]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa.c
Rebase master to b117
[mirror_zfs-debian.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 #include <sys/zfs_ioctl.h>
63
64 #ifdef _KERNEL
65 #include <sys/zone.h>
66 #endif /* _KERNEL */
67
68 #include "zfs_prop.h"
69 #include "zfs_comutil.h"
70
71 enum zti_modes {
72 zti_mode_fixed, /* value is # of threads (min 1) */
73 zti_mode_online_percent, /* value is % of online CPUs */
74 zti_mode_tune, /* fill from zio_taskq_tune_* */
75 zti_nmodes
76 };
77
78 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) }
79 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) }
80 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 }
81
82 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1)
83
84 typedef struct zio_taskq_info {
85 const char *zti_name;
86 struct {
87 enum zti_modes zti_mode;
88 uint_t zti_value;
89 } zti_nthreads[ZIO_TASKQ_TYPES];
90 } zio_taskq_info_t;
91
92 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
93 "issue", "intr"
94 };
95
96 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
97 /* ISSUE INTR */
98 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
99 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } },
100 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } },
101 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
102 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
103 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } },
104 };
105
106 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
107 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */
108
109 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
110 static boolean_t spa_has_active_shared_spare(spa_t *spa);
111
112 /*
113 * ==========================================================================
114 * SPA properties routines
115 * ==========================================================================
116 */
117
118 /*
119 * Add a (source=src, propname=propval) list to an nvlist.
120 */
121 static void
122 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
123 uint64_t intval, zprop_source_t src)
124 {
125 const char *propname = zpool_prop_to_name(prop);
126 nvlist_t *propval;
127
128 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
129 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
130
131 if (strval != NULL)
132 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
133 else
134 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
135
136 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
137 nvlist_free(propval);
138 }
139
140 /*
141 * Get property values from the spa configuration.
142 */
143 static void
144 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
145 {
146 uint64_t size;
147 uint64_t used;
148 uint64_t cap, version;
149 zprop_source_t src = ZPROP_SRC_NONE;
150 spa_config_dirent_t *dp;
151
152 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
153
154 if (spa->spa_root_vdev != NULL) {
155 size = spa_get_space(spa);
156 used = spa_get_alloc(spa);
157 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
158 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
159 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
160 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
161 size - used, src);
162
163 cap = (size == 0) ? 0 : (used * 100 / size);
164 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
165
166 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
167 spa->spa_root_vdev->vdev_state, src);
168
169 version = spa_version(spa);
170 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
171 src = ZPROP_SRC_DEFAULT;
172 else
173 src = ZPROP_SRC_LOCAL;
174 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
175 }
176
177 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
178
179 if (spa->spa_root != NULL)
180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
181 0, ZPROP_SRC_LOCAL);
182
183 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
184 if (dp->scd_path == NULL) {
185 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
186 "none", 0, ZPROP_SRC_LOCAL);
187 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
188 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
189 dp->scd_path, 0, ZPROP_SRC_LOCAL);
190 }
191 }
192 }
193
194 /*
195 * Get zpool property values.
196 */
197 int
198 spa_prop_get(spa_t *spa, nvlist_t **nvp)
199 {
200 zap_cursor_t zc;
201 zap_attribute_t za;
202 objset_t *mos = spa->spa_meta_objset;
203 int err;
204
205 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
206
207 mutex_enter(&spa->spa_props_lock);
208
209 /*
210 * Get properties from the spa config.
211 */
212 spa_prop_get_config(spa, nvp);
213
214 /* If no pool property object, no more prop to get. */
215 if (spa->spa_pool_props_object == 0) {
216 mutex_exit(&spa->spa_props_lock);
217 return (0);
218 }
219
220 /*
221 * Get properties from the MOS pool property object.
222 */
223 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
224 (err = zap_cursor_retrieve(&zc, &za)) == 0;
225 zap_cursor_advance(&zc)) {
226 uint64_t intval = 0;
227 char *strval = NULL;
228 zprop_source_t src = ZPROP_SRC_DEFAULT;
229 zpool_prop_t prop;
230
231 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
232 continue;
233
234 switch (za.za_integer_length) {
235 case 8:
236 /* integer property */
237 if (za.za_first_integer !=
238 zpool_prop_default_numeric(prop))
239 src = ZPROP_SRC_LOCAL;
240
241 if (prop == ZPOOL_PROP_BOOTFS) {
242 dsl_pool_t *dp;
243 dsl_dataset_t *ds = NULL;
244
245 dp = spa_get_dsl(spa);
246 rw_enter(&dp->dp_config_rwlock, RW_READER);
247 if (err = dsl_dataset_hold_obj(dp,
248 za.za_first_integer, FTAG, &ds)) {
249 rw_exit(&dp->dp_config_rwlock);
250 break;
251 }
252
253 strval = kmem_alloc(
254 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
255 KM_SLEEP);
256 dsl_dataset_name(ds, strval);
257 dsl_dataset_rele(ds, FTAG);
258 rw_exit(&dp->dp_config_rwlock);
259 } else {
260 strval = NULL;
261 intval = za.za_first_integer;
262 }
263
264 spa_prop_add_list(*nvp, prop, strval, intval, src);
265
266 if (strval != NULL)
267 kmem_free(strval,
268 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
269
270 break;
271
272 case 1:
273 /* string property */
274 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
275 err = zap_lookup(mos, spa->spa_pool_props_object,
276 za.za_name, 1, za.za_num_integers, strval);
277 if (err) {
278 kmem_free(strval, za.za_num_integers);
279 break;
280 }
281 spa_prop_add_list(*nvp, prop, strval, 0, src);
282 kmem_free(strval, za.za_num_integers);
283 break;
284
285 default:
286 break;
287 }
288 }
289 zap_cursor_fini(&zc);
290 mutex_exit(&spa->spa_props_lock);
291 out:
292 if (err && err != ENOENT) {
293 nvlist_free(*nvp);
294 *nvp = NULL;
295 return (err);
296 }
297
298 return (0);
299 }
300
301 /*
302 * Validate the given pool properties nvlist and modify the list
303 * for the property values to be set.
304 */
305 static int
306 spa_prop_validate(spa_t *spa, nvlist_t *props)
307 {
308 nvpair_t *elem;
309 int error = 0, reset_bootfs = 0;
310 uint64_t objnum;
311
312 elem = NULL;
313 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
314 zpool_prop_t prop;
315 char *propname, *strval;
316 uint64_t intval;
317 objset_t *os;
318 char *slash;
319
320 propname = nvpair_name(elem);
321
322 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323 return (EINVAL);
324
325 switch (prop) {
326 case ZPOOL_PROP_VERSION:
327 error = nvpair_value_uint64(elem, &intval);
328 if (!error &&
329 (intval < spa_version(spa) || intval > SPA_VERSION))
330 error = EINVAL;
331 break;
332
333 case ZPOOL_PROP_DELEGATION:
334 case ZPOOL_PROP_AUTOREPLACE:
335 case ZPOOL_PROP_LISTSNAPS:
336 case ZPOOL_PROP_AUTOEXPAND:
337 error = nvpair_value_uint64(elem, &intval);
338 if (!error && intval > 1)
339 error = EINVAL;
340 break;
341
342 case ZPOOL_PROP_BOOTFS:
343 /*
344 * If the pool version is less than SPA_VERSION_BOOTFS,
345 * or the pool is still being created (version == 0),
346 * the bootfs property cannot be set.
347 */
348 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
349 error = ENOTSUP;
350 break;
351 }
352
353 /*
354 * Make sure the vdev config is bootable
355 */
356 if (!vdev_is_bootable(spa->spa_root_vdev)) {
357 error = ENOTSUP;
358 break;
359 }
360
361 reset_bootfs = 1;
362
363 error = nvpair_value_string(elem, &strval);
364
365 if (!error) {
366 uint64_t compress;
367
368 if (strval == NULL || strval[0] == '\0') {
369 objnum = zpool_prop_default_numeric(
370 ZPOOL_PROP_BOOTFS);
371 break;
372 }
373
374 if (error = dmu_objset_open(strval, DMU_OST_ZFS,
375 DS_MODE_USER | DS_MODE_READONLY, &os))
376 break;
377
378 /* We don't support gzip bootable datasets */
379 if ((error = dsl_prop_get_integer(strval,
380 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
381 &compress, NULL)) == 0 &&
382 !BOOTFS_COMPRESS_VALID(compress)) {
383 error = ENOTSUP;
384 } else {
385 objnum = dmu_objset_id(os);
386 }
387 dmu_objset_close(os);
388 }
389 break;
390
391 case ZPOOL_PROP_FAILUREMODE:
392 error = nvpair_value_uint64(elem, &intval);
393 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
394 intval > ZIO_FAILURE_MODE_PANIC))
395 error = EINVAL;
396
397 /*
398 * This is a special case which only occurs when
399 * the pool has completely failed. This allows
400 * the user to change the in-core failmode property
401 * without syncing it out to disk (I/Os might
402 * currently be blocked). We do this by returning
403 * EIO to the caller (spa_prop_set) to trick it
404 * into thinking we encountered a property validation
405 * error.
406 */
407 if (!error && spa_suspended(spa)) {
408 spa->spa_failmode = intval;
409 error = EIO;
410 }
411 break;
412
413 case ZPOOL_PROP_CACHEFILE:
414 if ((error = nvpair_value_string(elem, &strval)) != 0)
415 break;
416
417 if (strval[0] == '\0')
418 break;
419
420 if (strcmp(strval, "none") == 0)
421 break;
422
423 if (strval[0] != '/') {
424 error = EINVAL;
425 break;
426 }
427
428 slash = strrchr(strval, '/');
429 ASSERT(slash != NULL);
430
431 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
432 strcmp(slash, "/..") == 0)
433 error = EINVAL;
434 break;
435 }
436
437 if (error)
438 break;
439 }
440
441 if (!error && reset_bootfs) {
442 error = nvlist_remove(props,
443 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
444
445 if (!error) {
446 error = nvlist_add_uint64(props,
447 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
448 }
449 }
450
451 return (error);
452 }
453
454 void
455 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
456 {
457 char *cachefile;
458 spa_config_dirent_t *dp;
459
460 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
461 &cachefile) != 0)
462 return;
463
464 dp = kmem_alloc(sizeof (spa_config_dirent_t),
465 KM_SLEEP);
466
467 if (cachefile[0] == '\0')
468 dp->scd_path = spa_strdup(spa_config_path);
469 else if (strcmp(cachefile, "none") == 0)
470 dp->scd_path = NULL;
471 else
472 dp->scd_path = spa_strdup(cachefile);
473
474 list_insert_head(&spa->spa_config_list, dp);
475 if (need_sync)
476 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
477 }
478
479 int
480 spa_prop_set(spa_t *spa, nvlist_t *nvp)
481 {
482 int error;
483 nvpair_t *elem;
484 boolean_t need_sync = B_FALSE;
485 zpool_prop_t prop;
486
487 if ((error = spa_prop_validate(spa, nvp)) != 0)
488 return (error);
489
490 elem = NULL;
491 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
492 if ((prop = zpool_name_to_prop(
493 nvpair_name(elem))) == ZPROP_INVAL)
494 return (EINVAL);
495
496 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
497 continue;
498
499 need_sync = B_TRUE;
500 break;
501 }
502
503 if (need_sync)
504 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
505 spa, nvp, 3));
506 else
507 return (0);
508 }
509
510 /*
511 * If the bootfs property value is dsobj, clear it.
512 */
513 void
514 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
515 {
516 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
517 VERIFY(zap_remove(spa->spa_meta_objset,
518 spa->spa_pool_props_object,
519 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
520 spa->spa_bootfs = 0;
521 }
522 }
523
524 /*
525 * ==========================================================================
526 * SPA state manipulation (open/create/destroy/import/export)
527 * ==========================================================================
528 */
529
530 static int
531 spa_error_entry_compare(const void *a, const void *b)
532 {
533 spa_error_entry_t *sa = (spa_error_entry_t *)a;
534 spa_error_entry_t *sb = (spa_error_entry_t *)b;
535 int ret;
536
537 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
538 sizeof (zbookmark_t));
539
540 if (ret < 0)
541 return (-1);
542 else if (ret > 0)
543 return (1);
544 else
545 return (0);
546 }
547
548 /*
549 * Utility function which retrieves copies of the current logs and
550 * re-initializes them in the process.
551 */
552 void
553 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
554 {
555 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
556
557 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
558 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
559
560 avl_create(&spa->spa_errlist_scrub,
561 spa_error_entry_compare, sizeof (spa_error_entry_t),
562 offsetof(spa_error_entry_t, se_avl));
563 avl_create(&spa->spa_errlist_last,
564 spa_error_entry_compare, sizeof (spa_error_entry_t),
565 offsetof(spa_error_entry_t, se_avl));
566 }
567
568 /*
569 * Activate an uninitialized pool.
570 */
571 static void
572 spa_activate(spa_t *spa, int mode)
573 {
574 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
575
576 spa->spa_state = POOL_STATE_ACTIVE;
577 spa->spa_mode = mode;
578
579 spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
580 spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
581
582 for (int t = 0; t < ZIO_TYPES; t++) {
583 const zio_taskq_info_t *ztip = &zio_taskqs[t];
584 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
585 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
586 uint_t value = ztip->zti_nthreads[q].zti_value;
587 char name[32];
588
589 (void) snprintf(name, sizeof (name),
590 "%s_%s", ztip->zti_name, zio_taskq_types[q]);
591
592 if (mode == zti_mode_tune) {
593 mode = zio_taskq_tune_mode;
594 value = zio_taskq_tune_value;
595 if (mode == zti_mode_tune)
596 mode = zti_mode_online_percent;
597 }
598
599 switch (mode) {
600 case zti_mode_fixed:
601 ASSERT3U(value, >=, 1);
602 value = MAX(value, 1);
603
604 spa->spa_zio_taskq[t][q] = taskq_create(name,
605 value, maxclsyspri, 50, INT_MAX,
606 TASKQ_PREPOPULATE);
607 break;
608
609 case zti_mode_online_percent:
610 spa->spa_zio_taskq[t][q] = taskq_create(name,
611 value, maxclsyspri, 50, INT_MAX,
612 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
613 break;
614
615 case zti_mode_tune:
616 default:
617 panic("unrecognized mode for "
618 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
619 "in spa_activate()",
620 t, q, mode, value);
621 break;
622 }
623 }
624 }
625
626 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
627 offsetof(vdev_t, vdev_config_dirty_node));
628 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
629 offsetof(vdev_t, vdev_state_dirty_node));
630
631 txg_list_create(&spa->spa_vdev_txg_list,
632 offsetof(struct vdev, vdev_txg_node));
633
634 avl_create(&spa->spa_errlist_scrub,
635 spa_error_entry_compare, sizeof (spa_error_entry_t),
636 offsetof(spa_error_entry_t, se_avl));
637 avl_create(&spa->spa_errlist_last,
638 spa_error_entry_compare, sizeof (spa_error_entry_t),
639 offsetof(spa_error_entry_t, se_avl));
640 }
641
642 /*
643 * Opposite of spa_activate().
644 */
645 static void
646 spa_deactivate(spa_t *spa)
647 {
648 ASSERT(spa->spa_sync_on == B_FALSE);
649 ASSERT(spa->spa_dsl_pool == NULL);
650 ASSERT(spa->spa_root_vdev == NULL);
651 ASSERT(spa->spa_async_zio_root == NULL);
652 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
653
654 txg_list_destroy(&spa->spa_vdev_txg_list);
655
656 list_destroy(&spa->spa_config_dirty_list);
657 list_destroy(&spa->spa_state_dirty_list);
658
659 for (int t = 0; t < ZIO_TYPES; t++) {
660 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
661 taskq_destroy(spa->spa_zio_taskq[t][q]);
662 spa->spa_zio_taskq[t][q] = NULL;
663 }
664 }
665
666 metaslab_class_destroy(spa->spa_normal_class);
667 spa->spa_normal_class = NULL;
668
669 metaslab_class_destroy(spa->spa_log_class);
670 spa->spa_log_class = NULL;
671
672 /*
673 * If this was part of an import or the open otherwise failed, we may
674 * still have errors left in the queues. Empty them just in case.
