]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
cstyle: Resolve C style issues
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/vdev_disk.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70 #include <sys/zvol.h>
71
72 #ifdef _KERNEL
73 #include <sys/bootprops.h>
74 #include <sys/callb.h>
75 #include <sys/cpupart.h>
76 #include <sys/pool.h>
77 #include <sys/sysdc.h>
78 #include <sys/zone.h>
79 #endif /* _KERNEL */
80
81 #include "zfs_prop.h"
82 #include "zfs_comutil.h"
83
84 typedef enum zti_modes {
85 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
86 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
87 ZTI_MODE_NULL, /* don't create a taskq */
88 ZTI_NMODES
89 } zti_modes_t;
90
91 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
92 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
93 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
94 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
95
96 #define ZTI_N(n) ZTI_P(n, 1)
97 #define ZTI_ONE ZTI_N(1)
98
99 typedef struct zio_taskq_info {
100 zti_modes_t zti_mode;
101 uint_t zti_value;
102 uint_t zti_count;
103 } zio_taskq_info_t;
104
105 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
106 "iss", "iss_h", "int", "int_h"
107 };
108
109 /*
110 * This table defines the taskq settings for each ZFS I/O type. When
111 * initializing a pool, we use this table to create an appropriately sized
112 * taskq. Some operations are low volume and therefore have a small, static
113 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
114 * macros. Other operations process a large amount of data; the ZTI_BATCH
115 * macro causes us to create a taskq oriented for throughput. Some operations
116 * are so high frequency and short-lived that the taskq itself can become a a
117 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
118 * additional degree of parallelism specified by the number of threads per-
119 * taskq and the number of taskqs; when dispatching an event in this case, the
120 * particular taskq is chosen at random.
121 *
122 * The different taskq priorities are to handle the different contexts (issue
123 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
124 * need to be handled with minimum delay.
125 */
126 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
127 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
128 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
129 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
130 { ZTI_BATCH, ZTI_N(5), ZTI_N(16), ZTI_N(5) }, /* WRITE */
131 { ZTI_P(4, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
134 };
135
136 static void spa_sync_version(void *arg, dmu_tx_t *tx);
137 static void spa_sync_props(void *arg, dmu_tx_t *tx);
138 static boolean_t spa_has_active_shared_spare(spa_t *spa);
139 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
140 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
141 char **ereport);
142 static void spa_vdev_resilver_done(spa_t *spa);
143
144 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
145 id_t zio_taskq_psrset_bind = PS_NONE;
146 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
147 uint_t zio_taskq_basedc = 80; /* base duty cycle */
148
149 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
150
151 /*
152 * This (illegal) pool name is used when temporarily importing a spa_t in order
153 * to get the vdev stats associated with the imported devices.
154 */
155 #define TRYIMPORT_NAME "$import"
156
157 /*
158 * ==========================================================================
159 * SPA properties routines
160 * ==========================================================================
161 */
162
163 /*
164 * Add a (source=src, propname=propval) list to an nvlist.
165 */
166 static void
167 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
168 uint64_t intval, zprop_source_t src)
169 {
170 const char *propname = zpool_prop_to_name(prop);
171 nvlist_t *propval;
172
173 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
174 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
175
176 if (strval != NULL)
177 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
178 else
179 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
180
181 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
182 nvlist_free(propval);
183 }
184
185 /*
186 * Get property values from the spa configuration.
187 */
188 static void
189 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
190 {
191 vdev_t *rvd = spa->spa_root_vdev;
192 dsl_pool_t *pool = spa->spa_dsl_pool;
193 uint64_t size;
194 uint64_t alloc;
195 uint64_t space;
196 uint64_t cap, version;
197 zprop_source_t src = ZPROP_SRC_NONE;
198 spa_config_dirent_t *dp;
199 int c;
200
201 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
202
203 if (rvd != NULL) {
204 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
205 size = metaslab_class_get_space(spa_normal_class(spa));
206 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
207 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
208 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
210 size - alloc, src);
211
212 space = 0;
213 for (c = 0; c < rvd->vdev_children; c++) {
214 vdev_t *tvd = rvd->vdev_child[c];
215 space += tvd->vdev_max_asize - tvd->vdev_asize;
216 }
217 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
218 src);
219
220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 (spa_mode(spa) == FREAD), src);
222
223 cap = (size == 0) ? 0 : (alloc * 100 / size);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225
226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 ddt_get_pool_dedup_ratio(spa), src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 rvd->vdev_state, src);
231
232 version = spa_version(spa);
233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 src = ZPROP_SRC_DEFAULT;
235 else
236 src = ZPROP_SRC_LOCAL;
237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 }
239
240 if (pool != NULL) {
241 dsl_dir_t *freedir = pool->dp_free_dir;
242
243 /*
244 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
245 * when opening pools before this version freedir will be NULL.
246 */
247 if (freedir != NULL) {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
249 freedir->dd_phys->dd_used_bytes, src);
250 } else {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
252 NULL, 0, src);
253 }
254 }
255
256 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
257
258 if (spa->spa_comment != NULL) {
259 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
260 0, ZPROP_SRC_LOCAL);
261 }
262
263 if (spa->spa_root != NULL)
264 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
265 0, ZPROP_SRC_LOCAL);
266
267 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
268 if (dp->scd_path == NULL) {
269 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
270 "none", 0, ZPROP_SRC_LOCAL);
271 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 dp->scd_path, 0, ZPROP_SRC_LOCAL);
274 }
275 }
276 }
277
278 /*
279 * Get zpool property values.
280 */
281 int
282 spa_prop_get(spa_t *spa, nvlist_t **nvp)
283 {
284 objset_t *mos = spa->spa_meta_objset;
285 zap_cursor_t zc;
286 zap_attribute_t za;
287 int err;
288
289 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_PUSHPAGE);
290 if (err)
291 return (err);
292
293 mutex_enter(&spa->spa_props_lock);
294
295 /*
296 * Get properties from the spa config.
297 */
298 spa_prop_get_config(spa, nvp);
299
300 /* If no pool property object, no more prop to get. */
301 if (mos == NULL || spa->spa_pool_props_object == 0) {
302 mutex_exit(&spa->spa_props_lock);
303 goto out;
304 }
305
306 /*
307 * Get properties from the MOS pool property object.
308 */
309 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
310 (err = zap_cursor_retrieve(&zc, &za)) == 0;
311 zap_cursor_advance(&zc)) {
312 uint64_t intval = 0;
313 char *strval = NULL;
314 zprop_source_t src = ZPROP_SRC_DEFAULT;
315 zpool_prop_t prop;
316
317 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
318 continue;
319
320 switch (za.za_integer_length) {
321 case 8:
322 /* integer property */
323 if (za.za_first_integer !=
324 zpool_prop_default_numeric(prop))
325 src = ZPROP_SRC_LOCAL;
326
327 if (prop == ZPOOL_PROP_BOOTFS) {
328 dsl_pool_t *dp;
329 dsl_dataset_t *ds = NULL;
330
331 dp = spa_get_dsl(spa);
332 dsl_pool_config_enter(dp, FTAG);
333 if ((err = dsl_dataset_hold_obj(dp,
334 za.za_first_integer, FTAG, &ds))) {
335 dsl_pool_config_exit(dp, FTAG);
336 break;
337 }
338
339 strval = kmem_alloc(
340 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
341 KM_PUSHPAGE);
342 dsl_dataset_name(ds, strval);
343 dsl_dataset_rele(ds, FTAG);
344 dsl_pool_config_exit(dp, FTAG);
345 } else {
346 strval = NULL;
347 intval = za.za_first_integer;
348 }
349
350 spa_prop_add_list(*nvp, prop, strval, intval, src);
351
352 if (strval != NULL)
353 kmem_free(strval,
354 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
355
356 break;
357
358 case 1:
359 /* string property */
360 strval = kmem_alloc(za.za_num_integers, KM_PUSHPAGE);
361 err = zap_lookup(mos, spa->spa_pool_props_object,
362 za.za_name, 1, za.za_num_integers, strval);
363 if (err) {
364 kmem_free(strval, za.za_num_integers);
365 break;
366 }
367 spa_prop_add_list(*nvp, prop, strval, 0, src);
368 kmem_free(strval, za.za_num_integers);
369 break;
370
371 default:
372 break;
373 }
374 }
375 zap_cursor_fini(&zc);
376 mutex_exit(&spa->spa_props_lock);
377 out:
378 if (err && err != ENOENT) {
379 nvlist_free(*nvp);
380 *nvp = NULL;
381 return (err);
382 }
383
384 return (0);
385 }
386
387 /*
388 * Validate the given pool properties nvlist and modify the list
389 * for the property values to be set.
390 */
391 static int
392 spa_prop_validate(spa_t *spa, nvlist_t *props)
393 {
394 nvpair_t *elem;
395 int error = 0, reset_bootfs = 0;
396 uint64_t objnum = 0;
397 boolean_t has_feature = B_FALSE;
398
399 elem = NULL;
400 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
401 uint64_t intval;
402 char *strval, *slash, *check, *fname;
403 const char *propname = nvpair_name(elem);
404 zpool_prop_t prop = zpool_name_to_prop(propname);
405
406 switch ((int)prop) {
407 case ZPROP_INVAL:
408 if (!zpool_prop_feature(propname)) {
409 error = SET_ERROR(EINVAL);
410 break;
411 }
412
413 /*
414 * Sanitize the input.
415 */
416 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
417 error = SET_ERROR(EINVAL);
418 break;
419 }
420
421 if (nvpair_value_uint64(elem, &intval) != 0) {
422 error = SET_ERROR(EINVAL);
423 break;
424 }
425
426 if (intval != 0) {
427 error = SET_ERROR(EINVAL);
428 break;
429 }
430
431 fname = strchr(propname, '@') + 1;
432 if (zfeature_lookup_name(fname, NULL) != 0) {
433 error = SET_ERROR(EINVAL);
434 break;
435 }
436
437 has_feature = B_TRUE;
438 break;
439
440 case ZPOOL_PROP_VERSION:
441 error = nvpair_value_uint64(elem, &intval);
442 if (!error &&
443 (intval < spa_version(spa) ||
444 intval > SPA_VERSION_BEFORE_FEATURES ||
445 has_feature))
446 error = SET_ERROR(EINVAL);
447 break;
448
449 case ZPOOL_PROP_DELEGATION:
450 case ZPOOL_PROP_AUTOREPLACE:
451 case ZPOOL_PROP_LISTSNAPS:
452 case ZPOOL_PROP_AUTOEXPAND:
453 error = nvpair_value_uint64(elem, &intval);
454 if (!error && intval > 1)
455 error = SET_ERROR(EINVAL);
456 break;
457
458 case ZPOOL_PROP_BOOTFS:
459 /*
460 * If the pool version is less than SPA_VERSION_BOOTFS,
461 * or the pool is still being created (version == 0),
462 * the bootfs property cannot be set.
463 */
464 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
465 error = SET_ERROR(ENOTSUP);
466 break;
467 }
468
469 /*
470 * Make sure the vdev config is bootable
471 */
472 if (!vdev_is_bootable(spa->spa_root_vdev)) {
473 error = SET_ERROR(ENOTSUP);
474 break;
475 }
476
477 reset_bootfs = 1;
478
479 error = nvpair_value_string(elem, &strval);
480
481 if (!error) {
482 objset_t *os;
483 uint64_t compress;
484
485 if (strval == NULL || strval[0] == '\0') {
486 objnum = zpool_prop_default_numeric(
487 ZPOOL_PROP_BOOTFS);
488 break;
489 }
490
491 error = dmu_objset_hold(strval, FTAG, &os);
492 if (error)
493 break;
494
495 /* Must be ZPL and not gzip compressed. */
496
497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 error = SET_ERROR(ENOTSUP);
499 } else if ((error =
500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 &compress)) == 0 &&
503 !BOOTFS_COMPRESS_VALID(compress)) {
504 error = SET_ERROR(ENOTSUP);
505 } else {
506 objnum = dmu_objset_id(os);
507 }
508 dmu_objset_rele(os, FTAG);
509 }
510 break;
511
512 case ZPOOL_PROP_FAILUREMODE:
513 error = nvpair_value_uint64(elem, &intval);
514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 intval > ZIO_FAILURE_MODE_PANIC))
516 error = SET_ERROR(EINVAL);
517
518 /*
519 * This is a special case which only occurs when
520 * the pool has completely failed. This allows
521 * the user to change the in-core failmode property
522 * without syncing it out to disk (I/Os might
523 * currently be blocked). We do this by returning
524 * EIO to the caller (spa_prop_set) to trick it
525 * into thinking we encountered a property validation
526 * error.
527 */
528 if (!error && spa_suspended(spa)) {
529 spa->spa_failmode = intval;
530 error = SET_ERROR(EIO);
531 }
532 break;
533
534 case ZPOOL_PROP_CACHEFILE:
535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 break;
537
538 if (strval[0] == '\0')
539 break;
540
541 if (strcmp(strval, "none") == 0)
542 break;
543
544 if (strval[0] != '/') {
545 error = SET_ERROR(EINVAL);
546 break;
547 }
548
549 slash = strrchr(strval, '/');
550 ASSERT(slash != NULL);
551
552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 strcmp(slash, "/..") == 0)
554 error = SET_ERROR(EINVAL);
555 break;
556
557 case ZPOOL_PROP_COMMENT:
558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 break;
560 for (check = strval; *check != '\0'; check++) {
561 if (!isprint(*check)) {
562 error = SET_ERROR(EINVAL);
563 break;
564 }
565 check++;
566 }
567 if (strlen(strval) > ZPROP_MAX_COMMENT)
568 error = SET_ERROR(E2BIG);
569 break;
570
571 case ZPOOL_PROP_DEDUPDITTO:
572 if (spa_version(spa) < SPA_VERSION_DEDUP)
573 error = SET_ERROR(ENOTSUP);
574 else
575 error = nvpair_value_uint64(elem, &intval);
576 if (error == 0 &&
577 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
578 error = SET_ERROR(EINVAL);
579 break;
580
581 default:
582 break;
583 }
584
585 if (error)
586 break;
587 }
588
589 if (!error && reset_bootfs) {
590 error = nvlist_remove(props,
591 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
592
593 if (!error) {
594 error = nvlist_add_uint64(props,
595 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
596 }
597 }
598
599 return (error);
600 }
601
602 void
603 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
604 {
605 char *cachefile;
606 spa_config_dirent_t *dp;
607
608 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
609 &cachefile) != 0)
610 return;
611
612 dp = kmem_alloc(sizeof (spa_config_dirent_t),
613 KM_PUSHPAGE);
614
615 if (cachefile[0] == '\0')
616 dp->scd_path = spa_strdup(spa_config_path);
617 else if (strcmp(cachefile, "none") == 0)
618 dp->scd_path = NULL;
619 else
620 dp->scd_path = spa_strdup(cachefile);
621
622 list_insert_head(&spa->spa_config_list, dp);
623 if (need_sync)
624 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
625 }
626
627 int
628 spa_prop_set(spa_t *spa, nvlist_t *nvp)
629 {
630 int error;
631 nvpair_t *elem = NULL;
632 boolean_t need_sync = B_FALSE;
633
634 if ((error = spa_prop_validate(spa, nvp)) != 0)
635 return (error);
636
637 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
638 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
639
640 if (prop == ZPOOL_PROP_CACHEFILE ||
641 prop == ZPOOL_PROP_ALTROOT ||
642 prop == ZPOOL_PROP_READONLY)
643 continue;
644
645 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
646 uint64_t ver;
647
648 if (prop == ZPOOL_PROP_VERSION) {
649 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
650 } else {
651 ASSERT(zpool_prop_feature(nvpair_name(elem)));
652 ver = SPA_VERSION_FEATURES;
653 need_sync = B_TRUE;
654 }
655
656 /* Save time if the version is already set. */
657 if (ver == spa_version(spa))
658 continue;
659
660 /*
661 * In addition to the pool directory object, we might
662 * create the pool properties object, the features for
663 * read object, the features for write object, or the
664 * feature descriptions object.
665 */
666 error = dsl_sync_task(spa->spa_name, NULL,
667 spa_sync_version, &ver, 6);
668 if (error)
669 return (error);
670 continue;
671 }
672
673 need_sync = B_TRUE;
674 break;
675 }
676
677 if (need_sync) {
678 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
679 nvp, 6));
680 }
681
682 return (0);
683 }
684
685 /*
686 * If the bootfs property value is dsobj, clear it.
687 */
688 void
689 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
690 {
691 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
692 VERIFY(zap_remove(spa->spa_meta_objset,
693 spa->spa_pool_props_object,
694 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
695 spa->spa_bootfs = 0;
696 }
697 }
698
699 /*ARGSUSED*/
700 static int
701 spa_change_guid_check(void *arg, dmu_tx_t *tx)
702 {
703 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
704 vdev_t *rvd = spa->spa_root_vdev;
705 uint64_t vdev_state;
706 ASSERTV(uint64_t *newguid = arg);
707
708 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
709 vdev_state = rvd->vdev_state;
710 spa_config_exit(spa, SCL_STATE, FTAG);
711
712 if (vdev_state != VDEV_STATE_HEALTHY)
713 return (SET_ERROR(ENXIO));
714
715 ASSERT3U(spa_guid(spa), !=, *newguid);
716
717 return (0);
718 }
719
720 static void
721 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
722 {
723 uint64_t *newguid = arg;
724 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725 uint64_t oldguid;
726 vdev_t *rvd = spa->spa_root_vdev;
727
728 oldguid = spa_guid(spa);
729
730 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
731 rvd->vdev_guid = *newguid;
732 rvd->vdev_guid_sum += (*newguid - oldguid);
733 vdev_config_dirty(rvd);
734 spa_config_exit(spa, SCL_STATE, FTAG);
735
736 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
737 oldguid, *newguid);
738 }
739
740 /*
741 * Change the GUID for the pool. This is done so that we can later
742 * re-import a pool built from a clone of our own vdevs. We will modify
743 * the root vdev's guid, our own pool guid, and then mark all of our
744 * vdevs dirty. Note that we must make sure that all our vdevs are
745 * online when we do this, or else any vdevs that weren't present
746 * would be orphaned from our pool. We are also going to issue a
747 * sysevent to update any watchers.
748 */
749 int
750 spa_change_guid(spa_t *spa)
751 {
752 int error;
753 uint64_t guid;
754
755 mutex_enter(&spa->spa_vdev_top_lock);
756 mutex_enter(&spa_namespace_lock);
757 guid = spa_generate_guid(NULL);
758
759 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
760 spa_change_guid_sync, &guid, 5);
761
762 if (error == 0) {
763 spa_config_sync(spa, B_FALSE, B_TRUE);
764 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
765 }
766
767 mutex_exit(&spa_namespace_lock);
768 mutex_exit(&spa->spa_vdev_top_lock);
769
770 return (error);
771 }
772
773 /*
774 * ==========================================================================
775 * SPA state manipulation (open/create/destroy/import/export)
776 * ==========================================================================
777 */
778
779 static int
780 spa_error_entry_compare(const void *a, const void *b)
781 {
782 spa_error_entry_t *sa = (spa_error_entry_t *)a;
783 spa_error_entry_t *sb = (spa_error_entry_t *)b;
784 int ret;
785
786 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
787 sizeof (zbookmark_t));
788
789 if (ret < 0)
790 return (-1);
791 else if (ret > 0)
792 return (1);
793 else
794 return (0);
795 }
796
797 /*
798 * Utility function which retrieves copies of the current logs and
799 * re-initializes them in the process.
800 */
801 void
802 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
803 {
804 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
805
806 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
807 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
808
809 avl_create(&spa->spa_errlist_scrub,
810 spa_error_entry_compare, sizeof (spa_error_entry_t),
811 offsetof(spa_error_entry_t, se_avl));
812 avl_create(&spa->spa_errlist_last,
813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 offsetof(spa_error_entry_t, se_avl));
815 }
816
817 static void
818 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
819 {
820 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
821 enum zti_modes mode = ztip->zti_mode;
822 uint_t value = ztip->zti_value;
823 uint_t count = ztip->zti_count;
824 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
825 char name[32];
826 uint_t i, flags = 0;
827 boolean_t batch = B_FALSE;
828
829 if (mode == ZTI_MODE_NULL) {
830 tqs->stqs_count = 0;
831 tqs->stqs_taskq = NULL;
832 return;
833 }
834
835 ASSERT3U(count, >, 0);
836
837 tqs->stqs_count = count;
838 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
839
840 switch (mode) {
841 case ZTI_MODE_FIXED:
842 ASSERT3U(value, >=, 1);
843 value = MAX(value, 1);
844 break;
845
846 case ZTI_MODE_BATCH:
847 batch = B_TRUE;
848 flags |= TASKQ_THREADS_CPU_PCT;
849 value = zio_taskq_batch_pct;
850 break;
851
852 default:
853 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
854 "spa_activate()",
855 zio_type_name[t], zio_taskq_types[q], mode, value);
856 break;
857 }
858
859 for (i = 0; i < count; i++) {
860 taskq_t *tq;
861
862 if (count > 1) {
863 (void) snprintf(name, sizeof (name), "%s_%s_%u",
864 zio_type_name[t], zio_taskq_types[q], i);
865 } else {
866 (void) snprintf(name, sizeof (name), "%s_%s",
867 zio_type_name[t], zio_taskq_types[q]);
868 }
869
870 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
871 if (batch)
872 flags |= TASKQ_DC_BATCH;
873
874 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
875 spa->spa_proc, zio_taskq_basedc, flags);
876 } else {
877 pri_t pri = maxclsyspri;
878 /*
879 * The write issue taskq can be extremely CPU
880 * intensive. Run it at slightly lower priority
881 * than the other taskqs.
882 */
883 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
884 pri--;
885
886 tq = taskq_create_proc(name, value, pri, 50,
887 INT_MAX, spa->spa_proc, flags);
888 }
889
890 tqs->stqs_taskq[i] = tq;
891 }
892 }
893
894 static void
895 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
896 {
897 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
898 uint_t i;
899
900 if (tqs->stqs_taskq == NULL) {
901 ASSERT3U(tqs->stqs_count, ==, 0);
902 return;
903 }
904
905 for (i = 0; i < tqs->stqs_count; i++) {
906 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
907 taskq_destroy(tqs->stqs_taskq[i]);
908 }
909
910 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
911 tqs->stqs_taskq = NULL;
912 }
913
914 /*
915 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
916 * Note that a type may have multiple discrete taskqs to avoid lock contention
917 * on the taskq itself. In that case we choose which taskq at random by using
918 * the low bits of gethrtime().
