]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Implement -t option to zpool create for temporary pool names
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/vdev_disk.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70 #include <sys/zvol.h>
71
72 #ifdef _KERNEL
73 #include <sys/bootprops.h>
74 #include <sys/callb.h>
75 #include <sys/cpupart.h>
76 #include <sys/pool.h>
77 #include <sys/sysdc.h>
78 #include <sys/zone.h>
79 #endif /* _KERNEL */
80
81 #include "zfs_prop.h"
82 #include "zfs_comutil.h"
83
84 typedef enum zti_modes {
85 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
86 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
87 ZTI_MODE_NULL, /* don't create a taskq */
88 ZTI_NMODES
89 } zti_modes_t;
90
91 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
92 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
93 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
94 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
95
96 #define ZTI_N(n) ZTI_P(n, 1)
97 #define ZTI_ONE ZTI_N(1)
98
99 typedef struct zio_taskq_info {
100 zti_modes_t zti_mode;
101 uint_t zti_value;
102 uint_t zti_count;
103 } zio_taskq_info_t;
104
105 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
106 "iss", "iss_h", "int", "int_h"
107 };
108
109 /*
110 * This table defines the taskq settings for each ZFS I/O type. When
111 * initializing a pool, we use this table to create an appropriately sized
112 * taskq. Some operations are low volume and therefore have a small, static
113 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
114 * macros. Other operations process a large amount of data; the ZTI_BATCH
115 * macro causes us to create a taskq oriented for throughput. Some operations
116 * are so high frequency and short-lived that the taskq itself can become a a
117 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
118 * additional degree of parallelism specified by the number of threads per-
119 * taskq and the number of taskqs; when dispatching an event in this case, the
120 * particular taskq is chosen at random.
121 *
122 * The different taskq priorities are to handle the different contexts (issue
123 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
124 * need to be handled with minimum delay.
125 */
126 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
127 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
128 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
129 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
130 { ZTI_BATCH, ZTI_N(5), ZTI_N(16), ZTI_N(5) }, /* WRITE */
131 { ZTI_P(4, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
134 };
135
136 static void spa_sync_version(void *arg, dmu_tx_t *tx);
137 static void spa_sync_props(void *arg, dmu_tx_t *tx);
138 static boolean_t spa_has_active_shared_spare(spa_t *spa);
139 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
140 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
141 char **ereport);
142 static void spa_vdev_resilver_done(spa_t *spa);
143
144 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
145 id_t zio_taskq_psrset_bind = PS_NONE;
146 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
147 uint_t zio_taskq_basedc = 80; /* base duty cycle */
148
149 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
150
151 /*
152 * This (illegal) pool name is used when temporarily importing a spa_t in order
153 * to get the vdev stats associated with the imported devices.
154 */
155 #define TRYIMPORT_NAME "$import"
156
157 /*
158 * ==========================================================================
159 * SPA properties routines
160 * ==========================================================================
161 */
162
163 /*
164 * Add a (source=src, propname=propval) list to an nvlist.
165 */
166 static void
167 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
168 uint64_t intval, zprop_source_t src)
169 {
170 const char *propname = zpool_prop_to_name(prop);
171 nvlist_t *propval;
172
173 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
174 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
175
176 if (strval != NULL)
177 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
178 else
179 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
180
181 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
182 nvlist_free(propval);
183 }
184
185 /*
186 * Get property values from the spa configuration.
187 */
188 static void
189 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
190 {
191 vdev_t *rvd = spa->spa_root_vdev;
192 dsl_pool_t *pool = spa->spa_dsl_pool;
193 uint64_t size, alloc, cap, version;
194 zprop_source_t src = ZPROP_SRC_NONE;
195 spa_config_dirent_t *dp;
196 metaslab_class_t *mc = spa_normal_class(spa);
197
198 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
199
200 if (rvd != NULL) {
201 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
202 size = metaslab_class_get_space(spa_normal_class(spa));
203 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
204 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
205 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
207 size - alloc, src);
208
209 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
210 metaslab_class_fragmentation(mc), src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
212 metaslab_class_expandable_space(mc), src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
214 (spa_mode(spa) == FREAD), src);
215
216 cap = (size == 0) ? 0 : (alloc * 100 / size);
217 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
218
219 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
220 ddt_get_pool_dedup_ratio(spa), src);
221
222 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
223 rvd->vdev_state, src);
224
225 version = spa_version(spa);
226 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
227 src = ZPROP_SRC_DEFAULT;
228 else
229 src = ZPROP_SRC_LOCAL;
230 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
231 }
232
233 if (pool != NULL) {
234 /*
235 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
236 * when opening pools before this version freedir will be NULL.
237 */
238 if (pool->dp_free_dir != NULL) {
239 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
240 pool->dp_free_dir->dd_phys->dd_used_bytes, src);
241 } else {
242 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
243 NULL, 0, src);
244 }
245
246 if (pool->dp_leak_dir != NULL) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
248 pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
251 NULL, 0, src);
252 }
253 }
254
255 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
256
257 if (spa->spa_comment != NULL) {
258 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
259 0, ZPROP_SRC_LOCAL);
260 }
261
262 if (spa->spa_root != NULL)
263 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
264 0, ZPROP_SRC_LOCAL);
265
266 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
267 if (dp->scd_path == NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
269 "none", 0, ZPROP_SRC_LOCAL);
270 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
271 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
272 dp->scd_path, 0, ZPROP_SRC_LOCAL);
273 }
274 }
275 }
276
277 /*
278 * Get zpool property values.
279 */
280 int
281 spa_prop_get(spa_t *spa, nvlist_t **nvp)
282 {
283 objset_t *mos = spa->spa_meta_objset;
284 zap_cursor_t zc;
285 zap_attribute_t za;
286 int err;
287
288 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_PUSHPAGE);
289 if (err)
290 return (err);
291
292 mutex_enter(&spa->spa_props_lock);
293
294 /*
295 * Get properties from the spa config.
296 */
297 spa_prop_get_config(spa, nvp);
298
299 /* If no pool property object, no more prop to get. */
300 if (mos == NULL || spa->spa_pool_props_object == 0) {
301 mutex_exit(&spa->spa_props_lock);
302 goto out;
303 }
304
305 /*
306 * Get properties from the MOS pool property object.
307 */
308 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
309 (err = zap_cursor_retrieve(&zc, &za)) == 0;
310 zap_cursor_advance(&zc)) {
311 uint64_t intval = 0;
312 char *strval = NULL;
313 zprop_source_t src = ZPROP_SRC_DEFAULT;
314 zpool_prop_t prop;
315
316 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
317 continue;
318
319 switch (za.za_integer_length) {
320 case 8:
321 /* integer property */
322 if (za.za_first_integer !=
323 zpool_prop_default_numeric(prop))
324 src = ZPROP_SRC_LOCAL;
325
326 if (prop == ZPOOL_PROP_BOOTFS) {
327 dsl_pool_t *dp;
328 dsl_dataset_t *ds = NULL;
329
330 dp = spa_get_dsl(spa);
331 dsl_pool_config_enter(dp, FTAG);
332 if ((err = dsl_dataset_hold_obj(dp,
333 za.za_first_integer, FTAG, &ds))) {
334 dsl_pool_config_exit(dp, FTAG);
335 break;
336 }
337
338 strval = kmem_alloc(
339 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
340 KM_PUSHPAGE);
341 dsl_dataset_name(ds, strval);
342 dsl_dataset_rele(ds, FTAG);
343 dsl_pool_config_exit(dp, FTAG);
344 } else {
345 strval = NULL;
346 intval = za.za_first_integer;
347 }
348
349 spa_prop_add_list(*nvp, prop, strval, intval, src);
350
351 if (strval != NULL)
352 kmem_free(strval,
353 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
354
355 break;
356
357 case 1:
358 /* string property */
359 strval = kmem_alloc(za.za_num_integers, KM_PUSHPAGE);
360 err = zap_lookup(mos, spa->spa_pool_props_object,
361 za.za_name, 1, za.za_num_integers, strval);
362 if (err) {
363 kmem_free(strval, za.za_num_integers);
364 break;
365 }
366 spa_prop_add_list(*nvp, prop, strval, 0, src);
367 kmem_free(strval, za.za_num_integers);
368 break;
369
370 default:
371 break;
372 }
373 }
374 zap_cursor_fini(&zc);
375 mutex_exit(&spa->spa_props_lock);
376 out:
377 if (err && err != ENOENT) {
378 nvlist_free(*nvp);
379 *nvp = NULL;
380 return (err);
381 }
382
383 return (0);
384 }
385
386 /*
387 * Validate the given pool properties nvlist and modify the list
388 * for the property values to be set.
389 */
390 static int
391 spa_prop_validate(spa_t *spa, nvlist_t *props)
392 {
393 nvpair_t *elem;
394 int error = 0, reset_bootfs = 0;
395 uint64_t objnum = 0;
396 boolean_t has_feature = B_FALSE;
397
398 elem = NULL;
399 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
400 uint64_t intval;
401 char *strval, *slash, *check, *fname;
402 const char *propname = nvpair_name(elem);
403 zpool_prop_t prop = zpool_name_to_prop(propname);
404
405 switch ((int)prop) {
406 case ZPROP_INVAL:
407 if (!zpool_prop_feature(propname)) {
408 error = SET_ERROR(EINVAL);
409 break;
410 }
411
412 /*
413 * Sanitize the input.
414 */
415 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
416 error = SET_ERROR(EINVAL);
417 break;
418 }
419
420 if (nvpair_value_uint64(elem, &intval) != 0) {
421 error = SET_ERROR(EINVAL);
422 break;
423 }
424
425 if (intval != 0) {
426 error = SET_ERROR(EINVAL);
427 break;
428 }
429
430 fname = strchr(propname, '@') + 1;
431 if (zfeature_lookup_name(fname, NULL) != 0) {
432 error = SET_ERROR(EINVAL);
433 break;
434 }
435
436 has_feature = B_TRUE;
437 break;
438
439 case ZPOOL_PROP_VERSION:
440 error = nvpair_value_uint64(elem, &intval);
441 if (!error &&
442 (intval < spa_version(spa) ||
443 intval > SPA_VERSION_BEFORE_FEATURES ||
444 has_feature))
445 error = SET_ERROR(EINVAL);
446 break;
447
448 case ZPOOL_PROP_DELEGATION:
449 case ZPOOL_PROP_AUTOREPLACE:
450 case ZPOOL_PROP_LISTSNAPS:
451 case ZPOOL_PROP_AUTOEXPAND:
452 error = nvpair_value_uint64(elem, &intval);
453 if (!error && intval > 1)
454 error = SET_ERROR(EINVAL);
455 break;
456
457 case ZPOOL_PROP_BOOTFS:
458 /*
459 * If the pool version is less than SPA_VERSION_BOOTFS,
460 * or the pool is still being created (version == 0),
461 * the bootfs property cannot be set.
462 */
463 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
464 error = SET_ERROR(ENOTSUP);
465 break;
466 }
467
468 /*
469 * Make sure the vdev config is bootable
470 */
471 if (!vdev_is_bootable(spa->spa_root_vdev)) {
472 error = SET_ERROR(ENOTSUP);
473 break;
474 }
475
476 reset_bootfs = 1;
477
478 error = nvpair_value_string(elem, &strval);
479
480 if (!error) {
481 objset_t *os;
482 uint64_t compress;
483
484 if (strval == NULL || strval[0] == '\0') {
485 objnum = zpool_prop_default_numeric(
486 ZPOOL_PROP_BOOTFS);
487 break;
488 }
489
490 error = dmu_objset_hold(strval, FTAG, &os);
491 if (error)
492 break;
493
494 /* Must be ZPL and not gzip compressed. */
495
496 if (dmu_objset_type(os) != DMU_OST_ZFS) {
497 error = SET_ERROR(ENOTSUP);
498 } else if ((error =
499 dsl_prop_get_int_ds(dmu_objset_ds(os),
500 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
501 &compress)) == 0 &&
502 !BOOTFS_COMPRESS_VALID(compress)) {
503 error = SET_ERROR(ENOTSUP);
504 } else {
505 objnum = dmu_objset_id(os);
506 }
507 dmu_objset_rele(os, FTAG);
508 }
509 break;
510
511 case ZPOOL_PROP_FAILUREMODE:
512 error = nvpair_value_uint64(elem, &intval);
513 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
514 intval > ZIO_FAILURE_MODE_PANIC))
515 error = SET_ERROR(EINVAL);
516
517 /*
518 * This is a special case which only occurs when
519 * the pool has completely failed. This allows
520 * the user to change the in-core failmode property
521 * without syncing it out to disk (I/Os might
522 * currently be blocked). We do this by returning
523 * EIO to the caller (spa_prop_set) to trick it
524 * into thinking we encountered a property validation
525 * error.
526 */
527 if (!error && spa_suspended(spa)) {
528 spa->spa_failmode = intval;
529 error = SET_ERROR(EIO);
530 }
531 break;
532
533 case ZPOOL_PROP_CACHEFILE:
534 if ((error = nvpair_value_string(elem, &strval)) != 0)
535 break;
536
537 if (strval[0] == '\0')
538 break;
539
540 if (strcmp(strval, "none") == 0)
541 break;
542
543 if (strval[0] != '/') {
544 error = SET_ERROR(EINVAL);
545 break;
546 }
547
548 slash = strrchr(strval, '/');
549 ASSERT(slash != NULL);
550
551 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
552 strcmp(slash, "/..") == 0)
553 error = SET_ERROR(EINVAL);
554 break;
555
556 case ZPOOL_PROP_COMMENT:
557 if ((error = nvpair_value_string(elem, &strval)) != 0)
558 break;
559 for (check = strval; *check != '\0'; check++) {
560 if (!isprint(*check)) {
561 error = SET_ERROR(EINVAL);
562 break;
563 }
564 check++;
565 }
566 if (strlen(strval) > ZPROP_MAX_COMMENT)
567 error = SET_ERROR(E2BIG);
568 break;
569
570 case ZPOOL_PROP_DEDUPDITTO:
571 if (spa_version(spa) < SPA_VERSION_DEDUP)
572 error = SET_ERROR(ENOTSUP);
573 else
574 error = nvpair_value_uint64(elem, &intval);
575 if (error == 0 &&
576 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
577 error = SET_ERROR(EINVAL);
578 break;
579
580 default:
581 break;
582 }
583
584 if (error)
585 break;
586 }
587
588 if (!error && reset_bootfs) {
589 error = nvlist_remove(props,
590 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
591
592 if (!error) {
593 error = nvlist_add_uint64(props,
594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
595 }
596 }
597
598 return (error);
599 }
600
601 void
602 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
603 {
604 char *cachefile;
605 spa_config_dirent_t *dp;
606
607 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
608 &cachefile) != 0)
609 return;
610
611 dp = kmem_alloc(sizeof (spa_config_dirent_t),
612 KM_PUSHPAGE);
613
614 if (cachefile[0] == '\0')
615 dp->scd_path = spa_strdup(spa_config_path);
616 else if (strcmp(cachefile, "none") == 0)
617 dp->scd_path = NULL;
618 else
619 dp->scd_path = spa_strdup(cachefile);
620
621 list_insert_head(&spa->spa_config_list, dp);
622 if (need_sync)
623 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
624 }
625
626 int
627 spa_prop_set(spa_t *spa, nvlist_t *nvp)
628 {
629 int error;
630 nvpair_t *elem = NULL;
631 boolean_t need_sync = B_FALSE;
632
633 if ((error = spa_prop_validate(spa, nvp)) != 0)
634 return (error);
635
636 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
637 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
638
639 if (prop == ZPOOL_PROP_CACHEFILE ||
640 prop == ZPOOL_PROP_ALTROOT ||
641 prop == ZPOOL_PROP_READONLY)
642 continue;
643
644 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
645 uint64_t ver;
646
647 if (prop == ZPOOL_PROP_VERSION) {
648 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
649 } else {
650 ASSERT(zpool_prop_feature(nvpair_name(elem)));
651 ver = SPA_VERSION_FEATURES;
652 need_sync = B_TRUE;
653 }
654
655 /* Save time if the version is already set. */
656 if (ver == spa_version(spa))
657 continue;
658
659 /*
660 * In addition to the pool directory object, we might
661 * create the pool properties object, the features for
662 * read object, the features for write object, or the
663 * feature descriptions object.
664 */
665 error = dsl_sync_task(spa->spa_name, NULL,
666 spa_sync_version, &ver, 6);
667 if (error)
668 return (error);
669 continue;
670 }
671
672 need_sync = B_TRUE;
673 break;
674 }
675
676 if (need_sync) {
677 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
678 nvp, 6));
679 }
680
681 return (0);
682 }
683
684 /*
685 * If the bootfs property value is dsobj, clear it.
686 */
687 void
688 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
689 {
690 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
691 VERIFY(zap_remove(spa->spa_meta_objset,
692 spa->spa_pool_props_object,
693 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
694 spa->spa_bootfs = 0;
695 }
696 }
697
698 /*ARGSUSED*/
699 static int
700 spa_change_guid_check(void *arg, dmu_tx_t *tx)
701 {
702 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
703 vdev_t *rvd = spa->spa_root_vdev;
704 uint64_t vdev_state;
705 ASSERTV(uint64_t *newguid = arg);
706
707 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
708 vdev_state = rvd->vdev_state;
709 spa_config_exit(spa, SCL_STATE, FTAG);
710
711 if (vdev_state != VDEV_STATE_HEALTHY)
712 return (SET_ERROR(ENXIO));
713
714 ASSERT3U(spa_guid(spa), !=, *newguid);
715
716 return (0);
717 }
718
719 static void
720 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
721 {
722 uint64_t *newguid = arg;
723 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
724 uint64_t oldguid;
725 vdev_t *rvd = spa->spa_root_vdev;
726
727 oldguid = spa_guid(spa);
728
729 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
730 rvd->vdev_guid = *newguid;
731 rvd->vdev_guid_sum += (*newguid - oldguid);
732 vdev_config_dirty(rvd);
733 spa_config_exit(spa, SCL_STATE, FTAG);
734
735 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
736 oldguid, *newguid);
737 }
738
739 /*
740 * Change the GUID for the pool. This is done so that we can later
741 * re-import a pool built from a clone of our own vdevs. We will modify
742 * the root vdev's guid, our own pool guid, and then mark all of our
743 * vdevs dirty. Note that we must make sure that all our vdevs are
744 * online when we do this, or else any vdevs that weren't present
745 * would be orphaned from our pool. We are also going to issue a
746 * sysevent to update any watchers.
