, DS_FIND_CHILDREN)) == 0) {
1547
1548 /*
1549 * We successfully offlined the log device, sync out the
1550 * current txg so that the "stubby" block can be removed
1551 * by zil_sync().
1552 */
1553 txg_wait_synced(spa->spa_dsl_pool, 0);
1554 }
1555 return (error);
1556 }
1557
1558 static void
1559 spa_aux_check_removed(spa_aux_vdev_t *sav)
1560 {
1561 int i;
1562
1563 for (i = 0; i < sav->sav_count; i++)
1564 spa_check_removed(sav->sav_vdevs[i]);
1565 }
1566
1567 void
1568 spa_claim_notify(zio_t *zio)
1569 {
1570 spa_t *spa = zio->io_spa;
1571
1572 if (zio->io_error)
1573 return;
1574
1575 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1576 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1577 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1578 mutex_exit(&spa->spa_props_lock);
1579 }
1580
1581 typedef struct spa_load_error {
1582 uint64_t sle_meta_count;
1583 uint64_t sle_data_count;
1584 } spa_load_error_t;
1585
1586 static void
1587 spa_load_verify_done(zio_t *zio)
1588 {
1589 blkptr_t *bp = zio->io_bp;
1590 spa_load_error_t *sle = zio->io_private;
1591 dmu_object_type_t type = BP_GET_TYPE(bp);
1592 int error = zio->io_error;
1593
1594 if (error) {
1595 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1596 type != DMU_OT_INTENT_LOG)
1597 atomic_add_64(&sle->sle_meta_count, 1);
1598 else
1599 atomic_add_64(&sle->sle_data_count, 1);
1600 }
1601 zio_data_buf_free(zio->io_data, zio->io_size);
1602 }
1603
1604 /*ARGSUSED*/
1605 static int
1606 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1607 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1608 {
1609 if (bp != NULL) {
1610 zio_t *rio = arg;
1611 size_t size = BP_GET_PSIZE(bp);
1612 void *data = zio_data_buf_alloc(size);
1613
1614 zio_nowait(zio_read(rio, spa, bp, data, size,
1615 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1616 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1617 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1618 }
1619 return (0);
1620 }
1621
1622 static int
1623 spa_load_verify(spa_t *spa)
1624 {
1625 zio_t *rio;
1626 spa_load_error_t sle = { 0 };
1627 zpool_rewind_policy_t policy;
1628 boolean_t verify_ok = B_FALSE;
1629 int error;
1630
1631 zpool_get_rewind_policy(spa->spa_config, &policy);
1632
1633 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1634 return (0);
1635
1636 rio = zio_root(spa, NULL, &sle,
1637 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1638
1639 error = traverse_pool(spa, spa->spa_verify_min_txg,
1640 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1641
1642 (void) zio_wait(rio);
1643
1644 spa->spa_load_meta_errors = sle.sle_meta_count;
1645 spa->spa_load_data_errors = sle.sle_data_count;
1646
1647 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1648 sle.sle_data_count <= policy.zrp_maxdata) {
1649 int64_t loss = 0;
1650
1651 verify_ok = B_TRUE;
1652 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1653 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1654
1655 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1656 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1657 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1658 VERIFY(nvlist_add_int64(spa->spa_load_info,
1659 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1660 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1661 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1662 } else {
1663 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1664 }
1665
1666 if (error) {
1667 if (error != ENXIO && error != EIO)
1668 error = EIO;
1669 return (error);
1670 }
1671
1672 return (verify_ok ? 0 : EIO);
1673 }
1674
1675 /*
1676 * Find a value in the pool props object.
1677 */
1678 static void
1679 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1680 {
1681 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1682 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1683 }
1684
1685 /*
1686 * Find a value in the pool directory object.
1687 */
1688 static int
1689 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1690 {
1691 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1692 name, sizeof (uint64_t), 1, val));
1693 }
1694
1695 static int
1696 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1697 {
1698 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1699 return (err);
1700 }
1701
1702 /*
1703 * Fix up config after a partly-completed split. This is done with the
1704 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1705 * pool have that entry in their config, but only the splitting one contains
1706 * a list of all the guids of the vdevs that are being split off.
1707 *
1708 * This function determines what to do with that list: either rejoin
1709 * all the disks to the pool, or complete the splitting process. To attempt
1710 * the rejoin, each disk that is offlined is marked online again, and
1711 * we do a reopen() call. If the vdev label for every disk that was
1712 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1713 * then we call vdev_split() on each disk, and complete the split.
1714 *
1715 * Otherwise we leave the config alone, with all the vdevs in place in
1716 * the original pool.
1717 */
1718 static void
1719 spa_try_repair(spa_t *spa, nvlist_t *config)
1720 {
1721 uint_t extracted;
1722 uint64_t *glist;
1723 uint_t i, gcount;
1724 nvlist_t *nvl;
1725 vdev_t **vd;
1726 boolean_t attempt_reopen;
1727
1728 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1729 return;
1730
1731 /* check that the config is complete */
1732 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1733 &glist, &gcount) != 0)
1734 return;
1735
1736 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1737
1738 /* attempt to online all the vdevs & validate */
1739 attempt_reopen = B_TRUE;
1740 for (i = 0; i < gcount; i++) {
1741 if (glist[i] == 0) /* vdev is hole */
1742 continue;
1743
1744 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1745 if (vd[i] == NULL) {
1746 /*
1747 * Don't bother attempting to reopen the disks;
1748 * just do the split.
1749 */
1750 attempt_reopen = B_FALSE;
1751 } else {
1752 /* attempt to re-online it */
1753 vd[i]->vdev_offline = B_FALSE;
1754 }
1755 }
1756
1757 if (attempt_reopen) {
1758 vdev_reopen(spa->spa_root_vdev);
1759
1760 /* check each device to see what state it's in */
1761 for (extracted = 0, i = 0; i < gcount; i++) {
1762 if (vd[i] != NULL &&
1763 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1764 break;
1765 ++extracted;
1766 }
1767 }
1768
1769 /*
1770 * If every disk has been moved to the new pool, or if we never
1771 * even attempted to look at them, then we split them off for
1772 * good.
1773 */
1774 if (!attempt_reopen || gcount == extracted) {
1775 for (i = 0; i < gcount; i++)
1776 if (vd[i] != NULL)
1777 vdev_split(vd[i]);
1778 vdev_reopen(spa->spa_root_vdev);
1779 }
1780
1781 kmem_free(vd, gcount * sizeof (vdev_t *));
1782 }
1783
1784 static int
1785 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1786 boolean_t mosconfig)
1787 {
1788 nvlist_t *config = spa->spa_config;
1789 char *ereport = FM_EREPORT_ZFS_POOL;
1790 int error;
1791 uint64_t pool_guid;
1792 nvlist_t *nvl;
1793
1794 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1795 return (EINVAL);
1796
1797 /*
1798 * Versioning wasn't explicitly added to the label until later, so if
1799 * it's not present treat it as the initial version.
1800 */
1801 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1802 &spa->spa_ubsync.ub_version) != 0)
1803 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1804
1805 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1806 &spa->spa_config_txg);
1807
1808 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1809 spa_guid_exists(pool_guid, 0)) {
1810 error = EEXIST;
1811 } else {
1812 spa->spa_config_guid = pool_guid;
1813
1814 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1815 &nvl) == 0) {
1816 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1817 KM_SLEEP) == 0);
1818 }
1819
1820 gethrestime(&spa->spa_loaded_ts);
1821 error = spa_load_impl(spa, pool_guid, config, state, type,
1822 mosconfig, &ereport);
1823 }
1824
1825 spa->spa_minref = refcount_count(&spa->spa_refcount);
1826 if (error) {
1827 if (error != EEXIST) {
1828 spa->spa_loaded_ts.tv_sec = 0;
1829 spa->spa_loaded_ts.tv_nsec = 0;
1830 }
1831 if (error != EBADF) {
1832 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1833 }
1834 }
1835 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1836 spa->spa_ena = 0;
1837
1838 return (error);
1839 }
1840
1841 /*
1842 * Load an existing storage pool, using the pool's builtin spa_config as a
1843 * source of configuration information.
1844 */
1845 __attribute__((always_inline))
1846 static inline int
1847 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1848 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1849 char **ereport)
1850 {
1851 int error = 0;
1852 nvlist_t *nvroot = NULL;
1853 vdev_t *rvd;
1854 uberblock_t *ub = &spa->spa_uberblock;
1855 uint64_t children, config_cache_txg = spa->spa_config_txg;
1856 int orig_mode = spa->spa_mode;
1857 int parse;
1858 uint64_t obj;
1859
1860 /*
1861 * If this is an untrusted config, access the pool in read-only mode.
1862 * This prevents things like resilvering recently removed devices.
1863 */
1864 if (!mosconfig)
1865 spa->spa_mode = FREAD;
1866
1867 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1868
1869 spa->spa_load_state = state;
1870
1871 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1872 return (EINVAL);
1873
1874 parse = (type == SPA_IMPORT_EXISTING ?
1875 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1876
1877 /*
1878 * Create "The Godfather" zio to hold all async IOs
1879 */
1880 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1881 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1882
1883 /*
1884 * Parse the configuration into a vdev tree. We explicitly set the
1885 * value that will be returned by spa_version() since parsing the
1886 * configuration requires knowing the version number.
1887 */
1888 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1889 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1890 spa_config_exit(spa, SCL_ALL, FTAG);
1891
1892 if (error != 0)
1893 return (error);
1894
1895 ASSERT(spa->spa_root_vdev == rvd);
1896
1897 if (type != SPA_IMPORT_ASSEMBLE) {
1898 ASSERT(spa_guid(spa) == pool_guid);
1899 }
1900
1901 /*
1902 * Try to open all vdevs, loading each label in the process.
1903 */
1904 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1905 error = vdev_open(rvd);
1906 spa_config_exit(spa, SCL_ALL, FTAG);
1907 if (error != 0)
1908 return (error);
1909
1910 /*
1911 * We need to validate the vdev labels against the configuration that
1912 * we have in hand, which is dependent on the setting of mosconfig. If
1913 * mosconfig is true then we're validating the vdev labels based on
1914 * that config. Otherwise, we're validating against the cached config
1915 * (zpool.cache) that was read when we loaded the zfs module, and then
1916 * later we will recursively call spa_load() and validate against
1917 * the vdev config.
1918 *
1919 * If we're assembling a new pool that's been split off from an
1920 * existing pool, the labels haven't yet been updated so we skip
1921 * validation for now.
1922 */
1923 if (type != SPA_IMPORT_ASSEMBLE) {
1924 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1925 error = vdev_validate(rvd, mosconfig);
1926 spa_config_exit(spa, SCL_ALL, FTAG);
1927
1928 if (error != 0)
1929 return (error);
1930
1931 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1932 return (ENXIO);
1933 }
1934
1935 /*
1936 * Find the best uberblock.
1937 */
1938 vdev_uberblock_load(NULL, rvd, ub);
1939
1940 /*
1941 * If we weren't able to find a single valid uberblock, return failure.
1942 */
1943 if (ub->ub_txg == 0)
1944 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1945
1946 /*
1947 * If the pool is newer than the code, we can't open it.
1948 */
1949 if (ub->ub_version > SPA_VERSION)
1950 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1951
1952 /*
1953 * If the vdev guid sum doesn't match the uberblock, we have an
1954 * incomplete configuration. We first check to see if the pool
1955 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1956 * If it is, defer the vdev_guid_sum check till later so we
1957 * can handle missing vdevs.
1958 */
1959 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1960 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1961 rvd->vdev_guid_sum != ub->ub_guid_sum)
1962 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1963
1964 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1965 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1966 spa_try_repair(spa, config);
1967 spa_config_exit(spa, SCL_ALL, FTAG);
1968 nvlist_free(spa->spa_config_splitting);
1969 spa->spa_config_splitting = NULL;
1970 }
1971
1972 /*
1973 * Initialize internal SPA structures.
1974 */
1975 spa->spa_state = POOL_STATE_ACTIVE;
1976 spa->spa_ubsync = spa->spa_uberblock;
1977 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1978 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1979 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1980 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1981 spa->spa_claim_max_txg = spa->spa_first_txg;
1982 spa->spa_prev_software_version = ub->ub_software_version;
1983
1984 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1985 if (error)
1986 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1987 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1988
1989 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1990 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1991
1992 if (!mosconfig) {
1993 uint64_t hostid;
1994 nvlist_t *policy = NULL, *nvconfig;
1995
1996 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1998
1999 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2000 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2001 char *hostname;
2002 unsigned long myhostid = 0;
2003
2004 VERIFY(nvlist_lookup_string(nvconfig,
2005 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2006
2007 #ifdef _KERNEL
2008 myhostid = zone_get_hostid(NULL);
2009 #else /* _KERNEL */
2010 /*
2011 * We're emulating the system's hostid in userland, so
2012 * we can't use zone_get_hostid().
2013 */
2014 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2015 #endif /* _KERNEL */
2016 if (hostid != 0 && myhostid != 0 &&
2017 hostid != myhostid) {
2018 nvlist_free(nvconfig);
2019 cmn_err(CE_WARN, "pool '%s' could not be "
2020 "loaded as it was last accessed by "
2021 "another system (host: %s hostid: 0x%lx). "
2022 "See: http://zfsonlinux.org/msg/ZFS-8000-EY",
2023 spa_name(spa), hostname,
2024 (unsigned long)hostid);
2025 return (EBADF);
2026 }
2027 }
2028 if (nvlist_lookup_nvlist(spa->spa_config,
2029 ZPOOL_REWIND_POLICY, &policy) == 0)
2030 VERIFY(nvlist_add_nvlist(nvconfig,
2031 ZPOOL_REWIND_POLICY, policy) == 0);
2032
2033 spa_config_set(spa, nvconfig);
2034 spa_unload(spa);
2035 spa_deactivate(spa);
2036 spa_activate(spa, orig_mode);
2037
2038 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2039 }
2040
2041 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2042 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2043 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2044 if (error != 0)
2045 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2046
2047 /*
2048 * Load the bit that tells us to use the new accounting function
2049 * (raid-z deflation). If we have an older pool, this will not
2050 * be present.
2051 */
2052 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2053 if (error != 0 && error != ENOENT)
2054 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2055
2056 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2057 &spa->spa_creation_version);
2058 if (error != 0 && error != ENOENT)
2059 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2060
2061 /*
2062 * Load the persistent error log. If we have an older pool, this will
2063 * not be present.
2064 */
2065 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2066 if (error != 0 && error != ENOENT)
2067 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2068
2069 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2070 &spa->spa_errlog_scrub);
2071 if (error != 0 && error != ENOENT)
2072 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2073
2074 /*
2075 * Load the history object. If we have an older pool, this
2076 * will not be present.
2077 */
2078 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2079 if (error != 0 && error != ENOENT)
2080 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2081
2082 /*
2083 * If we're assembling the pool from the split-off vdevs of
2084 * an existing pool, we don't want to attach the spares & cache
2085 * devices.
2086 */
2087
2088 /*
2089 * Load any hot spares for this pool.
2090 */
2091 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2092 if (error != 0 && error != ENOENT)
2093 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2094 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2095 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2096 if (load_nvlist(spa, spa->spa_spares.sav_object,
2097 &spa->spa_spares.sav_config) != 0)
2098 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2099
2100 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2101 spa_load_spares(spa);
2102 spa_config_exit(spa, SCL_ALL, FTAG);
2103 } else if (error == 0) {
2104 spa->spa_spares.sav_sync = B_TRUE;
2105 }
2106
2107 /*
2108 * Load any level 2 ARC devices for this pool.
2109 */
2110 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2111 &spa->spa_l2cache.sav_object);
2112 if (error != 0 && error != ENOENT)
2113 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2114 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2115 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2116 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2117 &spa->spa_l2cache.sav_config) != 0)
2118 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2119
2120 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2121 spa_load_l2cache(spa);
2122 spa_config_exit(spa, SCL_ALL, FTAG);
2123 } else if (error == 0) {
2124 spa->spa_l2cache.sav_sync = B_TRUE;
2125 }
2126
2127 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2128
2129 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2130 if (error && error != ENOENT)
2131 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2132
2133 if (error == 0) {
2134 uint64_t autoreplace;
2135
2136 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2137 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2138 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2139 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2140 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2141 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2142 &spa->spa_dedup_ditto);
2143
2144 spa->spa_autoreplace = (autoreplace != 0);
2145 }
2146
2147 /*
2148 * If the 'autoreplace' property is set, then post a resource notifying
2149 * the ZFS DE that it should not issue any faults for unopenable
2150 * devices. We also iterate over the vdevs, and post a sysevent for any
2151 * unopenable vdevs so that the normal autoreplace handler can take
2152 * over.