919 */
920 void
921 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
922 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
923 {
924 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
925 taskq_t *tq;
926
927 ASSERT3P(tqs->stqs_taskq, !=, NULL);
928 ASSERT3U(tqs->stqs_count, !=, 0);
929
930 if (tqs->stqs_count == 1) {
931 tq = tqs->stqs_taskq[0];
932 } else {
933 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
934 }
935
936 taskq_dispatch_ent(tq, func, arg, flags, ent);
937 }
938
939 /*
940 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
941 */
942 void
943 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
944 task_func_t *func, void *arg, uint_t flags)
945 {
946 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947 taskq_t *tq;
948 taskqid_t id;
949
950 ASSERT3P(tqs->stqs_taskq, !=, NULL);
951 ASSERT3U(tqs->stqs_count, !=, 0);
952
953 if (tqs->stqs_count == 1) {
954 tq = tqs->stqs_taskq[0];
955 } else {
956 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
957 }
958
959 id = taskq_dispatch(tq, func, arg, flags);
960 if (id)
961 taskq_wait_id(tq, id);
962 }
963
964 static void
965 spa_create_zio_taskqs(spa_t *spa)
966 {
967 int t, q;
968
969 for (t = 0; t < ZIO_TYPES; t++) {
970 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
971 spa_taskqs_init(spa, t, q);
972 }
973 }
974 }
975
976 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
977 static void
978 spa_thread(void *arg)
979 {
980 callb_cpr_t cprinfo;
981
982 spa_t *spa = arg;
983 user_t *pu = PTOU(curproc);
984
985 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
986 spa->spa_name);
987
988 ASSERT(curproc != &p0);
989 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
990 "zpool-%s", spa->spa_name);
991 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
992
993 /* bind this thread to the requested psrset */
994 if (zio_taskq_psrset_bind != PS_NONE) {
995 pool_lock();
996 mutex_enter(&cpu_lock);
997 mutex_enter(&pidlock);
998 mutex_enter(&curproc->p_lock);
999
1000 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1001 0, NULL, NULL) == 0) {
1002 curthread->t_bind_pset = zio_taskq_psrset_bind;
1003 } else {
1004 cmn_err(CE_WARN,
1005 "Couldn't bind process for zfs pool \"%s\" to "
1006 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1007 }
1008
1009 mutex_exit(&curproc->p_lock);
1010 mutex_exit(&pidlock);
1011 mutex_exit(&cpu_lock);
1012 pool_unlock();
1013 }
1014
1015 if (zio_taskq_sysdc) {
1016 sysdc_thread_enter(curthread, 100, 0);
1017 }
1018
1019 spa->spa_proc = curproc;
1020 spa->spa_did = curthread->t_did;
1021
1022 spa_create_zio_taskqs(spa);
1023
1024 mutex_enter(&spa->spa_proc_lock);
1025 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1026
1027 spa->spa_proc_state = SPA_PROC_ACTIVE;
1028 cv_broadcast(&spa->spa_proc_cv);
1029
1030 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1031 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1032 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1033 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1034
1035 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1036 spa->spa_proc_state = SPA_PROC_GONE;
1037 spa->spa_proc = &p0;
1038 cv_broadcast(&spa->spa_proc_cv);
1039 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1040
1041 mutex_enter(&curproc->p_lock);
1042 lwp_exit();
1043 }
1044 #endif
1045
1046 /*
1047 * Activate an uninitialized pool.
1048 */
1049 static void
1050 spa_activate(spa_t *spa, int mode)
1051 {
1052 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1053
1054 spa->spa_state = POOL_STATE_ACTIVE;
1055 spa->spa_mode = mode;
1056
1057 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1058 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1059
1060 /* Try to create a covering process */
1061 mutex_enter(&spa->spa_proc_lock);
1062 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1063 ASSERT(spa->spa_proc == &p0);
1064 spa->spa_did = 0;
1065
1066 #ifdef HAVE_SPA_THREAD
1067 /* Only create a process if we're going to be around a while. */
1068 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1069 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1070 NULL, 0) == 0) {
1071 spa->spa_proc_state = SPA_PROC_CREATED;
1072 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1073 cv_wait(&spa->spa_proc_cv,
1074 &spa->spa_proc_lock);
1075 }
1076 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1077 ASSERT(spa->spa_proc != &p0);
1078 ASSERT(spa->spa_did != 0);
1079 } else {
1080 #ifdef _KERNEL
1081 cmn_err(CE_WARN,
1082 "Couldn't create process for zfs pool \"%s\"\n",
1083 spa->spa_name);
1084 #endif
1085 }
1086 }
1087 #endif /* HAVE_SPA_THREAD */
1088 mutex_exit(&spa->spa_proc_lock);
1089
1090 /* If we didn't create a process, we need to create our taskqs. */
1091 if (spa->spa_proc == &p0) {
1092 spa_create_zio_taskqs(spa);
1093 }
1094
1095 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1096 offsetof(vdev_t, vdev_config_dirty_node));
1097 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1098 offsetof(vdev_t, vdev_state_dirty_node));
1099
1100 txg_list_create(&spa->spa_vdev_txg_list,
1101 offsetof(struct vdev, vdev_txg_node));
1102
1103 avl_create(&spa->spa_errlist_scrub,
1104 spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 offsetof(spa_error_entry_t, se_avl));
1106 avl_create(&spa->spa_errlist_last,
1107 spa_error_entry_compare, sizeof (spa_error_entry_t),
1108 offsetof(spa_error_entry_t, se_avl));
1109 }
1110
1111 /*
1112 * Opposite of spa_activate().
1113 */
1114 static void
1115 spa_deactivate(spa_t *spa)
1116 {
1117 int t, q;
1118
1119 ASSERT(spa->spa_sync_on == B_FALSE);
1120 ASSERT(spa->spa_dsl_pool == NULL);
1121 ASSERT(spa->spa_root_vdev == NULL);
1122 ASSERT(spa->spa_async_zio_root == NULL);
1123 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1124
1125 txg_list_destroy(&spa->spa_vdev_txg_list);
1126
1127 list_destroy(&spa->spa_config_dirty_list);
1128 list_destroy(&spa->spa_state_dirty_list);
1129
1130 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1131
1132 for (t = 0; t < ZIO_TYPES; t++) {
1133 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1134 spa_taskqs_fini(spa, t, q);
1135 }
1136 }
1137
1138 metaslab_class_destroy(spa->spa_normal_class);
1139 spa->spa_normal_class = NULL;
1140
1141 metaslab_class_destroy(spa->spa_log_class);
1142 spa->spa_log_class = NULL;
1143
1144 /*
1145 * If this was part of an import or the open otherwise failed, we may
1146 * still have errors left in the queues. Empty them just in case.
1147 */
1148 spa_errlog_drain(spa);
1149
1150 avl_destroy(&spa->spa_errlist_scrub);
1151 avl_destroy(&spa->spa_errlist_last);
1152
1153 spa->spa_state = POOL_STATE_UNINITIALIZED;
1154
1155 mutex_enter(&spa->spa_proc_lock);
1156 if (spa->spa_proc_state != SPA_PROC_NONE) {
1157 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1158 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1159 cv_broadcast(&spa->spa_proc_cv);
1160 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1161 ASSERT(spa->spa_proc != &p0);
1162 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1163 }
1164 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1165 spa->spa_proc_state = SPA_PROC_NONE;
1166 }
1167 ASSERT(spa->spa_proc == &p0);
1168 mutex_exit(&spa->spa_proc_lock);
1169
1170 /*
1171 * We want to make sure spa_thread() has actually exited the ZFS
1172 * module, so that the module can't be unloaded out from underneath
1173 * it.
1174 */
1175 if (spa->spa_did != 0) {
1176 thread_join(spa->spa_did);
1177 spa->spa_did = 0;
1178 }
1179 }
1180
1181 /*
1182 * Verify a pool configuration, and construct the vdev tree appropriately. This
1183 * will create all the necessary vdevs in the appropriate layout, with each vdev
1184 * in the CLOSED state. This will prep the pool before open/creation/import.
1185 * All vdev validation is done by the vdev_alloc() routine.
1186 */
1187 static int
1188 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1189 uint_t id, int atype)
1190 {
1191 nvlist_t **child;
1192 uint_t children;
1193 int error;
1194 int c;
1195
1196 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1197 return (error);
1198
1199 if ((*vdp)->vdev_ops->vdev_op_leaf)
1200 return (0);
1201
1202 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1203 &child, &children);
1204
1205 if (error == ENOENT)
1206 return (0);
1207
1208 if (error) {
1209 vdev_free(*vdp);
1210 *vdp = NULL;
1211 return (SET_ERROR(EINVAL));
1212 }
1213
1214 for (c = 0; c < children; c++) {
1215 vdev_t *vd;
1216 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1217 atype)) != 0) {
1218 vdev_free(*vdp);
1219 *vdp = NULL;
1220 return (error);
1221 }
1222 }
1223
1224 ASSERT(*vdp != NULL);
1225
1226 return (0);
1227 }
1228
1229 /*
1230 * Opposite of spa_load().
1231 */
1232 static void
1233 spa_unload(spa_t *spa)
1234 {
1235 int i;
1236
1237 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1238
1239 /*
1240 * Stop async tasks.
1241 */
1242 spa_async_suspend(spa);
1243
1244 /*
1245 * Stop syncing.
1246 */
1247 if (spa->spa_sync_on) {
1248 txg_sync_stop(spa->spa_dsl_pool);
1249 spa->spa_sync_on = B_FALSE;
1250 }
1251
1252 /*
1253 * Wait for any outstanding async I/O to complete.
1254 */
1255 if (spa->spa_async_zio_root != NULL) {
1256 (void) zio_wait(spa->spa_async_zio_root);
1257 spa->spa_async_zio_root = NULL;
1258 }
1259
1260 bpobj_close(&spa->spa_deferred_bpobj);
1261
1262 /*
1263 * Close the dsl pool.
1264 */
1265 if (spa->spa_dsl_pool) {
1266 dsl_pool_close(spa->spa_dsl_pool);
1267 spa->spa_dsl_pool = NULL;
1268 spa->spa_meta_objset = NULL;
1269 }
1270
1271 ddt_unload(spa);
1272
1273 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1274
1275 /*
1276 * Drop and purge level 2 cache
1277 */
1278 spa_l2cache_drop(spa);
1279
1280 /*
1281 * Close all vdevs.
1282 */
1283 if (spa->spa_root_vdev)
1284 vdev_free(spa->spa_root_vdev);
1285 ASSERT(spa->spa_root_vdev == NULL);
1286
1287 for (i = 0; i < spa->spa_spares.sav_count; i++)
1288 vdev_free(spa->spa_spares.sav_vdevs[i]);
1289 if (spa->spa_spares.sav_vdevs) {
1290 kmem_free(spa->spa_spares.sav_vdevs,
1291 spa->spa_spares.sav_count * sizeof (void *));
1292 spa->spa_spares.sav_vdevs = NULL;
1293 }
1294 if (spa->spa_spares.sav_config) {
1295 nvlist_free(spa->spa_spares.sav_config);
1296 spa->spa_spares.sav_config = NULL;
1297 }
1298 spa->spa_spares.sav_count = 0;
1299
1300 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1301 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1302 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1303 }
1304 if (spa->spa_l2cache.sav_vdevs) {
1305 kmem_free(spa->spa_l2cache.sav_vdevs,
1306 spa->spa_l2cache.sav_count * sizeof (void *));
1307 spa->spa_l2cache.sav_vdevs = NULL;
1308 }
1309 if (spa->spa_l2cache.sav_config) {
1310 nvlist_free(spa->spa_l2cache.sav_config);
1311 spa->spa_l2cache.sav_config = NULL;
1312 }
1313 spa->spa_l2cache.sav_count = 0;
1314
1315 spa->spa_async_suspended = 0;
1316
1317 if (spa->spa_comment != NULL) {
1318 spa_strfree(spa->spa_comment);
1319 spa->spa_comment = NULL;
1320 }
1321
1322 spa_config_exit(spa, SCL_ALL, FTAG);
1323 }
1324
1325 /*
1326 * Load (or re-load) the current list of vdevs describing the active spares for
1327 * this pool. When this is called, we have some form of basic information in
1328 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1329 * then re-generate a more complete list including status information.
1330 */
1331 static void
1332 spa_load_spares(spa_t *spa)
1333 {
1334 nvlist_t **spares;
1335 uint_t nspares;
1336 int i;
1337 vdev_t *vd, *tvd;
1338
1339 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1340
1341 /*
1342 * First, close and free any existing spare vdevs.
1343 */
1344 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1345 vd = spa->spa_spares.sav_vdevs[i];
1346
1347 /* Undo the call to spa_activate() below */
1348 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1349 B_FALSE)) != NULL && tvd->vdev_isspare)
1350 spa_spare_remove(tvd);
1351 vdev_close(vd);
1352 vdev_free(vd);
1353 }
1354
1355 if (spa->spa_spares.sav_vdevs)
1356 kmem_free(spa->spa_spares.sav_vdevs,
1357 spa->spa_spares.sav_count * sizeof (void *));
1358
1359 if (spa->spa_spares.sav_config == NULL)
1360 nspares = 0;
1361 else
1362 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1363 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1364
1365 spa->spa_spares.sav_count = (int)nspares;
1366 spa->spa_spares.sav_vdevs = NULL;
1367
1368 if (nspares == 0)
1369 return;
1370
1371 /*
1372 * Construct the array of vdevs, opening them to get status in the
1373 * process. For each spare, there is potentially two different vdev_t
1374 * structures associated with it: one in the list of spares (used only
1375 * for basic validation purposes) and one in the active vdev
1376 * configuration (if it's spared in). During this phase we open and
1377 * validate each vdev on the spare list. If the vdev also exists in the
1378 * active configuration, then we also mark this vdev as an active spare.
1379 */
1380 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1381 KM_PUSHPAGE);
1382 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1383 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1384 VDEV_ALLOC_SPARE) == 0);
1385 ASSERT(vd != NULL);
1386
1387 spa->spa_spares.sav_vdevs[i] = vd;
1388
1389 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1390 B_FALSE)) != NULL) {
1391 if (!tvd->vdev_isspare)
1392 spa_spare_add(tvd);
1393
1394 /*
1395 * We only mark the spare active if we were successfully
1396 * able to load the vdev. Otherwise, importing a pool
1397 * with a bad active spare would result in strange
1398 * behavior, because multiple pool would think the spare
1399 * is actively in use.
1400 *
1401 * There is a vulnerability here to an equally bizarre
1402 * circumstance, where a dead active spare is later
1403 * brought back to life (onlined or otherwise). Given
1404 * the rarity of this scenario, and the extra complexity
1405 * it adds, we ignore the possibility.
1406 */
1407 if (!vdev_is_dead(tvd))
1408 spa_spare_activate(tvd);
1409 }
1410
1411 vd->vdev_top = vd;
1412 vd->vdev_aux = &spa->spa_spares;
1413
1414 if (vdev_open(vd) != 0)
1415 continue;
1416
1417 if (vdev_validate_aux(vd) == 0)
1418 spa_spare_add(vd);
1419 }
1420
1421 /*
1422 * Recompute the stashed list of spares, with status information
1423 * this time.
1424 */
1425 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1426 DATA_TYPE_NVLIST_ARRAY) == 0);
1427
1428 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1429 KM_PUSHPAGE);
1430 for (i = 0; i < spa->spa_spares.sav_count; i++)
1431 spares[i] = vdev_config_generate(spa,
1432 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1433 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1434 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1435 for (i = 0; i < spa->spa_spares.sav_count; i++)
1436 nvlist_free(spares[i]);
1437 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1438 }
1439
1440 /*
1441 * Load (or re-load) the current list of vdevs describing the active l2cache for
1442 * this pool. When this is called, we have some form of basic information in
1443 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1444 * then re-generate a more complete list including status information.
1445 * Devices which are already active have their details maintained, and are
1446 * not re-opened.
1447 */
1448 static void
1449 spa_load_l2cache(spa_t *spa)
1450 {
1451 nvlist_t **l2cache;
1452 uint_t nl2cache;
1453 int i, j, oldnvdevs;
1454 uint64_t guid;
1455 vdev_t *vd, **oldvdevs, **newvdevs;
1456 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1457
1458 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1459
1460 if (sav->sav_config != NULL) {
1461 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1462 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1463 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_PUSHPAGE);
1464 } else {
1465 nl2cache = 0;
1466 newvdevs = NULL;
1467 }
1468
1469 oldvdevs = sav->sav_vdevs;
1470 oldnvdevs = sav->sav_count;
1471 sav->sav_vdevs = NULL;
1472 sav->sav_count = 0;
1473
1474 /*
1475 * Process new nvlist of vdevs.
1476 */
1477 for (i = 0; i < nl2cache; i++) {
1478 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1479 &guid) == 0);
1480
1481 newvdevs[i] = NULL;
1482 for (j = 0; j < oldnvdevs; j++) {
1483 vd = oldvdevs[j];
1484 if (vd != NULL && guid == vd->vdev_guid) {
1485 /*
1486 * Retain previous vdev for add/remove ops.
1487 */
1488 newvdevs[i] = vd;
1489 oldvdevs[j] = NULL;
1490 break;
1491 }
1492 }
1493
1494 if (newvdevs[i] == NULL) {
1495 /*
1496 * Create new vdev
1497 */
1498 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1499 VDEV_ALLOC_L2CACHE) == 0);
1500 ASSERT(vd != NULL);
1501 newvdevs[i] = vd;
1502
1503 /*
1504 * Commit this vdev as an l2cache device,
1505 * even if it fails to open.
1506 */
1507 spa_l2cache_add(vd);
1508
1509 vd->vdev_top = vd;
1510 vd->vdev_aux = sav;
1511
1512 spa_l2cache_activate(vd);
1513
1514 if (vdev_open(vd) != 0)
1515 continue;
1516
1517 (void) vdev_validate_aux(vd);
1518
1519 if (!vdev_is_dead(vd))
1520 l2arc_add_vdev(spa, vd);
1521 }
1522 }
1523
1524 /*
1525 * Purge vdevs that were dropped
1526 */
1527 for (i = 0; i < oldnvdevs; i++) {
1528 uint64_t pool;
1529
1530 vd = oldvdevs[i];
1531 if (vd != NULL) {
1532 ASSERT(vd->vdev_isl2cache);
1533
1534 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1535 pool != 0ULL && l2arc_vdev_present(vd))
1536 l2arc_remove_vdev(vd);
1537 vdev_clear_stats(vd);
1538 vdev_free(vd);
1539 }
1540 }
1541
1542 if (oldvdevs)
1543 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1544
1545 if (sav->sav_config == NULL)
1546 goto out;
1547
1548 sav->sav_vdevs = newvdevs;
1549 sav->sav_count = (int)nl2cache;
1550
1551 /*
1552 * Recompute the stashed list of l2cache devices, with status
1553 * information this time.
1554 */
1555 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1556 DATA_TYPE_NVLIST_ARRAY) == 0);
1557
1558 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_PUSHPAGE);
1559 for (i = 0; i < sav->sav_count; i++)
1560 l2cache[i] = vdev_config_generate(spa,
1561 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1562 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1563 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1564 out:
1565 for (i = 0; i < sav->sav_count; i++)
1566 nvlist_free(l2cache[i]);
1567 if (sav->sav_count)
1568 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1569 }
1570
1571 static int
1572 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1573 {
1574 dmu_buf_t *db;
1575 char *packed = NULL;
1576 size_t nvsize = 0;
1577 int error;
1578 *value = NULL;
1579
1580 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1581 if (error)
1582 return (error);
1583
1584 nvsize = *(uint64_t *)db->db_data;
1585 dmu_buf_rele(db, FTAG);
1586
1587 packed = kmem_alloc(nvsize, KM_PUSHPAGE | KM_NODEBUG);
1588 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1589 DMU_READ_PREFETCH);
1590 if (error == 0)
1591 error = nvlist_unpack(packed, nvsize, value, 0);
1592 kmem_free(packed, nvsize);
1593
1594 return (error);
1595 }
1596
1597 /*
1598 * Checks to see if the given vdev could not be opened, in which case we post a
1599 * sysevent to notify the autoreplace code that the device has been removed.
1600 */
1601 static void
1602 spa_check_removed(vdev_t *vd)
1603 {
1604 int c;
1605
1606 for (c = 0; c < vd->vdev_children; c++)
1607 spa_check_removed(vd->vdev_child[c]);
1608
1609 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1610 !vd->vdev_ishole) {
1611 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1612 vd->vdev_spa, vd, NULL, 0, 0);
1613 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1614 }
1615 }
1616
1617 /*
1618 * Validate the current config against the MOS config
1619 */
1620 static boolean_t
1621 spa_config_valid(spa_t *spa, nvlist_t *config)
1622 {
1623 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1624 nvlist_t *nv;
1625 int c, i;
1626
1627 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1628
1629 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1630 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1631
1632 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1633
1634 /*
1635 * If we're doing a normal import, then build up any additional
1636 * diagnostic information about missing devices in this config.
1637 * We'll pass this up to the user for further processing.
1638 */
1639 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1640 nvlist_t **child, *nv;
1641 uint64_t idx = 0;
1642
1643 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1644 KM_PUSHPAGE);
1645 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
1646
1647 for (c = 0; c < rvd->vdev_children; c++) {
1648 vdev_t *tvd = rvd->vdev_child[c];
1649 vdev_t *mtvd = mrvd->vdev_child[c];
1650
1651 if (tvd->vdev_ops == &vdev_missing_ops &&
1652 mtvd->vdev_ops != &vdev_missing_ops &&
1653 mtvd->vdev_islog)
1654 child[idx++] = vdev_config_generate(spa, mtvd,
1655 B_FALSE, 0);
1656 }
1657
1658 if (idx) {
1659 VERIFY(nvlist_add_nvlist_array(nv,
1660 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1661 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1662 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1663
1664 for (i = 0; i < idx; i++)
1665 nvlist_free(child[i]);
1666 }
1667 nvlist_free(nv);
1668 kmem_free(child, rvd->vdev_children * sizeof (char **));
1669 }
1670
1671 /*
1672 * Compare the root vdev tree with the information we have
1673 * from the MOS config (mrvd). Check each top-level vdev
1674 * with the corresponding MOS config top-level (mtvd).
1675 */
1676 for (c = 0; c < rvd->vdev_children; c++) {
1677 vdev_t *tvd = rvd->vdev_child[c];
1678 vdev_t *mtvd = mrvd->vdev_child[c];
1679
1680 /*
1681 * Resolve any "missing" vdevs in the current configuration.
1682 * If we find that the MOS config has more accurate information
1683 * about the top-level vdev then use that vdev instead.
1684 */
1685 if (tvd->vdev_ops == &vdev_missing_ops &&
1686 mtvd->vdev_ops != &vdev_missing_ops) {
1687
1688 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1689 continue;
1690
1691 /*
1692 * Device specific actions.
1693 */
1694 if (mtvd->vdev_islog) {
1695 spa_set_log_state(spa, SPA_LOG_CLEAR);
1696 } else {
1697 /*
1698 * XXX - once we have 'readonly' pool
1699 * support we should be able to handle
1700 * missing data devices by transitioning
1701 * the pool to readonly.
1702 */
1703 continue;
1704 }
1705
1706 /*
1707 * Swap the missing vdev with the data we were
1708 * able to obtain from the MOS config.
1709 */
1710 vdev_remove_child(rvd, tvd);
1711 vdev_remove_child(mrvd, mtvd);
1712
1713 vdev_add_child(rvd, mtvd);
1714 vdev_add_child(mrvd, tvd);
1715
1716 spa_config_exit(spa, SCL_ALL, FTAG);
1717 vdev_load(mtvd);
1718 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1719
1720 vdev_reopen(rvd);
1721 } else if (mtvd->vdev_islog) {
1722 /*
1723 * Load the slog device's state from the MOS config
1724 * since it's possible that the label does not
1725 * contain the most up-to-date information.
1726 */
1727 vdev_load_log_state(tvd, mtvd);
1728 vdev_reopen(tvd);
1729 }
1730 }
1731 vdev_free(mrvd);
1732 spa_config_exit(spa, SCL_ALL, FTAG);
1733
1734 /*
1735 * Ensure we were able to validate the config.