747 */
748 int
749 spa_change_guid(spa_t *spa)
750 {
751 int error;
752 uint64_t guid;
753
754 mutex_enter(&spa->spa_vdev_top_lock);
755 mutex_enter(&spa_namespace_lock);
756 guid = spa_generate_guid(NULL);
757
758 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
759 spa_change_guid_sync, &guid, 5);
760
761 if (error == 0) {
762 spa_config_sync(spa, B_FALSE, B_TRUE);
763 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
764 }
765
766 mutex_exit(&spa_namespace_lock);
767 mutex_exit(&spa->spa_vdev_top_lock);
768
769 return (error);
770 }
771
772 /*
773 * ==========================================================================
774 * SPA state manipulation (open/create/destroy/import/export)
775 * ==========================================================================
776 */
777
778 static int
779 spa_error_entry_compare(const void *a, const void *b)
780 {
781 spa_error_entry_t *sa = (spa_error_entry_t *)a;
782 spa_error_entry_t *sb = (spa_error_entry_t *)b;
783 int ret;
784
785 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
786 sizeof (zbookmark_phys_t));
787
788 if (ret < 0)
789 return (-1);
790 else if (ret > 0)
791 return (1);
792 else
793 return (0);
794 }
795
796 /*
797 * Utility function which retrieves copies of the current logs and
798 * re-initializes them in the process.
799 */
800 void
801 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
802 {
803 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
804
805 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
806 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
807
808 avl_create(&spa->spa_errlist_scrub,
809 spa_error_entry_compare, sizeof (spa_error_entry_t),
810 offsetof(spa_error_entry_t, se_avl));
811 avl_create(&spa->spa_errlist_last,
812 spa_error_entry_compare, sizeof (spa_error_entry_t),
813 offsetof(spa_error_entry_t, se_avl));
814 }
815
816 static void
817 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
818 {
819 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
820 enum zti_modes mode = ztip->zti_mode;
821 uint_t value = ztip->zti_value;
822 uint_t count = ztip->zti_count;
823 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
824 char name[32];
825 uint_t i, flags = 0;
826 boolean_t batch = B_FALSE;
827
828 if (mode == ZTI_MODE_NULL) {
829 tqs->stqs_count = 0;
830 tqs->stqs_taskq = NULL;
831 return;
832 }
833
834 ASSERT3U(count, >, 0);
835
836 tqs->stqs_count = count;
837 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
838
839 switch (mode) {
840 case ZTI_MODE_FIXED:
841 ASSERT3U(value, >=, 1);
842 value = MAX(value, 1);
843 break;
844
845 case ZTI_MODE_BATCH:
846 batch = B_TRUE;
847 flags |= TASKQ_THREADS_CPU_PCT;
848 value = zio_taskq_batch_pct;
849 break;
850
851 default:
852 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
853 "spa_activate()",
854 zio_type_name[t], zio_taskq_types[q], mode, value);
855 break;
856 }
857
858 for (i = 0; i < count; i++) {
859 taskq_t *tq;
860
861 if (count > 1) {
862 (void) snprintf(name, sizeof (name), "%s_%s_%u",
863 zio_type_name[t], zio_taskq_types[q], i);
864 } else {
865 (void) snprintf(name, sizeof (name), "%s_%s",
866 zio_type_name[t], zio_taskq_types[q]);
867 }
868
869 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
870 if (batch)
871 flags |= TASKQ_DC_BATCH;
872
873 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
874 spa->spa_proc, zio_taskq_basedc, flags);
875 } else {
876 pri_t pri = maxclsyspri;
877 /*
878 * The write issue taskq can be extremely CPU
879 * intensive. Run it at slightly lower priority
880 * than the other taskqs.
881 */
882 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
883 pri--;
884
885 tq = taskq_create_proc(name, value, pri, 50,
886 INT_MAX, spa->spa_proc, flags);
887 }
888
889 tqs->stqs_taskq[i] = tq;
890 }
891 }
892
893 static void
894 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
895 {
896 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
897 uint_t i;
898
899 if (tqs->stqs_taskq == NULL) {
900 ASSERT3U(tqs->stqs_count, ==, 0);
901 return;
902 }
903
904 for (i = 0; i < tqs->stqs_count; i++) {
905 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
906 taskq_destroy(tqs->stqs_taskq[i]);
907 }
908
909 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
910 tqs->stqs_taskq = NULL;
911 }
912
913 /*
914 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
915 * Note that a type may have multiple discrete taskqs to avoid lock contention
916 * on the taskq itself. In that case we choose which taskq at random by using
917 * the low bits of gethrtime().
918 */
919 void
920 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
921 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
922 {
923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 taskq_t *tq;
925
926 ASSERT3P(tqs->stqs_taskq, !=, NULL);
927 ASSERT3U(tqs->stqs_count, !=, 0);
928
929 if (tqs->stqs_count == 1) {
930 tq = tqs->stqs_taskq[0];
931 } else {
932 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
933 }
934
935 taskq_dispatch_ent(tq, func, arg, flags, ent);
936 }
937
938 /*
939 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
940 */
941 void
942 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
943 task_func_t *func, void *arg, uint_t flags)
944 {
945 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
946 taskq_t *tq;
947 taskqid_t id;
948
949 ASSERT3P(tqs->stqs_taskq, !=, NULL);
950 ASSERT3U(tqs->stqs_count, !=, 0);
951
952 if (tqs->stqs_count == 1) {
953 tq = tqs->stqs_taskq[0];
954 } else {
955 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
956 }
957
958 id = taskq_dispatch(tq, func, arg, flags);
959 if (id)
960 taskq_wait_id(tq, id);
961 }
962
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
965 {
966 int t, q;
967
968 for (t = 0; t < ZIO_TYPES; t++) {
969 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
970 spa_taskqs_init(spa, t, q);
971 }
972 }
973 }
974
975 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
976 static void
977 spa_thread(void *arg)
978 {
979 callb_cpr_t cprinfo;
980
981 spa_t *spa = arg;
982 user_t *pu = PTOU(curproc);
983
984 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
985 spa->spa_name);
986
987 ASSERT(curproc != &p0);
988 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
989 "zpool-%s", spa->spa_name);
990 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
991
992 /* bind this thread to the requested psrset */
993 if (zio_taskq_psrset_bind != PS_NONE) {
994 pool_lock();
995 mutex_enter(&cpu_lock);
996 mutex_enter(&pidlock);
997 mutex_enter(&curproc->p_lock);
998
999 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1000 0, NULL, NULL) == 0) {
1001 curthread->t_bind_pset = zio_taskq_psrset_bind;
1002 } else {
1003 cmn_err(CE_WARN,
1004 "Couldn't bind process for zfs pool \"%s\" to "
1005 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1006 }
1007
1008 mutex_exit(&curproc->p_lock);
1009 mutex_exit(&pidlock);
1010 mutex_exit(&cpu_lock);
1011 pool_unlock();
1012 }
1013
1014 if (zio_taskq_sysdc) {
1015 sysdc_thread_enter(curthread, 100, 0);
1016 }
1017
1018 spa->spa_proc = curproc;
1019 spa->spa_did = curthread->t_did;
1020
1021 spa_create_zio_taskqs(spa);
1022
1023 mutex_enter(&spa->spa_proc_lock);
1024 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1025
1026 spa->spa_proc_state = SPA_PROC_ACTIVE;
1027 cv_broadcast(&spa->spa_proc_cv);
1028
1029 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1030 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1031 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1032 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1033
1034 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1035 spa->spa_proc_state = SPA_PROC_GONE;
1036 spa->spa_proc = &p0;
1037 cv_broadcast(&spa->spa_proc_cv);
1038 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1039
1040 mutex_enter(&curproc->p_lock);
1041 lwp_exit();
1042 }
1043 #endif
1044
1045 /*
1046 * Activate an uninitialized pool.
1047 */
1048 static void
1049 spa_activate(spa_t *spa, int mode)
1050 {
1051 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1052
1053 spa->spa_state = POOL_STATE_ACTIVE;
1054 spa->spa_mode = mode;
1055
1056 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1058
1059 /* Try to create a covering process */
1060 mutex_enter(&spa->spa_proc_lock);
1061 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1062 ASSERT(spa->spa_proc == &p0);
1063 spa->spa_did = 0;
1064
1065 #ifdef HAVE_SPA_THREAD
1066 /* Only create a process if we're going to be around a while. */
1067 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1068 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1069 NULL, 0) == 0) {
1070 spa->spa_proc_state = SPA_PROC_CREATED;
1071 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1072 cv_wait(&spa->spa_proc_cv,
1073 &spa->spa_proc_lock);
1074 }
1075 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1076 ASSERT(spa->spa_proc != &p0);
1077 ASSERT(spa->spa_did != 0);
1078 } else {
1079 #ifdef _KERNEL
1080 cmn_err(CE_WARN,
1081 "Couldn't create process for zfs pool \"%s\"\n",
1082 spa->spa_name);
1083 #endif
1084 }
1085 }
1086 #endif /* HAVE_SPA_THREAD */
1087 mutex_exit(&spa->spa_proc_lock);
1088
1089 /* If we didn't create a process, we need to create our taskqs. */
1090 if (spa->spa_proc == &p0) {
1091 spa_create_zio_taskqs(spa);
1092 }
1093
1094 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_config_dirty_node));
1096 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1097 offsetof(vdev_t, vdev_state_dirty_node));
1098
1099 txg_list_create(&spa->spa_vdev_txg_list,
1100 offsetof(struct vdev, vdev_txg_node));
1101
1102 avl_create(&spa->spa_errlist_scrub,
1103 spa_error_entry_compare, sizeof (spa_error_entry_t),
1104 offsetof(spa_error_entry_t, se_avl));
1105 avl_create(&spa->spa_errlist_last,
1106 spa_error_entry_compare, sizeof (spa_error_entry_t),
1107 offsetof(spa_error_entry_t, se_avl));
1108 }
1109
1110 /*
1111 * Opposite of spa_activate().
1112 */
1113 static void
1114 spa_deactivate(spa_t *spa)
1115 {
1116 int t, q;
1117
1118 ASSERT(spa->spa_sync_on == B_FALSE);
1119 ASSERT(spa->spa_dsl_pool == NULL);
1120 ASSERT(spa->spa_root_vdev == NULL);
1121 ASSERT(spa->spa_async_zio_root == NULL);
1122 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1123
1124 txg_list_destroy(&spa->spa_vdev_txg_list);
1125
1126 list_destroy(&spa->spa_config_dirty_list);
1127 list_destroy(&spa->spa_state_dirty_list);
1128
1129 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1130
1131 for (t = 0; t < ZIO_TYPES; t++) {
1132 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1133 spa_taskqs_fini(spa, t, q);
1134 }
1135 }
1136
1137 metaslab_class_destroy(spa->spa_normal_class);
1138 spa->spa_normal_class = NULL;
1139
1140 metaslab_class_destroy(spa->spa_log_class);
1141 spa->spa_log_class = NULL;
1142
1143 /*
1144 * If this was part of an import or the open otherwise failed, we may
1145 * still have errors left in the queues. Empty them just in case.
1146 */
1147 spa_errlog_drain(spa);
1148
1149 avl_destroy(&spa->spa_errlist_scrub);
1150 avl_destroy(&spa->spa_errlist_last);
1151
1152 spa->spa_state = POOL_STATE_UNINITIALIZED;
1153
1154 mutex_enter(&spa->spa_proc_lock);
1155 if (spa->spa_proc_state != SPA_PROC_NONE) {
1156 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1157 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1158 cv_broadcast(&spa->spa_proc_cv);
1159 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1160 ASSERT(spa->spa_proc != &p0);
1161 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1162 }
1163 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1164 spa->spa_proc_state = SPA_PROC_NONE;
1165 }
1166 ASSERT(spa->spa_proc == &p0);
1167 mutex_exit(&spa->spa_proc_lock);
1168
1169 /*
1170 * We want to make sure spa_thread() has actually exited the ZFS
1171 * module, so that the module can't be unloaded out from underneath
1172 * it.
1173 */
1174 if (spa->spa_did != 0) {
1175 thread_join(spa->spa_did);
1176 spa->spa_did = 0;
1177 }
1178 }
1179
1180 /*
1181 * Verify a pool configuration, and construct the vdev tree appropriately. This
1182 * will create all the necessary vdevs in the appropriate layout, with each vdev
1183 * in the CLOSED state. This will prep the pool before open/creation/import.
1184 * All vdev validation is done by the vdev_alloc() routine.
1185 */
1186 static int
1187 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1188 uint_t id, int atype)
1189 {
1190 nvlist_t **child;
1191 uint_t children;
1192 int error;
1193 int c;
1194
1195 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1196 return (error);
1197
1198 if ((*vdp)->vdev_ops->vdev_op_leaf)
1199 return (0);
1200
1201 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1202 &child, &children);
1203
1204 if (error == ENOENT)
1205 return (0);
1206
1207 if (error) {
1208 vdev_free(*vdp);
1209 *vdp = NULL;
1210 return (SET_ERROR(EINVAL));
1211 }
1212
1213 for (c = 0; c < children; c++) {
1214 vdev_t *vd;
1215 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1216 atype)) != 0) {
1217 vdev_free(*vdp);
1218 *vdp = NULL;
1219 return (error);
1220 }
1221 }
1222
1223 ASSERT(*vdp != NULL);
1224
1225 return (0);
1226 }
1227
1228 /*
1229 * Opposite of spa_load().
1230 */
1231 static void
1232 spa_unload(spa_t *spa)
1233 {
1234 int i;
1235
1236 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1237
1238 /*
1239 * Stop async tasks.
1240 */
1241 spa_async_suspend(spa);
1242
1243 /*
1244 * Stop syncing.
1245 */
1246 if (spa->spa_sync_on) {
1247 txg_sync_stop(spa->spa_dsl_pool);
1248 spa->spa_sync_on = B_FALSE;
1249 }
1250
1251 /*
1252 * Wait for any outstanding async I/O to complete.
1253 */
1254 if (spa->spa_async_zio_root != NULL) {
1255 (void) zio_wait(spa->spa_async_zio_root);
1256 spa->spa_async_zio_root = NULL;
1257 }
1258
1259 bpobj_close(&spa->spa_deferred_bpobj);
1260
1261 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1262
1263 /*
1264 * Close all vdevs.
1265 */
1266 if (spa->spa_root_vdev)
1267 vdev_free(spa->spa_root_vdev);
1268 ASSERT(spa->spa_root_vdev == NULL);
1269
1270 /*
1271 * Close the dsl pool.
1272 */
1273 if (spa->spa_dsl_pool) {
1274 dsl_pool_close(spa->spa_dsl_pool);
1275 spa->spa_dsl_pool = NULL;
1276 spa->spa_meta_objset = NULL;
1277 }
1278
1279 ddt_unload(spa);
1280
1281
1282 /*
1283 * Drop and purge level 2 cache
1284 */
1285 spa_l2cache_drop(spa);
1286
1287 for (i = 0; i < spa->spa_spares.sav_count; i++)
1288 vdev_free(spa->spa_spares.sav_vdevs[i]);
1289 if (spa->spa_spares.sav_vdevs) {
1290 kmem_free(spa->spa_spares.sav_vdevs,
1291 spa->spa_spares.sav_count * sizeof (void *));
1292 spa->spa_spares.sav_vdevs = NULL;
1293 }
1294 if (spa->spa_spares.sav_config) {
1295 nvlist_free(spa->spa_spares.sav_config);
1296 spa->spa_spares.sav_config = NULL;
1297 }
1298 spa->spa_spares.sav_count = 0;
1299
1300 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1301 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1302 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1303 }
1304 if (spa->spa_l2cache.sav_vdevs) {
1305 kmem_free(spa->spa_l2cache.sav_vdevs,
1306 spa->spa_l2cache.sav_count * sizeof (void *));
1307 spa->spa_l2cache.sav_vdevs = NULL;
1308 }
1309 if (spa->spa_l2cache.sav_config) {
1310 nvlist_free(spa->spa_l2cache.sav_config);
1311 spa->spa_l2cache.sav_config = NULL;
1312 }
1313 spa->spa_l2cache.sav_count = 0;
1314
1315 spa->spa_async_suspended = 0;
1316
1317 if (spa->spa_comment != NULL) {
1318 spa_strfree(spa->spa_comment);
1319 spa->spa_comment = NULL;
1320 }
1321
1322 spa_config_exit(spa, SCL_ALL, FTAG);
1323 }
1324
1325 /*
1326 * Load (or re-load) the current list of vdevs describing the active spares for
1327 * this pool. When this is called, we have some form of basic information in
1328 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1329 * then re-generate a more complete list including status information.
1330 */
1331 static void
1332 spa_load_spares(spa_t *spa)
1333 {
1334 nvlist_t **spares;
1335 uint_t nspares;
1336 int i;
1337 vdev_t *vd, *tvd;
1338
1339 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1340
1341 /*
1342 * First, close and free any existing spare vdevs.
1343 */
1344 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1345 vd = spa->spa_spares.sav_vdevs[i];
1346
1347 /* Undo the call to spa_activate() below */
1348 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1349 B_FALSE)) != NULL && tvd->vdev_isspare)
1350 spa_spare_remove(tvd);
1351 vdev_close(vd);
1352 vdev_free(vd);
1353 }
1354
1355 if (spa->spa_spares.sav_vdevs)
1356 kmem_free(spa->spa_spares.sav_vdevs,
1357 spa->spa_spares.sav_count * sizeof (void *));
1358
1359 if (spa->spa_spares.sav_config == NULL)
1360 nspares = 0;
1361 else
1362 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1363 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1364
1365 spa->spa_spares.sav_count = (int)nspares;
1366 spa->spa_spares.sav_vdevs = NULL;
1367
1368 if (nspares == 0)
1369 return;
1370
1371 /*
1372 * Construct the array of vdevs, opening them to get status in the
1373 * process. For each spare, there is potentially two different vdev_t
1374 * structures associated with it: one in the list of spares (used only
1375 * for basic validation purposes) and one in the active vdev
1376 * configuration (if it's spared in). During this phase we open and
1377 * validate each vdev on the spare list. If the vdev also exists in the
1378 * active configuration, then we also mark this vdev as an active spare.