675 */
676 spa_errlog_drain(spa);
677
678 avl_destroy(&spa->spa_errlist_scrub);
679 avl_destroy(&spa->spa_errlist_last);
680
681 spa->spa_state = POOL_STATE_UNINITIALIZED;
682 }
683
684 /*
685 * Verify a pool configuration, and construct the vdev tree appropriately. This
686 * will create all the necessary vdevs in the appropriate layout, with each vdev
687 * in the CLOSED state. This will prep the pool before open/creation/import.
688 * All vdev validation is done by the vdev_alloc() routine.
689 */
690 static int
691 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
692 uint_t id, int atype)
693 {
694 nvlist_t **child;
695 uint_t children;
696 int error;
697
698 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
699 return (error);
700
701 if ((*vdp)->vdev_ops->vdev_op_leaf)
702 return (0);
703
704 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
705 &child, &children);
706
707 if (error == ENOENT)
708 return (0);
709
710 if (error) {
711 vdev_free(*vdp);
712 *vdp = NULL;
713 return (EINVAL);
714 }
715
716 for (int c = 0; c < children; c++) {
717 vdev_t *vd;
718 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
719 atype)) != 0) {
720 vdev_free(*vdp);
721 *vdp = NULL;
722 return (error);
723 }
724 }
725
726 ASSERT(*vdp != NULL);
727
728 return (0);
729 }
730
731 /*
732 * Opposite of spa_load().
733 */
734 static void
735 spa_unload(spa_t *spa)
736 {
737 int i;
738
739 ASSERT(MUTEX_HELD(&spa_namespace_lock));
740
741 /*
742 * Stop async tasks.
743 */
744 spa_async_suspend(spa);
745
746 /*
747 * Stop syncing.
748 */
749 if (spa->spa_sync_on) {
750 txg_sync_stop(spa->spa_dsl_pool);
751 spa->spa_sync_on = B_FALSE;
752 }
753
754 /*
755 * Wait for any outstanding async I/O to complete.
756 */
757 if (spa->spa_async_zio_root != NULL) {
758 (void) zio_wait(spa->spa_async_zio_root);
759 spa->spa_async_zio_root = NULL;
760 }
761
762 /*
763 * Close the dsl pool.
764 */
765 if (spa->spa_dsl_pool) {
766 dsl_pool_close(spa->spa_dsl_pool);
767 spa->spa_dsl_pool = NULL;
768 }
769
770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
771
772 /*
773 * Drop and purge level 2 cache
774 */
775 spa_l2cache_drop(spa);
776
777 /*
778 * Close all vdevs.
779 */
780 if (spa->spa_root_vdev)
781 vdev_free(spa->spa_root_vdev);
782 ASSERT(spa->spa_root_vdev == NULL);
783
784 for (i = 0; i < spa->spa_spares.sav_count; i++)
785 vdev_free(spa->spa_spares.sav_vdevs[i]);
786 if (spa->spa_spares.sav_vdevs) {
787 kmem_free(spa->spa_spares.sav_vdevs,
788 spa->spa_spares.sav_count * sizeof (void *));
789 spa->spa_spares.sav_vdevs = NULL;
790 }
791 if (spa->spa_spares.sav_config) {
792 nvlist_free(spa->spa_spares.sav_config);
793 spa->spa_spares.sav_config = NULL;
794 }
795 spa->spa_spares.sav_count = 0;
796
797 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
798 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
799 if (spa->spa_l2cache.sav_vdevs) {
800 kmem_free(spa->spa_l2cache.sav_vdevs,
801 spa->spa_l2cache.sav_count * sizeof (void *));
802 spa->spa_l2cache.sav_vdevs = NULL;
803 }
804 if (spa->spa_l2cache.sav_config) {
805 nvlist_free(spa->spa_l2cache.sav_config);
806 spa->spa_l2cache.sav_config = NULL;
807 }
808 spa->spa_l2cache.sav_count = 0;
809
810 spa->spa_async_suspended = 0;
811
812 spa_config_exit(spa, SCL_ALL, FTAG);
813 }
814
815 /*
816 * Load (or re-load) the current list of vdevs describing the active spares for
817 * this pool. When this is called, we have some form of basic information in
818 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
819 * then re-generate a more complete list including status information.
820 */
821 static void
822 spa_load_spares(spa_t *spa)
823 {
824 nvlist_t **spares;
825 uint_t nspares;
826 int i;
827 vdev_t *vd, *tvd;
828
829 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
830
831 /*
832 * First, close and free any existing spare vdevs.
833 */
834 for (i = 0; i < spa->spa_spares.sav_count; i++) {
835 vd = spa->spa_spares.sav_vdevs[i];
836
837 /* Undo the call to spa_activate() below */
838 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
839 B_FALSE)) != NULL && tvd->vdev_isspare)
840 spa_spare_remove(tvd);
841 vdev_close(vd);
842 vdev_free(vd);
843 }
844
845 if (spa->spa_spares.sav_vdevs)
846 kmem_free(spa->spa_spares.sav_vdevs,
847 spa->spa_spares.sav_count * sizeof (void *));
848
849 if (spa->spa_spares.sav_config == NULL)
850 nspares = 0;
851 else
852 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
853 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
854
855 spa->spa_spares.sav_count = (int)nspares;
856 spa->spa_spares.sav_vdevs = NULL;
857
858 if (nspares == 0)
859 return;
860
861 /*
862 * Construct the array of vdevs, opening them to get status in the
863 * process. For each spare, there is potentially two different vdev_t
864 * structures associated with it: one in the list of spares (used only
865 * for basic validation purposes) and one in the active vdev
866 * configuration (if it's spared in). During this phase we open and
867 * validate each vdev on the spare list. If the vdev also exists in the
868 * active configuration, then we also mark this vdev as an active spare.
869 */
870 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
871 KM_SLEEP);
872 for (i = 0; i < spa->spa_spares.sav_count; i++) {
873 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
874 VDEV_ALLOC_SPARE) == 0);
875 ASSERT(vd != NULL);
876
877 spa->spa_spares.sav_vdevs[i] = vd;
878
879 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
880 B_FALSE)) != NULL) {
881 if (!tvd->vdev_isspare)
882 spa_spare_add(tvd);
883
884 /*
885 * We only mark the spare active if we were successfully
886 * able to load the vdev. Otherwise, importing a pool
887 * with a bad active spare would result in strange
888 * behavior, because multiple pool would think the spare
889 * is actively in use.
890 *
891 * There is a vulnerability here to an equally bizarre
892 * circumstance, where a dead active spare is later
893 * brought back to life (onlined or otherwise). Given
894 * the rarity of this scenario, and the extra complexity
895 * it adds, we ignore the possibility.
896 */
897 if (!vdev_is_dead(tvd))
898 spa_spare_activate(tvd);
899 }
900
901 vd->vdev_top = vd;
902 vd->vdev_aux = &spa->spa_spares;
903
904 if (vdev_open(vd) != 0)
905 continue;
906
907 if (vdev_validate_aux(vd) == 0)
908 spa_spare_add(vd);
909 }
910
911 /*
912 * Recompute the stashed list of spares, with status information
913 * this time.
914 */
915 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
916 DATA_TYPE_NVLIST_ARRAY) == 0);
917
918 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
919 KM_SLEEP);
920 for (i = 0; i < spa->spa_spares.sav_count; i++)
921 spares[i] = vdev_config_generate(spa,
922 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
923 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
924 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
925 for (i = 0; i < spa->spa_spares.sav_count; i++)
926 nvlist_free(spares[i]);
927 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
928 }
929
930 /*
931 * Load (or re-load) the current list of vdevs describing the active l2cache for
932 * this pool. When this is called, we have some form of basic information in
933 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
934 * then re-generate a more complete list including status information.
935 * Devices which are already active have their details maintained, and are
936 * not re-opened.
937 */
938 static void
939 spa_load_l2cache(spa_t *spa)
940 {
941 nvlist_t **l2cache;
942 uint_t nl2cache;
943 int i, j, oldnvdevs;
944 uint64_t guid;
945 vdev_t *vd, **oldvdevs, **newvdevs;
946 spa_aux_vdev_t *sav = &spa->spa_l2cache;
947
948 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
949
950 if (sav->sav_config != NULL) {
951 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
952 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
953 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
954 } else {
955 nl2cache = 0;
956 }
957
958 oldvdevs = sav->sav_vdevs;
959 oldnvdevs = sav->sav_count;
960 sav->sav_vdevs = NULL;
961 sav->sav_count = 0;
962
963 /*
964 * Process new nvlist of vdevs.
965 */
966 for (i = 0; i < nl2cache; i++) {
967 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
968 &guid) == 0);
969
970 newvdevs[i] = NULL;
971 for (j = 0; j < oldnvdevs; j++) {
972 vd = oldvdevs[j];
973 if (vd != NULL && guid == vd->vdev_guid) {
974 /*
975 * Retain previous vdev for add/remove ops.
976 */
977 newvdevs[i] = vd;
978 oldvdevs[j] = NULL;
979 break;
980 }
981 }
982
983 if (newvdevs[i] == NULL) {
984 /*
985 * Create new vdev
986 */
987 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
988 VDEV_ALLOC_L2CACHE) == 0);
989 ASSERT(vd != NULL);
990 newvdevs[i] = vd;
991
992 /*
993 * Commit this vdev as an l2cache device,
994 * even if it fails to open.
995 */
996 spa_l2cache_add(vd);
997
998 vd->vdev_top = vd;
999 vd->vdev_aux = sav;
1000
1001 spa_l2cache_activate(vd);
1002
1003 if (vdev_open(vd) != 0)
1004 continue;
1005
1006 (void) vdev_validate_aux(vd);
1007
1008 if (!vdev_is_dead(vd))
1009 l2arc_add_vdev(spa, vd);
1010 }
1011 }
1012
1013 /*
1014 * Purge vdevs that were dropped
1015 */
1016 for (i = 0; i < oldnvdevs; i++) {
1017 uint64_t pool;
1018
1019 vd = oldvdevs[i];
1020 if (vd != NULL) {
1021 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1022 pool != 0ULL && l2arc_vdev_present(vd))
1023 l2arc_remove_vdev(vd);
1024 (void) vdev_close(vd);
1025 spa_l2cache_remove(vd);
1026 }
1027 }
1028
1029 if (oldvdevs)
1030 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1031
1032 if (sav->sav_config == NULL)
1033 goto out;
1034
1035 sav->sav_vdevs = newvdevs;
1036 sav->sav_count = (int)nl2cache;
1037
1038 /*
1039 * Recompute the stashed list of l2cache devices, with status
1040 * information this time.
1041 */
1042 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1043 DATA_TYPE_NVLIST_ARRAY) == 0);
1044
1045 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1046 for (i = 0; i < sav->sav_count; i++)
1047 l2cache[i] = vdev_config_generate(spa,
1048 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1049 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1050 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1051 out:
1052 for (i = 0; i < sav->sav_count; i++)
1053 nvlist_free(l2cache[i]);
1054 if (sav->sav_count)
1055 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1056 }
1057
1058 static int
1059 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1060 {
1061 dmu_buf_t *db;
1062 char *packed = NULL;
1063 size_t nvsize = 0;
1064 int error;
1065 *value = NULL;
1066
1067 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1068 nvsize = *(uint64_t *)db->db_data;
1069 dmu_buf_rele(db, FTAG);
1070
1071 packed = kmem_alloc(nvsize, KM_SLEEP);
1072 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1073 DMU_READ_PREFETCH);
1074 if (error == 0)
1075 error = nvlist_unpack(packed, nvsize, value, 0);
1076 kmem_free(packed, nvsize);
1077
1078 return (error);
1079 }
1080
1081 /*
1082 * Checks to see if the given vdev could not be opened, in which case we post a
1083 * sysevent to notify the autoreplace code that the device has been removed.
1084 */
1085 static void
1086 spa_check_removed(vdev_t *vd)
1087 {
1088 for (int c = 0; c < vd->vdev_children; c++)
1089 spa_check_removed(vd->vdev_child[c]);
1090
1091 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1092 zfs_post_autoreplace(vd->vdev_spa, vd);
1093 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1094 }
1095 }
1096
1097 /*
1098 * Load the slog device state from the config object since it's possible
1099 * that the label does not contain the most up-to-date information.
1100 */
1101 void
1102 spa_load_log_state(spa_t *spa)
1103 {
1104 nvlist_t *nv, *nvroot, **child;
1105 uint64_t is_log;
1106 uint_t children;
1107 vdev_t *rvd = spa->spa_root_vdev;
1108
1109 VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1110 VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1111 VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1112 &child, &children) == 0);
1113
1114 for (int c = 0; c < children; c++) {
1115 vdev_t *tvd = rvd->vdev_child[c];
1116
1117 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1118 &is_log) == 0 && is_log)
1119 vdev_load_log_state(tvd, child[c]);
1120 }
1121 nvlist_free(nv);
1122 }
1123
1124 /*
1125 * Check for missing log devices
1126 */
1127 int
1128 spa_check_logs(spa_t *spa)
1129 {
1130 switch (spa->spa_log_state) {
1131 case SPA_LOG_MISSING:
1132 /* need to recheck in case slog has been restored */
1133 case SPA_LOG_UNKNOWN:
1134 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1135 DS_FIND_CHILDREN)) {
1136 spa->spa_log_state = SPA_LOG_MISSING;
1137 return (1);
1138 }
1139 break;
1140 }
1141 return (0);
1142 }
1143
1144 /*
1145 * Load an existing storage pool, using the pool's builtin spa_config as a
1146 * source of configuration information.
1147 */
1148 static int
1149 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1150 {
1151 int error = 0;
1152 nvlist_t *nvroot = NULL;
1153 vdev_t *rvd;
1154 uberblock_t *ub = &spa->spa_uberblock;
1155 uint64_t config_cache_txg = spa->spa_config_txg;
1156 uint64_t pool_guid;
1157 uint64_t version;
1158 uint64_t autoreplace = 0;
1159 int orig_mode = spa->spa_mode;
1160 char *ereport = FM_EREPORT_ZFS_POOL;
1161
1162 /*
1163 * If this is an untrusted config, access the pool in read-only mode.
1164 * This prevents things like resilvering recently removed devices.
1165 */
1166 if (!mosconfig)
1167 spa->spa_mode = FREAD;
1168
1169 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1170
1171 spa->spa_load_state = state;
1172
1173 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1174 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1175 error = EINVAL;
1176 goto out;
1177 }
1178
1179 /*
1180 * Versioning wasn't explicitly added to the label until later, so if
1181 * it's not present treat it as the initial version.
1182 */
1183 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1184 version = SPA_VERSION_INITIAL;
1185
1186 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1187 &spa->spa_config_txg);
1188
1189 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1190 spa_guid_exists(pool_guid, 0)) {
1191 error = EEXIST;
1192 goto out;
1193 }
1194
1195 spa->spa_load_guid = pool_guid;
1196
1197 /*
1198 * Create "The Godfather" zio to hold all async IOs
1199 */
1200 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1201 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1202
1203 /*
1204 * Parse the configuration into a vdev tree. We explicitly set the
1205 * value that will be returned by spa_version() since parsing the
1206 * configuration requires knowing the version number.
1207 */
1208 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1209 spa->spa_ubsync.ub_version = version;
1210 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1211 spa_config_exit(spa, SCL_ALL, FTAG);
1212
1213 if (error != 0)
1214 goto out;
1215
1216 ASSERT(spa->spa_root_vdev == rvd);
1217 ASSERT(spa_guid(spa) == pool_guid);
1218
1219 /*
1220 * Try to open all vdevs, loading each label in the process.
1221 */
1222 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1223 error = vdev_open(rvd);
1224 spa_config_exit(spa, SCL_ALL, FTAG);
1225 if (error != 0)
1226 goto out;
1227
1228 /*
1229 * We need to validate the vdev labels against the configuration that
1230 * we have in hand, which is dependent on the setting of mosconfig. If
1231 * mosconfig is true then we're validating the vdev labels based on
1232 * that config. Otherwise, we're validating against the cached config
1233 * (zpool.cache) that was read when we loaded the zfs module, and then
1234 * later we will recursively call spa_load() and validate against
1235 * the vdev config.