1736 */
1737 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1738 }
1739
1740 /*
1741 * Check for missing log devices
1742 */
1743 static boolean_t
1744 spa_check_logs(spa_t *spa)
1745 {
1746 boolean_t rv = B_FALSE;
1747
1748 switch (spa->spa_log_state) {
1749 default:
1750 break;
1751 case SPA_LOG_MISSING:
1752 /* need to recheck in case slog has been restored */
1753 case SPA_LOG_UNKNOWN:
1754 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1755 NULL, DS_FIND_CHILDREN) != 0);
1756 if (rv)
1757 spa_set_log_state(spa, SPA_LOG_MISSING);
1758 break;
1759 }
1760 return (rv);
1761 }
1762
1763 static boolean_t
1764 spa_passivate_log(spa_t *spa)
1765 {
1766 vdev_t *rvd = spa->spa_root_vdev;
1767 boolean_t slog_found = B_FALSE;
1768 int c;
1769
1770 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1771
1772 if (!spa_has_slogs(spa))
1773 return (B_FALSE);
1774
1775 for (c = 0; c < rvd->vdev_children; c++) {
1776 vdev_t *tvd = rvd->vdev_child[c];
1777 metaslab_group_t *mg = tvd->vdev_mg;
1778
1779 if (tvd->vdev_islog) {
1780 metaslab_group_passivate(mg);
1781 slog_found = B_TRUE;
1782 }
1783 }
1784
1785 return (slog_found);
1786 }
1787
1788 static void
1789 spa_activate_log(spa_t *spa)
1790 {
1791 vdev_t *rvd = spa->spa_root_vdev;
1792 int c;
1793
1794 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1795
1796 for (c = 0; c < rvd->vdev_children; c++) {
1797 vdev_t *tvd = rvd->vdev_child[c];
1798 metaslab_group_t *mg = tvd->vdev_mg;
1799
1800 if (tvd->vdev_islog)
1801 metaslab_group_activate(mg);
1802 }
1803 }
1804
1805 int
1806 spa_offline_log(spa_t *spa)
1807 {
1808 int error;
1809
1810 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1811 NULL, DS_FIND_CHILDREN);
1812 if (error == 0) {
1813 /*
1814 * We successfully offlined the log device, sync out the
1815 * current txg so that the "stubby" block can be removed
1816 * by zil_sync().
1817 */
1818 txg_wait_synced(spa->spa_dsl_pool, 0);
1819 }
1820 return (error);
1821 }
1822
1823 static void
1824 spa_aux_check_removed(spa_aux_vdev_t *sav)
1825 {
1826 int i;
1827
1828 for (i = 0; i < sav->sav_count; i++)
1829 spa_check_removed(sav->sav_vdevs[i]);
1830 }
1831
1832 void
1833 spa_claim_notify(zio_t *zio)
1834 {
1835 spa_t *spa = zio->io_spa;
1836
1837 if (zio->io_error)
1838 return;
1839
1840 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1841 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1842 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1843 mutex_exit(&spa->spa_props_lock);
1844 }
1845
1846 typedef struct spa_load_error {
1847 uint64_t sle_meta_count;
1848 uint64_t sle_data_count;
1849 } spa_load_error_t;
1850
1851 static void
1852 spa_load_verify_done(zio_t *zio)
1853 {
1854 blkptr_t *bp = zio->io_bp;
1855 spa_load_error_t *sle = zio->io_private;
1856 dmu_object_type_t type = BP_GET_TYPE(bp);
1857 int error = zio->io_error;
1858
1859 if (error) {
1860 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1861 type != DMU_OT_INTENT_LOG)
1862 atomic_add_64(&sle->sle_meta_count, 1);
1863 else
1864 atomic_add_64(&sle->sle_data_count, 1);
1865 }
1866 zio_data_buf_free(zio->io_data, zio->io_size);
1867 }
1868
1869 /*ARGSUSED*/
1870 static int
1871 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1872 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1873 {
1874 if (bp != NULL) {
1875 zio_t *rio = arg;
1876 size_t size = BP_GET_PSIZE(bp);
1877 void *data = zio_data_buf_alloc(size);
1878
1879 zio_nowait(zio_read(rio, spa, bp, data, size,
1880 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1881 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1882 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1883 }
1884 return (0);
1885 }
1886
1887 static int
1888 spa_load_verify(spa_t *spa)
1889 {
1890 zio_t *rio;
1891 spa_load_error_t sle = { 0 };
1892 zpool_rewind_policy_t policy;
1893 boolean_t verify_ok = B_FALSE;
1894 int error;
1895
1896 zpool_get_rewind_policy(spa->spa_config, &policy);
1897
1898 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1899 return (0);
1900
1901 rio = zio_root(spa, NULL, &sle,
1902 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1903
1904 error = traverse_pool(spa, spa->spa_verify_min_txg,
1905 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1906
1907 (void) zio_wait(rio);
1908
1909 spa->spa_load_meta_errors = sle.sle_meta_count;
1910 spa->spa_load_data_errors = sle.sle_data_count;
1911
1912 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1913 sle.sle_data_count <= policy.zrp_maxdata) {
1914 int64_t loss = 0;
1915
1916 verify_ok = B_TRUE;
1917 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1918 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1919
1920 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1921 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1922 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1923 VERIFY(nvlist_add_int64(spa->spa_load_info,
1924 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1925 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1926 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1927 } else {
1928 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1929 }
1930
1931 if (error) {
1932 if (error != ENXIO && error != EIO)
1933 error = SET_ERROR(EIO);
1934 return (error);
1935 }
1936
1937 return (verify_ok ? 0 : EIO);
1938 }
1939
1940 /*
1941 * Find a value in the pool props object.
1942 */
1943 static void
1944 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1945 {
1946 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1947 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1948 }
1949
1950 /*
1951 * Find a value in the pool directory object.
1952 */
1953 static int
1954 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1955 {
1956 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1957 name, sizeof (uint64_t), 1, val));
1958 }
1959
1960 static int
1961 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1962 {
1963 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1964 return (err);
1965 }
1966
1967 /*
1968 * Fix up config after a partly-completed split. This is done with the
1969 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1970 * pool have that entry in their config, but only the splitting one contains
1971 * a list of all the guids of the vdevs that are being split off.
1972 *
1973 * This function determines what to do with that list: either rejoin
1974 * all the disks to the pool, or complete the splitting process. To attempt
1975 * the rejoin, each disk that is offlined is marked online again, and
1976 * we do a reopen() call. If the vdev label for every disk that was
1977 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1978 * then we call vdev_split() on each disk, and complete the split.
1979 *
1980 * Otherwise we leave the config alone, with all the vdevs in place in
1981 * the original pool.
1982 */
1983 static void
1984 spa_try_repair(spa_t *spa, nvlist_t *config)
1985 {
1986 uint_t extracted;
1987 uint64_t *glist;
1988 uint_t i, gcount;
1989 nvlist_t *nvl;
1990 vdev_t **vd;
1991 boolean_t attempt_reopen;
1992
1993 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1994 return;
1995
1996 /* check that the config is complete */
1997 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1998 &glist, &gcount) != 0)
1999 return;
2000
2001 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_PUSHPAGE);
2002
2003 /* attempt to online all the vdevs & validate */
2004 attempt_reopen = B_TRUE;
2005 for (i = 0; i < gcount; i++) {
2006 if (glist[i] == 0) /* vdev is hole */
2007 continue;
2008
2009 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2010 if (vd[i] == NULL) {
2011 /*
2012 * Don't bother attempting to reopen the disks;
2013 * just do the split.
2014 */
2015 attempt_reopen = B_FALSE;
2016 } else {
2017 /* attempt to re-online it */
2018 vd[i]->vdev_offline = B_FALSE;
2019 }
2020 }
2021
2022 if (attempt_reopen) {
2023 vdev_reopen(spa->spa_root_vdev);
2024
2025 /* check each device to see what state it's in */
2026 for (extracted = 0, i = 0; i < gcount; i++) {
2027 if (vd[i] != NULL &&
2028 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2029 break;
2030 ++extracted;
2031 }
2032 }
2033
2034 /*
2035 * If every disk has been moved to the new pool, or if we never
2036 * even attempted to look at them, then we split them off for
2037 * good.
2038 */
2039 if (!attempt_reopen || gcount == extracted) {
2040 for (i = 0; i < gcount; i++)
2041 if (vd[i] != NULL)
2042 vdev_split(vd[i]);
2043 vdev_reopen(spa->spa_root_vdev);
2044 }
2045
2046 kmem_free(vd, gcount * sizeof (vdev_t *));
2047 }
2048
2049 static int
2050 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2051 boolean_t mosconfig)
2052 {
2053 nvlist_t *config = spa->spa_config;
2054 char *ereport = FM_EREPORT_ZFS_POOL;
2055 char *comment;
2056 int error;
2057 uint64_t pool_guid;
2058 nvlist_t *nvl;
2059
2060 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2061 return (SET_ERROR(EINVAL));
2062
2063 ASSERT(spa->spa_comment == NULL);
2064 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2065 spa->spa_comment = spa_strdup(comment);
2066
2067 /*
2068 * Versioning wasn't explicitly added to the label until later, so if
2069 * it's not present treat it as the initial version.
2070 */
2071 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2072 &spa->spa_ubsync.ub_version) != 0)
2073 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2074
2075 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2076 &spa->spa_config_txg);
2077
2078 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2079 spa_guid_exists(pool_guid, 0)) {
2080 error = SET_ERROR(EEXIST);
2081 } else {
2082 spa->spa_config_guid = pool_guid;
2083
2084 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2085 &nvl) == 0) {
2086 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2087 KM_PUSHPAGE) == 0);
2088 }
2089
2090 nvlist_free(spa->spa_load_info);
2091 spa->spa_load_info = fnvlist_alloc();
2092
2093 gethrestime(&spa->spa_loaded_ts);
2094 error = spa_load_impl(spa, pool_guid, config, state, type,
2095 mosconfig, &ereport);
2096 }
2097
2098 spa->spa_minref = refcount_count(&spa->spa_refcount);
2099 if (error) {
2100 if (error != EEXIST) {
2101 spa->spa_loaded_ts.tv_sec = 0;
2102 spa->spa_loaded_ts.tv_nsec = 0;
2103 }
2104 if (error != EBADF) {
2105 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2106 }
2107 }
2108 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2109 spa->spa_ena = 0;
2110
2111 return (error);
2112 }
2113
2114 /*
2115 * Load an existing storage pool, using the pool's builtin spa_config as a
2116 * source of configuration information.
2117 */
2118 __attribute__((always_inline))
2119 static inline int
2120 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2121 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2122 char **ereport)
2123 {
2124 int error = 0;
2125 nvlist_t *nvroot = NULL;
2126 nvlist_t *label;
2127 vdev_t *rvd;
2128 uberblock_t *ub = &spa->spa_uberblock;
2129 uint64_t children, config_cache_txg = spa->spa_config_txg;
2130 int orig_mode = spa->spa_mode;
2131 int parse;
2132 uint64_t obj;
2133 boolean_t missing_feat_write = B_FALSE;
2134
2135 /*
2136 * If this is an untrusted config, access the pool in read-only mode.
2137 * This prevents things like resilvering recently removed devices.
2138 */
2139 if (!mosconfig)
2140 spa->spa_mode = FREAD;
2141
2142 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2143
2144 spa->spa_load_state = state;
2145
2146 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2147 return (SET_ERROR(EINVAL));
2148
2149 parse = (type == SPA_IMPORT_EXISTING ?
2150 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2151
2152 /*
2153 * Create "The Godfather" zio to hold all async IOs
2154 */
2155 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2156 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2157
2158 /*
2159 * Parse the configuration into a vdev tree. We explicitly set the
2160 * value that will be returned by spa_version() since parsing the
2161 * configuration requires knowing the version number.
2162 */
2163 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2164 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2165 spa_config_exit(spa, SCL_ALL, FTAG);
2166
2167 if (error != 0)
2168 return (error);
2169
2170 ASSERT(spa->spa_root_vdev == rvd);
2171
2172 if (type != SPA_IMPORT_ASSEMBLE) {
2173 ASSERT(spa_guid(spa) == pool_guid);
2174 }
2175
2176 /*
2177 * Try to open all vdevs, loading each label in the process.
2178 */
2179 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2180 error = vdev_open(rvd);
2181 spa_config_exit(spa, SCL_ALL, FTAG);
2182 if (error != 0)
2183 return (error);
2184
2185 /*
2186 * We need to validate the vdev labels against the configuration that
2187 * we have in hand, which is dependent on the setting of mosconfig. If
2188 * mosconfig is true then we're validating the vdev labels based on
2189 * that config. Otherwise, we're validating against the cached config
2190 * (zpool.cache) that was read when we loaded the zfs module, and then
2191 * later we will recursively call spa_load() and validate against
2192 * the vdev config.
2193 *
2194 * If we're assembling a new pool that's been split off from an
2195 * existing pool, the labels haven't yet been updated so we skip
2196 * validation for now.
2197 */
2198 if (type != SPA_IMPORT_ASSEMBLE) {
2199 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2200 error = vdev_validate(rvd, mosconfig);
2201 spa_config_exit(spa, SCL_ALL, FTAG);
2202
2203 if (error != 0)
2204 return (error);
2205
2206 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2207 return (SET_ERROR(ENXIO));
2208 }
2209
2210 /*
2211 * Find the best uberblock.
2212 */
2213 vdev_uberblock_load(rvd, ub, &label);
2214
2215 /*
2216 * If we weren't able to find a single valid uberblock, return failure.
2217 */
2218 if (ub->ub_txg == 0) {
2219 nvlist_free(label);
2220 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2221 }
2222
2223 /*
2224 * If the pool has an unsupported version we can't open it.
2225 */
2226 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2227 nvlist_free(label);
2228 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2229 }
2230
2231 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2232 nvlist_t *features;
2233
2234 /*
2235 * If we weren't able to find what's necessary for reading the
2236 * MOS in the label, return failure.
2237 */
2238 if (label == NULL || nvlist_lookup_nvlist(label,
2239 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2240 nvlist_free(label);
2241 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2242 ENXIO));
2243 }
2244
2245 /*
2246 * Update our in-core representation with the definitive values
2247 * from the label.
2248 */
2249 nvlist_free(spa->spa_label_features);
2250 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2251 }
2252
2253 nvlist_free(label);
2254
2255 /*
2256 * Look through entries in the label nvlist's features_for_read. If
2257 * there is a feature listed there which we don't understand then we
2258 * cannot open a pool.
2259 */
2260 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2261 nvlist_t *unsup_feat;
2262 nvpair_t *nvp;
2263
2264 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2265 0);
2266
2267 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2268 nvp != NULL;
2269 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2270 if (!zfeature_is_supported(nvpair_name(nvp))) {
2271 VERIFY(nvlist_add_string(unsup_feat,
2272 nvpair_name(nvp), "") == 0);
2273 }
2274 }
2275
2276 if (!nvlist_empty(unsup_feat)) {
2277 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2278 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2279 nvlist_free(unsup_feat);
2280 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2281 ENOTSUP));
2282 }
2283
2284 nvlist_free(unsup_feat);
2285 }
2286
2287 /*
2288 * If the vdev guid sum doesn't match the uberblock, we have an
2289 * incomplete configuration. We first check to see if the pool
2290 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2291 * If it is, defer the vdev_guid_sum check till later so we
2292 * can handle missing vdevs.
2293 */
2294 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2295 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2296 rvd->vdev_guid_sum != ub->ub_guid_sum)
2297 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2298
2299 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2300 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2301 spa_try_repair(spa, config);
2302 spa_config_exit(spa, SCL_ALL, FTAG);
2303 nvlist_free(spa->spa_config_splitting);
2304 spa->spa_config_splitting = NULL;
2305 }
2306
2307 /*
2308 * Initialize internal SPA structures.
2309 */
2310 spa->spa_state = POOL_STATE_ACTIVE;
2311 spa->spa_ubsync = spa->spa_uberblock;
2312 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2313 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2314 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2315 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2316 spa->spa_claim_max_txg = spa->spa_first_txg;
2317 spa->spa_prev_software_version = ub->ub_software_version;
2318
2319 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2320 if (error)
2321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2322 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2323
2324 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326
2327 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2328 boolean_t missing_feat_read = B_FALSE;
2329 nvlist_t *unsup_feat, *enabled_feat;
2330
2331 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2332 &spa->spa_feat_for_read_obj) != 0) {
2333 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2334 }
2335
2336 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2337 &spa->spa_feat_for_write_obj) != 0) {
2338 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2339 }
2340
2341 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2342 &spa->spa_feat_desc_obj) != 0) {
2343 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2344 }
2345
2346 enabled_feat = fnvlist_alloc();
2347 unsup_feat = fnvlist_alloc();
2348
2349 if (!feature_is_supported(spa->spa_meta_objset,
2350 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2351 unsup_feat, enabled_feat))
2352 missing_feat_read = B_TRUE;
2353
2354 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2355 if (!feature_is_supported(spa->spa_meta_objset,
2356 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2357 unsup_feat, enabled_feat)) {
2358 missing_feat_write = B_TRUE;
2359 }
2360 }
2361
2362 fnvlist_add_nvlist(spa->spa_load_info,
2363 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2364
2365 if (!nvlist_empty(unsup_feat)) {
2366 fnvlist_add_nvlist(spa->spa_load_info,
2367 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2368 }
2369
2370 fnvlist_free(enabled_feat);
2371 fnvlist_free(unsup_feat);
2372
2373 if (!missing_feat_read) {
2374 fnvlist_add_boolean(spa->spa_load_info,
2375 ZPOOL_CONFIG_CAN_RDONLY);
2376 }
2377
2378 /*
2379 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2380 * twofold: to determine whether the pool is available for
2381 * import in read-write mode and (if it is not) whether the
2382 * pool is available for import in read-only mode. If the pool
2383 * is available for import in read-write mode, it is displayed
2384 * as available in userland; if it is not available for import
2385 * in read-only mode, it is displayed as unavailable in
2386 * userland. If the pool is available for import in read-only
2387 * mode but not read-write mode, it is displayed as unavailable
2388 * in userland with a special note that the pool is actually
2389 * available for open in read-only mode.
2390 *
2391 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2392 * missing a feature for write, we must first determine whether
2393 * the pool can be opened read-only before returning to
2394 * userland in order to know whether to display the
2395 * abovementioned note.
2396 */
2397 if (missing_feat_read || (missing_feat_write &&
2398 spa_writeable(spa))) {
2399 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2400 ENOTSUP));
2401 }
2402 }
2403
2404 spa->spa_is_initializing = B_TRUE;
2405 error = dsl_pool_open(spa->spa_dsl_pool);
2406 spa->spa_is_initializing = B_FALSE;
2407 if (error != 0)
2408 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409
2410 if (!mosconfig) {
2411 uint64_t hostid;
2412 nvlist_t *policy = NULL, *nvconfig;
2413
2414 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2415 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2416
2417 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2418 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2419 char *hostname;
2420 unsigned long myhostid = 0;
2421
2422 VERIFY(nvlist_lookup_string(nvconfig,
2423 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2424
2425 #ifdef _KERNEL
2426 myhostid = zone_get_hostid(NULL);
2427 #else /* _KERNEL */
2428 /*
2429 * We're emulating the system's hostid in userland, so
2430 * we can't use zone_get_hostid().
2431 */
2432 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2433 #endif /* _KERNEL */
2434 if (hostid != 0 && myhostid != 0 &&
2435 hostid != myhostid) {
2436 nvlist_free(nvconfig);
2437 cmn_err(CE_WARN, "pool '%s' could not be "
2438 "loaded as it was last accessed by another "
2439 "system (host: %s hostid: 0x%lx). See: "
2440 "http://zfsonlinux.org/msg/ZFS-8000-EY",
2441 spa_name(spa), hostname,
2442 (unsigned long)hostid);
2443 return (SET_ERROR(EBADF));
2444 }
2445 }
2446 if (nvlist_lookup_nvlist(spa->spa_config,
2447 ZPOOL_REWIND_POLICY, &policy) == 0)
2448 VERIFY(nvlist_add_nvlist(nvconfig,
2449 ZPOOL_REWIND_POLICY, policy) == 0);
2450
2451 spa_config_set(spa, nvconfig);
2452 spa_unload(spa);
2453 spa_deactivate(spa);
2454 spa_activate(spa, orig_mode);
2455
2456 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2457 }
2458
2459 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2460 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2461 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2462 if (error != 0)
2463 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464
2465 /*
2466 * Load the bit that tells us to use the new accounting function
2467 * (raid-z deflation). If we have an older pool, this will not
2468 * be present.
2469 */
2470 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2471 if (error != 0 && error != ENOENT)
2472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2473
2474 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2475 &spa->spa_creation_version);
2476 if (error != 0 && error != ENOENT)
2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2478
2479 /*
2480 * Load the persistent error log. If we have an older pool, this will
2481 * not be present.
2482 */
2483 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2484 if (error != 0 && error != ENOENT)
2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486
2487 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2488 &spa->spa_errlog_scrub);
2489 if (error != 0 && error != ENOENT)
2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491
2492 /*
2493 * Load the history object. If we have an older pool, this
2494 * will not be present.
2495 */
2496 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2497 if (error != 0 && error != ENOENT)
2498 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2499
2500 /*
2501 * If we're assembling the pool from the split-off vdevs of
2502 * an existing pool, we don't want to attach the spares & cache
2503 * devices.
2504 */
2505
2506 /*
2507 * Load any hot spares for this pool.
2508 */
2509 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2510 if (error != 0 && error != ENOENT)
2511 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2512 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2513 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2514 if (load_nvlist(spa, spa->spa_spares.sav_object,
2515 &spa->spa_spares.sav_config) != 0)
2516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517
2518 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2519 spa_load_spares(spa);
2520 spa_config_exit(spa, SCL_ALL, FTAG);
2521 } else if (error == 0) {
2522 spa->spa_spares.sav_sync = B_TRUE;
2523 }
2524
2525 /*
2526 * Load any level 2 ARC devices for this pool.
2527 */
2528 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2529 &spa->spa_l2cache.sav_object);
2530 if (error != 0 && error != ENOENT)
2531 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2533 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2534 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2535 &spa->spa_l2cache.sav_config) != 0)
2536 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2537
2538 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2539 spa_load_l2cache(spa);
2540 spa_config_exit(spa, SCL_ALL, FTAG);
2541 } else if (error == 0) {
2542 spa->spa_l2cache.sav_sync = B_TRUE;
2543 }
2544
2545 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2546
2547 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2548 if (error && error != ENOENT)
2549 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2550
2551 if (error == 0) {
2552 uint64_t autoreplace;
2553
2554 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2555 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2556 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2557 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2558 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2559 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2560 &spa->spa_dedup_ditto);
2561
2562 spa->spa_autoreplace = (autoreplace != 0);
2563 }
2564
2565 /*
2566 * If the 'autoreplace' property is set, then post a resource notifying
2567 * the ZFS DE that it should not issue any faults for unopenable
2568 * devices. We also iterate over the vdevs, and post a sysevent for any
2569 * unopenable vdevs so that the normal autoreplace handler can take
2570 * over.
2571 */
2572 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2573 spa_check_removed(spa->spa_root_vdev);
2574 /*
2575 * For the import case, this is done in spa_import(), because
2576 * at this point we're using the spare definitions from
2577 * the MOS config, not necessarily from the userland config.
2578 */
2579 if (state != SPA_LOAD_IMPORT) {
2580 spa_aux_check_removed(&spa->spa_spares);
2581 spa_aux_check_removed(&spa->spa_l2cache);
2582 }
2583 }
2584
2585 /*
2586 * Load the vdev state for all toplevel vdevs.
