]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Use taskq for dump_bytes()
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */
27
28 /*
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
32 */
33
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_disk.h>
46 #include <sys/metaslab.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/dmu_traverse.h>
52 #include <sys/dmu_objset.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dataset.h>
56 #include <sys/dsl_dir.h>
57 #include <sys/dsl_prop.h>
58 #include <sys/dsl_synctask.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/arc.h>
61 #include <sys/callb.h>
62 #include <sys/systeminfo.h>
63 #include <sys/spa_boot.h>
64 #include <sys/zfs_ioctl.h>
65 #include <sys/dsl_scan.h>
66 #include <sys/zfeature.h>
67
68 #ifdef _KERNEL
69 #include <sys/bootprops.h>
70 #include <sys/callb.h>
71 #include <sys/cpupart.h>
72 #include <sys/pool.h>
73 #include <sys/sysdc.h>
74 #include <sys/zone.h>
75 #endif /* _KERNEL */
76
77 #include "zfs_prop.h"
78 #include "zfs_comutil.h"
79
80 typedef enum zti_modes {
81 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
82 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
83 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
84 ZTI_MODE_NULL, /* don't create a taskq */
85 ZTI_NMODES
86 } zti_modes_t;
87
88 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
89 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
90 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
91 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
92
93 #define ZTI_N(n) ZTI_P(n, 1)
94 #define ZTI_ONE ZTI_N(1)
95
96 typedef struct zio_taskq_info {
97 zti_modes_t zti_mode;
98 uint_t zti_value;
99 uint_t zti_count;
100 } zio_taskq_info_t;
101
102 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
103 "iss", "iss_h", "int", "int_h"
104 };
105
106 /*
107 * This table defines the taskq settings for each ZFS I/O type. When
108 * initializing a pool, we use this table to create an appropriately sized
109 * taskq. Some operations are low volume and therefore have a small, static
110 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
111 * macros. Other operations process a large amount of data; the ZTI_BATCH
112 * macro causes us to create a taskq oriented for throughput. Some operations
113 * are so high frequency and short-lived that the taskq itself can become a a
114 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
115 * additional degree of parallelism specified by the number of threads per-
116 * taskq and the number of taskqs; when dispatching an event in this case, the
117 * particular taskq is chosen at random.
118 *
119 * The different taskq priorities are to handle the different contexts (issue
120 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
121 * need to be handled with minimum delay.
122 */
123 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
124 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
125 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
126 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
127 { ZTI_BATCH, ZTI_N(5), ZTI_N(16), ZTI_N(5) }, /* WRITE */
128 { ZTI_P(4, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
129 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
130 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
131 };
132
133 static dsl_syncfunc_t spa_sync_version;
134 static dsl_syncfunc_t spa_sync_props;
135 static dsl_checkfunc_t spa_change_guid_check;
136 static dsl_syncfunc_t spa_change_guid_sync;
137 static boolean_t spa_has_active_shared_spare(spa_t *spa);
138 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
139 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
140 char **ereport);
141 static void spa_vdev_resilver_done(spa_t *spa);
142
143 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
144 id_t zio_taskq_psrset_bind = PS_NONE;
145 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
146 uint_t zio_taskq_basedc = 80; /* base duty cycle */
147
148 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
149
150 /*
151 * This (illegal) pool name is used when temporarily importing a spa_t in order
152 * to get the vdev stats associated with the imported devices.
153 */
154 #define TRYIMPORT_NAME "$import"
155
156 /*
157 * ==========================================================================
158 * SPA properties routines
159 * ==========================================================================
160 */
161
162 /*
163 * Add a (source=src, propname=propval) list to an nvlist.
164 */
165 static void
166 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
167 uint64_t intval, zprop_source_t src)
168 {
169 const char *propname = zpool_prop_to_name(prop);
170 nvlist_t *propval;
171
172 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
173 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
174
175 if (strval != NULL)
176 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
177 else
178 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
179
180 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
181 nvlist_free(propval);
182 }
183
184 /*
185 * Get property values from the spa configuration.
186 */
187 static void
188 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
189 {
190 vdev_t *rvd = spa->spa_root_vdev;
191 dsl_pool_t *pool = spa->spa_dsl_pool;
192 uint64_t size;
193 uint64_t alloc;
194 uint64_t space;
195 uint64_t cap, version;
196 zprop_source_t src = ZPROP_SRC_NONE;
197 spa_config_dirent_t *dp;
198 int c;
199
200 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
201
202 if (rvd != NULL) {
203 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
204 size = metaslab_class_get_space(spa_normal_class(spa));
205 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
207 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
208 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
209 size - alloc, src);
210
211 space = 0;
212 for (c = 0; c < rvd->vdev_children; c++) {
213 vdev_t *tvd = rvd->vdev_child[c];
214 space += tvd->vdev_max_asize - tvd->vdev_asize;
215 }
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
217 src);
218
219 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
220 (spa_mode(spa) == FREAD), src);
221
222 cap = (size == 0) ? 0 : (alloc * 100 / size);
223 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
224
225 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
226 ddt_get_pool_dedup_ratio(spa), src);
227
228 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
229 rvd->vdev_state, src);
230
231 version = spa_version(spa);
232 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
233 src = ZPROP_SRC_DEFAULT;
234 else
235 src = ZPROP_SRC_LOCAL;
236 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
237 }
238
239 if (pool != NULL) {
240 dsl_dir_t *freedir = pool->dp_free_dir;
241
242 /*
243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
244 * when opening pools before this version freedir will be NULL.
245 */
246 if (freedir != NULL) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
248 freedir->dd_phys->dd_used_bytes, src);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 NULL, 0, src);
252 }
253 }
254
255 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
256
257 if (spa->spa_comment != NULL) {
258 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
259 0, ZPROP_SRC_LOCAL);
260 }
261
262 if (spa->spa_root != NULL)
263 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
264 0, ZPROP_SRC_LOCAL);
265
266 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
267 if (dp->scd_path == NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
269 "none", 0, ZPROP_SRC_LOCAL);
270 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
271 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
272 dp->scd_path, 0, ZPROP_SRC_LOCAL);
273 }
274 }
275 }
276
277 /*
278 * Get zpool property values.
279 */
280 int
281 spa_prop_get(spa_t *spa, nvlist_t **nvp)
282 {
283 objset_t *mos = spa->spa_meta_objset;
284 zap_cursor_t zc;
285 zap_attribute_t za;
286 int err;
287
288 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_PUSHPAGE);
289 if (err)
290 return err;
291
292 mutex_enter(&spa->spa_props_lock);
293
294 /*
295 * Get properties from the spa config.
296 */
297 spa_prop_get_config(spa, nvp);
298
299 /* If no pool property object, no more prop to get. */
300 if (mos == NULL || spa->spa_pool_props_object == 0) {
301 mutex_exit(&spa->spa_props_lock);
302 goto out;
303 }
304
305 /*
306 * Get properties from the MOS pool property object.
307 */
308 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
309 (err = zap_cursor_retrieve(&zc, &za)) == 0;
310 zap_cursor_advance(&zc)) {
311 uint64_t intval = 0;
312 char *strval = NULL;
313 zprop_source_t src = ZPROP_SRC_DEFAULT;
314 zpool_prop_t prop;
315
316 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
317 continue;
318
319 switch (za.za_integer_length) {
320 case 8:
321 /* integer property */
322 if (za.za_first_integer !=
323 zpool_prop_default_numeric(prop))
324 src = ZPROP_SRC_LOCAL;
325
326 if (prop == ZPOOL_PROP_BOOTFS) {
327 dsl_pool_t *dp;
328 dsl_dataset_t *ds = NULL;
329
330 dp = spa_get_dsl(spa);
331 rw_enter(&dp->dp_config_rwlock, RW_READER);
332 if ((err = dsl_dataset_hold_obj(dp,
333 za.za_first_integer, FTAG, &ds))) {
334 rw_exit(&dp->dp_config_rwlock);
335 break;
336 }
337
338 strval = kmem_alloc(
339 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
340 KM_PUSHPAGE);
341 dsl_dataset_name(ds, strval);
342 dsl_dataset_rele(ds, FTAG);
343 rw_exit(&dp->dp_config_rwlock);
344 } else {
345 strval = NULL;
346 intval = za.za_first_integer;
347 }
348
349 spa_prop_add_list(*nvp, prop, strval, intval, src);
350
351 if (strval != NULL)
352 kmem_free(strval,
353 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
354
355 break;
356
357 case 1:
358 /* string property */
359 strval = kmem_alloc(za.za_num_integers, KM_PUSHPAGE);
360 err = zap_lookup(mos, spa->spa_pool_props_object,
361 za.za_name, 1, za.za_num_integers, strval);
362 if (err) {
363 kmem_free(strval, za.za_num_integers);
364 break;
365 }
366 spa_prop_add_list(*nvp, prop, strval, 0, src);
367 kmem_free(strval, za.za_num_integers);
368 break;
369
370 default:
371 break;
372 }
373 }
374 zap_cursor_fini(&zc);
375 mutex_exit(&spa->spa_props_lock);
376 out:
377 if (err && err != ENOENT) {
378 nvlist_free(*nvp);
379 *nvp = NULL;
380 return (err);
381 }
382
383 return (0);
384 }
385
386 /*
387 * Validate the given pool properties nvlist and modify the list
388 * for the property values to be set.
389 */
390 static int
391 spa_prop_validate(spa_t *spa, nvlist_t *props)
392 {
393 nvpair_t *elem;
394 int error = 0, reset_bootfs = 0;
395 uint64_t objnum = 0;
396 boolean_t has_feature = B_FALSE;
397
398 elem = NULL;
399 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
400 uint64_t intval;
401 char *strval, *slash, *check, *fname;
402 const char *propname = nvpair_name(elem);
403 zpool_prop_t prop = zpool_name_to_prop(propname);
404
405 switch ((int)prop) {
406 case ZPROP_INVAL:
407 if (!zpool_prop_feature(propname)) {
408 error = EINVAL;
409 break;
410 }
411
412 /*
413 * Sanitize the input.
414 */
415 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
416 error = EINVAL;
417 break;
418 }
419
420 if (nvpair_value_uint64(elem, &intval) != 0) {
421 error = EINVAL;
422 break;
423 }
424
425 if (intval != 0) {
426 error = EINVAL;
427 break;
428 }
429
430 fname = strchr(propname, '@') + 1;
431 if (zfeature_lookup_name(fname, NULL) != 0) {
432 error = EINVAL;
433 break;
434 }
435
436 has_feature = B_TRUE;
437 break;
438
439 case ZPOOL_PROP_VERSION:
440 error = nvpair_value_uint64(elem, &intval);
441 if (!error &&
442 (intval < spa_version(spa) ||
443 intval > SPA_VERSION_BEFORE_FEATURES ||
444 has_feature))
445 error = EINVAL;
446 break;
447
448 case ZPOOL_PROP_DELEGATION:
449 case ZPOOL_PROP_AUTOREPLACE:
450 case ZPOOL_PROP_LISTSNAPS:
451 case ZPOOL_PROP_AUTOEXPAND:
452 error = nvpair_value_uint64(elem, &intval);
453 if (!error && intval > 1)
454 error = EINVAL;
455 break;
456
457 case ZPOOL_PROP_BOOTFS:
458 /*
459 * If the pool version is less than SPA_VERSION_BOOTFS,
460 * or the pool is still being created (version == 0),
461 * the bootfs property cannot be set.
462 */
463 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
464 error = ENOTSUP;
465 break;
466 }
467
468 /*
469 * Make sure the vdev config is bootable
470 */
471 if (!vdev_is_bootable(spa->spa_root_vdev)) {
472 error = ENOTSUP;
473 break;
474 }
475
476 reset_bootfs = 1;
477
478 error = nvpair_value_string(elem, &strval);
479
480 if (!error) {
481 objset_t *os;
482 uint64_t compress;
483
484 if (strval == NULL || strval[0] == '\0') {
485 objnum = zpool_prop_default_numeric(
486 ZPOOL_PROP_BOOTFS);
487 break;
488 }
489
490 if ((error = dmu_objset_hold(strval,FTAG,&os)))
491 break;
492
493 /* Must be ZPL and not gzip compressed. */
494
495 if (dmu_objset_type(os) != DMU_OST_ZFS) {
496 error = ENOTSUP;
497 } else if ((error = dsl_prop_get_integer(strval,
498 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
499 &compress, NULL)) == 0 &&
500 !BOOTFS_COMPRESS_VALID(compress)) {
501 error = ENOTSUP;
502 } else {
503 objnum = dmu_objset_id(os);
504 }
505 dmu_objset_rele(os, FTAG);
506 }
507 break;
508
509 case ZPOOL_PROP_FAILUREMODE:
510 error = nvpair_value_uint64(elem, &intval);
511 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
512 intval > ZIO_FAILURE_MODE_PANIC))
513 error = EINVAL;
514
515 /*
516 * This is a special case which only occurs when
517 * the pool has completely failed. This allows
518 * the user to change the in-core failmode property
519 * without syncing it out to disk (I/Os might
520 * currently be blocked). We do this by returning
521 * EIO to the caller (spa_prop_set) to trick it
522 * into thinking we encountered a property validation
523 * error.
524 */
525 if (!error && spa_suspended(spa)) {
526 spa->spa_failmode = intval;
527 error = EIO;
528 }
529 break;
530
531 case ZPOOL_PROP_CACHEFILE:
532 if ((error = nvpair_value_string(elem, &strval)) != 0)
533 break;
534
535 if (strval[0] == '\0')
536 break;
537
538 if (strcmp(strval, "none") == 0)
539 break;
540
541 if (strval[0] != '/') {
542 error = EINVAL;
543 break;
544 }
545
546 slash = strrchr(strval, '/');
547 ASSERT(slash != NULL);
548
549 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
550 strcmp(slash, "/..") == 0)
551 error = EINVAL;
552 break;
553
554 case ZPOOL_PROP_COMMENT:
555 if ((error = nvpair_value_string(elem, &strval)) != 0)
556 break;
557 for (check = strval; *check != '\0'; check++) {
558 if (!isprint(*check)) {
559 error = EINVAL;
560 break;
561 }
562 check++;
563 }
564 if (strlen(strval) > ZPROP_MAX_COMMENT)
565 error = E2BIG;
566 break;
567
568 case ZPOOL_PROP_DEDUPDITTO:
569 if (spa_version(spa) < SPA_VERSION_DEDUP)
570 error = ENOTSUP;
571 else
572 error = nvpair_value_uint64(elem, &intval);
573 if (error == 0 &&
574 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
575 error = EINVAL;
576 break;
577
578 default:
579 break;
580 }
581
582 if (error)
583 break;
584 }
585
586 if (!error && reset_bootfs) {
587 error = nvlist_remove(props,
588 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
589
590 if (!error) {
591 error = nvlist_add_uint64(props,
592 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
593 }
594 }
595
596 return (error);
597 }
598
599 void
600 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
601 {
602 char *cachefile;
603 spa_config_dirent_t *dp;
604
605 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
606 &cachefile) != 0)
607 return;
608
609 dp = kmem_alloc(sizeof (spa_config_dirent_t),
610 KM_PUSHPAGE);
611
612 if (cachefile[0] == '\0')
613 dp->scd_path = spa_strdup(spa_config_path);
614 else if (strcmp(cachefile, "none") == 0)
615 dp->scd_path = NULL;
616 else
617 dp->scd_path = spa_strdup(cachefile);
618
619 list_insert_head(&spa->spa_config_list, dp);
620 if (need_sync)
621 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
622 }
623
624 int
625 spa_prop_set(spa_t *spa, nvlist_t *nvp)
626 {
627 int error;
628 nvpair_t *elem = NULL;
629 boolean_t need_sync = B_FALSE;
630
631 if ((error = spa_prop_validate(spa, nvp)) != 0)
632 return (error);
633
634 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
635 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
636
637 if (prop == ZPOOL_PROP_CACHEFILE ||
638 prop == ZPOOL_PROP_ALTROOT ||
639 prop == ZPOOL_PROP_READONLY)
640 continue;
641
642 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
643 uint64_t ver;
644
645 if (prop == ZPOOL_PROP_VERSION) {
646 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
647 } else {
648 ASSERT(zpool_prop_feature(nvpair_name(elem)));
649 ver = SPA_VERSION_FEATURES;
650 need_sync = B_TRUE;
651 }
652
653 /* Save time if the version is already set. */
654 if (ver == spa_version(spa))
655 continue;
656
657 /*
658 * In addition to the pool directory object, we might
659 * create the pool properties object, the features for
660 * read object, the features for write object, or the
661 * feature descriptions object.
662 */
663 error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
664 spa_sync_version, spa, &ver, 6);
665 if (error)
666 return (error);
667 continue;
668 }
669
670 need_sync = B_TRUE;
671 break;
672 }
673
674 if (need_sync) {
675 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
676 spa, nvp, 6));
677 }
678
679 return (0);
680 }
681
682 /*
683 * If the bootfs property value is dsobj, clear it.
684 */
685 void
686 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
687 {
688 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
689 VERIFY(zap_remove(spa->spa_meta_objset,
690 spa->spa_pool_props_object,
691 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
692 spa->spa_bootfs = 0;
693 }
694 }
695
696 /*ARGSUSED*/
697 static int
698 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
699 {
700 spa_t *spa = arg1;
701 vdev_t *rvd = spa->spa_root_vdev;
702 uint64_t vdev_state;
703 ASSERTV(uint64_t *newguid = arg2);
704
705 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
706 vdev_state = rvd->vdev_state;
707 spa_config_exit(spa, SCL_STATE, FTAG);
708
709 if (vdev_state != VDEV_STATE_HEALTHY)
710 return (ENXIO);
711
712 ASSERT3U(spa_guid(spa), !=, *newguid);
713
714 return (0);
715 }
716
717 static void
718 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
719 {
720 spa_t *spa = arg1;
721 uint64_t *newguid = arg2;
722 uint64_t oldguid;
723 vdev_t *rvd = spa->spa_root_vdev;
724
725 oldguid = spa_guid(spa);
726
727 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
728 rvd->vdev_guid = *newguid;
729 rvd->vdev_guid_sum += (*newguid - oldguid);
730 vdev_config_dirty(rvd);
731 spa_config_exit(spa, SCL_STATE, FTAG);
732
733 spa_history_log_internal(LOG_POOL_GUID_CHANGE, spa, tx,
734 "old=%lld new=%lld", oldguid, *newguid);
735 }
736
737 /*
738 * Change the GUID for the pool. This is done so that we can later
739 * re-import a pool built from a clone of our own vdevs. We will modify
740 * the root vdev's guid, our own pool guid, and then mark all of our
741 * vdevs dirty. Note that we must make sure that all our vdevs are
742 * online when we do this, or else any vdevs that weren't present
743 * would be orphaned from our pool. We are also going to issue a
744 * sysevent to update any watchers.
745 */
746 int
747 spa_change_guid(spa_t *spa)
748 {
749 int error;
750 uint64_t guid;
751
752 mutex_enter(&spa_namespace_lock);
753 guid = spa_generate_guid(NULL);
754
755 error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
756 spa_change_guid_sync, spa, &guid, 5);
757
758 if (error == 0) {
759 spa_config_sync(spa, B_FALSE, B_TRUE);
760 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
761 }
762
763 mutex_exit(&spa_namespace_lock);
764
765 return (error);
766 }
767
768 /*
769 * ==========================================================================
770 * SPA state manipulation (open/create/destroy/import/export)
771 * ==========================================================================
772 */
773
774 static int
775 spa_error_entry_compare(const void *a, const void *b)
776 {
777 spa_error_entry_t *sa = (spa_error_entry_t *)a;
778 spa_error_entry_t *sb = (spa_error_entry_t *)b;
779 int ret;
780
781 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
782 sizeof (zbookmark_t));
783
784 if (ret < 0)
785 return (-1);
786 else if (ret > 0)
787 return (1);
788 else
789 return (0);
790 }
791
792 /*
793 * Utility function which retrieves copies of the current logs and
794 * re-initializes them in the process.
795 */
796 void
797 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
798 {
799 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
800
801 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
802 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
803
804 avl_create(&spa->spa_errlist_scrub,
805 spa_error_entry_compare, sizeof (spa_error_entry_t),
806 offsetof(spa_error_entry_t, se_avl));
807 avl_create(&spa->spa_errlist_last,
808 spa_error_entry_compare, sizeof (spa_error_entry_t),
809 offsetof(spa_error_entry_t, se_avl));
810 }
811
812 static void
813 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
814 {
815 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
816 enum zti_modes mode = ztip->zti_mode;
817 uint_t value = ztip->zti_value;
818 uint_t count = ztip->zti_count;
819 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
820 char name[32];
821 uint_t i, flags = 0;
822 boolean_t batch = B_FALSE;
823
824 if (mode == ZTI_MODE_NULL) {
825 tqs->stqs_count = 0;
826 tqs->stqs_taskq = NULL;
827 return;
828 }
829
830 ASSERT3U(count, >, 0);
831
832 tqs->stqs_count = count;
833 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
834
835 for (i = 0; i < count; i++) {
836 taskq_t *tq;
837
838 switch (mode) {
839 case ZTI_MODE_FIXED:
840 ASSERT3U(value, >=, 1);
841 value = MAX(value, 1);
842 break;
843
844 case ZTI_MODE_BATCH:
845 batch = B_TRUE;
846 flags |= TASKQ_THREADS_CPU_PCT;
847 value = zio_taskq_batch_pct;
848 break;
849
850 case ZTI_MODE_ONLINE_PERCENT:
851 flags |= TASKQ_THREADS_CPU_PCT;
852 break;
853
854 default:
855 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
856 "spa_activate()",
857 zio_type_name[t], zio_taskq_types[q], mode, value);
858 break;
859 }
860
861 if (count > 1) {
862 (void) snprintf(name, sizeof (name), "%s_%s_%u",
863 zio_type_name[t], zio_taskq_types[q], i);
864 } else {
865 (void) snprintf(name, sizeof (name), "%s_%s",
866 zio_type_name[t], zio_taskq_types[q]);
867 }
868
869 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
870 if (batch)
871 flags |= TASKQ_DC_BATCH;
872
873 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
874 spa->spa_proc, zio_taskq_basedc, flags);
875 } else {
876 tq = taskq_create_proc(name, value, maxclsyspri, 50,
877 INT_MAX, spa->spa_proc, flags);
878 }
879
880 tqs->stqs_taskq[i] = tq;
881 }
882 }
883
884 static void
885 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
886 {
887 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
888 uint_t i;
889
890 if (tqs->stqs_taskq == NULL) {
891 ASSERT3U(tqs->stqs_count, ==, 0);
892 return;
893 }
894
895 for (i = 0; i < tqs->stqs_count; i++) {
896 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
897 taskq_destroy(tqs->stqs_taskq[i]);
898 }
899
900 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
901 tqs->stqs_taskq = NULL;
902 }
903
904 /*
905 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
906 * Note that a type may have multiple discrete taskqs to avoid lock contention
907 * on the taskq itself. In that case we choose which taskq at random by using
908 * the low bits of gethrtime().