2153 */
2154 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2155 spa_check_removed(spa->spa_root_vdev);
2156 /*
2157 * For the import case, this is done in spa_import(), because
2158 * at this point we're using the spare definitions from
2159 * the MOS config, not necessarily from the userland config.
2160 */
2161 if (state != SPA_LOAD_IMPORT) {
2162 spa_aux_check_removed(&spa->spa_spares);
2163 spa_aux_check_removed(&spa->spa_l2cache);
2164 }
2165 }
2166
2167 /*
2168 * Load the vdev state for all toplevel vdevs.
2169 */
2170 vdev_load(rvd);
2171
2172 /*
2173 * Propagate the leaf DTLs we just loaded all the way up the tree.
2174 */
2175 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2176 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2177 spa_config_exit(spa, SCL_ALL, FTAG);
2178
2179 /*
2180 * Load the DDTs (dedup tables).
2181 */
2182 error = ddt_load(spa);
2183 if (error != 0)
2184 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2185
2186 spa_update_dspace(spa);
2187
2188 /*
2189 * Validate the config, using the MOS config to fill in any
2190 * information which might be missing. If we fail to validate
2191 * the config then declare the pool unfit for use. If we're
2192 * assembling a pool from a split, the log is not transferred
2193 * over.
2194 */
2195 if (type != SPA_IMPORT_ASSEMBLE) {
2196 nvlist_t *nvconfig;
2197
2198 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2199 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2200
2201 if (!spa_config_valid(spa, nvconfig)) {
2202 nvlist_free(nvconfig);
2203 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2204 ENXIO));
2205 }
2206 nvlist_free(nvconfig);
2207
2208 /*
2209 * Now that we've validate the config, check the state of the
2210 * root vdev. If it can't be opened, it indicates one or
2211 * more toplevel vdevs are faulted.
2212 */
2213 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2214 return (ENXIO);
2215
2216 if (spa_check_logs(spa)) {
2217 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2218 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2219 }
2220 }
2221
2222 /*
2223 * We've successfully opened the pool, verify that we're ready
2224 * to start pushing transactions.
2225 */
2226 if (state != SPA_LOAD_TRYIMPORT) {
2227 if ((error = spa_load_verify(spa)))
2228 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2229 error));
2230 }
2231
2232 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2233 spa->spa_load_max_txg == UINT64_MAX)) {
2234 dmu_tx_t *tx;
2235 int need_update = B_FALSE;
2236 int c;
2237
2238 ASSERT(state != SPA_LOAD_TRYIMPORT);
2239
2240 /*
2241 * Claim log blocks that haven't been committed yet.
2242 * This must all happen in a single txg.
2243 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2244 * invoked from zil_claim_log_block()'s i/o done callback.
2245 * Price of rollback is that we abandon the log.
2246 */
2247 spa->spa_claiming = B_TRUE;
2248
2249 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2250 spa_first_txg(spa));
2251 (void) dmu_objset_find(spa_name(spa),
2252 zil_claim, tx, DS_FIND_CHILDREN);
2253 dmu_tx_commit(tx);
2254
2255 spa->spa_claiming = B_FALSE;
2256
2257 spa_set_log_state(spa, SPA_LOG_GOOD);
2258 spa->spa_sync_on = B_TRUE;
2259 txg_sync_start(spa->spa_dsl_pool);
2260
2261 /*
2262 * Wait for all claims to sync. We sync up to the highest
2263 * claimed log block birth time so that claimed log blocks
2264 * don't appear to be from the future. spa_claim_max_txg
2265 * will have been set for us by either zil_check_log_chain()
2266 * (invoked from spa_check_logs()) or zil_claim() above.
2267 */
2268 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2269
2270 /*
2271 * If the config cache is stale, or we have uninitialized
2272 * metaslabs (see spa_vdev_add()), then update the config.
2273 *
2274 * If this is a verbatim import, trust the current
2275 * in-core spa_config and update the disk labels.
2276 */
2277 if (config_cache_txg != spa->spa_config_txg ||
2278 state == SPA_LOAD_IMPORT ||
2279 state == SPA_LOAD_RECOVER ||
2280 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2281 need_update = B_TRUE;
2282
2283 for (c = 0; c < rvd->vdev_children; c++)
2284 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2285 need_update = B_TRUE;
2286
2287 /*
2288 * Update the config cache asychronously in case we're the
2289 * root pool, in which case the config cache isn't writable yet.
2290 */
2291 if (need_update)
2292 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2293
2294 /*
2295 * Check all DTLs to see if anything needs resilvering.
2296 */
2297 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2298 vdev_resilver_needed(rvd, NULL, NULL))
2299 spa_async_request(spa, SPA_ASYNC_RESILVER);
2300
2301 /*
2302 * Delete any inconsistent datasets.
2303 */
2304 (void) dmu_objset_find(spa_name(spa),
2305 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2306
2307 /*
2308 * Clean up any stale temporary dataset userrefs.
2309 */
2310 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2311 }
2312
2313 return (0);
2314 }
2315
2316 static int
2317 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2318 {
2319 int mode = spa->spa_mode;
2320
2321 spa_unload(spa);
2322 spa_deactivate(spa);
2323
2324 spa->spa_load_max_txg--;
2325
2326 spa_activate(spa, mode);
2327 spa_async_suspend(spa);
2328
2329 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2330 }
2331
2332 static int
2333 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2334 uint64_t max_request, int rewind_flags)
2335 {
2336 nvlist_t *config = NULL;
2337 int load_error, rewind_error;
2338 uint64_t safe_rewind_txg;
2339 uint64_t min_txg;
2340
2341 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2342 spa->spa_load_max_txg = spa->spa_load_txg;
2343 spa_set_log_state(spa, SPA_LOG_CLEAR);
2344 } else {
2345 spa->spa_load_max_txg = max_request;
2346 }
2347
2348 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2349 mosconfig);
2350 if (load_error == 0)
2351 return (0);
2352
2353 if (spa->spa_root_vdev != NULL)
2354 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2355
2356 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2357 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2358
2359 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2360 nvlist_free(config);
2361 return (load_error);
2362 }
2363
2364 /* Price of rolling back is discarding txgs, including log */
2365 if (state == SPA_LOAD_RECOVER)
2366 spa_set_log_state(spa, SPA_LOG_CLEAR);
2367
2368 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2369 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2370 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2371 TXG_INITIAL : safe_rewind_txg;
2372
2373 /*
2374 * Continue as long as we're finding errors, we're still within
2375 * the acceptable rewind range, and we're still finding uberblocks
2376 */
2377 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2378 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2379 if (spa->spa_load_max_txg < safe_rewind_txg)
2380 spa->spa_extreme_rewind = B_TRUE;
2381 rewind_error = spa_load_retry(spa, state, mosconfig);
2382 }
2383
2384 spa->spa_extreme_rewind = B_FALSE;
2385 spa->spa_load_max_txg = UINT64_MAX;
2386
2387 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2388 spa_config_set(spa, config);
2389
2390 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2391 }
2392
2393 /*
2394 * Pool Open/Import
2395 *
2396 * The import case is identical to an open except that the configuration is sent
2397 * down from userland, instead of grabbed from the configuration cache. For the
2398 * case of an open, the pool configuration will exist in the
2399 * POOL_STATE_UNINITIALIZED state.
2400 *
2401 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2402 * the same time open the pool, without having to keep around the spa_t in some
2403 * ambiguous state.
2404 */
2405 static int
2406 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2407 nvlist_t **config)
2408 {
2409 spa_t *spa;
2410 spa_load_state_t state = SPA_LOAD_OPEN;
2411 int error;
2412 int locked = B_FALSE;
2413
2414 *spapp = NULL;
2415
2416 /*
2417 * As disgusting as this is, we need to support recursive calls to this
2418 * function because dsl_dir_open() is called during spa_load(), and ends
2419 * up calling spa_open() again. The real fix is to figure out how to
2420 * avoid dsl_dir_open() calling this in the first place.
2421 */
2422 if (mutex_owner(&spa_namespace_lock) != curthread) {
2423 mutex_enter(&spa_namespace_lock);
2424 locked = B_TRUE;
2425 }
2426
2427 if ((spa = spa_lookup(pool)) == NULL) {
2428 if (locked)
2429 mutex_exit(&spa_namespace_lock);
2430 return (ENOENT);
2431 }
2432
2433 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2434 zpool_rewind_policy_t policy;
2435
2436 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2437 &policy);
2438 if (policy.zrp_request & ZPOOL_DO_REWIND)
2439 state = SPA_LOAD_RECOVER;
2440
2441 spa_activate(spa, spa_mode_global);
2442
2443 if (state != SPA_LOAD_RECOVER)
2444 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2445
2446 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2447 policy.zrp_request);
2448
2449 if (error == EBADF) {
2450 /*
2451 * If vdev_validate() returns failure (indicated by
2452 * EBADF), it indicates that one of the vdevs indicates
2453 * that the pool has been exported or destroyed. If
2454 * this is the case, the config cache is out of sync and
2455 * we should remove the pool from the namespace.
2456 */
2457 spa_unload(spa);
2458 spa_deactivate(spa);
2459 spa_config_sync(spa, B_TRUE, B_TRUE);
2460 spa_remove(spa);
2461 if (locked)
2462 mutex_exit(&spa_namespace_lock);
2463 return (ENOENT);
2464 }
2465
2466 if (error) {
2467 /*
2468 * We can't open the pool, but we still have useful
2469 * information: the state of each vdev after the
2470 * attempted vdev_open(). Return this to the user.
2471 */
2472 if (config != NULL && spa->spa_config) {
2473 VERIFY(nvlist_dup(spa->spa_config, config,
2474 KM_SLEEP) == 0);
2475 VERIFY(nvlist_add_nvlist(*config,
2476 ZPOOL_CONFIG_LOAD_INFO,
2477 spa->spa_load_info) == 0);
2478 }
2479 spa_unload(spa);
2480 spa_deactivate(spa);
2481 spa->spa_last_open_failed = error;
2482 if (locked)
2483 mutex_exit(&spa_namespace_lock);
2484 *spapp = NULL;
2485 return (error);
2486 }
2487 }
2488
2489 spa_open_ref(spa, tag);
2490
2491 if (config != NULL)
2492 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2493
2494 /*
2495 * If we've recovered the pool, pass back any information we
2496 * gathered while doing the load.
2497 */
2498 if (state == SPA_LOAD_RECOVER) {
2499 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2500 spa->spa_load_info) == 0);
2501 }
2502
2503 if (locked) {
2504 spa->spa_last_open_failed = 0;
2505 spa->spa_last_ubsync_txg = 0;
2506 spa->spa_load_txg = 0;
2507 mutex_exit(&spa_namespace_lock);
2508 }
2509
2510 *spapp = spa;
2511
2512 return (0);
2513 }
2514
2515 int
2516 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2517 nvlist_t **config)
2518 {
2519 return (spa_open_common(name, spapp, tag, policy, config));
2520 }
2521
2522 int
2523 spa_open(const char *name, spa_t **spapp, void *tag)
2524 {
2525 return (spa_open_common(name, spapp, tag, NULL, NULL));
2526 }
2527
2528 /*
2529 * Lookup the given spa_t, incrementing the inject count in the process,
2530 * preventing it from being exported or destroyed.
2531 */
2532 spa_t *
2533 spa_inject_addref(char *name)
2534 {
2535 spa_t *spa;
2536
2537 mutex_enter(&spa_namespace_lock);
2538 if ((spa = spa_lookup(name)) == NULL) {
2539 mutex_exit(&spa_namespace_lock);
2540 return (NULL);
2541 }
2542 spa->spa_inject_ref++;
2543 mutex_exit(&spa_namespace_lock);
2544
2545 return (spa);
2546 }
2547
2548 void
2549 spa_inject_delref(spa_t *spa)
2550 {
2551 mutex_enter(&spa_namespace_lock);
2552 spa->spa_inject_ref--;
2553 mutex_exit(&spa_namespace_lock);
2554 }
2555
2556 /*
2557 * Add spares device information to the nvlist.
2558 */
2559 static void
2560 spa_add_spares(spa_t *spa, nvlist_t *config)
2561 {
2562 nvlist_t **spares;
2563 uint_t i, nspares;
2564 nvlist_t *nvroot;
2565 uint64_t guid;
2566 vdev_stat_t *vs;
2567 uint_t vsc;
2568 uint64_t pool;
2569
2570 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2571
2572 if (spa->spa_spares.sav_count == 0)
2573 return;
2574
2575 VERIFY(nvlist_lookup_nvlist(config,
2576 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2577 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2578 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2579 if (nspares != 0) {
2580 VERIFY(nvlist_add_nvlist_array(nvroot,
2581 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2582 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2583 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2584
2585 /*
2586 * Go through and find any spares which have since been
2587 * repurposed as an active spare. If this is the case, update
2588 * their status appropriately.
2589 */
2590 for (i = 0; i < nspares; i++) {
2591 VERIFY(nvlist_lookup_uint64(spares[i],
2592 ZPOOL_CONFIG_GUID, &guid) == 0);
2593 if (spa_spare_exists(guid, &pool, NULL) &&
2594 pool != 0ULL) {
2595 VERIFY(nvlist_lookup_uint64_array(
2596 spares[i], ZPOOL_CONFIG_VDEV_STATS,
2597 (uint64_t **)&vs, &vsc) == 0);
2598 vs->vs_state = VDEV_STATE_CANT_OPEN;
2599 vs->vs_aux = VDEV_AUX_SPARED;
2600 }
2601 }
2602 }
2603 }
2604
2605 /*
2606 * Add l2cache device information to the nvlist, including vdev stats.
2607 */
2608 static void
2609 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2610 {
2611 nvlist_t **l2cache;
2612 uint_t i, j, nl2cache;
2613 nvlist_t *nvroot;
2614 uint64_t guid;
2615 vdev_t *vd;
2616 vdev_stat_t *vs;
2617 uint_t vsc;
2618
2619 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2620
2621 if (spa->spa_l2cache.sav_count == 0)
2622 return;
2623
2624 VERIFY(nvlist_lookup_nvlist(config,
2625 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2626 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2627 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2628 if (nl2cache != 0) {
2629 VERIFY(nvlist_add_nvlist_array(nvroot,
2630 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2631 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2632 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2633
2634 /*
2635 * Update level 2 cache device stats.
2636 */
2637
2638 for (i = 0; i < nl2cache; i++) {
2639 VERIFY(nvlist_lookup_uint64(l2cache[i],
2640 ZPOOL_CONFIG_GUID, &guid) == 0);
2641
2642 vd = NULL;
2643 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2644 if (guid ==
2645 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2646 vd = spa->spa_l2cache.sav_vdevs[j];
2647 break;
2648 }
2649 }
2650 ASSERT(vd != NULL);
2651
2652 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2653 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2654 == 0);
2655 vdev_get_stats(vd, vs);
2656 }
2657 }
2658 }
2659
2660 int
2661 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2662 {
2663 int error;
2664 spa_t *spa;
2665
2666 *config = NULL;
2667 error = spa_open_common(name, &spa, FTAG, NULL, config);
2668
2669 if (spa != NULL) {
2670 /*
2671 * This still leaves a window of inconsistency where the spares
2672 * or l2cache devices could change and the config would be
2673 * self-inconsistent.