2587 */
2588 vdev_load(rvd);
2589
2590 /*
2591 * Propagate the leaf DTLs we just loaded all the way up the tree.
2592 */
2593 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2594 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2595 spa_config_exit(spa, SCL_ALL, FTAG);
2596
2597 /*
2598 * Load the DDTs (dedup tables).
2599 */
2600 error = ddt_load(spa);
2601 if (error != 0)
2602 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603
2604 spa_update_dspace(spa);
2605
2606 /*
2607 * Validate the config, using the MOS config to fill in any
2608 * information which might be missing. If we fail to validate
2609 * the config then declare the pool unfit for use. If we're
2610 * assembling a pool from a split, the log is not transferred
2611 * over.
2612 */
2613 if (type != SPA_IMPORT_ASSEMBLE) {
2614 nvlist_t *nvconfig;
2615
2616 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2617 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618
2619 if (!spa_config_valid(spa, nvconfig)) {
2620 nvlist_free(nvconfig);
2621 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2622 ENXIO));
2623 }
2624 nvlist_free(nvconfig);
2625
2626 /*
2627 * Now that we've validated the config, check the state of the
2628 * root vdev. If it can't be opened, it indicates one or
2629 * more toplevel vdevs are faulted.
2630 */
2631 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2632 return (SET_ERROR(ENXIO));
2633
2634 if (spa_check_logs(spa)) {
2635 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2636 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2637 }
2638 }
2639
2640 if (missing_feat_write) {
2641 ASSERT(state == SPA_LOAD_TRYIMPORT);
2642
2643 /*
2644 * At this point, we know that we can open the pool in
2645 * read-only mode but not read-write mode. We now have enough
2646 * information and can return to userland.
2647 */
2648 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2649 }
2650
2651 /*
2652 * We've successfully opened the pool, verify that we're ready
2653 * to start pushing transactions.
2654 */
2655 if (state != SPA_LOAD_TRYIMPORT) {
2656 if ((error = spa_load_verify(spa)))
2657 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2658 error));
2659 }
2660
2661 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2662 spa->spa_load_max_txg == UINT64_MAX)) {
2663 dmu_tx_t *tx;
2664 int need_update = B_FALSE;
2665 int c;
2666
2667 ASSERT(state != SPA_LOAD_TRYIMPORT);
2668
2669 /*
2670 * Claim log blocks that haven't been committed yet.
2671 * This must all happen in a single txg.
2672 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2673 * invoked from zil_claim_log_block()'s i/o done callback.
2674 * Price of rollback is that we abandon the log.
2675 */
2676 spa->spa_claiming = B_TRUE;
2677
2678 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2679 spa_first_txg(spa));
2680 (void) dmu_objset_find(spa_name(spa),
2681 zil_claim, tx, DS_FIND_CHILDREN);
2682 dmu_tx_commit(tx);
2683
2684 spa->spa_claiming = B_FALSE;
2685
2686 spa_set_log_state(spa, SPA_LOG_GOOD);
2687 spa->spa_sync_on = B_TRUE;
2688 txg_sync_start(spa->spa_dsl_pool);
2689
2690 /*
2691 * Wait for all claims to sync. We sync up to the highest
2692 * claimed log block birth time so that claimed log blocks
2693 * don't appear to be from the future. spa_claim_max_txg
2694 * will have been set for us by either zil_check_log_chain()
2695 * (invoked from spa_check_logs()) or zil_claim() above.
2696 */
2697 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2698
2699 /*
2700 * If the config cache is stale, or we have uninitialized
2701 * metaslabs (see spa_vdev_add()), then update the config.
2702 *
2703 * If this is a verbatim import, trust the current
2704 * in-core spa_config and update the disk labels.
2705 */
2706 if (config_cache_txg != spa->spa_config_txg ||
2707 state == SPA_LOAD_IMPORT ||
2708 state == SPA_LOAD_RECOVER ||
2709 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2710 need_update = B_TRUE;
2711
2712 for (c = 0; c < rvd->vdev_children; c++)
2713 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2714 need_update = B_TRUE;
2715
2716 /*
2717 * Update the config cache asychronously in case we're the
2718 * root pool, in which case the config cache isn't writable yet.
2719 */
2720 if (need_update)
2721 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2722
2723 /*
2724 * Check all DTLs to see if anything needs resilvering.
2725 */
2726 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2727 vdev_resilver_needed(rvd, NULL, NULL))
2728 spa_async_request(spa, SPA_ASYNC_RESILVER);
2729
2730 /*
2731 * Log the fact that we booted up (so that we can detect if
2732 * we rebooted in the middle of an operation).
2733 */
2734 spa_history_log_version(spa, "open");
2735
2736 /*
2737 * Delete any inconsistent datasets.
2738 */
2739 (void) dmu_objset_find(spa_name(spa),
2740 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2741
2742 /*
2743 * Clean up any stale temporary dataset userrefs.
2744 */
2745 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2746 }
2747
2748 return (0);
2749 }
2750
2751 static int
2752 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2753 {
2754 int mode = spa->spa_mode;
2755
2756 spa_unload(spa);
2757 spa_deactivate(spa);
2758
2759 spa->spa_load_max_txg--;
2760
2761 spa_activate(spa, mode);
2762 spa_async_suspend(spa);
2763
2764 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2765 }
2766
2767 /*
2768 * If spa_load() fails this function will try loading prior txg's. If
2769 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2770 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2771 * function will not rewind the pool and will return the same error as
2772 * spa_load().
2773 */
2774 static int
2775 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2776 uint64_t max_request, int rewind_flags)
2777 {
2778 nvlist_t *loadinfo = NULL;
2779 nvlist_t *config = NULL;
2780 int load_error, rewind_error;
2781 uint64_t safe_rewind_txg;
2782 uint64_t min_txg;
2783
2784 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2785 spa->spa_load_max_txg = spa->spa_load_txg;
2786 spa_set_log_state(spa, SPA_LOG_CLEAR);
2787 } else {
2788 spa->spa_load_max_txg = max_request;
2789 }
2790
2791 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2792 mosconfig);
2793 if (load_error == 0)
2794 return (0);
2795
2796 if (spa->spa_root_vdev != NULL)
2797 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2798
2799 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2800 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2801
2802 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2803 nvlist_free(config);
2804 return (load_error);
2805 }
2806
2807 if (state == SPA_LOAD_RECOVER) {
2808 /* Price of rolling back is discarding txgs, including log */
2809 spa_set_log_state(spa, SPA_LOG_CLEAR);
2810 } else {
2811 /*
2812 * If we aren't rolling back save the load info from our first
2813 * import attempt so that we can restore it after attempting
2814 * to rewind.
2815 */
2816 loadinfo = spa->spa_load_info;
2817 spa->spa_load_info = fnvlist_alloc();
2818 }
2819
2820 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2821 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2822 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2823 TXG_INITIAL : safe_rewind_txg;
2824
2825 /*
2826 * Continue as long as we're finding errors, we're still within
2827 * the acceptable rewind range, and we're still finding uberblocks
2828 */
2829 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2830 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2831 if (spa->spa_load_max_txg < safe_rewind_txg)
2832 spa->spa_extreme_rewind = B_TRUE;
2833 rewind_error = spa_load_retry(spa, state, mosconfig);
2834 }
2835
2836 spa->spa_extreme_rewind = B_FALSE;
2837 spa->spa_load_max_txg = UINT64_MAX;
2838
2839 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2840 spa_config_set(spa, config);
2841
2842 if (state == SPA_LOAD_RECOVER) {
2843 ASSERT3P(loadinfo, ==, NULL);
2844 return (rewind_error);
2845 } else {
2846 /* Store the rewind info as part of the initial load info */
2847 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2848 spa->spa_load_info);
2849
2850 /* Restore the initial load info */
2851 fnvlist_free(spa->spa_load_info);
2852 spa->spa_load_info = loadinfo;
2853
2854 return (load_error);
2855 }
2856 }
2857
2858 /*
2859 * Pool Open/Import
2860 *
2861 * The import case is identical to an open except that the configuration is sent
2862 * down from userland, instead of grabbed from the configuration cache. For the
2863 * case of an open, the pool configuration will exist in the
2864 * POOL_STATE_UNINITIALIZED state.
2865 *
2866 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2867 * the same time open the pool, without having to keep around the spa_t in some
2868 * ambiguous state.
2869 */
2870 static int
2871 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2872 nvlist_t **config)
2873 {
2874 spa_t *spa;
2875 spa_load_state_t state = SPA_LOAD_OPEN;
2876 int error;
2877 int locked = B_FALSE;
2878 int firstopen = B_FALSE;
2879
2880 *spapp = NULL;
2881
2882 /*
2883 * As disgusting as this is, we need to support recursive calls to this
2884 * function because dsl_dir_open() is called during spa_load(), and ends
2885 * up calling spa_open() again. The real fix is to figure out how to
2886 * avoid dsl_dir_open() calling this in the first place.
2887 */
2888 if (mutex_owner(&spa_namespace_lock) != curthread) {
2889 mutex_enter(&spa_namespace_lock);
2890 locked = B_TRUE;
2891 }
2892
2893 if ((spa = spa_lookup(pool)) == NULL) {
2894 if (locked)
2895 mutex_exit(&spa_namespace_lock);
2896 return (SET_ERROR(ENOENT));
2897 }
2898
2899 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2900 zpool_rewind_policy_t policy;
2901
2902 firstopen = B_TRUE;
2903
2904 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2905 &policy);
2906 if (policy.zrp_request & ZPOOL_DO_REWIND)
2907 state = SPA_LOAD_RECOVER;
2908
2909 spa_activate(spa, spa_mode_global);
2910
2911 if (state != SPA_LOAD_RECOVER)
2912 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2913
2914 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2915 policy.zrp_request);
2916
2917 if (error == EBADF) {
2918 /*
2919 * If vdev_validate() returns failure (indicated by
2920 * EBADF), it indicates that one of the vdevs indicates
2921 * that the pool has been exported or destroyed. If
2922 * this is the case, the config cache is out of sync and
2923 * we should remove the pool from the namespace.
2924 */
2925 spa_unload(spa);
2926 spa_deactivate(spa);
2927 spa_config_sync(spa, B_TRUE, B_TRUE);
2928 spa_remove(spa);
2929 if (locked)
2930 mutex_exit(&spa_namespace_lock);
2931 return (SET_ERROR(ENOENT));
2932 }
2933
2934 if (error) {
2935 /*
2936 * We can't open the pool, but we still have useful
2937 * information: the state of each vdev after the
2938 * attempted vdev_open(). Return this to the user.
2939 */
2940 if (config != NULL && spa->spa_config) {
2941 VERIFY(nvlist_dup(spa->spa_config, config,
2942 KM_PUSHPAGE) == 0);
2943 VERIFY(nvlist_add_nvlist(*config,
2944 ZPOOL_CONFIG_LOAD_INFO,
2945 spa->spa_load_info) == 0);
2946 }
2947 spa_unload(spa);
2948 spa_deactivate(spa);
2949 spa->spa_last_open_failed = error;
2950 if (locked)
2951 mutex_exit(&spa_namespace_lock);
2952 *spapp = NULL;
2953 return (error);
2954 }
2955 }
2956
2957 spa_open_ref(spa, tag);
2958
2959 if (config != NULL)
2960 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2961
2962 /*
2963 * If we've recovered the pool, pass back any information we
2964 * gathered while doing the load.
2965 */
2966 if (state == SPA_LOAD_RECOVER) {
2967 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2968 spa->spa_load_info) == 0);
2969 }
2970
2971 if (locked) {
2972 spa->spa_last_open_failed = 0;
2973 spa->spa_last_ubsync_txg = 0;
2974 spa->spa_load_txg = 0;
2975 mutex_exit(&spa_namespace_lock);
2976 }
2977
2978 #ifdef _KERNEL
2979 if (firstopen)
2980 zvol_create_minors(spa->spa_name);
2981 #endif
2982
2983 *spapp = spa;
2984
2985 return (0);
2986 }
2987
2988 int
2989 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2990 nvlist_t **config)
2991 {
2992 return (spa_open_common(name, spapp, tag, policy, config));
2993 }
2994
2995 int
2996 spa_open(const char *name, spa_t **spapp, void *tag)
2997 {
2998 return (spa_open_common(name, spapp, tag, NULL, NULL));
2999 }
3000
3001 /*
3002 * Lookup the given spa_t, incrementing the inject count in the process,
3003 * preventing it from being exported or destroyed.
3004 */
3005 spa_t *
3006 spa_inject_addref(char *name)
3007 {
3008 spa_t *spa;
3009
3010 mutex_enter(&spa_namespace_lock);
3011 if ((spa = spa_lookup(name)) == NULL) {
3012 mutex_exit(&spa_namespace_lock);
3013 return (NULL);
3014 }
3015 spa->spa_inject_ref++;
3016 mutex_exit(&spa_namespace_lock);
3017
3018 return (spa);
3019 }
3020
3021 void
3022 spa_inject_delref(spa_t *spa)
3023 {
3024 mutex_enter(&spa_namespace_lock);
3025 spa->spa_inject_ref--;
3026 mutex_exit(&spa_namespace_lock);
3027 }
3028
3029 /*
3030 * Add spares device information to the nvlist.
3031 */
3032 static void
3033 spa_add_spares(spa_t *spa, nvlist_t *config)
3034 {
3035 nvlist_t **spares;
3036 uint_t i, nspares;
3037 nvlist_t *nvroot;
3038 uint64_t guid;
3039 vdev_stat_t *vs;
3040 uint_t vsc;
3041 uint64_t pool;
3042
3043 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3044
3045 if (spa->spa_spares.sav_count == 0)
3046 return;
3047
3048 VERIFY(nvlist_lookup_nvlist(config,
3049 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3050 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3051 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3052 if (nspares != 0) {
3053 VERIFY(nvlist_add_nvlist_array(nvroot,
3054 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3055 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3056 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3057
3058 /*
3059 * Go through and find any spares which have since been
3060 * repurposed as an active spare. If this is the case, update
3061 * their status appropriately.
3062 */
3063 for (i = 0; i < nspares; i++) {
3064 VERIFY(nvlist_lookup_uint64(spares[i],
3065 ZPOOL_CONFIG_GUID, &guid) == 0);
3066 if (spa_spare_exists(guid, &pool, NULL) &&
3067 pool != 0ULL) {
3068 VERIFY(nvlist_lookup_uint64_array(
3069 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3070 (uint64_t **)&vs, &vsc) == 0);
3071 vs->vs_state = VDEV_STATE_CANT_OPEN;
3072 vs->vs_aux = VDEV_AUX_SPARED;
3073 }
3074 }
3075 }
3076 }
3077
3078 /*
3079 * Add l2cache device information to the nvlist, including vdev stats.
3080 */
3081 static void
3082 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3083 {
3084 nvlist_t **l2cache;
3085 uint_t i, j, nl2cache;
3086 nvlist_t *nvroot;
3087 uint64_t guid;
3088 vdev_t *vd;
3089 vdev_stat_t *vs;
3090 uint_t vsc;
3091
3092 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3093
3094 if (spa->spa_l2cache.sav_count == 0)
3095 return;
3096
3097 VERIFY(nvlist_lookup_nvlist(config,
3098 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3099 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3100 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3101 if (nl2cache != 0) {
3102 VERIFY(nvlist_add_nvlist_array(nvroot,
3103 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3104 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3105 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3106
3107 /*
3108 * Update level 2 cache device stats.
3109 */
3110
3111 for (i = 0; i < nl2cache; i++) {
3112 VERIFY(nvlist_lookup_uint64(l2cache[i],
3113 ZPOOL_CONFIG_GUID, &guid) == 0);
3114
3115 vd = NULL;
3116 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3117 if (guid ==
3118 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3119 vd = spa->spa_l2cache.sav_vdevs[j];
3120 break;
3121 }
3122 }
3123 ASSERT(vd != NULL);
3124
3125 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3126 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3127 == 0);
3128 vdev_get_stats(vd, vs);
3129 }
3130 }
3131 }
3132
3133 static void
3134 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3135 {
3136 nvlist_t *features;
3137 zap_cursor_t zc;
3138 zap_attribute_t za;
3139
3140 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3141 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3142
3143 if (spa->spa_feat_for_read_obj != 0) {
3144 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3145 spa->spa_feat_for_read_obj);
3146 zap_cursor_retrieve(&zc, &za) == 0;
3147 zap_cursor_advance(&zc)) {
3148 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3149 za.za_num_integers == 1);
3150 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3151 za.za_first_integer));
3152 }
3153 zap_cursor_fini(&zc);
3154 }
3155
3156 if (spa->spa_feat_for_write_obj != 0) {
3157 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3158 spa->spa_feat_for_write_obj);
3159 zap_cursor_retrieve(&zc, &za) == 0;
3160 zap_cursor_advance(&zc)) {
3161 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3162 za.za_num_integers == 1);
3163 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3164 za.za_first_integer));
3165 }
3166 zap_cursor_fini(&zc);
3167 }
3168
3169 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3170 features) == 0);
3171 nvlist_free(features);
3172 }
3173
3174 int
3175 spa_get_stats(const char *name, nvlist_t **config,
3176 char *altroot, size_t buflen)
3177 {
3178 int error;
3179 spa_t *spa;
3180
3181 *config = NULL;
3182 error = spa_open_common(name, &spa, FTAG, NULL, config);
3183
3184 if (spa != NULL) {
3185 /*
3186 * This still leaves a window of inconsistency where the spares
3187 * or l2cache devices could change and the config would be
3188 * self-inconsistent.
3189 */
3190 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3191
3192 if (*config != NULL) {
3193 uint64_t loadtimes[2];
3194
3195 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3196 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3197 VERIFY(nvlist_add_uint64_array(*config,
3198 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3199
3200 VERIFY(nvlist_add_uint64(*config,
3201 ZPOOL_CONFIG_ERRCOUNT,
3202 spa_get_errlog_size(spa)) == 0);
3203
3204 if (spa_suspended(spa))
3205 VERIFY(nvlist_add_uint64(*config,
3206 ZPOOL_CONFIG_SUSPENDED,
3207 spa->spa_failmode) == 0);
3208
3209 spa_add_spares(spa, *config);
3210 spa_add_l2cache(spa, *config);
3211 spa_add_feature_stats(spa, *config);
3212 }
3213 }
3214
3215 /*
3216 * We want to get the alternate root even for faulted pools, so we cheat
3217 * and call spa_lookup() directly.
3218 */
3219 if (altroot) {
3220 if (spa == NULL) {
3221 mutex_enter(&spa_namespace_lock);
3222 spa = spa_lookup(name);
3223 if (spa)
3224 spa_altroot(spa, altroot, buflen);
3225 else
3226 altroot[0] = '\0';
3227 spa = NULL;
3228 mutex_exit(&spa_namespace_lock);
3229 } else {
3230 spa_altroot(spa, altroot, buflen);
3231 }
3232 }
3233
3234 if (spa != NULL) {
3235 spa_config_exit(spa, SCL_CONFIG, FTAG);
3236 spa_close(spa, FTAG);
3237 }
3238
3239 return (error);
3240 }
3241
3242 /*
3243 * Validate that the auxiliary device array is well formed. We must have an
3244 * array of nvlists, each which describes a valid leaf vdev. If this is an
3245 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3246 * specified, as long as they are well-formed.
3247 */
3248 static int
3249 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3250 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3251 vdev_labeltype_t label)
3252 {
3253 nvlist_t **dev;
3254 uint_t i, ndev;
3255 vdev_t *vd;
3256 int error;
3257
3258 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3259
3260 /*
3261 * It's acceptable to have no devs specified.
3262 */
3263 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3264 return (0);
3265
3266 if (ndev == 0)
3267 return (SET_ERROR(EINVAL));
3268
3269 /*
3270 * Make sure the pool is formatted with a version that supports this
3271 * device type.
3272 */
3273 if (spa_version(spa) < version)
3274 return (SET_ERROR(ENOTSUP));
3275
3276 /*
3277 * Set the pending device list so we correctly handle device in-use
3278 * checking.
3279 */
3280 sav->sav_pending = dev;
3281 sav->sav_npending = ndev;
3282
3283 for (i = 0; i < ndev; i++) {
3284 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3285 mode)) != 0)
3286 goto out;
3287
3288 if (!vd->vdev_ops->vdev_op_leaf) {
3289 vdev_free(vd);
3290 error = SET_ERROR(EINVAL);
3291 goto out;
3292 }
3293
3294 /*
3295 * The L2ARC currently only supports disk devices in
3296 * kernel context. For user-level testing, we allow it.
3297 */
3298 #ifdef _KERNEL
3299 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3300 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3301 error = SET_ERROR(ENOTBLK);
3302 vdev_free(vd);
3303 goto out;
3304 }
3305 #endif
3306 vd->vdev_top = vd;
3307
3308 if ((error = vdev_open(vd)) == 0 &&
3309 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3310 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3311 vd->vdev_guid) == 0);
3312 }
3313
3314 vdev_free(vd);
3315
3316 if (error &&
3317 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3318 goto out;
3319 else
3320 error = 0;
3321 }
3322
3323 out:
3324 sav->sav_pending = NULL;
3325 sav->sav_npending = 0;
3326 return (error);
3327 }
3328
3329 static int
3330 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3331 {
3332 int error;
3333
3334 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3335
3336 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3337 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3338 VDEV_LABEL_SPARE)) != 0) {
3339 return (error);
3340 }
3341
3342 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3343 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3344 VDEV_LABEL_L2CACHE));
3345 }
3346
3347 static void
3348 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3349 const char *config)
3350 {
3351 int i;
3352
3353 if (sav->sav_config != NULL) {
3354 nvlist_t **olddevs;
3355 uint_t oldndevs;
3356 nvlist_t **newdevs;
3357
3358 /*
3359 * Generate new dev list by concatentating with the
3360 * current dev list.
3361 */
3362 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3363 &olddevs, &oldndevs) == 0);
3364
3365 newdevs = kmem_alloc(sizeof (void *) *
3366 (ndevs + oldndevs), KM_PUSHPAGE);
3367 for (i = 0; i < oldndevs; i++)
3368 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3369 KM_PUSHPAGE) == 0);
3370 for (i = 0; i < ndevs; i++)
3371 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3372 KM_PUSHPAGE) == 0);
3373
3374 VERIFY(nvlist_remove(sav->sav_config, config,
3375 DATA_TYPE_NVLIST_ARRAY) == 0);
3376
3377 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3378 config, newdevs, ndevs + oldndevs) == 0);
3379 for (i = 0; i < oldndevs + ndevs; i++)
3380 nvlist_free(newdevs[i]);
3381 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3382 } else {
3383 /*
3384 * Generate a new dev list.
3385 */
3386 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3387 KM_PUSHPAGE) == 0);
3388 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3389 devs, ndevs) == 0);
3390 }
3391 }
3392
3393 /*
3394 * Stop and drop level 2 ARC devices
3395 */
3396 void
3397 spa_l2cache_drop(spa_t *spa)
3398 {
3399 vdev_t *vd;
3400 int i;
3401 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3402
3403 for (i = 0; i < sav->sav_count; i++) {
3404 uint64_t pool;
3405
3406 vd = sav->sav_vdevs[i];
3407 ASSERT(vd != NULL);
3408
3409 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3410 pool != 0ULL && l2arc_vdev_present(vd))
3411 l2arc_remove_vdev(vd);
3412 }
3413 }
3414
3415 /*
3416 * Pool Creation
3417 */
3418 int
3419 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3420 nvlist_t *zplprops)
3421 {
3422 spa_t *spa;
3423 char *altroot = NULL;
3424 vdev_t *rvd;
3425 dsl_pool_t *dp;
3426 dmu_tx_t *tx;
3427 int error = 0;
3428 uint64_t txg = TXG_INITIAL;
3429 nvlist_t **spares, **l2cache;
3430 uint_t nspares, nl2cache;
3431 uint64_t version, obj;
3432 boolean_t has_features;
3433 nvpair_t *elem;
3434 int c;
3435
3436 /*
3437 * If this pool already exists, return failure.