909 */
910 void
911 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
912 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
913 {
914 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
915 taskq_t *tq;
916
917 ASSERT3P(tqs->stqs_taskq, !=, NULL);
918 ASSERT3U(tqs->stqs_count, !=, 0);
919
920 if (tqs->stqs_count == 1) {
921 tq = tqs->stqs_taskq[0];
922 } else {
923 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
924 }
925
926 taskq_dispatch_ent(tq, func, arg, flags, ent);
927 }
928
929 /*
930 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
931 */
932 void
933 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
934 task_func_t *func, void *arg, uint_t flags)
935 {
936 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
937 taskq_t *tq;
938 taskqid_t id;
939
940 ASSERT3P(tqs->stqs_taskq, !=, NULL);
941 ASSERT3U(tqs->stqs_count, !=, 0);
942
943 if (tqs->stqs_count == 1) {
944 tq = tqs->stqs_taskq[0];
945 } else {
946 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
947 }
948
949 id = taskq_dispatch(tq, func, arg, flags);
950 if (id)
951 taskq_wait_id(tq, id);
952 }
953
954 static void
955 spa_create_zio_taskqs(spa_t *spa)
956 {
957 int t, q;
958
959 for (t = 0; t < ZIO_TYPES; t++) {
960 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
961 spa_taskqs_init(spa, t, q);
962 }
963 }
964 }
965
966 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
967 static void
968 spa_thread(void *arg)
969 {
970 callb_cpr_t cprinfo;
971
972 spa_t *spa = arg;
973 user_t *pu = PTOU(curproc);
974
975 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
976 spa->spa_name);
977
978 ASSERT(curproc != &p0);
979 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
980 "zpool-%s", spa->spa_name);
981 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
982
983 /* bind this thread to the requested psrset */
984 if (zio_taskq_psrset_bind != PS_NONE) {
985 pool_lock();
986 mutex_enter(&cpu_lock);
987 mutex_enter(&pidlock);
988 mutex_enter(&curproc->p_lock);
989
990 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
991 0, NULL, NULL) == 0) {
992 curthread->t_bind_pset = zio_taskq_psrset_bind;
993 } else {
994 cmn_err(CE_WARN,
995 "Couldn't bind process for zfs pool \"%s\" to "
996 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
997 }
998
999 mutex_exit(&curproc->p_lock);
1000 mutex_exit(&pidlock);
1001 mutex_exit(&cpu_lock);
1002 pool_unlock();
1003 }
1004
1005 if (zio_taskq_sysdc) {
1006 sysdc_thread_enter(curthread, 100, 0);
1007 }
1008
1009 spa->spa_proc = curproc;
1010 spa->spa_did = curthread->t_did;
1011
1012 spa_create_zio_taskqs(spa);
1013
1014 mutex_enter(&spa->spa_proc_lock);
1015 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1016
1017 spa->spa_proc_state = SPA_PROC_ACTIVE;
1018 cv_broadcast(&spa->spa_proc_cv);
1019
1020 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1021 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1022 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1023 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1024
1025 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1026 spa->spa_proc_state = SPA_PROC_GONE;
1027 spa->spa_proc = &p0;
1028 cv_broadcast(&spa->spa_proc_cv);
1029 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1030
1031 mutex_enter(&curproc->p_lock);
1032 lwp_exit();
1033 }
1034 #endif
1035
1036 /*
1037 * Activate an uninitialized pool.
1038 */
1039 static void
1040 spa_activate(spa_t *spa, int mode)
1041 {
1042 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1043
1044 spa->spa_state = POOL_STATE_ACTIVE;
1045 spa->spa_mode = mode;
1046
1047 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1048 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1049
1050 /* Try to create a covering process */
1051 mutex_enter(&spa->spa_proc_lock);
1052 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1053 ASSERT(spa->spa_proc == &p0);
1054 spa->spa_did = 0;
1055
1056 #ifdef HAVE_SPA_THREAD
1057 /* Only create a process if we're going to be around a while. */
1058 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1059 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1060 NULL, 0) == 0) {
1061 spa->spa_proc_state = SPA_PROC_CREATED;
1062 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1063 cv_wait(&spa->spa_proc_cv,
1064 &spa->spa_proc_lock);
1065 }
1066 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1067 ASSERT(spa->spa_proc != &p0);
1068 ASSERT(spa->spa_did != 0);
1069 } else {
1070 #ifdef _KERNEL
1071 cmn_err(CE_WARN,
1072 "Couldn't create process for zfs pool \"%s\"\n",
1073 spa->spa_name);
1074 #endif
1075 }
1076 }
1077 #endif /* HAVE_SPA_THREAD */
1078 mutex_exit(&spa->spa_proc_lock);
1079
1080 /* If we didn't create a process, we need to create our taskqs. */
1081 if (spa->spa_proc == &p0) {
1082 spa_create_zio_taskqs(spa);
1083 }
1084
1085 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1086 offsetof(vdev_t, vdev_config_dirty_node));
1087 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1088 offsetof(vdev_t, vdev_state_dirty_node));
1089
1090 txg_list_create(&spa->spa_vdev_txg_list,
1091 offsetof(struct vdev, vdev_txg_node));
1092
1093 avl_create(&spa->spa_errlist_scrub,
1094 spa_error_entry_compare, sizeof (spa_error_entry_t),
1095 offsetof(spa_error_entry_t, se_avl));
1096 avl_create(&spa->spa_errlist_last,
1097 spa_error_entry_compare, sizeof (spa_error_entry_t),
1098 offsetof(spa_error_entry_t, se_avl));
1099 }
1100
1101 /*
1102 * Opposite of spa_activate().
1103 */
1104 static void
1105 spa_deactivate(spa_t *spa)
1106 {
1107 int t, q;
1108
1109 ASSERT(spa->spa_sync_on == B_FALSE);
1110 ASSERT(spa->spa_dsl_pool == NULL);
1111 ASSERT(spa->spa_root_vdev == NULL);
1112 ASSERT(spa->spa_async_zio_root == NULL);
1113 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1114
1115 txg_list_destroy(&spa->spa_vdev_txg_list);
1116
1117 list_destroy(&spa->spa_config_dirty_list);
1118 list_destroy(&spa->spa_state_dirty_list);
1119
1120 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1121
1122 for (t = 0; t < ZIO_TYPES; t++) {
1123 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1124 spa_taskqs_fini(spa, t, q);
1125 }
1126 }
1127
1128 metaslab_class_destroy(spa->spa_normal_class);
1129 spa->spa_normal_class = NULL;
1130
1131 metaslab_class_destroy(spa->spa_log_class);
1132 spa->spa_log_class = NULL;
1133
1134 /*
1135 * If this was part of an import or the open otherwise failed, we may
1136 * still have errors left in the queues. Empty them just in case.
1137 */
1138 spa_errlog_drain(spa);
1139
1140 avl_destroy(&spa->spa_errlist_scrub);
1141 avl_destroy(&spa->spa_errlist_last);
1142
1143 spa->spa_state = POOL_STATE_UNINITIALIZED;
1144
1145 mutex_enter(&spa->spa_proc_lock);
1146 if (spa->spa_proc_state != SPA_PROC_NONE) {
1147 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1148 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1149 cv_broadcast(&spa->spa_proc_cv);
1150 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1151 ASSERT(spa->spa_proc != &p0);
1152 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1153 }
1154 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1155 spa->spa_proc_state = SPA_PROC_NONE;
1156 }
1157 ASSERT(spa->spa_proc == &p0);
1158 mutex_exit(&spa->spa_proc_lock);
1159
1160 /*
1161 * We want to make sure spa_thread() has actually exited the ZFS
1162 * module, so that the module can't be unloaded out from underneath
1163 * it.
1164 */
1165 if (spa->spa_did != 0) {
1166 thread_join(spa->spa_did);
1167 spa->spa_did = 0;
1168 }
1169 }
1170
1171 /*
1172 * Verify a pool configuration, and construct the vdev tree appropriately. This
1173 * will create all the necessary vdevs in the appropriate layout, with each vdev
1174 * in the CLOSED state. This will prep the pool before open/creation/import.
1175 * All vdev validation is done by the vdev_alloc() routine.
1176 */
1177 static int
1178 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1179 uint_t id, int atype)
1180 {
1181 nvlist_t **child;
1182 uint_t children;
1183 int error;
1184 int c;
1185
1186 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1187 return (error);
1188
1189 if ((*vdp)->vdev_ops->vdev_op_leaf)
1190 return (0);
1191
1192 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1193 &child, &children);
1194
1195 if (error == ENOENT)
1196 return (0);
1197
1198 if (error) {
1199 vdev_free(*vdp);
1200 *vdp = NULL;
1201 return (EINVAL);
1202 }
1203
1204 for (c = 0; c < children; c++) {
1205 vdev_t *vd;
1206 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1207 atype)) != 0) {
1208 vdev_free(*vdp);
1209 *vdp = NULL;
1210 return (error);
1211 }
1212 }
1213
1214 ASSERT(*vdp != NULL);
1215
1216 return (0);
1217 }
1218
1219 /*
1220 * Opposite of spa_load().
1221 */
1222 static void
1223 spa_unload(spa_t *spa)
1224 {
1225 int i;
1226
1227 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1228
1229 /*
1230 * Stop async tasks.
1231 */
1232 spa_async_suspend(spa);
1233
1234 /*
1235 * Stop syncing.
1236 */
1237 if (spa->spa_sync_on) {
1238 txg_sync_stop(spa->spa_dsl_pool);
1239 spa->spa_sync_on = B_FALSE;
1240 }
1241
1242 /*
1243 * Wait for any outstanding async I/O to complete.
1244 */
1245 if (spa->spa_async_zio_root != NULL) {
1246 (void) zio_wait(spa->spa_async_zio_root);
1247 spa->spa_async_zio_root = NULL;
1248 }
1249
1250 bpobj_close(&spa->spa_deferred_bpobj);
1251
1252 /*
1253 * Close the dsl pool.
1254 */
1255 if (spa->spa_dsl_pool) {
1256 dsl_pool_close(spa->spa_dsl_pool);
1257 spa->spa_dsl_pool = NULL;
1258 spa->spa_meta_objset = NULL;
1259 }
1260
1261 ddt_unload(spa);
1262
1263 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1264
1265 /*
1266 * Drop and purge level 2 cache
1267 */
1268 spa_l2cache_drop(spa);
1269
1270 /*
1271 * Close all vdevs.
1272 */
1273 if (spa->spa_root_vdev)
1274 vdev_free(spa->spa_root_vdev);
1275 ASSERT(spa->spa_root_vdev == NULL);
1276
1277 for (i = 0; i < spa->spa_spares.sav_count; i++)
1278 vdev_free(spa->spa_spares.sav_vdevs[i]);
1279 if (spa->spa_spares.sav_vdevs) {
1280 kmem_free(spa->spa_spares.sav_vdevs,
1281 spa->spa_spares.sav_count * sizeof (void *));
1282 spa->spa_spares.sav_vdevs = NULL;
1283 }
1284 if (spa->spa_spares.sav_config) {
1285 nvlist_free(spa->spa_spares.sav_config);
1286 spa->spa_spares.sav_config = NULL;
1287 }
1288 spa->spa_spares.sav_count = 0;
1289
1290 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1291 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1292 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1293 }
1294 if (spa->spa_l2cache.sav_vdevs) {
1295 kmem_free(spa->spa_l2cache.sav_vdevs,
1296 spa->spa_l2cache.sav_count * sizeof (void *));
1297 spa->spa_l2cache.sav_vdevs = NULL;
1298 }
1299 if (spa->spa_l2cache.sav_config) {
1300 nvlist_free(spa->spa_l2cache.sav_config);
1301 spa->spa_l2cache.sav_config = NULL;
1302 }
1303 spa->spa_l2cache.sav_count = 0;
1304
1305 spa->spa_async_suspended = 0;
1306
1307 if (spa->spa_comment != NULL) {
1308 spa_strfree(spa->spa_comment);
1309 spa->spa_comment = NULL;
1310 }
1311
1312 spa_config_exit(spa, SCL_ALL, FTAG);
1313 }
1314
1315 /*
1316 * Load (or re-load) the current list of vdevs describing the active spares for
1317 * this pool. When this is called, we have some form of basic information in
1318 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1319 * then re-generate a more complete list including status information.
1320 */
1321 static void
1322 spa_load_spares(spa_t *spa)
1323 {
1324 nvlist_t **spares;
1325 uint_t nspares;
1326 int i;
1327 vdev_t *vd, *tvd;
1328
1329 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1330
1331 /*
1332 * First, close and free any existing spare vdevs.
1333 */
1334 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1335 vd = spa->spa_spares.sav_vdevs[i];
1336
1337 /* Undo the call to spa_activate() below */
1338 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1339 B_FALSE)) != NULL && tvd->vdev_isspare)
1340 spa_spare_remove(tvd);
1341 vdev_close(vd);
1342 vdev_free(vd);
1343 }
1344
1345 if (spa->spa_spares.sav_vdevs)
1346 kmem_free(spa->spa_spares.sav_vdevs,
1347 spa->spa_spares.sav_count * sizeof (void *));
1348
1349 if (spa->spa_spares.sav_config == NULL)
1350 nspares = 0;
1351 else
1352 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1353 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1354
1355 spa->spa_spares.sav_count = (int)nspares;
1356 spa->spa_spares.sav_vdevs = NULL;
1357
1358 if (nspares == 0)
1359 return;
1360
1361 /*
1362 * Construct the array of vdevs, opening them to get status in the
1363 * process. For each spare, there is potentially two different vdev_t
1364 * structures associated with it: one in the list of spares (used only
1365 * for basic validation purposes) and one in the active vdev
1366 * configuration (if it's spared in). During this phase we open and
1367 * validate each vdev on the spare list. If the vdev also exists in the
1368 * active configuration, then we also mark this vdev as an active spare.
1369 */
1370 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1371 KM_PUSHPAGE);
1372 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1373 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1374 VDEV_ALLOC_SPARE) == 0);
1375 ASSERT(vd != NULL);
1376
1377 spa->spa_spares.sav_vdevs[i] = vd;
1378
1379 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1380 B_FALSE)) != NULL) {
1381 if (!tvd->vdev_isspare)
1382 spa_spare_add(tvd);
1383
1384 /*
1385 * We only mark the spare active if we were successfully
1386 * able to load the vdev. Otherwise, importing a pool
1387 * with a bad active spare would result in strange
1388 * behavior, because multiple pool would think the spare
1389 * is actively in use.
1390 *
1391 * There is a vulnerability here to an equally bizarre
1392 * circumstance, where a dead active spare is later
1393 * brought back to life (onlined or otherwise). Given
1394 * the rarity of this scenario, and the extra complexity
1395 * it adds, we ignore the possibility.
1396 */
1397 if (!vdev_is_dead(tvd))
1398 spa_spare_activate(tvd);
1399 }
1400
1401 vd->vdev_top = vd;
1402 vd->vdev_aux = &spa->spa_spares;
1403
1404 if (vdev_open(vd) != 0)
1405 continue;
1406
1407 if (vdev_validate_aux(vd) == 0)
1408 spa_spare_add(vd);
1409 }
1410
1411 /*
1412 * Recompute the stashed list of spares, with status information
1413 * this time.
1414 */
1415 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1416 DATA_TYPE_NVLIST_ARRAY) == 0);
1417
1418 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1419 KM_PUSHPAGE);
1420 for (i = 0; i < spa->spa_spares.sav_count; i++)
1421 spares[i] = vdev_config_generate(spa,
1422 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1423 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1424 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1425 for (i = 0; i < spa->spa_spares.sav_count; i++)
1426 nvlist_free(spares[i]);
1427 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1428 }
1429
1430 /*
1431 * Load (or re-load) the current list of vdevs describing the active l2cache for
1432 * this pool. When this is called, we have some form of basic information in
1433 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1434 * then re-generate a more complete list including status information.
1435 * Devices which are already active have their details maintained, and are
1436 * not re-opened.
1437 */
1438 static void
1439 spa_load_l2cache(spa_t *spa)
1440 {
1441 nvlist_t **l2cache;
1442 uint_t nl2cache;
1443 int i, j, oldnvdevs;
1444 uint64_t guid;
1445 vdev_t *vd, **oldvdevs, **newvdevs = NULL;
1446 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1447
1448 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1449
1450 if (sav->sav_config != NULL) {
1451 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1452 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1453 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_PUSHPAGE);
1454 } else {
1455 nl2cache = 0;
1456 }
1457
1458 oldvdevs = sav->sav_vdevs;
1459 oldnvdevs = sav->sav_count;
1460 sav->sav_vdevs = NULL;
1461 sav->sav_count = 0;
1462
1463 /*
1464 * Process new nvlist of vdevs.
1465 */
1466 for (i = 0; i < nl2cache; i++) {
1467 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1468 &guid) == 0);
1469
1470 newvdevs[i] = NULL;
1471 for (j = 0; j < oldnvdevs; j++) {
1472 vd = oldvdevs[j];
1473 if (vd != NULL && guid == vd->vdev_guid) {
1474 /*
1475 * Retain previous vdev for add/remove ops.
1476 */
1477 newvdevs[i] = vd;
1478 oldvdevs[j] = NULL;
1479 break;
1480 }
1481 }
1482
1483 if (newvdevs[i] == NULL) {
1484 /*
1485 * Create new vdev
1486 */
1487 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1488 VDEV_ALLOC_L2CACHE) == 0);
1489 ASSERT(vd != NULL);
1490 newvdevs[i] = vd;
1491
1492 /*
1493 * Commit this vdev as an l2cache device,
1494 * even if it fails to open.
1495 */
1496 spa_l2cache_add(vd);
1497
1498 vd->vdev_top = vd;
1499 vd->vdev_aux = sav;
1500
1501 spa_l2cache_activate(vd);
1502
1503 if (vdev_open(vd) != 0)
1504 continue;
1505
1506 (void) vdev_validate_aux(vd);
1507
1508 if (!vdev_is_dead(vd))
1509 l2arc_add_vdev(spa, vd);
1510 }
1511 }
1512
1513 /*
1514 * Purge vdevs that were dropped
1515 */
1516 for (i = 0; i < oldnvdevs; i++) {
1517 uint64_t pool;
1518
1519 vd = oldvdevs[i];
1520 if (vd != NULL) {
1521 ASSERT(vd->vdev_isl2cache);
1522
1523 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1524 pool != 0ULL && l2arc_vdev_present(vd))
1525 l2arc_remove_vdev(vd);
1526 vdev_clear_stats(vd);
1527 vdev_free(vd);
1528 }
1529 }
1530
1531 if (oldvdevs)
1532 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1533
1534 if (sav->sav_config == NULL)
1535 goto out;
1536
1537 sav->sav_vdevs = newvdevs;
1538 sav->sav_count = (int)nl2cache;
1539
1540 /*
1541 * Recompute the stashed list of l2cache devices, with status
1542 * information this time.
1543 */
1544 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1545 DATA_TYPE_NVLIST_ARRAY) == 0);
1546
1547 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_PUSHPAGE);
1548 for (i = 0; i < sav->sav_count; i++)
1549 l2cache[i] = vdev_config_generate(spa,
1550 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1551 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1552 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1553 out:
1554 for (i = 0; i < sav->sav_count; i++)
1555 nvlist_free(l2cache[i]);
1556 if (sav->sav_count)
1557 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1558 }
1559
1560 static int
1561 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1562 {
1563 dmu_buf_t *db;
1564 char *packed = NULL;
1565 size_t nvsize = 0;
1566 int error;
1567 *value = NULL;
1568
1569 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1570 if (error)
1571 return (error);
1572
1573 nvsize = *(uint64_t *)db->db_data;
1574 dmu_buf_rele(db, FTAG);
1575
1576 packed = kmem_alloc(nvsize, KM_PUSHPAGE | KM_NODEBUG);
1577 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1578 DMU_READ_PREFETCH);
1579 if (error == 0)
1580 error = nvlist_unpack(packed, nvsize, value, 0);
1581 kmem_free(packed, nvsize);
1582
1583 return (error);
1584 }
1585
1586 /*
1587 * Checks to see if the given vdev could not be opened, in which case we post a
1588 * sysevent to notify the autoreplace code that the device has been removed.
1589 */
1590 static void
1591 spa_check_removed(vdev_t *vd)
1592 {
1593 int c;
1594
1595 for (c = 0; c < vd->vdev_children; c++)
1596 spa_check_removed(vd->vdev_child[c]);
1597
1598 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1599 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1600 vd->vdev_spa, vd, NULL, 0, 0);
1601 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1602 }
1603 }
1604
1605 /*
1606 * Validate the current config against the MOS config
1607 */
1608 static boolean_t
1609 spa_config_valid(spa_t *spa, nvlist_t *config)
1610 {
1611 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1612 nvlist_t *nv;
1613 int c, i;
1614
1615 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1616
1617 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1618 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1619
1620 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1621
1622 /*
1623 * If we're doing a normal import, then build up any additional
1624 * diagnostic information about missing devices in this config.
1625 * We'll pass this up to the user for further processing.
1626 */
1627 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1628 nvlist_t **child, *nv;
1629 uint64_t idx = 0;
1630
1631 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1632 KM_PUSHPAGE);
1633 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
1634
1635 for (c = 0; c < rvd->vdev_children; c++) {
1636 vdev_t *tvd = rvd->vdev_child[c];
1637 vdev_t *mtvd = mrvd->vdev_child[c];
1638
1639 if (tvd->vdev_ops == &vdev_missing_ops &&
1640 mtvd->vdev_ops != &vdev_missing_ops &&
1641 mtvd->vdev_islog)
1642 child[idx++] = vdev_config_generate(spa, mtvd,
1643 B_FALSE, 0);
1644 }
1645
1646 if (idx) {
1647 VERIFY(nvlist_add_nvlist_array(nv,
1648 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1649 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1650 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1651
1652 for (i = 0; i < idx; i++)
1653 nvlist_free(child[i]);
1654 }
1655 nvlist_free(nv);
1656 kmem_free(child, rvd->vdev_children * sizeof (char **));
1657 }
1658
1659 /*
1660 * Compare the root vdev tree with the information we have
1661 * from the MOS config (mrvd). Check each top-level vdev
1662 * with the corresponding MOS config top-level (mtvd).
1663 */
1664 for (c = 0; c < rvd->vdev_children; c++) {
1665 vdev_t *tvd = rvd->vdev_child[c];
1666 vdev_t *mtvd = mrvd->vdev_child[c];
1667
1668 /*
1669 * Resolve any "missing" vdevs in the current configuration.
1670 * If we find that the MOS config has more accurate information
1671 * about the top-level vdev then use that vdev instead.
1672 */
1673 if (tvd->vdev_ops == &vdev_missing_ops &&
1674 mtvd->vdev_ops != &vdev_missing_ops) {
1675
1676 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1677 continue;
1678
1679 /*
1680 * Device specific actions.
1681 */
1682 if (mtvd->vdev_islog) {
1683 spa_set_log_state(spa, SPA_LOG_CLEAR);
1684 } else {
1685 /*
1686 * XXX - once we have 'readonly' pool
1687 * support we should be able to handle
1688 * missing data devices by transitioning
1689 * the pool to readonly.
1690 */
1691 continue;
1692 }
1693
1694 /*
1695 * Swap the missing vdev with the data we were
1696 * able to obtain from the MOS config.