1236 */
1237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238 error = vdev_validate(rvd);
1239 spa_config_exit(spa, SCL_ALL, FTAG);
1240 if (error != 0)
1241 goto out;
1242
1243 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1244 error = ENXIO;
1245 goto out;
1246 }
1247
1248 /*
1249 * Find the best uberblock.
1250 */
1251 vdev_uberblock_load(NULL, rvd, ub);
1252
1253 /*
1254 * If we weren't able to find a single valid uberblock, return failure.
1255 */
1256 if (ub->ub_txg == 0) {
1257 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258 VDEV_AUX_CORRUPT_DATA);
1259 error = ENXIO;
1260 goto out;
1261 }
1262
1263 /*
1264 * If the pool is newer than the code, we can't open it.
1265 */
1266 if (ub->ub_version > SPA_VERSION) {
1267 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268 VDEV_AUX_VERSION_NEWER);
1269 error = ENOTSUP;
1270 goto out;
1271 }
1272
1273 /*
1274 * If the vdev guid sum doesn't match the uberblock, we have an
1275 * incomplete configuration.
1276 */
1277 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1278 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1279 VDEV_AUX_BAD_GUID_SUM);
1280 error = ENXIO;
1281 goto out;
1282 }
1283
1284 /*
1285 * Initialize internal SPA structures.
1286 */
1287 spa->spa_state = POOL_STATE_ACTIVE;
1288 spa->spa_ubsync = spa->spa_uberblock;
1289 spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1290 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1291 if (error) {
1292 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1293 VDEV_AUX_CORRUPT_DATA);
1294 goto out;
1295 }
1296 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1297
1298 if (zap_lookup(spa->spa_meta_objset,
1299 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1300 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1301 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302 VDEV_AUX_CORRUPT_DATA);
1303 error = EIO;
1304 goto out;
1305 }
1306
1307 if (!mosconfig) {
1308 nvlist_t *newconfig;
1309 uint64_t hostid;
1310
1311 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1312 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313 VDEV_AUX_CORRUPT_DATA);
1314 error = EIO;
1315 goto out;
1316 }
1317
1318 if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1319 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1320 char *hostname;
1321 unsigned long myhostid = 0;
1322
1323 VERIFY(nvlist_lookup_string(newconfig,
1324 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1325
1326 #ifdef _KERNEL
1327 myhostid = zone_get_hostid(NULL);
1328 #else /* _KERNEL */
1329 /*
1330 * We're emulating the system's hostid in userland, so
1331 * we can't use zone_get_hostid().
1332 */
1333 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1334 #endif /* _KERNEL */
1335 if (hostid != 0 && myhostid != 0 &&
1336 hostid != myhostid) {
1337 cmn_err(CE_WARN, "pool '%s' could not be "
1338 "loaded as it was last accessed by "
1339 "another system (host: %s hostid: 0x%lx). "
1340 "See: http://www.sun.com/msg/ZFS-8000-EY",
1341 spa_name(spa), hostname,
1342 (unsigned long)hostid);
1343 error = EBADF;
1344 goto out;
1345 }
1346 }
1347
1348 spa_config_set(spa, newconfig);
1349 spa_unload(spa);
1350 spa_deactivate(spa);
1351 spa_activate(spa, orig_mode);
1352
1353 return (spa_load(spa, newconfig, state, B_TRUE));
1354 }
1355
1356 if (zap_lookup(spa->spa_meta_objset,
1357 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1358 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1359 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360 VDEV_AUX_CORRUPT_DATA);
1361 error = EIO;
1362 goto out;
1363 }
1364
1365 /*
1366 * Load the bit that tells us to use the new accounting function
1367 * (raid-z deflation). If we have an older pool, this will not
1368 * be present.
1369 */
1370 error = zap_lookup(spa->spa_meta_objset,
1371 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1372 sizeof (uint64_t), 1, &spa->spa_deflate);
1373 if (error != 0 && error != ENOENT) {
1374 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375 VDEV_AUX_CORRUPT_DATA);
1376 error = EIO;
1377 goto out;
1378 }
1379
1380 /*
1381 * Load the persistent error log. If we have an older pool, this will
1382 * not be present.
1383 */
1384 error = zap_lookup(spa->spa_meta_objset,
1385 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1386 sizeof (uint64_t), 1, &spa->spa_errlog_last);
1387 if (error != 0 && error != ENOENT) {
1388 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1389 VDEV_AUX_CORRUPT_DATA);
1390 error = EIO;
1391 goto out;
1392 }
1393
1394 error = zap_lookup(spa->spa_meta_objset,
1395 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1396 sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1397 if (error != 0 && error != ENOENT) {
1398 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1399 VDEV_AUX_CORRUPT_DATA);
1400 error = EIO;
1401 goto out;
1402 }
1403
1404 /*
1405 * Load the history object. If we have an older pool, this
1406 * will not be present.
1407 */
1408 error = zap_lookup(spa->spa_meta_objset,
1409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1410 sizeof (uint64_t), 1, &spa->spa_history);
1411 if (error != 0 && error != ENOENT) {
1412 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1413 VDEV_AUX_CORRUPT_DATA);
1414 error = EIO;
1415 goto out;
1416 }
1417
1418 /*
1419 * Load any hot spares for this pool.
1420 */
1421 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1422 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1423 if (error != 0 && error != ENOENT) {
1424 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425 VDEV_AUX_CORRUPT_DATA);
1426 error = EIO;
1427 goto out;
1428 }
1429 if (error == 0) {
1430 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1431 if (load_nvlist(spa, spa->spa_spares.sav_object,
1432 &spa->spa_spares.sav_config) != 0) {
1433 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1434 VDEV_AUX_CORRUPT_DATA);
1435 error = EIO;
1436 goto out;
1437 }
1438
1439 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1440 spa_load_spares(spa);
1441 spa_config_exit(spa, SCL_ALL, FTAG);
1442 }
1443
1444 /*
1445 * Load any level 2 ARC devices for this pool.
1446 */
1447 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448 DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1449 &spa->spa_l2cache.sav_object);
1450 if (error != 0 && error != ENOENT) {
1451 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452 VDEV_AUX_CORRUPT_DATA);
1453 error = EIO;
1454 goto out;
1455 }
1456 if (error == 0) {
1457 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1458 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1459 &spa->spa_l2cache.sav_config) != 0) {
1460 vdev_set_state(rvd, B_TRUE,
1461 VDEV_STATE_CANT_OPEN,
1462 VDEV_AUX_CORRUPT_DATA);
1463 error = EIO;
1464 goto out;
1465 }
1466
1467 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1468 spa_load_l2cache(spa);
1469 spa_config_exit(spa, SCL_ALL, FTAG);
1470 }
1471
1472 spa_load_log_state(spa);
1473
1474 if (spa_check_logs(spa)) {
1475 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1476 VDEV_AUX_BAD_LOG);
1477 error = ENXIO;
1478 ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1479 goto out;
1480 }
1481
1482
1483 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1484
1485 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1486 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1487
1488 if (error && error != ENOENT) {
1489 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1490 VDEV_AUX_CORRUPT_DATA);
1491 error = EIO;
1492 goto out;
1493 }
1494
1495 if (error == 0) {
1496 (void) zap_lookup(spa->spa_meta_objset,
1497 spa->spa_pool_props_object,
1498 zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1499 sizeof (uint64_t), 1, &spa->spa_bootfs);
1500 (void) zap_lookup(spa->spa_meta_objset,
1501 spa->spa_pool_props_object,
1502 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1503 sizeof (uint64_t), 1, &autoreplace);
1504 (void) zap_lookup(spa->spa_meta_objset,
1505 spa->spa_pool_props_object,
1506 zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1507 sizeof (uint64_t), 1, &spa->spa_delegation);
1508 (void) zap_lookup(spa->spa_meta_objset,
1509 spa->spa_pool_props_object,
1510 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1511 sizeof (uint64_t), 1, &spa->spa_failmode);
1512 (void) zap_lookup(spa->spa_meta_objset,
1513 spa->spa_pool_props_object,
1514 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1515 sizeof (uint64_t), 1, &spa->spa_autoexpand);
1516 }
1517
1518 /*
1519 * If the 'autoreplace' property is set, then post a resource notifying
1520 * the ZFS DE that it should not issue any faults for unopenable
1521 * devices. We also iterate over the vdevs, and post a sysevent for any
1522 * unopenable vdevs so that the normal autoreplace handler can take
1523 * over.
1524 */
1525 if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1526 spa_check_removed(spa->spa_root_vdev);
1527
1528 /*
1529 * Load the vdev state for all toplevel vdevs.
1530 */
1531 vdev_load(rvd);
1532
1533 /*
1534 * Propagate the leaf DTLs we just loaded all the way up the tree.
1535 */
1536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1537 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1538 spa_config_exit(spa, SCL_ALL, FTAG);
1539
1540 /*
1541 * Check the state of the root vdev. If it can't be opened, it
1542 * indicates one or more toplevel vdevs are faulted.
1543 */
1544 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1545 error = ENXIO;
1546 goto out;
1547 }
1548
1549 if (spa_writeable(spa)) {
1550 dmu_tx_t *tx;
1551 int need_update = B_FALSE;
1552
1553 ASSERT(state != SPA_LOAD_TRYIMPORT);
1554
1555 /*
1556 * Claim log blocks that haven't been committed yet.
1557 * This must all happen in a single txg.
1558 */
1559 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1560 spa_first_txg(spa));
1561 (void) dmu_objset_find(spa_name(spa),
1562 zil_claim, tx, DS_FIND_CHILDREN);
1563 dmu_tx_commit(tx);
1564
1565 spa->spa_log_state = SPA_LOG_GOOD;
1566 spa->spa_sync_on = B_TRUE;
1567 txg_sync_start(spa->spa_dsl_pool);
1568
1569 /*
1570 * Wait for all claims to sync.
1571 */
1572 txg_wait_synced(spa->spa_dsl_pool, 0);
1573
1574 /*
1575 * If the config cache is stale, or we have uninitialized
1576 * metaslabs (see spa_vdev_add()), then update the config.
1577 */
1578 if (config_cache_txg != spa->spa_config_txg ||
1579 state == SPA_LOAD_IMPORT)
1580 need_update = B_TRUE;
1581
1582 for (int c = 0; c < rvd->vdev_children; c++)
1583 if (rvd->vdev_child[c]->vdev_ms_array == 0)
1584 need_update = B_TRUE;
1585
1586 /*
1587 * Update the config cache asychronously in case we're the
1588 * root pool, in which case the config cache isn't writable yet.
1589 */
1590 if (need_update)
1591 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1592
1593 /*
1594 * Check all DTLs to see if anything needs resilvering.
1595 */
1596 if (vdev_resilver_needed(rvd, NULL, NULL))
1597 spa_async_request(spa, SPA_ASYNC_RESILVER);
1598 }
1599
1600 error = 0;
1601 out:
1602 spa->spa_minref = refcount_count(&spa->spa_refcount);
1603 if (error && error != EBADF)
1604 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1605 spa->spa_load_state = SPA_LOAD_NONE;
1606 spa->spa_ena = 0;
1607
1608 return (error);
1609 }
1610
1611 /*
1612 * Pool Open/Import
1613 *
1614 * The import case is identical to an open except that the configuration is sent
1615 * down from userland, instead of grabbed from the configuration cache. For the
1616 * case of an open, the pool configuration will exist in the
1617 * POOL_STATE_UNINITIALIZED state.
1618 *
1619 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1620 * the same time open the pool, without having to keep around the spa_t in some
1621 * ambiguous state.
1622 */
1623 static int
1624 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1625 {
1626 spa_t *spa;
1627 int error;
1628 int locked = B_FALSE;
1629
1630 *spapp = NULL;
1631
1632 /*
1633 * As disgusting as this is, we need to support recursive calls to this
1634 * function because dsl_dir_open() is called during spa_load(), and ends
1635 * up calling spa_open() again. The real fix is to figure out how to
1636 * avoid dsl_dir_open() calling this in the first place.
1637 */
1638 if (mutex_owner(&spa_namespace_lock) != curthread) {
1639 mutex_enter(&spa_namespace_lock);
1640 locked = B_TRUE;
1641 }
1642
1643 if ((spa = spa_lookup(pool)) == NULL) {
1644 if (locked)
1645 mutex_exit(&spa_namespace_lock);
1646 return (ENOENT);
1647 }
1648 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1649
1650 spa_activate(spa, spa_mode_global);
1651
1652 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1653
1654 if (error == EBADF) {
1655 /*
1656 * If vdev_validate() returns failure (indicated by
1657 * EBADF), it indicates that one of the vdevs indicates
1658 * that the pool has been exported or destroyed. If
1659 * this is the case, the config cache is out of sync and
1660 * we should remove the pool from the namespace.
1661 */
1662 spa_unload(spa);
1663 spa_deactivate(spa);
1664 spa_config_sync(spa, B_TRUE, B_TRUE);
1665 spa_remove(spa);
1666 if (locked)
1667 mutex_exit(&spa_namespace_lock);
1668 return (ENOENT);
1669 }
1670
1671 if (error) {
1672 /*
1673 * We can't open the pool, but we still have useful
1674 * information: the state of each vdev after the
1675 * attempted vdev_open(). Return this to the user.
1676 */
1677 if (config != NULL && spa->spa_root_vdev != NULL)
1678 *config = spa_config_generate(spa, NULL, -1ULL,
1679 B_TRUE);
1680 spa_unload(spa);
1681 spa_deactivate(spa);
1682 spa->spa_last_open_failed = B_TRUE;
1683 if (locked)
1684 mutex_exit(&spa_namespace_lock);
1685 *spapp = NULL;
1686 return (error);
1687 } else {
1688 spa->spa_last_open_failed = B_FALSE;
1689 }
1690 }
1691
1692 spa_open_ref(spa, tag);
1693
1694 if (locked)
1695 mutex_exit(&spa_namespace_lock);
1696
1697 *spapp = spa;
1698
1699 if (config != NULL)
1700 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1701
1702 return (0);
1703 }
1704
1705 int
1706 spa_open(const char *name, spa_t **spapp, void *tag)
1707 {
1708 return (spa_open_common(name, spapp, tag, NULL));
1709 }
1710
1711 /*
1712 * Lookup the given spa_t, incrementing the inject count in the process,
1713 * preventing it from being exported or destroyed.
1714 */
1715 spa_t *
1716 spa_inject_addref(char *name)
1717 {
1718 spa_t *spa;
1719
1720 mutex_enter(&spa_namespace_lock);
1721 if ((spa = spa_lookup(name)) == NULL) {
1722 mutex_exit(&spa_namespace_lock);
1723 return (NULL);
1724 }
1725 spa->spa_inject_ref++;
1726 mutex_exit(&spa_namespace_lock);
1727
1728 return (spa);
1729 }
1730
1731 void
1732 spa_inject_delref(spa_t *spa)
1733 {
1734 mutex_enter(&spa_namespace_lock);
1735 spa->spa_inject_ref--;
1736 mutex_exit(&spa_namespace_lock);
1737 }
1738
1739 /*
1740 * Add spares device information to the nvlist.
1741 */
1742 static void
1743 spa_add_spares(spa_t *spa, nvlist_t *config)
1744 {
1745 nvlist_t **spares;
1746 uint_t i, nspares;
1747 nvlist_t *nvroot;
1748 uint64_t guid;
1749 vdev_stat_t *vs;
1750 uint_t vsc;
1751 uint64_t pool;
1752
1753 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1754
1755 if (spa->spa_spares.sav_count == 0)
1756 return;
1757
1758 VERIFY(nvlist_lookup_nvlist(config,
1759 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1760 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1761 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1762 if (nspares != 0) {
1763 VERIFY(nvlist_add_nvlist_array(nvroot,
1764 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1765 VERIFY(nvlist_lookup_nvlist_array(nvroot,
1766 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1767
1768 /*
1769 * Go through and find any spares which have since been
1770 * repurposed as an active spare. If this is the case, update
1771 * their status appropriately.