3438 */
3439 mutex_enter(&spa_namespace_lock);
3440 if (spa_lookup(pool) != NULL) {
3441 mutex_exit(&spa_namespace_lock);
3442 return (SET_ERROR(EEXIST));
3443 }
3444
3445 /*
3446 * Allocate a new spa_t structure.
3447 */
3448 (void) nvlist_lookup_string(props,
3449 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3450 spa = spa_add(pool, NULL, altroot);
3451 spa_activate(spa, spa_mode_global);
3452
3453 if (props && (error = spa_prop_validate(spa, props))) {
3454 spa_deactivate(spa);
3455 spa_remove(spa);
3456 mutex_exit(&spa_namespace_lock);
3457 return (error);
3458 }
3459
3460 has_features = B_FALSE;
3461 for (elem = nvlist_next_nvpair(props, NULL);
3462 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3463 if (zpool_prop_feature(nvpair_name(elem)))
3464 has_features = B_TRUE;
3465 }
3466
3467 if (has_features || nvlist_lookup_uint64(props,
3468 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3469 version = SPA_VERSION;
3470 }
3471 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3472
3473 spa->spa_first_txg = txg;
3474 spa->spa_uberblock.ub_txg = txg - 1;
3475 spa->spa_uberblock.ub_version = version;
3476 spa->spa_ubsync = spa->spa_uberblock;
3477
3478 /*
3479 * Create "The Godfather" zio to hold all async IOs
3480 */
3481 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3482 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3483
3484 /*
3485 * Create the root vdev.
3486 */
3487 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3488
3489 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3490
3491 ASSERT(error != 0 || rvd != NULL);
3492 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3493
3494 if (error == 0 && !zfs_allocatable_devs(nvroot))
3495 error = SET_ERROR(EINVAL);
3496
3497 if (error == 0 &&
3498 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3499 (error = spa_validate_aux(spa, nvroot, txg,
3500 VDEV_ALLOC_ADD)) == 0) {
3501 for (c = 0; c < rvd->vdev_children; c++) {
3502 vdev_metaslab_set_size(rvd->vdev_child[c]);
3503 vdev_expand(rvd->vdev_child[c], txg);
3504 }
3505 }
3506
3507 spa_config_exit(spa, SCL_ALL, FTAG);
3508
3509 if (error != 0) {
3510 spa_unload(spa);
3511 spa_deactivate(spa);
3512 spa_remove(spa);
3513 mutex_exit(&spa_namespace_lock);
3514 return (error);
3515 }
3516
3517 /*
3518 * Get the list of spares, if specified.
3519 */
3520 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3521 &spares, &nspares) == 0) {
3522 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3523 KM_PUSHPAGE) == 0);
3524 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3525 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3526 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3527 spa_load_spares(spa);
3528 spa_config_exit(spa, SCL_ALL, FTAG);
3529 spa->spa_spares.sav_sync = B_TRUE;
3530 }
3531
3532 /*
3533 * Get the list of level 2 cache devices, if specified.
3534 */
3535 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3536 &l2cache, &nl2cache) == 0) {
3537 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3538 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3539 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3540 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3541 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3542 spa_load_l2cache(spa);
3543 spa_config_exit(spa, SCL_ALL, FTAG);
3544 spa->spa_l2cache.sav_sync = B_TRUE;
3545 }
3546
3547 spa->spa_is_initializing = B_TRUE;
3548 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3549 spa->spa_meta_objset = dp->dp_meta_objset;
3550 spa->spa_is_initializing = B_FALSE;
3551
3552 /*
3553 * Create DDTs (dedup tables).
3554 */
3555 ddt_create(spa);
3556
3557 spa_update_dspace(spa);
3558
3559 tx = dmu_tx_create_assigned(dp, txg);
3560
3561 /*
3562 * Create the pool config object.
3563 */
3564 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3565 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3566 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3567
3568 if (zap_add(spa->spa_meta_objset,
3569 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3570 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3571 cmn_err(CE_PANIC, "failed to add pool config");
3572 }
3573
3574 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3575 spa_feature_create_zap_objects(spa, tx);
3576
3577 if (zap_add(spa->spa_meta_objset,
3578 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3579 sizeof (uint64_t), 1, &version, tx) != 0) {
3580 cmn_err(CE_PANIC, "failed to add pool version");
3581 }
3582
3583 /* Newly created pools with the right version are always deflated. */
3584 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3585 spa->spa_deflate = TRUE;
3586 if (zap_add(spa->spa_meta_objset,
3587 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3588 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3589 cmn_err(CE_PANIC, "failed to add deflate");
3590 }
3591 }
3592
3593 /*
3594 * Create the deferred-free bpobj. Turn off compression
3595 * because sync-to-convergence takes longer if the blocksize
3596 * keeps changing.
3597 */
3598 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3599 dmu_object_set_compress(spa->spa_meta_objset, obj,
3600 ZIO_COMPRESS_OFF, tx);
3601 if (zap_add(spa->spa_meta_objset,
3602 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3603 sizeof (uint64_t), 1, &obj, tx) != 0) {
3604 cmn_err(CE_PANIC, "failed to add bpobj");
3605 }
3606 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3607 spa->spa_meta_objset, obj));
3608
3609 /*
3610 * Create the pool's history object.
3611 */
3612 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3613 spa_history_create_obj(spa, tx);
3614
3615 /*
3616 * Set pool properties.
3617 */
3618 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3619 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3620 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3621 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3622
3623 if (props != NULL) {
3624 spa_configfile_set(spa, props, B_FALSE);
3625 spa_sync_props(props, tx);
3626 }
3627
3628 dmu_tx_commit(tx);
3629
3630 spa->spa_sync_on = B_TRUE;
3631 txg_sync_start(spa->spa_dsl_pool);
3632
3633 /*
3634 * We explicitly wait for the first transaction to complete so that our
3635 * bean counters are appropriately updated.
3636 */
3637 txg_wait_synced(spa->spa_dsl_pool, txg);
3638
3639 spa_config_sync(spa, B_FALSE, B_TRUE);
3640
3641 spa_history_log_version(spa, "create");
3642
3643 spa->spa_minref = refcount_count(&spa->spa_refcount);
3644
3645 mutex_exit(&spa_namespace_lock);
3646
3647 return (0);
3648 }
3649
3650 #ifdef _KERNEL
3651 /*
3652 * Get the root pool information from the root disk, then import the root pool
3653 * during the system boot up time.
3654 */
3655 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3656
3657 static nvlist_t *
3658 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3659 {
3660 nvlist_t *config;
3661 nvlist_t *nvtop, *nvroot;
3662 uint64_t pgid;
3663
3664 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3665 return (NULL);
3666
3667 /*
3668 * Add this top-level vdev to the child array.
3669 */
3670 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3671 &nvtop) == 0);
3672 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3673 &pgid) == 0);
3674 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3675
3676 /*
3677 * Put this pool's top-level vdevs into a root vdev.
3678 */
3679 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3680 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3681 VDEV_TYPE_ROOT) == 0);
3682 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3683 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3684 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3685 &nvtop, 1) == 0);
3686
3687 /*
3688 * Replace the existing vdev_tree with the new root vdev in
3689 * this pool's configuration (remove the old, add the new).
3690 */
3691 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3692 nvlist_free(nvroot);
3693 return (config);
3694 }
3695
3696 /*
3697 * Walk the vdev tree and see if we can find a device with "better"
3698 * configuration. A configuration is "better" if the label on that
3699 * device has a more recent txg.
3700 */
3701 static void
3702 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3703 {
3704 int c;
3705
3706 for (c = 0; c < vd->vdev_children; c++)
3707 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3708
3709 if (vd->vdev_ops->vdev_op_leaf) {
3710 nvlist_t *label;
3711 uint64_t label_txg;
3712
3713 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3714 &label) != 0)
3715 return;
3716
3717 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3718 &label_txg) == 0);
3719
3720 /*
3721 * Do we have a better boot device?
3722 */
3723 if (label_txg > *txg) {
3724 *txg = label_txg;
3725 *avd = vd;
3726 }
3727 nvlist_free(label);
3728 }
3729 }
3730
3731 /*
3732 * Import a root pool.
3733 *
3734 * For x86. devpath_list will consist of devid and/or physpath name of
3735 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3736 * The GRUB "findroot" command will return the vdev we should boot.
3737 *
3738 * For Sparc, devpath_list consists the physpath name of the booting device
3739 * no matter the rootpool is a single device pool or a mirrored pool.
3740 * e.g.
3741 * "/pci@1f,0/ide@d/disk@0,0:a"
3742 */
3743 int
3744 spa_import_rootpool(char *devpath, char *devid)
3745 {
3746 spa_t *spa;
3747 vdev_t *rvd, *bvd, *avd = NULL;
3748 nvlist_t *config, *nvtop;
3749 uint64_t guid, txg;
3750 char *pname;
3751 int error;
3752
3753 /*
3754 * Read the label from the boot device and generate a configuration.
3755 */
3756 config = spa_generate_rootconf(devpath, devid, &guid);
3757 #if defined(_OBP) && defined(_KERNEL)
3758 if (config == NULL) {
3759 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3760 /* iscsi boot */
3761 get_iscsi_bootpath_phy(devpath);
3762 config = spa_generate_rootconf(devpath, devid, &guid);
3763 }
3764 }
3765 #endif
3766 if (config == NULL) {
3767 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3768 devpath);
3769 return (SET_ERROR(EIO));
3770 }
3771
3772 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3773 &pname) == 0);
3774 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3775
3776 mutex_enter(&spa_namespace_lock);
3777 if ((spa = spa_lookup(pname)) != NULL) {
3778 /*
3779 * Remove the existing root pool from the namespace so that we
3780 * can replace it with the correct config we just read in.
3781 */
3782 spa_remove(spa);
3783 }
3784
3785 spa = spa_add(pname, config, NULL);
3786 spa->spa_is_root = B_TRUE;
3787 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3788
3789 /*
3790 * Build up a vdev tree based on the boot device's label config.
3791 */
3792 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3793 &nvtop) == 0);
3794 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3795 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3796 VDEV_ALLOC_ROOTPOOL);
3797 spa_config_exit(spa, SCL_ALL, FTAG);
3798 if (error) {
3799 mutex_exit(&spa_namespace_lock);
3800 nvlist_free(config);
3801 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3802 pname);
3803 return (error);
3804 }
3805
3806 /*
3807 * Get the boot vdev.
3808 */
3809 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3810 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3811 (u_longlong_t)guid);
3812 error = SET_ERROR(ENOENT);
3813 goto out;
3814 }
3815
3816 /*
3817 * Determine if there is a better boot device.
3818 */
3819 avd = bvd;
3820 spa_alt_rootvdev(rvd, &avd, &txg);
3821 if (avd != bvd) {
3822 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3823 "try booting from '%s'", avd->vdev_path);
3824 error = SET_ERROR(EINVAL);
3825 goto out;
3826 }
3827
3828 /*
3829 * If the boot device is part of a spare vdev then ensure that
3830 * we're booting off the active spare.
3831 */
3832 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3833 !bvd->vdev_isspare) {
3834 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3835 "try booting from '%s'",
3836 bvd->vdev_parent->
3837 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3838 error = SET_ERROR(EINVAL);
3839 goto out;
3840 }
3841
3842 error = 0;
3843 out:
3844 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3845 vdev_free(rvd);
3846 spa_config_exit(spa, SCL_ALL, FTAG);
3847 mutex_exit(&spa_namespace_lock);
3848
3849 nvlist_free(config);
3850 return (error);
3851 }
3852
3853 #endif
3854
3855 /*
3856 * Import a non-root pool into the system.
3857 */
3858 int
3859 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3860 {
3861 spa_t *spa;
3862 char *altroot = NULL;
3863 spa_load_state_t state = SPA_LOAD_IMPORT;
3864 zpool_rewind_policy_t policy;
3865 uint64_t mode = spa_mode_global;
3866 uint64_t readonly = B_FALSE;
3867 int error;
3868 nvlist_t *nvroot;
3869 nvlist_t **spares, **l2cache;
3870 uint_t nspares, nl2cache;
3871
3872 /*
3873 * If a pool with this name exists, return failure.
3874 */
3875 mutex_enter(&spa_namespace_lock);
3876 if (spa_lookup(pool) != NULL) {
3877 mutex_exit(&spa_namespace_lock);
3878 return (SET_ERROR(EEXIST));
3879 }
3880
3881 /*
3882 * Create and initialize the spa structure.
3883 */
3884 (void) nvlist_lookup_string(props,
3885 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3886 (void) nvlist_lookup_uint64(props,
3887 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3888 if (readonly)
3889 mode = FREAD;
3890 spa = spa_add(pool, config, altroot);
3891 spa->spa_import_flags = flags;
3892
3893 /*
3894 * Verbatim import - Take a pool and insert it into the namespace
3895 * as if it had been loaded at boot.
3896 */
3897 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3898 if (props != NULL)
3899 spa_configfile_set(spa, props, B_FALSE);
3900
3901 spa_config_sync(spa, B_FALSE, B_TRUE);
3902
3903 mutex_exit(&spa_namespace_lock);
3904 spa_history_log_version(spa, "import");
3905
3906 return (0);
3907 }
3908
3909 spa_activate(spa, mode);
3910
3911 /*
3912 * Don't start async tasks until we know everything is healthy.
3913 */
3914 spa_async_suspend(spa);
3915
3916 zpool_get_rewind_policy(config, &policy);
3917 if (policy.zrp_request & ZPOOL_DO_REWIND)
3918 state = SPA_LOAD_RECOVER;
3919
3920 /*
3921 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3922 * because the user-supplied config is actually the one to trust when
3923 * doing an import.
3924 */
3925 if (state != SPA_LOAD_RECOVER)
3926 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3927
3928 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3929 policy.zrp_request);
3930
3931 /*
3932 * Propagate anything learned while loading the pool and pass it
3933 * back to caller (i.e. rewind info, missing devices, etc).
3934 */
3935 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3936 spa->spa_load_info) == 0);
3937
3938 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3939 /*
3940 * Toss any existing sparelist, as it doesn't have any validity
3941 * anymore, and conflicts with spa_has_spare().
3942 */
3943 if (spa->spa_spares.sav_config) {
3944 nvlist_free(spa->spa_spares.sav_config);
3945 spa->spa_spares.sav_config = NULL;
3946 spa_load_spares(spa);
3947 }
3948 if (spa->spa_l2cache.sav_config) {
3949 nvlist_free(spa->spa_l2cache.sav_config);
3950 spa->spa_l2cache.sav_config = NULL;
3951 spa_load_l2cache(spa);
3952 }
3953
3954 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3955 &nvroot) == 0);
3956 if (error == 0)
3957 error = spa_validate_aux(spa, nvroot, -1ULL,
3958 VDEV_ALLOC_SPARE);
3959 if (error == 0)
3960 error = spa_validate_aux(spa, nvroot, -1ULL,
3961 VDEV_ALLOC_L2CACHE);
3962 spa_config_exit(spa, SCL_ALL, FTAG);
3963
3964 if (props != NULL)
3965 spa_configfile_set(spa, props, B_FALSE);
3966
3967 if (error != 0 || (props && spa_writeable(spa) &&
3968 (error = spa_prop_set(spa, props)))) {
3969 spa_unload(spa);
3970 spa_deactivate(spa);
3971 spa_remove(spa);
3972 mutex_exit(&spa_namespace_lock);
3973 return (error);
3974 }
3975
3976 spa_async_resume(spa);
3977
3978 /*
3979 * Override any spares and level 2 cache devices as specified by
3980 * the user, as these may have correct device names/devids, etc.
3981 */
3982 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3983 &spares, &nspares) == 0) {
3984 if (spa->spa_spares.sav_config)
3985 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3986 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3987 else
3988 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3989 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3990 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3991 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3992 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3993 spa_load_spares(spa);
3994 spa_config_exit(spa, SCL_ALL, FTAG);
3995 spa->spa_spares.sav_sync = B_TRUE;
3996 }
3997 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3998 &l2cache, &nl2cache) == 0) {
3999 if (spa->spa_l2cache.sav_config)
4000 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4001 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4002 else
4003 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4004 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4005 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4006 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4007 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4008 spa_load_l2cache(spa);
4009 spa_config_exit(spa, SCL_ALL, FTAG);
4010 spa->spa_l2cache.sav_sync = B_TRUE;
4011 }
4012
4013 /*
4014 * Check for any removed devices.
4015 */
4016 if (spa->spa_autoreplace) {
4017 spa_aux_check_removed(&spa->spa_spares);
4018 spa_aux_check_removed(&spa->spa_l2cache);
4019 }
4020
4021 if (spa_writeable(spa)) {
4022 /*
4023 * Update the config cache to include the newly-imported pool.
4024 */
4025 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4026 }
4027
4028 /*
4029 * It's possible that the pool was expanded while it was exported.
4030 * We kick off an async task to handle this for us.
4031 */
4032 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4033
4034 mutex_exit(&spa_namespace_lock);
4035 spa_history_log_version(spa, "import");
4036
4037 #ifdef _KERNEL
4038 zvol_create_minors(pool);
4039 #endif
4040
4041 return (0);
4042 }
4043
4044 nvlist_t *
4045 spa_tryimport(nvlist_t *tryconfig)
4046 {
4047 nvlist_t *config = NULL;
4048 char *poolname;
4049 spa_t *spa;
4050 uint64_t state;
4051 int error;
4052
4053 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4054 return (NULL);
4055
4056 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4057 return (NULL);
4058
4059 /*
4060 * Create and initialize the spa structure.
4061 */
4062 mutex_enter(&spa_namespace_lock);
4063 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4064 spa_activate(spa, FREAD);
4065
4066 /*
4067 * Pass off the heavy lifting to spa_load().
4068 * Pass TRUE for mosconfig because the user-supplied config
4069 * is actually the one to trust when doing an import.
4070 */
4071 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4072
4073 /*
4074 * If 'tryconfig' was at least parsable, return the current config.
4075 */
4076 if (spa->spa_root_vdev != NULL) {
4077 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4078 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4079 poolname) == 0);
4080 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4081 state) == 0);
4082 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4083 spa->spa_uberblock.ub_timestamp) == 0);
4084 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4085 spa->spa_load_info) == 0);
4086
4087 /*
4088 * If the bootfs property exists on this pool then we
4089 * copy it out so that external consumers can tell which
4090 * pools are bootable.
4091 */
4092 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4093 char *tmpname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
4094
4095 /*
4096 * We have to play games with the name since the
4097 * pool was opened as TRYIMPORT_NAME.
4098 */
4099 if (dsl_dsobj_to_dsname(spa_name(spa),
4100 spa->spa_bootfs, tmpname) == 0) {
4101 char *cp;
4102 char *dsname;
4103
4104 dsname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
4105
4106 cp = strchr(tmpname, '/');
4107 if (cp == NULL) {
4108 (void) strlcpy(dsname, tmpname,
4109 MAXPATHLEN);
4110 } else {
4111 (void) snprintf(dsname, MAXPATHLEN,
4112 "%s/%s", poolname, ++cp);
4113 }
4114 VERIFY(nvlist_add_string(config,
4115 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4116 kmem_free(dsname, MAXPATHLEN);
4117 }
4118 kmem_free(tmpname, MAXPATHLEN);
4119 }
4120
4121 /*
4122 * Add the list of hot spares and level 2 cache devices.
4123 */
4124 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4125 spa_add_spares(spa, config);
4126 spa_add_l2cache(spa, config);
4127 spa_config_exit(spa, SCL_CONFIG, FTAG);
4128 }
4129
4130 spa_unload(spa);
4131 spa_deactivate(spa);
4132 spa_remove(spa);
4133 mutex_exit(&spa_namespace_lock);
4134
4135 return (config);
4136 }
4137
4138 /*
4139 * Pool export/destroy
4140 *
4141 * The act of destroying or exporting a pool is very simple. We make sure there
4142 * is no more pending I/O and any references to the pool are gone. Then, we
4143 * update the pool state and sync all the labels to disk, removing the
4144 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4145 * we don't sync the labels or remove the configuration cache.
4146 */
4147 static int
4148 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4149 boolean_t force, boolean_t hardforce)
4150 {
4151 spa_t *spa;
4152
4153 if (oldconfig)
4154 *oldconfig = NULL;
4155
4156 if (!(spa_mode_global & FWRITE))
4157 return (SET_ERROR(EROFS));
4158
4159 mutex_enter(&spa_namespace_lock);
4160 if ((spa = spa_lookup(pool)) == NULL) {
4161 mutex_exit(&spa_namespace_lock);
4162 return (SET_ERROR(ENOENT));
4163 }
4164
4165 /*
4166 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4167 * reacquire the namespace lock, and see if we can export.
4168 */
4169 spa_open_ref(spa, FTAG);
4170 mutex_exit(&spa_namespace_lock);
4171 spa_async_suspend(spa);
4172 mutex_enter(&spa_namespace_lock);
4173 spa_close(spa, FTAG);
4174
4175 /*
4176 * The pool will be in core if it's openable,
4177 * in which case we can modify its state.
4178 */
4179 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4180 /*
4181 * Objsets may be open only because they're dirty, so we
4182 * have to force it to sync before checking spa_refcnt.
4183 */
4184 txg_wait_synced(spa->spa_dsl_pool, 0);
4185
4186 /*
4187 * A pool cannot be exported or destroyed if there are active
4188 * references. If we are resetting a pool, allow references by
4189 * fault injection handlers.
4190 */
4191 if (!spa_refcount_zero(spa) ||
4192 (spa->spa_inject_ref != 0 &&
4193 new_state != POOL_STATE_UNINITIALIZED)) {
4194 spa_async_resume(spa);
4195 mutex_exit(&spa_namespace_lock);
4196 return (SET_ERROR(EBUSY));
4197 }
4198
4199 /*
4200 * A pool cannot be exported if it has an active shared spare.
4201 * This is to prevent other pools stealing the active spare
4202 * from an exported pool. At user's own will, such pool can
4203 * be forcedly exported.
4204 */
4205 if (!force && new_state == POOL_STATE_EXPORTED &&
4206 spa_has_active_shared_spare(spa)) {
4207 spa_async_resume(spa);
4208 mutex_exit(&spa_namespace_lock);
4209 return (SET_ERROR(EXDEV));
4210 }
4211
4212 /*
4213 * We want this to be reflected on every label,
4214 * so mark them all dirty. spa_unload() will do the
4215 * final sync that pushes these changes out.