1697 */
1698 vdev_remove_child(rvd, tvd);
1699 vdev_remove_child(mrvd, mtvd);
1700
1701 vdev_add_child(rvd, mtvd);
1702 vdev_add_child(mrvd, tvd);
1703
1704 spa_config_exit(spa, SCL_ALL, FTAG);
1705 vdev_load(mtvd);
1706 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1707
1708 vdev_reopen(rvd);
1709 } else if (mtvd->vdev_islog) {
1710 /*
1711 * Load the slog device's state from the MOS config
1712 * since it's possible that the label does not
1713 * contain the most up-to-date information.
1714 */
1715 vdev_load_log_state(tvd, mtvd);
1716 vdev_reopen(tvd);
1717 }
1718 }
1719 vdev_free(mrvd);
1720 spa_config_exit(spa, SCL_ALL, FTAG);
1721
1722 /*
1723 * Ensure we were able to validate the config.
1724 */
1725 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1726 }
1727
1728 /*
1729 * Check for missing log devices
1730 */
1731 static int
1732 spa_check_logs(spa_t *spa)
1733 {
1734 switch (spa->spa_log_state) {
1735 default:
1736 break;
1737 case SPA_LOG_MISSING:
1738 /* need to recheck in case slog has been restored */
1739 case SPA_LOG_UNKNOWN:
1740 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1741 DS_FIND_CHILDREN)) {
1742 spa_set_log_state(spa, SPA_LOG_MISSING);
1743 return (1);
1744 }
1745 break;
1746 }
1747 return (0);
1748 }
1749
1750 static boolean_t
1751 spa_passivate_log(spa_t *spa)
1752 {
1753 vdev_t *rvd = spa->spa_root_vdev;
1754 boolean_t slog_found = B_FALSE;
1755 int c;
1756
1757 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1758
1759 if (!spa_has_slogs(spa))
1760 return (B_FALSE);
1761
1762 for (c = 0; c < rvd->vdev_children; c++) {
1763 vdev_t *tvd = rvd->vdev_child[c];
1764 metaslab_group_t *mg = tvd->vdev_mg;
1765
1766 if (tvd->vdev_islog) {
1767 metaslab_group_passivate(mg);
1768 slog_found = B_TRUE;
1769 }
1770 }
1771
1772 return (slog_found);
1773 }
1774
1775 static void
1776 spa_activate_log(spa_t *spa)
1777 {
1778 vdev_t *rvd = spa->spa_root_vdev;
1779 int c;
1780
1781 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1782
1783 for (c = 0; c < rvd->vdev_children; c++) {
1784 vdev_t *tvd = rvd->vdev_child[c];
1785 metaslab_group_t *mg = tvd->vdev_mg;
1786
1787 if (tvd->vdev_islog)
1788 metaslab_group_activate(mg);
1789 }
1790 }
1791
1792 int
1793 spa_offline_log(spa_t *spa)
1794 {
1795 int error = 0;
1796
1797 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1798 NULL, DS_FIND_CHILDREN)) == 0) {
1799
1800 /*
1801 * We successfully offlined the log device, sync out the
1802 * current txg so that the "stubby" block can be removed
1803 * by zil_sync().
1804 */
1805 txg_wait_synced(spa->spa_dsl_pool, 0);
1806 }
1807 return (error);
1808 }
1809
1810 static void
1811 spa_aux_check_removed(spa_aux_vdev_t *sav)
1812 {
1813 int i;
1814
1815 for (i = 0; i < sav->sav_count; i++)
1816 spa_check_removed(sav->sav_vdevs[i]);
1817 }
1818
1819 void
1820 spa_claim_notify(zio_t *zio)
1821 {
1822 spa_t *spa = zio->io_spa;
1823
1824 if (zio->io_error)
1825 return;
1826
1827 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1828 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1829 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1830 mutex_exit(&spa->spa_props_lock);
1831 }
1832
1833 typedef struct spa_load_error {
1834 uint64_t sle_meta_count;
1835 uint64_t sle_data_count;
1836 } spa_load_error_t;
1837
1838 static void
1839 spa_load_verify_done(zio_t *zio)
1840 {
1841 blkptr_t *bp = zio->io_bp;
1842 spa_load_error_t *sle = zio->io_private;
1843 dmu_object_type_t type = BP_GET_TYPE(bp);
1844 int error = zio->io_error;
1845
1846 if (error) {
1847 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1848 type != DMU_OT_INTENT_LOG)
1849 atomic_add_64(&sle->sle_meta_count, 1);
1850 else
1851 atomic_add_64(&sle->sle_data_count, 1);
1852 }
1853 zio_data_buf_free(zio->io_data, zio->io_size);
1854 }
1855
1856 /*ARGSUSED*/
1857 static int
1858 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1859 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1860 {
1861 if (bp != NULL) {
1862 zio_t *rio = arg;
1863 size_t size = BP_GET_PSIZE(bp);
1864 void *data = zio_data_buf_alloc(size);
1865
1866 zio_nowait(zio_read(rio, spa, bp, data, size,
1867 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1868 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1869 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1870 }
1871 return (0);
1872 }
1873
1874 static int
1875 spa_load_verify(spa_t *spa)
1876 {
1877 zio_t *rio;
1878 spa_load_error_t sle = { 0 };
1879 zpool_rewind_policy_t policy;
1880 boolean_t verify_ok = B_FALSE;
1881 int error;
1882
1883 zpool_get_rewind_policy(spa->spa_config, &policy);
1884
1885 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1886 return (0);
1887
1888 rio = zio_root(spa, NULL, &sle,
1889 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1890
1891 error = traverse_pool(spa, spa->spa_verify_min_txg,
1892 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1893
1894 (void) zio_wait(rio);
1895
1896 spa->spa_load_meta_errors = sle.sle_meta_count;
1897 spa->spa_load_data_errors = sle.sle_data_count;
1898
1899 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1900 sle.sle_data_count <= policy.zrp_maxdata) {
1901 int64_t loss = 0;
1902
1903 verify_ok = B_TRUE;
1904 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1905 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1906
1907 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1908 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1909 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1910 VERIFY(nvlist_add_int64(spa->spa_load_info,
1911 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1912 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1913 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1914 } else {
1915 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1916 }
1917
1918 if (error) {
1919 if (error != ENXIO && error != EIO)
1920 error = EIO;
1921 return (error);
1922 }
1923
1924 return (verify_ok ? 0 : EIO);
1925 }
1926
1927 /*
1928 * Find a value in the pool props object.
1929 */
1930 static void
1931 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1932 {
1933 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1934 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1935 }
1936
1937 /*
1938 * Find a value in the pool directory object.
1939 */
1940 static int
1941 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1942 {
1943 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1944 name, sizeof (uint64_t), 1, val));
1945 }
1946
1947 static int
1948 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1949 {
1950 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1951 return (err);
1952 }
1953
1954 /*
1955 * Fix up config after a partly-completed split. This is done with the
1956 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1957 * pool have that entry in their config, but only the splitting one contains
1958 * a list of all the guids of the vdevs that are being split off.
1959 *
1960 * This function determines what to do with that list: either rejoin
1961 * all the disks to the pool, or complete the splitting process. To attempt
1962 * the rejoin, each disk that is offlined is marked online again, and
1963 * we do a reopen() call. If the vdev label for every disk that was
1964 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1965 * then we call vdev_split() on each disk, and complete the split.
1966 *
1967 * Otherwise we leave the config alone, with all the vdevs in place in
1968 * the original pool.
1969 */
1970 static void
1971 spa_try_repair(spa_t *spa, nvlist_t *config)
1972 {
1973 uint_t extracted;
1974 uint64_t *glist;
1975 uint_t i, gcount;
1976 nvlist_t *nvl;
1977 vdev_t **vd;
1978 boolean_t attempt_reopen;
1979
1980 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1981 return;
1982
1983 /* check that the config is complete */
1984 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1985 &glist, &gcount) != 0)
1986 return;
1987
1988 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_PUSHPAGE);
1989
1990 /* attempt to online all the vdevs & validate */
1991 attempt_reopen = B_TRUE;
1992 for (i = 0; i < gcount; i++) {
1993 if (glist[i] == 0) /* vdev is hole */
1994 continue;
1995
1996 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1997 if (vd[i] == NULL) {
1998 /*
1999 * Don't bother attempting to reopen the disks;
2000 * just do the split.
2001 */
2002 attempt_reopen = B_FALSE;
2003 } else {
2004 /* attempt to re-online it */
2005 vd[i]->vdev_offline = B_FALSE;
2006 }
2007 }
2008
2009 if (attempt_reopen) {
2010 vdev_reopen(spa->spa_root_vdev);
2011
2012 /* check each device to see what state it's in */
2013 for (extracted = 0, i = 0; i < gcount; i++) {
2014 if (vd[i] != NULL &&
2015 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2016 break;
2017 ++extracted;
2018 }
2019 }
2020
2021 /*
2022 * If every disk has been moved to the new pool, or if we never
2023 * even attempted to look at them, then we split them off for
2024 * good.
2025 */
2026 if (!attempt_reopen || gcount == extracted) {
2027 for (i = 0; i < gcount; i++)
2028 if (vd[i] != NULL)
2029 vdev_split(vd[i]);
2030 vdev_reopen(spa->spa_root_vdev);
2031 }
2032
2033 kmem_free(vd, gcount * sizeof (vdev_t *));
2034 }
2035
2036 static int
2037 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2038 boolean_t mosconfig)
2039 {
2040 nvlist_t *config = spa->spa_config;
2041 char *ereport = FM_EREPORT_ZFS_POOL;
2042 char *comment;
2043 int error;
2044 uint64_t pool_guid;
2045 nvlist_t *nvl;
2046
2047 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2048 return (EINVAL);
2049
2050 ASSERT(spa->spa_comment == NULL);
2051 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2052 spa->spa_comment = spa_strdup(comment);
2053
2054 /*
2055 * Versioning wasn't explicitly added to the label until later, so if
2056 * it's not present treat it as the initial version.
2057 */
2058 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2059 &spa->spa_ubsync.ub_version) != 0)
2060 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2061
2062 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2063 &spa->spa_config_txg);
2064
2065 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2066 spa_guid_exists(pool_guid, 0)) {
2067 error = EEXIST;
2068 } else {
2069 spa->spa_config_guid = pool_guid;
2070
2071 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2072 &nvl) == 0) {
2073 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2074 KM_PUSHPAGE) == 0);
2075 }
2076
2077 nvlist_free(spa->spa_load_info);
2078 spa->spa_load_info = fnvlist_alloc();
2079
2080 gethrestime(&spa->spa_loaded_ts);
2081 error = spa_load_impl(spa, pool_guid, config, state, type,
2082 mosconfig, &ereport);
2083 }
2084
2085 spa->spa_minref = refcount_count(&spa->spa_refcount);
2086 if (error) {
2087 if (error != EEXIST) {
2088 spa->spa_loaded_ts.tv_sec = 0;
2089 spa->spa_loaded_ts.tv_nsec = 0;
2090 }
2091 if (error != EBADF) {
2092 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2093 }
2094 }
2095 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2096 spa->spa_ena = 0;
2097
2098 return (error);
2099 }
2100
2101 /*
2102 * Load an existing storage pool, using the pool's builtin spa_config as a
2103 * source of configuration information.
2104 */
2105 __attribute__((always_inline))
2106 static inline int
2107 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2108 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2109 char **ereport)
2110 {
2111 int error = 0;
2112 nvlist_t *nvroot = NULL;
2113 nvlist_t *label;
2114 vdev_t *rvd;
2115 uberblock_t *ub = &spa->spa_uberblock;
2116 uint64_t children, config_cache_txg = spa->spa_config_txg;
2117 int orig_mode = spa->spa_mode;
2118 int parse;
2119 uint64_t obj;
2120 boolean_t missing_feat_write = B_FALSE;
2121
2122 /*
2123 * If this is an untrusted config, access the pool in read-only mode.
2124 * This prevents things like resilvering recently removed devices.
2125 */
2126 if (!mosconfig)
2127 spa->spa_mode = FREAD;
2128
2129 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2130
2131 spa->spa_load_state = state;
2132
2133 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2134 return (EINVAL);
2135
2136 parse = (type == SPA_IMPORT_EXISTING ?
2137 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2138
2139 /*
2140 * Create "The Godfather" zio to hold all async IOs
2141 */
2142 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2143 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2144
2145 /*
2146 * Parse the configuration into a vdev tree. We explicitly set the
2147 * value that will be returned by spa_version() since parsing the
2148 * configuration requires knowing the version number.
2149 */
2150 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2151 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2152 spa_config_exit(spa, SCL_ALL, FTAG);
2153
2154 if (error != 0)
2155 return (error);
2156
2157 ASSERT(spa->spa_root_vdev == rvd);
2158
2159 if (type != SPA_IMPORT_ASSEMBLE) {
2160 ASSERT(spa_guid(spa) == pool_guid);
2161 }
2162
2163 /*
2164 * Try to open all vdevs, loading each label in the process.
2165 */
2166 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2167 error = vdev_open(rvd);
2168 spa_config_exit(spa, SCL_ALL, FTAG);
2169 if (error != 0)
2170 return (error);
2171
2172 /*
2173 * We need to validate the vdev labels against the configuration that
2174 * we have in hand, which is dependent on the setting of mosconfig. If
2175 * mosconfig is true then we're validating the vdev labels based on
2176 * that config. Otherwise, we're validating against the cached config
2177 * (zpool.cache) that was read when we loaded the zfs module, and then
2178 * later we will recursively call spa_load() and validate against
2179 * the vdev config.
2180 *
2181 * If we're assembling a new pool that's been split off from an
2182 * existing pool, the labels haven't yet been updated so we skip
2183 * validation for now.
2184 */
2185 if (type != SPA_IMPORT_ASSEMBLE) {
2186 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2187 error = vdev_validate(rvd, mosconfig);
2188 spa_config_exit(spa, SCL_ALL, FTAG);
2189
2190 if (error != 0)
2191 return (error);
2192
2193 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2194 return (ENXIO);
2195 }
2196
2197 /*
2198 * Find the best uberblock.
2199 */
2200 vdev_uberblock_load(rvd, ub, &label);
2201
2202 /*
2203 * If we weren't able to find a single valid uberblock, return failure.
2204 */
2205 if (ub->ub_txg == 0) {
2206 nvlist_free(label);
2207 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2208 }
2209
2210 /*
2211 * If the pool has an unsupported version we can't open it.
2212 */
2213 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2214 nvlist_free(label);
2215 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2216 }
2217
2218 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2219 nvlist_t *features;
2220
2221 /*
2222 * If we weren't able to find what's necessary for reading the
2223 * MOS in the label, return failure.
2224 */
2225 if (label == NULL || nvlist_lookup_nvlist(label,
2226 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2227 nvlist_free(label);
2228 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2229 ENXIO));
2230 }
2231
2232 /*
2233 * Update our in-core representation with the definitive values
2234 * from the label.
2235 */
2236 nvlist_free(spa->spa_label_features);
2237 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2238 }
2239
2240 nvlist_free(label);
2241
2242 /*
2243 * Look through entries in the label nvlist's features_for_read. If
2244 * there is a feature listed there which we don't understand then we
2245 * cannot open a pool.
2246 */
2247 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2248 nvlist_t *unsup_feat;
2249 nvpair_t *nvp;
2250
2251 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2252 0);
2253
2254 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2255 nvp != NULL;
2256 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2257 if (!zfeature_is_supported(nvpair_name(nvp))) {
2258 VERIFY(nvlist_add_string(unsup_feat,
2259 nvpair_name(nvp), "") == 0);
2260 }
2261 }
2262
2263 if (!nvlist_empty(unsup_feat)) {
2264 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2265 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2266 nvlist_free(unsup_feat);
2267 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2268 ENOTSUP));
2269 }
2270
2271 nvlist_free(unsup_feat);
2272 }
2273
2274 /*
2275 * If the vdev guid sum doesn't match the uberblock, we have an
2276 * incomplete configuration. We first check to see if the pool
2277 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2278 * If it is, defer the vdev_guid_sum check till later so we
2279 * can handle missing vdevs.
2280 */
2281 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2282 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2283 rvd->vdev_guid_sum != ub->ub_guid_sum)
2284 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2285
2286 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2287 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2288 spa_try_repair(spa, config);
2289 spa_config_exit(spa, SCL_ALL, FTAG);
2290 nvlist_free(spa->spa_config_splitting);
2291 spa->spa_config_splitting = NULL;
2292 }
2293
2294 /*
2295 * Initialize internal SPA structures.
2296 */
2297 spa->spa_state = POOL_STATE_ACTIVE;
2298 spa->spa_ubsync = spa->spa_uberblock;
2299 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2300 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2301 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2302 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2303 spa->spa_claim_max_txg = spa->spa_first_txg;
2304 spa->spa_prev_software_version = ub->ub_software_version;
2305
2306 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2307 if (error)
2308 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2309 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2310
2311 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2312 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2313
2314 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2315 boolean_t missing_feat_read = B_FALSE;
2316 nvlist_t *unsup_feat, *enabled_feat;
2317
2318 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2319 &spa->spa_feat_for_read_obj) != 0) {
2320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2321 }
2322
2323 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2324 &spa->spa_feat_for_write_obj) != 0) {
2325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326 }
2327
2328 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2329 &spa->spa_feat_desc_obj) != 0) {
2330 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2331 }
2332
2333 enabled_feat = fnvlist_alloc();
2334 unsup_feat = fnvlist_alloc();
2335
2336 if (!feature_is_supported(spa->spa_meta_objset,
2337 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2338 unsup_feat, enabled_feat))
2339 missing_feat_read = B_TRUE;
2340
2341 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2342 if (!feature_is_supported(spa->spa_meta_objset,
2343 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2344 unsup_feat, enabled_feat)) {
2345 missing_feat_write = B_TRUE;
2346 }
2347 }
2348
2349 fnvlist_add_nvlist(spa->spa_load_info,
2350 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2351
2352 if (!nvlist_empty(unsup_feat)) {
2353 fnvlist_add_nvlist(spa->spa_load_info,
2354 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2355 }
2356
2357 fnvlist_free(enabled_feat);
2358 fnvlist_free(unsup_feat);
2359
2360 if (!missing_feat_read) {
2361 fnvlist_add_boolean(spa->spa_load_info,
2362 ZPOOL_CONFIG_CAN_RDONLY);
2363 }
2364
2365 /*
2366 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2367 * twofold: to determine whether the pool is available for
2368 * import in read-write mode and (if it is not) whether the
2369 * pool is available for import in read-only mode. If the pool
2370 * is available for import in read-write mode, it is displayed
2371 * as available in userland; if it is not available for import
2372 * in read-only mode, it is displayed as unavailable in
2373 * userland. If the pool is available for import in read-only
2374 * mode but not read-write mode, it is displayed as unavailable
2375 * in userland with a special note that the pool is actually
2376 * available for open in read-only mode.
2377 *
2378 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2379 * missing a feature for write, we must first determine whether
2380 * the pool can be opened read-only before returning to
2381 * userland in order to know whether to display the
2382 * abovementioned note.
2383 */
2384 if (missing_feat_read || (missing_feat_write &&
2385 spa_writeable(spa))) {
2386 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2387 ENOTSUP));
2388 }
2389 }
2390
2391 spa->spa_is_initializing = B_TRUE;
2392 error = dsl_pool_open(spa->spa_dsl_pool);
2393 spa->spa_is_initializing = B_FALSE;
2394 if (error != 0)
2395 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2396
2397 if (!mosconfig) {
2398 uint64_t hostid;
2399 nvlist_t *policy = NULL, *nvconfig;
2400
2401 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2402 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2403
2404 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2405 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2406 char *hostname;
2407 unsigned long myhostid = 0;
2408
2409 VERIFY(nvlist_lookup_string(nvconfig,
2410 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2411
2412 #ifdef _KERNEL
2413 myhostid = zone_get_hostid(NULL);
2414 #else /* _KERNEL */
2415 /*
2416 * We're emulating the system's hostid in userland, so
2417 * we can't use zone_get_hostid().
2418 */
2419 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2420 #endif /* _KERNEL */
2421 if (hostid != 0 && myhostid != 0 &&
2422 hostid != myhostid) {
2423 nvlist_free(nvconfig);
2424 cmn_err(CE_WARN, "pool '%s' could not be "
2425 "loaded as it was last accessed by "
2426 "another system (host: %s hostid: 0x%lx). "
2427 "See: http://zfsonlinux.org/msg/ZFS-8000-EY",
2428 spa_name(spa), hostname,
2429 (unsigned long)hostid);
2430 return (EBADF);
2431 }
2432 }
2433 if (nvlist_lookup_nvlist(spa->spa_config,
2434 ZPOOL_REWIND_POLICY, &policy) == 0)
2435 VERIFY(nvlist_add_nvlist(nvconfig,
2436 ZPOOL_REWIND_POLICY, policy) == 0);
2437
2438 spa_config_set(spa, nvconfig);
2439 spa_unload(spa);
2440 spa_deactivate(spa);
2441 spa_activate(spa, orig_mode);
2442
2443 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2444 }
2445
2446 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2449 if (error != 0)
2450 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2451
2452 /*
2453 * Load the bit that tells us to use the new accounting function
2454 * (raid-z deflation). If we have an older pool, this will not
2455 * be present.
2456 */
2457 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2458 if (error != 0 && error != ENOENT)
2459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2460
2461 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2462 &spa->spa_creation_version);
2463 if (error != 0 && error != ENOENT)
2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465
2466 /*
2467 * Load the persistent error log. If we have an older pool, this will
2468 * not be present.
2469 */
2470 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2471 if (error != 0 && error != ENOENT)
2472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2473
2474 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2475 &spa->spa_errlog_scrub);
2476 if (error != 0 && error != ENOENT)
2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2478
2479 /*
2480 * Load the history object. If we have an older pool, this
2481 * will not be present.
2482 */
2483 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2484 if (error != 0 && error != ENOENT)
2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486
2487 /*
2488 * If we're assembling the pool from the split-off vdevs of
2489 * an existing pool, we don't want to attach the spares & cache
2490 * devices.
2491 */
2492
2493 /*
2494 * Load any hot spares for this pool.
2495 */
2496 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2497 if (error != 0 && error != ENOENT)
2498 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2499 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2500 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2501 if (load_nvlist(spa, spa->spa_spares.sav_object,
2502 &spa->spa_spares.sav_config) != 0)
2503 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504
2505 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2506 spa_load_spares(spa);
2507 spa_config_exit(spa, SCL_ALL, FTAG);
2508 } else if (error == 0) {
2509 spa->spa_spares.sav_sync = B_TRUE;
2510 }
2511
2512 /*
2513 * Load any level 2 ARC devices for this pool.
2514 */
2515 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2516 &spa->spa_l2cache.sav_object);
2517 if (error != 0 && error != ENOENT)
2518 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2519 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2520 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2521 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2522 &spa->spa_l2cache.sav_config) != 0)
2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524
2525 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2526 spa_load_l2cache(spa);
2527 spa_config_exit(spa, SCL_ALL, FTAG);
2528 } else if (error == 0) {
2529 spa->spa_l2cache.sav_sync = B_TRUE;
2530 }
2531
2532 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2533
2534 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2535 if (error && error != ENOENT)
2536 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2537
2538 if (error == 0) {
2539 uint64_t autoreplace;
2540
2541 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2542 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2543 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2544 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2545 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2546 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2547 &spa->spa_dedup_ditto);
2548
2549 spa->spa_autoreplace = (autoreplace != 0);
2550 }
2551
2552 /*
2553 * If the 'autoreplace' property is set, then post a resource notifying
2554 * the ZFS DE that it should not issue any faults for unopenable
2555 * devices. We also iterate over the vdevs, and post a sysevent for any
2556 * unopenable vdevs so that the normal autoreplace handler can take
2557 * over.