1772 */
1773 for (i = 0; i < nspares; i++) {
1774 VERIFY(nvlist_lookup_uint64(spares[i],
1775 ZPOOL_CONFIG_GUID, &guid) == 0);
1776 if (spa_spare_exists(guid, &pool, NULL) &&
1777 pool != 0ULL) {
1778 VERIFY(nvlist_lookup_uint64_array(
1779 spares[i], ZPOOL_CONFIG_STATS,
1780 (uint64_t **)&vs, &vsc) == 0);
1781 vs->vs_state = VDEV_STATE_CANT_OPEN;
1782 vs->vs_aux = VDEV_AUX_SPARED;
1783 }
1784 }
1785 }
1786 }
1787
1788 /*
1789 * Add l2cache device information to the nvlist, including vdev stats.
1790 */
1791 static void
1792 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1793 {
1794 nvlist_t **l2cache;
1795 uint_t i, j, nl2cache;
1796 nvlist_t *nvroot;
1797 uint64_t guid;
1798 vdev_t *vd;
1799 vdev_stat_t *vs;
1800 uint_t vsc;
1801
1802 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1803
1804 if (spa->spa_l2cache.sav_count == 0)
1805 return;
1806
1807 VERIFY(nvlist_lookup_nvlist(config,
1808 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1809 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1810 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1811 if (nl2cache != 0) {
1812 VERIFY(nvlist_add_nvlist_array(nvroot,
1813 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1814 VERIFY(nvlist_lookup_nvlist_array(nvroot,
1815 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1816
1817 /*
1818 * Update level 2 cache device stats.
1819 */
1820
1821 for (i = 0; i < nl2cache; i++) {
1822 VERIFY(nvlist_lookup_uint64(l2cache[i],
1823 ZPOOL_CONFIG_GUID, &guid) == 0);
1824
1825 vd = NULL;
1826 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1827 if (guid ==
1828 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1829 vd = spa->spa_l2cache.sav_vdevs[j];
1830 break;
1831 }
1832 }
1833 ASSERT(vd != NULL);
1834
1835 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1836 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1837 vdev_get_stats(vd, vs);
1838 }
1839 }
1840 }
1841
1842 int
1843 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1844 {
1845 int error;
1846 spa_t *spa;
1847
1848 *config = NULL;
1849 error = spa_open_common(name, &spa, FTAG, config);
1850
1851 if (spa != NULL) {
1852 /*
1853 * This still leaves a window of inconsistency where the spares
1854 * or l2cache devices could change and the config would be
1855 * self-inconsistent.
1856 */
1857 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1858
1859 if (*config != NULL) {
1860 VERIFY(nvlist_add_uint64(*config,
1861 ZPOOL_CONFIG_ERRCOUNT,
1862 spa_get_errlog_size(spa)) == 0);
1863
1864 if (spa_suspended(spa))
1865 VERIFY(nvlist_add_uint64(*config,
1866 ZPOOL_CONFIG_SUSPENDED,
1867 spa->spa_failmode) == 0);
1868
1869 spa_add_spares(spa, *config);
1870 spa_add_l2cache(spa, *config);
1871 }
1872 }
1873
1874 /*
1875 * We want to get the alternate root even for faulted pools, so we cheat
1876 * and call spa_lookup() directly.
1877 */
1878 if (altroot) {
1879 if (spa == NULL) {
1880 mutex_enter(&spa_namespace_lock);
1881 spa = spa_lookup(name);
1882 if (spa)
1883 spa_altroot(spa, altroot, buflen);
1884 else
1885 altroot[0] = '\0';
1886 spa = NULL;
1887 mutex_exit(&spa_namespace_lock);
1888 } else {
1889 spa_altroot(spa, altroot, buflen);
1890 }
1891 }
1892
1893 if (spa != NULL) {
1894 spa_config_exit(spa, SCL_CONFIG, FTAG);
1895 spa_close(spa, FTAG);
1896 }
1897
1898 return (error);
1899 }
1900
1901 /*
1902 * Validate that the auxiliary device array is well formed. We must have an
1903 * array of nvlists, each which describes a valid leaf vdev. If this is an
1904 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1905 * specified, as long as they are well-formed.
1906 */
1907 static int
1908 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1909 spa_aux_vdev_t *sav, const char *config, uint64_t version,
1910 vdev_labeltype_t label)
1911 {
1912 nvlist_t **dev;
1913 uint_t i, ndev;
1914 vdev_t *vd;
1915 int error;
1916
1917 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1918
1919 /*
1920 * It's acceptable to have no devs specified.
1921 */
1922 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1923 return (0);
1924
1925 if (ndev == 0)
1926 return (EINVAL);
1927
1928 /*
1929 * Make sure the pool is formatted with a version that supports this
1930 * device type.
1931 */
1932 if (spa_version(spa) < version)
1933 return (ENOTSUP);
1934
1935 /*
1936 * Set the pending device list so we correctly handle device in-use
1937 * checking.
1938 */
1939 sav->sav_pending = dev;
1940 sav->sav_npending = ndev;
1941
1942 for (i = 0; i < ndev; i++) {
1943 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1944 mode)) != 0)
1945 goto out;
1946
1947 if (!vd->vdev_ops->vdev_op_leaf) {
1948 vdev_free(vd);
1949 error = EINVAL;
1950 goto out;
1951 }
1952
1953 /*
1954 * The L2ARC currently only supports disk devices in
1955 * kernel context. For user-level testing, we allow it.
1956 */
1957 #ifdef _KERNEL
1958 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1959 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1960 error = ENOTBLK;
1961 goto out;
1962 }
1963 #endif
1964 vd->vdev_top = vd;
1965
1966 if ((error = vdev_open(vd)) == 0 &&
1967 (error = vdev_label_init(vd, crtxg, label)) == 0) {
1968 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1969 vd->vdev_guid) == 0);
1970 }
1971
1972 vdev_free(vd);
1973
1974 if (error &&
1975 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1976 goto out;
1977 else
1978 error = 0;
1979 }
1980
1981 out:
1982 sav->sav_pending = NULL;
1983 sav->sav_npending = 0;
1984 return (error);
1985 }
1986
1987 static int
1988 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1989 {
1990 int error;
1991
1992 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1993
1994 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1995 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1996 VDEV_LABEL_SPARE)) != 0) {
1997 return (error);
1998 }
1999
2000 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2001 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2002 VDEV_LABEL_L2CACHE));
2003 }
2004
2005 static void
2006 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2007 const char *config)
2008 {
2009 int i;
2010
2011 if (sav->sav_config != NULL) {
2012 nvlist_t **olddevs;
2013 uint_t oldndevs;
2014 nvlist_t **newdevs;
2015
2016 /*
2017 * Generate new dev list by concatentating with the
2018 * current dev list.
2019 */
2020 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2021 &olddevs, &oldndevs) == 0);
2022
2023 newdevs = kmem_alloc(sizeof (void *) *
2024 (ndevs + oldndevs), KM_SLEEP);
2025 for (i = 0; i < oldndevs; i++)
2026 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2027 KM_SLEEP) == 0);
2028 for (i = 0; i < ndevs; i++)
2029 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2030 KM_SLEEP) == 0);
2031
2032 VERIFY(nvlist_remove(sav->sav_config, config,
2033 DATA_TYPE_NVLIST_ARRAY) == 0);
2034
2035 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2036 config, newdevs, ndevs + oldndevs) == 0);
2037 for (i = 0; i < oldndevs + ndevs; i++)
2038 nvlist_free(newdevs[i]);
2039 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2040 } else {
2041 /*
2042 * Generate a new dev list.
2043 */
2044 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2045 KM_SLEEP) == 0);
2046 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2047 devs, ndevs) == 0);
2048 }
2049 }
2050
2051 /*
2052 * Stop and drop level 2 ARC devices
2053 */
2054 void
2055 spa_l2cache_drop(spa_t *spa)
2056 {
2057 vdev_t *vd;
2058 int i;
2059 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2060
2061 for (i = 0; i < sav->sav_count; i++) {
2062 uint64_t pool;
2063
2064 vd = sav->sav_vdevs[i];
2065 ASSERT(vd != NULL);
2066
2067 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2068 pool != 0ULL && l2arc_vdev_present(vd))
2069 l2arc_remove_vdev(vd);
2070 if (vd->vdev_isl2cache)
2071 spa_l2cache_remove(vd);
2072 vdev_clear_stats(vd);
2073 (void) vdev_close(vd);
2074 }
2075 }
2076
2077 /*
2078 * Pool Creation
2079 */
2080 int
2081 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2082 const char *history_str, nvlist_t *zplprops)
2083 {
2084 spa_t *spa;
2085 char *altroot = NULL;
2086 vdev_t *rvd;
2087 dsl_pool_t *dp;
2088 dmu_tx_t *tx;
2089 int error = 0;
2090 uint64_t txg = TXG_INITIAL;
2091 nvlist_t **spares, **l2cache;
2092 uint_t nspares, nl2cache;
2093 uint64_t version;
2094
2095 /*
2096 * If this pool already exists, return failure.
2097 */
2098 mutex_enter(&spa_namespace_lock);
2099 if (spa_lookup(pool) != NULL) {
2100 mutex_exit(&spa_namespace_lock);
2101 return (EEXIST);
2102 }
2103
2104 /*
2105 * Allocate a new spa_t structure.
2106 */
2107 (void) nvlist_lookup_string(props,
2108 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2109 spa = spa_add(pool, altroot);
2110 spa_activate(spa, spa_mode_global);
2111
2112 spa->spa_uberblock.ub_txg = txg - 1;
2113
2114 if (props && (error = spa_prop_validate(spa, props))) {
2115 spa_deactivate(spa);
2116 spa_remove(spa);
2117 mutex_exit(&spa_namespace_lock);
2118 return (error);
2119 }
2120
2121 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2122 &version) != 0)
2123 version = SPA_VERSION;
2124 ASSERT(version <= SPA_VERSION);
2125 spa->spa_uberblock.ub_version = version;
2126 spa->spa_ubsync = spa->spa_uberblock;
2127
2128 /*
2129 * Create "The Godfather" zio to hold all async IOs
2130 */
2131 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2132 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2133
2134 /*
2135 * Create the root vdev.
2136 */
2137 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2138
2139 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2140
2141 ASSERT(error != 0 || rvd != NULL);
2142 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2143
2144 if (error == 0 && !zfs_allocatable_devs(nvroot))
2145 error = EINVAL;
2146
2147 if (error == 0 &&
2148 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2149 (error = spa_validate_aux(spa, nvroot, txg,
2150 VDEV_ALLOC_ADD)) == 0) {
2151 for (int c = 0; c < rvd->vdev_children; c++) {
2152 vdev_metaslab_set_size(rvd->vdev_child[c]);
2153 vdev_expand(rvd->vdev_child[c], txg);
2154 }
2155 }
2156
2157 spa_config_exit(spa, SCL_ALL, FTAG);
2158
2159 if (error != 0) {
2160 spa_unload(spa);
2161 spa_deactivate(spa);
2162 spa_remove(spa);
2163 mutex_exit(&spa_namespace_lock);
2164 return (error);
2165 }
2166
2167 /*
2168 * Get the list of spares, if specified.
2169 */
2170 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2171 &spares, &nspares) == 0) {
2172 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2173 KM_SLEEP) == 0);
2174 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2175 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2176 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2177 spa_load_spares(spa);
2178 spa_config_exit(spa, SCL_ALL, FTAG);
2179 spa->spa_spares.sav_sync = B_TRUE;
2180 }
2181
2182 /*
2183 * Get the list of level 2 cache devices, if specified.
2184 */
2185 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2186 &l2cache, &nl2cache) == 0) {
2187 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2188 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2189 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2190 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2191 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2192 spa_load_l2cache(spa);
2193 spa_config_exit(spa, SCL_ALL, FTAG);
2194 spa->spa_l2cache.sav_sync = B_TRUE;
2195 }
2196
2197 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2198 spa->spa_meta_objset = dp->dp_meta_objset;
2199
2200 tx = dmu_tx_create_assigned(dp, txg);
2201
2202 /*
2203 * Create the pool config object.
2204 */
2205 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2206 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2207 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2208
2209 if (zap_add(spa->spa_meta_objset,
2210 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2211 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2212 cmn_err(CE_PANIC, "failed to add pool config");
2213 }
2214
2215 /* Newly created pools with the right version are always deflated. */
2216 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2217 spa->spa_deflate = TRUE;
2218 if (zap_add(spa->spa_meta_objset,
2219 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2220 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2221 cmn_err(CE_PANIC, "failed to add deflate");
2222 }
2223 }
2224
2225 /*
2226 * Create the deferred-free bplist object. Turn off compression
2227 * because sync-to-convergence takes longer if the blocksize
2228 * keeps changing.
2229 */
2230 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2231 1 << 14, tx);
2232 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2233 ZIO_COMPRESS_OFF, tx);
2234
2235 if (zap_add(spa->spa_meta_objset,
2236 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2237 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2238 cmn_err(CE_PANIC, "failed to add bplist");
2239 }
2240
2241 /*
2242 * Create the pool's history object.
2243 */
2244 if (version >= SPA_VERSION_ZPOOL_HISTORY)
2245 spa_history_create_obj(spa, tx);
2246
2247 /*
2248 * Set pool properties.
2249 */
2250 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2251 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2252 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2253 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2254 if (props != NULL) {
2255 spa_configfile_set(spa, props, B_FALSE);
2256 spa_sync_props(spa, props, CRED(), tx);
2257 }
2258
2259 dmu_tx_commit(tx);
2260
2261 spa->spa_sync_on = B_TRUE;
2262 txg_sync_start(spa->spa_dsl_pool);
2263
2264 /*
2265 * We explicitly wait for the first transaction to complete so that our
2266 * bean counters are appropriately updated.
2267 */
2268 txg_wait_synced(spa->spa_dsl_pool, txg);
2269
2270 spa_config_sync(spa, B_FALSE, B_TRUE);
2271
2272 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2273 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2274
2275 spa->spa_minref = refcount_count(&spa->spa_refcount);
2276
2277 mutex_exit(&spa_namespace_lock);
2278
2279 return (0);
2280 }
2281
2282 #ifdef _KERNEL
2283 /*
2284 * Get the root pool information from the root disk, then import the root pool
2285 * during the system boot up time.
2286 */
2287 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2288
2289 static nvlist_t *
2290 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2291 {
2292 nvlist_t *config;
2293 nvlist_t *nvtop, *nvroot;
2294 uint64_t pgid;
2295
2296 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2297 return (NULL);
2298
2299 /*
2300 * Add this top-level vdev to the child array.
2301 */
2302 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2303 &nvtop) == 0);
2304 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2305 &pgid) == 0);
2306 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2307
2308 /*
2309 * Put this pool's top-level vdevs into a root vdev.
2310 */
2311 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2312 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2313 VDEV_TYPE_ROOT) == 0);
2314 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2315 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2316 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2317 &nvtop, 1) == 0);
2318
2319 /*
2320 * Replace the existing vdev_tree with the new root vdev in
2321 * this pool's configuration (remove the old, add the new).
2322 */
2323 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2324 nvlist_free(nvroot);
2325 return (config);
2326 }
2327
2328 /*
2329 * Walk the vdev tree and see if we can find a device with "better"
2330 * configuration. A configuration is "better" if the label on that
2331 * device has a more recent txg.
2332 */
2333 static void
2334 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2335 {
2336 for (int c = 0; c < vd->vdev_children; c++)
2337 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2338
2339 if (vd->vdev_ops->vdev_op_leaf) {
2340 nvlist_t *label;
2341 uint64_t label_txg;
2342
2343 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2344 &label) != 0)
2345 return;
2346
2347 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2348 &label_txg) == 0);
2349
2350 /*
2351 * Do we have a better boot device?
2352 */
2353 if (label_txg > *txg) {
2354 *txg = label_txg;
2355 *avd = vd;
2356 }
2357 nvlist_free(label);
2358 }
2359 }
2360
2361 /*
2362 * Import a root pool.
2363 *
2364 * For x86. devpath_list will consist of devid and/or physpath name of
2365 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2366 * The GRUB "findroot" command will return the vdev we should boot.