4216 */
4217 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4218 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4219 spa->spa_state = new_state;
4220 spa->spa_final_txg = spa_last_synced_txg(spa) +
4221 TXG_DEFER_SIZE + 1;
4222 vdev_config_dirty(spa->spa_root_vdev);
4223 spa_config_exit(spa, SCL_ALL, FTAG);
4224 }
4225 }
4226
4227 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4228
4229 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4230 spa_unload(spa);
4231 spa_deactivate(spa);
4232 }
4233
4234 if (oldconfig && spa->spa_config)
4235 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4236
4237 if (new_state != POOL_STATE_UNINITIALIZED) {
4238 if (!hardforce)
4239 spa_config_sync(spa, B_TRUE, B_TRUE);
4240 spa_remove(spa);
4241 }
4242 mutex_exit(&spa_namespace_lock);
4243
4244 return (0);
4245 }
4246
4247 /*
4248 * Destroy a storage pool.
4249 */
4250 int
4251 spa_destroy(char *pool)
4252 {
4253 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4254 B_FALSE, B_FALSE));
4255 }
4256
4257 /*
4258 * Export a storage pool.
4259 */
4260 int
4261 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4262 boolean_t hardforce)
4263 {
4264 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4265 force, hardforce));
4266 }
4267
4268 /*
4269 * Similar to spa_export(), this unloads the spa_t without actually removing it
4270 * from the namespace in any way.
4271 */
4272 int
4273 spa_reset(char *pool)
4274 {
4275 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4276 B_FALSE, B_FALSE));
4277 }
4278
4279 /*
4280 * ==========================================================================
4281 * Device manipulation
4282 * ==========================================================================
4283 */
4284
4285 /*
4286 * Add a device to a storage pool.
4287 */
4288 int
4289 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4290 {
4291 uint64_t txg, id;
4292 int error;
4293 vdev_t *rvd = spa->spa_root_vdev;
4294 vdev_t *vd, *tvd;
4295 nvlist_t **spares, **l2cache;
4296 uint_t nspares, nl2cache;
4297 int c;
4298
4299 ASSERT(spa_writeable(spa));
4300
4301 txg = spa_vdev_enter(spa);
4302
4303 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4304 VDEV_ALLOC_ADD)) != 0)
4305 return (spa_vdev_exit(spa, NULL, txg, error));
4306
4307 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4308
4309 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4310 &nspares) != 0)
4311 nspares = 0;
4312
4313 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4314 &nl2cache) != 0)
4315 nl2cache = 0;
4316
4317 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4318 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4319
4320 if (vd->vdev_children != 0 &&
4321 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4322 return (spa_vdev_exit(spa, vd, txg, error));
4323
4324 /*
4325 * We must validate the spares and l2cache devices after checking the
4326 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4327 */
4328 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4329 return (spa_vdev_exit(spa, vd, txg, error));
4330
4331 /*
4332 * Transfer each new top-level vdev from vd to rvd.
4333 */
4334 for (c = 0; c < vd->vdev_children; c++) {
4335
4336 /*
4337 * Set the vdev id to the first hole, if one exists.
4338 */
4339 for (id = 0; id < rvd->vdev_children; id++) {
4340 if (rvd->vdev_child[id]->vdev_ishole) {
4341 vdev_free(rvd->vdev_child[id]);
4342 break;
4343 }
4344 }
4345 tvd = vd->vdev_child[c];
4346 vdev_remove_child(vd, tvd);
4347 tvd->vdev_id = id;
4348 vdev_add_child(rvd, tvd);
4349 vdev_config_dirty(tvd);
4350 }
4351
4352 if (nspares != 0) {
4353 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4354 ZPOOL_CONFIG_SPARES);
4355 spa_load_spares(spa);
4356 spa->spa_spares.sav_sync = B_TRUE;
4357 }
4358
4359 if (nl2cache != 0) {
4360 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4361 ZPOOL_CONFIG_L2CACHE);
4362 spa_load_l2cache(spa);
4363 spa->spa_l2cache.sav_sync = B_TRUE;
4364 }
4365
4366 /*
4367 * We have to be careful when adding new vdevs to an existing pool.
4368 * If other threads start allocating from these vdevs before we
4369 * sync the config cache, and we lose power, then upon reboot we may
4370 * fail to open the pool because there are DVAs that the config cache
4371 * can't translate. Therefore, we first add the vdevs without
4372 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4373 * and then let spa_config_update() initialize the new metaslabs.
4374 *
4375 * spa_load() checks for added-but-not-initialized vdevs, so that
4376 * if we lose power at any point in this sequence, the remaining
4377 * steps will be completed the next time we load the pool.
4378 */
4379 (void) spa_vdev_exit(spa, vd, txg, 0);
4380
4381 mutex_enter(&spa_namespace_lock);
4382 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4383 mutex_exit(&spa_namespace_lock);
4384
4385 return (0);
4386 }
4387
4388 /*
4389 * Attach a device to a mirror. The arguments are the path to any device
4390 * in the mirror, and the nvroot for the new device. If the path specifies
4391 * a device that is not mirrored, we automatically insert the mirror vdev.
4392 *
4393 * If 'replacing' is specified, the new device is intended to replace the
4394 * existing device; in this case the two devices are made into their own
4395 * mirror using the 'replacing' vdev, which is functionally identical to
4396 * the mirror vdev (it actually reuses all the same ops) but has a few
4397 * extra rules: you can't attach to it after it's been created, and upon
4398 * completion of resilvering, the first disk (the one being replaced)
4399 * is automatically detached.
4400 */
4401 int
4402 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4403 {
4404 uint64_t txg, dtl_max_txg;
4405 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4406 vdev_ops_t *pvops;
4407 char *oldvdpath, *newvdpath;
4408 int newvd_isspare;
4409 int error;
4410 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4411
4412 ASSERT(spa_writeable(spa));
4413
4414 txg = spa_vdev_enter(spa);
4415
4416 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4417
4418 if (oldvd == NULL)
4419 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4420
4421 if (!oldvd->vdev_ops->vdev_op_leaf)
4422 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4423
4424 pvd = oldvd->vdev_parent;
4425
4426 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4427 VDEV_ALLOC_ATTACH)) != 0)
4428 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4429
4430 if (newrootvd->vdev_children != 1)
4431 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4432
4433 newvd = newrootvd->vdev_child[0];
4434
4435 if (!newvd->vdev_ops->vdev_op_leaf)
4436 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4437
4438 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4439 return (spa_vdev_exit(spa, newrootvd, txg, error));
4440
4441 /*
4442 * Spares can't replace logs
4443 */
4444 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4445 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4446
4447 if (!replacing) {
4448 /*
4449 * For attach, the only allowable parent is a mirror or the root
4450 * vdev.
4451 */
4452 if (pvd->vdev_ops != &vdev_mirror_ops &&
4453 pvd->vdev_ops != &vdev_root_ops)
4454 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4455
4456 pvops = &vdev_mirror_ops;
4457 } else {
4458 /*
4459 * Active hot spares can only be replaced by inactive hot
4460 * spares.
4461 */
4462 if (pvd->vdev_ops == &vdev_spare_ops &&
4463 oldvd->vdev_isspare &&
4464 !spa_has_spare(spa, newvd->vdev_guid))
4465 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4466
4467 /*
4468 * If the source is a hot spare, and the parent isn't already a
4469 * spare, then we want to create a new hot spare. Otherwise, we
4470 * want to create a replacing vdev. The user is not allowed to
4471 * attach to a spared vdev child unless the 'isspare' state is
4472 * the same (spare replaces spare, non-spare replaces
4473 * non-spare).
4474 */
4475 if (pvd->vdev_ops == &vdev_replacing_ops &&
4476 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4477 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4478 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4479 newvd->vdev_isspare != oldvd->vdev_isspare) {
4480 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4481 }
4482
4483 if (newvd->vdev_isspare)
4484 pvops = &vdev_spare_ops;
4485 else
4486 pvops = &vdev_replacing_ops;
4487 }
4488
4489 /*
4490 * Make sure the new device is big enough.
4491 */
4492 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4493 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4494
4495 /*
4496 * The new device cannot have a higher alignment requirement
4497 * than the top-level vdev.
4498 */
4499 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4500 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4501
4502 /*
4503 * If this is an in-place replacement, update oldvd's path and devid
4504 * to make it distinguishable from newvd, and unopenable from now on.
4505 */
4506 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4507 spa_strfree(oldvd->vdev_path);
4508 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4509 KM_PUSHPAGE);
4510 (void) sprintf(oldvd->vdev_path, "%s/%s",
4511 newvd->vdev_path, "old");
4512 if (oldvd->vdev_devid != NULL) {
4513 spa_strfree(oldvd->vdev_devid);
4514 oldvd->vdev_devid = NULL;
4515 }
4516 }
4517
4518 /* mark the device being resilvered */
4519 newvd->vdev_resilver_txg = txg;
4520
4521 /*
4522 * If the parent is not a mirror, or if we're replacing, insert the new
4523 * mirror/replacing/spare vdev above oldvd.
4524 */
4525 if (pvd->vdev_ops != pvops)
4526 pvd = vdev_add_parent(oldvd, pvops);
4527
4528 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4529 ASSERT(pvd->vdev_ops == pvops);
4530 ASSERT(oldvd->vdev_parent == pvd);
4531
4532 /*
4533 * Extract the new device from its root and add it to pvd.
4534 */
4535 vdev_remove_child(newrootvd, newvd);
4536 newvd->vdev_id = pvd->vdev_children;
4537 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4538 vdev_add_child(pvd, newvd);
4539
4540 tvd = newvd->vdev_top;
4541 ASSERT(pvd->vdev_top == tvd);
4542 ASSERT(tvd->vdev_parent == rvd);
4543
4544 vdev_config_dirty(tvd);
4545
4546 /*
4547 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4548 * for any dmu_sync-ed blocks. It will propagate upward when
4549 * spa_vdev_exit() calls vdev_dtl_reassess().
4550 */
4551 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4552
4553 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4554 dtl_max_txg - TXG_INITIAL);
4555
4556 if (newvd->vdev_isspare) {
4557 spa_spare_activate(newvd);
4558 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4559 }
4560
4561 oldvdpath = spa_strdup(oldvd->vdev_path);
4562 newvdpath = spa_strdup(newvd->vdev_path);
4563 newvd_isspare = newvd->vdev_isspare;
4564
4565 /*
4566 * Mark newvd's DTL dirty in this txg.
4567 */
4568 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4569
4570 /*
4571 * Restart the resilver
4572 */
4573 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4574
4575 /*
4576 * Commit the config
4577 */
4578 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4579
4580 spa_history_log_internal(spa, "vdev attach", NULL,
4581 "%s vdev=%s %s vdev=%s",
4582 replacing && newvd_isspare ? "spare in" :
4583 replacing ? "replace" : "attach", newvdpath,
4584 replacing ? "for" : "to", oldvdpath);
4585
4586 spa_strfree(oldvdpath);
4587 spa_strfree(newvdpath);
4588
4589 if (spa->spa_bootfs)
4590 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4591
4592 return (0);
4593 }
4594
4595 /*
4596 * Detach a device from a mirror or replacing vdev.
4597 *
4598 * If 'replace_done' is specified, only detach if the parent
4599 * is a replacing vdev.
4600 */
4601 int
4602 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4603 {
4604 uint64_t txg;
4605 int error;
4606 vdev_t *vd, *pvd, *cvd, *tvd;
4607 boolean_t unspare = B_FALSE;
4608 uint64_t unspare_guid = 0;
4609 char *vdpath;
4610 int c, t;
4611 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4612 ASSERT(spa_writeable(spa));
4613
4614 txg = spa_vdev_enter(spa);
4615
4616 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4617
4618 if (vd == NULL)
4619 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4620
4621 if (!vd->vdev_ops->vdev_op_leaf)
4622 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4623
4624 pvd = vd->vdev_parent;
4625
4626 /*
4627 * If the parent/child relationship is not as expected, don't do it.
4628 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4629 * vdev that's replacing B with C. The user's intent in replacing
4630 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4631 * the replace by detaching C, the expected behavior is to end up
4632 * M(A,B). But suppose that right after deciding to detach C,
4633 * the replacement of B completes. We would have M(A,C), and then
4634 * ask to detach C, which would leave us with just A -- not what
4635 * the user wanted. To prevent this, we make sure that the
4636 * parent/child relationship hasn't changed -- in this example,
4637 * that C's parent is still the replacing vdev R.
4638 */
4639 if (pvd->vdev_guid != pguid && pguid != 0)
4640 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4641
4642 /*
4643 * Only 'replacing' or 'spare' vdevs can be replaced.
4644 */
4645 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4646 pvd->vdev_ops != &vdev_spare_ops)
4647 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4648
4649 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4650 spa_version(spa) >= SPA_VERSION_SPARES);
4651
4652 /*
4653 * Only mirror, replacing, and spare vdevs support detach.
4654 */
4655 if (pvd->vdev_ops != &vdev_replacing_ops &&
4656 pvd->vdev_ops != &vdev_mirror_ops &&
4657 pvd->vdev_ops != &vdev_spare_ops)
4658 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4659
4660 /*
4661 * If this device has the only valid copy of some data,
4662 * we cannot safely detach it.
4663 */
4664 if (vdev_dtl_required(vd))
4665 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4666
4667 ASSERT(pvd->vdev_children >= 2);
4668
4669 /*
4670 * If we are detaching the second disk from a replacing vdev, then
4671 * check to see if we changed the original vdev's path to have "/old"
4672 * at the end in spa_vdev_attach(). If so, undo that change now.
4673 */
4674 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4675 vd->vdev_path != NULL) {
4676 size_t len = strlen(vd->vdev_path);
4677
4678 for (c = 0; c < pvd->vdev_children; c++) {
4679 cvd = pvd->vdev_child[c];
4680
4681 if (cvd == vd || cvd->vdev_path == NULL)
4682 continue;
4683
4684 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4685 strcmp(cvd->vdev_path + len, "/old") == 0) {
4686 spa_strfree(cvd->vdev_path);
4687 cvd->vdev_path = spa_strdup(vd->vdev_path);
4688 break;
4689 }
4690 }
4691 }
4692
4693 /*
4694 * If we are detaching the original disk from a spare, then it implies
4695 * that the spare should become a real disk, and be removed from the
4696 * active spare list for the pool.
4697 */
4698 if (pvd->vdev_ops == &vdev_spare_ops &&
4699 vd->vdev_id == 0 &&
4700 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4701 unspare = B_TRUE;
4702
4703 /*
4704 * Erase the disk labels so the disk can be used for other things.
4705 * This must be done after all other error cases are handled,
4706 * but before we disembowel vd (so we can still do I/O to it).
4707 * But if we can't do it, don't treat the error as fatal --
4708 * it may be that the unwritability of the disk is the reason
4709 * it's being detached!
4710 */
4711 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4712
4713 /*
4714 * Remove vd from its parent and compact the parent's children.
4715 */
4716 vdev_remove_child(pvd, vd);
4717 vdev_compact_children(pvd);
4718
4719 /*
4720 * Remember one of the remaining children so we can get tvd below.
4721 */
4722 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4723
4724 /*
4725 * If we need to remove the remaining child from the list of hot spares,
4726 * do it now, marking the vdev as no longer a spare in the process.
4727 * We must do this before vdev_remove_parent(), because that can
4728 * change the GUID if it creates a new toplevel GUID. For a similar
4729 * reason, we must remove the spare now, in the same txg as the detach;
4730 * otherwise someone could attach a new sibling, change the GUID, and
4731 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4732 */
4733 if (unspare) {
4734 ASSERT(cvd->vdev_isspare);
4735 spa_spare_remove(cvd);
4736 unspare_guid = cvd->vdev_guid;
4737 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4738 cvd->vdev_unspare = B_TRUE;
4739 }
4740
4741 /*
4742 * If the parent mirror/replacing vdev only has one child,
4743 * the parent is no longer needed. Remove it from the tree.
4744 */
4745 if (pvd->vdev_children == 1) {
4746 if (pvd->vdev_ops == &vdev_spare_ops)
4747 cvd->vdev_unspare = B_FALSE;
4748 vdev_remove_parent(cvd);
4749 }
4750
4751
4752 /*
4753 * We don't set tvd until now because the parent we just removed
4754 * may have been the previous top-level vdev.
4755 */
4756 tvd = cvd->vdev_top;
4757 ASSERT(tvd->vdev_parent == rvd);
4758
4759 /*
4760 * Reevaluate the parent vdev state.
4761 */
4762 vdev_propagate_state(cvd);
4763
4764 /*
4765 * If the 'autoexpand' property is set on the pool then automatically
4766 * try to expand the size of the pool. For example if the device we
4767 * just detached was smaller than the others, it may be possible to
4768 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4769 * first so that we can obtain the updated sizes of the leaf vdevs.
4770 */
4771 if (spa->spa_autoexpand) {
4772 vdev_reopen(tvd);
4773 vdev_expand(tvd, txg);
4774 }
4775
4776 vdev_config_dirty(tvd);
4777
4778 /*
4779 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4780 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4781 * But first make sure we're not on any *other* txg's DTL list, to
4782 * prevent vd from being accessed after it's freed.
4783 */
4784 vdpath = spa_strdup(vd->vdev_path);
4785 for (t = 0; t < TXG_SIZE; t++)
4786 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4787 vd->vdev_detached = B_TRUE;
4788 vdev_dirty(tvd, VDD_DTL, vd, txg);
4789
4790 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4791
4792 /* hang on to the spa before we release the lock */
4793 spa_open_ref(spa, FTAG);
4794
4795 error = spa_vdev_exit(spa, vd, txg, 0);
4796
4797 spa_history_log_internal(spa, "detach", NULL,
4798 "vdev=%s", vdpath);
4799 spa_strfree(vdpath);
4800
4801 /*
4802 * If this was the removal of the original device in a hot spare vdev,
4803 * then we want to go through and remove the device from the hot spare
4804 * list of every other pool.
4805 */
4806 if (unspare) {
4807 spa_t *altspa = NULL;
4808
4809 mutex_enter(&spa_namespace_lock);
4810 while ((altspa = spa_next(altspa)) != NULL) {
4811 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4812 altspa == spa)
4813 continue;
4814
4815 spa_open_ref(altspa, FTAG);
4816 mutex_exit(&spa_namespace_lock);
4817 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4818 mutex_enter(&spa_namespace_lock);
4819 spa_close(altspa, FTAG);
4820 }
4821 mutex_exit(&spa_namespace_lock);
4822
4823 /* search the rest of the vdevs for spares to remove */
4824 spa_vdev_resilver_done(spa);
4825 }
4826
4827 /* all done with the spa; OK to release */
4828 mutex_enter(&spa_namespace_lock);
4829 spa_close(spa, FTAG);
4830 mutex_exit(&spa_namespace_lock);
4831
4832 return (error);
4833 }
4834
4835 /*
4836 * Split a set of devices from their mirrors, and create a new pool from them.
4837 */
4838 int
4839 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4840 nvlist_t *props, boolean_t exp)
4841 {
4842 int error = 0;
4843 uint64_t txg, *glist;
4844 spa_t *newspa;
4845 uint_t c, children, lastlog;
4846 nvlist_t **child, *nvl, *tmp;
4847 dmu_tx_t *tx;
4848 char *altroot = NULL;
4849 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4850 boolean_t activate_slog;
4851
4852 ASSERT(spa_writeable(spa));
4853
4854 txg = spa_vdev_enter(spa);
4855
4856 /* clear the log and flush everything up to now */
4857 activate_slog = spa_passivate_log(spa);
4858 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4859 error = spa_offline_log(spa);
4860 txg = spa_vdev_config_enter(spa);
4861
4862 if (activate_slog)
4863 spa_activate_log(spa);
4864
4865 if (error != 0)
4866 return (spa_vdev_exit(spa, NULL, txg, error));
4867
4868 /* check new spa name before going any further */
4869 if (spa_lookup(newname) != NULL)
4870 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4871
4872 /*
4873 * scan through all the children to ensure they're all mirrors
4874 */
4875 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4876 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4877 &children) != 0)
4878 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4879
4880 /* first, check to ensure we've got the right child count */
4881 rvd = spa->spa_root_vdev;
4882 lastlog = 0;
4883 for (c = 0; c < rvd->vdev_children; c++) {
4884 vdev_t *vd = rvd->vdev_child[c];
4885
4886 /* don't count the holes & logs as children */
4887 if (vd->vdev_islog || vd->vdev_ishole) {
4888 if (lastlog == 0)
4889 lastlog = c;
4890 continue;
4891 }
4892
4893 lastlog = 0;
4894 }
4895 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4896 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4897
4898 /* next, ensure no spare or cache devices are part of the split */
4899 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4900 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4901 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4902
4903 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_PUSHPAGE);
4904 glist = kmem_zalloc(children * sizeof (uint64_t), KM_PUSHPAGE);
4905
4906 /* then, loop over each vdev and validate it */
4907 for (c = 0; c < children; c++) {
4908 uint64_t is_hole = 0;
4909
4910 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4911 &is_hole);
4912
4913 if (is_hole != 0) {
4914 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4915 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4916 continue;
4917 } else {
4918 error = SET_ERROR(EINVAL);
4919 break;
4920 }
4921 }
4922
4923 /* which disk is going to be split? */
4924 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4925 &glist[c]) != 0) {
4926 error = SET_ERROR(EINVAL);
4927 break;
4928 }
4929
4930 /* look it up in the spa */
4931 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4932 if (vml[c] == NULL) {
4933 error = SET_ERROR(ENODEV);
4934 break;
4935 }
4936
4937 /* make sure there's nothing stopping the split */
4938 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4939 vml[c]->vdev_islog ||
4940 vml[c]->vdev_ishole ||
4941 vml[c]->vdev_isspare ||
4942 vml[c]->vdev_isl2cache ||
4943 !vdev_writeable(vml[c]) ||
4944 vml[c]->vdev_children != 0 ||
4945 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4946 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4947 error = SET_ERROR(EINVAL);
4948 break;
4949 }
4950
4951 if (vdev_dtl_required(vml[c])) {
4952 error = SET_ERROR(EBUSY);
4953 break;
4954 }
4955
4956 /* we need certain info from the top level */
4957 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4958 vml[c]->vdev_top->vdev_ms_array) == 0);
4959 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4960 vml[c]->vdev_top->vdev_ms_shift) == 0);
4961 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4962 vml[c]->vdev_top->vdev_asize) == 0);
4963 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4964 vml[c]->vdev_top->vdev_ashift) == 0);
4965 }
4966
4967 if (error != 0) {
4968 kmem_free(vml, children * sizeof (vdev_t *));
4969 kmem_free(glist, children * sizeof (uint64_t));
4970 return (spa_vdev_exit(spa, NULL, txg, error));
4971 }
4972
4973 /* stop writers from using the disks */
4974 for (c = 0; c < children; c++) {
4975 if (vml[c] != NULL)
4976 vml[c]->vdev_offline = B_TRUE;
4977 }
4978 vdev_reopen(spa->spa_root_vdev);
4979
4980 /*
4981 * Temporarily record the splitting vdevs in the spa config. This
4982 * will disappear once the config is regenerated.