1379 */
1380 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1381 KM_PUSHPAGE);
1382 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1383 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1384 VDEV_ALLOC_SPARE) == 0);
1385 ASSERT(vd != NULL);
1386
1387 spa->spa_spares.sav_vdevs[i] = vd;
1388
1389 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1390 B_FALSE)) != NULL) {
1391 if (!tvd->vdev_isspare)
1392 spa_spare_add(tvd);
1393
1394 /*
1395 * We only mark the spare active if we were successfully
1396 * able to load the vdev. Otherwise, importing a pool
1397 * with a bad active spare would result in strange
1398 * behavior, because multiple pool would think the spare
1399 * is actively in use.
1400 *
1401 * There is a vulnerability here to an equally bizarre
1402 * circumstance, where a dead active spare is later
1403 * brought back to life (onlined or otherwise). Given
1404 * the rarity of this scenario, and the extra complexity
1405 * it adds, we ignore the possibility.
1406 */
1407 if (!vdev_is_dead(tvd))
1408 spa_spare_activate(tvd);
1409 }
1410
1411 vd->vdev_top = vd;
1412 vd->vdev_aux = &spa->spa_spares;
1413
1414 if (vdev_open(vd) != 0)
1415 continue;
1416
1417 if (vdev_validate_aux(vd) == 0)
1418 spa_spare_add(vd);
1419 }
1420
1421 /*
1422 * Recompute the stashed list of spares, with status information
1423 * this time.
1424 */
1425 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1426 DATA_TYPE_NVLIST_ARRAY) == 0);
1427
1428 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1429 KM_PUSHPAGE);
1430 for (i = 0; i < spa->spa_spares.sav_count; i++)
1431 spares[i] = vdev_config_generate(spa,
1432 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1433 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1434 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1435 for (i = 0; i < spa->spa_spares.sav_count; i++)
1436 nvlist_free(spares[i]);
1437 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1438 }
1439
1440 /*
1441 * Load (or re-load) the current list of vdevs describing the active l2cache for
1442 * this pool. When this is called, we have some form of basic information in
1443 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1444 * then re-generate a more complete list including status information.
1445 * Devices which are already active have their details maintained, and are
1446 * not re-opened.
1447 */
1448 static void
1449 spa_load_l2cache(spa_t *spa)
1450 {
1451 nvlist_t **l2cache;
1452 uint_t nl2cache;
1453 int i, j, oldnvdevs;
1454 uint64_t guid;
1455 vdev_t *vd, **oldvdevs, **newvdevs;
1456 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1457
1458 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1459
1460 if (sav->sav_config != NULL) {
1461 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1462 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1463 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_PUSHPAGE);
1464 } else {
1465 nl2cache = 0;
1466 newvdevs = NULL;
1467 }
1468
1469 oldvdevs = sav->sav_vdevs;
1470 oldnvdevs = sav->sav_count;
1471 sav->sav_vdevs = NULL;
1472 sav->sav_count = 0;
1473
1474 /*
1475 * Process new nvlist of vdevs.
1476 */
1477 for (i = 0; i < nl2cache; i++) {
1478 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1479 &guid) == 0);
1480
1481 newvdevs[i] = NULL;
1482 for (j = 0; j < oldnvdevs; j++) {
1483 vd = oldvdevs[j];
1484 if (vd != NULL && guid == vd->vdev_guid) {
1485 /*
1486 * Retain previous vdev for add/remove ops.
1487 */
1488 newvdevs[i] = vd;
1489 oldvdevs[j] = NULL;
1490 break;
1491 }
1492 }
1493
1494 if (newvdevs[i] == NULL) {
1495 /*
1496 * Create new vdev
1497 */
1498 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1499 VDEV_ALLOC_L2CACHE) == 0);
1500 ASSERT(vd != NULL);
1501 newvdevs[i] = vd;
1502
1503 /*
1504 * Commit this vdev as an l2cache device,
1505 * even if it fails to open.
1506 */
1507 spa_l2cache_add(vd);
1508
1509 vd->vdev_top = vd;
1510 vd->vdev_aux = sav;
1511
1512 spa_l2cache_activate(vd);
1513
1514 if (vdev_open(vd) != 0)
1515 continue;
1516
1517 (void) vdev_validate_aux(vd);
1518
1519 if (!vdev_is_dead(vd))
1520 l2arc_add_vdev(spa, vd);
1521 }
1522 }
1523
1524 /*
1525 * Purge vdevs that were dropped
1526 */
1527 for (i = 0; i < oldnvdevs; i++) {
1528 uint64_t pool;
1529
1530 vd = oldvdevs[i];
1531 if (vd != NULL) {
1532 ASSERT(vd->vdev_isl2cache);
1533
1534 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1535 pool != 0ULL && l2arc_vdev_present(vd))
1536 l2arc_remove_vdev(vd);
1537 vdev_clear_stats(vd);
1538 vdev_free(vd);
1539 }
1540 }
1541
1542 if (oldvdevs)
1543 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1544
1545 if (sav->sav_config == NULL)
1546 goto out;
1547
1548 sav->sav_vdevs = newvdevs;
1549 sav->sav_count = (int)nl2cache;
1550
1551 /*
1552 * Recompute the stashed list of l2cache devices, with status
1553 * information this time.
1554 */
1555 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1556 DATA_TYPE_NVLIST_ARRAY) == 0);
1557
1558 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_PUSHPAGE);
1559 for (i = 0; i < sav->sav_count; i++)
1560 l2cache[i] = vdev_config_generate(spa,
1561 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1562 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1563 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1564 out:
1565 for (i = 0; i < sav->sav_count; i++)
1566 nvlist_free(l2cache[i]);
1567 if (sav->sav_count)
1568 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1569 }
1570
1571 static int
1572 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1573 {
1574 dmu_buf_t *db;
1575 char *packed = NULL;
1576 size_t nvsize = 0;
1577 int error;
1578 *value = NULL;
1579
1580 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1581 if (error)
1582 return (error);
1583
1584 nvsize = *(uint64_t *)db->db_data;
1585 dmu_buf_rele(db, FTAG);
1586
1587 packed = kmem_alloc(nvsize, KM_PUSHPAGE | KM_NODEBUG);
1588 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1589 DMU_READ_PREFETCH);
1590 if (error == 0)
1591 error = nvlist_unpack(packed, nvsize, value, 0);
1592 kmem_free(packed, nvsize);
1593
1594 return (error);
1595 }
1596
1597 /*
1598 * Checks to see if the given vdev could not be opened, in which case we post a
1599 * sysevent to notify the autoreplace code that the device has been removed.
1600 */
1601 static void
1602 spa_check_removed(vdev_t *vd)
1603 {
1604 int c;
1605
1606 for (c = 0; c < vd->vdev_children; c++)
1607 spa_check_removed(vd->vdev_child[c]);
1608
1609 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1610 !vd->vdev_ishole) {
1611 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1612 vd->vdev_spa, vd, NULL, 0, 0);
1613 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1614 }
1615 }
1616
1617 /*
1618 * Validate the current config against the MOS config
1619 */
1620 static boolean_t
1621 spa_config_valid(spa_t *spa, nvlist_t *config)
1622 {
1623 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1624 nvlist_t *nv;
1625 int c, i;
1626
1627 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1628
1629 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1630 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1631
1632 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1633
1634 /*
1635 * If we're doing a normal import, then build up any additional
1636 * diagnostic information about missing devices in this config.
1637 * We'll pass this up to the user for further processing.
1638 */
1639 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1640 nvlist_t **child, *nv;
1641 uint64_t idx = 0;
1642
1643 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1644 KM_PUSHPAGE);
1645 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
1646
1647 for (c = 0; c < rvd->vdev_children; c++) {
1648 vdev_t *tvd = rvd->vdev_child[c];
1649 vdev_t *mtvd = mrvd->vdev_child[c];
1650
1651 if (tvd->vdev_ops == &vdev_missing_ops &&
1652 mtvd->vdev_ops != &vdev_missing_ops &&
1653 mtvd->vdev_islog)
1654 child[idx++] = vdev_config_generate(spa, mtvd,
1655 B_FALSE, 0);
1656 }
1657
1658 if (idx) {
1659 VERIFY(nvlist_add_nvlist_array(nv,
1660 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1661 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1662 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1663
1664 for (i = 0; i < idx; i++)
1665 nvlist_free(child[i]);
1666 }
1667 nvlist_free(nv);
1668 kmem_free(child, rvd->vdev_children * sizeof (char **));
1669 }
1670
1671 /*
1672 * Compare the root vdev tree with the information we have
1673 * from the MOS config (mrvd). Check each top-level vdev
1674 * with the corresponding MOS config top-level (mtvd).
1675 */
1676 for (c = 0; c < rvd->vdev_children; c++) {
1677 vdev_t *tvd = rvd->vdev_child[c];
1678 vdev_t *mtvd = mrvd->vdev_child[c];
1679
1680 /*
1681 * Resolve any "missing" vdevs in the current configuration.
1682 * If we find that the MOS config has more accurate information
1683 * about the top-level vdev then use that vdev instead.
1684 */
1685 if (tvd->vdev_ops == &vdev_missing_ops &&
1686 mtvd->vdev_ops != &vdev_missing_ops) {
1687
1688 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1689 continue;
1690
1691 /*
1692 * Device specific actions.
1693 */
1694 if (mtvd->vdev_islog) {
1695 spa_set_log_state(spa, SPA_LOG_CLEAR);
1696 } else {
1697 /*
1698 * XXX - once we have 'readonly' pool
1699 * support we should be able to handle
1700 * missing data devices by transitioning
1701 * the pool to readonly.
1702 */
1703 continue;
1704 }
1705
1706 /*
1707 * Swap the missing vdev with the data we were
1708 * able to obtain from the MOS config.
1709 */
1710 vdev_remove_child(rvd, tvd);
1711 vdev_remove_child(mrvd, mtvd);
1712
1713 vdev_add_child(rvd, mtvd);
1714 vdev_add_child(mrvd, tvd);
1715
1716 spa_config_exit(spa, SCL_ALL, FTAG);
1717 vdev_load(mtvd);
1718 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1719
1720 vdev_reopen(rvd);
1721 } else if (mtvd->vdev_islog) {
1722 /*
1723 * Load the slog device's state from the MOS config
1724 * since it's possible that the label does not
1725 * contain the most up-to-date information.
1726 */
1727 vdev_load_log_state(tvd, mtvd);
1728 vdev_reopen(tvd);
1729 }
1730 }
1731 vdev_free(mrvd);
1732 spa_config_exit(spa, SCL_ALL, FTAG);
1733
1734 /*
1735 * Ensure we were able to validate the config.
1736 */
1737 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1738 }
1739
1740 /*
1741 * Check for missing log devices
1742 */
1743 static boolean_t
1744 spa_check_logs(spa_t *spa)
1745 {
1746 boolean_t rv = B_FALSE;
1747
1748 switch (spa->spa_log_state) {
1749 default:
1750 break;
1751 case SPA_LOG_MISSING:
1752 /* need to recheck in case slog has been restored */
1753 case SPA_LOG_UNKNOWN:
1754 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1755 NULL, DS_FIND_CHILDREN) != 0);
1756 if (rv)
1757 spa_set_log_state(spa, SPA_LOG_MISSING);
1758 break;
1759 }
1760 return (rv);
1761 }
1762
1763 static boolean_t
1764 spa_passivate_log(spa_t *spa)
1765 {
1766 vdev_t *rvd = spa->spa_root_vdev;
1767 boolean_t slog_found = B_FALSE;
1768 int c;
1769
1770 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1771
1772 if (!spa_has_slogs(spa))
1773 return (B_FALSE);
1774
1775 for (c = 0; c < rvd->vdev_children; c++) {
1776 vdev_t *tvd = rvd->vdev_child[c];
1777 metaslab_group_t *mg = tvd->vdev_mg;
1778
1779 if (tvd->vdev_islog) {
1780 metaslab_group_passivate(mg);
1781 slog_found = B_TRUE;
1782 }
1783 }
1784
1785 return (slog_found);
1786 }
1787
1788 static void
1789 spa_activate_log(spa_t *spa)
1790 {
1791 vdev_t *rvd = spa->spa_root_vdev;
1792 int c;
1793
1794 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1795
1796 for (c = 0; c < rvd->vdev_children; c++) {
1797 vdev_t *tvd = rvd->vdev_child[c];
1798 metaslab_group_t *mg = tvd->vdev_mg;
1799
1800 if (tvd->vdev_islog)
1801 metaslab_group_activate(mg);
1802 }
1803 }
1804
1805 int
1806 spa_offline_log(spa_t *spa)
1807 {
1808 int error;
1809
1810 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1811 NULL, DS_FIND_CHILDREN);
1812 if (error == 0) {
1813 /*
1814 * We successfully offlined the log device, sync out the
1815 * current txg so that the "stubby" block can be removed
1816 * by zil_sync().
1817 */
1818 txg_wait_synced(spa->spa_dsl_pool, 0);
1819 }
1820 return (error);
1821 }
1822
1823 static void
1824 spa_aux_check_removed(spa_aux_vdev_t *sav)
1825 {
1826 int i;
1827
1828 for (i = 0; i < sav->sav_count; i++)
1829 spa_check_removed(sav->sav_vdevs[i]);
1830 }
1831
1832 void
1833 spa_claim_notify(zio_t *zio)
1834 {
1835 spa_t *spa = zio->io_spa;
1836
1837 if (zio->io_error)
1838 return;
1839
1840 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1841 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1842 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1843 mutex_exit(&spa->spa_props_lock);
1844 }
1845
1846 typedef struct spa_load_error {
1847 uint64_t sle_meta_count;
1848 uint64_t sle_data_count;
1849 } spa_load_error_t;
1850
1851 static void
1852 spa_load_verify_done(zio_t *zio)
1853 {
1854 blkptr_t *bp = zio->io_bp;
1855 spa_load_error_t *sle = zio->io_private;
1856 dmu_object_type_t type = BP_GET_TYPE(bp);
1857 int error = zio->io_error;
1858 spa_t *spa = zio->io_spa;
1859
1860 if (error) {
1861 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1862 type != DMU_OT_INTENT_LOG)
1863 atomic_add_64(&sle->sle_meta_count, 1);
1864 else
1865 atomic_add_64(&sle->sle_data_count, 1);
1866 }
1867 zio_data_buf_free(zio->io_data, zio->io_size);
1868
1869 mutex_enter(&spa->spa_scrub_lock);
1870 spa->spa_scrub_inflight--;
1871 cv_broadcast(&spa->spa_scrub_io_cv);
1872 mutex_exit(&spa->spa_scrub_lock);
1873 }
1874
1875 /*
1876 * Maximum number of concurrent scrub i/os to create while verifying
1877 * a pool while importing it.
1878 */
1879 int spa_load_verify_maxinflight = 10000;
1880 int spa_load_verify_metadata = B_TRUE;
1881 int spa_load_verify_data = B_TRUE;
1882
1883 /*ARGSUSED*/
1884 static int
1885 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1886 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1887 {
1888 zio_t *rio;
1889 size_t size;
1890 void *data;
1891
1892 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1893 return (0);
1894 /*
1895 * Note: normally this routine will not be called if
1896 * spa_load_verify_metadata is not set. However, it may be useful
1897 * to manually set the flag after the traversal has begun.
1898 */
1899 if (!spa_load_verify_metadata)
1900 return (0);
1901 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1902 return (0);
1903
1904 rio = arg;
1905 size = BP_GET_PSIZE(bp);
1906 data = zio_data_buf_alloc(size);
1907
1908 mutex_enter(&spa->spa_scrub_lock);
1909 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1910 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1911 spa->spa_scrub_inflight++;
1912 mutex_exit(&spa->spa_scrub_lock);
1913
1914 zio_nowait(zio_read(rio, spa, bp, data, size,
1915 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1916 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1917 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1918 return (0);
1919 }
1920
1921 static int
1922 spa_load_verify(spa_t *spa)
1923 {
1924 zio_t *rio;
1925 spa_load_error_t sle = { 0 };
1926 zpool_rewind_policy_t policy;
1927 boolean_t verify_ok = B_FALSE;
1928 int error = 0;
1929
1930 zpool_get_rewind_policy(spa->spa_config, &policy);
1931
1932 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1933 return (0);
1934
1935 rio = zio_root(spa, NULL, &sle,
1936 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1937
1938 if (spa_load_verify_metadata) {
1939 error = traverse_pool(spa, spa->spa_verify_min_txg,
1940 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1941 spa_load_verify_cb, rio);
1942 }
1943
1944 (void) zio_wait(rio);
1945
1946 spa->spa_load_meta_errors = sle.sle_meta_count;
1947 spa->spa_load_data_errors = sle.sle_data_count;
1948
1949 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1950 sle.sle_data_count <= policy.zrp_maxdata) {
1951 int64_t loss = 0;
1952
1953 verify_ok = B_TRUE;
1954 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1955 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1956
1957 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1958 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1959 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1960 VERIFY(nvlist_add_int64(spa->spa_load_info,
1961 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1962 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1963 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1964 } else {
1965 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1966 }
1967
1968 if (error) {
1969 if (error != ENXIO && error != EIO)
1970 error = SET_ERROR(EIO);
1971 return (error);
1972 }
1973
1974 return (verify_ok ? 0 : EIO);
1975 }
1976
1977 /*
1978 * Find a value in the pool props object.
1979 */
1980 static void
1981 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1982 {
1983 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1984 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1985 }
1986
1987 /*
1988 * Find a value in the pool directory object.
1989 */
1990 static int
1991 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1992 {
1993 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1994 name, sizeof (uint64_t), 1, val));
1995 }
1996
1997 static int
1998 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1999 {
2000 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2001 return (err);
2002 }
2003
2004 /*
2005 * Fix up config after a partly-completed split. This is done with the
2006 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2007 * pool have that entry in their config, but only the splitting one contains
2008 * a list of all the guids of the vdevs that are being split off.