2367 *
2368 * For Sparc, devpath_list consists the physpath name of the booting device
2369 * no matter the rootpool is a single device pool or a mirrored pool.
2370 * e.g.
2371 * "/pci@1f,0/ide@d/disk@0,0:a"
2372 */
2373 int
2374 spa_import_rootpool(char *devpath, char *devid)
2375 {
2376 spa_t *spa;
2377 vdev_t *rvd, *bvd, *avd = NULL;
2378 nvlist_t *config, *nvtop;
2379 uint64_t guid, txg;
2380 char *pname;
2381 int error;
2382
2383 /*
2384 * Read the label from the boot device and generate a configuration.
2385 */
2386 if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2387 cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2388 devpath);
2389 return (EIO);
2390 }
2391
2392 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2393 &pname) == 0);
2394 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2395
2396 mutex_enter(&spa_namespace_lock);
2397 if ((spa = spa_lookup(pname)) != NULL) {
2398 /*
2399 * Remove the existing root pool from the namespace so that we
2400 * can replace it with the correct config we just read in.
2401 */
2402 spa_remove(spa);
2403 }
2404
2405 spa = spa_add(pname, NULL);
2406 spa->spa_is_root = B_TRUE;
2407
2408 /*
2409 * Build up a vdev tree based on the boot device's label config.
2410 */
2411 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2412 &nvtop) == 0);
2413 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2414 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2415 VDEV_ALLOC_ROOTPOOL);
2416 spa_config_exit(spa, SCL_ALL, FTAG);
2417 if (error) {
2418 mutex_exit(&spa_namespace_lock);
2419 nvlist_free(config);
2420 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2421 pname);
2422 return (error);
2423 }
2424
2425 /*
2426 * Get the boot vdev.
2427 */
2428 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2429 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2430 (u_longlong_t)guid);
2431 error = ENOENT;
2432 goto out;
2433 }
2434
2435 /*
2436 * Determine if there is a better boot device.
2437 */
2438 avd = bvd;
2439 spa_alt_rootvdev(rvd, &avd, &txg);
2440 if (avd != bvd) {
2441 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2442 "try booting from '%s'", avd->vdev_path);
2443 error = EINVAL;
2444 goto out;
2445 }
2446
2447 /*
2448 * If the boot device is part of a spare vdev then ensure that
2449 * we're booting off the active spare.
2450 */
2451 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2452 !bvd->vdev_isspare) {
2453 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2454 "try booting from '%s'",
2455 bvd->vdev_parent->vdev_child[1]->vdev_path);
2456 error = EINVAL;
2457 goto out;
2458 }
2459
2460 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2461 error = 0;
2462 out:
2463 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2464 vdev_free(rvd);
2465 spa_config_exit(spa, SCL_ALL, FTAG);
2466 mutex_exit(&spa_namespace_lock);
2467
2468 nvlist_free(config);
2469 return (error);
2470 }
2471
2472 #endif
2473
2474 /*
2475 * Take a pool and insert it into the namespace as if it had been loaded at
2476 * boot.
2477 */
2478 int
2479 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2480 {
2481 spa_t *spa;
2482 char *altroot = NULL;
2483
2484 mutex_enter(&spa_namespace_lock);
2485 if (spa_lookup(pool) != NULL) {
2486 mutex_exit(&spa_namespace_lock);
2487 return (EEXIST);
2488 }
2489
2490 (void) nvlist_lookup_string(props,
2491 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2492 spa = spa_add(pool, altroot);
2493
2494 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2495
2496 if (props != NULL)
2497 spa_configfile_set(spa, props, B_FALSE);
2498
2499 spa_config_sync(spa, B_FALSE, B_TRUE);
2500
2501 mutex_exit(&spa_namespace_lock);
2502
2503 return (0);
2504 }
2505
2506 /*
2507 * Import a non-root pool into the system.
2508 */
2509 int
2510 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2511 {
2512 spa_t *spa;
2513 char *altroot = NULL;
2514 int error;
2515 nvlist_t *nvroot;
2516 nvlist_t **spares, **l2cache;
2517 uint_t nspares, nl2cache;
2518
2519 /*
2520 * If a pool with this name exists, return failure.
2521 */
2522 mutex_enter(&spa_namespace_lock);
2523 if ((spa = spa_lookup(pool)) != NULL) {
2524 mutex_exit(&spa_namespace_lock);
2525 return (EEXIST);
2526 }
2527
2528 /*
2529 * Create and initialize the spa structure.
2530 */
2531 (void) nvlist_lookup_string(props,
2532 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2533 spa = spa_add(pool, altroot);
2534 spa_activate(spa, spa_mode_global);
2535
2536 /*
2537 * Don't start async tasks until we know everything is healthy.
2538 */
2539 spa_async_suspend(spa);
2540
2541 /*
2542 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
2543 * because the user-supplied config is actually the one to trust when
2544 * doing an import.
2545 */
2546 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2547
2548 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2549 /*
2550 * Toss any existing sparelist, as it doesn't have any validity
2551 * anymore, and conflicts with spa_has_spare().
2552 */
2553 if (spa->spa_spares.sav_config) {
2554 nvlist_free(spa->spa_spares.sav_config);
2555 spa->spa_spares.sav_config = NULL;
2556 spa_load_spares(spa);
2557 }
2558 if (spa->spa_l2cache.sav_config) {
2559 nvlist_free(spa->spa_l2cache.sav_config);
2560 spa->spa_l2cache.sav_config = NULL;
2561 spa_load_l2cache(spa);
2562 }
2563
2564 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2565 &nvroot) == 0);
2566 if (error == 0)
2567 error = spa_validate_aux(spa, nvroot, -1ULL,
2568 VDEV_ALLOC_SPARE);
2569 if (error == 0)
2570 error = spa_validate_aux(spa, nvroot, -1ULL,
2571 VDEV_ALLOC_L2CACHE);
2572 spa_config_exit(spa, SCL_ALL, FTAG);
2573
2574 if (props != NULL)
2575 spa_configfile_set(spa, props, B_FALSE);
2576
2577 if (error != 0 || (props && spa_writeable(spa) &&
2578 (error = spa_prop_set(spa, props)))) {
2579 spa_unload(spa);
2580 spa_deactivate(spa);
2581 spa_remove(spa);
2582 mutex_exit(&spa_namespace_lock);
2583 return (error);
2584 }
2585
2586 spa_async_resume(spa);
2587
2588 /*
2589 * Override any spares and level 2 cache devices as specified by
2590 * the user, as these may have correct device names/devids, etc.
2591 */
2592 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2593 &spares, &nspares) == 0) {
2594 if (spa->spa_spares.sav_config)
2595 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2596 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2597 else
2598 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2599 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2600 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2601 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2602 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2603 spa_load_spares(spa);
2604 spa_config_exit(spa, SCL_ALL, FTAG);
2605 spa->spa_spares.sav_sync = B_TRUE;
2606 }
2607 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2608 &l2cache, &nl2cache) == 0) {
2609 if (spa->spa_l2cache.sav_config)
2610 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2611 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2612 else
2613 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2614 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2615 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2616 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2617 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2618 spa_load_l2cache(spa);
2619 spa_config_exit(spa, SCL_ALL, FTAG);
2620 spa->spa_l2cache.sav_sync = B_TRUE;
2621 }
2622
2623 if (spa_writeable(spa)) {
2624 /*
2625 * Update the config cache to include the newly-imported pool.
2626 */
2627 spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, B_FALSE);
2628 }
2629
2630 /*
2631 * It's possible that the pool was expanded while it was exported.
2632 * We kick off an async task to handle this for us.
2633 */
2634 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2635
2636 mutex_exit(&spa_namespace_lock);
2637
2638 return (0);
2639 }
2640
2641
2642 /*
2643 * This (illegal) pool name is used when temporarily importing a spa_t in order
2644 * to get the vdev stats associated with the imported devices.
2645 */
2646 #define TRYIMPORT_NAME "$import"
2647
2648 nvlist_t *
2649 spa_tryimport(nvlist_t *tryconfig)
2650 {
2651 nvlist_t *config = NULL;
2652 char *poolname;
2653 spa_t *spa;
2654 uint64_t state;
2655 int error;
2656
2657 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2658 return (NULL);
2659
2660 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2661 return (NULL);
2662
2663 /*
2664 * Create and initialize the spa structure.
2665 */
2666 mutex_enter(&spa_namespace_lock);
2667 spa = spa_add(TRYIMPORT_NAME, NULL);
2668 spa_activate(spa, FREAD);
2669
2670 /*
2671 * Pass off the heavy lifting to spa_load().
2672 * Pass TRUE for mosconfig because the user-supplied config
2673 * is actually the one to trust when doing an import.
2674 */
2675 error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2676
2677 /*
2678 * If 'tryconfig' was at least parsable, return the current config.
2679 */
2680 if (spa->spa_root_vdev != NULL) {
2681 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2682 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2683 poolname) == 0);
2684 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2685 state) == 0);
2686 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2687 spa->spa_uberblock.ub_timestamp) == 0);
2688
2689 /*
2690 * If the bootfs property exists on this pool then we
2691 * copy it out so that external consumers can tell which
2692 * pools are bootable.
2693 */
2694 if ((!error || error == EEXIST) && spa->spa_bootfs) {
2695 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2696
2697 /*
2698 * We have to play games with the name since the
2699 * pool was opened as TRYIMPORT_NAME.
2700 */
2701 if (dsl_dsobj_to_dsname(spa_name(spa),
2702 spa->spa_bootfs, tmpname) == 0) {
2703 char *cp;
2704 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2705
2706 cp = strchr(tmpname, '/');
2707 if (cp == NULL) {
2708 (void) strlcpy(dsname, tmpname,
2709 MAXPATHLEN);
2710 } else {
2711 (void) snprintf(dsname, MAXPATHLEN,
2712 "%s/%s", poolname, ++cp);
2713 }
2714 VERIFY(nvlist_add_string(config,
2715 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2716 kmem_free(dsname, MAXPATHLEN);
2717 }
2718 kmem_free(tmpname, MAXPATHLEN);
2719 }
2720
2721 /*
2722 * Add the list of hot spares and level 2 cache devices.
2723 */
2724 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2725 spa_add_spares(spa, config);
2726 spa_add_l2cache(spa, config);
2727 spa_config_exit(spa, SCL_CONFIG, FTAG);
2728 }
2729
2730 spa_unload(spa);
2731 spa_deactivate(spa);
2732 spa_remove(spa);
2733 mutex_exit(&spa_namespace_lock);
2734
2735 return (config);
2736 }
2737
2738 /*
2739 * Pool export/destroy
2740 *
2741 * The act of destroying or exporting a pool is very simple. We make sure there
2742 * is no more pending I/O and any references to the pool are gone. Then, we
2743 * update the pool state and sync all the labels to disk, removing the
2744 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2745 * we don't sync the labels or remove the configuration cache.
2746 */
2747 static int
2748 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2749 boolean_t force, boolean_t hardforce)
2750 {
2751 spa_t *spa;
2752
2753 if (oldconfig)
2754 *oldconfig = NULL;
2755
2756 if (!(spa_mode_global & FWRITE))
2757 return (EROFS);
2758
2759 mutex_enter(&spa_namespace_lock);
2760 if ((spa = spa_lookup(pool)) == NULL) {
2761 mutex_exit(&spa_namespace_lock);
2762 return (ENOENT);
2763 }
2764
2765 /*
2766 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2767 * reacquire the namespace lock, and see if we can export.
2768 */
2769 spa_open_ref(spa, FTAG);
2770 mutex_exit(&spa_namespace_lock);
2771 spa_async_suspend(spa);
2772 mutex_enter(&spa_namespace_lock);
2773 spa_close(spa, FTAG);
2774
2775 /*
2776 * The pool will be in core if it's openable,
2777 * in which case we can modify its state.
2778 */
2779 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2780 /*
2781 * Objsets may be open only because they're dirty, so we
2782 * have to force it to sync before checking spa_refcnt.
2783 */
2784 txg_wait_synced(spa->spa_dsl_pool, 0);
2785
2786 /*
2787 * A pool cannot be exported or destroyed if there are active
2788 * references. If we are resetting a pool, allow references by
2789 * fault injection handlers.
2790 */
2791 if (!spa_refcount_zero(spa) ||
2792 (spa->spa_inject_ref != 0 &&
2793 new_state != POOL_STATE_UNINITIALIZED)) {
2794 spa_async_resume(spa);
2795 mutex_exit(&spa_namespace_lock);
2796 return (EBUSY);
2797 }
2798
2799 /*
2800 * A pool cannot be exported if it has an active shared spare.
2801 * This is to prevent other pools stealing the active spare
2802 * from an exported pool. At user's own will, such pool can
2803 * be forcedly exported.
2804 */
2805 if (!force && new_state == POOL_STATE_EXPORTED &&
2806 spa_has_active_shared_spare(spa)) {
2807 spa_async_resume(spa);
2808 mutex_exit(&spa_namespace_lock);
2809 return (EXDEV);
2810 }
2811
2812 /*
2813 * We want this to be reflected on every label,
2814 * so mark them all dirty. spa_unload() will do the
2815 * final sync that pushes these changes out.
2816 */
2817 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2818 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2819 spa->spa_state = new_state;
2820 spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2821 vdev_config_dirty(spa->spa_root_vdev);
2822 spa_config_exit(spa, SCL_ALL, FTAG);
2823 }
2824 }
2825
2826 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2827
2828 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2829 spa_unload(spa);
2830 spa_deactivate(spa);
2831 }
2832
2833 if (oldconfig && spa->spa_config)
2834 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2835
2836 if (new_state != POOL_STATE_UNINITIALIZED) {
2837 if (!hardforce)
2838 spa_config_sync(spa, B_TRUE, B_TRUE);
2839 spa_remove(spa);
2840 }
2841 mutex_exit(&spa_namespace_lock);
2842
2843 return (0);
2844 }
2845
2846 /*
2847 * Destroy a storage pool.
2848 */
2849 int
2850 spa_destroy(char *pool)
2851 {
2852 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2853 B_FALSE, B_FALSE));
2854 }
2855
2856 /*
2857 * Export a storage pool.
2858 */
2859 int
2860 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2861 boolean_t hardforce)
2862 {
2863 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2864 force, hardforce));
2865 }
2866
2867 /*
2868 * Similar to spa_export(), this unloads the spa_t without actually removing it
2869 * from the namespace in any way.
2870 */
2871 int
2872 spa_reset(char *pool)
2873 {
2874 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2875 B_FALSE, B_FALSE));
2876 }
2877
2878 /*
2879 * ==========================================================================
2880 * Device manipulation
2881 * ==========================================================================
2882 */
2883
2884 /*
2885 * Add a device to a storage pool.
2886 */
2887 int
2888 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2889 {
2890 uint64_t txg;
2891 int error;
2892 vdev_t *rvd = spa->spa_root_vdev;
2893 vdev_t *vd, *tvd;
2894 nvlist_t **spares, **l2cache;
2895 uint_t nspares, nl2cache;
2896
2897 txg = spa_vdev_enter(spa);
2898
2899 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2900 VDEV_ALLOC_ADD)) != 0)
2901 return (spa_vdev_exit(spa, NULL, txg, error));
2902
2903 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
2904
2905 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2906 &nspares) != 0)
2907 nspares = 0;
2908
2909 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2910 &nl2cache) != 0)
2911 nl2cache = 0;
2912
2913 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2914 return (spa_vdev_exit(spa, vd, txg, EINVAL));
2915
2916 if (vd->vdev_children != 0 &&
2917 (error = vdev_create(vd, txg, B_FALSE)) != 0)
2918 return (spa_vdev_exit(spa, vd, txg, error));
2919
2920 /*
2921 * We must validate the spares and l2cache devices after checking the
2922 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
2923 */
2924 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2925 return (spa_vdev_exit(spa, vd, txg, error));
2926
2927 /*
2928 * Transfer each new top-level vdev from vd to rvd.