2558 */
2559 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2560 spa_check_removed(spa->spa_root_vdev);
2561 /*
2562 * For the import case, this is done in spa_import(), because
2563 * at this point we're using the spare definitions from
2564 * the MOS config, not necessarily from the userland config.
2565 */
2566 if (state != SPA_LOAD_IMPORT) {
2567 spa_aux_check_removed(&spa->spa_spares);
2568 spa_aux_check_removed(&spa->spa_l2cache);
2569 }
2570 }
2571
2572 /*
2573 * Load the vdev state for all toplevel vdevs.
2574 */
2575 vdev_load(rvd);
2576
2577 /*
2578 * Propagate the leaf DTLs we just loaded all the way up the tree.
2579 */
2580 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2581 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2582 spa_config_exit(spa, SCL_ALL, FTAG);
2583
2584 /*
2585 * Load the DDTs (dedup tables).
2586 */
2587 error = ddt_load(spa);
2588 if (error != 0)
2589 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2590
2591 spa_update_dspace(spa);
2592
2593 /*
2594 * Validate the config, using the MOS config to fill in any
2595 * information which might be missing. If we fail to validate
2596 * the config then declare the pool unfit for use. If we're
2597 * assembling a pool from a split, the log is not transferred
2598 * over.
2599 */
2600 if (type != SPA_IMPORT_ASSEMBLE) {
2601 nvlist_t *nvconfig;
2602
2603 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2604 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605
2606 if (!spa_config_valid(spa, nvconfig)) {
2607 nvlist_free(nvconfig);
2608 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2609 ENXIO));
2610 }
2611 nvlist_free(nvconfig);
2612
2613 /*
2614 * Now that we've validated the config, check the state of the
2615 * root vdev. If it can't be opened, it indicates one or
2616 * more toplevel vdevs are faulted.
2617 */
2618 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2619 return (ENXIO);
2620
2621 if (spa_check_logs(spa)) {
2622 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2623 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2624 }
2625 }
2626
2627 if (missing_feat_write) {
2628 ASSERT(state == SPA_LOAD_TRYIMPORT);
2629
2630 /*
2631 * At this point, we know that we can open the pool in
2632 * read-only mode but not read-write mode. We now have enough
2633 * information and can return to userland.
2634 */
2635 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2636 }
2637
2638 /*
2639 * We've successfully opened the pool, verify that we're ready
2640 * to start pushing transactions.
2641 */
2642 if (state != SPA_LOAD_TRYIMPORT) {
2643 if ((error = spa_load_verify(spa)))
2644 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2645 error));
2646 }
2647
2648 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2649 spa->spa_load_max_txg == UINT64_MAX)) {
2650 dmu_tx_t *tx;
2651 int need_update = B_FALSE;
2652 int c;
2653
2654 ASSERT(state != SPA_LOAD_TRYIMPORT);
2655
2656 /*
2657 * Claim log blocks that haven't been committed yet.
2658 * This must all happen in a single txg.
2659 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2660 * invoked from zil_claim_log_block()'s i/o done callback.
2661 * Price of rollback is that we abandon the log.
2662 */
2663 spa->spa_claiming = B_TRUE;
2664
2665 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2666 spa_first_txg(spa));
2667 (void) dmu_objset_find(spa_name(spa),
2668 zil_claim, tx, DS_FIND_CHILDREN);
2669 dmu_tx_commit(tx);
2670
2671 spa->spa_claiming = B_FALSE;
2672
2673 spa_set_log_state(spa, SPA_LOG_GOOD);
2674 spa->spa_sync_on = B_TRUE;
2675 txg_sync_start(spa->spa_dsl_pool);
2676
2677 /*
2678 * Wait for all claims to sync. We sync up to the highest
2679 * claimed log block birth time so that claimed log blocks
2680 * don't appear to be from the future. spa_claim_max_txg
2681 * will have been set for us by either zil_check_log_chain()
2682 * (invoked from spa_check_logs()) or zil_claim() above.
2683 */
2684 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2685
2686 /*
2687 * If the config cache is stale, or we have uninitialized
2688 * metaslabs (see spa_vdev_add()), then update the config.
2689 *
2690 * If this is a verbatim import, trust the current
2691 * in-core spa_config and update the disk labels.
2692 */
2693 if (config_cache_txg != spa->spa_config_txg ||
2694 state == SPA_LOAD_IMPORT ||
2695 state == SPA_LOAD_RECOVER ||
2696 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2697 need_update = B_TRUE;
2698
2699 for (c = 0; c < rvd->vdev_children; c++)
2700 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2701 need_update = B_TRUE;
2702
2703 /*
2704 * Update the config cache asychronously in case we're the
2705 * root pool, in which case the config cache isn't writable yet.
2706 */
2707 if (need_update)
2708 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2709
2710 /*
2711 * Check all DTLs to see if anything needs resilvering.
2712 */
2713 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2714 vdev_resilver_needed(rvd, NULL, NULL))
2715 spa_async_request(spa, SPA_ASYNC_RESILVER);
2716
2717 /*
2718 * Delete any inconsistent datasets.
2719 */
2720 (void) dmu_objset_find(spa_name(spa),
2721 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2722
2723 /*
2724 * Clean up any stale temporary dataset userrefs.
2725 */
2726 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2727 }
2728
2729 return (0);
2730 }
2731
2732 static int
2733 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2734 {
2735 int mode = spa->spa_mode;
2736
2737 spa_unload(spa);
2738 spa_deactivate(spa);
2739
2740 spa->spa_load_max_txg--;
2741
2742 spa_activate(spa, mode);
2743 spa_async_suspend(spa);
2744
2745 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2746 }
2747
2748 /*
2749 * If spa_load() fails this function will try loading prior txg's. If
2750 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2751 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2752 * function will not rewind the pool and will return the same error as
2753 * spa_load().
2754 */
2755 static int
2756 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2757 uint64_t max_request, int rewind_flags)
2758 {
2759 nvlist_t *loadinfo = NULL;
2760 nvlist_t *config = NULL;
2761 int load_error, rewind_error;
2762 uint64_t safe_rewind_txg;
2763 uint64_t min_txg;
2764
2765 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2766 spa->spa_load_max_txg = spa->spa_load_txg;
2767 spa_set_log_state(spa, SPA_LOG_CLEAR);
2768 } else {
2769 spa->spa_load_max_txg = max_request;
2770 }
2771
2772 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2773 mosconfig);
2774 if (load_error == 0)
2775 return (0);
2776
2777 if (spa->spa_root_vdev != NULL)
2778 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2779
2780 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2781 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2782
2783 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2784 nvlist_free(config);
2785 return (load_error);
2786 }
2787
2788 if (state == SPA_LOAD_RECOVER) {
2789 /* Price of rolling back is discarding txgs, including log */
2790 spa_set_log_state(spa, SPA_LOG_CLEAR);
2791 } else {
2792 /*
2793 * If we aren't rolling back save the load info from our first
2794 * import attempt so that we can restore it after attempting
2795 * to rewind.
2796 */
2797 loadinfo = spa->spa_load_info;
2798 spa->spa_load_info = fnvlist_alloc();
2799 }
2800
2801 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2802 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2803 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2804 TXG_INITIAL : safe_rewind_txg;
2805
2806 /*
2807 * Continue as long as we're finding errors, we're still within
2808 * the acceptable rewind range, and we're still finding uberblocks
2809 */
2810 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2811 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2812 if (spa->spa_load_max_txg < safe_rewind_txg)
2813 spa->spa_extreme_rewind = B_TRUE;
2814 rewind_error = spa_load_retry(spa, state, mosconfig);
2815 }
2816
2817 spa->spa_extreme_rewind = B_FALSE;
2818 spa->spa_load_max_txg = UINT64_MAX;
2819
2820 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2821 spa_config_set(spa, config);
2822
2823 if (state == SPA_LOAD_RECOVER) {
2824 ASSERT3P(loadinfo, ==, NULL);
2825 return (rewind_error);
2826 } else {
2827 /* Store the rewind info as part of the initial load info */
2828 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2829 spa->spa_load_info);
2830
2831 /* Restore the initial load info */
2832 fnvlist_free(spa->spa_load_info);
2833 spa->spa_load_info = loadinfo;
2834
2835 return (load_error);
2836 }
2837 }
2838
2839 /*
2840 * Pool Open/Import
2841 *
2842 * The import case is identical to an open except that the configuration is sent
2843 * down from userland, instead of grabbed from the configuration cache. For the
2844 * case of an open, the pool configuration will exist in the
2845 * POOL_STATE_UNINITIALIZED state.
2846 *
2847 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2848 * the same time open the pool, without having to keep around the spa_t in some
2849 * ambiguous state.
2850 */
2851 static int
2852 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2853 nvlist_t **config)
2854 {
2855 spa_t *spa;
2856 spa_load_state_t state = SPA_LOAD_OPEN;
2857 int error;
2858 int locked = B_FALSE;
2859
2860 *spapp = NULL;
2861
2862 /*
2863 * As disgusting as this is, we need to support recursive calls to this
2864 * function because dsl_dir_open() is called during spa_load(), and ends
2865 * up calling spa_open() again. The real fix is to figure out how to
2866 * avoid dsl_dir_open() calling this in the first place.
2867 */
2868 if (mutex_owner(&spa_namespace_lock) != curthread) {
2869 mutex_enter(&spa_namespace_lock);
2870 locked = B_TRUE;
2871 }
2872
2873 if ((spa = spa_lookup(pool)) == NULL) {
2874 if (locked)
2875 mutex_exit(&spa_namespace_lock);
2876 return (ENOENT);
2877 }
2878
2879 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2880 zpool_rewind_policy_t policy;
2881
2882 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2883 &policy);
2884 if (policy.zrp_request & ZPOOL_DO_REWIND)
2885 state = SPA_LOAD_RECOVER;
2886
2887 spa_activate(spa, spa_mode_global);
2888
2889 if (state != SPA_LOAD_RECOVER)
2890 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2891
2892 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2893 policy.zrp_request);
2894
2895 if (error == EBADF) {
2896 /*
2897 * If vdev_validate() returns failure (indicated by
2898 * EBADF), it indicates that one of the vdevs indicates
2899 * that the pool has been exported or destroyed. If
2900 * this is the case, the config cache is out of sync and
2901 * we should remove the pool from the namespace.
2902 */
2903 spa_unload(spa);
2904 spa_deactivate(spa);
2905 spa_config_sync(spa, B_TRUE, B_TRUE);
2906 spa_remove(spa);
2907 if (locked)
2908 mutex_exit(&spa_namespace_lock);
2909 return (ENOENT);
2910 }
2911
2912 if (error) {
2913 /*
2914 * We can't open the pool, but we still have useful
2915 * information: the state of each vdev after the
2916 * attempted vdev_open(). Return this to the user.
2917 */
2918 if (config != NULL && spa->spa_config) {
2919 VERIFY(nvlist_dup(spa->spa_config, config,
2920 KM_PUSHPAGE) == 0);
2921 VERIFY(nvlist_add_nvlist(*config,
2922 ZPOOL_CONFIG_LOAD_INFO,
2923 spa->spa_load_info) == 0);
2924 }
2925 spa_unload(spa);
2926 spa_deactivate(spa);
2927 spa->spa_last_open_failed = error;
2928 if (locked)
2929 mutex_exit(&spa_namespace_lock);
2930 *spapp = NULL;
2931 return (error);
2932 }
2933 }
2934
2935 spa_open_ref(spa, tag);
2936
2937 if (config != NULL)
2938 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2939
2940 /*
2941 * If we've recovered the pool, pass back any information we
2942 * gathered while doing the load.
2943 */
2944 if (state == SPA_LOAD_RECOVER) {
2945 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2946 spa->spa_load_info) == 0);
2947 }
2948
2949 if (locked) {
2950 spa->spa_last_open_failed = 0;
2951 spa->spa_last_ubsync_txg = 0;
2952 spa->spa_load_txg = 0;
2953 mutex_exit(&spa_namespace_lock);
2954 }
2955
2956 *spapp = spa;
2957
2958 return (0);
2959 }
2960
2961 int
2962 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2963 nvlist_t **config)
2964 {
2965 return (spa_open_common(name, spapp, tag, policy, config));
2966 }
2967
2968 int
2969 spa_open(const char *name, spa_t **spapp, void *tag)
2970 {
2971 return (spa_open_common(name, spapp, tag, NULL, NULL));
2972 }
2973
2974 /*
2975 * Lookup the given spa_t, incrementing the inject count in the process,
2976 * preventing it from being exported or destroyed.
2977 */
2978 spa_t *
2979 spa_inject_addref(char *name)
2980 {
2981 spa_t *spa;
2982
2983 mutex_enter(&spa_namespace_lock);
2984 if ((spa = spa_lookup(name)) == NULL) {
2985 mutex_exit(&spa_namespace_lock);
2986 return (NULL);
2987 }
2988 spa->spa_inject_ref++;
2989 mutex_exit(&spa_namespace_lock);
2990
2991 return (spa);
2992 }
2993
2994 void
2995 spa_inject_delref(spa_t *spa)
2996 {
2997 mutex_enter(&spa_namespace_lock);
2998 spa->spa_inject_ref--;
2999 mutex_exit(&spa_namespace_lock);
3000 }
3001
3002 /*
3003 * Add spares device information to the nvlist.
3004 */
3005 static void
3006 spa_add_spares(spa_t *spa, nvlist_t *config)
3007 {
3008 nvlist_t **spares;
3009 uint_t i, nspares;
3010 nvlist_t *nvroot;
3011 uint64_t guid;
3012 vdev_stat_t *vs;
3013 uint_t vsc;
3014 uint64_t pool;
3015
3016 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3017
3018 if (spa->spa_spares.sav_count == 0)
3019 return;
3020
3021 VERIFY(nvlist_lookup_nvlist(config,
3022 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3023 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3024 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3025 if (nspares != 0) {
3026 VERIFY(nvlist_add_nvlist_array(nvroot,
3027 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3028 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3029 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3030
3031 /*
3032 * Go through and find any spares which have since been
3033 * repurposed as an active spare. If this is the case, update
3034 * their status appropriately.
3035 */
3036 for (i = 0; i < nspares; i++) {
3037 VERIFY(nvlist_lookup_uint64(spares[i],
3038 ZPOOL_CONFIG_GUID, &guid) == 0);
3039 if (spa_spare_exists(guid, &pool, NULL) &&
3040 pool != 0ULL) {
3041 VERIFY(nvlist_lookup_uint64_array(
3042 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3043 (uint64_t **)&vs, &vsc) == 0);
3044 vs->vs_state = VDEV_STATE_CANT_OPEN;
3045 vs->vs_aux = VDEV_AUX_SPARED;
3046 }
3047 }
3048 }
3049 }
3050
3051 /*
3052 * Add l2cache device information to the nvlist, including vdev stats.
3053 */
3054 static void
3055 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3056 {
3057 nvlist_t **l2cache;
3058 uint_t i, j, nl2cache;
3059 nvlist_t *nvroot;
3060 uint64_t guid;
3061 vdev_t *vd;
3062 vdev_stat_t *vs;
3063 uint_t vsc;
3064
3065 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3066
3067 if (spa->spa_l2cache.sav_count == 0)
3068 return;
3069
3070 VERIFY(nvlist_lookup_nvlist(config,
3071 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3072 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3073 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3074 if (nl2cache != 0) {
3075 VERIFY(nvlist_add_nvlist_array(nvroot,
3076 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3077 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3078 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3079
3080 /*
3081 * Update level 2 cache device stats.
3082 */
3083
3084 for (i = 0; i < nl2cache; i++) {
3085 VERIFY(nvlist_lookup_uint64(l2cache[i],
3086 ZPOOL_CONFIG_GUID, &guid) == 0);
3087
3088 vd = NULL;
3089 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3090 if (guid ==
3091 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3092 vd = spa->spa_l2cache.sav_vdevs[j];
3093 break;
3094 }
3095 }
3096 ASSERT(vd != NULL);
3097
3098 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3099 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3100 == 0);
3101 vdev_get_stats(vd, vs);
3102 }
3103 }
3104 }
3105
3106 static void
3107 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3108 {
3109 nvlist_t *features;
3110 zap_cursor_t zc;
3111 zap_attribute_t za;
3112
3113 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3114 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3115
3116 if (spa->spa_feat_for_read_obj != 0) {
3117 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3118 spa->spa_feat_for_read_obj);
3119 zap_cursor_retrieve(&zc, &za) == 0;
3120 zap_cursor_advance(&zc)) {
3121 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3122 za.za_num_integers == 1);
3123 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3124 za.za_first_integer));
3125 }
3126 zap_cursor_fini(&zc);
3127 }
3128
3129 if (spa->spa_feat_for_write_obj != 0) {
3130 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3131 spa->spa_feat_for_write_obj);
3132 zap_cursor_retrieve(&zc, &za) == 0;
3133 zap_cursor_advance(&zc)) {
3134 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3135 za.za_num_integers == 1);
3136 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3137 za.za_first_integer));
3138 }
3139 zap_cursor_fini(&zc);
3140 }
3141
3142 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3143 features) == 0);
3144 nvlist_free(features);
3145 }
3146
3147 int
3148 spa_get_stats(const char *name, nvlist_t **config,
3149 char *altroot, size_t buflen)
3150 {
3151 int error;
3152 spa_t *spa;
3153
3154 *config = NULL;
3155 error = spa_open_common(name, &spa, FTAG, NULL, config);
3156
3157 if (spa != NULL) {
3158 /*
3159 * This still leaves a window of inconsistency where the spares
3160 * or l2cache devices could change and the config would be
3161 * self-inconsistent.
3162 */
3163 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3164
3165 if (*config != NULL) {
3166 uint64_t loadtimes[2];
3167
3168 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3169 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3170 VERIFY(nvlist_add_uint64_array(*config,
3171 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3172
3173 VERIFY(nvlist_add_uint64(*config,
3174 ZPOOL_CONFIG_ERRCOUNT,
3175 spa_get_errlog_size(spa)) == 0);
3176
3177 if (spa_suspended(spa))
3178 VERIFY(nvlist_add_uint64(*config,
3179 ZPOOL_CONFIG_SUSPENDED,
3180 spa->spa_failmode) == 0);
3181
3182 spa_add_spares(spa, *config);
3183 spa_add_l2cache(spa, *config);
3184 spa_add_feature_stats(spa, *config);
3185 }
3186 }
3187
3188 /*
3189 * We want to get the alternate root even for faulted pools, so we cheat
3190 * and call spa_lookup() directly.
3191 */
3192 if (altroot) {
3193 if (spa == NULL) {
3194 mutex_enter(&spa_namespace_lock);
3195 spa = spa_lookup(name);
3196 if (spa)
3197 spa_altroot(spa, altroot, buflen);
3198 else
3199 altroot[0] = '\0';
3200 spa = NULL;
3201 mutex_exit(&spa_namespace_lock);
3202 } else {
3203 spa_altroot(spa, altroot, buflen);
3204 }
3205 }
3206
3207 if (spa != NULL) {
3208 spa_config_exit(spa, SCL_CONFIG, FTAG);
3209 spa_close(spa, FTAG);
3210 }
3211
3212 return (error);
3213 }
3214
3215 /*
3216 * Validate that the auxiliary device array is well formed. We must have an
3217 * array of nvlists, each which describes a valid leaf vdev. If this is an
3218 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3219 * specified, as long as they are well-formed.
3220 */
3221 static int
3222 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3223 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3224 vdev_labeltype_t label)
3225 {
3226 nvlist_t **dev;
3227 uint_t i, ndev;
3228 vdev_t *vd;
3229 int error;
3230
3231 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3232
3233 /*
3234 * It's acceptable to have no devs specified.
3235 */
3236 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3237 return (0);
3238
3239 if (ndev == 0)
3240 return (EINVAL);
3241
3242 /*
3243 * Make sure the pool is formatted with a version that supports this
3244 * device type.
3245 */
3246 if (spa_version(spa) < version)
3247 return (ENOTSUP);
3248
3249 /*
3250 * Set the pending device list so we correctly handle device in-use
3251 * checking.
3252 */
3253 sav->sav_pending = dev;
3254 sav->sav_npending = ndev;
3255
3256 for (i = 0; i < ndev; i++) {
3257 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3258 mode)) != 0)
3259 goto out;
3260
3261 if (!vd->vdev_ops->vdev_op_leaf) {
3262 vdev_free(vd);
3263 error = EINVAL;
3264 goto out;
3265 }
3266
3267 /*
3268 * The L2ARC currently only supports disk devices in
3269 * kernel context. For user-level testing, we allow it.
3270 */
3271 #ifdef _KERNEL
3272 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3273 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3274 error = ENOTBLK;
3275 vdev_free(vd);
3276 goto out;
3277 }
3278 #endif
3279 vd->vdev_top = vd;
3280
3281 if ((error = vdev_open(vd)) == 0 &&
3282 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3283 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3284 vd->vdev_guid) == 0);
3285 }
3286
3287 vdev_free(vd);
3288
3289 if (error &&
3290 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3291 goto out;
3292 else
3293 error = 0;
3294 }
3295
3296 out:
3297 sav->sav_pending = NULL;
3298 sav->sav_npending = 0;
3299 return (error);
3300 }
3301
3302 static int
3303 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3304 {
3305 int error;
3306
3307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3308
3309 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3310 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3311 VDEV_LABEL_SPARE)) != 0) {
3312 return (error);
3313 }
3314
3315 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3316 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3317 VDEV_LABEL_L2CACHE));
3318 }
3319
3320 static void
3321 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3322 const char *config)
3323 {
3324 int i;
3325
3326 if (sav->sav_config != NULL) {
3327 nvlist_t **olddevs;
3328 uint_t oldndevs;
3329 nvlist_t **newdevs;
3330
3331 /*
3332 * Generate new dev list by concatentating with the
3333 * current dev list.
3334 */
3335 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3336 &olddevs, &oldndevs) == 0);
3337
3338 newdevs = kmem_alloc(sizeof (void *) *
3339 (ndevs + oldndevs), KM_PUSHPAGE);
3340 for (i = 0; i < oldndevs; i++)
3341 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3342 KM_PUSHPAGE) == 0);
3343 for (i = 0; i < ndevs; i++)
3344 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3345 KM_PUSHPAGE) == 0);
3346
3347 VERIFY(nvlist_remove(sav->sav_config, config,
3348 DATA_TYPE_NVLIST_ARRAY) == 0);
3349
3350 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3351 config, newdevs, ndevs + oldndevs) == 0);
3352 for (i = 0; i < oldndevs + ndevs; i++)
3353 nvlist_free(newdevs[i]);
3354 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3355 } else {
3356 /*
3357 * Generate a new dev list.