2009 *
2010 * This function determines what to do with that list: either rejoin
2011 * all the disks to the pool, or complete the splitting process. To attempt
2012 * the rejoin, each disk that is offlined is marked online again, and
2013 * we do a reopen() call. If the vdev label for every disk that was
2014 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2015 * then we call vdev_split() on each disk, and complete the split.
2016 *
2017 * Otherwise we leave the config alone, with all the vdevs in place in
2018 * the original pool.
2019 */
2020 static void
2021 spa_try_repair(spa_t *spa, nvlist_t *config)
2022 {
2023 uint_t extracted;
2024 uint64_t *glist;
2025 uint_t i, gcount;
2026 nvlist_t *nvl;
2027 vdev_t **vd;
2028 boolean_t attempt_reopen;
2029
2030 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2031 return;
2032
2033 /* check that the config is complete */
2034 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2035 &glist, &gcount) != 0)
2036 return;
2037
2038 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_PUSHPAGE);
2039
2040 /* attempt to online all the vdevs & validate */
2041 attempt_reopen = B_TRUE;
2042 for (i = 0; i < gcount; i++) {
2043 if (glist[i] == 0) /* vdev is hole */
2044 continue;
2045
2046 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2047 if (vd[i] == NULL) {
2048 /*
2049 * Don't bother attempting to reopen the disks;
2050 * just do the split.
2051 */
2052 attempt_reopen = B_FALSE;
2053 } else {
2054 /* attempt to re-online it */
2055 vd[i]->vdev_offline = B_FALSE;
2056 }
2057 }
2058
2059 if (attempt_reopen) {
2060 vdev_reopen(spa->spa_root_vdev);
2061
2062 /* check each device to see what state it's in */
2063 for (extracted = 0, i = 0; i < gcount; i++) {
2064 if (vd[i] != NULL &&
2065 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2066 break;
2067 ++extracted;
2068 }
2069 }
2070
2071 /*
2072 * If every disk has been moved to the new pool, or if we never
2073 * even attempted to look at them, then we split them off for
2074 * good.
2075 */
2076 if (!attempt_reopen || gcount == extracted) {
2077 for (i = 0; i < gcount; i++)
2078 if (vd[i] != NULL)
2079 vdev_split(vd[i]);
2080 vdev_reopen(spa->spa_root_vdev);
2081 }
2082
2083 kmem_free(vd, gcount * sizeof (vdev_t *));
2084 }
2085
2086 static int
2087 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2088 boolean_t mosconfig)
2089 {
2090 nvlist_t *config = spa->spa_config;
2091 char *ereport = FM_EREPORT_ZFS_POOL;
2092 char *comment;
2093 int error;
2094 uint64_t pool_guid;
2095 nvlist_t *nvl;
2096
2097 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2098 return (SET_ERROR(EINVAL));
2099
2100 ASSERT(spa->spa_comment == NULL);
2101 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2102 spa->spa_comment = spa_strdup(comment);
2103
2104 /*
2105 * Versioning wasn't explicitly added to the label until later, so if
2106 * it's not present treat it as the initial version.
2107 */
2108 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2109 &spa->spa_ubsync.ub_version) != 0)
2110 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2111
2112 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2113 &spa->spa_config_txg);
2114
2115 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2116 spa_guid_exists(pool_guid, 0)) {
2117 error = SET_ERROR(EEXIST);
2118 } else {
2119 spa->spa_config_guid = pool_guid;
2120
2121 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2122 &nvl) == 0) {
2123 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2124 KM_PUSHPAGE) == 0);
2125 }
2126
2127 nvlist_free(spa->spa_load_info);
2128 spa->spa_load_info = fnvlist_alloc();
2129
2130 gethrestime(&spa->spa_loaded_ts);
2131 error = spa_load_impl(spa, pool_guid, config, state, type,
2132 mosconfig, &ereport);
2133 }
2134
2135 spa->spa_minref = refcount_count(&spa->spa_refcount);
2136 if (error) {
2137 if (error != EEXIST) {
2138 spa->spa_loaded_ts.tv_sec = 0;
2139 spa->spa_loaded_ts.tv_nsec = 0;
2140 }
2141 if (error != EBADF) {
2142 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2143 }
2144 }
2145 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2146 spa->spa_ena = 0;
2147
2148 return (error);
2149 }
2150
2151 /*
2152 * Load an existing storage pool, using the pool's builtin spa_config as a
2153 * source of configuration information.
2154 */
2155 __attribute__((always_inline))
2156 static inline int
2157 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2158 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2159 char **ereport)
2160 {
2161 int error = 0;
2162 nvlist_t *nvroot = NULL;
2163 nvlist_t *label;
2164 vdev_t *rvd;
2165 uberblock_t *ub = &spa->spa_uberblock;
2166 uint64_t children, config_cache_txg = spa->spa_config_txg;
2167 int orig_mode = spa->spa_mode;
2168 int parse;
2169 uint64_t obj;
2170 boolean_t missing_feat_write = B_FALSE;
2171
2172 /*
2173 * If this is an untrusted config, access the pool in read-only mode.
2174 * This prevents things like resilvering recently removed devices.
2175 */
2176 if (!mosconfig)
2177 spa->spa_mode = FREAD;
2178
2179 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2180
2181 spa->spa_load_state = state;
2182
2183 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2184 return (SET_ERROR(EINVAL));
2185
2186 parse = (type == SPA_IMPORT_EXISTING ?
2187 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2188
2189 /*
2190 * Create "The Godfather" zio to hold all async IOs
2191 */
2192 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2193 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2194
2195 /*
2196 * Parse the configuration into a vdev tree. We explicitly set the
2197 * value that will be returned by spa_version() since parsing the
2198 * configuration requires knowing the version number.
2199 */
2200 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2201 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2202 spa_config_exit(spa, SCL_ALL, FTAG);
2203
2204 if (error != 0)
2205 return (error);
2206
2207 ASSERT(spa->spa_root_vdev == rvd);
2208
2209 if (type != SPA_IMPORT_ASSEMBLE) {
2210 ASSERT(spa_guid(spa) == pool_guid);
2211 }
2212
2213 /*
2214 * Try to open all vdevs, loading each label in the process.
2215 */
2216 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2217 error = vdev_open(rvd);
2218 spa_config_exit(spa, SCL_ALL, FTAG);
2219 if (error != 0)
2220 return (error);
2221
2222 /*
2223 * We need to validate the vdev labels against the configuration that
2224 * we have in hand, which is dependent on the setting of mosconfig. If
2225 * mosconfig is true then we're validating the vdev labels based on
2226 * that config. Otherwise, we're validating against the cached config
2227 * (zpool.cache) that was read when we loaded the zfs module, and then
2228 * later we will recursively call spa_load() and validate against
2229 * the vdev config.
2230 *
2231 * If we're assembling a new pool that's been split off from an
2232 * existing pool, the labels haven't yet been updated so we skip
2233 * validation for now.
2234 */
2235 if (type != SPA_IMPORT_ASSEMBLE) {
2236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2237 error = vdev_validate(rvd, mosconfig);
2238 spa_config_exit(spa, SCL_ALL, FTAG);
2239
2240 if (error != 0)
2241 return (error);
2242
2243 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2244 return (SET_ERROR(ENXIO));
2245 }
2246
2247 /*
2248 * Find the best uberblock.
2249 */
2250 vdev_uberblock_load(rvd, ub, &label);
2251
2252 /*
2253 * If we weren't able to find a single valid uberblock, return failure.
2254 */
2255 if (ub->ub_txg == 0) {
2256 nvlist_free(label);
2257 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2258 }
2259
2260 /*
2261 * If the pool has an unsupported version we can't open it.
2262 */
2263 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2264 nvlist_free(label);
2265 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2266 }
2267
2268 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2269 nvlist_t *features;
2270
2271 /*
2272 * If we weren't able to find what's necessary for reading the
2273 * MOS in the label, return failure.
2274 */
2275 if (label == NULL || nvlist_lookup_nvlist(label,
2276 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2277 nvlist_free(label);
2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2279 ENXIO));
2280 }
2281
2282 /*
2283 * Update our in-core representation with the definitive values
2284 * from the label.
2285 */
2286 nvlist_free(spa->spa_label_features);
2287 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2288 }
2289
2290 nvlist_free(label);
2291
2292 /*
2293 * Look through entries in the label nvlist's features_for_read. If
2294 * there is a feature listed there which we don't understand then we
2295 * cannot open a pool.
2296 */
2297 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2298 nvlist_t *unsup_feat;
2299 nvpair_t *nvp;
2300
2301 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2302 0);
2303
2304 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2305 nvp != NULL;
2306 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2307 if (!zfeature_is_supported(nvpair_name(nvp))) {
2308 VERIFY(nvlist_add_string(unsup_feat,
2309 nvpair_name(nvp), "") == 0);
2310 }
2311 }
2312
2313 if (!nvlist_empty(unsup_feat)) {
2314 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2315 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2316 nvlist_free(unsup_feat);
2317 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2318 ENOTSUP));
2319 }
2320
2321 nvlist_free(unsup_feat);
2322 }
2323
2324 /*
2325 * If the vdev guid sum doesn't match the uberblock, we have an
2326 * incomplete configuration. We first check to see if the pool
2327 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2328 * If it is, defer the vdev_guid_sum check till later so we
2329 * can handle missing vdevs.
2330 */
2331 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2332 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2333 rvd->vdev_guid_sum != ub->ub_guid_sum)
2334 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2335
2336 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2337 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2338 spa_try_repair(spa, config);
2339 spa_config_exit(spa, SCL_ALL, FTAG);
2340 nvlist_free(spa->spa_config_splitting);
2341 spa->spa_config_splitting = NULL;
2342 }
2343
2344 /*
2345 * Initialize internal SPA structures.
2346 */
2347 spa->spa_state = POOL_STATE_ACTIVE;
2348 spa->spa_ubsync = spa->spa_uberblock;
2349 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2350 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2351 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2352 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2353 spa->spa_claim_max_txg = spa->spa_first_txg;
2354 spa->spa_prev_software_version = ub->ub_software_version;
2355
2356 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2357 if (error)
2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2360
2361 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363
2364 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2365 boolean_t missing_feat_read = B_FALSE;
2366 nvlist_t *unsup_feat, *enabled_feat;
2367 spa_feature_t i;
2368
2369 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2370 &spa->spa_feat_for_read_obj) != 0) {
2371 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2372 }
2373
2374 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2375 &spa->spa_feat_for_write_obj) != 0) {
2376 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2377 }
2378
2379 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2380 &spa->spa_feat_desc_obj) != 0) {
2381 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2382 }
2383
2384 enabled_feat = fnvlist_alloc();
2385 unsup_feat = fnvlist_alloc();
2386
2387 if (!spa_features_check(spa, B_FALSE,
2388 unsup_feat, enabled_feat))
2389 missing_feat_read = B_TRUE;
2390
2391 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2392 if (!spa_features_check(spa, B_TRUE,
2393 unsup_feat, enabled_feat)) {
2394 missing_feat_write = B_TRUE;
2395 }
2396 }
2397
2398 fnvlist_add_nvlist(spa->spa_load_info,
2399 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2400
2401 if (!nvlist_empty(unsup_feat)) {
2402 fnvlist_add_nvlist(spa->spa_load_info,
2403 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2404 }
2405
2406 fnvlist_free(enabled_feat);
2407 fnvlist_free(unsup_feat);
2408
2409 if (!missing_feat_read) {
2410 fnvlist_add_boolean(spa->spa_load_info,
2411 ZPOOL_CONFIG_CAN_RDONLY);
2412 }
2413
2414 /*
2415 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2416 * twofold: to determine whether the pool is available for
2417 * import in read-write mode and (if it is not) whether the
2418 * pool is available for import in read-only mode. If the pool
2419 * is available for import in read-write mode, it is displayed
2420 * as available in userland; if it is not available for import
2421 * in read-only mode, it is displayed as unavailable in
2422 * userland. If the pool is available for import in read-only
2423 * mode but not read-write mode, it is displayed as unavailable
2424 * in userland with a special note that the pool is actually
2425 * available for open in read-only mode.
2426 *
2427 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2428 * missing a feature for write, we must first determine whether
2429 * the pool can be opened read-only before returning to
2430 * userland in order to know whether to display the
2431 * abovementioned note.
2432 */
2433 if (missing_feat_read || (missing_feat_write &&
2434 spa_writeable(spa))) {
2435 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2436 ENOTSUP));
2437 }
2438
2439 /*
2440 * Load refcounts for ZFS features from disk into an in-memory
2441 * cache during SPA initialization.
2442 */
2443 for (i = 0; i < SPA_FEATURES; i++) {
2444 uint64_t refcount;
2445
2446 error = feature_get_refcount_from_disk(spa,
2447 &spa_feature_table[i], &refcount);
2448 if (error == 0) {
2449 spa->spa_feat_refcount_cache[i] = refcount;
2450 } else if (error == ENOTSUP) {
2451 spa->spa_feat_refcount_cache[i] =
2452 SPA_FEATURE_DISABLED;
2453 } else {
2454 return (spa_vdev_err(rvd,
2455 VDEV_AUX_CORRUPT_DATA, EIO));
2456 }
2457 }
2458 }
2459
2460 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2461 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2462 &spa->spa_feat_enabled_txg_obj) != 0)
2463 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464 }
2465
2466 spa->spa_is_initializing = B_TRUE;
2467 error = dsl_pool_open(spa->spa_dsl_pool);
2468 spa->spa_is_initializing = B_FALSE;
2469 if (error != 0)
2470 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2471
2472 if (!mosconfig) {
2473 uint64_t hostid;
2474 nvlist_t *policy = NULL, *nvconfig;
2475
2476 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2478
2479 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2480 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2481 char *hostname;
2482 unsigned long myhostid = 0;
2483
2484 VERIFY(nvlist_lookup_string(nvconfig,
2485 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2486
2487 #ifdef _KERNEL
2488 myhostid = zone_get_hostid(NULL);
2489 #else /* _KERNEL */
2490 /*
2491 * We're emulating the system's hostid in userland, so
2492 * we can't use zone_get_hostid().
2493 */
2494 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2495 #endif /* _KERNEL */
2496 if (hostid != 0 && myhostid != 0 &&
2497 hostid != myhostid) {
2498 nvlist_free(nvconfig);
2499 cmn_err(CE_WARN, "pool '%s' could not be "
2500 "loaded as it was last accessed by another "
2501 "system (host: %s hostid: 0x%lx). See: "
2502 "http://zfsonlinux.org/msg/ZFS-8000-EY",
2503 spa_name(spa), hostname,
2504 (unsigned long)hostid);
2505 return (SET_ERROR(EBADF));
2506 }
2507 }
2508 if (nvlist_lookup_nvlist(spa->spa_config,
2509 ZPOOL_REWIND_POLICY, &policy) == 0)
2510 VERIFY(nvlist_add_nvlist(nvconfig,
2511 ZPOOL_REWIND_POLICY, policy) == 0);
2512
2513 spa_config_set(spa, nvconfig);
2514 spa_unload(spa);
2515 spa_deactivate(spa);
2516 spa_activate(spa, orig_mode);
2517
2518 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2519 }
2520
2521 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2522 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2524 if (error != 0)
2525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526
2527 /*
2528 * Load the bit that tells us to use the new accounting function
2529 * (raid-z deflation). If we have an older pool, this will not
2530 * be present.
2531 */
2532 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2533 if (error != 0 && error != ENOENT)
2534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535
2536 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2537 &spa->spa_creation_version);
2538 if (error != 0 && error != ENOENT)
2539 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2540
2541 /*
2542 * Load the persistent error log. If we have an older pool, this will
2543 * not be present.
2544 */
2545 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2546 if (error != 0 && error != ENOENT)
2547 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2548
2549 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2550 &spa->spa_errlog_scrub);
2551 if (error != 0 && error != ENOENT)
2552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553
2554 /*
2555 * Load the history object. If we have an older pool, this
2556 * will not be present.
2557 */
2558 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2559 if (error != 0 && error != ENOENT)
2560 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2561
2562 /*
2563 * If we're assembling the pool from the split-off vdevs of
2564 * an existing pool, we don't want to attach the spares & cache
2565 * devices.
2566 */
2567
2568 /*
2569 * Load any hot spares for this pool.
2570 */
2571 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2572 if (error != 0 && error != ENOENT)
2573 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2574 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2575 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2576 if (load_nvlist(spa, spa->spa_spares.sav_object,
2577 &spa->spa_spares.sav_config) != 0)
2578 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2579
2580 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2581 spa_load_spares(spa);
2582 spa_config_exit(spa, SCL_ALL, FTAG);
2583 } else if (error == 0) {
2584 spa->spa_spares.sav_sync = B_TRUE;
2585 }
2586
2587 /*
2588 * Load any level 2 ARC devices for this pool.
2589 */
2590 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2591 &spa->spa_l2cache.sav_object);
2592 if (error != 0 && error != ENOENT)
2593 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2594 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2595 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2596 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2597 &spa->spa_l2cache.sav_config) != 0)
2598 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2599
2600 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2601 spa_load_l2cache(spa);
2602 spa_config_exit(spa, SCL_ALL, FTAG);
2603 } else if (error == 0) {
2604 spa->spa_l2cache.sav_sync = B_TRUE;
2605 }
2606
2607 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2608
2609 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2610 if (error && error != ENOENT)
2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2612
2613 if (error == 0) {
2614 uint64_t autoreplace = 0;
2615
2616 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2617 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2618 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2619 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2620 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2621 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2622 &spa->spa_dedup_ditto);
2623
2624 spa->spa_autoreplace = (autoreplace != 0);
2625 }
2626
2627 /*
2628 * If the 'autoreplace' property is set, then post a resource notifying
2629 * the ZFS DE that it should not issue any faults for unopenable
2630 * devices. We also iterate over the vdevs, and post a sysevent for any
2631 * unopenable vdevs so that the normal autoreplace handler can take
2632 * over.