2674 */
2675 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2676
2677 if (*config != NULL) {
2678 uint64_t loadtimes[2];
2679
2680 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2681 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2682 VERIFY(nvlist_add_uint64_array(*config,
2683 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2684
2685 VERIFY(nvlist_add_uint64(*config,
2686 ZPOOL_CONFIG_ERRCOUNT,
2687 spa_get_errlog_size(spa)) == 0);
2688
2689 if (spa_suspended(spa))
2690 VERIFY(nvlist_add_uint64(*config,
2691 ZPOOL_CONFIG_SUSPENDED,
2692 spa->spa_failmode) == 0);
2693
2694 spa_add_spares(spa, *config);
2695 spa_add_l2cache(spa, *config);
2696 }
2697 }
2698
2699 /*
2700 * We want to get the alternate root even for faulted pools, so we cheat
2701 * and call spa_lookup() directly.
2702 */
2703 if (altroot) {
2704 if (spa == NULL) {
2705 mutex_enter(&spa_namespace_lock);
2706 spa = spa_lookup(name);
2707 if (spa)
2708 spa_altroot(spa, altroot, buflen);
2709 else
2710 altroot[0] = '\0';
2711 spa = NULL;
2712 mutex_exit(&spa_namespace_lock);
2713 } else {
2714 spa_altroot(spa, altroot, buflen);
2715 }
2716 }
2717
2718 if (spa != NULL) {
2719 spa_config_exit(spa, SCL_CONFIG, FTAG);
2720 spa_close(spa, FTAG);
2721 }
2722
2723 return (error);
2724 }
2725
2726 /*
2727 * Validate that the auxiliary device array is well formed. We must have an
2728 * array of nvlists, each which describes a valid leaf vdev. If this is an
2729 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2730 * specified, as long as they are well-formed.
2731 */
2732 static int
2733 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2734 spa_aux_vdev_t *sav, const char *config, uint64_t version,
2735 vdev_labeltype_t label)
2736 {
2737 nvlist_t **dev;
2738 uint_t i, ndev;
2739 vdev_t *vd;
2740 int error;
2741
2742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2743
2744 /*
2745 * It's acceptable to have no devs specified.
2746 */
2747 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2748 return (0);
2749
2750 if (ndev == 0)
2751 return (EINVAL);
2752
2753 /*
2754 * Make sure the pool is formatted with a version that supports this
2755 * device type.
2756 */
2757 if (spa_version(spa) < version)
2758 return (ENOTSUP);
2759
2760 /*
2761 * Set the pending device list so we correctly handle device in-use
2762 * checking.
2763 */
2764 sav->sav_pending = dev;
2765 sav->sav_npending = ndev;
2766
2767 for (i = 0; i < ndev; i++) {
2768 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2769 mode)) != 0)
2770 goto out;
2771
2772 if (!vd->vdev_ops->vdev_op_leaf) {
2773 vdev_free(vd);
2774 error = EINVAL;
2775 goto out;
2776 }
2777
2778 /*
2779 * The L2ARC currently only supports disk devices in
2780 * kernel context. For user-level testing, we allow it.
2781 */
2782 #ifdef _KERNEL
2783 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2784 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2785 error = ENOTBLK;
2786 vdev_free(vd);
2787 goto out;
2788 }
2789 #endif
2790 vd->vdev_top = vd;
2791
2792 if ((error = vdev_open(vd)) == 0 &&
2793 (error = vdev_label_init(vd, crtxg, label)) == 0) {
2794 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2795 vd->vdev_guid) == 0);
2796 }
2797
2798 vdev_free(vd);
2799
2800 if (error &&
2801 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2802 goto out;
2803 else
2804 error = 0;
2805 }
2806
2807 out:
2808 sav->sav_pending = NULL;
2809 sav->sav_npending = 0;
2810 return (error);
2811 }
2812
2813 static int
2814 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2815 {
2816 int error;
2817
2818 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2819
2820 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2821 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2822 VDEV_LABEL_SPARE)) != 0) {
2823 return (error);
2824 }
2825
2826 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2827 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2828 VDEV_LABEL_L2CACHE));
2829 }
2830
2831 static void
2832 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2833 const char *config)
2834 {
2835 int i;
2836
2837 if (sav->sav_config != NULL) {
2838 nvlist_t **olddevs;
2839 uint_t oldndevs;
2840 nvlist_t **newdevs;
2841
2842 /*
2843 * Generate new dev list by concatentating with the
2844 * current dev list.
2845 */
2846 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2847 &olddevs, &oldndevs) == 0);
2848
2849 newdevs = kmem_alloc(sizeof (void *) *
2850 (ndevs + oldndevs), KM_SLEEP);
2851 for (i = 0; i < oldndevs; i++)
2852 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2853 KM_SLEEP) == 0);
2854 for (i = 0; i < ndevs; i++)
2855 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2856 KM_SLEEP) == 0);
2857
2858 VERIFY(nvlist_remove(sav->sav_config, config,
2859 DATA_TYPE_NVLIST_ARRAY) == 0);
2860
2861 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2862 config, newdevs, ndevs + oldndevs) == 0);
2863 for (i = 0; i < oldndevs + ndevs; i++)
2864 nvlist_free(newdevs[i]);
2865 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2866 } else {
2867 /*
2868 * Generate a new dev list.
2869 */
2870 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2871 KM_SLEEP) == 0);
2872 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2873 devs, ndevs) == 0);
2874 }
2875 }
2876
2877 /*
2878 * Stop and drop level 2 ARC devices
2879 */
2880 void
2881 spa_l2cache_drop(spa_t *spa)
2882 {
2883 vdev_t *vd;
2884 int i;
2885 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2886
2887 for (i = 0; i < sav->sav_count; i++) {
2888 uint64_t pool;
2889
2890 vd = sav->sav_vdevs[i];
2891 ASSERT(vd != NULL);
2892
2893 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2894 pool != 0ULL && l2arc_vdev_present(vd))
2895 l2arc_remove_vdev(vd);
2896 }
2897 }
2898
2899 /*
2900 * Pool Creation
2901 */
2902 int
2903 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2904 const char *history_str, nvlist_t *zplprops)
2905 {
2906 spa_t *spa;
2907 char *altroot = NULL;
2908 vdev_t *rvd;
2909 dsl_pool_t *dp;
2910 dmu_tx_t *tx;
2911 int error = 0;
2912 uint64_t txg = TXG_INITIAL;
2913 nvlist_t **spares, **l2cache;
2914 uint_t nspares, nl2cache;
2915 uint64_t version, obj;
2916 int c;
2917
2918 /*
2919 * If this pool already exists, return failure.
2920 */
2921 mutex_enter(&spa_namespace_lock);
2922 if (spa_lookup(pool) != NULL) {
2923 mutex_exit(&spa_namespace_lock);
2924 return (EEXIST);
2925 }
2926
2927 /*
2928 * Allocate a new spa_t structure.
2929 */
2930 (void) nvlist_lookup_string(props,
2931 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2932 spa = spa_add(pool, NULL, altroot);
2933 spa_activate(spa, spa_mode_global);
2934
2935 if (props && (error = spa_prop_validate(spa, props))) {
2936 spa_deactivate(spa);
2937 spa_remove(spa);
2938 mutex_exit(&spa_namespace_lock);
2939 return (error);
2940 }
2941
2942 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2943 &version) != 0)
2944 version = SPA_VERSION;
2945 ASSERT(version <= SPA_VERSION);
2946
2947 spa->spa_first_txg = txg;
2948 spa->spa_uberblock.ub_txg = txg - 1;
2949 spa->spa_uberblock.ub_version = version;
2950 spa->spa_ubsync = spa->spa_uberblock;
2951
2952 /*
2953 * Create "The Godfather" zio to hold all async IOs
2954 */
2955 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2956 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2957
2958 /*
2959 * Create the root vdev.
2960 */
2961 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2962
2963 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2964
2965 ASSERT(error != 0 || rvd != NULL);
2966 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2967
2968 if (error == 0 && !zfs_allocatable_devs(nvroot))
2969 error = EINVAL;
2970
2971 if (error == 0 &&
2972 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2973 (error = spa_validate_aux(spa, nvroot, txg,
2974 VDEV_ALLOC_ADD)) == 0) {
2975 for (c = 0; c < rvd->vdev_children; c++) {
2976 vdev_metaslab_set_size(rvd->vdev_child[c]);
2977 vdev_expand(rvd->vdev_child[c], txg);
2978 }
2979 }
2980
2981 spa_config_exit(spa, SCL_ALL, FTAG);
2982
2983 if (error != 0) {
2984 spa_unload(spa);
2985 spa_deactivate(spa);
2986 spa_remove(spa);
2987 mutex_exit(&spa_namespace_lock);
2988 return (error);
2989 }
2990
2991 /*
2992 * Get the list of spares, if specified.
2993 */
2994 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2995 &spares, &nspares) == 0) {
2996 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2997 KM_SLEEP) == 0);
2998 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2999 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3000 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3001 spa_load_spares(spa);
3002 spa_config_exit(spa, SCL_ALL, FTAG);
3003 spa->spa_spares.sav_sync = B_TRUE;
3004 }
3005
3006 /*
3007 * Get the list of level 2 cache devices, if specified.
3008 */
3009 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3010 &l2cache, &nl2cache) == 0) {
3011 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3012 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3013 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3014 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3015 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3016 spa_load_l2cache(spa);
3017 spa_config_exit(spa, SCL_ALL, FTAG);
3018 spa->spa_l2cache.sav_sync = B_TRUE;
3019 }
3020
3021 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3022 spa->spa_meta_objset = dp->dp_meta_objset;
3023
3024 /*
3025 * Create DDTs (dedup tables).
3026 */
3027 ddt_create(spa);
3028
3029 spa_update_dspace(spa);
3030
3031 tx = dmu_tx_create_assigned(dp, txg);
3032
3033 /*
3034 * Create the pool config object.
3035 */
3036 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3037 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3038 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3039
3040 if (zap_add(spa->spa_meta_objset,
3041 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3042 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3043 cmn_err(CE_PANIC, "failed to add pool config");
3044 }
3045
3046 if (zap_add(spa->spa_meta_objset,
3047 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3048 sizeof (uint64_t), 1, &version, tx) != 0) {
3049 cmn_err(CE_PANIC, "failed to add pool version");
3050 }
3051
3052 /* Newly created pools with the right version are always deflated. */
3053 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3054 spa->spa_deflate = TRUE;
3055 if (zap_add(spa->spa_meta_objset,
3056 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3057 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3058 cmn_err(CE_PANIC, "failed to add deflate");
3059 }
3060 }
3061
3062 /*
3063 * Create the deferred-free bpobj. Turn off compression
3064 * because sync-to-convergence takes longer if the blocksize
3065 * keeps changing.
3066 */
3067 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3068 dmu_object_set_compress(spa->spa_meta_objset, obj,
3069 ZIO_COMPRESS_OFF, tx);
3070 if (zap_add(spa->spa_meta_objset,
3071 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3072 sizeof (uint64_t), 1, &obj, tx) != 0) {
3073 cmn_err(CE_PANIC, "failed to add bpobj");
3074 }
3075 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3076 spa->spa_meta_objset, obj));
3077
3078 /*
3079 * Create the pool's history object.
3080 */
3081 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3082 spa_history_create_obj(spa, tx);
3083
3084 /*
3085 * Set pool properties.
3086 */
3087 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3088 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3089 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3090 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3091
3092 if (props != NULL) {
3093 spa_configfile_set(spa, props, B_FALSE);
3094 spa_sync_props(spa, props, tx);
3095 }
3096
3097 dmu_tx_commit(tx);
3098
3099 spa->spa_sync_on = B_TRUE;
3100 txg_sync_start(spa->spa_dsl_pool);
3101
3102 /*
3103 * We explicitly wait for the first transaction to complete so that our
3104 * bean counters are appropriately updated.
3105 */
3106 txg_wait_synced(spa->spa_dsl_pool, txg);
3107
3108 spa_config_sync(spa, B_FALSE, B_TRUE);
3109
3110 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3111 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3112 spa_history_log_version(spa, LOG_POOL_CREATE);
3113
3114 spa->spa_minref = refcount_count(&spa->spa_refcount);
3115
3116 mutex_exit(&spa_namespace_lock);
3117
3118 return (0);
3119 }
3120
3121 #ifdef _KERNEL
3122 /*
3123 * Get the root pool information from the root disk, then import the root pool
3124 * during the system boot up time.
3125 */
3126 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3127
3128 static nvlist_t *
3129 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3130 {
3131 nvlist_t *config;
3132 nvlist_t *nvtop, *nvroot;
3133 uint64_t pgid;
3134
3135 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3136 return (NULL);
3137
3138 /*
3139 * Add this top-level vdev to the child array.
3140 */
3141 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3142 &nvtop) == 0);
3143 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3144 &pgid) == 0);
3145 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3146
3147 /*
3148 * Put this pool's top-level vdevs into a root vdev.
3149 */
3150 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3151 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3152 VDEV_TYPE_ROOT) == 0);
3153 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3154 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3155 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3156 &nvtop, 1) == 0);
3157
3158 /*
3159 * Replace the existing vdev_tree with the new root vdev in
3160 * this pool's configuration (remove the old, add the new).
3161 */
3162 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3163 nvlist_free(nvroot);
3164 return (config);
3165 }
3166
3167 /*
3168 * Walk the vdev tree and see if we can find a device with "better"
3169 * configuration. A configuration is "better" if the label on that
3170 * device has a more recent txg.
3171 */
3172 static void
3173 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3174 {
3175 int c;
3176
3177 for (c = 0; c < vd->vdev_children; c++)
3178 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3179
3180 if (vd->vdev_ops->vdev_op_leaf) {
3181 nvlist_t *label;
3182 uint64_t label_txg;
3183
3184 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3185 &label) != 0)
3186 return;
3187
3188 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3189 &label_txg) == 0);
3190
3191 /*
3192 * Do we have a better boot device?
3193 */
3194 if (label_txg > *txg) {
3195 *txg = label_txg;
3196 *avd = vd;
3197 }
3198 nvlist_free(label);
3199 }
3200 }
3201
3202 /*
3203 * Import a root pool.
3204 *
3205 * For x86. devpath_list will consist of devid and/or physpath name of
3206 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3207 * The GRUB "findroot" command will return the vdev we should boot.
3208 *
3209 * For Sparc, devpath_list consists the physpath name of the booting device
3210 * no matter the rootpool is a single device pool or a mirrored pool.
3211 * e.g.
3212 * "/pci@1f,0/ide@d/disk@0,0:a"
3213 */
3214 int
3215 spa_import_rootpool(char *devpath, char *devid)
3216 {
3217 spa_t *spa;
3218 vdev_t *rvd, *bvd, *avd = NULL;
3219 nvlist_t *config, *nvtop;
3220 uint64_t guid, txg;
3221 char *pname;
3222 int error;
3223
3224 /*
3225 * Read the label from the boot device and generate a configuration.
3226 */
3227 config = spa_generate_rootconf(devpath, devid, &guid);
3228 #if defined(_OBP) && defined(_KERNEL)
3229 if (config == NULL) {
3230 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3231 /* iscsi boot */
3232 get_iscsi_bootpath_phy(devpath);
3233 config = spa_generate_rootconf(devpath, devid, &guid);
3234 }
3235 }
3236 #endif
3237 if (config == NULL) {
3238 cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3239 devpath);
3240 return (EIO);
3241 }
3242
3243 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3244 &pname) == 0);
3245 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3246
3247 mutex_enter(&spa_namespace_lock);
3248 if ((spa = spa_lookup(pname)) != NULL) {
3249 /*
3250 * Remove the existing root pool from the namespace so that we
3251 * can replace it with the correct config we just read in.
3252 */
3253 spa_remove(spa);
3254 }
3255
3256 spa = spa_add(pname, config, NULL);
3257 spa->spa_is_root = B_TRUE;
3258 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3259
3260 /*
3261 * Build up a vdev tree based on the boot device's label config.
3262 */
3263 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3264 &nvtop) == 0);
3265 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3266 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3267 VDEV_ALLOC_ROOTPOOL);
3268 spa_config_exit(spa, SCL_ALL, FTAG);
3269 if (error) {
3270 mutex_exit(&spa_namespace_lock);
3271 nvlist_free(config);
3272 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3273 pname);
3274 return (error);
3275 }
3276
3277 /*
3278 * Get the boot vdev.
3279 */
3280 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3281 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3282 (u_longlong_t)guid);
3283 error = ENOENT;
3284 goto out;
3285 }
3286
3287 /*
3288 * Determine if there is a better boot device.