3358 */
3359 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3360 KM_PUSHPAGE) == 0);
3361 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3362 devs, ndevs) == 0);
3363 }
3364 }
3365
3366 /*
3367 * Stop and drop level 2 ARC devices
3368 */
3369 void
3370 spa_l2cache_drop(spa_t *spa)
3371 {
3372 vdev_t *vd;
3373 int i;
3374 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3375
3376 for (i = 0; i < sav->sav_count; i++) {
3377 uint64_t pool;
3378
3379 vd = sav->sav_vdevs[i];
3380 ASSERT(vd != NULL);
3381
3382 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3383 pool != 0ULL && l2arc_vdev_present(vd))
3384 l2arc_remove_vdev(vd);
3385 }
3386 }
3387
3388 /*
3389 * Pool Creation
3390 */
3391 int
3392 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3393 const char *history_str, nvlist_t *zplprops)
3394 {
3395 spa_t *spa;
3396 char *altroot = NULL;
3397 vdev_t *rvd;
3398 dsl_pool_t *dp;
3399 dmu_tx_t *tx;
3400 int error = 0;
3401 uint64_t txg = TXG_INITIAL;
3402 nvlist_t **spares, **l2cache;
3403 uint_t nspares, nl2cache;
3404 uint64_t version, obj;
3405 boolean_t has_features;
3406 nvpair_t *elem;
3407 int c;
3408
3409 /*
3410 * If this pool already exists, return failure.
3411 */
3412 mutex_enter(&spa_namespace_lock);
3413 if (spa_lookup(pool) != NULL) {
3414 mutex_exit(&spa_namespace_lock);
3415 return (EEXIST);
3416 }
3417
3418 /*
3419 * Allocate a new spa_t structure.
3420 */
3421 (void) nvlist_lookup_string(props,
3422 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3423 spa = spa_add(pool, NULL, altroot);
3424 spa_activate(spa, spa_mode_global);
3425
3426 if (props && (error = spa_prop_validate(spa, props))) {
3427 spa_deactivate(spa);
3428 spa_remove(spa);
3429 mutex_exit(&spa_namespace_lock);
3430 return (error);
3431 }
3432
3433 has_features = B_FALSE;
3434 for (elem = nvlist_next_nvpair(props, NULL);
3435 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3436 if (zpool_prop_feature(nvpair_name(elem)))
3437 has_features = B_TRUE;
3438 }
3439
3440 if (has_features || nvlist_lookup_uint64(props,
3441 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3442 version = SPA_VERSION;
3443 }
3444 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3445
3446 spa->spa_first_txg = txg;
3447 spa->spa_uberblock.ub_txg = txg - 1;
3448 spa->spa_uberblock.ub_version = version;
3449 spa->spa_ubsync = spa->spa_uberblock;
3450
3451 /*
3452 * Create "The Godfather" zio to hold all async IOs
3453 */
3454 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3455 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3456
3457 /*
3458 * Create the root vdev.
3459 */
3460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3461
3462 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3463
3464 ASSERT(error != 0 || rvd != NULL);
3465 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3466
3467 if (error == 0 && !zfs_allocatable_devs(nvroot))
3468 error = EINVAL;
3469
3470 if (error == 0 &&
3471 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3472 (error = spa_validate_aux(spa, nvroot, txg,
3473 VDEV_ALLOC_ADD)) == 0) {
3474 for (c = 0; c < rvd->vdev_children; c++) {
3475 vdev_metaslab_set_size(rvd->vdev_child[c]);
3476 vdev_expand(rvd->vdev_child[c], txg);
3477 }
3478 }
3479
3480 spa_config_exit(spa, SCL_ALL, FTAG);
3481
3482 if (error != 0) {
3483 spa_unload(spa);
3484 spa_deactivate(spa);
3485 spa_remove(spa);
3486 mutex_exit(&spa_namespace_lock);
3487 return (error);
3488 }
3489
3490 /*
3491 * Get the list of spares, if specified.
3492 */
3493 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3494 &spares, &nspares) == 0) {
3495 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3496 KM_PUSHPAGE) == 0);
3497 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3498 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3499 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3500 spa_load_spares(spa);
3501 spa_config_exit(spa, SCL_ALL, FTAG);
3502 spa->spa_spares.sav_sync = B_TRUE;
3503 }
3504
3505 /*
3506 * Get the list of level 2 cache devices, if specified.
3507 */
3508 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3509 &l2cache, &nl2cache) == 0) {
3510 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3511 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3512 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3513 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3515 spa_load_l2cache(spa);
3516 spa_config_exit(spa, SCL_ALL, FTAG);
3517 spa->spa_l2cache.sav_sync = B_TRUE;
3518 }
3519
3520 spa->spa_is_initializing = B_TRUE;
3521 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3522 spa->spa_meta_objset = dp->dp_meta_objset;
3523 spa->spa_is_initializing = B_FALSE;
3524
3525 /*
3526 * Create DDTs (dedup tables).
3527 */
3528 ddt_create(spa);
3529
3530 spa_update_dspace(spa);
3531
3532 tx = dmu_tx_create_assigned(dp, txg);
3533
3534 /*
3535 * Create the pool config object.
3536 */
3537 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3538 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3539 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3540
3541 if (zap_add(spa->spa_meta_objset,
3542 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3543 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3544 cmn_err(CE_PANIC, "failed to add pool config");
3545 }
3546
3547 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3548 spa_feature_create_zap_objects(spa, tx);
3549
3550 if (zap_add(spa->spa_meta_objset,
3551 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3552 sizeof (uint64_t), 1, &version, tx) != 0) {
3553 cmn_err(CE_PANIC, "failed to add pool version");
3554 }
3555
3556 /* Newly created pools with the right version are always deflated. */
3557 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3558 spa->spa_deflate = TRUE;
3559 if (zap_add(spa->spa_meta_objset,
3560 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3561 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3562 cmn_err(CE_PANIC, "failed to add deflate");
3563 }
3564 }
3565
3566 /*
3567 * Create the deferred-free bpobj. Turn off compression
3568 * because sync-to-convergence takes longer if the blocksize
3569 * keeps changing.
3570 */
3571 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3572 dmu_object_set_compress(spa->spa_meta_objset, obj,
3573 ZIO_COMPRESS_OFF, tx);
3574 if (zap_add(spa->spa_meta_objset,
3575 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3576 sizeof (uint64_t), 1, &obj, tx) != 0) {
3577 cmn_err(CE_PANIC, "failed to add bpobj");
3578 }
3579 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3580 spa->spa_meta_objset, obj));
3581
3582 /*
3583 * Create the pool's history object.
3584 */
3585 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3586 spa_history_create_obj(spa, tx);
3587
3588 /*
3589 * Set pool properties.
3590 */
3591 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3592 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3593 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3594 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3595
3596 if (props != NULL) {
3597 spa_configfile_set(spa, props, B_FALSE);
3598 spa_sync_props(spa, props, tx);
3599 }
3600
3601 dmu_tx_commit(tx);
3602
3603 spa->spa_sync_on = B_TRUE;
3604 txg_sync_start(spa->spa_dsl_pool);
3605
3606 /*
3607 * We explicitly wait for the first transaction to complete so that our
3608 * bean counters are appropriately updated.
3609 */
3610 txg_wait_synced(spa->spa_dsl_pool, txg);
3611
3612 spa_config_sync(spa, B_FALSE, B_TRUE);
3613
3614 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3615 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3616 spa_history_log_version(spa, LOG_POOL_CREATE);
3617
3618 spa->spa_minref = refcount_count(&spa->spa_refcount);
3619
3620 mutex_exit(&spa_namespace_lock);
3621
3622 return (0);
3623 }
3624
3625 #ifdef _KERNEL
3626 /*
3627 * Get the root pool information from the root disk, then import the root pool
3628 * during the system boot up time.
3629 */
3630 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3631
3632 static nvlist_t *
3633 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3634 {
3635 nvlist_t *config;
3636 nvlist_t *nvtop, *nvroot;
3637 uint64_t pgid;
3638
3639 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3640 return (NULL);
3641
3642 /*
3643 * Add this top-level vdev to the child array.
3644 */
3645 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3646 &nvtop) == 0);
3647 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3648 &pgid) == 0);
3649 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3650
3651 /*
3652 * Put this pool's top-level vdevs into a root vdev.
3653 */
3654 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3655 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3656 VDEV_TYPE_ROOT) == 0);
3657 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3658 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3659 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3660 &nvtop, 1) == 0);
3661
3662 /*
3663 * Replace the existing vdev_tree with the new root vdev in
3664 * this pool's configuration (remove the old, add the new).
3665 */
3666 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3667 nvlist_free(nvroot);
3668 return (config);
3669 }
3670
3671 /*
3672 * Walk the vdev tree and see if we can find a device with "better"
3673 * configuration. A configuration is "better" if the label on that
3674 * device has a more recent txg.
3675 */
3676 static void
3677 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3678 {
3679 int c;
3680
3681 for (c = 0; c < vd->vdev_children; c++)
3682 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3683
3684 if (vd->vdev_ops->vdev_op_leaf) {
3685 nvlist_t *label;
3686 uint64_t label_txg;
3687
3688 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3689 &label) != 0)
3690 return;
3691
3692 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3693 &label_txg) == 0);
3694
3695 /*
3696 * Do we have a better boot device?
3697 */
3698 if (label_txg > *txg) {
3699 *txg = label_txg;
3700 *avd = vd;
3701 }
3702 nvlist_free(label);
3703 }
3704 }
3705
3706 /*
3707 * Import a root pool.
3708 *
3709 * For x86. devpath_list will consist of devid and/or physpath name of
3710 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3711 * The GRUB "findroot" command will return the vdev we should boot.
3712 *
3713 * For Sparc, devpath_list consists the physpath name of the booting device
3714 * no matter the rootpool is a single device pool or a mirrored pool.
3715 * e.g.
3716 * "/pci@1f,0/ide@d/disk@0,0:a"
3717 */
3718 int
3719 spa_import_rootpool(char *devpath, char *devid)
3720 {
3721 spa_t *spa;
3722 vdev_t *rvd, *bvd, *avd = NULL;
3723 nvlist_t *config, *nvtop;
3724 uint64_t guid, txg;
3725 char *pname;
3726 int error;
3727
3728 /*
3729 * Read the label from the boot device and generate a configuration.
3730 */
3731 config = spa_generate_rootconf(devpath, devid, &guid);
3732 #if defined(_OBP) && defined(_KERNEL)
3733 if (config == NULL) {
3734 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3735 /* iscsi boot */
3736 get_iscsi_bootpath_phy(devpath);
3737 config = spa_generate_rootconf(devpath, devid, &guid);
3738 }
3739 }
3740 #endif
3741 if (config == NULL) {
3742 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3743 devpath);
3744 return (EIO);
3745 }
3746
3747 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3748 &pname) == 0);
3749 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3750
3751 mutex_enter(&spa_namespace_lock);
3752 if ((spa = spa_lookup(pname)) != NULL) {
3753 /*
3754 * Remove the existing root pool from the namespace so that we
3755 * can replace it with the correct config we just read in.
3756 */
3757 spa_remove(spa);
3758 }
3759
3760 spa = spa_add(pname, config, NULL);
3761 spa->spa_is_root = B_TRUE;
3762 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3763
3764 /*
3765 * Build up a vdev tree based on the boot device's label config.
3766 */
3767 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3768 &nvtop) == 0);
3769 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3770 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3771 VDEV_ALLOC_ROOTPOOL);
3772 spa_config_exit(spa, SCL_ALL, FTAG);
3773 if (error) {
3774 mutex_exit(&spa_namespace_lock);
3775 nvlist_free(config);
3776 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3777 pname);
3778 return (error);
3779 }
3780
3781 /*
3782 * Get the boot vdev.
3783 */
3784 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3785 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3786 (u_longlong_t)guid);
3787 error = ENOENT;
3788 goto out;
3789 }
3790
3791 /*
3792 * Determine if there is a better boot device.
3793 */
3794 avd = bvd;
3795 spa_alt_rootvdev(rvd, &avd, &txg);
3796 if (avd != bvd) {
3797 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3798 "try booting from '%s'", avd->vdev_path);
3799 error = EINVAL;
3800 goto out;
3801 }
3802
3803 /*
3804 * If the boot device is part of a spare vdev then ensure that
3805 * we're booting off the active spare.
3806 */
3807 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3808 !bvd->vdev_isspare) {
3809 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3810 "try booting from '%s'",
3811 bvd->vdev_parent->
3812 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3813 error = EINVAL;
3814 goto out;
3815 }
3816
3817 error = 0;
3818 spa_history_log_version(spa, LOG_POOL_IMPORT);
3819 out:
3820 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3821 vdev_free(rvd);
3822 spa_config_exit(spa, SCL_ALL, FTAG);
3823 mutex_exit(&spa_namespace_lock);
3824
3825 nvlist_free(config);
3826 return (error);
3827 }
3828
3829 #endif
3830
3831 /*
3832 * Import a non-root pool into the system.
3833 */
3834 int
3835 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3836 {
3837 spa_t *spa;
3838 char *altroot = NULL;
3839 spa_load_state_t state = SPA_LOAD_IMPORT;
3840 zpool_rewind_policy_t policy;
3841 uint64_t mode = spa_mode_global;
3842 uint64_t readonly = B_FALSE;
3843 int error;
3844 nvlist_t *nvroot;
3845 nvlist_t **spares, **l2cache;
3846 uint_t nspares, nl2cache;
3847
3848 /*
3849 * If a pool with this name exists, return failure.
3850 */
3851 mutex_enter(&spa_namespace_lock);
3852 if (spa_lookup(pool) != NULL) {
3853 mutex_exit(&spa_namespace_lock);
3854 return (EEXIST);
3855 }
3856
3857 /*
3858 * Create and initialize the spa structure.
3859 */
3860 (void) nvlist_lookup_string(props,
3861 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3862 (void) nvlist_lookup_uint64(props,
3863 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3864 if (readonly)
3865 mode = FREAD;
3866 spa = spa_add(pool, config, altroot);
3867 spa->spa_import_flags = flags;
3868
3869 /*
3870 * Verbatim import - Take a pool and insert it into the namespace
3871 * as if it had been loaded at boot.
3872 */
3873 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3874 if (props != NULL)
3875 spa_configfile_set(spa, props, B_FALSE);
3876
3877 spa_config_sync(spa, B_FALSE, B_TRUE);
3878
3879 mutex_exit(&spa_namespace_lock);
3880 spa_history_log_version(spa, LOG_POOL_IMPORT);
3881
3882 return (0);
3883 }
3884
3885 spa_activate(spa, mode);
3886
3887 /*
3888 * Don't start async tasks until we know everything is healthy.
3889 */
3890 spa_async_suspend(spa);
3891
3892 zpool_get_rewind_policy(config, &policy);
3893 if (policy.zrp_request & ZPOOL_DO_REWIND)
3894 state = SPA_LOAD_RECOVER;
3895
3896 /*
3897 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3898 * because the user-supplied config is actually the one to trust when
3899 * doing an import.
3900 */
3901 if (state != SPA_LOAD_RECOVER)
3902 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3903
3904 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3905 policy.zrp_request);
3906
3907 /*
3908 * Propagate anything learned while loading the pool and pass it
3909 * back to caller (i.e. rewind info, missing devices, etc).
3910 */
3911 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3912 spa->spa_load_info) == 0);
3913
3914 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3915 /*
3916 * Toss any existing sparelist, as it doesn't have any validity
3917 * anymore, and conflicts with spa_has_spare().
3918 */
3919 if (spa->spa_spares.sav_config) {
3920 nvlist_free(spa->spa_spares.sav_config);
3921 spa->spa_spares.sav_config = NULL;
3922 spa_load_spares(spa);
3923 }
3924 if (spa->spa_l2cache.sav_config) {
3925 nvlist_free(spa->spa_l2cache.sav_config);
3926 spa->spa_l2cache.sav_config = NULL;
3927 spa_load_l2cache(spa);
3928 }
3929
3930 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3931 &nvroot) == 0);
3932 if (error == 0)
3933 error = spa_validate_aux(spa, nvroot, -1ULL,
3934 VDEV_ALLOC_SPARE);
3935 if (error == 0)
3936 error = spa_validate_aux(spa, nvroot, -1ULL,
3937 VDEV_ALLOC_L2CACHE);
3938 spa_config_exit(spa, SCL_ALL, FTAG);
3939
3940 if (props != NULL)
3941 spa_configfile_set(spa, props, B_FALSE);
3942
3943 if (error != 0 || (props && spa_writeable(spa) &&
3944 (error = spa_prop_set(spa, props)))) {
3945 spa_unload(spa);
3946 spa_deactivate(spa);
3947 spa_remove(spa);
3948 mutex_exit(&spa_namespace_lock);
3949 return (error);
3950 }
3951
3952 spa_async_resume(spa);
3953
3954 /*
3955 * Override any spares and level 2 cache devices as specified by
3956 * the user, as these may have correct device names/devids, etc.
3957 */
3958 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3959 &spares, &nspares) == 0) {
3960 if (spa->spa_spares.sav_config)
3961 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3962 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3963 else
3964 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3965 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3966 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3967 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3969 spa_load_spares(spa);
3970 spa_config_exit(spa, SCL_ALL, FTAG);
3971 spa->spa_spares.sav_sync = B_TRUE;
3972 }
3973 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3974 &l2cache, &nl2cache) == 0) {
3975 if (spa->spa_l2cache.sav_config)
3976 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3977 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3978 else
3979 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3980 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3981 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3982 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3983 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3984 spa_load_l2cache(spa);
3985 spa_config_exit(spa, SCL_ALL, FTAG);
3986 spa->spa_l2cache.sav_sync = B_TRUE;
3987 }
3988
3989 /*
3990 * Check for any removed devices.
3991 */
3992 if (spa->spa_autoreplace) {
3993 spa_aux_check_removed(&spa->spa_spares);
3994 spa_aux_check_removed(&spa->spa_l2cache);
3995 }
3996
3997 if (spa_writeable(spa)) {
3998 /*
3999 * Update the config cache to include the newly-imported pool.
4000 */
4001 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4002 }
4003
4004 /*
4005 * It's possible that the pool was expanded while it was exported.
4006 * We kick off an async task to handle this for us.
4007 */
4008 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4009
4010 mutex_exit(&spa_namespace_lock);
4011 spa_history_log_version(spa, LOG_POOL_IMPORT);
4012
4013 return (0);
4014 }
4015
4016 nvlist_t *
4017 spa_tryimport(nvlist_t *tryconfig)
4018 {
4019 nvlist_t *config = NULL;
4020 char *poolname;
4021 spa_t *spa;
4022 uint64_t state;
4023 int error;
4024
4025 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4026 return (NULL);
4027
4028 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4029 return (NULL);
4030
4031 /*
4032 * Create and initialize the spa structure.
4033 */
4034 mutex_enter(&spa_namespace_lock);
4035 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4036 spa_activate(spa, FREAD);
4037
4038 /*
4039 * Pass off the heavy lifting to spa_load().
4040 * Pass TRUE for mosconfig because the user-supplied config
4041 * is actually the one to trust when doing an import.
4042 */
4043 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4044
4045 /*
4046 * If 'tryconfig' was at least parsable, return the current config.
4047 */
4048 if (spa->spa_root_vdev != NULL) {
4049 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4050 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4051 poolname) == 0);
4052 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4053 state) == 0);
4054 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4055 spa->spa_uberblock.ub_timestamp) == 0);
4056 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4057 spa->spa_load_info) == 0);
4058
4059 /*
4060 * If the bootfs property exists on this pool then we
4061 * copy it out so that external consumers can tell which
4062 * pools are bootable.
4063 */
4064 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4065 char *tmpname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
4066
4067 /*
4068 * We have to play games with the name since the
4069 * pool was opened as TRYIMPORT_NAME.
4070 */
4071 if (dsl_dsobj_to_dsname(spa_name(spa),
4072 spa->spa_bootfs, tmpname) == 0) {
4073 char *cp;
4074 char *dsname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
4075
4076 cp = strchr(tmpname, '/');
4077 if (cp == NULL) {
4078 (void) strlcpy(dsname, tmpname,
4079 MAXPATHLEN);
4080 } else {
4081 (void) snprintf(dsname, MAXPATHLEN,
4082 "%s/%s", poolname, ++cp);
4083 }
4084 VERIFY(nvlist_add_string(config,
4085 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4086 kmem_free(dsname, MAXPATHLEN);
4087 }
4088 kmem_free(tmpname, MAXPATHLEN);
4089 }
4090
4091 /*
4092 * Add the list of hot spares and level 2 cache devices.
4093 */
4094 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4095 spa_add_spares(spa, config);
4096 spa_add_l2cache(spa, config);
4097 spa_config_exit(spa, SCL_CONFIG, FTAG);
4098 }
4099
4100 spa_unload(spa);
4101 spa_deactivate(spa);
4102 spa_remove(spa);
4103 mutex_exit(&spa_namespace_lock);
4104
4105 return (config);
4106 }
4107
4108 /*
4109 * Pool export/destroy
4110 *
4111 * The act of destroying or exporting a pool is very simple. We make sure there
4112 * is no more pending I/O and any references to the pool are gone. Then, we
4113 * update the pool state and sync all the labels to disk, removing the
4114 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4115 * we don't sync the labels or remove the configuration cache.
4116 */
4117 static int
4118 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4119 boolean_t force, boolean_t hardforce)
4120 {
4121 spa_t *spa;
4122
4123 if (oldconfig)
4124 *oldconfig = NULL;
4125
4126 if (!(spa_mode_global & FWRITE))
4127 return (EROFS);
4128
4129 mutex_enter(&spa_namespace_lock);
4130 if ((spa = spa_lookup(pool)) == NULL) {
4131 mutex_exit(&spa_namespace_lock);
4132 return (ENOENT);
4133 }
4134
4135 /*
4136 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4137 * reacquire the namespace lock, and see if we can export.
4138 */
4139 spa_open_ref(spa, FTAG);
4140 mutex_exit(&spa_namespace_lock);
4141 spa_async_suspend(spa);
4142 mutex_enter(&spa_namespace_lock);
4143 spa_close(spa, FTAG);
4144
4145 /*
4146 * The pool will be in core if it's openable,
4147 * in which case we can modify its state.
4148 */
4149 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4150 /*
4151 * Objsets may be open only because they're dirty, so we
4152 * have to force it to sync before checking spa_refcnt.
4153 */
4154 txg_wait_synced(spa->spa_dsl_pool, 0);
4155
4156 /*
4157 * A pool cannot be exported or destroyed if there are active
4158 * references. If we are resetting a pool, allow references by
4159 * fault injection handlers.
4160 */
4161 if (!spa_refcount_zero(spa) ||
4162 (spa->spa_inject_ref != 0 &&
4163 new_state != POOL_STATE_UNINITIALIZED)) {
4164 spa_async_resume(spa);
4165 mutex_exit(&spa_namespace_lock);
4166 return (EBUSY);
4167 }
4168
4169 /*
4170 * A pool cannot be exported if it has an active shared spare.
4171 * This is to prevent other pools stealing the active spare
4172 * from an exported pool. At user's own will, such pool can
4173 * be forcedly exported.
4174 */
4175 if (!force && new_state == POOL_STATE_EXPORTED &&
4176 spa_has_active_shared_spare(spa)) {
4177 spa_async_resume(spa);
4178 mutex_exit(&spa_namespace_lock);
4179 return (EXDEV);
4180 }
4181
4182 /*
4183 * We want this to be reflected on every label,
4184 * so mark them all dirty. spa_unload() will do the
4185 * final sync that pushes these changes out.