2929 */
2930 for (int c = 0; c < vd->vdev_children; c++) {
2931 tvd = vd->vdev_child[c];
2932 vdev_remove_child(vd, tvd);
2933 tvd->vdev_id = rvd->vdev_children;
2934 vdev_add_child(rvd, tvd);
2935 vdev_config_dirty(tvd);
2936 }
2937
2938 if (nspares != 0) {
2939 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2940 ZPOOL_CONFIG_SPARES);
2941 spa_load_spares(spa);
2942 spa->spa_spares.sav_sync = B_TRUE;
2943 }
2944
2945 if (nl2cache != 0) {
2946 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2947 ZPOOL_CONFIG_L2CACHE);
2948 spa_load_l2cache(spa);
2949 spa->spa_l2cache.sav_sync = B_TRUE;
2950 }
2951
2952 /*
2953 * We have to be careful when adding new vdevs to an existing pool.
2954 * If other threads start allocating from these vdevs before we
2955 * sync the config cache, and we lose power, then upon reboot we may
2956 * fail to open the pool because there are DVAs that the config cache
2957 * can't translate. Therefore, we first add the vdevs without
2958 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2959 * and then let spa_config_update() initialize the new metaslabs.
2960 *
2961 * spa_load() checks for added-but-not-initialized vdevs, so that
2962 * if we lose power at any point in this sequence, the remaining
2963 * steps will be completed the next time we load the pool.
2964 */
2965 (void) spa_vdev_exit(spa, vd, txg, 0);
2966
2967 mutex_enter(&spa_namespace_lock);
2968 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2969 mutex_exit(&spa_namespace_lock);
2970
2971 return (0);
2972 }
2973
2974 /*
2975 * Attach a device to a mirror. The arguments are the path to any device
2976 * in the mirror, and the nvroot for the new device. If the path specifies
2977 * a device that is not mirrored, we automatically insert the mirror vdev.
2978 *
2979 * If 'replacing' is specified, the new device is intended to replace the
2980 * existing device; in this case the two devices are made into their own
2981 * mirror using the 'replacing' vdev, which is functionally identical to
2982 * the mirror vdev (it actually reuses all the same ops) but has a few
2983 * extra rules: you can't attach to it after it's been created, and upon
2984 * completion of resilvering, the first disk (the one being replaced)
2985 * is automatically detached.
2986 */
2987 int
2988 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2989 {
2990 uint64_t txg, open_txg;
2991 vdev_t *rvd = spa->spa_root_vdev;
2992 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2993 vdev_ops_t *pvops;
2994 dmu_tx_t *tx;
2995 char *oldvdpath, *newvdpath;
2996 int newvd_isspare;
2997 int error;
2998
2999 txg = spa_vdev_enter(spa);
3000
3001 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3002
3003 if (oldvd == NULL)
3004 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3005
3006 if (!oldvd->vdev_ops->vdev_op_leaf)
3007 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3008
3009 pvd = oldvd->vdev_parent;
3010
3011 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3012 VDEV_ALLOC_ADD)) != 0)
3013 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3014
3015 if (newrootvd->vdev_children != 1)
3016 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3017
3018 newvd = newrootvd->vdev_child[0];
3019
3020 if (!newvd->vdev_ops->vdev_op_leaf)
3021 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3022
3023 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3024 return (spa_vdev_exit(spa, newrootvd, txg, error));
3025
3026 /*
3027 * Spares can't replace logs
3028 */
3029 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3030 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3031
3032 if (!replacing) {
3033 /*
3034 * For attach, the only allowable parent is a mirror or the root
3035 * vdev.
3036 */
3037 if (pvd->vdev_ops != &vdev_mirror_ops &&
3038 pvd->vdev_ops != &vdev_root_ops)
3039 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3040
3041 pvops = &vdev_mirror_ops;
3042 } else {
3043 /*
3044 * Active hot spares can only be replaced by inactive hot
3045 * spares.
3046 */
3047 if (pvd->vdev_ops == &vdev_spare_ops &&
3048 pvd->vdev_child[1] == oldvd &&
3049 !spa_has_spare(spa, newvd->vdev_guid))
3050 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3051
3052 /*
3053 * If the source is a hot spare, and the parent isn't already a
3054 * spare, then we want to create a new hot spare. Otherwise, we
3055 * want to create a replacing vdev. The user is not allowed to
3056 * attach to a spared vdev child unless the 'isspare' state is
3057 * the same (spare replaces spare, non-spare replaces
3058 * non-spare).
3059 */
3060 if (pvd->vdev_ops == &vdev_replacing_ops)
3061 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3062 else if (pvd->vdev_ops == &vdev_spare_ops &&
3063 newvd->vdev_isspare != oldvd->vdev_isspare)
3064 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3065 else if (pvd->vdev_ops != &vdev_spare_ops &&
3066 newvd->vdev_isspare)
3067 pvops = &vdev_spare_ops;
3068 else
3069 pvops = &vdev_replacing_ops;
3070 }
3071
3072 /*
3073 * Make sure the new device is big enough.
3074 */
3075 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3076 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3077
3078 /*
3079 * The new device cannot have a higher alignment requirement
3080 * than the top-level vdev.
3081 */
3082 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3083 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3084
3085 /*
3086 * If this is an in-place replacement, update oldvd's path and devid
3087 * to make it distinguishable from newvd, and unopenable from now on.
3088 */
3089 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3090 spa_strfree(oldvd->vdev_path);
3091 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3092 KM_SLEEP);
3093 (void) sprintf(oldvd->vdev_path, "%s/%s",
3094 newvd->vdev_path, "old");
3095 if (oldvd->vdev_devid != NULL) {
3096 spa_strfree(oldvd->vdev_devid);
3097 oldvd->vdev_devid = NULL;
3098 }
3099 }
3100
3101 /*
3102 * If the parent is not a mirror, or if we're replacing, insert the new
3103 * mirror/replacing/spare vdev above oldvd.
3104 */
3105 if (pvd->vdev_ops != pvops)
3106 pvd = vdev_add_parent(oldvd, pvops);
3107
3108 ASSERT(pvd->vdev_top->vdev_parent == rvd);
3109 ASSERT(pvd->vdev_ops == pvops);
3110 ASSERT(oldvd->vdev_parent == pvd);
3111
3112 /*
3113 * Extract the new device from its root and add it to pvd.
3114 */
3115 vdev_remove_child(newrootvd, newvd);
3116 newvd->vdev_id = pvd->vdev_children;
3117 vdev_add_child(pvd, newvd);
3118
3119 tvd = newvd->vdev_top;
3120 ASSERT(pvd->vdev_top == tvd);
3121 ASSERT(tvd->vdev_parent == rvd);
3122
3123 vdev_config_dirty(tvd);
3124
3125 /*
3126 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate
3127 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3128 */
3129 open_txg = txg + TXG_CONCURRENT_STATES - 1;
3130
3131 vdev_dtl_dirty(newvd, DTL_MISSING,
3132 TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3133
3134 if (newvd->vdev_isspare) {
3135 spa_spare_activate(newvd);
3136 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3137 }
3138
3139 oldvdpath = spa_strdup(oldvd->vdev_path);
3140 newvdpath = spa_strdup(newvd->vdev_path);
3141 newvd_isspare = newvd->vdev_isspare;
3142
3143 /*
3144 * Mark newvd's DTL dirty in this txg.
3145 */
3146 vdev_dirty(tvd, VDD_DTL, newvd, txg);
3147
3148 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3149
3150 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3151 if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3152 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
3153 CRED(), "%s vdev=%s %s vdev=%s",
3154 replacing && newvd_isspare ? "spare in" :
3155 replacing ? "replace" : "attach", newvdpath,
3156 replacing ? "for" : "to", oldvdpath);
3157 dmu_tx_commit(tx);
3158 } else {
3159 dmu_tx_abort(tx);
3160 }
3161
3162 spa_strfree(oldvdpath);
3163 spa_strfree(newvdpath);
3164
3165 /*
3166 * Kick off a resilver to update newvd.
3167 */
3168 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3169
3170 return (0);
3171 }
3172
3173 /*
3174 * Detach a device from a mirror or replacing vdev.
3175 * If 'replace_done' is specified, only detach if the parent
3176 * is a replacing vdev.
3177 */
3178 int
3179 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3180 {
3181 uint64_t txg;
3182 int error;
3183 vdev_t *rvd = spa->spa_root_vdev;
3184 vdev_t *vd, *pvd, *cvd, *tvd;
3185 boolean_t unspare = B_FALSE;
3186 uint64_t unspare_guid;
3187 size_t len;
3188
3189 txg = spa_vdev_enter(spa);
3190
3191 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3192
3193 if (vd == NULL)
3194 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3195
3196 if (!vd->vdev_ops->vdev_op_leaf)
3197 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3198
3199 pvd = vd->vdev_parent;
3200
3201 /*
3202 * If the parent/child relationship is not as expected, don't do it.
3203 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3204 * vdev that's replacing B with C. The user's intent in replacing
3205 * is to go from M(A,B) to M(A,C). If the user decides to cancel
3206 * the replace by detaching C, the expected behavior is to end up
3207 * M(A,B). But suppose that right after deciding to detach C,
3208 * the replacement of B completes. We would have M(A,C), and then
3209 * ask to detach C, which would leave us with just A -- not what
3210 * the user wanted. To prevent this, we make sure that the
3211 * parent/child relationship hasn't changed -- in this example,
3212 * that C's parent is still the replacing vdev R.
3213 */
3214 if (pvd->vdev_guid != pguid && pguid != 0)
3215 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3216
3217 /*
3218 * If replace_done is specified, only remove this device if it's
3219 * the first child of a replacing vdev. For the 'spare' vdev, either
3220 * disk can be removed.
3221 */
3222 if (replace_done) {
3223 if (pvd->vdev_ops == &vdev_replacing_ops) {
3224 if (vd->vdev_id != 0)
3225 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3226 } else if (pvd->vdev_ops != &vdev_spare_ops) {
3227 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3228 }
3229 }
3230
3231 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3232 spa_version(spa) >= SPA_VERSION_SPARES);
3233
3234 /*
3235 * Only mirror, replacing, and spare vdevs support detach.
3236 */
3237 if (pvd->vdev_ops != &vdev_replacing_ops &&
3238 pvd->vdev_ops != &vdev_mirror_ops &&
3239 pvd->vdev_ops != &vdev_spare_ops)
3240 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3241
3242 /*
3243 * If this device has the only valid copy of some data,
3244 * we cannot safely detach it.
3245 */
3246 if (vdev_dtl_required(vd))
3247 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3248
3249 ASSERT(pvd->vdev_children >= 2);
3250
3251 /*
3252 * If we are detaching the second disk from a replacing vdev, then
3253 * check to see if we changed the original vdev's path to have "/old"
3254 * at the end in spa_vdev_attach(). If so, undo that change now.
3255 */
3256 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3257 pvd->vdev_child[0]->vdev_path != NULL &&
3258 pvd->vdev_child[1]->vdev_path != NULL) {
3259 ASSERT(pvd->vdev_child[1] == vd);
3260 cvd = pvd->vdev_child[0];
3261 len = strlen(vd->vdev_path);
3262 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3263 strcmp(cvd->vdev_path + len, "/old") == 0) {
3264 spa_strfree(cvd->vdev_path);
3265 cvd->vdev_path = spa_strdup(vd->vdev_path);
3266 }
3267 }
3268
3269 /*
3270 * If we are detaching the original disk from a spare, then it implies
3271 * that the spare should become a real disk, and be removed from the
3272 * active spare list for the pool.
3273 */
3274 if (pvd->vdev_ops == &vdev_spare_ops &&
3275 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3276 unspare = B_TRUE;
3277
3278 /*
3279 * Erase the disk labels so the disk can be used for other things.
3280 * This must be done after all other error cases are handled,
3281 * but before we disembowel vd (so we can still do I/O to it).
3282 * But if we can't do it, don't treat the error as fatal --
3283 * it may be that the unwritability of the disk is the reason
3284 * it's being detached!
3285 */
3286 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3287
3288 /*
3289 * Remove vd from its parent and compact the parent's children.
3290 */
3291 vdev_remove_child(pvd, vd);
3292 vdev_compact_children(pvd);
3293
3294 /*
3295 * Remember one of the remaining children so we can get tvd below.
3296 */
3297 cvd = pvd->vdev_child[0];
3298
3299 /*
3300 * If we need to remove the remaining child from the list of hot spares,
3301 * do it now, marking the vdev as no longer a spare in the process.
3302 * We must do this before vdev_remove_parent(), because that can
3303 * change the GUID if it creates a new toplevel GUID. For a similar
3304 * reason, we must remove the spare now, in the same txg as the detach;
3305 * otherwise someone could attach a new sibling, change the GUID, and
3306 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3307 */
3308 if (unspare) {
3309 ASSERT(cvd->vdev_isspare);
3310 spa_spare_remove(cvd);
3311 unspare_guid = cvd->vdev_guid;
3312 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3313 }
3314
3315 /*
3316 * If the parent mirror/replacing vdev only has one child,
3317 * the parent is no longer needed. Remove it from the tree.
3318 */
3319 if (pvd->vdev_children == 1)
3320 vdev_remove_parent(cvd);
3321
3322 /*
3323 * We don't set tvd until now because the parent we just removed
3324 * may have been the previous top-level vdev.
3325 */
3326 tvd = cvd->vdev_top;
3327 ASSERT(tvd->vdev_parent == rvd);
3328
3329 /*
3330 * Reevaluate the parent vdev state.
3331 */
3332 vdev_propagate_state(cvd);
3333
3334 /*
3335 * If the 'autoexpand' property is set on the pool then automatically
3336 * try to expand the size of the pool. For example if the device we
3337 * just detached was smaller than the others, it may be possible to
3338 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3339 * first so that we can obtain the updated sizes of the leaf vdevs.
3340 */
3341 if (spa->spa_autoexpand) {
3342 vdev_reopen(tvd);
3343 vdev_expand(tvd, txg);
3344 }
3345
3346 vdev_config_dirty(tvd);
3347
3348 /*
3349 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
3350 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3351 * But first make sure we're not on any *other* txg's DTL list, to
3352 * prevent vd from being accessed after it's freed.
3353 */
3354 for (int t = 0; t < TXG_SIZE; t++)
3355 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3356 vd->vdev_detached = B_TRUE;
3357 vdev_dirty(tvd, VDD_DTL, vd, txg);
3358
3359 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3360
3361 error = spa_vdev_exit(spa, vd, txg, 0);
3362
3363 /*
3364 * If this was the removal of the original device in a hot spare vdev,
3365 * then we want to go through and remove the device from the hot spare
3366 * list of every other pool.
3367 */
3368 if (unspare) {
3369 spa_t *myspa = spa;
3370 spa = NULL;
3371 mutex_enter(&spa_namespace_lock);
3372 while ((spa = spa_next(spa)) != NULL) {
3373 if (spa->spa_state != POOL_STATE_ACTIVE)
3374 continue;
3375 if (spa == myspa)
3376 continue;
3377 spa_open_ref(spa, FTAG);
3378 mutex_exit(&spa_namespace_lock);
3379 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3380 mutex_enter(&spa_namespace_lock);
3381 spa_close(spa, FTAG);
3382 }
3383 mutex_exit(&spa_namespace_lock);
3384 }
3385
3386 return (error);
3387 }
3388
3389 static nvlist_t *
3390 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3391 {
3392 for (int i = 0; i < count; i++) {
3393 uint64_t guid;
3394
3395 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3396 &guid) == 0);
3397
3398 if (guid == target_guid)
3399 return (nvpp[i]);
3400 }
3401
3402 return (NULL);
3403 }
3404
3405 static void
3406 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3407 nvlist_t *dev_to_remove)
3408 {
3409 nvlist_t **newdev = NULL;
3410
3411 if (count > 1)
3412 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3413
3414 for (int i = 0, j = 0; i < count; i++) {
3415 if (dev[i] == dev_to_remove)
3416 continue;
3417 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3418 }
3419
3420 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3421 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3422
3423 for (int i = 0; i < count - 1; i++)
3424 nvlist_free(newdev[i]);
3425
3426 if (count > 1)
3427 kmem_free(newdev, (count - 1) * sizeof (void *));
3428 }
3429
3430 /*
3431 * Remove a device from the pool. Currently, this supports removing only hot
3432 * spares and level 2 ARC devices.