2633 */
2634 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2635 spa_check_removed(spa->spa_root_vdev);
2636 /*
2637 * For the import case, this is done in spa_import(), because
2638 * at this point we're using the spare definitions from
2639 * the MOS config, not necessarily from the userland config.
2640 */
2641 if (state != SPA_LOAD_IMPORT) {
2642 spa_aux_check_removed(&spa->spa_spares);
2643 spa_aux_check_removed(&spa->spa_l2cache);
2644 }
2645 }
2646
2647 /*
2648 * Load the vdev state for all toplevel vdevs.
2649 */
2650 vdev_load(rvd);
2651
2652 /*
2653 * Propagate the leaf DTLs we just loaded all the way up the tree.
2654 */
2655 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2656 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2657 spa_config_exit(spa, SCL_ALL, FTAG);
2658
2659 /*
2660 * Load the DDTs (dedup tables).
2661 */
2662 error = ddt_load(spa);
2663 if (error != 0)
2664 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2665
2666 spa_update_dspace(spa);
2667
2668 /*
2669 * Validate the config, using the MOS config to fill in any
2670 * information which might be missing. If we fail to validate
2671 * the config then declare the pool unfit for use. If we're
2672 * assembling a pool from a split, the log is not transferred
2673 * over.
2674 */
2675 if (type != SPA_IMPORT_ASSEMBLE) {
2676 nvlist_t *nvconfig;
2677
2678 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2679 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2680
2681 if (!spa_config_valid(spa, nvconfig)) {
2682 nvlist_free(nvconfig);
2683 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2684 ENXIO));
2685 }
2686 nvlist_free(nvconfig);
2687
2688 /*
2689 * Now that we've validated the config, check the state of the
2690 * root vdev. If it can't be opened, it indicates one or
2691 * more toplevel vdevs are faulted.
2692 */
2693 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2694 return (SET_ERROR(ENXIO));
2695
2696 if (spa_check_logs(spa)) {
2697 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2698 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2699 }
2700 }
2701
2702 if (missing_feat_write) {
2703 ASSERT(state == SPA_LOAD_TRYIMPORT);
2704
2705 /*
2706 * At this point, we know that we can open the pool in
2707 * read-only mode but not read-write mode. We now have enough
2708 * information and can return to userland.
2709 */
2710 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2711 }
2712
2713 /*
2714 * We've successfully opened the pool, verify that we're ready
2715 * to start pushing transactions.
2716 */
2717 if (state != SPA_LOAD_TRYIMPORT) {
2718 if ((error = spa_load_verify(spa)))
2719 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2720 error));
2721 }
2722
2723 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2724 spa->spa_load_max_txg == UINT64_MAX)) {
2725 dmu_tx_t *tx;
2726 int need_update = B_FALSE;
2727 int c;
2728
2729 ASSERT(state != SPA_LOAD_TRYIMPORT);
2730
2731 /*
2732 * Claim log blocks that haven't been committed yet.
2733 * This must all happen in a single txg.
2734 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2735 * invoked from zil_claim_log_block()'s i/o done callback.
2736 * Price of rollback is that we abandon the log.
2737 */
2738 spa->spa_claiming = B_TRUE;
2739
2740 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2741 spa_first_txg(spa));
2742 (void) dmu_objset_find(spa_name(spa),
2743 zil_claim, tx, DS_FIND_CHILDREN);
2744 dmu_tx_commit(tx);
2745
2746 spa->spa_claiming = B_FALSE;
2747
2748 spa_set_log_state(spa, SPA_LOG_GOOD);
2749 spa->spa_sync_on = B_TRUE;
2750 txg_sync_start(spa->spa_dsl_pool);
2751
2752 /*
2753 * Wait for all claims to sync. We sync up to the highest
2754 * claimed log block birth time so that claimed log blocks
2755 * don't appear to be from the future. spa_claim_max_txg
2756 * will have been set for us by either zil_check_log_chain()
2757 * (invoked from spa_check_logs()) or zil_claim() above.
2758 */
2759 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2760
2761 /*
2762 * If the config cache is stale, or we have uninitialized
2763 * metaslabs (see spa_vdev_add()), then update the config.
2764 *
2765 * If this is a verbatim import, trust the current
2766 * in-core spa_config and update the disk labels.
2767 */
2768 if (config_cache_txg != spa->spa_config_txg ||
2769 state == SPA_LOAD_IMPORT ||
2770 state == SPA_LOAD_RECOVER ||
2771 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2772 need_update = B_TRUE;
2773
2774 for (c = 0; c < rvd->vdev_children; c++)
2775 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2776 need_update = B_TRUE;
2777
2778 /*
2779 * Update the config cache asychronously in case we're the
2780 * root pool, in which case the config cache isn't writable yet.
2781 */
2782 if (need_update)
2783 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2784
2785 /*
2786 * Check all DTLs to see if anything needs resilvering.
2787 */
2788 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2789 vdev_resilver_needed(rvd, NULL, NULL))
2790 spa_async_request(spa, SPA_ASYNC_RESILVER);
2791
2792 /*
2793 * Log the fact that we booted up (so that we can detect if
2794 * we rebooted in the middle of an operation).
2795 */
2796 spa_history_log_version(spa, "open");
2797
2798 /*
2799 * Delete any inconsistent datasets.
2800 */
2801 (void) dmu_objset_find(spa_name(spa),
2802 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2803
2804 /*
2805 * Clean up any stale temporary dataset userrefs.
2806 */
2807 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2808 }
2809
2810 return (0);
2811 }
2812
2813 static int
2814 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2815 {
2816 int mode = spa->spa_mode;
2817
2818 spa_unload(spa);
2819 spa_deactivate(spa);
2820
2821 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2822
2823 spa_activate(spa, mode);
2824 spa_async_suspend(spa);
2825
2826 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2827 }
2828
2829 /*
2830 * If spa_load() fails this function will try loading prior txg's. If
2831 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2832 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2833 * function will not rewind the pool and will return the same error as
2834 * spa_load().
2835 */
2836 static int
2837 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2838 uint64_t max_request, int rewind_flags)
2839 {
2840 nvlist_t *loadinfo = NULL;
2841 nvlist_t *config = NULL;
2842 int load_error, rewind_error;
2843 uint64_t safe_rewind_txg;
2844 uint64_t min_txg;
2845
2846 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2847 spa->spa_load_max_txg = spa->spa_load_txg;
2848 spa_set_log_state(spa, SPA_LOG_CLEAR);
2849 } else {
2850 spa->spa_load_max_txg = max_request;
2851 if (max_request != UINT64_MAX)
2852 spa->spa_extreme_rewind = B_TRUE;
2853 }
2854
2855 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2856 mosconfig);
2857 if (load_error == 0)
2858 return (0);
2859
2860 if (spa->spa_root_vdev != NULL)
2861 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2862
2863 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2864 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2865
2866 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2867 nvlist_free(config);
2868 return (load_error);
2869 }
2870
2871 if (state == SPA_LOAD_RECOVER) {
2872 /* Price of rolling back is discarding txgs, including log */
2873 spa_set_log_state(spa, SPA_LOG_CLEAR);
2874 } else {
2875 /*
2876 * If we aren't rolling back save the load info from our first
2877 * import attempt so that we can restore it after attempting
2878 * to rewind.
2879 */
2880 loadinfo = spa->spa_load_info;
2881 spa->spa_load_info = fnvlist_alloc();
2882 }
2883
2884 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2885 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2886 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2887 TXG_INITIAL : safe_rewind_txg;
2888
2889 /*
2890 * Continue as long as we're finding errors, we're still within
2891 * the acceptable rewind range, and we're still finding uberblocks
2892 */
2893 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2894 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2895 if (spa->spa_load_max_txg < safe_rewind_txg)
2896 spa->spa_extreme_rewind = B_TRUE;
2897 rewind_error = spa_load_retry(spa, state, mosconfig);
2898 }
2899
2900 spa->spa_extreme_rewind = B_FALSE;
2901 spa->spa_load_max_txg = UINT64_MAX;
2902
2903 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2904 spa_config_set(spa, config);
2905
2906 if (state == SPA_LOAD_RECOVER) {
2907 ASSERT3P(loadinfo, ==, NULL);
2908 return (rewind_error);
2909 } else {
2910 /* Store the rewind info as part of the initial load info */
2911 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2912 spa->spa_load_info);
2913
2914 /* Restore the initial load info */
2915 fnvlist_free(spa->spa_load_info);
2916 spa->spa_load_info = loadinfo;
2917
2918 return (load_error);
2919 }
2920 }
2921
2922 /*
2923 * Pool Open/Import
2924 *
2925 * The import case is identical to an open except that the configuration is sent
2926 * down from userland, instead of grabbed from the configuration cache. For the
2927 * case of an open, the pool configuration will exist in the
2928 * POOL_STATE_UNINITIALIZED state.
2929 *
2930 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2931 * the same time open the pool, without having to keep around the spa_t in some
2932 * ambiguous state.
2933 */
2934 static int
2935 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2936 nvlist_t **config)
2937 {
2938 spa_t *spa;
2939 spa_load_state_t state = SPA_LOAD_OPEN;
2940 int error;
2941 int locked = B_FALSE;
2942 int firstopen = B_FALSE;
2943
2944 *spapp = NULL;
2945
2946 /*
2947 * As disgusting as this is, we need to support recursive calls to this
2948 * function because dsl_dir_open() is called during spa_load(), and ends
2949 * up calling spa_open() again. The real fix is to figure out how to
2950 * avoid dsl_dir_open() calling this in the first place.
2951 */
2952 if (mutex_owner(&spa_namespace_lock) != curthread) {
2953 mutex_enter(&spa_namespace_lock);
2954 locked = B_TRUE;
2955 }
2956
2957 if ((spa = spa_lookup(pool)) == NULL) {
2958 if (locked)
2959 mutex_exit(&spa_namespace_lock);
2960 return (SET_ERROR(ENOENT));
2961 }
2962
2963 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2964 zpool_rewind_policy_t policy;
2965
2966 firstopen = B_TRUE;
2967
2968 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2969 &policy);
2970 if (policy.zrp_request & ZPOOL_DO_REWIND)
2971 state = SPA_LOAD_RECOVER;
2972
2973 spa_activate(spa, spa_mode_global);
2974
2975 if (state != SPA_LOAD_RECOVER)
2976 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2977
2978 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2979 policy.zrp_request);
2980
2981 if (error == EBADF) {
2982 /*
2983 * If vdev_validate() returns failure (indicated by
2984 * EBADF), it indicates that one of the vdevs indicates
2985 * that the pool has been exported or destroyed. If
2986 * this is the case, the config cache is out of sync and
2987 * we should remove the pool from the namespace.
2988 */
2989 spa_unload(spa);
2990 spa_deactivate(spa);
2991 spa_config_sync(spa, B_TRUE, B_TRUE);
2992 spa_remove(spa);
2993 if (locked)
2994 mutex_exit(&spa_namespace_lock);
2995 return (SET_ERROR(ENOENT));
2996 }
2997
2998 if (error) {
2999 /*
3000 * We can't open the pool, but we still have useful
3001 * information: the state of each vdev after the
3002 * attempted vdev_open(). Return this to the user.
3003 */
3004 if (config != NULL && spa->spa_config) {
3005 VERIFY(nvlist_dup(spa->spa_config, config,
3006 KM_PUSHPAGE) == 0);
3007 VERIFY(nvlist_add_nvlist(*config,
3008 ZPOOL_CONFIG_LOAD_INFO,
3009 spa->spa_load_info) == 0);
3010 }
3011 spa_unload(spa);
3012 spa_deactivate(spa);
3013 spa->spa_last_open_failed = error;
3014 if (locked)
3015 mutex_exit(&spa_namespace_lock);
3016 *spapp = NULL;
3017 return (error);
3018 }
3019 }
3020
3021 spa_open_ref(spa, tag);
3022
3023 if (config != NULL)
3024 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3025
3026 /*
3027 * If we've recovered the pool, pass back any information we
3028 * gathered while doing the load.
3029 */
3030 if (state == SPA_LOAD_RECOVER) {
3031 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3032 spa->spa_load_info) == 0);
3033 }
3034
3035 if (locked) {
3036 spa->spa_last_open_failed = 0;
3037 spa->spa_last_ubsync_txg = 0;
3038 spa->spa_load_txg = 0;
3039 mutex_exit(&spa_namespace_lock);
3040 }
3041
3042 #ifdef _KERNEL
3043 if (firstopen)
3044 zvol_create_minors(spa->spa_name);
3045 #endif
3046
3047 *spapp = spa;
3048
3049 return (0);
3050 }
3051
3052 int
3053 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3054 nvlist_t **config)
3055 {
3056 return (spa_open_common(name, spapp, tag, policy, config));
3057 }
3058
3059 int
3060 spa_open(const char *name, spa_t **spapp, void *tag)
3061 {
3062 return (spa_open_common(name, spapp, tag, NULL, NULL));
3063 }
3064
3065 /*
3066 * Lookup the given spa_t, incrementing the inject count in the process,
3067 * preventing it from being exported or destroyed.
3068 */
3069 spa_t *
3070 spa_inject_addref(char *name)
3071 {
3072 spa_t *spa;
3073
3074 mutex_enter(&spa_namespace_lock);
3075 if ((spa = spa_lookup(name)) == NULL) {
3076 mutex_exit(&spa_namespace_lock);
3077 return (NULL);
3078 }
3079 spa->spa_inject_ref++;
3080 mutex_exit(&spa_namespace_lock);
3081
3082 return (spa);
3083 }
3084
3085 void
3086 spa_inject_delref(spa_t *spa)
3087 {
3088 mutex_enter(&spa_namespace_lock);
3089 spa->spa_inject_ref--;
3090 mutex_exit(&spa_namespace_lock);
3091 }
3092
3093 /*
3094 * Add spares device information to the nvlist.
3095 */
3096 static void
3097 spa_add_spares(spa_t *spa, nvlist_t *config)
3098 {
3099 nvlist_t **spares;
3100 uint_t i, nspares;
3101 nvlist_t *nvroot;
3102 uint64_t guid;
3103 vdev_stat_t *vs;
3104 uint_t vsc;
3105 uint64_t pool;
3106
3107 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3108
3109 if (spa->spa_spares.sav_count == 0)
3110 return;
3111
3112 VERIFY(nvlist_lookup_nvlist(config,
3113 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3114 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3115 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3116 if (nspares != 0) {
3117 VERIFY(nvlist_add_nvlist_array(nvroot,
3118 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3119 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3120 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3121
3122 /*
3123 * Go through and find any spares which have since been
3124 * repurposed as an active spare. If this is the case, update
3125 * their status appropriately.
3126 */
3127 for (i = 0; i < nspares; i++) {
3128 VERIFY(nvlist_lookup_uint64(spares[i],
3129 ZPOOL_CONFIG_GUID, &guid) == 0);
3130 if (spa_spare_exists(guid, &pool, NULL) &&
3131 pool != 0ULL) {
3132 VERIFY(nvlist_lookup_uint64_array(
3133 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3134 (uint64_t **)&vs, &vsc) == 0);
3135 vs->vs_state = VDEV_STATE_CANT_OPEN;
3136 vs->vs_aux = VDEV_AUX_SPARED;
3137 }
3138 }
3139 }
3140 }
3141
3142 /*
3143 * Add l2cache device information to the nvlist, including vdev stats.
3144 */
3145 static void
3146 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3147 {
3148 nvlist_t **l2cache;
3149 uint_t i, j, nl2cache;
3150 nvlist_t *nvroot;
3151 uint64_t guid;
3152 vdev_t *vd;
3153 vdev_stat_t *vs;
3154 uint_t vsc;
3155
3156 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3157
3158 if (spa->spa_l2cache.sav_count == 0)
3159 return;
3160
3161 VERIFY(nvlist_lookup_nvlist(config,
3162 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3163 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3164 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3165 if (nl2cache != 0) {
3166 VERIFY(nvlist_add_nvlist_array(nvroot,
3167 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3168 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3169 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3170
3171 /*
3172 * Update level 2 cache device stats.
3173 */
3174
3175 for (i = 0; i < nl2cache; i++) {
3176 VERIFY(nvlist_lookup_uint64(l2cache[i],
3177 ZPOOL_CONFIG_GUID, &guid) == 0);
3178
3179 vd = NULL;
3180 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3181 if (guid ==
3182 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3183 vd = spa->spa_l2cache.sav_vdevs[j];
3184 break;
3185 }
3186 }
3187 ASSERT(vd != NULL);
3188
3189 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3190 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3191 == 0);
3192 vdev_get_stats(vd, vs);
3193 }
3194 }
3195 }
3196
3197 static void
3198 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3199 {
3200 nvlist_t *features;
3201 zap_cursor_t zc;
3202 zap_attribute_t za;
3203
3204 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3205 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3206
3207 if (spa->spa_feat_for_read_obj != 0) {
3208 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3209 spa->spa_feat_for_read_obj);
3210 zap_cursor_retrieve(&zc, &za) == 0;
3211 zap_cursor_advance(&zc)) {
3212 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3213 za.za_num_integers == 1);
3214 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3215 za.za_first_integer));
3216 }
3217 zap_cursor_fini(&zc);
3218 }
3219
3220 if (spa->spa_feat_for_write_obj != 0) {
3221 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3222 spa->spa_feat_for_write_obj);
3223 zap_cursor_retrieve(&zc, &za) == 0;
3224 zap_cursor_advance(&zc)) {
3225 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3226 za.za_num_integers == 1);
3227 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3228 za.za_first_integer));
3229 }
3230 zap_cursor_fini(&zc);
3231 }
3232
3233 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3234 features) == 0);
3235 nvlist_free(features);
3236 }
3237
3238 int
3239 spa_get_stats(const char *name, nvlist_t **config,
3240 char *altroot, size_t buflen)
3241 {
3242 int error;
3243 spa_t *spa;
3244
3245 *config = NULL;
3246 error = spa_open_common(name, &spa, FTAG, NULL, config);
3247
3248 if (spa != NULL) {
3249 /*
3250 * This still leaves a window of inconsistency where the spares
3251 * or l2cache devices could change and the config would be
3252 * self-inconsistent.