3289 */
3290 avd = bvd;
3291 spa_alt_rootvdev(rvd, &avd, &txg);
3292 if (avd != bvd) {
3293 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3294 "try booting from '%s'", avd->vdev_path);
3295 error = EINVAL;
3296 goto out;
3297 }
3298
3299 /*
3300 * If the boot device is part of a spare vdev then ensure that
3301 * we're booting off the active spare.
3302 */
3303 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3304 !bvd->vdev_isspare) {
3305 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3306 "try booting from '%s'",
3307 bvd->vdev_parent->
3308 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3309 error = EINVAL;
3310 goto out;
3311 }
3312
3313 error = 0;
3314 spa_history_log_version(spa, LOG_POOL_IMPORT);
3315 out:
3316 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3317 vdev_free(rvd);
3318 spa_config_exit(spa, SCL_ALL, FTAG);
3319 mutex_exit(&spa_namespace_lock);
3320
3321 nvlist_free(config);
3322 return (error);
3323 }
3324
3325 #endif
3326
3327 /*
3328 * Import a non-root pool into the system.
3329 */
3330 int
3331 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3332 {
3333 spa_t *spa;
3334 char *altroot = NULL;
3335 spa_load_state_t state = SPA_LOAD_IMPORT;
3336 zpool_rewind_policy_t policy;
3337 uint64_t mode = spa_mode_global;
3338 uint64_t readonly = B_FALSE;
3339 int error;
3340 nvlist_t *nvroot;
3341 nvlist_t **spares, **l2cache;
3342 uint_t nspares, nl2cache;
3343
3344 /*
3345 * If a pool with this name exists, return failure.
3346 */
3347 mutex_enter(&spa_namespace_lock);
3348 if (spa_lookup(pool) != NULL) {
3349 mutex_exit(&spa_namespace_lock);
3350 return (EEXIST);
3351 }
3352
3353 /*
3354 * Create and initialize the spa structure.
3355 */
3356 (void) nvlist_lookup_string(props,
3357 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3358 (void) nvlist_lookup_uint64(props,
3359 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3360 if (readonly)
3361 mode = FREAD;
3362 spa = spa_add(pool, config, altroot);
3363 spa->spa_import_flags = flags;
3364
3365 /*
3366 * Verbatim import - Take a pool and insert it into the namespace
3367 * as if it had been loaded at boot.
3368 */
3369 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3370 if (props != NULL)
3371 spa_configfile_set(spa, props, B_FALSE);
3372
3373 spa_config_sync(spa, B_FALSE, B_TRUE);
3374
3375 mutex_exit(&spa_namespace_lock);
3376 spa_history_log_version(spa, LOG_POOL_IMPORT);
3377
3378 return (0);
3379 }
3380
3381 spa_activate(spa, mode);
3382
3383 /*
3384 * Don't start async tasks until we know everything is healthy.
3385 */
3386 spa_async_suspend(spa);
3387
3388 zpool_get_rewind_policy(config, &policy);
3389 if (policy.zrp_request & ZPOOL_DO_REWIND)
3390 state = SPA_LOAD_RECOVER;
3391
3392 /*
3393 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3394 * because the user-supplied config is actually the one to trust when
3395 * doing an import.
3396 */
3397 if (state != SPA_LOAD_RECOVER)
3398 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3399
3400 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3401 policy.zrp_request);
3402
3403 /*
3404 * Propagate anything learned while loading the pool and pass it
3405 * back to caller (i.e. rewind info, missing devices, etc).
3406 */
3407 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3408 spa->spa_load_info) == 0);
3409
3410 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3411 /*
3412 * Toss any existing sparelist, as it doesn't have any validity
3413 * anymore, and conflicts with spa_has_spare().
3414 */
3415 if (spa->spa_spares.sav_config) {
3416 nvlist_free(spa->spa_spares.sav_config);
3417 spa->spa_spares.sav_config = NULL;
3418 spa_load_spares(spa);
3419 }
3420 if (spa->spa_l2cache.sav_config) {
3421 nvlist_free(spa->spa_l2cache.sav_config);
3422 spa->spa_l2cache.sav_config = NULL;
3423 spa_load_l2cache(spa);
3424 }
3425
3426 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3427 &nvroot) == 0);
3428 if (error == 0)
3429 error = spa_validate_aux(spa, nvroot, -1ULL,
3430 VDEV_ALLOC_SPARE);
3431 if (error == 0)
3432 error = spa_validate_aux(spa, nvroot, -1ULL,
3433 VDEV_ALLOC_L2CACHE);
3434 spa_config_exit(spa, SCL_ALL, FTAG);
3435
3436 if (props != NULL)
3437 spa_configfile_set(spa, props, B_FALSE);
3438
3439 if (error != 0 || (props && spa_writeable(spa) &&
3440 (error = spa_prop_set(spa, props)))) {
3441 spa_unload(spa);
3442 spa_deactivate(spa);
3443 spa_remove(spa);
3444 mutex_exit(&spa_namespace_lock);
3445 return (error);
3446 }
3447
3448 spa_async_resume(spa);
3449
3450 /*
3451 * Override any spares and level 2 cache devices as specified by
3452 * the user, as these may have correct device names/devids, etc.
3453 */
3454 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3455 &spares, &nspares) == 0) {
3456 if (spa->spa_spares.sav_config)
3457 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3458 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3459 else
3460 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3461 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3462 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3463 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3464 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3465 spa_load_spares(spa);
3466 spa_config_exit(spa, SCL_ALL, FTAG);
3467 spa->spa_spares.sav_sync = B_TRUE;
3468 }
3469 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3470 &l2cache, &nl2cache) == 0) {
3471 if (spa->spa_l2cache.sav_config)
3472 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3473 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3474 else
3475 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3476 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3477 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3478 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3480 spa_load_l2cache(spa);
3481 spa_config_exit(spa, SCL_ALL, FTAG);
3482 spa->spa_l2cache.sav_sync = B_TRUE;
3483 }
3484
3485 /*
3486 * Check for any removed devices.
3487 */
3488 if (spa->spa_autoreplace) {
3489 spa_aux_check_removed(&spa->spa_spares);
3490 spa_aux_check_removed(&spa->spa_l2cache);
3491 }
3492
3493 if (spa_writeable(spa)) {
3494 /*
3495 * Update the config cache to include the newly-imported pool.
3496 */
3497 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3498 }
3499
3500 /*
3501 * It's possible that the pool was expanded while it was exported.
3502 * We kick off an async task to handle this for us.
3503 */
3504 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3505
3506 mutex_exit(&spa_namespace_lock);
3507 spa_history_log_version(spa, LOG_POOL_IMPORT);
3508
3509 return (0);
3510 }
3511
3512 nvlist_t *
3513 spa_tryimport(nvlist_t *tryconfig)
3514 {
3515 nvlist_t *config = NULL;
3516 char *poolname;
3517 spa_t *spa;
3518 uint64_t state;
3519 int error;
3520
3521 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3522 return (NULL);
3523
3524 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3525 return (NULL);
3526
3527 /*
3528 * Create and initialize the spa structure.
3529 */
3530 mutex_enter(&spa_namespace_lock);
3531 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3532 spa_activate(spa, FREAD);
3533
3534 /*
3535 * Pass off the heavy lifting to spa_load().
3536 * Pass TRUE for mosconfig because the user-supplied config
3537 * is actually the one to trust when doing an import.
3538 */
3539 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3540
3541 /*
3542 * If 'tryconfig' was at least parsable, return the current config.
3543 */
3544 if (spa->spa_root_vdev != NULL) {
3545 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3546 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3547 poolname) == 0);
3548 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3549 state) == 0);
3550 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3551 spa->spa_uberblock.ub_timestamp) == 0);
3552
3553 /*
3554 * If the bootfs property exists on this pool then we
3555 * copy it out so that external consumers can tell which
3556 * pools are bootable.
3557 */
3558 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3559 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3560
3561 /*
3562 * We have to play games with the name since the
3563 * pool was opened as TRYIMPORT_NAME.
3564 */
3565 if (dsl_dsobj_to_dsname(spa_name(spa),
3566 spa->spa_bootfs, tmpname) == 0) {
3567 char *cp;
3568 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3569
3570 cp = strchr(tmpname, '/');
3571 if (cp == NULL) {
3572 (void) strlcpy(dsname, tmpname,
3573 MAXPATHLEN);
3574 } else {
3575 (void) snprintf(dsname, MAXPATHLEN,
3576 "%s/%s", poolname, ++cp);
3577 }
3578 VERIFY(nvlist_add_string(config,
3579 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3580 kmem_free(dsname, MAXPATHLEN);
3581 }
3582 kmem_free(tmpname, MAXPATHLEN);
3583 }
3584
3585 /*
3586 * Add the list of hot spares and level 2 cache devices.
3587 */
3588 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3589 spa_add_spares(spa, config);
3590 spa_add_l2cache(spa, config);
3591 spa_config_exit(spa, SCL_CONFIG, FTAG);
3592 }
3593
3594 spa_unload(spa);
3595 spa_deactivate(spa);
3596 spa_remove(spa);
3597 mutex_exit(&spa_namespace_lock);
3598
3599 return (config);
3600 }
3601
3602 /*
3603 * Pool export/destroy
3604 *
3605 * The act of destroying or exporting a pool is very simple. We make sure there
3606 * is no more pending I/O and any references to the pool are gone. Then, we
3607 * update the pool state and sync all the labels to disk, removing the
3608 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3609 * we don't sync the labels or remove the configuration cache.
3610 */
3611 static int
3612 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3613 boolean_t force, boolean_t hardforce)
3614 {
3615 spa_t *spa;
3616
3617 if (oldconfig)
3618 *oldconfig = NULL;
3619
3620 if (!(spa_mode_global & FWRITE))
3621 return (EROFS);
3622
3623 mutex_enter(&spa_namespace_lock);
3624 if ((spa = spa_lookup(pool)) == NULL) {
3625 mutex_exit(&spa_namespace_lock);
3626 return (ENOENT);
3627 }
3628
3629 /*
3630 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3631 * reacquire the namespace lock, and see if we can export.
3632 */
3633 spa_open_ref(spa, FTAG);
3634 mutex_exit(&spa_namespace_lock);
3635 spa_async_suspend(spa);
3636 mutex_enter(&spa_namespace_lock);
3637 spa_close(spa, FTAG);
3638
3639 /*
3640 * The pool will be in core if it's openable,
3641 * in which case we can modify its state.
3642 */
3643 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3644 /*
3645 * Objsets may be open only because they're dirty, so we
3646 * have to force it to sync before checking spa_refcnt.
3647 */
3648 txg_wait_synced(spa->spa_dsl_pool, 0);
3649
3650 /*
3651 * A pool cannot be exported or destroyed if there are active
3652 * references. If we are resetting a pool, allow references by
3653 * fault injection handlers.
3654 */
3655 if (!spa_refcount_zero(spa) ||
3656 (spa->spa_inject_ref != 0 &&
3657 new_state != POOL_STATE_UNINITIALIZED)) {
3658 spa_async_resume(spa);
3659 mutex_exit(&spa_namespace_lock);
3660 return (EBUSY);
3661 }
3662
3663 /*
3664 * A pool cannot be exported if it has an active shared spare.
3665 * This is to prevent other pools stealing the active spare
3666 * from an exported pool. At user's own will, such pool can
3667 * be forcedly exported.
3668 */
3669 if (!force && new_state == POOL_STATE_EXPORTED &&
3670 spa_has_active_shared_spare(spa)) {
3671 spa_async_resume(spa);
3672 mutex_exit(&spa_namespace_lock);
3673 return (EXDEV);
3674 }
3675
3676 /*
3677 * We want this to be reflected on every label,
3678 * so mark them all dirty. spa_unload() will do the
3679 * final sync that pushes these changes out.
3680 */
3681 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3682 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3683 spa->spa_state = new_state;
3684 spa->spa_final_txg = spa_last_synced_txg(spa) +
3685 TXG_DEFER_SIZE + 1;
3686 vdev_config_dirty(spa->spa_root_vdev);
3687 spa_config_exit(spa, SCL_ALL, FTAG);
3688 }
3689 }
3690
3691 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
3692
3693 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3694 spa_unload(spa);
3695 spa_deactivate(spa);
3696 }
3697
3698 if (oldconfig && spa->spa_config)
3699 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3700
3701 if (new_state != POOL_STATE_UNINITIALIZED) {
3702 if (!hardforce)
3703 spa_config_sync(spa, B_TRUE, B_TRUE);
3704 spa_remove(spa);
3705 }
3706 mutex_exit(&spa_namespace_lock);
3707
3708 return (0);
3709 }
3710
3711 /*
3712 * Destroy a storage pool.
3713 */
3714 int
3715 spa_destroy(char *pool)
3716 {
3717 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3718 B_FALSE, B_FALSE));
3719 }
3720
3721 /*
3722 * Export a storage pool.
3723 */
3724 int
3725 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3726 boolean_t hardforce)
3727 {
3728 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3729 force, hardforce));
3730 }
3731
3732 /*
3733 * Similar to spa_export(), this unloads the spa_t without actually removing it
3734 * from the namespace in any way.
3735 */
3736 int
3737 spa_reset(char *pool)
3738 {
3739 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3740 B_FALSE, B_FALSE));
3741 }
3742
3743 /*
3744 * ==========================================================================
3745 * Device manipulation
3746 * ==========================================================================
3747 */
3748
3749 /*
3750 * Add a device to a storage pool.
3751 */
3752 int
3753 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3754 {
3755 uint64_t txg, id;
3756 int error;
3757 vdev_t *rvd = spa->spa_root_vdev;
3758 vdev_t *vd, *tvd;
3759 nvlist_t **spares, **l2cache;
3760 uint_t nspares, nl2cache;
3761 int c;
3762
3763 ASSERT(spa_writeable(spa));
3764
3765 txg = spa_vdev_enter(spa);
3766
3767 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3768 VDEV_ALLOC_ADD)) != 0)
3769 return (spa_vdev_exit(spa, NULL, txg, error));
3770
3771 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
3772
3773 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3774 &nspares) != 0)
3775 nspares = 0;
3776
3777 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3778 &nl2cache) != 0)
3779 nl2cache = 0;
3780
3781 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3782 return (spa_vdev_exit(spa, vd, txg, EINVAL));
3783
3784 if (vd->vdev_children != 0 &&
3785 (error = vdev_create(vd, txg, B_FALSE)) != 0)
3786 return (spa_vdev_exit(spa, vd, txg, error));
3787
3788 /*
3789 * We must validate the spares and l2cache devices after checking the
3790 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
3791 */
3792 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3793 return (spa_vdev_exit(spa, vd, txg, error));
3794
3795 /*
3796 * Transfer each new top-level vdev from vd to rvd.
3797 */
3798 for (c = 0; c < vd->vdev_children; c++) {
3799
3800 /*
3801 * Set the vdev id to the first hole, if one exists.
3802 */
3803 for (id = 0; id < rvd->vdev_children; id++) {
3804 if (rvd->vdev_child[id]->vdev_ishole) {
3805 vdev_free(rvd->vdev_child[id]);
3806 break;
3807 }
3808 }
3809 tvd = vd->vdev_child[c];
3810 vdev_remove_child(vd, tvd);
3811 tvd->vdev_id = id;
3812 vdev_add_child(rvd, tvd);
3813 vdev_config_dirty(tvd);
3814 }
3815
3816 if (nspares != 0) {
3817 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3818 ZPOOL_CONFIG_SPARES);
3819 spa_load_spares(spa);
3820 spa->spa_spares.sav_sync = B_TRUE;
3821 }
3822
3823 if (nl2cache != 0) {
3824 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3825 ZPOOL_CONFIG_L2CACHE);
3826 spa_load_l2cache(spa);
3827 spa->spa_l2cache.sav_sync = B_TRUE;
3828 }
3829
3830 /*
3831 * We have to be careful when adding new vdevs to an existing pool.
3832 * If other threads start allocating from these vdevs before we
3833 * sync the config cache, and we lose power, then upon reboot we may
3834 * fail to open the pool because there are DVAs that the config cache
3835 * can't translate. Therefore, we first add the vdevs without
3836 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3837 * and then let spa_config_update() initialize the new metaslabs.