3433 */
3434 int
3435 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3436 {
3437 vdev_t *vd;
3438 nvlist_t **spares, **l2cache, *nv;
3439 uint_t nspares, nl2cache;
3440 uint64_t txg = 0;
3441 int error = 0;
3442 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3443
3444 if (!locked)
3445 txg = spa_vdev_enter(spa);
3446
3447 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3448
3449 if (spa->spa_spares.sav_vdevs != NULL &&
3450 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3451 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3452 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3453 /*
3454 * Only remove the hot spare if it's not currently in use
3455 * in this pool.
3456 */
3457 if (vd == NULL || unspare) {
3458 spa_vdev_remove_aux(spa->spa_spares.sav_config,
3459 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3460 spa_load_spares(spa);
3461 spa->spa_spares.sav_sync = B_TRUE;
3462 } else {
3463 error = EBUSY;
3464 }
3465 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
3466 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3467 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3468 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3469 /*
3470 * Cache devices can always be removed.
3471 */
3472 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3473 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3474 spa_load_l2cache(spa);
3475 spa->spa_l2cache.sav_sync = B_TRUE;
3476 } else if (vd != NULL) {
3477 /*
3478 * Normal vdevs cannot be removed (yet).
3479 */
3480 error = ENOTSUP;
3481 } else {
3482 /*
3483 * There is no vdev of any kind with the specified guid.
3484 */
3485 error = ENOENT;
3486 }
3487
3488 if (!locked)
3489 return (spa_vdev_exit(spa, NULL, txg, error));
3490
3491 return (error);
3492 }
3493
3494 /*
3495 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3496 * current spared, so we can detach it.
3497 */
3498 static vdev_t *
3499 spa_vdev_resilver_done_hunt(vdev_t *vd)
3500 {
3501 vdev_t *newvd, *oldvd;
3502
3503 for (int c = 0; c < vd->vdev_children; c++) {
3504 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3505 if (oldvd != NULL)
3506 return (oldvd);
3507 }
3508
3509 /*
3510 * Check for a completed replacement.
3511 */
3512 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3513 oldvd = vd->vdev_child[0];
3514 newvd = vd->vdev_child[1];
3515
3516 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3517 !vdev_dtl_required(oldvd))
3518 return (oldvd);
3519 }
3520
3521 /*
3522 * Check for a completed resilver with the 'unspare' flag set.
3523 */
3524 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3525 newvd = vd->vdev_child[0];
3526 oldvd = vd->vdev_child[1];
3527
3528 if (newvd->vdev_unspare &&
3529 vdev_dtl_empty(newvd, DTL_MISSING) &&
3530 !vdev_dtl_required(oldvd)) {
3531 newvd->vdev_unspare = 0;
3532 return (oldvd);
3533 }
3534 }
3535
3536 return (NULL);
3537 }
3538
3539 static void
3540 spa_vdev_resilver_done(spa_t *spa)
3541 {
3542 vdev_t *vd, *pvd, *ppvd;
3543 uint64_t guid, sguid, pguid, ppguid;
3544
3545 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3546
3547 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3548 pvd = vd->vdev_parent;
3549 ppvd = pvd->vdev_parent;
3550 guid = vd->vdev_guid;
3551 pguid = pvd->vdev_guid;
3552 ppguid = ppvd->vdev_guid;
3553 sguid = 0;
3554 /*
3555 * If we have just finished replacing a hot spared device, then
3556 * we need to detach the parent's first child (the original hot
3557 * spare) as well.
3558 */
3559 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3560 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3561 ASSERT(ppvd->vdev_children == 2);
3562 sguid = ppvd->vdev_child[1]->vdev_guid;
3563 }
3564 spa_config_exit(spa, SCL_ALL, FTAG);
3565 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3566 return;
3567 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3568 return;
3569 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3570 }
3571
3572 spa_config_exit(spa, SCL_ALL, FTAG);
3573 }
3574
3575 /*
3576 * Update the stored path or FRU for this vdev. Dirty the vdev configuration,
3577 * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3578 */
3579 int
3580 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3581 boolean_t ispath)
3582 {
3583 vdev_t *vd;
3584 uint64_t txg;
3585
3586 txg = spa_vdev_enter(spa);
3587
3588 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3589 return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3590
3591 if (!vd->vdev_ops->vdev_op_leaf)
3592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3593
3594 if (ispath) {
3595 spa_strfree(vd->vdev_path);
3596 vd->vdev_path = spa_strdup(value);
3597 } else {
3598 if (vd->vdev_fru != NULL)
3599 spa_strfree(vd->vdev_fru);
3600 vd->vdev_fru = spa_strdup(value);
3601 }
3602
3603 vdev_config_dirty(vd->vdev_top);
3604
3605 return (spa_vdev_exit(spa, NULL, txg, 0));
3606 }
3607
3608 int
3609 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3610 {
3611 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3612 }
3613
3614 int
3615 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3616 {
3617 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3618 }
3619
3620 /*
3621 * ==========================================================================
3622 * SPA Scrubbing
3623 * ==========================================================================
3624 */
3625
3626 int
3627 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3628 {
3629 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3630
3631 if ((uint_t)type >= POOL_SCRUB_TYPES)
3632 return (ENOTSUP);
3633
3634 /*
3635 * If a resilver was requested, but there is no DTL on a
3636 * writeable leaf device, we have nothing to do.
3637 */
3638 if (type == POOL_SCRUB_RESILVER &&
3639 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3640 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3641 return (0);
3642 }
3643
3644 if (type == POOL_SCRUB_EVERYTHING &&
3645 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3646 spa->spa_dsl_pool->dp_scrub_isresilver)
3647 return (EBUSY);
3648
3649 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3650 return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3651 } else if (type == POOL_SCRUB_NONE) {
3652 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3653 } else {
3654 return (EINVAL);
3655 }
3656 }
3657
3658 /*
3659 * ==========================================================================
3660 * SPA async task processing
3661 * ==========================================================================
3662 */
3663
3664 static void
3665 spa_async_remove(spa_t *spa, vdev_t *vd)
3666 {
3667 if (vd->vdev_remove_wanted) {
3668 vd->vdev_remove_wanted = 0;
3669 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3670 vdev_clear(spa, vd);
3671 vdev_state_dirty(vd->vdev_top);
3672 }
3673
3674 for (int c = 0; c < vd->vdev_children; c++)
3675 spa_async_remove(spa, vd->vdev_child[c]);
3676 }
3677
3678 static void
3679 spa_async_probe(spa_t *spa, vdev_t *vd)
3680 {
3681 if (vd->vdev_probe_wanted) {
3682 vd->vdev_probe_wanted = 0;
3683 vdev_reopen(vd); /* vdev_open() does the actual probe */
3684 }
3685
3686 for (int c = 0; c < vd->vdev_children; c++)
3687 spa_async_probe(spa, vd->vdev_child[c]);
3688 }
3689
3690 static void
3691 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3692 {
3693 sysevent_id_t eid;
3694 nvlist_t *attr;
3695 char *physpath;
3696
3697 if (!spa->spa_autoexpand)
3698 return;
3699
3700 for (int c = 0; c < vd->vdev_children; c++) {
3701 vdev_t *cvd = vd->vdev_child[c];
3702 spa_async_autoexpand(spa, cvd);
3703 }
3704
3705 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3706 return;
3707
3708 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3709 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3710
3711 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3712 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3713
3714 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3715 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3716
3717 nvlist_free(attr);
3718 kmem_free(physpath, MAXPATHLEN);
3719 }
3720
3721 static void
3722 spa_async_thread(spa_t *spa)
3723 {
3724 int tasks;
3725
3726 ASSERT(spa->spa_sync_on);
3727
3728 mutex_enter(&spa->spa_async_lock);
3729 tasks = spa->spa_async_tasks;
3730 spa->spa_async_tasks = 0;
3731 mutex_exit(&spa->spa_async_lock);
3732
3733 /*
3734 * See if the config needs to be updated.
3735 */
3736 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3737 uint64_t oldsz, space_update;
3738
3739 mutex_enter(&spa_namespace_lock);
3740 oldsz = spa_get_space(spa);
3741 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3742 space_update = spa_get_space(spa) - oldsz;
3743 mutex_exit(&spa_namespace_lock);
3744
3745 /*
3746 * If the pool grew as a result of the config update,
3747 * then log an internal history event.
3748 */
3749 if (space_update) {
3750 dmu_tx_t *tx;
3751
3752 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3753 if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3754 spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3755 spa, tx, CRED(),
3756 "pool '%s' size: %llu(+%llu)",
3757 spa_name(spa), spa_get_space(spa),
3758 space_update);
3759 dmu_tx_commit(tx);
3760 } else {
3761 dmu_tx_abort(tx);
3762 }
3763 }
3764 }
3765
3766 /*
3767 * See if any devices need to be marked REMOVED.
3768 */
3769 if (tasks & SPA_ASYNC_REMOVE) {
3770 spa_vdev_state_enter(spa);
3771 spa_async_remove(spa, spa->spa_root_vdev);
3772 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3773 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3774 for (int i = 0; i < spa->spa_spares.sav_count; i++)
3775 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3776 (void) spa_vdev_state_exit(spa, NULL, 0);
3777 }
3778
3779 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3780 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3781 spa_async_autoexpand(spa, spa->spa_root_vdev);
3782 spa_config_exit(spa, SCL_CONFIG, FTAG);
3783 }
3784
3785 /*
3786 * See if any devices need to be probed.
3787 */
3788 if (tasks & SPA_ASYNC_PROBE) {
3789 spa_vdev_state_enter(spa);
3790 spa_async_probe(spa, spa->spa_root_vdev);
3791 (void) spa_vdev_state_exit(spa, NULL, 0);
3792 }
3793
3794 /*
3795 * If any devices are done replacing, detach them.
3796 */
3797 if (tasks & SPA_ASYNC_RESILVER_DONE)
3798 spa_vdev_resilver_done(spa);
3799
3800 /*
3801 * Kick off a resilver.
3802 */
3803 if (tasks & SPA_ASYNC_RESILVER)
3804 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3805
3806 /*
3807 * Let the world know that we're done.
3808 */
3809 mutex_enter(&spa->spa_async_lock);
3810 spa->spa_async_thread = NULL;
3811 cv_broadcast(&spa->spa_async_cv);
3812 mutex_exit(&spa->spa_async_lock);
3813 thread_exit();
3814 }
3815
3816 void
3817 spa_async_suspend(spa_t *spa)
3818 {
3819 mutex_enter(&spa->spa_async_lock);
3820 spa->spa_async_suspended++;
3821 while (spa->spa_async_thread != NULL)
3822 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3823 mutex_exit(&spa->spa_async_lock);
3824 }
3825
3826 void
3827 spa_async_resume(spa_t *spa)
3828 {
3829 mutex_enter(&spa->spa_async_lock);
3830 ASSERT(spa->spa_async_suspended != 0);
3831 spa->spa_async_suspended--;
3832 mutex_exit(&spa->spa_async_lock);
3833 }
3834
3835 static void
3836 spa_async_dispatch(spa_t *spa)
3837 {
3838 mutex_enter(&spa->spa_async_lock);
3839 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3840 spa->spa_async_thread == NULL &&
3841 rootdir != NULL && !vn_is_readonly(rootdir))
3842 spa->spa_async_thread = thread_create(NULL, 0,
3843 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3844 mutex_exit(&spa->spa_async_lock);
3845 }
3846
3847 void
3848 spa_async_request(spa_t *spa, int task)
3849 {
3850 mutex_enter(&spa->spa_async_lock);
3851 spa->spa_async_tasks |= task;
3852 mutex_exit(&spa->spa_async_lock);
3853 }
3854
3855 /*
3856 * ==========================================================================
3857 * SPA syncing routines
3858 * ==========================================================================
3859 */
3860
3861 static void
3862 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3863 {
3864 bplist_t *bpl = &spa->spa_sync_bplist;
3865 dmu_tx_t *tx;
3866 blkptr_t blk;
3867 uint64_t itor = 0;
3868 zio_t *zio;
3869 int error;
3870 uint8_t c = 1;
3871
3872 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3873
3874 while (bplist_iterate(bpl, &itor, &blk) == 0) {
3875 ASSERT(blk.blk_birth < txg);
3876 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3877 ZIO_FLAG_MUSTSUCCEED));
3878 }
3879
3880 error = zio_wait(zio);
3881 ASSERT3U(error, ==, 0);
3882
3883 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3884 bplist_vacate(bpl, tx);
3885
3886 /*
3887 * Pre-dirty the first block so we sync to convergence faster.
3888 * (Usually only the first block is needed.)
3889 */
3890 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3891 dmu_tx_commit(tx);
3892 }
3893
3894 static void
3895 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3896 {
3897 char *packed = NULL;
3898 size_t bufsize;
3899 size_t nvsize = 0;
3900 dmu_buf_t *db;
3901
3902 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3903
3904 /*
3905 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3906 * information. This avoids the dbuf_will_dirty() path and
3907 * saves us a pre-read to get data we don't actually care about.
3908 */
3909 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3910 packed = kmem_alloc(bufsize, KM_SLEEP);
3911
3912 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3913 KM_SLEEP) == 0);
3914 bzero(packed + nvsize, bufsize - nvsize);
3915
3916 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3917
3918 kmem_free(packed, bufsize);
3919
3920 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3921 dmu_buf_will_dirty(db, tx);
3922 *(uint64_t *)db->db_data = nvsize;
3923 dmu_buf_rele(db, FTAG);
3924 }
3925
3926 static void
3927 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3928 const char *config, const char *entry)
3929 {
3930 nvlist_t *nvroot;
3931 nvlist_t **list;
3932 int i;
3933
3934 if (!sav->sav_sync)
3935 return;
3936
3937 /*
3938 * Update the MOS nvlist describing the list of available devices.
3939 * spa_validate_aux() will have already made sure this nvlist is
3940 * valid and the vdevs are labeled appropriately.
3941 */
3942 if (sav->sav_object == 0) {
3943 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3944 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3945 sizeof (uint64_t), tx);
3946 VERIFY(zap_update(spa->spa_meta_objset,
3947 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3948 &sav->sav_object, tx) == 0);
3949 }
3950
3951 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3952 if (sav->sav_count == 0) {
3953 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3954 } else {
3955 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3956 for (i = 0; i < sav->sav_count; i++)
3957 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3958 B_FALSE, B_FALSE, B_TRUE);
3959 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3960 sav->sav_count) == 0);
3961 for (i = 0; i < sav->sav_count; i++)
3962 nvlist_free(list[i]);
3963 kmem_free(list, sav->sav_count * sizeof (void *));
3964 }
3965
3966 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3967 nvlist_free(nvroot);
3968
3969 sav->sav_sync = B_FALSE;
3970 }
3971
3972 static void
3973 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3974 {
3975 nvlist_t *config;
3976
3977 if (list_is_empty(&spa->spa_config_dirty_list))
3978 return;
3979
3980 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3981
3982 config = spa_config_generate(spa, spa->spa_root_vdev,
3983 dmu_tx_get_txg(tx), B_FALSE);
3984
3985 spa_config_exit(spa, SCL_STATE, FTAG);
3986
3987 if (spa->spa_config_syncing)
3988 nvlist_free(spa->spa_config_syncing);
3989 spa->spa_config_syncing = config;
3990
3991 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3992 }
3993
3994 /*
3995 * Set zpool properties.
3996 */
3997 static void
3998 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3999 {
4000 spa_t *spa = arg1;
4001 objset_t *mos = spa->spa_meta_objset;
4002 nvlist_t *nvp = arg2;
4003 nvpair_t *elem;
4004 uint64_t intval;
4005 char *strval;
4006 zpool_prop_t prop;
4007 const char *propname;
4008 zprop_type_t proptype;
4009
4010 mutex_enter(&spa->spa_props_lock);
4011
4012 elem = NULL;
4013 while ((elem = nvlist_next_nvpair(nvp, elem))) {
4014 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4015 case ZPOOL_PROP_VERSION:
4016 /*
4017 * Only set version for non-zpool-creation cases
4018 * (set/import). spa_create() needs special care
4019 * for version setting.