3253 */
3254 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3255
3256 if (*config != NULL) {
3257 uint64_t loadtimes[2];
3258
3259 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3260 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3261 VERIFY(nvlist_add_uint64_array(*config,
3262 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3263
3264 VERIFY(nvlist_add_uint64(*config,
3265 ZPOOL_CONFIG_ERRCOUNT,
3266 spa_get_errlog_size(spa)) == 0);
3267
3268 if (spa_suspended(spa))
3269 VERIFY(nvlist_add_uint64(*config,
3270 ZPOOL_CONFIG_SUSPENDED,
3271 spa->spa_failmode) == 0);
3272
3273 spa_add_spares(spa, *config);
3274 spa_add_l2cache(spa, *config);
3275 spa_add_feature_stats(spa, *config);
3276 }
3277 }
3278
3279 /*
3280 * We want to get the alternate root even for faulted pools, so we cheat
3281 * and call spa_lookup() directly.
3282 */
3283 if (altroot) {
3284 if (spa == NULL) {
3285 mutex_enter(&spa_namespace_lock);
3286 spa = spa_lookup(name);
3287 if (spa)
3288 spa_altroot(spa, altroot, buflen);
3289 else
3290 altroot[0] = '\0';
3291 spa = NULL;
3292 mutex_exit(&spa_namespace_lock);
3293 } else {
3294 spa_altroot(spa, altroot, buflen);
3295 }
3296 }
3297
3298 if (spa != NULL) {
3299 spa_config_exit(spa, SCL_CONFIG, FTAG);
3300 spa_close(spa, FTAG);
3301 }
3302
3303 return (error);
3304 }
3305
3306 /*
3307 * Validate that the auxiliary device array is well formed. We must have an
3308 * array of nvlists, each which describes a valid leaf vdev. If this is an
3309 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3310 * specified, as long as they are well-formed.
3311 */
3312 static int
3313 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3314 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3315 vdev_labeltype_t label)
3316 {
3317 nvlist_t **dev;
3318 uint_t i, ndev;
3319 vdev_t *vd;
3320 int error;
3321
3322 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3323
3324 /*
3325 * It's acceptable to have no devs specified.
3326 */
3327 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3328 return (0);
3329
3330 if (ndev == 0)
3331 return (SET_ERROR(EINVAL));
3332
3333 /*
3334 * Make sure the pool is formatted with a version that supports this
3335 * device type.
3336 */
3337 if (spa_version(spa) < version)
3338 return (SET_ERROR(ENOTSUP));
3339
3340 /*
3341 * Set the pending device list so we correctly handle device in-use
3342 * checking.
3343 */
3344 sav->sav_pending = dev;
3345 sav->sav_npending = ndev;
3346
3347 for (i = 0; i < ndev; i++) {
3348 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3349 mode)) != 0)
3350 goto out;
3351
3352 if (!vd->vdev_ops->vdev_op_leaf) {
3353 vdev_free(vd);
3354 error = SET_ERROR(EINVAL);
3355 goto out;
3356 }
3357
3358 /*
3359 * The L2ARC currently only supports disk devices in
3360 * kernel context. For user-level testing, we allow it.
3361 */
3362 #ifdef _KERNEL
3363 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3364 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3365 error = SET_ERROR(ENOTBLK);
3366 vdev_free(vd);
3367 goto out;
3368 }
3369 #endif
3370 vd->vdev_top = vd;
3371
3372 if ((error = vdev_open(vd)) == 0 &&
3373 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3374 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3375 vd->vdev_guid) == 0);
3376 }
3377
3378 vdev_free(vd);
3379
3380 if (error &&
3381 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3382 goto out;
3383 else
3384 error = 0;
3385 }
3386
3387 out:
3388 sav->sav_pending = NULL;
3389 sav->sav_npending = 0;
3390 return (error);
3391 }
3392
3393 static int
3394 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3395 {
3396 int error;
3397
3398 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3399
3400 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3401 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3402 VDEV_LABEL_SPARE)) != 0) {
3403 return (error);
3404 }
3405
3406 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3407 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3408 VDEV_LABEL_L2CACHE));
3409 }
3410
3411 static void
3412 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3413 const char *config)
3414 {
3415 int i;
3416
3417 if (sav->sav_config != NULL) {
3418 nvlist_t **olddevs;
3419 uint_t oldndevs;
3420 nvlist_t **newdevs;
3421
3422 /*
3423 * Generate new dev list by concatentating with the
3424 * current dev list.
3425 */
3426 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3427 &olddevs, &oldndevs) == 0);
3428
3429 newdevs = kmem_alloc(sizeof (void *) *
3430 (ndevs + oldndevs), KM_PUSHPAGE);
3431 for (i = 0; i < oldndevs; i++)
3432 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3433 KM_PUSHPAGE) == 0);
3434 for (i = 0; i < ndevs; i++)
3435 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3436 KM_PUSHPAGE) == 0);
3437
3438 VERIFY(nvlist_remove(sav->sav_config, config,
3439 DATA_TYPE_NVLIST_ARRAY) == 0);
3440
3441 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3442 config, newdevs, ndevs + oldndevs) == 0);
3443 for (i = 0; i < oldndevs + ndevs; i++)
3444 nvlist_free(newdevs[i]);
3445 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3446 } else {
3447 /*
3448 * Generate a new dev list.
3449 */
3450 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3451 KM_PUSHPAGE) == 0);
3452 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3453 devs, ndevs) == 0);
3454 }
3455 }
3456
3457 /*
3458 * Stop and drop level 2 ARC devices
3459 */
3460 void
3461 spa_l2cache_drop(spa_t *spa)
3462 {
3463 vdev_t *vd;
3464 int i;
3465 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3466
3467 for (i = 0; i < sav->sav_count; i++) {
3468 uint64_t pool;
3469
3470 vd = sav->sav_vdevs[i];
3471 ASSERT(vd != NULL);
3472
3473 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3474 pool != 0ULL && l2arc_vdev_present(vd))
3475 l2arc_remove_vdev(vd);
3476 }
3477 }
3478
3479 /*
3480 * Pool Creation
3481 */
3482 int
3483 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3484 nvlist_t *zplprops)
3485 {
3486 spa_t *spa;
3487 char *altroot = NULL;
3488 vdev_t *rvd;
3489 dsl_pool_t *dp;
3490 dmu_tx_t *tx;
3491 int error = 0;
3492 uint64_t txg = TXG_INITIAL;
3493 nvlist_t **spares, **l2cache;
3494 uint_t nspares, nl2cache;
3495 uint64_t version, obj;
3496 boolean_t has_features;
3497 nvpair_t *elem;
3498 int c;
3499 char *poolname;
3500 nvlist_t *nvl;
3501
3502 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
3503 poolname = (char *)pool;
3504
3505 /*
3506 * If this pool already exists, return failure.
3507 */
3508 mutex_enter(&spa_namespace_lock);
3509 if (spa_lookup(poolname) != NULL) {
3510 mutex_exit(&spa_namespace_lock);
3511 return (SET_ERROR(EEXIST));
3512 }
3513
3514 /*
3515 * Allocate a new spa_t structure.
3516 */
3517 nvl = fnvlist_alloc();
3518 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
3519 (void) nvlist_lookup_string(props,
3520 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3521 spa = spa_add(poolname, nvl, altroot);
3522 fnvlist_free(nvl);
3523 spa_activate(spa, spa_mode_global);
3524
3525 if (props && (error = spa_prop_validate(spa, props))) {
3526 spa_deactivate(spa);
3527 spa_remove(spa);
3528 mutex_exit(&spa_namespace_lock);
3529 return (error);
3530 }
3531
3532 /*
3533 * Temporary pool names should never be written to disk.
3534 */
3535 if (poolname != pool)
3536 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
3537
3538 has_features = B_FALSE;
3539 for (elem = nvlist_next_nvpair(props, NULL);
3540 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3541 if (zpool_prop_feature(nvpair_name(elem)))
3542 has_features = B_TRUE;
3543 }
3544
3545 if (has_features || nvlist_lookup_uint64(props,
3546 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3547 version = SPA_VERSION;
3548 }
3549 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3550
3551 spa->spa_first_txg = txg;
3552 spa->spa_uberblock.ub_txg = txg - 1;
3553 spa->spa_uberblock.ub_version = version;
3554 spa->spa_ubsync = spa->spa_uberblock;
3555
3556 /*
3557 * Create "The Godfather" zio to hold all async IOs
3558 */
3559 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3560 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3561
3562 /*
3563 * Create the root vdev.
3564 */
3565 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3566
3567 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3568
3569 ASSERT(error != 0 || rvd != NULL);
3570 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3571
3572 if (error == 0 && !zfs_allocatable_devs(nvroot))
3573 error = SET_ERROR(EINVAL);
3574
3575 if (error == 0 &&
3576 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3577 (error = spa_validate_aux(spa, nvroot, txg,
3578 VDEV_ALLOC_ADD)) == 0) {
3579 for (c = 0; c < rvd->vdev_children; c++) {
3580 vdev_metaslab_set_size(rvd->vdev_child[c]);
3581 vdev_expand(rvd->vdev_child[c], txg);
3582 }
3583 }
3584
3585 spa_config_exit(spa, SCL_ALL, FTAG);
3586
3587 if (error != 0) {
3588 spa_unload(spa);
3589 spa_deactivate(spa);
3590 spa_remove(spa);
3591 mutex_exit(&spa_namespace_lock);
3592 return (error);
3593 }
3594
3595 /*
3596 * Get the list of spares, if specified.
3597 */
3598 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3599 &spares, &nspares) == 0) {
3600 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3601 KM_PUSHPAGE) == 0);
3602 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3603 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3604 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3605 spa_load_spares(spa);
3606 spa_config_exit(spa, SCL_ALL, FTAG);
3607 spa->spa_spares.sav_sync = B_TRUE;
3608 }
3609
3610 /*
3611 * Get the list of level 2 cache devices, if specified.
3612 */
3613 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3614 &l2cache, &nl2cache) == 0) {
3615 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3616 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3617 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3618 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3619 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3620 spa_load_l2cache(spa);
3621 spa_config_exit(spa, SCL_ALL, FTAG);
3622 spa->spa_l2cache.sav_sync = B_TRUE;
3623 }
3624
3625 spa->spa_is_initializing = B_TRUE;
3626 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3627 spa->spa_meta_objset = dp->dp_meta_objset;
3628 spa->spa_is_initializing = B_FALSE;
3629
3630 /*
3631 * Create DDTs (dedup tables).
3632 */
3633 ddt_create(spa);
3634
3635 spa_update_dspace(spa);
3636
3637 tx = dmu_tx_create_assigned(dp, txg);
3638
3639 /*
3640 * Create the pool config object.
3641 */
3642 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3643 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3644 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3645
3646 if (zap_add(spa->spa_meta_objset,
3647 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3648 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3649 cmn_err(CE_PANIC, "failed to add pool config");
3650 }
3651
3652 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3653 spa_feature_create_zap_objects(spa, tx);
3654
3655 if (zap_add(spa->spa_meta_objset,
3656 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3657 sizeof (uint64_t), 1, &version, tx) != 0) {
3658 cmn_err(CE_PANIC, "failed to add pool version");
3659 }
3660
3661 /* Newly created pools with the right version are always deflated. */
3662 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3663 spa->spa_deflate = TRUE;
3664 if (zap_add(spa->spa_meta_objset,
3665 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3666 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3667 cmn_err(CE_PANIC, "failed to add deflate");
3668 }
3669 }
3670
3671 /*
3672 * Create the deferred-free bpobj. Turn off compression
3673 * because sync-to-convergence takes longer if the blocksize
3674 * keeps changing.
3675 */
3676 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3677 dmu_object_set_compress(spa->spa_meta_objset, obj,
3678 ZIO_COMPRESS_OFF, tx);
3679 if (zap_add(spa->spa_meta_objset,
3680 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3681 sizeof (uint64_t), 1, &obj, tx) != 0) {
3682 cmn_err(CE_PANIC, "failed to add bpobj");
3683 }
3684 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3685 spa->spa_meta_objset, obj));
3686
3687 /*
3688 * Create the pool's history object.
3689 */
3690 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3691 spa_history_create_obj(spa, tx);
3692
3693 /*
3694 * Set pool properties.
3695 */
3696 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3697 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3698 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3699 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3700
3701 if (props != NULL) {
3702 spa_configfile_set(spa, props, B_FALSE);
3703 spa_sync_props(props, tx);
3704 }
3705
3706 dmu_tx_commit(tx);
3707
3708 spa->spa_sync_on = B_TRUE;
3709 txg_sync_start(spa->spa_dsl_pool);
3710
3711 /*
3712 * We explicitly wait for the first transaction to complete so that our
3713 * bean counters are appropriately updated.
3714 */
3715 txg_wait_synced(spa->spa_dsl_pool, txg);
3716
3717 spa_config_sync(spa, B_FALSE, B_TRUE);
3718
3719 spa_history_log_version(spa, "create");
3720
3721 spa->spa_minref = refcount_count(&spa->spa_refcount);
3722
3723 mutex_exit(&spa_namespace_lock);
3724
3725 return (0);
3726 }
3727
3728 #ifdef _KERNEL
3729 /*
3730 * Get the root pool information from the root disk, then import the root pool
3731 * during the system boot up time.
3732 */
3733 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3734
3735 static nvlist_t *
3736 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3737 {
3738 nvlist_t *config;
3739 nvlist_t *nvtop, *nvroot;
3740 uint64_t pgid;
3741
3742 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3743 return (NULL);
3744
3745 /*
3746 * Add this top-level vdev to the child array.
3747 */
3748 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3749 &nvtop) == 0);
3750 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3751 &pgid) == 0);
3752 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3753
3754 /*
3755 * Put this pool's top-level vdevs into a root vdev.
3756 */
3757 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
3758 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3759 VDEV_TYPE_ROOT) == 0);
3760 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3761 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3762 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3763 &nvtop, 1) == 0);
3764
3765 /*
3766 * Replace the existing vdev_tree with the new root vdev in
3767 * this pool's configuration (remove the old, add the new).
3768 */
3769 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3770 nvlist_free(nvroot);
3771 return (config);
3772 }
3773
3774 /*
3775 * Walk the vdev tree and see if we can find a device with "better"
3776 * configuration. A configuration is "better" if the label on that
3777 * device has a more recent txg.
3778 */
3779 static void
3780 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3781 {
3782 int c;
3783
3784 for (c = 0; c < vd->vdev_children; c++)
3785 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3786
3787 if (vd->vdev_ops->vdev_op_leaf) {
3788 nvlist_t *label;
3789 uint64_t label_txg;
3790
3791 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3792 &label) != 0)
3793 return;
3794
3795 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3796 &label_txg) == 0);
3797
3798 /*
3799 * Do we have a better boot device?
3800 */
3801 if (label_txg > *txg) {
3802 *txg = label_txg;
3803 *avd = vd;
3804 }
3805 nvlist_free(label);
3806 }
3807 }
3808
3809 /*
3810 * Import a root pool.
3811 *
3812 * For x86. devpath_list will consist of devid and/or physpath name of
3813 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3814 * The GRUB "findroot" command will return the vdev we should boot.
3815 *
3816 * For Sparc, devpath_list consists the physpath name of the booting device
3817 * no matter the rootpool is a single device pool or a mirrored pool.
3818 * e.g.
3819 * "/pci@1f,0/ide@d/disk@0,0:a"
3820 */
3821 int
3822 spa_import_rootpool(char *devpath, char *devid)
3823 {
3824 spa_t *spa;
3825 vdev_t *rvd, *bvd, *avd = NULL;
3826 nvlist_t *config, *nvtop;
3827 uint64_t guid, txg;
3828 char *pname;
3829 int error;
3830
3831 /*
3832 * Read the label from the boot device and generate a configuration.
3833 */
3834 config = spa_generate_rootconf(devpath, devid, &guid);
3835 #if defined(_OBP) && defined(_KERNEL)
3836 if (config == NULL) {
3837 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3838 /* iscsi boot */
3839 get_iscsi_bootpath_phy(devpath);
3840 config = spa_generate_rootconf(devpath, devid, &guid);
3841 }
3842 }
3843 #endif
3844 if (config == NULL) {
3845 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3846 devpath);
3847 return (SET_ERROR(EIO));
3848 }
3849
3850 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3851 &pname) == 0);
3852 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3853
3854 mutex_enter(&spa_namespace_lock);
3855 if ((spa = spa_lookup(pname)) != NULL) {
3856 /*
3857 * Remove the existing root pool from the namespace so that we
3858 * can replace it with the correct config we just read in.
3859 */
3860 spa_remove(spa);
3861 }
3862
3863 spa = spa_add(pname, config, NULL);
3864 spa->spa_is_root = B_TRUE;
3865 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3866
3867 /*
3868 * Build up a vdev tree based on the boot device's label config.
3869 */
3870 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3871 &nvtop) == 0);
3872 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3873 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3874 VDEV_ALLOC_ROOTPOOL);
3875 spa_config_exit(spa, SCL_ALL, FTAG);
3876 if (error) {
3877 mutex_exit(&spa_namespace_lock);
3878 nvlist_free(config);
3879 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3880 pname);
3881 return (error);
3882 }
3883
3884 /*
3885 * Get the boot vdev.
3886 */
3887 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3888 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3889 (u_longlong_t)guid);
3890 error = SET_ERROR(ENOENT);
3891 goto out;
3892 }
3893
3894 /*
3895 * Determine if there is a better boot device.
3896 */
3897 avd = bvd;
3898 spa_alt_rootvdev(rvd, &avd, &txg);
3899 if (avd != bvd) {
3900 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3901 "try booting from '%s'", avd->vdev_path);
3902 error = SET_ERROR(EINVAL);
3903 goto out;
3904 }
3905
3906 /*
3907 * If the boot device is part of a spare vdev then ensure that
3908 * we're booting off the active spare.
3909 */
3910 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3911 !bvd->vdev_isspare) {
3912 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3913 "try booting from '%s'",
3914 bvd->vdev_parent->
3915 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3916 error = SET_ERROR(EINVAL);
3917 goto out;
3918 }
3919
3920 error = 0;
3921 out:
3922 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3923 vdev_free(rvd);
3924 spa_config_exit(spa, SCL_ALL, FTAG);
3925 mutex_exit(&spa_namespace_lock);
3926
3927 nvlist_free(config);
3928 return (error);
3929 }
3930
3931 #endif
3932
3933 /*
3934 * Import a non-root pool into the system.