4983 */
4984 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4985 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4986 glist, children) == 0);
4987 kmem_free(glist, children * sizeof (uint64_t));
4988
4989 mutex_enter(&spa->spa_props_lock);
4990 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4991 nvl) == 0);
4992 mutex_exit(&spa->spa_props_lock);
4993 spa->spa_config_splitting = nvl;
4994 vdev_config_dirty(spa->spa_root_vdev);
4995
4996 /* configure and create the new pool */
4997 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4998 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4999 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5000 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5001 spa_version(spa)) == 0);
5002 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5003 spa->spa_config_txg) == 0);
5004 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5005 spa_generate_guid(NULL)) == 0);
5006 (void) nvlist_lookup_string(props,
5007 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5008
5009 /* add the new pool to the namespace */
5010 newspa = spa_add(newname, config, altroot);
5011 newspa->spa_config_txg = spa->spa_config_txg;
5012 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5013
5014 /* release the spa config lock, retaining the namespace lock */
5015 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5016
5017 if (zio_injection_enabled)
5018 zio_handle_panic_injection(spa, FTAG, 1);
5019
5020 spa_activate(newspa, spa_mode_global);
5021 spa_async_suspend(newspa);
5022
5023 /* create the new pool from the disks of the original pool */
5024 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5025 if (error)
5026 goto out;
5027
5028 /* if that worked, generate a real config for the new pool */
5029 if (newspa->spa_root_vdev != NULL) {
5030 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5031 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5032 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5033 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5034 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5035 B_TRUE));
5036 }
5037
5038 /* set the props */
5039 if (props != NULL) {
5040 spa_configfile_set(newspa, props, B_FALSE);
5041 error = spa_prop_set(newspa, props);
5042 if (error)
5043 goto out;
5044 }
5045
5046 /* flush everything */
5047 txg = spa_vdev_config_enter(newspa);
5048 vdev_config_dirty(newspa->spa_root_vdev);
5049 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5050
5051 if (zio_injection_enabled)
5052 zio_handle_panic_injection(spa, FTAG, 2);
5053
5054 spa_async_resume(newspa);
5055
5056 /* finally, update the original pool's config */
5057 txg = spa_vdev_config_enter(spa);
5058 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5059 error = dmu_tx_assign(tx, TXG_WAIT);
5060 if (error != 0)
5061 dmu_tx_abort(tx);
5062 for (c = 0; c < children; c++) {
5063 if (vml[c] != NULL) {
5064 vdev_split(vml[c]);
5065 if (error == 0)
5066 spa_history_log_internal(spa, "detach", tx,
5067 "vdev=%s", vml[c]->vdev_path);
5068 vdev_free(vml[c]);
5069 }
5070 }
5071 vdev_config_dirty(spa->spa_root_vdev);
5072 spa->spa_config_splitting = NULL;
5073 nvlist_free(nvl);
5074 if (error == 0)
5075 dmu_tx_commit(tx);
5076 (void) spa_vdev_exit(spa, NULL, txg, 0);
5077
5078 if (zio_injection_enabled)
5079 zio_handle_panic_injection(spa, FTAG, 3);
5080
5081 /* split is complete; log a history record */
5082 spa_history_log_internal(newspa, "split", NULL,
5083 "from pool %s", spa_name(spa));
5084
5085 kmem_free(vml, children * sizeof (vdev_t *));
5086
5087 /* if we're not going to mount the filesystems in userland, export */
5088 if (exp)
5089 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5090 B_FALSE, B_FALSE);
5091
5092 return (error);
5093
5094 out:
5095 spa_unload(newspa);
5096 spa_deactivate(newspa);
5097 spa_remove(newspa);
5098
5099 txg = spa_vdev_config_enter(spa);
5100
5101 /* re-online all offlined disks */
5102 for (c = 0; c < children; c++) {
5103 if (vml[c] != NULL)
5104 vml[c]->vdev_offline = B_FALSE;
5105 }
5106 vdev_reopen(spa->spa_root_vdev);
5107
5108 nvlist_free(spa->spa_config_splitting);
5109 spa->spa_config_splitting = NULL;
5110 (void) spa_vdev_exit(spa, NULL, txg, error);
5111
5112 kmem_free(vml, children * sizeof (vdev_t *));
5113 return (error);
5114 }
5115
5116 static nvlist_t *
5117 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5118 {
5119 int i;
5120
5121 for (i = 0; i < count; i++) {
5122 uint64_t guid;
5123
5124 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5125 &guid) == 0);
5126
5127 if (guid == target_guid)
5128 return (nvpp[i]);
5129 }
5130
5131 return (NULL);
5132 }
5133
5134 static void
5135 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5136 nvlist_t *dev_to_remove)
5137 {
5138 nvlist_t **newdev = NULL;
5139 int i, j;
5140
5141 if (count > 1)
5142 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_PUSHPAGE);
5143
5144 for (i = 0, j = 0; i < count; i++) {
5145 if (dev[i] == dev_to_remove)
5146 continue;
5147 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_PUSHPAGE) == 0);
5148 }
5149
5150 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5151 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5152
5153 for (i = 0; i < count - 1; i++)
5154 nvlist_free(newdev[i]);
5155
5156 if (count > 1)
5157 kmem_free(newdev, (count - 1) * sizeof (void *));
5158 }
5159
5160 /*
5161 * Evacuate the device.
5162 */
5163 static int
5164 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5165 {
5166 uint64_t txg;
5167 int error = 0;
5168
5169 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5170 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5171 ASSERT(vd == vd->vdev_top);
5172
5173 /*
5174 * Evacuate the device. We don't hold the config lock as writer
5175 * since we need to do I/O but we do keep the
5176 * spa_namespace_lock held. Once this completes the device
5177 * should no longer have any blocks allocated on it.
5178 */
5179 if (vd->vdev_islog) {
5180 if (vd->vdev_stat.vs_alloc != 0)
5181 error = spa_offline_log(spa);
5182 } else {
5183 error = SET_ERROR(ENOTSUP);
5184 }
5185
5186 if (error)
5187 return (error);
5188
5189 /*
5190 * The evacuation succeeded. Remove any remaining MOS metadata
5191 * associated with this vdev, and wait for these changes to sync.
5192 */
5193 ASSERT0(vd->vdev_stat.vs_alloc);
5194 txg = spa_vdev_config_enter(spa);
5195 vd->vdev_removing = B_TRUE;
5196 vdev_dirty(vd, 0, NULL, txg);
5197 vdev_config_dirty(vd);
5198 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5199
5200 return (0);
5201 }
5202
5203 /*
5204 * Complete the removal by cleaning up the namespace.
5205 */
5206 static void
5207 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5208 {
5209 vdev_t *rvd = spa->spa_root_vdev;
5210 uint64_t id = vd->vdev_id;
5211 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5212
5213 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5215 ASSERT(vd == vd->vdev_top);
5216
5217 /*
5218 * Only remove any devices which are empty.
5219 */
5220 if (vd->vdev_stat.vs_alloc != 0)
5221 return;
5222
5223 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5224
5225 if (list_link_active(&vd->vdev_state_dirty_node))
5226 vdev_state_clean(vd);
5227 if (list_link_active(&vd->vdev_config_dirty_node))
5228 vdev_config_clean(vd);
5229
5230 vdev_free(vd);
5231
5232 if (last_vdev) {
5233 vdev_compact_children(rvd);
5234 } else {
5235 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5236 vdev_add_child(rvd, vd);
5237 }
5238 vdev_config_dirty(rvd);
5239
5240 /*
5241 * Reassess the health of our root vdev.
5242 */
5243 vdev_reopen(rvd);
5244 }
5245
5246 /*
5247 * Remove a device from the pool -
5248 *
5249 * Removing a device from the vdev namespace requires several steps
5250 * and can take a significant amount of time. As a result we use
5251 * the spa_vdev_config_[enter/exit] functions which allow us to
5252 * grab and release the spa_config_lock while still holding the namespace
5253 * lock. During each step the configuration is synced out.
5254 *
5255 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5256 * devices.
5257 */
5258 int
5259 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5260 {
5261 vdev_t *vd;
5262 metaslab_group_t *mg;
5263 nvlist_t **spares, **l2cache, *nv;
5264 uint64_t txg = 0;
5265 uint_t nspares, nl2cache;
5266 int error = 0;
5267 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5268
5269 ASSERT(spa_writeable(spa));
5270
5271 if (!locked)
5272 txg = spa_vdev_enter(spa);
5273
5274 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5275
5276 if (spa->spa_spares.sav_vdevs != NULL &&
5277 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5278 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5279 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5280 /*
5281 * Only remove the hot spare if it's not currently in use
5282 * in this pool.
5283 */
5284 if (vd == NULL || unspare) {
5285 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5286 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5287 spa_load_spares(spa);
5288 spa->spa_spares.sav_sync = B_TRUE;
5289 } else {
5290 error = SET_ERROR(EBUSY);
5291 }
5292 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5293 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5294 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5295 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5296 /*
5297 * Cache devices can always be removed.
5298 */
5299 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5300 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5301 spa_load_l2cache(spa);
5302 spa->spa_l2cache.sav_sync = B_TRUE;
5303 } else if (vd != NULL && vd->vdev_islog) {
5304 ASSERT(!locked);
5305 ASSERT(vd == vd->vdev_top);
5306
5307 /*
5308 * XXX - Once we have bp-rewrite this should
5309 * become the common case.
5310 */
5311
5312 mg = vd->vdev_mg;
5313
5314 /*
5315 * Stop allocating from this vdev.
5316 */
5317 metaslab_group_passivate(mg);
5318
5319 /*
5320 * Wait for the youngest allocations and frees to sync,
5321 * and then wait for the deferral of those frees to finish.
5322 */
5323 spa_vdev_config_exit(spa, NULL,
5324 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5325
5326 /*
5327 * Attempt to evacuate the vdev.
5328 */
5329 error = spa_vdev_remove_evacuate(spa, vd);
5330
5331 txg = spa_vdev_config_enter(spa);
5332
5333 /*
5334 * If we couldn't evacuate the vdev, unwind.
5335 */
5336 if (error) {
5337 metaslab_group_activate(mg);
5338 return (spa_vdev_exit(spa, NULL, txg, error));
5339 }
5340
5341 /*
5342 * Clean up the vdev namespace.
5343 */
5344 spa_vdev_remove_from_namespace(spa, vd);
5345
5346 } else if (vd != NULL) {
5347 /*
5348 * Normal vdevs cannot be removed (yet).
5349 */
5350 error = SET_ERROR(ENOTSUP);
5351 } else {
5352 /*
5353 * There is no vdev of any kind with the specified guid.
5354 */
5355 error = SET_ERROR(ENOENT);
5356 }
5357
5358 if (!locked)
5359 return (spa_vdev_exit(spa, NULL, txg, error));
5360
5361 return (error);
5362 }
5363
5364 /*
5365 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5366 * currently spared, so we can detach it.
5367 */
5368 static vdev_t *
5369 spa_vdev_resilver_done_hunt(vdev_t *vd)
5370 {
5371 vdev_t *newvd, *oldvd;
5372 int c;
5373
5374 for (c = 0; c < vd->vdev_children; c++) {
5375 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5376 if (oldvd != NULL)
5377 return (oldvd);
5378 }
5379
5380 /*
5381 * Check for a completed replacement. We always consider the first
5382 * vdev in the list to be the oldest vdev, and the last one to be
5383 * the newest (see spa_vdev_attach() for how that works). In
5384 * the case where the newest vdev is faulted, we will not automatically
5385 * remove it after a resilver completes. This is OK as it will require
5386 * user intervention to determine which disk the admin wishes to keep.
5387 */
5388 if (vd->vdev_ops == &vdev_replacing_ops) {
5389 ASSERT(vd->vdev_children > 1);
5390
5391 newvd = vd->vdev_child[vd->vdev_children - 1];
5392 oldvd = vd->vdev_child[0];
5393
5394 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5395 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5396 !vdev_dtl_required(oldvd))
5397 return (oldvd);
5398 }
5399
5400 /*
5401 * Check for a completed resilver with the 'unspare' flag set.
5402 */
5403 if (vd->vdev_ops == &vdev_spare_ops) {
5404 vdev_t *first = vd->vdev_child[0];
5405 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5406
5407 if (last->vdev_unspare) {
5408 oldvd = first;
5409 newvd = last;
5410 } else if (first->vdev_unspare) {
5411 oldvd = last;
5412 newvd = first;
5413 } else {
5414 oldvd = NULL;
5415 }
5416
5417 if (oldvd != NULL &&
5418 vdev_dtl_empty(newvd, DTL_MISSING) &&
5419 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5420 !vdev_dtl_required(oldvd))
5421 return (oldvd);
5422
5423 /*
5424 * If there are more than two spares attached to a disk,
5425 * and those spares are not required, then we want to
5426 * attempt to free them up now so that they can be used
5427 * by other pools. Once we're back down to a single
5428 * disk+spare, we stop removing them.
5429 */
5430 if (vd->vdev_children > 2) {
5431 newvd = vd->vdev_child[1];
5432
5433 if (newvd->vdev_isspare && last->vdev_isspare &&
5434 vdev_dtl_empty(last, DTL_MISSING) &&
5435 vdev_dtl_empty(last, DTL_OUTAGE) &&
5436 !vdev_dtl_required(newvd))
5437 return (newvd);
5438 }
5439 }
5440
5441 return (NULL);
5442 }
5443
5444 static void
5445 spa_vdev_resilver_done(spa_t *spa)
5446 {
5447 vdev_t *vd, *pvd, *ppvd;
5448 uint64_t guid, sguid, pguid, ppguid;
5449
5450 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5451
5452 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5453 pvd = vd->vdev_parent;
5454 ppvd = pvd->vdev_parent;
5455 guid = vd->vdev_guid;
5456 pguid = pvd->vdev_guid;
5457 ppguid = ppvd->vdev_guid;
5458 sguid = 0;
5459 /*
5460 * If we have just finished replacing a hot spared device, then
5461 * we need to detach the parent's first child (the original hot
5462 * spare) as well.
5463 */
5464 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5465 ppvd->vdev_children == 2) {
5466 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5467 sguid = ppvd->vdev_child[1]->vdev_guid;
5468 }
5469 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5470
5471 spa_config_exit(spa, SCL_ALL, FTAG);
5472 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5473 return;
5474 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5475 return;
5476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5477 }
5478
5479 spa_config_exit(spa, SCL_ALL, FTAG);
5480 }
5481
5482 /*
5483 * Update the stored path or FRU for this vdev.
5484 */
5485 int
5486 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5487 boolean_t ispath)
5488 {
5489 vdev_t *vd;
5490 boolean_t sync = B_FALSE;
5491
5492 ASSERT(spa_writeable(spa));
5493
5494 spa_vdev_state_enter(spa, SCL_ALL);
5495
5496 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5497 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5498
5499 if (!vd->vdev_ops->vdev_op_leaf)
5500 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5501
5502 if (ispath) {
5503 if (strcmp(value, vd->vdev_path) != 0) {
5504 spa_strfree(vd->vdev_path);
5505 vd->vdev_path = spa_strdup(value);
5506 sync = B_TRUE;
5507 }
5508 } else {
5509 if (vd->vdev_fru == NULL) {
5510 vd->vdev_fru = spa_strdup(value);
5511 sync = B_TRUE;
5512 } else if (strcmp(value, vd->vdev_fru) != 0) {
5513 spa_strfree(vd->vdev_fru);
5514 vd->vdev_fru = spa_strdup(value);
5515 sync = B_TRUE;
5516 }
5517 }
5518
5519 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5520 }
5521
5522 int
5523 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5524 {
5525 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5526 }
5527
5528 int
5529 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5530 {
5531 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5532 }
5533
5534 /*
5535 * ==========================================================================
5536 * SPA Scanning
5537 * ==========================================================================
5538 */
5539
5540 int
5541 spa_scan_stop(spa_t *spa)
5542 {
5543 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5544 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5545 return (SET_ERROR(EBUSY));
5546 return (dsl_scan_cancel(spa->spa_dsl_pool));
5547 }
5548
5549 int
5550 spa_scan(spa_t *spa, pool_scan_func_t func)
5551 {
5552 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5553
5554 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5555 return (SET_ERROR(ENOTSUP));
5556
5557 /*
5558 * If a resilver was requested, but there is no DTL on a
5559 * writeable leaf device, we have nothing to do.
5560 */
5561 if (func == POOL_SCAN_RESILVER &&
5562 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5563 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5564 return (0);
5565 }
5566
5567 return (dsl_scan(spa->spa_dsl_pool, func));
5568 }
5569
5570 /*
5571 * ==========================================================================
5572 * SPA async task processing
5573 * ==========================================================================
5574 */
5575
5576 static void
5577 spa_async_remove(spa_t *spa, vdev_t *vd)
5578 {
5579 int c;
5580
5581 if (vd->vdev_remove_wanted) {
5582 vd->vdev_remove_wanted = B_FALSE;
5583 vd->vdev_delayed_close = B_FALSE;
5584 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5585
5586 /*
5587 * We want to clear the stats, but we don't want to do a full
5588 * vdev_clear() as that will cause us to throw away
5589 * degraded/faulted state as well as attempt to reopen the
5590 * device, all of which is a waste.
5591 */
5592 vd->vdev_stat.vs_read_errors = 0;
5593 vd->vdev_stat.vs_write_errors = 0;
5594 vd->vdev_stat.vs_checksum_errors = 0;
5595
5596 vdev_state_dirty(vd->vdev_top);
5597 }
5598
5599 for (c = 0; c < vd->vdev_children; c++)
5600 spa_async_remove(spa, vd->vdev_child[c]);
5601 }
5602
5603 static void
5604 spa_async_probe(spa_t *spa, vdev_t *vd)
5605 {
5606 int c;
5607
5608 if (vd->vdev_probe_wanted) {
5609 vd->vdev_probe_wanted = B_FALSE;
5610 vdev_reopen(vd); /* vdev_open() does the actual probe */
5611 }
5612
5613 for (c = 0; c < vd->vdev_children; c++)
5614 spa_async_probe(spa, vd->vdev_child[c]);
5615 }
5616
5617 static void
5618 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5619 {
5620 int c;
5621
5622 if (!spa->spa_autoexpand)
5623 return;
5624
5625 for (c = 0; c < vd->vdev_children; c++) {
5626 vdev_t *cvd = vd->vdev_child[c];
5627 spa_async_autoexpand(spa, cvd);
5628 }
5629
5630 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5631 return;
5632
5633 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5634 }
5635
5636 static void
5637 spa_async_thread(spa_t *spa)
5638 {
5639 int tasks, i;
5640
5641 ASSERT(spa->spa_sync_on);
5642
5643 mutex_enter(&spa->spa_async_lock);
5644 tasks = spa->spa_async_tasks;
5645 spa->spa_async_tasks = 0;
5646 mutex_exit(&spa->spa_async_lock);
5647
5648 /*
5649 * See if the config needs to be updated.
5650 */
5651 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5652 uint64_t old_space, new_space;
5653
5654 mutex_enter(&spa_namespace_lock);
5655 old_space = metaslab_class_get_space(spa_normal_class(spa));
5656 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5657 new_space = metaslab_class_get_space(spa_normal_class(spa));
5658 mutex_exit(&spa_namespace_lock);
5659
5660 /*
5661 * If the pool grew as a result of the config update,
5662 * then log an internal history event.
5663 */
5664 if (new_space != old_space) {
5665 spa_history_log_internal(spa, "vdev online", NULL,
5666 "pool '%s' size: %llu(+%llu)",
5667 spa_name(spa), new_space, new_space - old_space);
5668 }
5669 }
5670
5671 /*
5672 * See if any devices need to be marked REMOVED.
5673 */
5674 if (tasks & SPA_ASYNC_REMOVE) {
5675 spa_vdev_state_enter(spa, SCL_NONE);
5676 spa_async_remove(spa, spa->spa_root_vdev);
5677 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5678 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5679 for (i = 0; i < spa->spa_spares.sav_count; i++)
5680 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5681 (void) spa_vdev_state_exit(spa, NULL, 0);
5682 }
5683
5684 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5685 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5686 spa_async_autoexpand(spa, spa->spa_root_vdev);
5687 spa_config_exit(spa, SCL_CONFIG, FTAG);
5688 }
5689
5690 /*
5691 * See if any devices need to be probed.
5692 */
5693 if (tasks & SPA_ASYNC_PROBE) {
5694 spa_vdev_state_enter(spa, SCL_NONE);
5695 spa_async_probe(spa, spa->spa_root_vdev);
5696 (void) spa_vdev_state_exit(spa, NULL, 0);
5697 }
5698
5699 /*
5700 * If any devices are done replacing, detach them.
5701 */
5702 if (tasks & SPA_ASYNC_RESILVER_DONE)
5703 spa_vdev_resilver_done(spa);
5704
5705 /*
5706 * Kick off a resilver.
5707 */
5708 if (tasks & SPA_ASYNC_RESILVER)
5709 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5710
5711 /*
5712 * Let the world know that we're done.
5713 */
5714 mutex_enter(&spa->spa_async_lock);
5715 spa->spa_async_thread = NULL;
5716 cv_broadcast(&spa->spa_async_cv);
5717 mutex_exit(&spa->spa_async_lock);
5718 thread_exit();
5719 }
5720
5721 void
5722 spa_async_suspend(spa_t *spa)
5723 {
5724 mutex_enter(&spa->spa_async_lock);
5725 spa->spa_async_suspended++;
5726 while (spa->spa_async_thread != NULL)
5727 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5728 mutex_exit(&spa->spa_async_lock);
5729 }
5730
5731 void
5732 spa_async_resume(spa_t *spa)
5733 {
5734 mutex_enter(&spa->spa_async_lock);
5735 ASSERT(spa->spa_async_suspended != 0);
5736 spa->spa_async_suspended--;
5737 mutex_exit(&spa->spa_async_lock);
5738 }
5739
5740 static void
5741 spa_async_dispatch(spa_t *spa)
5742 {
5743 mutex_enter(&spa->spa_async_lock);
5744 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5745 spa->spa_async_thread == NULL &&
5746 rootdir != NULL && !vn_is_readonly(rootdir))
5747 spa->spa_async_thread = thread_create(NULL, 0,
5748 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5749 mutex_exit(&spa->spa_async_lock);
5750 }
5751
5752 void
5753 spa_async_request(spa_t *spa, int task)
5754 {
5755 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5756 mutex_enter(&spa->spa_async_lock);
5757 spa->spa_async_tasks |= task;
5758 mutex_exit(&spa->spa_async_lock);
5759 }
5760
5761 /*
5762 * ==========================================================================
5763 * SPA syncing routines
5764 * ==========================================================================
5765 */
5766
5767 static int
5768 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5769 {
5770 bpobj_t *bpo = arg;
5771 bpobj_enqueue(bpo, bp, tx);
5772 return (0);
5773 }
5774
5775 static int
5776 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5777 {
5778 zio_t *zio = arg;
5779
5780 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5781 zio->io_flags));
5782 return (0);
5783 }
5784
5785 /*
5786 * Note: this simple function is not inlined to make it easier to dtrace the
5787 * amount of time spent syncing frees.
5788 */
5789 static void
5790 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5791 {
5792 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5793 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5794 VERIFY(zio_wait(zio) == 0);
5795 }
5796
5797 /*
5798 * Note: this simple function is not inlined to make it easier to dtrace the
5799 * amount of time spent syncing deferred frees.
5800 */
5801 static void
5802 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5803 {
5804 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5805 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5806 spa_free_sync_cb, zio, tx), ==, 0);
5807 VERIFY0(zio_wait(zio));
5808 }
5809
5810 static void
5811 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5812 {
5813 char *packed = NULL;
5814 size_t bufsize;
5815 size_t nvsize = 0;
5816 dmu_buf_t *db;
5817
5818 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5819
5820 /*
5821 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5822 * information. This avoids the dbuf_will_dirty() path and
5823 * saves us a pre-read to get data we don't actually care about.