4020 */
4021 if (tx->tx_txg != TXG_INITIAL) {
4022 VERIFY(nvpair_value_uint64(elem,
4023 &intval) == 0);
4024 ASSERT(intval <= SPA_VERSION);
4025 ASSERT(intval >= spa_version(spa));
4026 spa->spa_uberblock.ub_version = intval;
4027 vdev_config_dirty(spa->spa_root_vdev);
4028 }
4029 break;
4030
4031 case ZPOOL_PROP_ALTROOT:
4032 /*
4033 * 'altroot' is a non-persistent property. It should
4034 * have been set temporarily at creation or import time.
4035 */
4036 ASSERT(spa->spa_root != NULL);
4037 break;
4038
4039 case ZPOOL_PROP_CACHEFILE:
4040 /*
4041 * 'cachefile' is also a non-persisitent property.
4042 */
4043 break;
4044 default:
4045 /*
4046 * Set pool property values in the poolprops mos object.
4047 */
4048 if (spa->spa_pool_props_object == 0) {
4049 objset_t *mos = spa->spa_meta_objset;
4050
4051 VERIFY((spa->spa_pool_props_object =
4052 zap_create(mos, DMU_OT_POOL_PROPS,
4053 DMU_OT_NONE, 0, tx)) > 0);
4054
4055 VERIFY(zap_update(mos,
4056 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4057 8, 1, &spa->spa_pool_props_object, tx)
4058 == 0);
4059 }
4060
4061 /* normalize the property name */
4062 propname = zpool_prop_to_name(prop);
4063 proptype = zpool_prop_get_type(prop);
4064
4065 if (nvpair_type(elem) == DATA_TYPE_STRING) {
4066 ASSERT(proptype == PROP_TYPE_STRING);
4067 VERIFY(nvpair_value_string(elem, &strval) == 0);
4068 VERIFY(zap_update(mos,
4069 spa->spa_pool_props_object, propname,
4070 1, strlen(strval) + 1, strval, tx) == 0);
4071
4072 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4073 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4074
4075 if (proptype == PROP_TYPE_INDEX) {
4076 const char *unused;
4077 VERIFY(zpool_prop_index_to_string(
4078 prop, intval, &unused) == 0);
4079 }
4080 VERIFY(zap_update(mos,
4081 spa->spa_pool_props_object, propname,
4082 8, 1, &intval, tx) == 0);
4083 } else {
4084 ASSERT(0); /* not allowed */
4085 }
4086
4087 switch (prop) {
4088 case ZPOOL_PROP_DELEGATION:
4089 spa->spa_delegation = intval;
4090 break;
4091 case ZPOOL_PROP_BOOTFS:
4092 spa->spa_bootfs = intval;
4093 break;
4094 case ZPOOL_PROP_FAILUREMODE:
4095 spa->spa_failmode = intval;
4096 break;
4097 case ZPOOL_PROP_AUTOEXPAND:
4098 spa->spa_autoexpand = intval;
4099 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4100 break;
4101 default:
4102 break;
4103 }
4104 }
4105
4106 /* log internal history if this is not a zpool create */
4107 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4108 tx->tx_txg != TXG_INITIAL) {
4109 spa_history_internal_log(LOG_POOL_PROPSET,
4110 spa, tx, cr, "%s %lld %s",
4111 nvpair_name(elem), intval, spa_name(spa));
4112 }
4113 }
4114
4115 mutex_exit(&spa->spa_props_lock);
4116 }
4117
4118 /*
4119 * Sync the specified transaction group. New blocks may be dirtied as
4120 * part of the process, so we iterate until it converges.
4121 */
4122 void
4123 spa_sync(spa_t *spa, uint64_t txg)
4124 {
4125 dsl_pool_t *dp = spa->spa_dsl_pool;
4126 objset_t *mos = spa->spa_meta_objset;
4127 bplist_t *bpl = &spa->spa_sync_bplist;
4128 vdev_t *rvd = spa->spa_root_vdev;
4129 vdev_t *vd;
4130 dmu_tx_t *tx;
4131 int dirty_vdevs;
4132 int error;
4133
4134 /*
4135 * Lock out configuration changes.
4136 */
4137 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4138
4139 spa->spa_syncing_txg = txg;
4140 spa->spa_sync_pass = 0;
4141
4142 /*
4143 * If there are any pending vdev state changes, convert them
4144 * into config changes that go out with this transaction group.
4145 */
4146 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4147 while (list_head(&spa->spa_state_dirty_list) != NULL) {
4148 /*
4149 * We need the write lock here because, for aux vdevs,
4150 * calling vdev_config_dirty() modifies sav_config.
4151 * This is ugly and will become unnecessary when we
4152 * eliminate the aux vdev wart by integrating all vdevs
4153 * into the root vdev tree.
4154 */
4155 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4156 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4157 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4158 vdev_state_clean(vd);
4159 vdev_config_dirty(vd);
4160 }
4161 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4162 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4163 }
4164 spa_config_exit(spa, SCL_STATE, FTAG);
4165
4166 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4167
4168 tx = dmu_tx_create_assigned(dp, txg);
4169
4170 /*
4171 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4172 * set spa_deflate if we have no raid-z vdevs.
4173 */
4174 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4175 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4176 int i;
4177
4178 for (i = 0; i < rvd->vdev_children; i++) {
4179 vd = rvd->vdev_child[i];
4180 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4181 break;
4182 }
4183 if (i == rvd->vdev_children) {
4184 spa->spa_deflate = TRUE;
4185 VERIFY(0 == zap_add(spa->spa_meta_objset,
4186 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4187 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4188 }
4189 }
4190
4191 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4192 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4193 dsl_pool_create_origin(dp, tx);
4194
4195 /* Keeping the origin open increases spa_minref */
4196 spa->spa_minref += 3;
4197 }
4198
4199 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4200 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4201 dsl_pool_upgrade_clones(dp, tx);
4202 }
4203
4204 /*
4205 * If anything has changed in this txg, push the deferred frees
4206 * from the previous txg. If not, leave them alone so that we
4207 * don't generate work on an otherwise idle system.
4208 */
4209 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4210 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4211 !txg_list_empty(&dp->dp_sync_tasks, txg))
4212 spa_sync_deferred_frees(spa, txg);
4213
4214 /*
4215 * Iterate to convergence.
4216 */
4217 do {
4218 spa->spa_sync_pass++;
4219
4220 spa_sync_config_object(spa, tx);
4221 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4222 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4223 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4224 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4225 spa_errlog_sync(spa, txg);
4226 dsl_pool_sync(dp, txg);
4227
4228 dirty_vdevs = 0;
4229 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4230 vdev_sync(vd, txg);
4231 dirty_vdevs++;
4232 }
4233
4234 bplist_sync(bpl, tx);
4235 } while (dirty_vdevs);
4236
4237 bplist_close(bpl);
4238
4239 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4240
4241 /*
4242 * Rewrite the vdev configuration (which includes the uberblock)
4243 * to commit the transaction group.
4244 *
4245 * If there are no dirty vdevs, we sync the uberblock to a few
4246 * random top-level vdevs that are known to be visible in the
4247 * config cache (see spa_vdev_add() for a complete description).
4248 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4249 */
4250 for (;;) {
4251 /*
4252 * We hold SCL_STATE to prevent vdev open/close/etc.
4253 * while we're attempting to write the vdev labels.
4254 */
4255 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4256
4257 if (list_is_empty(&spa->spa_config_dirty_list)) {
4258 vdev_t *svd[SPA_DVAS_PER_BP];
4259 int svdcount = 0;
4260 int children = rvd->vdev_children;
4261 int c0 = spa_get_random(children);
4262
4263 for (int c = 0; c < children; c++) {
4264 vd = rvd->vdev_child[(c0 + c) % children];
4265 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4266 continue;
4267 svd[svdcount++] = vd;
4268 if (svdcount == SPA_DVAS_PER_BP)
4269 break;
4270 }
4271 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4272 if (error != 0)
4273 error = vdev_config_sync(svd, svdcount, txg,
4274 B_TRUE);
4275 } else {
4276 error = vdev_config_sync(rvd->vdev_child,
4277 rvd->vdev_children, txg, B_FALSE);
4278 if (error != 0)
4279 error = vdev_config_sync(rvd->vdev_child,
4280 rvd->vdev_children, txg, B_TRUE);
4281 }
4282
4283 spa_config_exit(spa, SCL_STATE, FTAG);
4284
4285 if (error == 0)
4286 break;
4287 zio_suspend(spa, NULL);
4288 zio_resume_wait(spa);
4289 }
4290 dmu_tx_commit(tx);
4291
4292 /*
4293 * Clear the dirty config list.
4294 */
4295 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4296 vdev_config_clean(vd);
4297
4298 /*
4299 * Now that the new config has synced transactionally,
4300 * let it become visible to the config cache.
4301 */
4302 if (spa->spa_config_syncing != NULL) {
4303 spa_config_set(spa, spa->spa_config_syncing);
4304 spa->spa_config_txg = txg;
4305 spa->spa_config_syncing = NULL;
4306 }
4307
4308 spa->spa_ubsync = spa->spa_uberblock;
4309
4310 /*
4311 * Clean up the ZIL records for the synced txg.
4312 */
4313 dsl_pool_zil_clean(dp);
4314
4315 /*
4316 * Update usable space statistics.
4317 */
4318 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4319 vdev_sync_done(vd, txg);
4320
4321 /*
4322 * It had better be the case that we didn't dirty anything
4323 * since vdev_config_sync().
4324 */
4325 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4326 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4327 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4328 ASSERT(bpl->bpl_queue == NULL);
4329
4330 spa_config_exit(spa, SCL_CONFIG, FTAG);
4331
4332 /*
4333 * If any async tasks have been requested, kick them off.
4334 */
4335 spa_async_dispatch(spa);
4336 }
4337
4338 /*
4339 * Sync all pools. We don't want to hold the namespace lock across these
4340 * operations, so we take a reference on the spa_t and drop the lock during the
4341 * sync.
4342 */
4343 void
4344 spa_sync_allpools(void)
4345 {
4346 spa_t *spa = NULL;
4347 mutex_enter(&spa_namespace_lock);
4348 while ((spa = spa_next(spa)) != NULL) {
4349 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4350 continue;
4351 spa_open_ref(spa, FTAG);
4352 mutex_exit(&spa_namespace_lock);
4353 txg_wait_synced(spa_get_dsl(spa), 0);
4354 mutex_enter(&spa_namespace_lock);
4355 spa_close(spa, FTAG);
4356 }
4357 mutex_exit(&spa_namespace_lock);
4358 }
4359
4360 /*
4361 * ==========================================================================
4362 * Miscellaneous routines
4363 * ==========================================================================
4364 */
4365
4366 /*
4367 * Remove all pools in the system.
4368 */
4369 void
4370 spa_evict_all(void)
4371 {
4372 spa_t *spa;
4373
4374 /*
4375 * Remove all cached state. All pools should be closed now,
4376 * so every spa in the AVL tree should be unreferenced.
4377 */
4378 mutex_enter(&spa_namespace_lock);
4379 while ((spa = spa_next(NULL)) != NULL) {
4380 /*
4381 * Stop async tasks. The async thread may need to detach
4382 * a device that's been replaced, which requires grabbing
4383 * spa_namespace_lock, so we must drop it here.
4384 */
4385 spa_open_ref(spa, FTAG);
4386 mutex_exit(&spa_namespace_lock);
4387 spa_async_suspend(spa);
4388 mutex_enter(&spa_namespace_lock);
4389 spa_close(spa, FTAG);
4390
4391 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4392 spa_unload(spa);
4393 spa_deactivate(spa);
4394 }
4395 spa_remove(spa);
4396 }
4397 mutex_exit(&spa_namespace_lock);
4398 }
4399
4400 vdev_t *
4401 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4402 {
4403 vdev_t *vd;
4404 int i;
4405
4406 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4407 return (vd);
4408
4409 if (aux) {
4410 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4411 vd = spa->spa_l2cache.sav_vdevs[i];
4412 if (vd->vdev_guid == guid)
4413 return (vd);
4414 }
4415
4416 for (i = 0; i < spa->spa_spares.sav_count; i++) {
4417 vd = spa->spa_spares.sav_vdevs[i];
4418 if (vd->vdev_guid == guid)
4419 return (vd);
4420 }
4421 }
4422
4423 return (NULL);
4424 }
4425
4426 void
4427 spa_upgrade(spa_t *spa, uint64_t version)
4428 {
4429 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4430
4431 /*
4432 * This should only be called for a non-faulted pool, and since a
4433 * future version would result in an unopenable pool, this shouldn't be
4434 * possible.
4435 */
4436 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4437 ASSERT(version >= spa->spa_uberblock.ub_version);
4438
4439 spa->spa_uberblock.ub_version = version;
4440 vdev_config_dirty(spa->spa_root_vdev);
4441
4442 spa_config_exit(spa, SCL_ALL, FTAG);
4443
4444 txg_wait_synced(spa_get_dsl(spa), 0);
4445 }
4446
4447 boolean_t
4448 spa_has_spare(spa_t *spa, uint64_t guid)
4449 {
4450 int i;
4451 uint64_t spareguid;
4452 spa_aux_vdev_t *sav = &spa->spa_spares;
4453
4454 for (i = 0; i < sav->sav_count; i++)
4455 if (sav->sav_vdevs[i]->vdev_guid == guid)
4456 return (B_TRUE);
4457
4458 for (i = 0; i < sav->sav_npending; i++) {
4459 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4460 &spareguid) == 0 && spareguid == guid)
4461 return (B_TRUE);
4462 }
4463
4464 return (B_FALSE);
4465 }
4466
4467 /*
4468 * Check if a pool has an active shared spare device.
4469 * Note: reference count of an active spare is 2, as a spare and as a replace
4470 */
4471 static boolean_t
4472 spa_has_active_shared_spare(spa_t *spa)
4473 {
4474 int i, refcnt;
4475 uint64_t pool;
4476 spa_aux_vdev_t *sav = &spa->spa_spares;
4477
4478 for (i = 0; i < sav->sav_count; i++) {
4479 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4480 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4481 refcnt > 2)
4482 return (B_TRUE);
4483 }
4484
4485 return (B_FALSE);
4486 }
4487
4488 /*
4489 * Post a sysevent corresponding to the given event. The 'name' must be one of
4490 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
4491 * filled in from the spa and (optionally) the vdev. This doesn't do anything
4492 * in the userland libzpool, as we don't want consumers to misinterpret ztest
4493 * or zdb as real changes.
4494 */
4495 void
4496 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4497 {
4498 #ifdef _KERNEL
4499 sysevent_t *ev;
4500 sysevent_attr_list_t *attr = NULL;
4501 sysevent_value_t value;
4502 sysevent_id_t eid;
4503
4504 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4505 SE_SLEEP);
4506
4507 value.value_type = SE_DATA_TYPE_STRING;
4508 value.value.sv_string = spa_name(spa);
4509 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4510 goto done;
4511
4512 value.value_type = SE_DATA_TYPE_UINT64;
4513 value.value.sv_uint64 = spa_guid(spa);
4514 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4515 goto done;
4516
4517 if (vd) {
4518 value.value_type = SE_DATA_TYPE_UINT64;
4519 value.value.sv_uint64 = vd->vdev_guid;
4520 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4521 SE_SLEEP) != 0)
4522 goto done;
4523
4524 if (vd->vdev_path) {
4525 value.value_type = SE_DATA_TYPE_STRING;
4526 value.value.sv_string = vd->vdev_path;
4527 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4528 &value, SE_SLEEP) != 0)
4529 goto done;
4530 }
4531 }
4532
4533 if (sysevent_attach_attributes(ev, attr) != 0)
4534 goto done;
4535 attr = NULL;
4536
4537 (void) log_sysevent(ev, SE_SLEEP, &eid);
4538
4539 done:
4540 if (attr)
4541 sysevent_free_attr(attr);
4542 sysevent_free(ev);
4543 #endif
4544 }