3838 *
3839 * spa_load() checks for added-but-not-initialized vdevs, so that
3840 * if we lose power at any point in this sequence, the remaining
3841 * steps will be completed the next time we load the pool.
3842 */
3843 (void) spa_vdev_exit(spa, vd, txg, 0);
3844
3845 mutex_enter(&spa_namespace_lock);
3846 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3847 mutex_exit(&spa_namespace_lock);
3848
3849 return (0);
3850 }
3851
3852 /*
3853 * Attach a device to a mirror. The arguments are the path to any device
3854 * in the mirror, and the nvroot for the new device. If the path specifies
3855 * a device that is not mirrored, we automatically insert the mirror vdev.
3856 *
3857 * If 'replacing' is specified, the new device is intended to replace the
3858 * existing device; in this case the two devices are made into their own
3859 * mirror using the 'replacing' vdev, which is functionally identical to
3860 * the mirror vdev (it actually reuses all the same ops) but has a few
3861 * extra rules: you can't attach to it after it's been created, and upon
3862 * completion of resilvering, the first disk (the one being replaced)
3863 * is automatically detached.
3864 */
3865 int
3866 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3867 {
3868 uint64_t txg, dtl_max_txg;
3869 ASSERTV(vdev_t *rvd = spa->spa_root_vdev;)
3870 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3871 vdev_ops_t *pvops;
3872 char *oldvdpath, *newvdpath;
3873 int newvd_isspare;
3874 int error;
3875
3876 ASSERT(spa_writeable(spa));
3877
3878 txg = spa_vdev_enter(spa);
3879
3880 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3881
3882 if (oldvd == NULL)
3883 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3884
3885 if (!oldvd->vdev_ops->vdev_op_leaf)
3886 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3887
3888 pvd = oldvd->vdev_parent;
3889
3890 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3891 VDEV_ALLOC_ATTACH)) != 0)
3892 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3893
3894 if (newrootvd->vdev_children != 1)
3895 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3896
3897 newvd = newrootvd->vdev_child[0];
3898
3899 if (!newvd->vdev_ops->vdev_op_leaf)
3900 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3901
3902 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3903 return (spa_vdev_exit(spa, newrootvd, txg, error));
3904
3905 /*
3906 * Spares can't replace logs
3907 */
3908 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3909 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3910
3911 if (!replacing) {
3912 /*
3913 * For attach, the only allowable parent is a mirror or the root
3914 * vdev.
3915 */
3916 if (pvd->vdev_ops != &vdev_mirror_ops &&
3917 pvd->vdev_ops != &vdev_root_ops)
3918 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3919
3920 pvops = &vdev_mirror_ops;
3921 } else {
3922 /*
3923 * Active hot spares can only be replaced by inactive hot
3924 * spares.
3925 */
3926 if (pvd->vdev_ops == &vdev_spare_ops &&
3927 oldvd->vdev_isspare &&
3928 !spa_has_spare(spa, newvd->vdev_guid))
3929 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3930
3931 /*
3932 * If the source is a hot spare, and the parent isn't already a
3933 * spare, then we want to create a new hot spare. Otherwise, we
3934 * want to create a replacing vdev. The user is not allowed to
3935 * attach to a spared vdev child unless the 'isspare' state is
3936 * the same (spare replaces spare, non-spare replaces
3937 * non-spare).
3938 */
3939 if (pvd->vdev_ops == &vdev_replacing_ops &&
3940 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3941 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3942 } else if (pvd->vdev_ops == &vdev_spare_ops &&
3943 newvd->vdev_isspare != oldvd->vdev_isspare) {
3944 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3945 }
3946
3947 if (newvd->vdev_isspare)
3948 pvops = &vdev_spare_ops;
3949 else
3950 pvops = &vdev_replacing_ops;
3951 }
3952
3953 /*
3954 * Make sure the new device is big enough.
3955 */
3956 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3957 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3958
3959 /*
3960 * The new device cannot have a higher alignment requirement
3961 * than the top-level vdev.
3962 */
3963 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3964 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3965
3966 /*
3967 * If this is an in-place replacement, update oldvd's path and devid
3968 * to make it distinguishable from newvd, and unopenable from now on.
3969 */
3970 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3971 spa_strfree(oldvd->vdev_path);
3972 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3973 KM_SLEEP);
3974 (void) sprintf(oldvd->vdev_path, "%s/%s",
3975 newvd->vdev_path, "old");
3976 if (oldvd->vdev_devid != NULL) {
3977 spa_strfree(oldvd->vdev_devid);
3978 oldvd->vdev_devid = NULL;
3979 }
3980 }
3981
3982 /* mark the device being resilvered */
3983 newvd->vdev_resilvering = B_TRUE;
3984
3985 /*
3986 * If the parent is not a mirror, or if we're replacing, insert the new
3987 * mirror/replacing/spare vdev above oldvd.
3988 */
3989 if (pvd->vdev_ops != pvops)
3990 pvd = vdev_add_parent(oldvd, pvops);
3991
3992 ASSERT(pvd->vdev_top->vdev_parent == rvd);
3993 ASSERT(pvd->vdev_ops == pvops);
3994 ASSERT(oldvd->vdev_parent == pvd);
3995
3996 /*
3997 * Extract the new device from its root and add it to pvd.
3998 */
3999 vdev_remove_child(newrootvd, newvd);
4000 newvd->vdev_id = pvd->vdev_children;
4001 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4002 vdev_add_child(pvd, newvd);
4003
4004 tvd = newvd->vdev_top;
4005 ASSERT(pvd->vdev_top == tvd);
4006 ASSERT(tvd->vdev_parent == rvd);
4007
4008 vdev_config_dirty(tvd);
4009
4010 /*
4011 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4012 * for any dmu_sync-ed blocks. It will propagate upward when
4013 * spa_vdev_exit() calls vdev_dtl_reassess().
4014 */
4015 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4016
4017 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4018 dtl_max_txg - TXG_INITIAL);
4019
4020 if (newvd->vdev_isspare) {
4021 spa_spare_activate(newvd);
4022 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4023 }
4024
4025 oldvdpath = spa_strdup(oldvd->vdev_path);
4026 newvdpath = spa_strdup(newvd->vdev_path);
4027 newvd_isspare = newvd->vdev_isspare;
4028
4029 /*
4030 * Mark newvd's DTL dirty in this txg.
4031 */
4032 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4033
4034 /*
4035 * Restart the resilver
4036 */
4037 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4038
4039 /*
4040 * Commit the config
4041 */
4042 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4043
4044 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4045 "%s vdev=%s %s vdev=%s",
4046 replacing && newvd_isspare ? "spare in" :
4047 replacing ? "replace" : "attach", newvdpath,
4048 replacing ? "for" : "to", oldvdpath);
4049
4050 spa_strfree(oldvdpath);
4051 spa_strfree(newvdpath);
4052
4053 if (spa->spa_bootfs)
4054 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4055
4056 return (0);
4057 }
4058
4059 /*
4060 * Detach a device from a mirror or replacing vdev.
4061 * If 'replace_done' is specified, only detach if the parent
4062 * is a replacing vdev.
4063 */
4064 int
4065 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4066 {
4067 uint64_t txg;
4068 int error;
4069 ASSERTV(vdev_t *rvd = spa->spa_root_vdev;)
4070 vdev_t *vd, *pvd, *cvd, *tvd;
4071 boolean_t unspare = B_FALSE;
4072 uint64_t unspare_guid = 0;
4073 char *vdpath;
4074 int c, t;
4075
4076 ASSERT(spa_writeable(spa));
4077
4078 txg = spa_vdev_enter(spa);
4079
4080 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4081
4082 if (vd == NULL)
4083 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4084
4085 if (!vd->vdev_ops->vdev_op_leaf)
4086 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4087
4088 pvd = vd->vdev_parent;
4089
4090 /*
4091 * If the parent/child relationship is not as expected, don't do it.
4092 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4093 * vdev that's replacing B with C. The user's intent in replacing
4094 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4095 * the replace by detaching C, the expected behavior is to end up
4096 * M(A,B). But suppose that right after deciding to detach C,
4097 * the replacement of B completes. We would have M(A,C), and then
4098 * ask to detach C, which would leave us with just A -- not what
4099 * the user wanted. To prevent this, we make sure that the
4100 * parent/child relationship hasn't changed -- in this example,
4101 * that C's parent is still the replacing vdev R.
4102 */
4103 if (pvd->vdev_guid != pguid && pguid != 0)
4104 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4105
4106 /*
4107 * Only 'replacing' or 'spare' vdevs can be replaced.
4108 */
4109 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4110 pvd->vdev_ops != &vdev_spare_ops)
4111 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4112
4113 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4114 spa_version(spa) >= SPA_VERSION_SPARES);
4115
4116 /*
4117 * Only mirror, replacing, and spare vdevs support detach.
4118 */
4119 if (pvd->vdev_ops != &vdev_replacing_ops &&
4120 pvd->vdev_ops != &vdev_mirror_ops &&
4121 pvd->vdev_ops != &vdev_spare_ops)
4122 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4123
4124 /*
4125 * If this device has the only valid copy of some data,
4126 * we cannot safely detach it.
4127 */
4128 if (vdev_dtl_required(vd))
4129 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4130
4131 ASSERT(pvd->vdev_children >= 2);
4132
4133 /*
4134 * If we are detaching the second disk from a replacing vdev, then
4135 * check to see if we changed the original vdev's path to have "/old"
4136 * at the end in spa_vdev_attach(). If so, undo that change now.
4137 */
4138 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4139 vd->vdev_path != NULL) {
4140 size_t len = strlen(vd->vdev_path);
4141
4142 for (c = 0; c < pvd->vdev_children; c++) {
4143 cvd = pvd->vdev_child[c];
4144
4145 if (cvd == vd || cvd->vdev_path == NULL)
4146 continue;
4147
4148 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4149 strcmp(cvd->vdev_path + len, "/old") == 0) {
4150 spa_strfree(cvd->vdev_path);
4151 cvd->vdev_path = spa_strdup(vd->vdev_path);
4152 break;
4153 }
4154 }
4155 }
4156
4157 /*
4158 * If we are detaching the original disk from a spare, then it implies
4159 * that the spare should become a real disk, and be removed from the
4160 * active spare list for the pool.
4161 */
4162 if (pvd->vdev_ops == &vdev_spare_ops &&
4163 vd->vdev_id == 0 &&
4164 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4165 unspare = B_TRUE;
4166
4167 /*
4168 * Erase the disk labels so the disk can be used for other things.
4169 * This must be done after all other error cases are handled,
4170 * but before we disembowel vd (so we can still do I/O to it).
4171 * But if we can't do it, don't treat the error as fatal --
4172 * it may be that the unwritability of the disk is the reason
4173 * it's being detached!
4174 */
4175 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4176
4177 /*
4178 * Remove vd from its parent and compact the parent's children.
4179 */
4180 vdev_remove_child(pvd, vd);
4181 vdev_compact_children(pvd);
4182
4183 /*
4184 * Remember one of the remaining children so we can get tvd below.
4185 */
4186 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4187
4188 /*
4189 * If we need to remove the remaining child from the list of hot spares,
4190 * do it now, marking the vdev as no longer a spare in the process.
4191 * We must do this before vdev_remove_parent(), because that can
4192 * change the GUID if it creates a new toplevel GUID. For a similar
4193 * reason, we must remove the spare now, in the same txg as the detach;
4194 * otherwise someone could attach a new sibling, change the GUID, and
4195 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4196 */
4197 if (unspare) {
4198 ASSERT(cvd->vdev_isspare);
4199 spa_spare_remove(cvd);
4200 unspare_guid = cvd->vdev_guid;
4201 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4202 cvd->vdev_unspare = B_TRUE;
4203 }
4204
4205 /*
4206 * If the parent mirror/replacing vdev only has one child,
4207 * the parent is no longer needed. Remove it from the tree.
4208 */
4209 if (pvd->vdev_children == 1) {
4210 if (pvd->vdev_ops == &vdev_spare_ops)
4211 cvd->vdev_unspare = B_FALSE;
4212 vdev_remove_parent(cvd);
4213 cvd->vdev_resilvering = B_FALSE;
4214 }
4215
4216
4217 /*
4218 * We don't set tvd until now because the parent we just removed
4219 * may have been the previous top-level vdev.
4220 */
4221 tvd = cvd->vdev_top;
4222 ASSERT(tvd->vdev_parent == rvd);
4223
4224 /*
4225 * Reevaluate the parent vdev state.
4226 */
4227 vdev_propagate_state(cvd);
4228
4229 /*
4230 * If the 'autoexpand' property is set on the pool then automatically
4231 * try to expand the size of the pool. For example if the device we
4232 * just detached was smaller than the others, it may be possible to
4233 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4234 * first so that we can obtain the updated sizes of the leaf vdevs.
4235 */
4236 if (spa->spa_autoexpand) {
4237 vdev_reopen(tvd);
4238 vdev_expand(tvd, txg);
4239 }
4240
4241 vdev_config_dirty(tvd);
4242
4243 /*
4244 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4245 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4246 * But first make sure we're not on any *other* txg's DTL list, to
4247 * prevent vd from being accessed after it's freed.
4248 */
4249 vdpath = spa_strdup(vd->vdev_path);
4250 for (t = 0; t < TXG_SIZE; t++)
4251 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4252 vd->vdev_detached = B_TRUE;
4253 vdev_dirty(tvd, VDD_DTL, vd, txg);
4254
4255 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4256
4257 /* hang on to the spa before we release the lock */
4258 spa_open_ref(spa, FTAG);
4259
4260 error = spa_vdev_exit(spa, vd, txg, 0);
4261
4262 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4263 "vdev=%s", vdpath);
4264 spa_strfree(vdpath);
4265
4266 /*
4267 * If this was the removal of the original device in a hot spare vdev,
4268 * then we want to go through and remove the device from the hot spare
4269 * list of every other pool.
4270 */
4271 if (unspare) {
4272 spa_t *altspa = NULL;
4273
4274 mutex_enter(&spa_namespace_lock);
4275 while ((altspa = spa_next(altspa)) != NULL) {
4276 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4277 altspa == spa)
4278 continue;
4279
4280 spa_open_ref(altspa, FTAG);
4281 mutex_exit(&spa_namespace_lock);
4282 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4283 mutex_enter(&spa_namespace_lock);
4284 spa_close(altspa, FTAG);
4285 }
4286 mutex_exit(&spa_namespace_lock);
4287
4288 /* search the rest of the vdevs for spares to remove */
4289 spa_vdev_resilver_done(spa);
4290 }
4291
4292 /* all done with the spa; OK to release */
4293 mutex_enter(&spa_namespace_lock);
4294 spa_close(spa, FTAG);
4295 mutex_exit(&spa_namespace_lock);
4296
4297 return (error);
4298 }
4299
4300 /*
4301 * Split a set of devices from their mirrors, and create a new pool from them.