4186 */
4187 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4188 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4189 spa->spa_state = new_state;
4190 spa->spa_final_txg = spa_last_synced_txg(spa) +
4191 TXG_DEFER_SIZE + 1;
4192 vdev_config_dirty(spa->spa_root_vdev);
4193 spa_config_exit(spa, SCL_ALL, FTAG);
4194 }
4195 }
4196
4197 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4198
4199 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4200 spa_unload(spa);
4201 spa_deactivate(spa);
4202 }
4203
4204 if (oldconfig && spa->spa_config)
4205 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4206
4207 if (new_state != POOL_STATE_UNINITIALIZED) {
4208 if (!hardforce)
4209 spa_config_sync(spa, B_TRUE, B_TRUE);
4210 spa_remove(spa);
4211 }
4212 mutex_exit(&spa_namespace_lock);
4213
4214 return (0);
4215 }
4216
4217 /*
4218 * Destroy a storage pool.
4219 */
4220 int
4221 spa_destroy(char *pool)
4222 {
4223 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4224 B_FALSE, B_FALSE));
4225 }
4226
4227 /*
4228 * Export a storage pool.
4229 */
4230 int
4231 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4232 boolean_t hardforce)
4233 {
4234 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4235 force, hardforce));
4236 }
4237
4238 /*
4239 * Similar to spa_export(), this unloads the spa_t without actually removing it
4240 * from the namespace in any way.
4241 */
4242 int
4243 spa_reset(char *pool)
4244 {
4245 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4246 B_FALSE, B_FALSE));
4247 }
4248
4249 /*
4250 * ==========================================================================
4251 * Device manipulation
4252 * ==========================================================================
4253 */
4254
4255 /*
4256 * Add a device to a storage pool.
4257 */
4258 int
4259 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4260 {
4261 uint64_t txg, id;
4262 int error;
4263 vdev_t *rvd = spa->spa_root_vdev;
4264 vdev_t *vd, *tvd;
4265 nvlist_t **spares, **l2cache;
4266 uint_t nspares, nl2cache;
4267 int c;
4268
4269 ASSERT(spa_writeable(spa));
4270
4271 txg = spa_vdev_enter(spa);
4272
4273 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4274 VDEV_ALLOC_ADD)) != 0)
4275 return (spa_vdev_exit(spa, NULL, txg, error));
4276
4277 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4278
4279 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4280 &nspares) != 0)
4281 nspares = 0;
4282
4283 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4284 &nl2cache) != 0)
4285 nl2cache = 0;
4286
4287 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4288 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4289
4290 if (vd->vdev_children != 0 &&
4291 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4292 return (spa_vdev_exit(spa, vd, txg, error));
4293
4294 /*
4295 * We must validate the spares and l2cache devices after checking the
4296 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4297 */
4298 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4299 return (spa_vdev_exit(spa, vd, txg, error));
4300
4301 /*
4302 * Transfer each new top-level vdev from vd to rvd.
4303 */
4304 for (c = 0; c < vd->vdev_children; c++) {
4305
4306 /*
4307 * Set the vdev id to the first hole, if one exists.
4308 */
4309 for (id = 0; id < rvd->vdev_children; id++) {
4310 if (rvd->vdev_child[id]->vdev_ishole) {
4311 vdev_free(rvd->vdev_child[id]);
4312 break;
4313 }
4314 }
4315 tvd = vd->vdev_child[c];
4316 vdev_remove_child(vd, tvd);
4317 tvd->vdev_id = id;
4318 vdev_add_child(rvd, tvd);
4319 vdev_config_dirty(tvd);
4320 }
4321
4322 if (nspares != 0) {
4323 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4324 ZPOOL_CONFIG_SPARES);
4325 spa_load_spares(spa);
4326 spa->spa_spares.sav_sync = B_TRUE;
4327 }
4328
4329 if (nl2cache != 0) {
4330 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4331 ZPOOL_CONFIG_L2CACHE);
4332 spa_load_l2cache(spa);
4333 spa->spa_l2cache.sav_sync = B_TRUE;
4334 }
4335
4336 /*
4337 * We have to be careful when adding new vdevs to an existing pool.
4338 * If other threads start allocating from these vdevs before we
4339 * sync the config cache, and we lose power, then upon reboot we may
4340 * fail to open the pool because there are DVAs that the config cache
4341 * can't translate. Therefore, we first add the vdevs without
4342 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4343 * and then let spa_config_update() initialize the new metaslabs.
4344 *
4345 * spa_load() checks for added-but-not-initialized vdevs, so that
4346 * if we lose power at any point in this sequence, the remaining
4347 * steps will be completed the next time we load the pool.
4348 */
4349 (void) spa_vdev_exit(spa, vd, txg, 0);
4350
4351 mutex_enter(&spa_namespace_lock);
4352 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4353 mutex_exit(&spa_namespace_lock);
4354
4355 return (0);
4356 }
4357
4358 /*
4359 * Attach a device to a mirror. The arguments are the path to any device
4360 * in the mirror, and the nvroot for the new device. If the path specifies
4361 * a device that is not mirrored, we automatically insert the mirror vdev.
4362 *
4363 * If 'replacing' is specified, the new device is intended to replace the
4364 * existing device; in this case the two devices are made into their own
4365 * mirror using the 'replacing' vdev, which is functionally identical to
4366 * the mirror vdev (it actually reuses all the same ops) but has a few
4367 * extra rules: you can't attach to it after it's been created, and upon
4368 * completion of resilvering, the first disk (the one being replaced)
4369 * is automatically detached.
4370 */
4371 int
4372 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4373 {
4374 uint64_t txg, dtl_max_txg;
4375 ASSERTV(vdev_t *rvd = spa->spa_root_vdev;)
4376 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4377 vdev_ops_t *pvops;
4378 char *oldvdpath, *newvdpath;
4379 int newvd_isspare;
4380 int error;
4381
4382 ASSERT(spa_writeable(spa));
4383
4384 txg = spa_vdev_enter(spa);
4385
4386 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4387
4388 if (oldvd == NULL)
4389 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4390
4391 if (!oldvd->vdev_ops->vdev_op_leaf)
4392 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4393
4394 pvd = oldvd->vdev_parent;
4395
4396 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4397 VDEV_ALLOC_ATTACH)) != 0)
4398 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4399
4400 if (newrootvd->vdev_children != 1)
4401 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4402
4403 newvd = newrootvd->vdev_child[0];
4404
4405 if (!newvd->vdev_ops->vdev_op_leaf)
4406 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4407
4408 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4409 return (spa_vdev_exit(spa, newrootvd, txg, error));
4410
4411 /*
4412 * Spares can't replace logs
4413 */
4414 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4415 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4416
4417 if (!replacing) {
4418 /*
4419 * For attach, the only allowable parent is a mirror or the root
4420 * vdev.
4421 */
4422 if (pvd->vdev_ops != &vdev_mirror_ops &&
4423 pvd->vdev_ops != &vdev_root_ops)
4424 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4425
4426 pvops = &vdev_mirror_ops;
4427 } else {
4428 /*
4429 * Active hot spares can only be replaced by inactive hot
4430 * spares.
4431 */
4432 if (pvd->vdev_ops == &vdev_spare_ops &&
4433 oldvd->vdev_isspare &&
4434 !spa_has_spare(spa, newvd->vdev_guid))
4435 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4436
4437 /*
4438 * If the source is a hot spare, and the parent isn't already a
4439 * spare, then we want to create a new hot spare. Otherwise, we
4440 * want to create a replacing vdev. The user is not allowed to
4441 * attach to a spared vdev child unless the 'isspare' state is
4442 * the same (spare replaces spare, non-spare replaces
4443 * non-spare).
4444 */
4445 if (pvd->vdev_ops == &vdev_replacing_ops &&
4446 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4447 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4448 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4449 newvd->vdev_isspare != oldvd->vdev_isspare) {
4450 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4451 }
4452
4453 if (newvd->vdev_isspare)
4454 pvops = &vdev_spare_ops;
4455 else
4456 pvops = &vdev_replacing_ops;
4457 }
4458
4459 /*
4460 * Make sure the new device is big enough.
4461 */
4462 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4463 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4464
4465 /*
4466 * The new device cannot have a higher alignment requirement
4467 * than the top-level vdev.
4468 */
4469 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4470 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4471
4472 /*
4473 * If this is an in-place replacement, update oldvd's path and devid
4474 * to make it distinguishable from newvd, and unopenable from now on.
4475 */
4476 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4477 spa_strfree(oldvd->vdev_path);
4478 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4479 KM_PUSHPAGE);
4480 (void) sprintf(oldvd->vdev_path, "%s/%s",
4481 newvd->vdev_path, "old");
4482 if (oldvd->vdev_devid != NULL) {
4483 spa_strfree(oldvd->vdev_devid);
4484 oldvd->vdev_devid = NULL;
4485 }
4486 }
4487
4488 /* mark the device being resilvered */
4489 newvd->vdev_resilvering = B_TRUE;
4490
4491 /*
4492 * If the parent is not a mirror, or if we're replacing, insert the new
4493 * mirror/replacing/spare vdev above oldvd.
4494 */
4495 if (pvd->vdev_ops != pvops)
4496 pvd = vdev_add_parent(oldvd, pvops);
4497
4498 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4499 ASSERT(pvd->vdev_ops == pvops);
4500 ASSERT(oldvd->vdev_parent == pvd);
4501
4502 /*
4503 * Extract the new device from its root and add it to pvd.
4504 */
4505 vdev_remove_child(newrootvd, newvd);
4506 newvd->vdev_id = pvd->vdev_children;
4507 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4508 vdev_add_child(pvd, newvd);
4509
4510 tvd = newvd->vdev_top;
4511 ASSERT(pvd->vdev_top == tvd);
4512 ASSERT(tvd->vdev_parent == rvd);
4513
4514 vdev_config_dirty(tvd);
4515
4516 /*
4517 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4518 * for any dmu_sync-ed blocks. It will propagate upward when
4519 * spa_vdev_exit() calls vdev_dtl_reassess().
4520 */
4521 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4522
4523 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4524 dtl_max_txg - TXG_INITIAL);
4525
4526 if (newvd->vdev_isspare) {
4527 spa_spare_activate(newvd);
4528 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4529 }
4530
4531 oldvdpath = spa_strdup(oldvd->vdev_path);
4532 newvdpath = spa_strdup(newvd->vdev_path);
4533 newvd_isspare = newvd->vdev_isspare;
4534
4535 /*
4536 * Mark newvd's DTL dirty in this txg.
4537 */
4538 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4539
4540 /*
4541 * Restart the resilver
4542 */
4543 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4544
4545 /*
4546 * Commit the config
4547 */
4548 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4549
4550 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4551 "%s vdev=%s %s vdev=%s",
4552 replacing && newvd_isspare ? "spare in" :
4553 replacing ? "replace" : "attach", newvdpath,
4554 replacing ? "for" : "to", oldvdpath);
4555
4556 spa_strfree(oldvdpath);
4557 spa_strfree(newvdpath);
4558
4559 if (spa->spa_bootfs)
4560 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4561
4562 return (0);
4563 }
4564
4565 /*
4566 * Detach a device from a mirror or replacing vdev.
4567 * If 'replace_done' is specified, only detach if the parent
4568 * is a replacing vdev.
4569 */
4570 int
4571 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4572 {
4573 uint64_t txg;
4574 int error;
4575 ASSERTV(vdev_t *rvd = spa->spa_root_vdev;)
4576 vdev_t *vd, *pvd, *cvd, *tvd;
4577 boolean_t unspare = B_FALSE;
4578 uint64_t unspare_guid = 0;
4579 char *vdpath;
4580 int c, t;
4581
4582 ASSERT(spa_writeable(spa));
4583
4584 txg = spa_vdev_enter(spa);
4585
4586 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4587
4588 if (vd == NULL)
4589 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4590
4591 if (!vd->vdev_ops->vdev_op_leaf)
4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4593
4594 pvd = vd->vdev_parent;
4595
4596 /*
4597 * If the parent/child relationship is not as expected, don't do it.
4598 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4599 * vdev that's replacing B with C. The user's intent in replacing
4600 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4601 * the replace by detaching C, the expected behavior is to end up
4602 * M(A,B). But suppose that right after deciding to detach C,
4603 * the replacement of B completes. We would have M(A,C), and then
4604 * ask to detach C, which would leave us with just A -- not what
4605 * the user wanted. To prevent this, we make sure that the
4606 * parent/child relationship hasn't changed -- in this example,
4607 * that C's parent is still the replacing vdev R.
4608 */
4609 if (pvd->vdev_guid != pguid && pguid != 0)
4610 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4611
4612 /*
4613 * Only 'replacing' or 'spare' vdevs can be replaced.
4614 */
4615 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4616 pvd->vdev_ops != &vdev_spare_ops)
4617 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4618
4619 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4620 spa_version(spa) >= SPA_VERSION_SPARES);
4621
4622 /*
4623 * Only mirror, replacing, and spare vdevs support detach.
4624 */
4625 if (pvd->vdev_ops != &vdev_replacing_ops &&
4626 pvd->vdev_ops != &vdev_mirror_ops &&
4627 pvd->vdev_ops != &vdev_spare_ops)
4628 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4629
4630 /*
4631 * If this device has the only valid copy of some data,
4632 * we cannot safely detach it.
4633 */
4634 if (vdev_dtl_required(vd))
4635 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4636
4637 ASSERT(pvd->vdev_children >= 2);
4638
4639 /*
4640 * If we are detaching the second disk from a replacing vdev, then
4641 * check to see if we changed the original vdev's path to have "/old"
4642 * at the end in spa_vdev_attach(). If so, undo that change now.
4643 */
4644 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4645 vd->vdev_path != NULL) {
4646 size_t len = strlen(vd->vdev_path);
4647
4648 for (c = 0; c < pvd->vdev_children; c++) {
4649 cvd = pvd->vdev_child[c];
4650
4651 if (cvd == vd || cvd->vdev_path == NULL)
4652 continue;
4653
4654 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4655 strcmp(cvd->vdev_path + len, "/old") == 0) {
4656 spa_strfree(cvd->vdev_path);
4657 cvd->vdev_path = spa_strdup(vd->vdev_path);
4658 break;
4659 }
4660 }
4661 }
4662
4663 /*
4664 * If we are detaching the original disk from a spare, then it implies
4665 * that the spare should become a real disk, and be removed from the
4666 * active spare list for the pool.
4667 */
4668 if (pvd->vdev_ops == &vdev_spare_ops &&
4669 vd->vdev_id == 0 &&
4670 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4671 unspare = B_TRUE;
4672
4673 /*
4674 * Erase the disk labels so the disk can be used for other things.
4675 * This must be done after all other error cases are handled,
4676 * but before we disembowel vd (so we can still do I/O to it).
4677 * But if we can't do it, don't treat the error as fatal --
4678 * it may be that the unwritability of the disk is the reason
4679 * it's being detached!
4680 */
4681 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4682
4683 /*
4684 * Remove vd from its parent and compact the parent's children.
4685 */
4686 vdev_remove_child(pvd, vd);
4687 vdev_compact_children(pvd);
4688
4689 /*
4690 * Remember one of the remaining children so we can get tvd below.
4691 */
4692 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4693
4694 /*
4695 * If we need to remove the remaining child from the list of hot spares,
4696 * do it now, marking the vdev as no longer a spare in the process.
4697 * We must do this before vdev_remove_parent(), because that can
4698 * change the GUID if it creates a new toplevel GUID. For a similar
4699 * reason, we must remove the spare now, in the same txg as the detach;
4700 * otherwise someone could attach a new sibling, change the GUID, and
4701 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4702 */
4703 if (unspare) {
4704 ASSERT(cvd->vdev_isspare);
4705 spa_spare_remove(cvd);
4706 unspare_guid = cvd->vdev_guid;
4707 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4708 cvd->vdev_unspare = B_TRUE;
4709 }
4710
4711 /*
4712 * If the parent mirror/replacing vdev only has one child,
4713 * the parent is no longer needed. Remove it from the tree.
4714 */
4715 if (pvd->vdev_children == 1) {
4716 if (pvd->vdev_ops == &vdev_spare_ops)
4717 cvd->vdev_unspare = B_FALSE;
4718 vdev_remove_parent(cvd);
4719 cvd->vdev_resilvering = B_FALSE;
4720 }
4721
4722
4723 /*
4724 * We don't set tvd until now because the parent we just removed
4725 * may have been the previous top-level vdev.
4726 */
4727 tvd = cvd->vdev_top;
4728 ASSERT(tvd->vdev_parent == rvd);
4729
4730 /*
4731 * Reevaluate the parent vdev state.
4732 */
4733 vdev_propagate_state(cvd);
4734
4735 /*
4736 * If the 'autoexpand' property is set on the pool then automatically
4737 * try to expand the size of the pool. For example if the device we
4738 * just detached was smaller than the others, it may be possible to
4739 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4740 * first so that we can obtain the updated sizes of the leaf vdevs.
4741 */
4742 if (spa->spa_autoexpand) {
4743 vdev_reopen(tvd);
4744 vdev_expand(tvd, txg);
4745 }
4746
4747 vdev_config_dirty(tvd);
4748
4749 /*
4750 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4751 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4752 * But first make sure we're not on any *other* txg's DTL list, to
4753 * prevent vd from being accessed after it's freed.
4754 */
4755 vdpath = spa_strdup(vd->vdev_path);
4756 for (t = 0; t < TXG_SIZE; t++)
4757 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4758 vd->vdev_detached = B_TRUE;
4759 vdev_dirty(tvd, VDD_DTL, vd, txg);
4760
4761 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4762
4763 /* hang on to the spa before we release the lock */
4764 spa_open_ref(spa, FTAG);
4765
4766 error = spa_vdev_exit(spa, vd, txg, 0);
4767
4768 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4769 "vdev=%s", vdpath);
4770 spa_strfree(vdpath);
4771
4772 /*
4773 * If this was the removal of the original device in a hot spare vdev,
4774 * then we want to go through and remove the device from the hot spare
4775 * list of every other pool.
4776 */
4777 if (unspare) {
4778 spa_t *altspa = NULL;
4779
4780 mutex_enter(&spa_namespace_lock);
4781 while ((altspa = spa_next(altspa)) != NULL) {
4782 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4783 altspa == spa)
4784 continue;
4785
4786 spa_open_ref(altspa, FTAG);
4787 mutex_exit(&spa_namespace_lock);
4788 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4789 mutex_enter(&spa_namespace_lock);
4790 spa_close(altspa, FTAG);
4791 }
4792 mutex_exit(&spa_namespace_lock);
4793
4794 /* search the rest of the vdevs for spares to remove */
4795 spa_vdev_resilver_done(spa);
4796 }
4797
4798 /* all done with the spa; OK to release */
4799 mutex_enter(&spa_namespace_lock);
4800 spa_close(spa, FTAG);
4801 mutex_exit(&spa_namespace_lock);
4802
4803 return (error);
4804 }
4805
4806 /*
4807 * Split a set of devices from their mirrors, and create a new pool from them.
4808 */
4809 int
4810 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4811 nvlist_t *props, boolean_t exp)
4812 {
4813 int error = 0;
4814 uint64_t txg, *glist;
4815 spa_t *newspa;
4816 uint_t c, children, lastlog;
4817 nvlist_t **child, *nvl, *tmp;
4818 dmu_tx_t *tx;
4819 char *altroot = NULL;
4820 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4821 boolean_t activate_slog;
4822
4823 ASSERT(spa_writeable(spa));
4824
4825 txg = spa_vdev_enter(spa);
4826
4827 /* clear the log and flush everything up to now */
4828 activate_slog = spa_passivate_log(spa);
4829 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4830 error = spa_offline_log(spa);
4831 txg = spa_vdev_config_enter(spa);
4832
4833 if (activate_slog)
4834 spa_activate_log(spa);
4835
4836 if (error != 0)
4837 return (spa_vdev_exit(spa, NULL, txg, error));
4838
4839 /* check new spa name before going any further */
4840 if (spa_lookup(newname) != NULL)
4841 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4842
4843 /*
4844 * scan through all the children to ensure they're all mirrors
4845 */
4846 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4847 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4848 &children) != 0)
4849 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4850
4851 /* first, check to ensure we've got the right child count */
4852 rvd = spa->spa_root_vdev;
4853 lastlog = 0;
4854 for (c = 0; c < rvd->vdev_children; c++) {
4855 vdev_t *vd = rvd->vdev_child[c];
4856
4857 /* don't count the holes & logs as children */
4858 if (vd->vdev_islog || vd->vdev_ishole) {
4859 if (lastlog == 0)
4860 lastlog = c;
4861 continue;
4862 }
4863
4864 lastlog = 0;
4865 }
4866 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4867 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4868
4869 /* next, ensure no spare or cache devices are part of the split */
4870 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4871 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4872 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4873
4874 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_PUSHPAGE);
4875 glist = kmem_zalloc(children * sizeof (uint64_t), KM_PUSHPAGE);
4876
4877 /* then, loop over each vdev and validate it */
4878 for (c = 0; c < children; c++) {
4879 uint64_t is_hole = 0;
4880
4881 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4882 &is_hole);
4883
4884 if (is_hole != 0) {
4885 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4886 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4887 continue;
4888 } else {
4889 error = EINVAL;
4890 break;
4891 }
4892 }
4893
4894 /* which disk is going to be split? */
4895 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4896 &glist[c]) != 0) {
4897 error = EINVAL;
4898 break;
4899 }
4900
4901 /* look it up in the spa */
4902 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4903 if (vml[c] == NULL) {
4904 error = ENODEV;
4905 break;
4906 }
4907
4908 /* make sure there's nothing stopping the split */
4909 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4910 vml[c]->vdev_islog ||
4911 vml[c]->vdev_ishole ||
4912 vml[c]->vdev_isspare ||
4913 vml[c]->vdev_isl2cache ||
4914 !vdev_writeable(vml[c]) ||
4915 vml[c]->vdev_children != 0 ||
4916 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4917 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4918 error = EINVAL;
4919 break;
4920 }
4921
4922 if (vdev_dtl_required(vml[c])) {
4923 error = EBUSY;
4924 break;
4925 }
4926
4927 /* we need certain info from the top level */
4928 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4929 vml[c]->vdev_top->vdev_ms_array) == 0);
4930 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4931 vml[c]->vdev_top->vdev_ms_shift) == 0);
4932 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4933 vml[c]->vdev_top->vdev_asize) == 0);
4934 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4935 vml[c]->vdev_top->vdev_ashift) == 0);
4936 }
4937
4938 if (error != 0) {
4939 kmem_free(vml, children * sizeof (vdev_t *));
4940 kmem_free(glist, children * sizeof (uint64_t));
4941 return (spa_vdev_exit(spa, NULL, txg, error));
4942 }
4943
4944 /* stop writers from using the disks */
4945 for (c = 0; c < children; c++) {
4946 if (vml[c] != NULL)
4947 vml[c]->vdev_offline = B_TRUE;
4948 }
4949 vdev_reopen(spa->spa_root_vdev);
4950
4951 /*
4952 * Temporarily record the splitting vdevs in the spa config. This
4953 * will disappear once the config is regenerated.