3935 */
3936 int
3937 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3938 {
3939 spa_t *spa;
3940 char *altroot = NULL;
3941 spa_load_state_t state = SPA_LOAD_IMPORT;
3942 zpool_rewind_policy_t policy;
3943 uint64_t mode = spa_mode_global;
3944 uint64_t readonly = B_FALSE;
3945 int error;
3946 nvlist_t *nvroot;
3947 nvlist_t **spares, **l2cache;
3948 uint_t nspares, nl2cache;
3949
3950 /*
3951 * If a pool with this name exists, return failure.
3952 */
3953 mutex_enter(&spa_namespace_lock);
3954 if (spa_lookup(pool) != NULL) {
3955 mutex_exit(&spa_namespace_lock);
3956 return (SET_ERROR(EEXIST));
3957 }
3958
3959 /*
3960 * Create and initialize the spa structure.
3961 */
3962 (void) nvlist_lookup_string(props,
3963 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3964 (void) nvlist_lookup_uint64(props,
3965 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3966 if (readonly)
3967 mode = FREAD;
3968 spa = spa_add(pool, config, altroot);
3969 spa->spa_import_flags = flags;
3970
3971 /*
3972 * Verbatim import - Take a pool and insert it into the namespace
3973 * as if it had been loaded at boot.
3974 */
3975 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3976 if (props != NULL)
3977 spa_configfile_set(spa, props, B_FALSE);
3978
3979 spa_config_sync(spa, B_FALSE, B_TRUE);
3980
3981 mutex_exit(&spa_namespace_lock);
3982 return (0);
3983 }
3984
3985 spa_activate(spa, mode);
3986
3987 /*
3988 * Don't start async tasks until we know everything is healthy.
3989 */
3990 spa_async_suspend(spa);
3991
3992 zpool_get_rewind_policy(config, &policy);
3993 if (policy.zrp_request & ZPOOL_DO_REWIND)
3994 state = SPA_LOAD_RECOVER;
3995
3996 /*
3997 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3998 * because the user-supplied config is actually the one to trust when
3999 * doing an import.
4000 */
4001 if (state != SPA_LOAD_RECOVER)
4002 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4003
4004 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4005 policy.zrp_request);
4006
4007 /*
4008 * Propagate anything learned while loading the pool and pass it
4009 * back to caller (i.e. rewind info, missing devices, etc).
4010 */
4011 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4012 spa->spa_load_info) == 0);
4013
4014 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4015 /*
4016 * Toss any existing sparelist, as it doesn't have any validity
4017 * anymore, and conflicts with spa_has_spare().
4018 */
4019 if (spa->spa_spares.sav_config) {
4020 nvlist_free(spa->spa_spares.sav_config);
4021 spa->spa_spares.sav_config = NULL;
4022 spa_load_spares(spa);
4023 }
4024 if (spa->spa_l2cache.sav_config) {
4025 nvlist_free(spa->spa_l2cache.sav_config);
4026 spa->spa_l2cache.sav_config = NULL;
4027 spa_load_l2cache(spa);
4028 }
4029
4030 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4031 &nvroot) == 0);
4032 if (error == 0)
4033 error = spa_validate_aux(spa, nvroot, -1ULL,
4034 VDEV_ALLOC_SPARE);
4035 if (error == 0)
4036 error = spa_validate_aux(spa, nvroot, -1ULL,
4037 VDEV_ALLOC_L2CACHE);
4038 spa_config_exit(spa, SCL_ALL, FTAG);
4039
4040 if (props != NULL)
4041 spa_configfile_set(spa, props, B_FALSE);
4042
4043 if (error != 0 || (props && spa_writeable(spa) &&
4044 (error = spa_prop_set(spa, props)))) {
4045 spa_unload(spa);
4046 spa_deactivate(spa);
4047 spa_remove(spa);
4048 mutex_exit(&spa_namespace_lock);
4049 return (error);
4050 }
4051
4052 spa_async_resume(spa);
4053
4054 /*
4055 * Override any spares and level 2 cache devices as specified by
4056 * the user, as these may have correct device names/devids, etc.
4057 */
4058 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4059 &spares, &nspares) == 0) {
4060 if (spa->spa_spares.sav_config)
4061 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4062 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4063 else
4064 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4065 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4066 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4067 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4068 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4069 spa_load_spares(spa);
4070 spa_config_exit(spa, SCL_ALL, FTAG);
4071 spa->spa_spares.sav_sync = B_TRUE;
4072 }
4073 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4074 &l2cache, &nl2cache) == 0) {
4075 if (spa->spa_l2cache.sav_config)
4076 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4077 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4078 else
4079 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4080 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
4081 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4082 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4083 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4084 spa_load_l2cache(spa);
4085 spa_config_exit(spa, SCL_ALL, FTAG);
4086 spa->spa_l2cache.sav_sync = B_TRUE;
4087 }
4088
4089 /*
4090 * Check for any removed devices.
4091 */
4092 if (spa->spa_autoreplace) {
4093 spa_aux_check_removed(&spa->spa_spares);
4094 spa_aux_check_removed(&spa->spa_l2cache);
4095 }
4096
4097 if (spa_writeable(spa)) {
4098 /*
4099 * Update the config cache to include the newly-imported pool.
4100 */
4101 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4102 }
4103
4104 /*
4105 * It's possible that the pool was expanded while it was exported.
4106 * We kick off an async task to handle this for us.
4107 */
4108 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4109
4110 mutex_exit(&spa_namespace_lock);
4111 spa_history_log_version(spa, "import");
4112
4113 #ifdef _KERNEL
4114 zvol_create_minors(pool);
4115 #endif
4116
4117 return (0);
4118 }
4119
4120 nvlist_t *
4121 spa_tryimport(nvlist_t *tryconfig)
4122 {
4123 nvlist_t *config = NULL;
4124 char *poolname;
4125 spa_t *spa;
4126 uint64_t state;
4127 int error;
4128
4129 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4130 return (NULL);
4131
4132 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4133 return (NULL);
4134
4135 /*
4136 * Create and initialize the spa structure.
4137 */
4138 mutex_enter(&spa_namespace_lock);
4139 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4140 spa_activate(spa, FREAD);
4141
4142 /*
4143 * Pass off the heavy lifting to spa_load().
4144 * Pass TRUE for mosconfig because the user-supplied config
4145 * is actually the one to trust when doing an import.
4146 */
4147 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4148
4149 /*
4150 * If 'tryconfig' was at least parsable, return the current config.
4151 */
4152 if (spa->spa_root_vdev != NULL) {
4153 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4154 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4155 poolname) == 0);
4156 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4157 state) == 0);
4158 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4159 spa->spa_uberblock.ub_timestamp) == 0);
4160 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4161 spa->spa_load_info) == 0);
4162 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4163 spa->spa_errata) == 0);
4164
4165 /*
4166 * If the bootfs property exists on this pool then we
4167 * copy it out so that external consumers can tell which
4168 * pools are bootable.
4169 */
4170 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4171 char *tmpname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
4172
4173 /*
4174 * We have to play games with the name since the
4175 * pool was opened as TRYIMPORT_NAME.
4176 */
4177 if (dsl_dsobj_to_dsname(spa_name(spa),
4178 spa->spa_bootfs, tmpname) == 0) {
4179 char *cp;
4180 char *dsname;
4181
4182 dsname = kmem_alloc(MAXPATHLEN, KM_PUSHPAGE);
4183
4184 cp = strchr(tmpname, '/');
4185 if (cp == NULL) {
4186 (void) strlcpy(dsname, tmpname,
4187 MAXPATHLEN);
4188 } else {
4189 (void) snprintf(dsname, MAXPATHLEN,
4190 "%s/%s", poolname, ++cp);
4191 }
4192 VERIFY(nvlist_add_string(config,
4193 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4194 kmem_free(dsname, MAXPATHLEN);
4195 }
4196 kmem_free(tmpname, MAXPATHLEN);
4197 }
4198
4199 /*
4200 * Add the list of hot spares and level 2 cache devices.
4201 */
4202 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4203 spa_add_spares(spa, config);
4204 spa_add_l2cache(spa, config);
4205 spa_config_exit(spa, SCL_CONFIG, FTAG);
4206 }
4207
4208 spa_unload(spa);
4209 spa_deactivate(spa);
4210 spa_remove(spa);
4211 mutex_exit(&spa_namespace_lock);
4212
4213 return (config);
4214 }
4215
4216 /*
4217 * Pool export/destroy
4218 *
4219 * The act of destroying or exporting a pool is very simple. We make sure there
4220 * is no more pending I/O and any references to the pool are gone. Then, we
4221 * update the pool state and sync all the labels to disk, removing the
4222 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4223 * we don't sync the labels or remove the configuration cache.
4224 */
4225 static int
4226 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4227 boolean_t force, boolean_t hardforce)
4228 {
4229 spa_t *spa;
4230
4231 if (oldconfig)
4232 *oldconfig = NULL;
4233
4234 if (!(spa_mode_global & FWRITE))
4235 return (SET_ERROR(EROFS));
4236
4237 mutex_enter(&spa_namespace_lock);
4238 if ((spa = spa_lookup(pool)) == NULL) {
4239 mutex_exit(&spa_namespace_lock);
4240 return (SET_ERROR(ENOENT));
4241 }
4242
4243 /*
4244 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4245 * reacquire the namespace lock, and see if we can export.
4246 */
4247 spa_open_ref(spa, FTAG);
4248 mutex_exit(&spa_namespace_lock);
4249 spa_async_suspend(spa);
4250 mutex_enter(&spa_namespace_lock);
4251 spa_close(spa, FTAG);
4252
4253 /*
4254 * The pool will be in core if it's openable,
4255 * in which case we can modify its state.
4256 */
4257 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4258 /*
4259 * Objsets may be open only because they're dirty, so we
4260 * have to force it to sync before checking spa_refcnt.
4261 */
4262 txg_wait_synced(spa->spa_dsl_pool, 0);
4263
4264 /*
4265 * A pool cannot be exported or destroyed if there are active
4266 * references. If we are resetting a pool, allow references by
4267 * fault injection handlers.
4268 */
4269 if (!spa_refcount_zero(spa) ||
4270 (spa->spa_inject_ref != 0 &&
4271 new_state != POOL_STATE_UNINITIALIZED)) {
4272 spa_async_resume(spa);
4273 mutex_exit(&spa_namespace_lock);
4274 return (SET_ERROR(EBUSY));
4275 }
4276
4277 /*
4278 * A pool cannot be exported if it has an active shared spare.
4279 * This is to prevent other pools stealing the active spare
4280 * from an exported pool. At user's own will, such pool can
4281 * be forcedly exported.
4282 */
4283 if (!force && new_state == POOL_STATE_EXPORTED &&
4284 spa_has_active_shared_spare(spa)) {
4285 spa_async_resume(spa);
4286 mutex_exit(&spa_namespace_lock);
4287 return (SET_ERROR(EXDEV));
4288 }
4289
4290 /*
4291 * We want this to be reflected on every label,
4292 * so mark them all dirty. spa_unload() will do the
4293 * final sync that pushes these changes out.
4294 */
4295 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4296 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4297 spa->spa_state = new_state;
4298 spa->spa_final_txg = spa_last_synced_txg(spa) +
4299 TXG_DEFER_SIZE + 1;
4300 vdev_config_dirty(spa->spa_root_vdev);
4301 spa_config_exit(spa, SCL_ALL, FTAG);
4302 }
4303 }
4304
4305 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4306
4307 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4308 spa_unload(spa);
4309 spa_deactivate(spa);
4310 }
4311
4312 if (oldconfig && spa->spa_config)
4313 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4314
4315 if (new_state != POOL_STATE_UNINITIALIZED) {
4316 if (!hardforce)
4317 spa_config_sync(spa, B_TRUE, B_TRUE);
4318 spa_remove(spa);
4319 }
4320 mutex_exit(&spa_namespace_lock);
4321
4322 return (0);
4323 }
4324
4325 /*
4326 * Destroy a storage pool.
4327 */
4328 int
4329 spa_destroy(char *pool)
4330 {
4331 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4332 B_FALSE, B_FALSE));
4333 }
4334
4335 /*
4336 * Export a storage pool.
4337 */
4338 int
4339 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4340 boolean_t hardforce)
4341 {
4342 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4343 force, hardforce));
4344 }
4345
4346 /*
4347 * Similar to spa_export(), this unloads the spa_t without actually removing it
4348 * from the namespace in any way.
4349 */
4350 int
4351 spa_reset(char *pool)
4352 {
4353 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4354 B_FALSE, B_FALSE));
4355 }
4356
4357 /*
4358 * ==========================================================================
4359 * Device manipulation
4360 * ==========================================================================
4361 */
4362
4363 /*
4364 * Add a device to a storage pool.
4365 */
4366 int
4367 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4368 {
4369 uint64_t txg, id;
4370 int error;
4371 vdev_t *rvd = spa->spa_root_vdev;
4372 vdev_t *vd, *tvd;
4373 nvlist_t **spares, **l2cache;
4374 uint_t nspares, nl2cache;
4375 int c;
4376
4377 ASSERT(spa_writeable(spa));
4378
4379 txg = spa_vdev_enter(spa);
4380
4381 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4382 VDEV_ALLOC_ADD)) != 0)
4383 return (spa_vdev_exit(spa, NULL, txg, error));
4384
4385 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4386
4387 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4388 &nspares) != 0)
4389 nspares = 0;
4390
4391 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4392 &nl2cache) != 0)
4393 nl2cache = 0;
4394
4395 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4396 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4397
4398 if (vd->vdev_children != 0 &&
4399 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4400 return (spa_vdev_exit(spa, vd, txg, error));
4401
4402 /*
4403 * We must validate the spares and l2cache devices after checking the
4404 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4405 */
4406 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4407 return (spa_vdev_exit(spa, vd, txg, error));
4408
4409 /*
4410 * Transfer each new top-level vdev from vd to rvd.
4411 */
4412 for (c = 0; c < vd->vdev_children; c++) {
4413
4414 /*
4415 * Set the vdev id to the first hole, if one exists.
4416 */
4417 for (id = 0; id < rvd->vdev_children; id++) {
4418 if (rvd->vdev_child[id]->vdev_ishole) {
4419 vdev_free(rvd->vdev_child[id]);
4420 break;
4421 }
4422 }
4423 tvd = vd->vdev_child[c];
4424 vdev_remove_child(vd, tvd);
4425 tvd->vdev_id = id;
4426 vdev_add_child(rvd, tvd);
4427 vdev_config_dirty(tvd);
4428 }
4429
4430 if (nspares != 0) {
4431 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4432 ZPOOL_CONFIG_SPARES);
4433 spa_load_spares(spa);
4434 spa->spa_spares.sav_sync = B_TRUE;
4435 }
4436
4437 if (nl2cache != 0) {
4438 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4439 ZPOOL_CONFIG_L2CACHE);
4440 spa_load_l2cache(spa);
4441 spa->spa_l2cache.sav_sync = B_TRUE;
4442 }
4443
4444 /*
4445 * We have to be careful when adding new vdevs to an existing pool.
4446 * If other threads start allocating from these vdevs before we
4447 * sync the config cache, and we lose power, then upon reboot we may
4448 * fail to open the pool because there are DVAs that the config cache
4449 * can't translate. Therefore, we first add the vdevs without
4450 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4451 * and then let spa_config_update() initialize the new metaslabs.
4452 *
4453 * spa_load() checks for added-but-not-initialized vdevs, so that
4454 * if we lose power at any point in this sequence, the remaining
4455 * steps will be completed the next time we load the pool.
4456 */
4457 (void) spa_vdev_exit(spa, vd, txg, 0);
4458
4459 mutex_enter(&spa_namespace_lock);
4460 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4461 mutex_exit(&spa_namespace_lock);
4462
4463 return (0);
4464 }
4465
4466 /*
4467 * Attach a device to a mirror. The arguments are the path to any device
4468 * in the mirror, and the nvroot for the new device. If the path specifies
4469 * a device that is not mirrored, we automatically insert the mirror vdev.
4470 *
4471 * If 'replacing' is specified, the new device is intended to replace the
4472 * existing device; in this case the two devices are made into their own
4473 * mirror using the 'replacing' vdev, which is functionally identical to
4474 * the mirror vdev (it actually reuses all the same ops) but has a few
4475 * extra rules: you can't attach to it after it's been created, and upon
4476 * completion of resilvering, the first disk (the one being replaced)
4477 * is automatically detached.
4478 */
4479 int
4480 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4481 {
4482 uint64_t txg, dtl_max_txg;
4483 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4484 vdev_ops_t *pvops;
4485 char *oldvdpath, *newvdpath;
4486 int newvd_isspare;
4487 int error;
4488 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4489
4490 ASSERT(spa_writeable(spa));
4491
4492 txg = spa_vdev_enter(spa);
4493
4494 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4495
4496 if (oldvd == NULL)
4497 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4498
4499 if (!oldvd->vdev_ops->vdev_op_leaf)
4500 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4501
4502 pvd = oldvd->vdev_parent;
4503
4504 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4505 VDEV_ALLOC_ATTACH)) != 0)
4506 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4507
4508 if (newrootvd->vdev_children != 1)
4509 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4510
4511 newvd = newrootvd->vdev_child[0];
4512
4513 if (!newvd->vdev_ops->vdev_op_leaf)
4514 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4515
4516 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4517 return (spa_vdev_exit(spa, newrootvd, txg, error));
4518
4519 /*
4520 * Spares can't replace logs
4521 */
4522 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4523 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4524
4525 if (!replacing) {
4526 /*
4527 * For attach, the only allowable parent is a mirror or the root
4528 * vdev.
4529 */
4530 if (pvd->vdev_ops != &vdev_mirror_ops &&
4531 pvd->vdev_ops != &vdev_root_ops)
4532 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4533
4534 pvops = &vdev_mirror_ops;
4535 } else {
4536 /*
4537 * Active hot spares can only be replaced by inactive hot
4538 * spares.