4302 */
4303 int
4304 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4305 nvlist_t *props, boolean_t exp)
4306 {
4307 int error = 0;
4308 uint64_t txg, *glist;
4309 spa_t *newspa;
4310 uint_t c, children, lastlog;
4311 nvlist_t **child, *nvl, *tmp;
4312 dmu_tx_t *tx;
4313 char *altroot = NULL;
4314 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4315 boolean_t activate_slog;
4316
4317 ASSERT(spa_writeable(spa));
4318
4319 txg = spa_vdev_enter(spa);
4320
4321 /* clear the log and flush everything up to now */
4322 activate_slog = spa_passivate_log(spa);
4323 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4324 error = spa_offline_log(spa);
4325 txg = spa_vdev_config_enter(spa);
4326
4327 if (activate_slog)
4328 spa_activate_log(spa);
4329
4330 if (error != 0)
4331 return (spa_vdev_exit(spa, NULL, txg, error));
4332
4333 /* check new spa name before going any further */
4334 if (spa_lookup(newname) != NULL)
4335 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4336
4337 /*
4338 * scan through all the children to ensure they're all mirrors
4339 */
4340 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4341 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4342 &children) != 0)
4343 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4344
4345 /* first, check to ensure we've got the right child count */
4346 rvd = spa->spa_root_vdev;
4347 lastlog = 0;
4348 for (c = 0; c < rvd->vdev_children; c++) {
4349 vdev_t *vd = rvd->vdev_child[c];
4350
4351 /* don't count the holes & logs as children */
4352 if (vd->vdev_islog || vd->vdev_ishole) {
4353 if (lastlog == 0)
4354 lastlog = c;
4355 continue;
4356 }
4357
4358 lastlog = 0;
4359 }
4360 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4361 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4362
4363 /* next, ensure no spare or cache devices are part of the split */
4364 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4365 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4366 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4367
4368 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4369 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4370
4371 /* then, loop over each vdev and validate it */
4372 for (c = 0; c < children; c++) {
4373 uint64_t is_hole = 0;
4374
4375 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4376 &is_hole);
4377
4378 if (is_hole != 0) {
4379 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4380 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4381 continue;
4382 } else {
4383 error = EINVAL;
4384 break;
4385 }
4386 }
4387
4388 /* which disk is going to be split? */
4389 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4390 &glist[c]) != 0) {
4391 error = EINVAL;
4392 break;
4393 }
4394
4395 /* look it up in the spa */
4396 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4397 if (vml[c] == NULL) {
4398 error = ENODEV;
4399 break;
4400 }
4401
4402 /* make sure there's nothing stopping the split */
4403 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4404 vml[c]->vdev_islog ||
4405 vml[c]->vdev_ishole ||
4406 vml[c]->vdev_isspare ||
4407 vml[c]->vdev_isl2cache ||
4408 !vdev_writeable(vml[c]) ||
4409 vml[c]->vdev_children != 0 ||
4410 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4411 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4412 error = EINVAL;
4413 break;
4414 }
4415
4416 if (vdev_dtl_required(vml[c])) {
4417 error = EBUSY;
4418 break;
4419 }
4420
4421 /* we need certain info from the top level */
4422 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4423 vml[c]->vdev_top->vdev_ms_array) == 0);
4424 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4425 vml[c]->vdev_top->vdev_ms_shift) == 0);
4426 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4427 vml[c]->vdev_top->vdev_asize) == 0);
4428 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4429 vml[c]->vdev_top->vdev_ashift) == 0);
4430 }
4431
4432 if (error != 0) {
4433 kmem_free(vml, children * sizeof (vdev_t *));
4434 kmem_free(glist, children * sizeof (uint64_t));
4435 return (spa_vdev_exit(spa, NULL, txg, error));
4436 }
4437
4438 /* stop writers from using the disks */
4439 for (c = 0; c < children; c++) {
4440 if (vml[c] != NULL)
4441 vml[c]->vdev_offline = B_TRUE;
4442 }
4443 vdev_reopen(spa->spa_root_vdev);
4444
4445 /*
4446 * Temporarily record the splitting vdevs in the spa config. This
4447 * will disappear once the config is regenerated.
4448 */
4449 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4450 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4451 glist, children) == 0);
4452 kmem_free(glist, children * sizeof (uint64_t));
4453
4454 mutex_enter(&spa->spa_props_lock);
4455 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4456 nvl) == 0);
4457 mutex_exit(&spa->spa_props_lock);
4458 spa->spa_config_splitting = nvl;
4459 vdev_config_dirty(spa->spa_root_vdev);
4460
4461 /* configure and create the new pool */
4462 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4463 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4464 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4465 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4466 spa_version(spa)) == 0);
4467 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4468 spa->spa_config_txg) == 0);
4469 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4470 spa_generate_guid(NULL)) == 0);
4471 (void) nvlist_lookup_string(props,
4472 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4473
4474 /* add the new pool to the namespace */
4475 newspa = spa_add(newname, config, altroot);
4476 newspa->spa_config_txg = spa->spa_config_txg;
4477 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4478
4479 /* release the spa config lock, retaining the namespace lock */
4480 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4481
4482 if (zio_injection_enabled)
4483 zio_handle_panic_injection(spa, FTAG, 1);
4484
4485 spa_activate(newspa, spa_mode_global);
4486 spa_async_suspend(newspa);
4487
4488 /* create the new pool from the disks of the original pool */
4489 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4490 if (error)
4491 goto out;
4492
4493 /* if that worked, generate a real config for the new pool */
4494 if (newspa->spa_root_vdev != NULL) {
4495 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4496 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4497 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4498 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4499 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4500 B_TRUE));
4501 }
4502
4503 /* set the props */
4504 if (props != NULL) {
4505 spa_configfile_set(newspa, props, B_FALSE);
4506 error = spa_prop_set(newspa, props);
4507 if (error)
4508 goto out;
4509 }
4510
4511 /* flush everything */
4512 txg = spa_vdev_config_enter(newspa);
4513 vdev_config_dirty(newspa->spa_root_vdev);
4514 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4515
4516 if (zio_injection_enabled)
4517 zio_handle_panic_injection(spa, FTAG, 2);
4518
4519 spa_async_resume(newspa);
4520
4521 /* finally, update the original pool's config */
4522 txg = spa_vdev_config_enter(spa);
4523 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4524 error = dmu_tx_assign(tx, TXG_WAIT);
4525 if (error != 0)
4526 dmu_tx_abort(tx);
4527 for (c = 0; c < children; c++) {
4528 if (vml[c] != NULL) {
4529 vdev_split(vml[c]);
4530 if (error == 0)
4531 spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4532 spa, tx, "vdev=%s",
4533 vml[c]->vdev_path);
4534 vdev_free(vml[c]);
4535 }
4536 }
4537 vdev_config_dirty(spa->spa_root_vdev);
4538 spa->spa_config_splitting = NULL;
4539 nvlist_free(nvl);
4540 if (error == 0)
4541 dmu_tx_commit(tx);
4542 (void) spa_vdev_exit(spa, NULL, txg, 0);
4543
4544 if (zio_injection_enabled)
4545 zio_handle_panic_injection(spa, FTAG, 3);
4546
4547 /* split is complete; log a history record */
4548 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4549 "split new pool %s from pool %s", newname, spa_name(spa));
4550
4551 kmem_free(vml, children * sizeof (vdev_t *));
4552
4553 /* if we're not going to mount the filesystems in userland, export */
4554 if (exp)
4555 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4556 B_FALSE, B_FALSE);
4557
4558 return (error);
4559
4560 out:
4561 spa_unload(newspa);
4562 spa_deactivate(newspa);
4563 spa_remove(newspa);
4564
4565 txg = spa_vdev_config_enter(spa);
4566
4567 /* re-online all offlined disks */
4568 for (c = 0; c < children; c++) {
4569 if (vml[c] != NULL)
4570 vml[c]->vdev_offline = B_FALSE;
4571 }
4572 vdev_reopen(spa->spa_root_vdev);
4573
4574 nvlist_free(spa->spa_config_splitting);
4575 spa->spa_config_splitting = NULL;
4576 (void) spa_vdev_exit(spa, NULL, txg, error);
4577
4578 kmem_free(vml, children * sizeof (vdev_t *));
4579 return (error);
4580 }
4581
4582 static nvlist_t *
4583 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4584 {
4585 int i;
4586
4587 for (i = 0; i < count; i++) {
4588 uint64_t guid;
4589
4590 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4591 &guid) == 0);
4592
4593 if (guid == target_guid)
4594 return (nvpp[i]);
4595 }
4596
4597 return (NULL);
4598 }
4599
4600 static void
4601 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4602 nvlist_t *dev_to_remove)
4603 {
4604 nvlist_t **newdev = NULL;
4605 int i, j;
4606
4607 if (count > 1)
4608 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4609
4610 for (i = 0, j = 0; i < count; i++) {
4611 if (dev[i] == dev_to_remove)
4612 continue;
4613 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4614 }
4615
4616 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4617 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4618
4619 for (i = 0; i < count - 1; i++)
4620 nvlist_free(newdev[i]);
4621
4622 if (count > 1)
4623 kmem_free(newdev, (count - 1) * sizeof (void *));
4624 }
4625
4626 /*
4627 * Evacuate the device.
4628 */
4629 static int
4630 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4631 {
4632 uint64_t txg;
4633 int error = 0;
4634
4635 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4636 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4637 ASSERT(vd == vd->vdev_top);
4638
4639 /*
4640 * Evacuate the device. We don't hold the config lock as writer
4641 * since we need to do I/O but we do keep the
4642 * spa_namespace_lock held. Once this completes the device
4643 * should no longer have any blocks allocated on it.
4644 */
4645 if (vd->vdev_islog) {
4646 if (vd->vdev_stat.vs_alloc != 0)
4647 error = spa_offline_log(spa);
4648 } else {
4649 error = ENOTSUP;
4650 }
4651
4652 if (error)
4653 return (error);
4654
4655 /*
4656 * The evacuation succeeded. Remove any remaining MOS metadata
4657 * associated with this vdev, and wait for these changes to sync.
4658 */
4659 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4660 txg = spa_vdev_config_enter(spa);
4661 vd->vdev_removing = B_TRUE;
4662 vdev_dirty(vd, 0, NULL, txg);
4663 vdev_config_dirty(vd);
4664 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4665
4666 return (0);
4667 }
4668
4669 /*
4670 * Complete the removal by cleaning up the namespace.
4671 */
4672 static void
4673 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4674 {
4675 vdev_t *rvd = spa->spa_root_vdev;
4676 uint64_t id = vd->vdev_id;
4677 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4678
4679 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4680 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4681 ASSERT(vd == vd->vdev_top);
4682
4683 /*
4684 * Only remove any devices which are empty.
4685 */
4686 if (vd->vdev_stat.vs_alloc != 0)
4687 return;
4688
4689 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4690
4691 if (list_link_active(&vd->vdev_state_dirty_node))
4692 vdev_state_clean(vd);
4693 if (list_link_active(&vd->vdev_config_dirty_node))
4694 vdev_config_clean(vd);
4695
4696 vdev_free(vd);
4697
4698 if (last_vdev) {
4699 vdev_compact_children(rvd);
4700 } else {
4701 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4702 vdev_add_child(rvd, vd);
4703 }
4704 vdev_config_dirty(rvd);
4705
4706 /*
4707 * Reassess the health of our root vdev.
4708 */
4709 vdev_reopen(rvd);
4710 }
4711
4712 /*
4713 * Remove a device from the pool -
4714 *
4715 * Removing a device from the vdev namespace requires several steps
4716 * and can take a significant amount of time. As a result we use
4717 * the spa_vdev_config_[enter/exit] functions which allow us to
4718 * grab and release the spa_config_lock while still holding the namespace
4719 * lock. During each step the configuration is synced out.
4720 */
4721
4722 /*
4723 * Remove a device from the pool. Currently, this supports removing only hot
4724 * spares, slogs, and level 2 ARC devices.
4725 */
4726 int
4727 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4728 {
4729 vdev_t *vd;
4730 metaslab_group_t *mg;
4731 nvlist_t **spares, **l2cache, *nv;
4732 uint64_t txg = 0;
4733 uint_t nspares, nl2cache;
4734 int error = 0;
4735 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4736
4737 ASSERT(spa_writeable(spa));
4738
4739 if (!locked)
4740 txg = spa_vdev_enter(spa);
4741
4742 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4743
4744 if (spa->spa_spares.sav_vdevs != NULL &&
4745 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4746 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4747 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4748 /*
4749 * Only remove the hot spare if it's not currently in use
4750 * in this pool.
4751 */
4752 if (vd == NULL || unspare) {
4753 spa_vdev_remove_aux(spa->spa_spares.sav_config,
4754 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4755 spa_load_spares(spa);
4756 spa->spa_spares.sav_sync = B_TRUE;
4757 } else {
4758 error = EBUSY;
4759 }
4760 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
4761 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4762 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4763 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4764 /*
4765 * Cache devices can always be removed.
4766 */
4767 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4768 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4769 spa_load_l2cache(spa);
4770 spa->spa_l2cache.sav_sync = B_TRUE;
4771 } else if (vd != NULL && vd->vdev_islog) {
4772 ASSERT(!locked);
4773 ASSERT(vd == vd->vdev_top);
4774
4775 /*
4776 * XXX - Once we have bp-rewrite this should
4777 * become the common case.
4778 */
4779
4780 mg = vd->vdev_mg;
4781
4782 /*
4783 * Stop allocating from this vdev.
4784 */
4785 metaslab_group_passivate(mg);
4786
4787 /*
4788 * Wait for the youngest allocations and frees to sync,
4789 * and then wait for the deferral of those frees to finish.
4790 */
4791 spa_vdev_config_exit(spa, NULL,
4792 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4793
4794 /*
4795 * Attempt to evacuate the vdev.
4796 */
4797 error = spa_vdev_remove_evacuate(spa, vd);
4798
4799 txg = spa_vdev_config_enter(spa);
4800
4801 /*
4802 * If we couldn't evacuate the vdev, unwind.
4803 */
4804 if (error) {
4805 metaslab_group_activate(mg);
4806 return (spa_vdev_exit(spa, NULL, txg, error));
4807 }
4808
4809 /*
4810 * Clean up the vdev namespace.
4811 */
4812 spa_vdev_remove_from_namespace(spa, vd);
4813
4814 } else if (vd != NULL) {
4815 /*
4816 * Normal vdevs cannot be removed (yet).
4817 */
4818 error = ENOTSUP;
4819 } else {
4820 /*
4821 * There is no vdev of any kind with the specified guid.
4822 */
4823 error = ENOENT;
4824 }
4825
4826 if (!locked)
4827 return (spa_vdev_exit(spa, NULL, txg, error));
4828
4829 return (error);
4830 }
4831
4832 /*
4833 * Find any device that's done replacing, or a vdev marked 'unspare' that's
4834 * current spared, so we can detach it.
4835 */
4836 static vdev_t *
4837 spa_vdev_resilver_done_hunt(vdev_t *vd)
4838 {
4839 vdev_t *newvd, *oldvd;
4840 int c;
4841
4842 for (c = 0; c < vd->vdev_children; c++) {
4843 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4844 if (oldvd != NULL)
4845 return (oldvd);
4846 }
4847
4848 /*
4849 * Check for a completed replacement. We always consider the first
4850 * vdev in the list to be the oldest vdev, and the last one to be
4851 * the newest (see spa_vdev_attach() for how that works). In
4852 * the case where the newest vdev is faulted, we will not automatically
4853 * remove it after a resilver completes. This is OK as it will require
4854 * user intervention to determine which disk the admin wishes to keep.
4855 */
4856 if (vd->vdev_ops == &vdev_replacing_ops) {
4857 ASSERT(vd->vdev_children > 1);
4858
4859 newvd = vd->vdev_child[vd->vdev_children - 1];
4860 oldvd = vd->vdev_child[0];
4861
4862 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4863 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4864 !vdev_dtl_required(oldvd))
4865 return (oldvd);
4866 }
4867
4868 /*
4869 * Check for a completed resilver with the 'unspare' flag set.
4870 */
4871 if (vd->vdev_ops == &vdev_spare_ops) {
4872 vdev_t *first = vd->vdev_child[0];
4873 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4874
4875 if (last->vdev_unspare) {
4876 oldvd = first;
4877 newvd = last;
4878 } else if (first->vdev_unspare) {
4879 oldvd = last;
4880 newvd = first;
4881 } else {
4882 oldvd = NULL;
4883 }
4884
4885 if (oldvd != NULL &&
4886 vdev_dtl_empty(newvd, DTL_MISSING) &&
4887 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4888 !vdev_dtl_required(oldvd))
4889 return (oldvd);
4890
4891 /*
4892 * If there are more than two spares attached to a disk,
4893 * and those spares are not required, then we want to
4894 * attempt to free them up now so that they can be used
4895 * by other pools. Once we're back down to a single
4896 * disk+spare, we stop removing them.