4954 */
4955 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4956 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4957 glist, children) == 0);
4958 kmem_free(glist, children * sizeof (uint64_t));
4959
4960 mutex_enter(&spa->spa_props_lock);
4961 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4962 nvl) == 0);
4963 mutex_exit(&spa->spa_props_lock);
4964 spa->spa_config_splitting = nvl;
4965 vdev_config_dirty(spa->spa_root_vdev);
4966
4967 /* configure and create the new pool */
4968 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4969 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4970 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4971 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4972 spa_version(spa)) == 0);
4973 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4974 spa->spa_config_txg) == 0);
4975 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4976 spa_generate_guid(NULL)) == 0);
4977 (void) nvlist_lookup_string(props,
4978 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4979
4980 /* add the new pool to the namespace */
4981 newspa = spa_add(newname, config, altroot);
4982 newspa->spa_config_txg = spa->spa_config_txg;
4983 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4984
4985 /* release the spa config lock, retaining the namespace lock */
4986 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4987
4988 if (zio_injection_enabled)
4989 zio_handle_panic_injection(spa, FTAG, 1);
4990
4991 spa_activate(newspa, spa_mode_global);
4992 spa_async_suspend(newspa);
4993
4994 /* create the new pool from the disks of the original pool */
4995 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4996 if (error)
4997 goto out;
4998
4999 /* if that worked, generate a real config for the new pool */
5000 if (newspa->spa_root_vdev != NULL) {
5001 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5002 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5003 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5004 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5005 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5006 B_TRUE));
5007 }
5008
5009 /* set the props */
5010 if (props != NULL) {
5011 spa_configfile_set(newspa, props, B_FALSE);
5012 error = spa_prop_set(newspa, props);
5013 if (error)
5014 goto out;
5015 }
5016
5017 /* flush everything */
5018 txg = spa_vdev_config_enter(newspa);
5019 vdev_config_dirty(newspa->spa_root_vdev);
5020 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5021
5022 if (zio_injection_enabled)
5023 zio_handle_panic_injection(spa, FTAG, 2);
5024
5025 spa_async_resume(newspa);
5026
5027 /* finally, update the original pool's config */
5028 txg = spa_vdev_config_enter(spa);
5029 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5030 error = dmu_tx_assign(tx, TXG_WAIT);
5031 if (error != 0)
5032 dmu_tx_abort(tx);
5033 for (c = 0; c < children; c++) {
5034 if (vml[c] != NULL) {
5035 vdev_split(vml[c]);
5036 if (error == 0)
5037 spa_history_log_internal(LOG_POOL_VDEV_DETACH,
5038 spa, tx, "vdev=%s",
5039 vml[c]->vdev_path);
5040 vdev_free(vml[c]);
5041 }
5042 }
5043 vdev_config_dirty(spa->spa_root_vdev);
5044 spa->spa_config_splitting = NULL;
5045 nvlist_free(nvl);
5046 if (error == 0)
5047 dmu_tx_commit(tx);
5048 (void) spa_vdev_exit(spa, NULL, txg, 0);
5049
5050 if (zio_injection_enabled)
5051 zio_handle_panic_injection(spa, FTAG, 3);
5052
5053 /* split is complete; log a history record */
5054 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
5055 "split new pool %s from pool %s", newname, spa_name(spa));
5056
5057 kmem_free(vml, children * sizeof (vdev_t *));
5058
5059 /* if we're not going to mount the filesystems in userland, export */
5060 if (exp)
5061 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5062 B_FALSE, B_FALSE);
5063
5064 return (error);
5065
5066 out:
5067 spa_unload(newspa);
5068 spa_deactivate(newspa);
5069 spa_remove(newspa);
5070
5071 txg = spa_vdev_config_enter(spa);
5072
5073 /* re-online all offlined disks */
5074 for (c = 0; c < children; c++) {
5075 if (vml[c] != NULL)
5076 vml[c]->vdev_offline = B_FALSE;
5077 }
5078 vdev_reopen(spa->spa_root_vdev);
5079
5080 nvlist_free(spa->spa_config_splitting);
5081 spa->spa_config_splitting = NULL;
5082 (void) spa_vdev_exit(spa, NULL, txg, error);
5083
5084 kmem_free(vml, children * sizeof (vdev_t *));
5085 return (error);
5086 }
5087
5088 static nvlist_t *
5089 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5090 {
5091 int i;
5092
5093 for (i = 0; i < count; i++) {
5094 uint64_t guid;
5095
5096 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5097 &guid) == 0);
5098
5099 if (guid == target_guid)
5100 return (nvpp[i]);
5101 }
5102
5103 return (NULL);
5104 }
5105
5106 static void
5107 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5108 nvlist_t *dev_to_remove)
5109 {
5110 nvlist_t **newdev = NULL;
5111 int i, j;
5112
5113 if (count > 1)
5114 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_PUSHPAGE);
5115
5116 for (i = 0, j = 0; i < count; i++) {
5117 if (dev[i] == dev_to_remove)
5118 continue;
5119 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_PUSHPAGE) == 0);
5120 }
5121
5122 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5123 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5124
5125 for (i = 0; i < count - 1; i++)
5126 nvlist_free(newdev[i]);
5127
5128 if (count > 1)
5129 kmem_free(newdev, (count - 1) * sizeof (void *));
5130 }
5131
5132 /*
5133 * Evacuate the device.
5134 */
5135 static int
5136 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5137 {
5138 uint64_t txg;
5139 int error = 0;
5140
5141 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5142 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5143 ASSERT(vd == vd->vdev_top);
5144
5145 /*
5146 * Evacuate the device. We don't hold the config lock as writer
5147 * since we need to do I/O but we do keep the
5148 * spa_namespace_lock held. Once this completes the device
5149 * should no longer have any blocks allocated on it.
5150 */
5151 if (vd->vdev_islog) {
5152 if (vd->vdev_stat.vs_alloc != 0)
5153 error = spa_offline_log(spa);
5154 } else {
5155 error = ENOTSUP;
5156 }
5157
5158 if (error)
5159 return (error);
5160
5161 /*
5162 * The evacuation succeeded. Remove any remaining MOS metadata
5163 * associated with this vdev, and wait for these changes to sync.
5164 */
5165 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
5166 txg = spa_vdev_config_enter(spa);
5167 vd->vdev_removing = B_TRUE;
5168 vdev_dirty(vd, 0, NULL, txg);
5169 vdev_config_dirty(vd);
5170 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5171
5172 return (0);
5173 }
5174
5175 /*
5176 * Complete the removal by cleaning up the namespace.
5177 */
5178 static void
5179 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5180 {
5181 vdev_t *rvd = spa->spa_root_vdev;
5182 uint64_t id = vd->vdev_id;
5183 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5184
5185 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5186 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5187 ASSERT(vd == vd->vdev_top);
5188
5189 /*
5190 * Only remove any devices which are empty.
5191 */
5192 if (vd->vdev_stat.vs_alloc != 0)
5193 return;
5194
5195 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5196
5197 if (list_link_active(&vd->vdev_state_dirty_node))
5198 vdev_state_clean(vd);
5199 if (list_link_active(&vd->vdev_config_dirty_node))
5200 vdev_config_clean(vd);
5201
5202 vdev_free(vd);
5203
5204 if (last_vdev) {
5205 vdev_compact_children(rvd);
5206 } else {
5207 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5208 vdev_add_child(rvd, vd);
5209 }
5210 vdev_config_dirty(rvd);
5211
5212 /*
5213 * Reassess the health of our root vdev.
5214 */
5215 vdev_reopen(rvd);
5216 }
5217
5218 /*
5219 * Remove a device from the pool -
5220 *
5221 * Removing a device from the vdev namespace requires several steps
5222 * and can take a significant amount of time. As a result we use
5223 * the spa_vdev_config_[enter/exit] functions which allow us to
5224 * grab and release the spa_config_lock while still holding the namespace
5225 * lock. During each step the configuration is synced out.
5226 */
5227
5228 /*
5229 * Remove a device from the pool. Currently, this supports removing only hot
5230 * spares, slogs, and level 2 ARC devices.
5231 */
5232 int
5233 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5234 {
5235 vdev_t *vd;
5236 metaslab_group_t *mg;
5237 nvlist_t **spares, **l2cache, *nv;
5238 uint64_t txg = 0;
5239 uint_t nspares, nl2cache;
5240 int error = 0;
5241 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5242
5243 ASSERT(spa_writeable(spa));
5244
5245 if (!locked)
5246 txg = spa_vdev_enter(spa);
5247
5248 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5249
5250 if (spa->spa_spares.sav_vdevs != NULL &&
5251 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5252 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5253 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5254 /*
5255 * Only remove the hot spare if it's not currently in use
5256 * in this pool.
5257 */
5258 if (vd == NULL || unspare) {
5259 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5260 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5261 spa_load_spares(spa);
5262 spa->spa_spares.sav_sync = B_TRUE;
5263 } else {
5264 error = EBUSY;
5265 }
5266 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5267 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5268 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5269 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5270 /*
5271 * Cache devices can always be removed.
5272 */
5273 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5274 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5275 spa_load_l2cache(spa);
5276 spa->spa_l2cache.sav_sync = B_TRUE;
5277 } else if (vd != NULL && vd->vdev_islog) {
5278 ASSERT(!locked);
5279 ASSERT(vd == vd->vdev_top);
5280
5281 /*
5282 * XXX - Once we have bp-rewrite this should
5283 * become the common case.
5284 */
5285
5286 mg = vd->vdev_mg;
5287
5288 /*
5289 * Stop allocating from this vdev.
5290 */
5291 metaslab_group_passivate(mg);
5292
5293 /*
5294 * Wait for the youngest allocations and frees to sync,
5295 * and then wait for the deferral of those frees to finish.
5296 */
5297 spa_vdev_config_exit(spa, NULL,
5298 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5299
5300 /*
5301 * Attempt to evacuate the vdev.
5302 */
5303 error = spa_vdev_remove_evacuate(spa, vd);
5304
5305 txg = spa_vdev_config_enter(spa);
5306
5307 /*
5308 * If we couldn't evacuate the vdev, unwind.
5309 */
5310 if (error) {
5311 metaslab_group_activate(mg);
5312 return (spa_vdev_exit(spa, NULL, txg, error));
5313 }
5314
5315 /*
5316 * Clean up the vdev namespace.
5317 */
5318 spa_vdev_remove_from_namespace(spa, vd);
5319
5320 } else if (vd != NULL) {
5321 /*
5322 * Normal vdevs cannot be removed (yet).
5323 */
5324 error = ENOTSUP;
5325 } else {
5326 /*
5327 * There is no vdev of any kind with the specified guid.
5328 */
5329 error = ENOENT;
5330 }
5331
5332 if (!locked)
5333 return (spa_vdev_exit(spa, NULL, txg, error));
5334
5335 return (error);
5336 }
5337
5338 /*
5339 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5340 * current spared, so we can detach it.
5341 */
5342 static vdev_t *
5343 spa_vdev_resilver_done_hunt(vdev_t *vd)
5344 {
5345 vdev_t *newvd, *oldvd;
5346 int c;
5347
5348 for (c = 0; c < vd->vdev_children; c++) {
5349 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5350 if (oldvd != NULL)
5351 return (oldvd);
5352 }
5353
5354 /*
5355 * Check for a completed replacement. We always consider the first
5356 * vdev in the list to be the oldest vdev, and the last one to be
5357 * the newest (see spa_vdev_attach() for how that works). In
5358 * the case where the newest vdev is faulted, we will not automatically
5359 * remove it after a resilver completes. This is OK as it will require
5360 * user intervention to determine which disk the admin wishes to keep.
5361 */
5362 if (vd->vdev_ops == &vdev_replacing_ops) {
5363 ASSERT(vd->vdev_children > 1);
5364
5365 newvd = vd->vdev_child[vd->vdev_children - 1];
5366 oldvd = vd->vdev_child[0];
5367
5368 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5369 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5370 !vdev_dtl_required(oldvd))
5371 return (oldvd);
5372 }
5373
5374 /*
5375 * Check for a completed resilver with the 'unspare' flag set.
5376 */
5377 if (vd->vdev_ops == &vdev_spare_ops) {
5378 vdev_t *first = vd->vdev_child[0];
5379 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5380
5381 if (last->vdev_unspare) {
5382 oldvd = first;
5383 newvd = last;
5384 } else if (first->vdev_unspare) {
5385 oldvd = last;
5386 newvd = first;
5387 } else {
5388 oldvd = NULL;
5389 }
5390
5391 if (oldvd != NULL &&
5392 vdev_dtl_empty(newvd, DTL_MISSING) &&
5393 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5394 !vdev_dtl_required(oldvd))
5395 return (oldvd);
5396
5397 /*
5398 * If there are more than two spares attached to a disk,
5399 * and those spares are not required, then we want to
5400 * attempt to free them up now so that they can be used
5401 * by other pools. Once we're back down to a single
5402 * disk+spare, we stop removing them.
5403 */
5404 if (vd->vdev_children > 2) {
5405 newvd = vd->vdev_child[1];
5406
5407 if (newvd->vdev_isspare && last->vdev_isspare &&
5408 vdev_dtl_empty(last, DTL_MISSING) &&
5409 vdev_dtl_empty(last, DTL_OUTAGE) &&
5410 !vdev_dtl_required(newvd))
5411 return (newvd);
5412 }
5413 }
5414
5415 return (NULL);
5416 }
5417
5418 static void
5419 spa_vdev_resilver_done(spa_t *spa)
5420 {
5421 vdev_t *vd, *pvd, *ppvd;
5422 uint64_t guid, sguid, pguid, ppguid;
5423
5424 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5425
5426 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5427 pvd = vd->vdev_parent;
5428 ppvd = pvd->vdev_parent;
5429 guid = vd->vdev_guid;
5430 pguid = pvd->vdev_guid;
5431 ppguid = ppvd->vdev_guid;
5432 sguid = 0;
5433 /*
5434 * If we have just finished replacing a hot spared device, then
5435 * we need to detach the parent's first child (the original hot
5436 * spare) as well.
5437 */
5438 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5439 ppvd->vdev_children == 2) {
5440 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5441 sguid = ppvd->vdev_child[1]->vdev_guid;
5442 }
5443 spa_config_exit(spa, SCL_ALL, FTAG);
5444 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5445 return;
5446 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5447 return;
5448 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5449 }
5450
5451 spa_config_exit(spa, SCL_ALL, FTAG);
5452 }
5453
5454 /*
5455 * Update the stored path or FRU for this vdev.
5456 */
5457 int
5458 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5459 boolean_t ispath)
5460 {
5461 vdev_t *vd;
5462 boolean_t sync = B_FALSE;
5463
5464 ASSERT(spa_writeable(spa));
5465
5466 spa_vdev_state_enter(spa, SCL_ALL);
5467
5468 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5469 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5470
5471 if (!vd->vdev_ops->vdev_op_leaf)
5472 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5473
5474 if (ispath) {
5475 if (strcmp(value, vd->vdev_path) != 0) {
5476 spa_strfree(vd->vdev_path);
5477 vd->vdev_path = spa_strdup(value);
5478 sync = B_TRUE;
5479 }
5480 } else {
5481 if (vd->vdev_fru == NULL) {
5482 vd->vdev_fru = spa_strdup(value);
5483 sync = B_TRUE;
5484 } else if (strcmp(value, vd->vdev_fru) != 0) {
5485 spa_strfree(vd->vdev_fru);
5486 vd->vdev_fru = spa_strdup(value);
5487 sync = B_TRUE;
5488 }
5489 }
5490
5491 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5492 }
5493
5494 int
5495 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5496 {
5497 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5498 }
5499
5500 int
5501 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5502 {
5503 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5504 }
5505
5506 /*
5507 * ==========================================================================
5508 * SPA Scanning
5509 * ==========================================================================
5510 */
5511
5512 int
5513 spa_scan_stop(spa_t *spa)
5514 {
5515 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5516 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5517 return (EBUSY);
5518 return (dsl_scan_cancel(spa->spa_dsl_pool));
5519 }
5520
5521 int
5522 spa_scan(spa_t *spa, pool_scan_func_t func)
5523 {
5524 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5525
5526 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5527 return (ENOTSUP);
5528
5529 /*
5530 * If a resilver was requested, but there is no DTL on a
5531 * writeable leaf device, we have nothing to do.
5532 */
5533 if (func == POOL_SCAN_RESILVER &&
5534 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5535 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5536 return (0);
5537 }
5538
5539 return (dsl_scan(spa->spa_dsl_pool, func));
5540 }
5541
5542 /*
5543 * ==========================================================================
5544 * SPA async task processing
5545 * ==========================================================================
5546 */
5547
5548 static void
5549 spa_async_remove(spa_t *spa, vdev_t *vd)
5550 {
5551 int c;
5552
5553 if (vd->vdev_remove_wanted) {
5554 vd->vdev_remove_wanted = B_FALSE;
5555 vd->vdev_delayed_close = B_FALSE;
5556 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5557
5558 /*
5559 * We want to clear the stats, but we don't want to do a full
5560 * vdev_clear() as that will cause us to throw away
5561 * degraded/faulted state as well as attempt to reopen the
5562 * device, all of which is a waste.
5563 */
5564 vd->vdev_stat.vs_read_errors = 0;
5565 vd->vdev_stat.vs_write_errors = 0;
5566 vd->vdev_stat.vs_checksum_errors = 0;
5567
5568 vdev_state_dirty(vd->vdev_top);
5569 }
5570
5571 for (c = 0; c < vd->vdev_children; c++)
5572 spa_async_remove(spa, vd->vdev_child[c]);
5573 }
5574
5575 static void
5576 spa_async_probe(spa_t *spa, vdev_t *vd)
5577 {
5578 int c;
5579
5580 if (vd->vdev_probe_wanted) {
5581 vd->vdev_probe_wanted = B_FALSE;
5582 vdev_reopen(vd); /* vdev_open() does the actual probe */
5583 }
5584
5585 for (c = 0; c < vd->vdev_children; c++)
5586 spa_async_probe(spa, vd->vdev_child[c]);
5587 }
5588
5589 static void
5590 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5591 {
5592 int c;
5593
5594 if (!spa->spa_autoexpand)
5595 return;
5596
5597 for (c = 0; c < vd->vdev_children; c++) {
5598 vdev_t *cvd = vd->vdev_child[c];
5599 spa_async_autoexpand(spa, cvd);
5600 }
5601
5602 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5603 return;
5604
5605 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5606 }
5607
5608 static void
5609 spa_async_thread(spa_t *spa)
5610 {
5611 int tasks, i;
5612
5613 ASSERT(spa->spa_sync_on);
5614
5615 mutex_enter(&spa->spa_async_lock);
5616 tasks = spa->spa_async_tasks;
5617 spa->spa_async_tasks = 0;
5618 mutex_exit(&spa->spa_async_lock);
5619
5620 /*
5621 * See if the config needs to be updated.
5622 */
5623 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5624 uint64_t old_space, new_space;
5625
5626 mutex_enter(&spa_namespace_lock);
5627 old_space = metaslab_class_get_space(spa_normal_class(spa));
5628 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5629 new_space = metaslab_class_get_space(spa_normal_class(spa));
5630 mutex_exit(&spa_namespace_lock);
5631
5632 /*
5633 * If the pool grew as a result of the config update,
5634 * then log an internal history event.
5635 */
5636 if (new_space != old_space) {
5637 spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5638 spa, NULL,
5639 "pool '%s' size: %llu(+%llu)",
5640 spa_name(spa), new_space, new_space - old_space);
5641 }
5642 }
5643
5644 /*
5645 * See if any devices need to be marked REMOVED.
5646 */
5647 if (tasks & SPA_ASYNC_REMOVE) {
5648 spa_vdev_state_enter(spa, SCL_NONE);
5649 spa_async_remove(spa, spa->spa_root_vdev);
5650 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5651 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5652 for (i = 0; i < spa->spa_spares.sav_count; i++)
5653 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5654 (void) spa_vdev_state_exit(spa, NULL, 0);
5655 }
5656
5657 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5658 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5659 spa_async_autoexpand(spa, spa->spa_root_vdev);
5660 spa_config_exit(spa, SCL_CONFIG, FTAG);
5661 }
5662
5663 /*
5664 * See if any devices need to be probed.
5665 */
5666 if (tasks & SPA_ASYNC_PROBE) {
5667 spa_vdev_state_enter(spa, SCL_NONE);
5668 spa_async_probe(spa, spa->spa_root_vdev);
5669 (void) spa_vdev_state_exit(spa, NULL, 0);
5670 }
5671
5672 /*
5673 * If any devices are done replacing, detach them.
5674 */
5675 if (tasks & SPA_ASYNC_RESILVER_DONE)
5676 spa_vdev_resilver_done(spa);
5677
5678 /*
5679 * Kick off a resilver.
5680 */
5681 if (tasks & SPA_ASYNC_RESILVER)
5682 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5683
5684 /*
5685 * Let the world know that we're done.
5686 */
5687 mutex_enter(&spa->spa_async_lock);
5688 spa->spa_async_thread = NULL;
5689 cv_broadcast(&spa->spa_async_cv);
5690 mutex_exit(&spa->spa_async_lock);
5691 thread_exit();
5692 }
5693
5694 void
5695 spa_async_suspend(spa_t *spa)
5696 {
5697 mutex_enter(&spa->spa_async_lock);
5698 spa->spa_async_suspended++;
5699 while (spa->spa_async_thread != NULL)
5700 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5701 mutex_exit(&spa->spa_async_lock);
5702 }
5703
5704 void
5705 spa_async_resume(spa_t *spa)
5706 {
5707 mutex_enter(&spa->spa_async_lock);
5708 ASSERT(spa->spa_async_suspended != 0);
5709 spa->spa_async_suspended--;
5710 mutex_exit(&spa->spa_async_lock);
5711 }
5712
5713 static void
5714 spa_async_dispatch(spa_t *spa)
5715 {
5716 mutex_enter(&spa->spa_async_lock);
5717 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5718 spa->spa_async_thread == NULL &&
5719 rootdir != NULL && !vn_is_readonly(rootdir))
5720 spa->spa_async_thread = thread_create(NULL, 0,
5721 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5722 mutex_exit(&spa->spa_async_lock);
5723 }
5724
5725 void
5726 spa_async_request(spa_t *spa, int task)
5727 {
5728 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5729 mutex_enter(&spa->spa_async_lock);
5730 spa->spa_async_tasks |= task;
5731 mutex_exit(&spa->spa_async_lock);
5732 }
5733
5734 /*
5735 * ==========================================================================
5736 * SPA syncing routines
5737 * ==========================================================================
5738 */
5739
5740 static int
5741 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5742 {
5743 bpobj_t *bpo = arg;
5744 bpobj_enqueue(bpo, bp, tx);
5745 return (0);
5746 }
5747
5748 static int
5749 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5750 {
5751 zio_t *zio = arg;
5752
5753 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5754 zio->io_flags));
5755 return (0);
5756 }
5757
5758 static void
5759 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5760 {
5761 char *packed = NULL;
5762 size_t bufsize;
5763 size_t nvsize = 0;
5764 dmu_buf_t *db;
5765
5766 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5767
5768 /*
5769 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5770 * information. This avoids the dbuf_will_dirty() path and
5771 * saves us a pre-read to get data we don't actually care about.