5824 */
5825 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5826 packed = vmem_alloc(bufsize, KM_PUSHPAGE);
5827
5828 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5829 KM_PUSHPAGE) == 0);
5830 bzero(packed + nvsize, bufsize - nvsize);
5831
5832 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5833
5834 vmem_free(packed, bufsize);
5835
5836 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5837 dmu_buf_will_dirty(db, tx);
5838 *(uint64_t *)db->db_data = nvsize;
5839 dmu_buf_rele(db, FTAG);
5840 }
5841
5842 static void
5843 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5844 const char *config, const char *entry)
5845 {
5846 nvlist_t *nvroot;
5847 nvlist_t **list;
5848 int i;
5849
5850 if (!sav->sav_sync)
5851 return;
5852
5853 /*
5854 * Update the MOS nvlist describing the list of available devices.
5855 * spa_validate_aux() will have already made sure this nvlist is
5856 * valid and the vdevs are labeled appropriately.
5857 */
5858 if (sav->sav_object == 0) {
5859 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5860 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5861 sizeof (uint64_t), tx);
5862 VERIFY(zap_update(spa->spa_meta_objset,
5863 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5864 &sav->sav_object, tx) == 0);
5865 }
5866
5867 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5868 if (sav->sav_count == 0) {
5869 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5870 } else {
5871 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_PUSHPAGE);
5872 for (i = 0; i < sav->sav_count; i++)
5873 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5874 B_FALSE, VDEV_CONFIG_L2CACHE);
5875 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5876 sav->sav_count) == 0);
5877 for (i = 0; i < sav->sav_count; i++)
5878 nvlist_free(list[i]);
5879 kmem_free(list, sav->sav_count * sizeof (void *));
5880 }
5881
5882 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5883 nvlist_free(nvroot);
5884
5885 sav->sav_sync = B_FALSE;
5886 }
5887
5888 static void
5889 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5890 {
5891 nvlist_t *config;
5892
5893 if (list_is_empty(&spa->spa_config_dirty_list))
5894 return;
5895
5896 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5897
5898 config = spa_config_generate(spa, spa->spa_root_vdev,
5899 dmu_tx_get_txg(tx), B_FALSE);
5900
5901 /*
5902 * If we're upgrading the spa version then make sure that
5903 * the config object gets updated with the correct version.
5904 */
5905 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5906 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5907 spa->spa_uberblock.ub_version);
5908
5909 spa_config_exit(spa, SCL_STATE, FTAG);
5910
5911 if (spa->spa_config_syncing)
5912 nvlist_free(spa->spa_config_syncing);
5913 spa->spa_config_syncing = config;
5914
5915 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5916 }
5917
5918 static void
5919 spa_sync_version(void *arg, dmu_tx_t *tx)
5920 {
5921 uint64_t *versionp = arg;
5922 uint64_t version = *versionp;
5923 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5924
5925 /*
5926 * Setting the version is special cased when first creating the pool.
5927 */
5928 ASSERT(tx->tx_txg != TXG_INITIAL);
5929
5930 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5931 ASSERT(version >= spa_version(spa));
5932
5933 spa->spa_uberblock.ub_version = version;
5934 vdev_config_dirty(spa->spa_root_vdev);
5935 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5936 }
5937
5938 /*
5939 * Set zpool properties.
5940 */
5941 static void
5942 spa_sync_props(void *arg, dmu_tx_t *tx)
5943 {
5944 nvlist_t *nvp = arg;
5945 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5946 objset_t *mos = spa->spa_meta_objset;
5947 nvpair_t *elem = NULL;
5948
5949 mutex_enter(&spa->spa_props_lock);
5950
5951 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5952 uint64_t intval;
5953 char *strval, *fname;
5954 zpool_prop_t prop;
5955 const char *propname;
5956 zprop_type_t proptype;
5957 zfeature_info_t *feature;
5958
5959 prop = zpool_name_to_prop(nvpair_name(elem));
5960 switch ((int)prop) {
5961 case ZPROP_INVAL:
5962 /*
5963 * We checked this earlier in spa_prop_validate().
5964 */
5965 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5966
5967 fname = strchr(nvpair_name(elem), '@') + 1;
5968 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5969
5970 spa_feature_enable(spa, feature, tx);
5971 spa_history_log_internal(spa, "set", tx,
5972 "%s=enabled", nvpair_name(elem));
5973 break;
5974
5975 case ZPOOL_PROP_VERSION:
5976 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5977 /*
5978 * The version is synced seperatly before other
5979 * properties and should be correct by now.
5980 */
5981 ASSERT3U(spa_version(spa), >=, intval);
5982 break;
5983
5984 case ZPOOL_PROP_ALTROOT:
5985 /*
5986 * 'altroot' is a non-persistent property. It should
5987 * have been set temporarily at creation or import time.
5988 */
5989 ASSERT(spa->spa_root != NULL);
5990 break;
5991
5992 case ZPOOL_PROP_READONLY:
5993 case ZPOOL_PROP_CACHEFILE:
5994 /*
5995 * 'readonly' and 'cachefile' are also non-persisitent
5996 * properties.
5997 */
5998 break;
5999 case ZPOOL_PROP_COMMENT:
6000 VERIFY(nvpair_value_string(elem, &strval) == 0);
6001 if (spa->spa_comment != NULL)
6002 spa_strfree(spa->spa_comment);
6003 spa->spa_comment = spa_strdup(strval);
6004 /*
6005 * We need to dirty the configuration on all the vdevs
6006 * so that their labels get updated. It's unnecessary
6007 * to do this for pool creation since the vdev's
6008 * configuratoin has already been dirtied.
6009 */
6010 if (tx->tx_txg != TXG_INITIAL)
6011 vdev_config_dirty(spa->spa_root_vdev);
6012 spa_history_log_internal(spa, "set", tx,
6013 "%s=%s", nvpair_name(elem), strval);
6014 break;
6015 default:
6016 /*
6017 * Set pool property values in the poolprops mos object.
6018 */
6019 if (spa->spa_pool_props_object == 0) {
6020 spa->spa_pool_props_object =
6021 zap_create_link(mos, DMU_OT_POOL_PROPS,
6022 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6023 tx);
6024 }
6025
6026 /* normalize the property name */
6027 propname = zpool_prop_to_name(prop);
6028 proptype = zpool_prop_get_type(prop);
6029
6030 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6031 ASSERT(proptype == PROP_TYPE_STRING);
6032 VERIFY(nvpair_value_string(elem, &strval) == 0);
6033 VERIFY(zap_update(mos,
6034 spa->spa_pool_props_object, propname,
6035 1, strlen(strval) + 1, strval, tx) == 0);
6036 spa_history_log_internal(spa, "set", tx,
6037 "%s=%s", nvpair_name(elem), strval);
6038 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6039 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6040
6041 if (proptype == PROP_TYPE_INDEX) {
6042 const char *unused;
6043 VERIFY(zpool_prop_index_to_string(
6044 prop, intval, &unused) == 0);
6045 }
6046 VERIFY(zap_update(mos,
6047 spa->spa_pool_props_object, propname,
6048 8, 1, &intval, tx) == 0);
6049 spa_history_log_internal(spa, "set", tx,
6050 "%s=%lld", nvpair_name(elem), intval);
6051 } else {
6052 ASSERT(0); /* not allowed */
6053 }
6054
6055 switch (prop) {
6056 case ZPOOL_PROP_DELEGATION:
6057 spa->spa_delegation = intval;
6058 break;
6059 case ZPOOL_PROP_BOOTFS:
6060 spa->spa_bootfs = intval;
6061 break;
6062 case ZPOOL_PROP_FAILUREMODE:
6063 spa->spa_failmode = intval;
6064 break;
6065 case ZPOOL_PROP_AUTOEXPAND:
6066 spa->spa_autoexpand = intval;
6067 if (tx->tx_txg != TXG_INITIAL)
6068 spa_async_request(spa,
6069 SPA_ASYNC_AUTOEXPAND);
6070 break;
6071 case ZPOOL_PROP_DEDUPDITTO:
6072 spa->spa_dedup_ditto = intval;
6073 break;
6074 default:
6075 break;
6076 }
6077 }
6078
6079 }
6080
6081 mutex_exit(&spa->spa_props_lock);
6082 }
6083
6084 /*
6085 * Perform one-time upgrade on-disk changes. spa_version() does not
6086 * reflect the new version this txg, so there must be no changes this
6087 * txg to anything that the upgrade code depends on after it executes.
6088 * Therefore this must be called after dsl_pool_sync() does the sync
6089 * tasks.
6090 */
6091 static void
6092 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6093 {
6094 dsl_pool_t *dp = spa->spa_dsl_pool;
6095
6096 ASSERT(spa->spa_sync_pass == 1);
6097
6098 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6099
6100 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6101 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6102 dsl_pool_create_origin(dp, tx);
6103
6104 /* Keeping the origin open increases spa_minref */
6105 spa->spa_minref += 3;
6106 }
6107
6108 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6109 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6110 dsl_pool_upgrade_clones(dp, tx);
6111 }
6112
6113 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6114 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6115 dsl_pool_upgrade_dir_clones(dp, tx);
6116
6117 /* Keeping the freedir open increases spa_minref */
6118 spa->spa_minref += 3;
6119 }
6120
6121 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6122 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6123 spa_feature_create_zap_objects(spa, tx);
6124 }
6125 rrw_exit(&dp->dp_config_rwlock, FTAG);
6126 }
6127
6128 /*
6129 * Sync the specified transaction group. New blocks may be dirtied as
6130 * part of the process, so we iterate until it converges.
6131 */
6132 void
6133 spa_sync(spa_t *spa, uint64_t txg)
6134 {
6135 dsl_pool_t *dp = spa->spa_dsl_pool;
6136 objset_t *mos = spa->spa_meta_objset;
6137 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6138 vdev_t *rvd = spa->spa_root_vdev;
6139 vdev_t *vd;
6140 dmu_tx_t *tx;
6141 int error;
6142 int c;
6143
6144 VERIFY(spa_writeable(spa));
6145
6146 /*
6147 * Lock out configuration changes.
6148 */
6149 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6150
6151 spa->spa_syncing_txg = txg;
6152 spa->spa_sync_pass = 0;
6153
6154 /*
6155 * If there are any pending vdev state changes, convert them
6156 * into config changes that go out with this transaction group.
6157 */
6158 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6159 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6160 /*
6161 * We need the write lock here because, for aux vdevs,
6162 * calling vdev_config_dirty() modifies sav_config.
6163 * This is ugly and will become unnecessary when we
6164 * eliminate the aux vdev wart by integrating all vdevs
6165 * into the root vdev tree.
6166 */
6167 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6168 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6169 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6170 vdev_state_clean(vd);
6171 vdev_config_dirty(vd);
6172 }
6173 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6174 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6175 }
6176 spa_config_exit(spa, SCL_STATE, FTAG);
6177
6178 tx = dmu_tx_create_assigned(dp, txg);
6179
6180 spa->spa_sync_starttime = gethrtime();
6181 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6182 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6183 spa_deadman, spa, TQ_PUSHPAGE, ddi_get_lbolt() +
6184 NSEC_TO_TICK(spa->spa_deadman_synctime));
6185
6186 /*
6187 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6188 * set spa_deflate if we have no raid-z vdevs.
6189 */
6190 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6191 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6192 int i;
6193
6194 for (i = 0; i < rvd->vdev_children; i++) {
6195 vd = rvd->vdev_child[i];
6196 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6197 break;
6198 }
6199 if (i == rvd->vdev_children) {
6200 spa->spa_deflate = TRUE;
6201 VERIFY(0 == zap_add(spa->spa_meta_objset,
6202 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6203 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6204 }
6205 }
6206
6207 /*
6208 * If anything has changed in this txg, or if someone is waiting
6209 * for this txg to sync (eg, spa_vdev_remove()), push the
6210 * deferred frees from the previous txg. If not, leave them
6211 * alone so that we don't generate work on an otherwise idle
6212 * system.
6213 */
6214 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6215 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6216 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6217 ((dsl_scan_active(dp->dp_scan) ||
6218 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6219 spa_sync_deferred_frees(spa, tx);
6220 }
6221
6222 /*
6223 * Iterate to convergence.
6224 */
6225 do {
6226 int pass = ++spa->spa_sync_pass;
6227
6228 spa_sync_config_object(spa, tx);
6229 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6230 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6231 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6232 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6233 spa_errlog_sync(spa, txg);
6234 dsl_pool_sync(dp, txg);
6235
6236 if (pass < zfs_sync_pass_deferred_free) {
6237 spa_sync_frees(spa, free_bpl, tx);
6238 } else {
6239 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6240 &spa->spa_deferred_bpobj, tx);
6241 }
6242
6243 ddt_sync(spa, txg);
6244 dsl_scan_sync(dp, tx);
6245
6246 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6247 vdev_sync(vd, txg);
6248
6249 if (pass == 1)
6250 spa_sync_upgrades(spa, tx);
6251
6252 } while (dmu_objset_is_dirty(mos, txg));
6253
6254 /*
6255 * Rewrite the vdev configuration (which includes the uberblock)
6256 * to commit the transaction group.
6257 *
6258 * If there are no dirty vdevs, we sync the uberblock to a few
6259 * random top-level vdevs that are known to be visible in the
6260 * config cache (see spa_vdev_add() for a complete description).
6261 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6262 */
6263 for (;;) {
6264 /*
6265 * We hold SCL_STATE to prevent vdev open/close/etc.
6266 * while we're attempting to write the vdev labels.
6267 */
6268 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6269
6270 if (list_is_empty(&spa->spa_config_dirty_list)) {
6271 vdev_t *svd[SPA_DVAS_PER_BP];
6272 int svdcount = 0;
6273 int children = rvd->vdev_children;
6274 int c0 = spa_get_random(children);
6275
6276 for (c = 0; c < children; c++) {
6277 vd = rvd->vdev_child[(c0 + c) % children];
6278 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6279 continue;
6280 svd[svdcount++] = vd;
6281 if (svdcount == SPA_DVAS_PER_BP)
6282 break;
6283 }
6284 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6285 if (error != 0)
6286 error = vdev_config_sync(svd, svdcount, txg,
6287 B_TRUE);
6288 } else {
6289 error = vdev_config_sync(rvd->vdev_child,
6290 rvd->vdev_children, txg, B_FALSE);
6291 if (error != 0)
6292 error = vdev_config_sync(rvd->vdev_child,
6293 rvd->vdev_children, txg, B_TRUE);
6294 }
6295
6296 if (error == 0)
6297 spa->spa_last_synced_guid = rvd->vdev_guid;
6298
6299 spa_config_exit(spa, SCL_STATE, FTAG);
6300
6301 if (error == 0)
6302 break;
6303 zio_suspend(spa, NULL);
6304 zio_resume_wait(spa);
6305 }
6306 dmu_tx_commit(tx);
6307
6308 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6309 spa->spa_deadman_tqid = 0;
6310
6311 /*
6312 * Clear the dirty config list.
6313 */
6314 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6315 vdev_config_clean(vd);
6316
6317 /*
6318 * Now that the new config has synced transactionally,
6319 * let it become visible to the config cache.
6320 */
6321 if (spa->spa_config_syncing != NULL) {
6322 spa_config_set(spa, spa->spa_config_syncing);
6323 spa->spa_config_txg = txg;
6324 spa->spa_config_syncing = NULL;
6325 }
6326
6327 spa->spa_ubsync = spa->spa_uberblock;
6328
6329 dsl_pool_sync_done(dp, txg);
6330
6331 /*
6332 * Update usable space statistics.
6333 */
6334 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6335 vdev_sync_done(vd, txg);
6336
6337 spa_update_dspace(spa);
6338
6339 /*
6340 * It had better be the case that we didn't dirty anything
6341 * since vdev_config_sync().
6342 */
6343 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6344 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6345 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6346
6347 spa->spa_sync_pass = 0;
6348
6349 spa_config_exit(spa, SCL_CONFIG, FTAG);
6350
6351 spa_handle_ignored_writes(spa);
6352
6353 /*
6354 * If any async tasks have been requested, kick them off.
6355 */
6356 spa_async_dispatch(spa);
6357 }
6358
6359 /*
6360 * Sync all pools. We don't want to hold the namespace lock across these
6361 * operations, so we take a reference on the spa_t and drop the lock during the
6362 * sync.
6363 */
6364 void
6365 spa_sync_allpools(void)
6366 {
6367 spa_t *spa = NULL;
6368 mutex_enter(&spa_namespace_lock);
6369 while ((spa = spa_next(spa)) != NULL) {
6370 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6371 !spa_writeable(spa) || spa_suspended(spa))
6372 continue;
6373 spa_open_ref(spa, FTAG);
6374 mutex_exit(&spa_namespace_lock);
6375 txg_wait_synced(spa_get_dsl(spa), 0);
6376 mutex_enter(&spa_namespace_lock);
6377 spa_close(spa, FTAG);
6378 }
6379 mutex_exit(&spa_namespace_lock);
6380 }
6381
6382 /*
6383 * ==========================================================================
6384 * Miscellaneous routines
6385 * ==========================================================================
6386 */
6387
6388 /*
6389 * Remove all pools in the system.
6390 */
6391 void
6392 spa_evict_all(void)
6393 {
6394 spa_t *spa;
6395
6396 /*
6397 * Remove all cached state. All pools should be closed now,
6398 * so every spa in the AVL tree should be unreferenced.
6399 */
6400 mutex_enter(&spa_namespace_lock);
6401 while ((spa = spa_next(NULL)) != NULL) {
6402 /*
6403 * Stop async tasks. The async thread may need to detach
6404 * a device that's been replaced, which requires grabbing
6405 * spa_namespace_lock, so we must drop it here.
6406 */
6407 spa_open_ref(spa, FTAG);
6408 mutex_exit(&spa_namespace_lock);
6409 spa_async_suspend(spa);
6410 mutex_enter(&spa_namespace_lock);
6411 spa_close(spa, FTAG);
6412
6413 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6414 spa_unload(spa);
6415 spa_deactivate(spa);
6416 }
6417 spa_remove(spa);
6418 }
6419 mutex_exit(&spa_namespace_lock);
6420 }
6421
6422 vdev_t *
6423 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6424 {
6425 vdev_t *vd;
6426 int i;
6427
6428 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6429 return (vd);
6430
6431 if (aux) {
6432 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6433 vd = spa->spa_l2cache.sav_vdevs[i];
6434 if (vd->vdev_guid == guid)
6435 return (vd);
6436 }
6437
6438 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6439 vd = spa->spa_spares.sav_vdevs[i];
6440 if (vd->vdev_guid == guid)
6441 return (vd);
6442 }
6443 }
6444
6445 return (NULL);
6446 }
6447
6448 void
6449 spa_upgrade(spa_t *spa, uint64_t version)
6450 {
6451 ASSERT(spa_writeable(spa));
6452
6453 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6454
6455 /*
6456 * This should only be called for a non-faulted pool, and since a
6457 * future version would result in an unopenable pool, this shouldn't be
6458 * possible.
6459 */
6460 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6461 ASSERT(version >= spa->spa_uberblock.ub_version);
6462
6463 spa->spa_uberblock.ub_version = version;
6464 vdev_config_dirty(spa->spa_root_vdev);
6465
6466 spa_config_exit(spa, SCL_ALL, FTAG);
6467
6468 txg_wait_synced(spa_get_dsl(spa), 0);
6469 }
6470
6471 boolean_t
6472 spa_has_spare(spa_t *spa, uint64_t guid)
6473 {
6474 int i;
6475 uint64_t spareguid;
6476 spa_aux_vdev_t *sav = &spa->spa_spares;
6477
6478 for (i = 0; i < sav->sav_count; i++)
6479 if (sav->sav_vdevs[i]->vdev_guid == guid)
6480 return (B_TRUE);
6481
6482 for (i = 0; i < sav->sav_npending; i++) {
6483 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6484 &spareguid) == 0 && spareguid == guid)
6485 return (B_TRUE);
6486 }
6487
6488 return (B_FALSE);
6489 }
6490
6491 /*
6492 * Check if a pool has an active shared spare device.
6493 * Note: reference count of an active spare is 2, as a spare and as a replace
6494 */
6495 static boolean_t
6496 spa_has_active_shared_spare(spa_t *spa)
6497 {
6498 int i, refcnt;
6499 uint64_t pool;
6500 spa_aux_vdev_t *sav = &spa->spa_spares;
6501
6502 for (i = 0; i < sav->sav_count; i++) {
6503 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6504 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6505 refcnt > 2)
6506 return (B_TRUE);
6507 }
6508
6509 return (B_FALSE);
6510 }
6511
6512 /*
6513 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6514 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6515 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6516 * or zdb as real changes.
6517 */
6518 void
6519 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6520 {
6521 #ifdef _KERNEL
6522 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6523 #endif
6524 }
6525
6526 #if defined(_KERNEL) && defined(HAVE_SPL)
6527 /* state manipulation functions */
6528 EXPORT_SYMBOL(spa_open);
6529 EXPORT_SYMBOL(spa_open_rewind);
6530 EXPORT_SYMBOL(spa_get_stats);
6531 EXPORT_SYMBOL(spa_create);
6532 EXPORT_SYMBOL(spa_import_rootpool);
6533 EXPORT_SYMBOL(spa_import);
6534 EXPORT_SYMBOL(spa_tryimport);
6535 EXPORT_SYMBOL(spa_destroy);
6536 EXPORT_SYMBOL(spa_export);
6537 EXPORT_SYMBOL(spa_reset);
6538 EXPORT_SYMBOL(spa_async_request);
6539 EXPORT_SYMBOL(spa_async_suspend);
6540 EXPORT_SYMBOL(spa_async_resume);
6541 EXPORT_SYMBOL(spa_inject_addref);
6542 EXPORT_SYMBOL(spa_inject_delref);
6543 EXPORT_SYMBOL(spa_scan_stat_init);
6544 EXPORT_SYMBOL(spa_scan_get_stats);
6545
6546 /* device maniion */
6547 EXPORT_SYMBOL(spa_vdev_add);
6548 EXPORT_SYMBOL(spa_vdev_attach);
6549 EXPORT_SYMBOL(spa_vdev_detach);
6550 EXPORT_SYMBOL(spa_vdev_remove);
6551 EXPORT_SYMBOL(spa_vdev_setpath);
6552 EXPORT_SYMBOL(spa_vdev_setfru);
6553 EXPORT_SYMBOL(spa_vdev_split_mirror);
6554
6555 /* spare statech is global across all pools) */
6556 EXPORT_SYMBOL(spa_spare_add);
6557 EXPORT_SYMBOL(spa_spare_remove);
6558 EXPORT_SYMBOL(spa_spare_exists);
6559 EXPORT_SYMBOL(spa_spare_activate);
6560
6561 /* L2ARC statech is global across all pools) */
6562 EXPORT_SYMBOL(spa_l2cache_add);
6563 EXPORT_SYMBOL(spa_l2cache_remove);
6564 EXPORT_SYMBOL(spa_l2cache_exists);
6565 EXPORT_SYMBOL(spa_l2cache_activate);
6566 EXPORT_SYMBOL(spa_l2cache_drop);
6567
6568 /* scanning */
6569 EXPORT_SYMBOL(spa_scan);
6570 EXPORT_SYMBOL(spa_scan_stop);
6571
6572 /* spa syncing */
6573 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6574 EXPORT_SYMBOL(spa_sync_allpools);
6575
6576 /* properties */
6577 EXPORT_SYMBOL(spa_prop_set);
6578 EXPORT_SYMBOL(spa_prop_get);
6579 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6580
6581 /* asynchronous event notification */
6582 EXPORT_SYMBOL(spa_event_notify);
6583 #endif