4897 */
4898 if (vd->vdev_children > 2) {
4899 newvd = vd->vdev_child[1];
4900
4901 if (newvd->vdev_isspare && last->vdev_isspare &&
4902 vdev_dtl_empty(last, DTL_MISSING) &&
4903 vdev_dtl_empty(last, DTL_OUTAGE) &&
4904 !vdev_dtl_required(newvd))
4905 return (newvd);
4906 }
4907 }
4908
4909 return (NULL);
4910 }
4911
4912 static void
4913 spa_vdev_resilver_done(spa_t *spa)
4914 {
4915 vdev_t *vd, *pvd, *ppvd;
4916 uint64_t guid, sguid, pguid, ppguid;
4917
4918 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4919
4920 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4921 pvd = vd->vdev_parent;
4922 ppvd = pvd->vdev_parent;
4923 guid = vd->vdev_guid;
4924 pguid = pvd->vdev_guid;
4925 ppguid = ppvd->vdev_guid;
4926 sguid = 0;
4927 /*
4928 * If we have just finished replacing a hot spared device, then
4929 * we need to detach the parent's first child (the original hot
4930 * spare) as well.
4931 */
4932 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4933 ppvd->vdev_children == 2) {
4934 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4935 sguid = ppvd->vdev_child[1]->vdev_guid;
4936 }
4937 spa_config_exit(spa, SCL_ALL, FTAG);
4938 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4939 return;
4940 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4941 return;
4942 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4943 }
4944
4945 spa_config_exit(spa, SCL_ALL, FTAG);
4946 }
4947
4948 /*
4949 * Update the stored path or FRU for this vdev.
4950 */
4951 int
4952 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4953 boolean_t ispath)
4954 {
4955 vdev_t *vd;
4956 boolean_t sync = B_FALSE;
4957
4958 ASSERT(spa_writeable(spa));
4959
4960 spa_vdev_state_enter(spa, SCL_ALL);
4961
4962 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4963 return (spa_vdev_state_exit(spa, NULL, ENOENT));
4964
4965 if (!vd->vdev_ops->vdev_op_leaf)
4966 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4967
4968 if (ispath) {
4969 if (strcmp(value, vd->vdev_path) != 0) {
4970 spa_strfree(vd->vdev_path);
4971 vd->vdev_path = spa_strdup(value);
4972 sync = B_TRUE;
4973 }
4974 } else {
4975 if (vd->vdev_fru == NULL) {
4976 vd->vdev_fru = spa_strdup(value);
4977 sync = B_TRUE;
4978 } else if (strcmp(value, vd->vdev_fru) != 0) {
4979 spa_strfree(vd->vdev_fru);
4980 vd->vdev_fru = spa_strdup(value);
4981 sync = B_TRUE;
4982 }
4983 }
4984
4985 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4986 }
4987
4988 int
4989 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4990 {
4991 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4992 }
4993
4994 int
4995 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4996 {
4997 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4998 }
4999
5000 /*
5001 * ==========================================================================
5002 * SPA Scanning
5003 * ==========================================================================
5004 */
5005
5006 int
5007 spa_scan_stop(spa_t *spa)
5008 {
5009 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5010 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5011 return (EBUSY);
5012 return (dsl_scan_cancel(spa->spa_dsl_pool));
5013 }
5014
5015 int
5016 spa_scan(spa_t *spa, pool_scan_func_t func)
5017 {
5018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5019
5020 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5021 return (ENOTSUP);
5022
5023 /*
5024 * If a resilver was requested, but there is no DTL on a
5025 * writeable leaf device, we have nothing to do.
5026 */
5027 if (func == POOL_SCAN_RESILVER &&
5028 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5029 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5030 return (0);
5031 }
5032
5033 return (dsl_scan(spa->spa_dsl_pool, func));
5034 }
5035
5036 /*
5037 * ==========================================================================
5038 * SPA async task processing
5039 * ==========================================================================
5040 */
5041
5042 static void
5043 spa_async_remove(spa_t *spa, vdev_t *vd)
5044 {
5045 int c;
5046
5047 if (vd->vdev_remove_wanted) {
5048 vd->vdev_remove_wanted = B_FALSE;
5049 vd->vdev_delayed_close = B_FALSE;
5050 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5051
5052 /*
5053 * We want to clear the stats, but we don't want to do a full
5054 * vdev_clear() as that will cause us to throw away
5055 * degraded/faulted state as well as attempt to reopen the
5056 * device, all of which is a waste.
5057 */
5058 vd->vdev_stat.vs_read_errors = 0;
5059 vd->vdev_stat.vs_write_errors = 0;
5060 vd->vdev_stat.vs_checksum_errors = 0;
5061
5062 vdev_state_dirty(vd->vdev_top);
5063 }
5064
5065 for (c = 0; c < vd->vdev_children; c++)
5066 spa_async_remove(spa, vd->vdev_child[c]);
5067 }
5068
5069 static void
5070 spa_async_probe(spa_t *spa, vdev_t *vd)
5071 {
5072 int c;
5073
5074 if (vd->vdev_probe_wanted) {
5075 vd->vdev_probe_wanted = B_FALSE;
5076 vdev_reopen(vd); /* vdev_open() does the actual probe */
5077 }
5078
5079 for (c = 0; c < vd->vdev_children; c++)
5080 spa_async_probe(spa, vd->vdev_child[c]);
5081 }
5082
5083 static void
5084 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5085 {
5086 int c;
5087
5088 if (!spa->spa_autoexpand)
5089 return;
5090
5091 for (c = 0; c < vd->vdev_children; c++) {
5092 vdev_t *cvd = vd->vdev_child[c];
5093 spa_async_autoexpand(spa, cvd);
5094 }
5095
5096 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5097 return;
5098
5099 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5100 }
5101
5102 static void
5103 spa_async_thread(spa_t *spa)
5104 {
5105 int tasks, i;
5106
5107 ASSERT(spa->spa_sync_on);
5108
5109 mutex_enter(&spa->spa_async_lock);
5110 tasks = spa->spa_async_tasks;
5111 spa->spa_async_tasks = 0;
5112 mutex_exit(&spa->spa_async_lock);
5113
5114 /*
5115 * See if the config needs to be updated.
5116 */
5117 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5118 uint64_t old_space, new_space;
5119
5120 mutex_enter(&spa_namespace_lock);
5121 old_space = metaslab_class_get_space(spa_normal_class(spa));
5122 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5123 new_space = metaslab_class_get_space(spa_normal_class(spa));
5124 mutex_exit(&spa_namespace_lock);
5125
5126 /*
5127 * If the pool grew as a result of the config update,
5128 * then log an internal history event.
5129 */
5130 if (new_space != old_space) {
5131 spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5132 spa, NULL,
5133 "pool '%s' size: %llu(+%llu)",
5134 spa_name(spa), new_space, new_space - old_space);
5135 }
5136 }
5137
5138 /*
5139 * See if any devices need to be marked REMOVED.
5140 */
5141 if (tasks & SPA_ASYNC_REMOVE) {
5142 spa_vdev_state_enter(spa, SCL_NONE);
5143 spa_async_remove(spa, spa->spa_root_vdev);
5144 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5145 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5146 for (i = 0; i < spa->spa_spares.sav_count; i++)
5147 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5148 (void) spa_vdev_state_exit(spa, NULL, 0);
5149 }
5150
5151 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5152 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5153 spa_async_autoexpand(spa, spa->spa_root_vdev);
5154 spa_config_exit(spa, SCL_CONFIG, FTAG);
5155 }
5156
5157 /*
5158 * See if any devices need to be probed.
5159 */
5160 if (tasks & SPA_ASYNC_PROBE) {
5161 spa_vdev_state_enter(spa, SCL_NONE);
5162 spa_async_probe(spa, spa->spa_root_vdev);
5163 (void) spa_vdev_state_exit(spa, NULL, 0);
5164 }
5165
5166 /*
5167 * If any devices are done replacing, detach them.
5168 */
5169 if (tasks & SPA_ASYNC_RESILVER_DONE)
5170 spa_vdev_resilver_done(spa);
5171
5172 /*
5173 * Kick off a resilver.
5174 */
5175 if (tasks & SPA_ASYNC_RESILVER)
5176 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5177
5178 /*
5179 * Let the world know that we're done.
5180 */
5181 mutex_enter(&spa->spa_async_lock);
5182 spa->spa_async_thread = NULL;
5183 cv_broadcast(&spa->spa_async_cv);
5184 mutex_exit(&spa->spa_async_lock);
5185 thread_exit();
5186 }
5187
5188 void
5189 spa_async_suspend(spa_t *spa)
5190 {
5191 mutex_enter(&spa->spa_async_lock);
5192 spa->spa_async_suspended++;
5193 while (spa->spa_async_thread != NULL)
5194 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5195 mutex_exit(&spa->spa_async_lock);
5196 }
5197
5198 void
5199 spa_async_resume(spa_t *spa)
5200 {
5201 mutex_enter(&spa->spa_async_lock);
5202 ASSERT(spa->spa_async_suspended != 0);
5203 spa->spa_async_suspended--;
5204 mutex_exit(&spa->spa_async_lock);
5205 }
5206
5207 static void
5208 spa_async_dispatch(spa_t *spa)
5209 {
5210 mutex_enter(&spa->spa_async_lock);
5211 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5212 spa->spa_async_thread == NULL &&
5213 rootdir != NULL && !vn_is_readonly(rootdir))
5214 spa->spa_async_thread = thread_create(NULL, 0,
5215 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5216 mutex_exit(&spa->spa_async_lock);
5217 }
5218
5219 void
5220 spa_async_request(spa_t *spa, int task)
5221 {
5222 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5223 mutex_enter(&spa->spa_async_lock);
5224 spa->spa_async_tasks |= task;
5225 mutex_exit(&spa->spa_async_lock);
5226 }
5227
5228 /*
5229 * ==========================================================================
5230 * SPA syncing routines
5231 * ==========================================================================
5232 */
5233
5234 static int
5235 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5236 {
5237 bpobj_t *bpo = arg;
5238 bpobj_enqueue(bpo, bp, tx);
5239 return (0);
5240 }
5241
5242 static int
5243 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5244 {
5245 zio_t *zio = arg;
5246
5247 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5248 zio->io_flags));
5249 return (0);
5250 }
5251
5252 static void
5253 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5254 {
5255 char *packed = NULL;
5256 size_t bufsize;
5257 size_t nvsize = 0;
5258 dmu_buf_t *db;
5259
5260 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5261
5262 /*
5263 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5264 * information. This avoids the dbuf_will_dirty() path and
5265 * saves us a pre-read to get data we don't actually care about.
5266 */
5267 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5268 packed = vmem_alloc(bufsize, KM_SLEEP);
5269
5270 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5271 KM_SLEEP) == 0);
5272 bzero(packed + nvsize, bufsize - nvsize);
5273
5274 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5275
5276 vmem_free(packed, bufsize);
5277
5278 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5279 dmu_buf_will_dirty(db, tx);
5280 *(uint64_t *)db->db_data = nvsize;
5281 dmu_buf_rele(db, FTAG);
5282 }
5283
5284 static void
5285 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5286 const char *config, const char *entry)
5287 {
5288 nvlist_t *nvroot;
5289 nvlist_t **list;
5290 int i;
5291
5292 if (!sav->sav_sync)
5293 return;
5294
5295 /*
5296 * Update the MOS nvlist describing the list of available devices.
5297 * spa_validate_aux() will have already made sure this nvlist is
5298 * valid and the vdevs are labeled appropriately.
5299 */
5300 if (sav->sav_object == 0) {
5301 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5302 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5303 sizeof (uint64_t), tx);
5304 VERIFY(zap_update(spa->spa_meta_objset,
5305 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5306 &sav->sav_object, tx) == 0);
5307 }
5308
5309 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5310 if (sav->sav_count == 0) {
5311 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5312 } else {
5313 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5314 for (i = 0; i < sav->sav_count; i++)
5315 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5316 B_FALSE, VDEV_CONFIG_L2CACHE);
5317 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5318 sav->sav_count) == 0);
5319 for (i = 0; i < sav->sav_count; i++)
5320 nvlist_free(list[i]);
5321 kmem_free(list, sav->sav_count * sizeof (void *));
5322 }
5323
5324 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5325 nvlist_free(nvroot);
5326
5327 sav->sav_sync = B_FALSE;
5328 }
5329
5330 static void
5331 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5332 {
5333 nvlist_t *config;
5334
5335 if (list_is_empty(&spa->spa_config_dirty_list))
5336 return;
5337
5338 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5339
5340 config = spa_config_generate(spa, spa->spa_root_vdev,
5341 dmu_tx_get_txg(tx), B_FALSE);
5342
5343 spa_config_exit(spa, SCL_STATE, FTAG);
5344
5345 if (spa->spa_config_syncing)
5346 nvlist_free(spa->spa_config_syncing);
5347 spa->spa_config_syncing = config;
5348
5349 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5350 }
5351
5352 /*
5353 * Set zpool properties.
5354 */
5355 static void
5356 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5357 {
5358 spa_t *spa = arg1;
5359 objset_t *mos = spa->spa_meta_objset;
5360 nvlist_t *nvp = arg2;
5361 nvpair_t *elem;
5362 uint64_t intval;
5363 char *strval;
5364 zpool_prop_t prop;
5365 const char *propname;
5366 zprop_type_t proptype;
5367
5368 mutex_enter(&spa->spa_props_lock);
5369
5370 elem = NULL;
5371 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5372 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5373 case ZPOOL_PROP_VERSION:
5374 /*
5375 * Only set version for non-zpool-creation cases
5376 * (set/import). spa_create() needs special care
5377 * for version setting.
5378 */
5379 if (tx->tx_txg != TXG_INITIAL) {
5380 VERIFY(nvpair_value_uint64(elem,
5381 &intval) == 0);
5382 ASSERT(intval <= SPA_VERSION);
5383 ASSERT(intval >= spa_version(spa));
5384 spa->spa_uberblock.ub_version = intval;
5385 vdev_config_dirty(spa->spa_root_vdev);
5386 }
5387 break;
5388
5389 case ZPOOL_PROP_ALTROOT:
5390 /*
5391 * 'altroot' is a non-persistent property. It should
5392 * have been set temporarily at creation or import time.
5393 */
5394 ASSERT(spa->spa_root != NULL);
5395 break;
5396
5397 case ZPOOL_PROP_READONLY:
5398 case ZPOOL_PROP_CACHEFILE:
5399 /*
5400 * 'readonly' and 'cachefile' are also non-persisitent
5401 * properties.
5402 */
5403 break;
5404 default:
5405 /*
5406 * Set pool property values in the poolprops mos object.
5407 */
5408 if (spa->spa_pool_props_object == 0) {
5409 VERIFY((spa->spa_pool_props_object =
5410 zap_create(mos, DMU_OT_POOL_PROPS,
5411 DMU_OT_NONE, 0, tx)) > 0);
5412
5413 VERIFY(zap_update(mos,
5414 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5415 8, 1, &spa->spa_pool_props_object, tx)
5416 == 0);
5417 }
5418
5419 /* normalize the property name */
5420 propname = zpool_prop_to_name(prop);
5421 proptype = zpool_prop_get_type(prop);
5422
5423 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5424 ASSERT(proptype == PROP_TYPE_STRING);
5425 VERIFY(nvpair_value_string(elem, &strval) == 0);
5426 VERIFY(zap_update(mos,
5427 spa->spa_pool_props_object, propname,
5428 1, strlen(strval) + 1, strval, tx) == 0);
5429
5430 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5431 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5432
5433 if (proptype == PROP_TYPE_INDEX) {
5434 const char *unused;
5435 VERIFY(zpool_prop_index_to_string(
5436 prop, intval, &unused) == 0);
5437 }
5438 VERIFY(zap_update(mos,
5439 spa->spa_pool_props_object, propname,
5440 8, 1, &intval, tx) == 0);
5441 } else {
5442 ASSERT(0); /* not allowed */
5443 }
5444
5445 switch (prop) {
5446 case ZPOOL_PROP_DELEGATION:
5447 spa->spa_delegation = intval;
5448 break;
5449 case ZPOOL_PROP_BOOTFS:
5450 spa->spa_bootfs = intval;
5451 break;
5452 case ZPOOL_PROP_FAILUREMODE:
5453 spa->spa_failmode = intval;
5454 break;
5455 case ZPOOL_PROP_AUTOEXPAND:
5456 spa->spa_autoexpand = intval;
5457 if (tx->tx_txg != TXG_INITIAL)
5458 spa_async_request(spa,
5459 SPA_ASYNC_AUTOEXPAND);
5460 break;
5461 case ZPOOL_PROP_DEDUPDITTO:
5462 spa->spa_dedup_ditto = intval;
5463 break;
5464 default:
5465 break;
5466 }
5467 }
5468
5469 /* log internal history if this is not a zpool create */
5470 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5471 tx->tx_txg != TXG_INITIAL) {
5472 spa_history_log_internal(LOG_POOL_PROPSET,
5473 spa, tx, "%s %lld %s",
5474 nvpair_name(elem), intval, spa_name(spa));
5475 }
5476 }
5477
5478 mutex_exit(&spa->spa_props_lock);
5479 }
5480
5481 /*
5482 * Perform one-time upgrade on-disk changes. spa_version() does not
5483 * reflect the new version this txg, so there must be no changes this
5484 * txg to anything that the upgrade code depends on after it executes.