5772 */
5773 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5774 packed = vmem_alloc(bufsize, KM_PUSHPAGE);
5775
5776 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5777 KM_PUSHPAGE) == 0);
5778 bzero(packed + nvsize, bufsize - nvsize);
5779
5780 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5781
5782 vmem_free(packed, bufsize);
5783
5784 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5785 dmu_buf_will_dirty(db, tx);
5786 *(uint64_t *)db->db_data = nvsize;
5787 dmu_buf_rele(db, FTAG);
5788 }
5789
5790 static void
5791 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5792 const char *config, const char *entry)
5793 {
5794 nvlist_t *nvroot;
5795 nvlist_t **list;
5796 int i;
5797
5798 if (!sav->sav_sync)
5799 return;
5800
5801 /*
5802 * Update the MOS nvlist describing the list of available devices.
5803 * spa_validate_aux() will have already made sure this nvlist is
5804 * valid and the vdevs are labeled appropriately.
5805 */
5806 if (sav->sav_object == 0) {
5807 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5808 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5809 sizeof (uint64_t), tx);
5810 VERIFY(zap_update(spa->spa_meta_objset,
5811 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5812 &sav->sav_object, tx) == 0);
5813 }
5814
5815 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5816 if (sav->sav_count == 0) {
5817 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5818 } else {
5819 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_PUSHPAGE);
5820 for (i = 0; i < sav->sav_count; i++)
5821 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5822 B_FALSE, VDEV_CONFIG_L2CACHE);
5823 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5824 sav->sav_count) == 0);
5825 for (i = 0; i < sav->sav_count; i++)
5826 nvlist_free(list[i]);
5827 kmem_free(list, sav->sav_count * sizeof (void *));
5828 }
5829
5830 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5831 nvlist_free(nvroot);
5832
5833 sav->sav_sync = B_FALSE;
5834 }
5835
5836 static void
5837 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5838 {
5839 nvlist_t *config;
5840
5841 if (list_is_empty(&spa->spa_config_dirty_list))
5842 return;
5843
5844 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5845
5846 config = spa_config_generate(spa, spa->spa_root_vdev,
5847 dmu_tx_get_txg(tx), B_FALSE);
5848
5849 /*
5850 * If we're upgrading the spa version then make sure that
5851 * the config object gets updated with the correct version.
5852 */
5853 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5854 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5855 spa->spa_uberblock.ub_version);
5856
5857 spa_config_exit(spa, SCL_STATE, FTAG);
5858
5859 if (spa->spa_config_syncing)
5860 nvlist_free(spa->spa_config_syncing);
5861 spa->spa_config_syncing = config;
5862
5863 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5864 }
5865
5866 static void
5867 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5868 {
5869 spa_t *spa = arg1;
5870 uint64_t version = *(uint64_t *)arg2;
5871
5872 /*
5873 * Setting the version is special cased when first creating the pool.
5874 */
5875 ASSERT(tx->tx_txg != TXG_INITIAL);
5876
5877 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5878 ASSERT(version >= spa_version(spa));
5879
5880 spa->spa_uberblock.ub_version = version;
5881 vdev_config_dirty(spa->spa_root_vdev);
5882 }
5883
5884 /*
5885 * Set zpool properties.
5886 */
5887 static void
5888 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5889 {
5890 spa_t *spa = arg1;
5891 objset_t *mos = spa->spa_meta_objset;
5892 nvlist_t *nvp = arg2;
5893 nvpair_t *elem = NULL;
5894
5895 mutex_enter(&spa->spa_props_lock);
5896
5897 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5898 uint64_t intval;
5899 char *strval, *fname;
5900 zpool_prop_t prop;
5901 const char *propname;
5902 zprop_type_t proptype;
5903 zfeature_info_t *feature;
5904
5905 prop = zpool_name_to_prop(nvpair_name(elem));
5906 switch ((int)prop) {
5907 case ZPROP_INVAL:
5908 /*
5909 * We checked this earlier in spa_prop_validate().
5910 */
5911 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5912
5913 fname = strchr(nvpair_name(elem), '@') + 1;
5914 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5915
5916 spa_feature_enable(spa, feature, tx);
5917 break;
5918
5919 case ZPOOL_PROP_VERSION:
5920 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5921 /*
5922 * The version is synced seperatly before other
5923 * properties and should be correct by now.
5924 */
5925 ASSERT3U(spa_version(spa), >=, intval);
5926 break;
5927
5928 case ZPOOL_PROP_ALTROOT:
5929 /*
5930 * 'altroot' is a non-persistent property. It should
5931 * have been set temporarily at creation or import time.
5932 */
5933 ASSERT(spa->spa_root != NULL);
5934 break;
5935
5936 case ZPOOL_PROP_READONLY:
5937 case ZPOOL_PROP_CACHEFILE:
5938 /*
5939 * 'readonly' and 'cachefile' are also non-persisitent
5940 * properties.
5941 */
5942 break;
5943 case ZPOOL_PROP_COMMENT:
5944 VERIFY(nvpair_value_string(elem, &strval) == 0);
5945 if (spa->spa_comment != NULL)
5946 spa_strfree(spa->spa_comment);
5947 spa->spa_comment = spa_strdup(strval);
5948 /*
5949 * We need to dirty the configuration on all the vdevs
5950 * so that their labels get updated. It's unnecessary
5951 * to do this for pool creation since the vdev's
5952 * configuratoin has already been dirtied.
5953 */
5954 if (tx->tx_txg != TXG_INITIAL)
5955 vdev_config_dirty(spa->spa_root_vdev);
5956 break;
5957 default:
5958 /*
5959 * Set pool property values in the poolprops mos object.
5960 */
5961 if (spa->spa_pool_props_object == 0) {
5962 spa->spa_pool_props_object =
5963 zap_create_link(mos, DMU_OT_POOL_PROPS,
5964 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5965 tx);
5966 }
5967
5968 /* normalize the property name */
5969 propname = zpool_prop_to_name(prop);
5970 proptype = zpool_prop_get_type(prop);
5971
5972 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5973 ASSERT(proptype == PROP_TYPE_STRING);
5974 VERIFY(nvpair_value_string(elem, &strval) == 0);
5975 VERIFY(zap_update(mos,
5976 spa->spa_pool_props_object, propname,
5977 1, strlen(strval) + 1, strval, tx) == 0);
5978
5979 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5980 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5981
5982 if (proptype == PROP_TYPE_INDEX) {
5983 const char *unused;
5984 VERIFY(zpool_prop_index_to_string(
5985 prop, intval, &unused) == 0);
5986 }
5987 VERIFY(zap_update(mos,
5988 spa->spa_pool_props_object, propname,
5989 8, 1, &intval, tx) == 0);
5990 } else {
5991 ASSERT(0); /* not allowed */
5992 }
5993
5994 switch (prop) {
5995 case ZPOOL_PROP_DELEGATION:
5996 spa->spa_delegation = intval;
5997 break;
5998 case ZPOOL_PROP_BOOTFS:
5999 spa->spa_bootfs = intval;
6000 break;
6001 case ZPOOL_PROP_FAILUREMODE:
6002 spa->spa_failmode = intval;
6003 break;
6004 case ZPOOL_PROP_AUTOEXPAND:
6005 spa->spa_autoexpand = intval;
6006 if (tx->tx_txg != TXG_INITIAL)
6007 spa_async_request(spa,
6008 SPA_ASYNC_AUTOEXPAND);
6009 break;
6010 case ZPOOL_PROP_DEDUPDITTO:
6011 spa->spa_dedup_ditto = intval;
6012 break;
6013 default:
6014 break;
6015 }
6016 }
6017
6018 /* log internal history if this is not a zpool create */
6019 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
6020 tx->tx_txg != TXG_INITIAL) {
6021 spa_history_log_internal(LOG_POOL_PROPSET,
6022 spa, tx, "%s %lld %s",
6023 nvpair_name(elem), intval, spa_name(spa));
6024 }
6025 }
6026
6027 mutex_exit(&spa->spa_props_lock);
6028 }
6029
6030 /*
6031 * Perform one-time upgrade on-disk changes. spa_version() does not
6032 * reflect the new version this txg, so there must be no changes this
6033 * txg to anything that the upgrade code depends on after it executes.
6034 * Therefore this must be called after dsl_pool_sync() does the sync
6035 * tasks.
6036 */
6037 static void
6038 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6039 {
6040 dsl_pool_t *dp = spa->spa_dsl_pool;
6041
6042 ASSERT(spa->spa_sync_pass == 1);
6043
6044 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6045 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6046 dsl_pool_create_origin(dp, tx);
6047
6048 /* Keeping the origin open increases spa_minref */
6049 spa->spa_minref += 3;
6050 }
6051
6052 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6053 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6054 dsl_pool_upgrade_clones(dp, tx);
6055 }
6056
6057 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6058 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6059 dsl_pool_upgrade_dir_clones(dp, tx);
6060
6061 /* Keeping the freedir open increases spa_minref */
6062 spa->spa_minref += 3;
6063 }
6064
6065 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6066 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6067 spa_feature_create_zap_objects(spa, tx);
6068 }
6069 }
6070
6071 /*
6072 * Sync the specified transaction group. New blocks may be dirtied as
6073 * part of the process, so we iterate until it converges.
6074 */
6075 void
6076 spa_sync(spa_t *spa, uint64_t txg)
6077 {
6078 dsl_pool_t *dp = spa->spa_dsl_pool;
6079 objset_t *mos = spa->spa_meta_objset;
6080 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6081 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6082 vdev_t *rvd = spa->spa_root_vdev;
6083 vdev_t *vd;
6084 dmu_tx_t *tx;
6085 int error;
6086 int c;
6087
6088 VERIFY(spa_writeable(spa));
6089
6090 /*
6091 * Lock out configuration changes.
6092 */
6093 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6094
6095 spa->spa_syncing_txg = txg;
6096 spa->spa_sync_pass = 0;
6097
6098 /*
6099 * If there are any pending vdev state changes, convert them
6100 * into config changes that go out with this transaction group.
6101 */
6102 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6103 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6104 /*
6105 * We need the write lock here because, for aux vdevs,
6106 * calling vdev_config_dirty() modifies sav_config.
6107 * This is ugly and will become unnecessary when we
6108 * eliminate the aux vdev wart by integrating all vdevs
6109 * into the root vdev tree.
6110 */
6111 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6112 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6113 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6114 vdev_state_clean(vd);
6115 vdev_config_dirty(vd);
6116 }
6117 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6118 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6119 }
6120 spa_config_exit(spa, SCL_STATE, FTAG);
6121
6122 tx = dmu_tx_create_assigned(dp, txg);
6123
6124 spa->spa_sync_starttime = gethrtime();
6125 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6126 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6127 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6128 NSEC_TO_TICK(spa->spa_deadman_synctime));
6129
6130 /*
6131 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6132 * set spa_deflate if we have no raid-z vdevs.
6133 */
6134 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6135 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6136 int i;
6137
6138 for (i = 0; i < rvd->vdev_children; i++) {
6139 vd = rvd->vdev_child[i];
6140 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6141 break;
6142 }
6143 if (i == rvd->vdev_children) {
6144 spa->spa_deflate = TRUE;
6145 VERIFY(0 == zap_add(spa->spa_meta_objset,
6146 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6147 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6148 }
6149 }
6150
6151 /*
6152 * If anything has changed in this txg, or if someone is waiting
6153 * for this txg to sync (eg, spa_vdev_remove()), push the
6154 * deferred frees from the previous txg. If not, leave them
6155 * alone so that we don't generate work on an otherwise idle
6156 * system.
6157 */
6158 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6159 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6160 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6161 ((dsl_scan_active(dp->dp_scan) ||
6162 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6163 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6164 VERIFY3U(bpobj_iterate(defer_bpo,
6165 spa_free_sync_cb, zio, tx), ==, 0);
6166 VERIFY3U(zio_wait(zio), ==, 0);
6167 }
6168
6169 /*
6170 * Iterate to convergence.
6171 */
6172 do {
6173 int pass = ++spa->spa_sync_pass;
6174
6175 spa_sync_config_object(spa, tx);
6176 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6177 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6178 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6179 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6180 spa_errlog_sync(spa, txg);
6181 dsl_pool_sync(dp, txg);
6182
6183 if (pass < zfs_sync_pass_deferred_free) {
6184 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6185 bplist_iterate(free_bpl, spa_free_sync_cb,
6186 zio, tx);
6187 VERIFY(zio_wait(zio) == 0);
6188 } else {
6189 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6190 defer_bpo, tx);
6191 }
6192
6193 ddt_sync(spa, txg);
6194 dsl_scan_sync(dp, tx);
6195
6196 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6197 vdev_sync(vd, txg);
6198
6199 if (pass == 1)
6200 spa_sync_upgrades(spa, tx);
6201
6202 } while (dmu_objset_is_dirty(mos, txg));
6203
6204 /*
6205 * Rewrite the vdev configuration (which includes the uberblock)
6206 * to commit the transaction group.
6207 *
6208 * If there are no dirty vdevs, we sync the uberblock to a few
6209 * random top-level vdevs that are known to be visible in the
6210 * config cache (see spa_vdev_add() for a complete description).
6211 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6212 */
6213 for (;;) {
6214 /*
6215 * We hold SCL_STATE to prevent vdev open/close/etc.
6216 * while we're attempting to write the vdev labels.
6217 */
6218 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6219
6220 if (list_is_empty(&spa->spa_config_dirty_list)) {
6221 vdev_t *svd[SPA_DVAS_PER_BP];
6222 int svdcount = 0;
6223 int children = rvd->vdev_children;
6224 int c0 = spa_get_random(children);
6225
6226 for (c = 0; c < children; c++) {
6227 vd = rvd->vdev_child[(c0 + c) % children];
6228 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6229 continue;
6230 svd[svdcount++] = vd;
6231 if (svdcount == SPA_DVAS_PER_BP)
6232 break;
6233 }
6234 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6235 if (error != 0)
6236 error = vdev_config_sync(svd, svdcount, txg,
6237 B_TRUE);
6238 } else {
6239 error = vdev_config_sync(rvd->vdev_child,
6240 rvd->vdev_children, txg, B_FALSE);
6241 if (error != 0)
6242 error = vdev_config_sync(rvd->vdev_child,
6243 rvd->vdev_children, txg, B_TRUE);
6244 }
6245
6246 if (error == 0)
6247 spa->spa_last_synced_guid = rvd->vdev_guid;
6248
6249 spa_config_exit(spa, SCL_STATE, FTAG);
6250
6251 if (error == 0)
6252 break;
6253 zio_suspend(spa, NULL);
6254 zio_resume_wait(spa);
6255 }
6256 dmu_tx_commit(tx);
6257
6258 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6259 spa->spa_deadman_tqid = 0;
6260
6261 /*
6262 * Clear the dirty config list.
6263 */
6264 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6265 vdev_config_clean(vd);
6266
6267 /*
6268 * Now that the new config has synced transactionally,
6269 * let it become visible to the config cache.
6270 */
6271 if (spa->spa_config_syncing != NULL) {
6272 spa_config_set(spa, spa->spa_config_syncing);
6273 spa->spa_config_txg = txg;
6274 spa->spa_config_syncing = NULL;
6275 }
6276
6277 spa->spa_ubsync = spa->spa_uberblock;
6278
6279 dsl_pool_sync_done(dp, txg);
6280
6281 /*
6282 * Update usable space statistics.
6283 */
6284 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6285 vdev_sync_done(vd, txg);
6286
6287 spa_update_dspace(spa);
6288
6289 /*
6290 * It had better be the case that we didn't dirty anything
6291 * since vdev_config_sync().
6292 */
6293 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6294 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6295 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6296
6297 spa->spa_sync_pass = 0;
6298
6299 spa_config_exit(spa, SCL_CONFIG, FTAG);
6300
6301 spa_handle_ignored_writes(spa);
6302
6303 /*
6304 * If any async tasks have been requested, kick them off.
6305 */
6306 spa_async_dispatch(spa);
6307 }
6308
6309 /*
6310 * Sync all pools. We don't want to hold the namespace lock across these
6311 * operations, so we take a reference on the spa_t and drop the lock during the
6312 * sync.
6313 */
6314 void
6315 spa_sync_allpools(void)
6316 {
6317 spa_t *spa = NULL;
6318 mutex_enter(&spa_namespace_lock);
6319 while ((spa = spa_next(spa)) != NULL) {
6320 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6321 !spa_writeable(spa) || spa_suspended(spa))
6322 continue;
6323 spa_open_ref(spa, FTAG);
6324 mutex_exit(&spa_namespace_lock);
6325 txg_wait_synced(spa_get_dsl(spa), 0);
6326 mutex_enter(&spa_namespace_lock);
6327 spa_close(spa, FTAG);
6328 }
6329 mutex_exit(&spa_namespace_lock);
6330 }
6331
6332 /*
6333 * ==========================================================================
6334 * Miscellaneous routines
6335 * ==========================================================================
6336 */
6337
6338 /*
6339 * Remove all pools in the system.
6340 */
6341 void
6342 spa_evict_all(void)
6343 {
6344 spa_t *spa;
6345
6346 /*
6347 * Remove all cached state. All pools should be closed now,
6348 * so every spa in the AVL tree should be unreferenced.
6349 */
6350 mutex_enter(&spa_namespace_lock);
6351 while ((spa = spa_next(NULL)) != NULL) {
6352 /*
6353 * Stop async tasks. The async thread may need to detach
6354 * a device that's been replaced, which requires grabbing
6355 * spa_namespace_lock, so we must drop it here.
6356 */
6357 spa_open_ref(spa, FTAG);
6358 mutex_exit(&spa_namespace_lock);
6359 spa_async_suspend(spa);
6360 mutex_enter(&spa_namespace_lock);
6361 spa_close(spa, FTAG);
6362
6363 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6364 spa_unload(spa);
6365 spa_deactivate(spa);
6366 }
6367 spa_remove(spa);
6368 }
6369 mutex_exit(&spa_namespace_lock);
6370 }
6371
6372 vdev_t *
6373 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6374 {
6375 vdev_t *vd;
6376 int i;
6377
6378 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6379 return (vd);
6380
6381 if (aux) {
6382 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6383 vd = spa->spa_l2cache.sav_vdevs[i];
6384 if (vd->vdev_guid == guid)
6385 return (vd);
6386 }
6387
6388 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6389 vd = spa->spa_spares.sav_vdevs[i];
6390 if (vd->vdev_guid == guid)
6391 return (vd);
6392 }
6393 }
6394
6395 return (NULL);
6396 }
6397
6398 void
6399 spa_upgrade(spa_t *spa, uint64_t version)
6400 {
6401 ASSERT(spa_writeable(spa));
6402
6403 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6404
6405 /*
6406 * This should only be called for a non-faulted pool, and since a
6407 * future version would result in an unopenable pool, this shouldn't be
6408 * possible.
6409 */
6410 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6411 ASSERT(version >= spa->spa_uberblock.ub_version);
6412
6413 spa->spa_uberblock.ub_version = version;
6414 vdev_config_dirty(spa->spa_root_vdev);
6415
6416 spa_config_exit(spa, SCL_ALL, FTAG);
6417
6418 txg_wait_synced(spa_get_dsl(spa), 0);
6419 }
6420
6421 boolean_t
6422 spa_has_spare(spa_t *spa, uint64_t guid)
6423 {
6424 int i;
6425 uint64_t spareguid;
6426 spa_aux_vdev_t *sav = &spa->spa_spares;
6427
6428 for (i = 0; i < sav->sav_count; i++)
6429 if (sav->sav_vdevs[i]->vdev_guid == guid)
6430 return (B_TRUE);
6431
6432 for (i = 0; i < sav->sav_npending; i++) {
6433 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6434 &spareguid) == 0 && spareguid == guid)
6435 return (B_TRUE);
6436 }
6437
6438 return (B_FALSE);
6439 }
6440
6441 /*
6442 * Check if a pool has an active shared spare device.
6443 * Note: reference count of an active spare is 2, as a spare and as a replace
6444 */
6445 static boolean_t
6446 spa_has_active_shared_spare(spa_t *spa)
6447 {
6448 int i, refcnt;
6449 uint64_t pool;
6450 spa_aux_vdev_t *sav = &spa->spa_spares;
6451
6452 for (i = 0; i < sav->sav_count; i++) {
6453 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6454 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6455 refcnt > 2)
6456 return (B_TRUE);
6457 }
6458
6459 return (B_FALSE);
6460 }
6461
6462 /*
6463 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6464 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6465 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6466 * or zdb as real changes.
6467 */
6468 void
6469 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6470 {
6471 #ifdef _KERNEL
6472 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6473 #endif
6474 }
6475
6476 #if defined(_KERNEL) && defined(HAVE_SPL)
6477 /* state manipulation functions */
6478 EXPORT_SYMBOL(spa_open);
6479 EXPORT_SYMBOL(spa_open_rewind);
6480 EXPORT_SYMBOL(spa_get_stats);
6481 EXPORT_SYMBOL(spa_create);
6482 EXPORT_SYMBOL(spa_import_rootpool);
6483 EXPORT_SYMBOL(spa_import);
6484 EXPORT_SYMBOL(spa_tryimport);
6485 EXPORT_SYMBOL(spa_destroy);
6486 EXPORT_SYMBOL(spa_export);
6487 EXPORT_SYMBOL(spa_reset);
6488 EXPORT_SYMBOL(spa_async_request);
6489 EXPORT_SYMBOL(spa_async_suspend);
6490 EXPORT_SYMBOL(spa_async_resume);
6491 EXPORT_SYMBOL(spa_inject_addref);
6492 EXPORT_SYMBOL(spa_inject_delref);
6493 EXPORT_SYMBOL(spa_scan_stat_init);
6494 EXPORT_SYMBOL(spa_scan_get_stats);
6495
6496 /* device maniion */
6497 EXPORT_SYMBOL(spa_vdev_add);
6498 EXPORT_SYMBOL(spa_vdev_attach);
6499 EXPORT_SYMBOL(spa_vdev_detach);
6500 EXPORT_SYMBOL(spa_vdev_remove);
6501 EXPORT_SYMBOL(spa_vdev_setpath);
6502 EXPORT_SYMBOL(spa_vdev_setfru);
6503 EXPORT_SYMBOL(spa_vdev_split_mirror);
6504
6505 /* spare statech is global across all pools) */
6506 EXPORT_SYMBOL(spa_spare_add);
6507 EXPORT_SYMBOL(spa_spare_remove);
6508 EXPORT_SYMBOL(spa_spare_exists);
6509 EXPORT_SYMBOL(spa_spare_activate);
6510
6511 /* L2ARC statech is global across all pools) */
6512 EXPORT_SYMBOL(spa_l2cache_add);
6513 EXPORT_SYMBOL(spa_l2cache_remove);
6514 EXPORT_SYMBOL(spa_l2cache_exists);
6515 EXPORT_SYMBOL(spa_l2cache_activate);
6516 EXPORT_SYMBOL(spa_l2cache_drop);
6517
6518 /* scanning */
6519 EXPORT_SYMBOL(spa_scan);
6520 EXPORT_SYMBOL(spa_scan_stop);
6521
6522 /* spa syncing */
6523 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6524 EXPORT_SYMBOL(spa_sync_allpools);
6525
6526 /* properties */
6527 EXPORT_SYMBOL(spa_prop_set);
6528 EXPORT_SYMBOL(spa_prop_get);
6529 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6530
6531 /* asynchronous event notification */
6532 EXPORT_SYMBOL(spa_event_notify);
6533 #endif