5485 * Therefore this must be called after dsl_pool_sync() does the sync
5486 * tasks.
5487 */
5488 static void
5489 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5490 {
5491 dsl_pool_t *dp = spa->spa_dsl_pool;
5492
5493 ASSERT(spa->spa_sync_pass == 1);
5494
5495 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5496 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5497 dsl_pool_create_origin(dp, tx);
5498
5499 /* Keeping the origin open increases spa_minref */
5500 spa->spa_minref += 3;
5501 }
5502
5503 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5504 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5505 dsl_pool_upgrade_clones(dp, tx);
5506 }
5507
5508 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5509 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5510 dsl_pool_upgrade_dir_clones(dp, tx);
5511
5512 /* Keeping the freedir open increases spa_minref */
5513 spa->spa_minref += 3;
5514 }
5515 }
5516
5517 /*
5518 * Sync the specified transaction group. New blocks may be dirtied as
5519 * part of the process, so we iterate until it converges.
5520 */
5521 void
5522 spa_sync(spa_t *spa, uint64_t txg)
5523 {
5524 dsl_pool_t *dp = spa->spa_dsl_pool;
5525 objset_t *mos = spa->spa_meta_objset;
5526 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5527 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5528 vdev_t *rvd = spa->spa_root_vdev;
5529 vdev_t *vd;
5530 dmu_tx_t *tx;
5531 int error;
5532 int c;
5533
5534 VERIFY(spa_writeable(spa));
5535
5536 /*
5537 * Lock out configuration changes.
5538 */
5539 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5540
5541 spa->spa_syncing_txg = txg;
5542 spa->spa_sync_pass = 0;
5543
5544 /*
5545 * If there are any pending vdev state changes, convert them
5546 * into config changes that go out with this transaction group.
5547 */
5548 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5549 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5550 /*
5551 * We need the write lock here because, for aux vdevs,
5552 * calling vdev_config_dirty() modifies sav_config.
5553 * This is ugly and will become unnecessary when we
5554 * eliminate the aux vdev wart by integrating all vdevs
5555 * into the root vdev tree.
5556 */
5557 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5558 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5559 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5560 vdev_state_clean(vd);
5561 vdev_config_dirty(vd);
5562 }
5563 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5564 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5565 }
5566 spa_config_exit(spa, SCL_STATE, FTAG);
5567
5568 tx = dmu_tx_create_assigned(dp, txg);
5569
5570 /*
5571 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5572 * set spa_deflate if we have no raid-z vdevs.
5573 */
5574 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5575 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5576 int i;
5577
5578 for (i = 0; i < rvd->vdev_children; i++) {
5579 vd = rvd->vdev_child[i];
5580 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5581 break;
5582 }
5583 if (i == rvd->vdev_children) {
5584 spa->spa_deflate = TRUE;
5585 VERIFY(0 == zap_add(spa->spa_meta_objset,
5586 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5587 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5588 }
5589 }
5590
5591 /*
5592 * If anything has changed in this txg, or if someone is waiting
5593 * for this txg to sync (eg, spa_vdev_remove()), push the
5594 * deferred frees from the previous txg. If not, leave them
5595 * alone so that we don't generate work on an otherwise idle
5596 * system.
5597 */
5598 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5599 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5600 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5601 ((dsl_scan_active(dp->dp_scan) ||
5602 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5603 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5604 VERIFY3U(bpobj_iterate(defer_bpo,
5605 spa_free_sync_cb, zio, tx), ==, 0);
5606 VERIFY3U(zio_wait(zio), ==, 0);
5607 }
5608
5609 /*
5610 * Iterate to convergence.
5611 */
5612 do {
5613 int pass = ++spa->spa_sync_pass;
5614
5615 spa_sync_config_object(spa, tx);
5616 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5617 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5618 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5619 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5620 spa_errlog_sync(spa, txg);
5621 dsl_pool_sync(dp, txg);
5622
5623 if (pass <= SYNC_PASS_DEFERRED_FREE) {
5624 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5625 bplist_iterate(free_bpl, spa_free_sync_cb,
5626 zio, tx);
5627 VERIFY(zio_wait(zio) == 0);
5628 } else {
5629 bplist_iterate(free_bpl, bpobj_enqueue_cb,
5630 defer_bpo, tx);
5631 }
5632
5633 ddt_sync(spa, txg);
5634 dsl_scan_sync(dp, tx);
5635
5636 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
5637 vdev_sync(vd, txg);
5638
5639 if (pass == 1)
5640 spa_sync_upgrades(spa, tx);
5641
5642 } while (dmu_objset_is_dirty(mos, txg));
5643
5644 /*
5645 * Rewrite the vdev configuration (which includes the uberblock)
5646 * to commit the transaction group.
5647 *
5648 * If there are no dirty vdevs, we sync the uberblock to a few
5649 * random top-level vdevs that are known to be visible in the
5650 * config cache (see spa_vdev_add() for a complete description).
5651 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5652 */
5653 for (;;) {
5654 /*
5655 * We hold SCL_STATE to prevent vdev open/close/etc.
5656 * while we're attempting to write the vdev labels.
5657 */
5658 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5659
5660 if (list_is_empty(&spa->spa_config_dirty_list)) {
5661 vdev_t *svd[SPA_DVAS_PER_BP];
5662 int svdcount = 0;
5663 int children = rvd->vdev_children;
5664 int c0 = spa_get_random(children);
5665
5666 for (c = 0; c < children; c++) {
5667 vd = rvd->vdev_child[(c0 + c) % children];
5668 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5669 continue;
5670 svd[svdcount++] = vd;
5671 if (svdcount == SPA_DVAS_PER_BP)
5672 break;
5673 }
5674 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5675 if (error != 0)
5676 error = vdev_config_sync(svd, svdcount, txg,
5677 B_TRUE);
5678 } else {
5679 error = vdev_config_sync(rvd->vdev_child,
5680 rvd->vdev_children, txg, B_FALSE);
5681 if (error != 0)
5682 error = vdev_config_sync(rvd->vdev_child,
5683 rvd->vdev_children, txg, B_TRUE);
5684 }
5685
5686 spa_config_exit(spa, SCL_STATE, FTAG);
5687
5688 if (error == 0)
5689 break;
5690 zio_suspend(spa, NULL);
5691 zio_resume_wait(spa);
5692 }
5693 dmu_tx_commit(tx);
5694
5695 /*
5696 * Clear the dirty config list.
5697 */
5698 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5699 vdev_config_clean(vd);
5700
5701 /*
5702 * Now that the new config has synced transactionally,
5703 * let it become visible to the config cache.
5704 */
5705 if (spa->spa_config_syncing != NULL) {
5706 spa_config_set(spa, spa->spa_config_syncing);
5707 spa->spa_config_txg = txg;
5708 spa->spa_config_syncing = NULL;
5709 }
5710
5711 spa->spa_ubsync = spa->spa_uberblock;
5712
5713 dsl_pool_sync_done(dp, txg);
5714
5715 /*
5716 * Update usable space statistics.
5717 */
5718 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
5719 vdev_sync_done(vd, txg);
5720
5721 spa_update_dspace(spa);
5722
5723 /*
5724 * It had better be the case that we didn't dirty anything
5725 * since vdev_config_sync().
5726 */
5727 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5728 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5729 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5730
5731 spa->spa_sync_pass = 0;
5732
5733 spa_config_exit(spa, SCL_CONFIG, FTAG);
5734
5735 spa_handle_ignored_writes(spa);
5736
5737 /*
5738 * If any async tasks have been requested, kick them off.
5739 */
5740 spa_async_dispatch(spa);
5741 }
5742
5743 /*
5744 * Sync all pools. We don't want to hold the namespace lock across these
5745 * operations, so we take a reference on the spa_t and drop the lock during the
5746 * sync.
5747 */
5748 void
5749 spa_sync_allpools(void)
5750 {
5751 spa_t *spa = NULL;
5752 mutex_enter(&spa_namespace_lock);
5753 while ((spa = spa_next(spa)) != NULL) {
5754 if (spa_state(spa) != POOL_STATE_ACTIVE ||
5755 !spa_writeable(spa) || spa_suspended(spa))
5756 continue;
5757 spa_open_ref(spa, FTAG);
5758 mutex_exit(&spa_namespace_lock);
5759 txg_wait_synced(spa_get_dsl(spa), 0);
5760 mutex_enter(&spa_namespace_lock);
5761 spa_close(spa, FTAG);
5762 }
5763 mutex_exit(&spa_namespace_lock);
5764 }
5765
5766 /*
5767 * ==========================================================================
5768 * Miscellaneous routines
5769 * ==========================================================================
5770 */
5771
5772 /*
5773 * Remove all pools in the system.
5774 */
5775 void
5776 spa_evict_all(void)
5777 {
5778 spa_t *spa;
5779
5780 /*
5781 * Remove all cached state. All pools should be closed now,
5782 * so every spa in the AVL tree should be unreferenced.
5783 */
5784 mutex_enter(&spa_namespace_lock);
5785 while ((spa = spa_next(NULL)) != NULL) {
5786 /*
5787 * Stop async tasks. The async thread may need to detach
5788 * a device that's been replaced, which requires grabbing
5789 * spa_namespace_lock, so we must drop it here.
5790 */
5791 spa_open_ref(spa, FTAG);
5792 mutex_exit(&spa_namespace_lock);
5793 spa_async_suspend(spa);
5794 mutex_enter(&spa_namespace_lock);
5795 spa_close(spa, FTAG);
5796
5797 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5798 spa_unload(spa);
5799 spa_deactivate(spa);
5800 }
5801 spa_remove(spa);
5802 }
5803 mutex_exit(&spa_namespace_lock);
5804 }
5805
5806 vdev_t *
5807 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5808 {
5809 vdev_t *vd;
5810 int i;
5811
5812 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5813 return (vd);
5814
5815 if (aux) {
5816 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5817 vd = spa->spa_l2cache.sav_vdevs[i];
5818 if (vd->vdev_guid == guid)
5819 return (vd);
5820 }
5821
5822 for (i = 0; i < spa->spa_spares.sav_count; i++) {
5823 vd = spa->spa_spares.sav_vdevs[i];
5824 if (vd->vdev_guid == guid)
5825 return (vd);
5826 }
5827 }
5828
5829 return (NULL);
5830 }
5831
5832 void
5833 spa_upgrade(spa_t *spa, uint64_t version)
5834 {
5835 ASSERT(spa_writeable(spa));
5836
5837 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5838
5839 /*
5840 * This should only be called for a non-faulted pool, and since a
5841 * future version would result in an unopenable pool, this shouldn't be
5842 * possible.
5843 */
5844 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5845 ASSERT(version >= spa->spa_uberblock.ub_version);
5846
5847 spa->spa_uberblock.ub_version = version;
5848 vdev_config_dirty(spa->spa_root_vdev);
5849
5850 spa_config_exit(spa, SCL_ALL, FTAG);
5851
5852 txg_wait_synced(spa_get_dsl(spa), 0);
5853 }
5854
5855 boolean_t
5856 spa_has_spare(spa_t *spa, uint64_t guid)
5857 {
5858 int i;
5859 uint64_t spareguid;
5860 spa_aux_vdev_t *sav = &spa->spa_spares;
5861
5862 for (i = 0; i < sav->sav_count; i++)
5863 if (sav->sav_vdevs[i]->vdev_guid == guid)
5864 return (B_TRUE);
5865
5866 for (i = 0; i < sav->sav_npending; i++) {
5867 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5868 &spareguid) == 0 && spareguid == guid)
5869 return (B_TRUE);
5870 }
5871
5872 return (B_FALSE);
5873 }
5874
5875 /*
5876 * Check if a pool has an active shared spare device.
5877 * Note: reference count of an active spare is 2, as a spare and as a replace
5878 */
5879 static boolean_t
5880 spa_has_active_shared_spare(spa_t *spa)
5881 {
5882 int i, refcnt;
5883 uint64_t pool;
5884 spa_aux_vdev_t *sav = &spa->spa_spares;
5885
5886 for (i = 0; i < sav->sav_count; i++) {
5887 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5888 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5889 refcnt > 2)
5890 return (B_TRUE);
5891 }
5892
5893 return (B_FALSE);
5894 }
5895
5896 /*
5897 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
5898 * filled in from the spa and (optionally) the vdev. This doesn't do anything
5899 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5900 * or zdb as real changes.
5901 */
5902 void
5903 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5904 {
5905 #ifdef _KERNEL
5906 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
5907 #endif
5908 }
5909
5910 #if defined(_KERNEL) && defined(HAVE_SPL)
5911 /* state manipulation functions */
5912 EXPORT_SYMBOL(spa_open);
5913 EXPORT_SYMBOL(spa_open_rewind);
5914 EXPORT_SYMBOL(spa_get_stats);
5915 EXPORT_SYMBOL(spa_create);
5916 EXPORT_SYMBOL(spa_import_rootpool);
5917 EXPORT_SYMBOL(spa_import);
5918 EXPORT_SYMBOL(spa_tryimport);
5919 EXPORT_SYMBOL(spa_destroy);
5920 EXPORT_SYMBOL(spa_export);
5921 EXPORT_SYMBOL(spa_reset);
5922 EXPORT_SYMBOL(spa_async_request);
5923 EXPORT_SYMBOL(spa_async_suspend);
5924 EXPORT_SYMBOL(spa_async_resume);
5925 EXPORT_SYMBOL(spa_inject_addref);
5926 EXPORT_SYMBOL(spa_inject_delref);
5927 EXPORT_SYMBOL(spa_scan_stat_init);
5928 EXPORT_SYMBOL(spa_scan_get_stats);
5929
5930 /* device maniion */
5931 EXPORT_SYMBOL(spa_vdev_add);
5932 EXPORT_SYMBOL(spa_vdev_attach);
5933 EXPORT_SYMBOL(spa_vdev_detach);
5934 EXPORT_SYMBOL(spa_vdev_remove);
5935 EXPORT_SYMBOL(spa_vdev_setpath);
5936 EXPORT_SYMBOL(spa_vdev_setfru);
5937 EXPORT_SYMBOL(spa_vdev_split_mirror);
5938
5939 /* spare statech is global across all pools) */
5940 EXPORT_SYMBOL(spa_spare_add);
5941 EXPORT_SYMBOL(spa_spare_remove);
5942 EXPORT_SYMBOL(spa_spare_exists);
5943 EXPORT_SYMBOL(spa_spare_activate);
5944
5945 /* L2ARC statech is global across all pools) */
5946 EXPORT_SYMBOL(spa_l2cache_add);
5947 EXPORT_SYMBOL(spa_l2cache_remove);
5948 EXPORT_SYMBOL(spa_l2cache_exists);
5949 EXPORT_SYMBOL(spa_l2cache_activate);
5950 EXPORT_SYMBOL(spa_l2cache_drop);
5951
5952 /* scanning */
5953 EXPORT_SYMBOL(spa_scan);
5954 EXPORT_SYMBOL(spa_scan_stop);
5955
5956 /* spa syncing */
5957 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
5958 EXPORT_SYMBOL(spa_sync_allpools);
5959
5960 /* properties */
5961 EXPORT_SYMBOL(spa_prop_set);
5962 EXPORT_SYMBOL(spa_prop_get);
5963 EXPORT_SYMBOL(spa_prop_clear_bootfs);
5964
5965 /* asynchronous event notification */
5966 EXPORT_SYMBOL(spa_event_notify);
5967 #endif