4539 */
4540 if (pvd->vdev_ops == &vdev_spare_ops &&
4541 oldvd->vdev_isspare &&
4542 !spa_has_spare(spa, newvd->vdev_guid))
4543 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4544
4545 /*
4546 * If the source is a hot spare, and the parent isn't already a
4547 * spare, then we want to create a new hot spare. Otherwise, we
4548 * want to create a replacing vdev. The user is not allowed to
4549 * attach to a spared vdev child unless the 'isspare' state is
4550 * the same (spare replaces spare, non-spare replaces
4551 * non-spare).
4552 */
4553 if (pvd->vdev_ops == &vdev_replacing_ops &&
4554 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4555 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4556 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4557 newvd->vdev_isspare != oldvd->vdev_isspare) {
4558 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4559 }
4560
4561 if (newvd->vdev_isspare)
4562 pvops = &vdev_spare_ops;
4563 else
4564 pvops = &vdev_replacing_ops;
4565 }
4566
4567 /*
4568 * Make sure the new device is big enough.
4569 */
4570 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4571 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4572
4573 /*
4574 * The new device cannot have a higher alignment requirement
4575 * than the top-level vdev.
4576 */
4577 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4578 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4579
4580 /*
4581 * If this is an in-place replacement, update oldvd's path and devid
4582 * to make it distinguishable from newvd, and unopenable from now on.
4583 */
4584 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4585 spa_strfree(oldvd->vdev_path);
4586 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4587 KM_PUSHPAGE);
4588 (void) sprintf(oldvd->vdev_path, "%s/%s",
4589 newvd->vdev_path, "old");
4590 if (oldvd->vdev_devid != NULL) {
4591 spa_strfree(oldvd->vdev_devid);
4592 oldvd->vdev_devid = NULL;
4593 }
4594 }
4595
4596 /* mark the device being resilvered */
4597 newvd->vdev_resilver_txg = txg;
4598
4599 /*
4600 * If the parent is not a mirror, or if we're replacing, insert the new
4601 * mirror/replacing/spare vdev above oldvd.
4602 */
4603 if (pvd->vdev_ops != pvops)
4604 pvd = vdev_add_parent(oldvd, pvops);
4605
4606 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4607 ASSERT(pvd->vdev_ops == pvops);
4608 ASSERT(oldvd->vdev_parent == pvd);
4609
4610 /*
4611 * Extract the new device from its root and add it to pvd.
4612 */
4613 vdev_remove_child(newrootvd, newvd);
4614 newvd->vdev_id = pvd->vdev_children;
4615 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4616 vdev_add_child(pvd, newvd);
4617
4618 tvd = newvd->vdev_top;
4619 ASSERT(pvd->vdev_top == tvd);
4620 ASSERT(tvd->vdev_parent == rvd);
4621
4622 vdev_config_dirty(tvd);
4623
4624 /*
4625 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4626 * for any dmu_sync-ed blocks. It will propagate upward when
4627 * spa_vdev_exit() calls vdev_dtl_reassess().
4628 */
4629 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4630
4631 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4632 dtl_max_txg - TXG_INITIAL);
4633
4634 if (newvd->vdev_isspare) {
4635 spa_spare_activate(newvd);
4636 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4637 }
4638
4639 oldvdpath = spa_strdup(oldvd->vdev_path);
4640 newvdpath = spa_strdup(newvd->vdev_path);
4641 newvd_isspare = newvd->vdev_isspare;
4642
4643 /*
4644 * Mark newvd's DTL dirty in this txg.
4645 */
4646 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4647
4648 /*
4649 * Schedule the resilver to restart in the future. We do this to
4650 * ensure that dmu_sync-ed blocks have been stitched into the
4651 * respective datasets.
4652 */
4653 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4654
4655 /*
4656 * Commit the config
4657 */
4658 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4659
4660 spa_history_log_internal(spa, "vdev attach", NULL,
4661 "%s vdev=%s %s vdev=%s",
4662 replacing && newvd_isspare ? "spare in" :
4663 replacing ? "replace" : "attach", newvdpath,
4664 replacing ? "for" : "to", oldvdpath);
4665
4666 spa_strfree(oldvdpath);
4667 spa_strfree(newvdpath);
4668
4669 if (spa->spa_bootfs)
4670 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4671
4672 return (0);
4673 }
4674
4675 /*
4676 * Detach a device from a mirror or replacing vdev.
4677 *
4678 * If 'replace_done' is specified, only detach if the parent
4679 * is a replacing vdev.
4680 */
4681 int
4682 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4683 {
4684 uint64_t txg;
4685 int error;
4686 vdev_t *vd, *pvd, *cvd, *tvd;
4687 boolean_t unspare = B_FALSE;
4688 uint64_t unspare_guid = 0;
4689 char *vdpath;
4690 int c, t;
4691 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4692 ASSERT(spa_writeable(spa));
4693
4694 txg = spa_vdev_enter(spa);
4695
4696 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4697
4698 if (vd == NULL)
4699 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4700
4701 if (!vd->vdev_ops->vdev_op_leaf)
4702 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4703
4704 pvd = vd->vdev_parent;
4705
4706 /*
4707 * If the parent/child relationship is not as expected, don't do it.
4708 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4709 * vdev that's replacing B with C. The user's intent in replacing
4710 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4711 * the replace by detaching C, the expected behavior is to end up
4712 * M(A,B). But suppose that right after deciding to detach C,
4713 * the replacement of B completes. We would have M(A,C), and then
4714 * ask to detach C, which would leave us with just A -- not what
4715 * the user wanted. To prevent this, we make sure that the
4716 * parent/child relationship hasn't changed -- in this example,
4717 * that C's parent is still the replacing vdev R.
4718 */
4719 if (pvd->vdev_guid != pguid && pguid != 0)
4720 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4721
4722 /*
4723 * Only 'replacing' or 'spare' vdevs can be replaced.
4724 */
4725 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4726 pvd->vdev_ops != &vdev_spare_ops)
4727 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4728
4729 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4730 spa_version(spa) >= SPA_VERSION_SPARES);
4731
4732 /*
4733 * Only mirror, replacing, and spare vdevs support detach.
4734 */
4735 if (pvd->vdev_ops != &vdev_replacing_ops &&
4736 pvd->vdev_ops != &vdev_mirror_ops &&
4737 pvd->vdev_ops != &vdev_spare_ops)
4738 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4739
4740 /*
4741 * If this device has the only valid copy of some data,
4742 * we cannot safely detach it.
4743 */
4744 if (vdev_dtl_required(vd))
4745 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4746
4747 ASSERT(pvd->vdev_children >= 2);
4748
4749 /*
4750 * If we are detaching the second disk from a replacing vdev, then
4751 * check to see if we changed the original vdev's path to have "/old"
4752 * at the end in spa_vdev_attach(). If so, undo that change now.
4753 */
4754 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4755 vd->vdev_path != NULL) {
4756 size_t len = strlen(vd->vdev_path);
4757
4758 for (c = 0; c < pvd->vdev_children; c++) {
4759 cvd = pvd->vdev_child[c];
4760
4761 if (cvd == vd || cvd->vdev_path == NULL)
4762 continue;
4763
4764 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4765 strcmp(cvd->vdev_path + len, "/old") == 0) {
4766 spa_strfree(cvd->vdev_path);
4767 cvd->vdev_path = spa_strdup(vd->vdev_path);
4768 break;
4769 }
4770 }
4771 }
4772
4773 /*
4774 * If we are detaching the original disk from a spare, then it implies
4775 * that the spare should become a real disk, and be removed from the
4776 * active spare list for the pool.
4777 */
4778 if (pvd->vdev_ops == &vdev_spare_ops &&
4779 vd->vdev_id == 0 &&
4780 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4781 unspare = B_TRUE;
4782
4783 /*
4784 * Erase the disk labels so the disk can be used for other things.
4785 * This must be done after all other error cases are handled,
4786 * but before we disembowel vd (so we can still do I/O to it).
4787 * But if we can't do it, don't treat the error as fatal --
4788 * it may be that the unwritability of the disk is the reason
4789 * it's being detached!
4790 */
4791 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4792
4793 /*
4794 * Remove vd from its parent and compact the parent's children.
4795 */
4796 vdev_remove_child(pvd, vd);
4797 vdev_compact_children(pvd);
4798
4799 /*
4800 * Remember one of the remaining children so we can get tvd below.
4801 */
4802 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4803
4804 /*
4805 * If we need to remove the remaining child from the list of hot spares,
4806 * do it now, marking the vdev as no longer a spare in the process.
4807 * We must do this before vdev_remove_parent(), because that can
4808 * change the GUID if it creates a new toplevel GUID. For a similar
4809 * reason, we must remove the spare now, in the same txg as the detach;
4810 * otherwise someone could attach a new sibling, change the GUID, and
4811 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4812 */
4813 if (unspare) {
4814 ASSERT(cvd->vdev_isspare);
4815 spa_spare_remove(cvd);
4816 unspare_guid = cvd->vdev_guid;
4817 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4818 cvd->vdev_unspare = B_TRUE;
4819 }
4820
4821 /*
4822 * If the parent mirror/replacing vdev only has one child,
4823 * the parent is no longer needed. Remove it from the tree.
4824 */
4825 if (pvd->vdev_children == 1) {
4826 if (pvd->vdev_ops == &vdev_spare_ops)
4827 cvd->vdev_unspare = B_FALSE;
4828 vdev_remove_parent(cvd);
4829 }
4830
4831
4832 /*
4833 * We don't set tvd until now because the parent we just removed
4834 * may have been the previous top-level vdev.
4835 */
4836 tvd = cvd->vdev_top;
4837 ASSERT(tvd->vdev_parent == rvd);
4838
4839 /*
4840 * Reevaluate the parent vdev state.
4841 */
4842 vdev_propagate_state(cvd);
4843
4844 /*
4845 * If the 'autoexpand' property is set on the pool then automatically
4846 * try to expand the size of the pool. For example if the device we
4847 * just detached was smaller than the others, it may be possible to
4848 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4849 * first so that we can obtain the updated sizes of the leaf vdevs.
4850 */
4851 if (spa->spa_autoexpand) {
4852 vdev_reopen(tvd);
4853 vdev_expand(tvd, txg);
4854 }
4855
4856 vdev_config_dirty(tvd);
4857
4858 /*
4859 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4860 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4861 * But first make sure we're not on any *other* txg's DTL list, to
4862 * prevent vd from being accessed after it's freed.
4863 */
4864 vdpath = spa_strdup(vd->vdev_path);
4865 for (t = 0; t < TXG_SIZE; t++)
4866 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4867 vd->vdev_detached = B_TRUE;
4868 vdev_dirty(tvd, VDD_DTL, vd, txg);
4869
4870 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4871
4872 /* hang on to the spa before we release the lock */
4873 spa_open_ref(spa, FTAG);
4874
4875 error = spa_vdev_exit(spa, vd, txg, 0);
4876
4877 spa_history_log_internal(spa, "detach", NULL,
4878 "vdev=%s", vdpath);
4879 spa_strfree(vdpath);
4880
4881 /*
4882 * If this was the removal of the original device in a hot spare vdev,
4883 * then we want to go through and remove the device from the hot spare
4884 * list of every other pool.
4885 */
4886 if (unspare) {
4887 spa_t *altspa = NULL;
4888
4889 mutex_enter(&spa_namespace_lock);
4890 while ((altspa = spa_next(altspa)) != NULL) {
4891 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4892 altspa == spa)
4893 continue;
4894
4895 spa_open_ref(altspa, FTAG);
4896 mutex_exit(&spa_namespace_lock);
4897 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4898 mutex_enter(&spa_namespace_lock);
4899 spa_close(altspa, FTAG);
4900 }
4901 mutex_exit(&spa_namespace_lock);
4902
4903 /* search the rest of the vdevs for spares to remove */
4904 spa_vdev_resilver_done(spa);
4905 }
4906
4907 /* all done with the spa; OK to release */
4908 mutex_enter(&spa_namespace_lock);
4909 spa_close(spa, FTAG);
4910 mutex_exit(&spa_namespace_lock);
4911
4912 return (error);
4913 }
4914
4915 /*
4916 * Split a set of devices from their mirrors, and create a new pool from them.
4917 */
4918 int
4919 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4920 nvlist_t *props, boolean_t exp)
4921 {
4922 int error = 0;
4923 uint64_t txg, *glist;
4924 spa_t *newspa;
4925 uint_t c, children, lastlog;
4926 nvlist_t **child, *nvl, *tmp;
4927 dmu_tx_t *tx;
4928 char *altroot = NULL;
4929 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4930 boolean_t activate_slog;
4931
4932 ASSERT(spa_writeable(spa));
4933
4934 txg = spa_vdev_enter(spa);
4935
4936 /* clear the log and flush everything up to now */
4937 activate_slog = spa_passivate_log(spa);
4938 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4939 error = spa_offline_log(spa);
4940 txg = spa_vdev_config_enter(spa);
4941
4942 if (activate_slog)
4943 spa_activate_log(spa);
4944
4945 if (error != 0)
4946 return (spa_vdev_exit(spa, NULL, txg, error));
4947
4948 /* check new spa name before going any further */
4949 if (spa_lookup(newname) != NULL)
4950 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4951
4952 /*
4953 * scan through all the children to ensure they're all mirrors
4954 */
4955 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4956 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4957 &children) != 0)
4958 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4959
4960 /* first, check to ensure we've got the right child count */
4961 rvd = spa->spa_root_vdev;
4962 lastlog = 0;
4963 for (c = 0; c < rvd->vdev_children; c++) {
4964 vdev_t *vd = rvd->vdev_child[c];
4965
4966 /* don't count the holes & logs as children */
4967 if (vd->vdev_islog || vd->vdev_ishole) {
4968 if (lastlog == 0)
4969 lastlog = c;
4970 continue;
4971 }
4972
4973 lastlog = 0;
4974 }
4975 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4976 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4977
4978 /* next, ensure no spare or cache devices are part of the split */
4979 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4980 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4981 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4982
4983 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_PUSHPAGE);
4984 glist = kmem_zalloc(children * sizeof (uint64_t), KM_PUSHPAGE);
4985
4986 /* then, loop over each vdev and validate it */
4987 for (c = 0; c < children; c++) {
4988 uint64_t is_hole = 0;
4989
4990 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4991 &is_hole);
4992
4993 if (is_hole != 0) {
4994 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4995 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4996 continue;
4997 } else {
4998 error = SET_ERROR(EINVAL);
4999 break;
5000 }
5001 }
5002
5003 /* which disk is going to be split? */
5004 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5005 &glist[c]) != 0) {
5006 error = SET_ERROR(EINVAL);
5007 break;
5008 }
5009
5010 /* look it up in the spa */
5011 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5012 if (vml[c] == NULL) {
5013 error = SET_ERROR(ENODEV);
5014 break;
5015 }
5016
5017 /* make sure there's nothing stopping the split */
5018 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5019 vml[c]->vdev_islog ||
5020 vml[c]->vdev_ishole ||
5021 vml[c]->vdev_isspare ||
5022 vml[c]->vdev_isl2cache ||
5023 !vdev_writeable(vml[c]) ||
5024 vml[c]->vdev_children != 0 ||
5025 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5026 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5027 error = SET_ERROR(EINVAL);
5028 break;
5029 }
5030
5031 if (vdev_dtl_required(vml[c])) {
5032 error = SET_ERROR(EBUSY);
5033 break;
5034 }
5035
5036 /* we need certain info from the top level */
5037 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5038 vml[c]->vdev_top->vdev_ms_array) == 0);
5039 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5040 vml[c]->vdev_top->vdev_ms_shift) == 0);
5041 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5042 vml[c]->vdev_top->vdev_asize) == 0);
5043 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5044 vml[c]->vdev_top->vdev_ashift) == 0);
5045 }
5046
5047 if (error != 0) {
5048 kmem_free(vml, children * sizeof (vdev_t *));
5049 kmem_free(glist, children * sizeof (uint64_t));
5050 return (spa_vdev_exit(spa, NULL, txg, error));
5051 }
5052
5053 /* stop writers from using the disks */
5054 for (c = 0; c < children; c++) {
5055 if (vml[c] != NULL)
5056 vml[c]->vdev_offline = B_TRUE;
5057 }
5058 vdev_reopen(spa->spa_root_vdev);
5059
5060 /*
5061 * Temporarily record the splitting vdevs in the spa config. This
5062 * will disappear once the config is regenerated.
5063 */
5064 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5065 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5066 glist, children) == 0);
5067 kmem_free(glist, children * sizeof (uint64_t));
5068
5069 mutex_enter(&spa->spa_props_lock);
5070 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5071 nvl) == 0);
5072 mutex_exit(&spa->spa_props_lock);
5073 spa->spa_config_splitting = nvl;
5074 vdev_config_dirty(spa->spa_root_vdev);
5075
5076 /* configure and create the new pool */
5077 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5078 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5079 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5080 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5081 spa_version(spa)) == 0);
5082 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5083 spa->spa_config_txg) == 0);
5084 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5085 spa_generate_guid(NULL)) == 0);
5086 (void) nvlist_lookup_string(props,
5087 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5088
5089 /* add the new pool to the namespace */
5090 newspa = spa_add(newname, config, altroot);
5091 newspa->spa_config_txg = spa->spa_config_txg;
5092 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5093
5094 /* release the spa config lock, retaining the namespace lock */
5095 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5096
5097 if (zio_injection_enabled)
5098 zio_handle_panic_injection(spa, FTAG, 1);
5099
5100 spa_activate(newspa, spa_mode_global);
5101 spa_async_suspend(newspa);
5102
5103 /* create the new pool from the disks of the original pool */
5104 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5105 if (error)
5106 goto out;
5107
5108 /* if that worked, generate a real config for the new pool */
5109 if (newspa->spa_root_vdev != NULL) {
5110 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5111 NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5112 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5113 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5114 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5115 B_TRUE));
5116 }
5117
5118 /* set the props */
5119 if (props != NULL) {
5120 spa_configfile_set(newspa, props, B_FALSE);
5121 error = spa_prop_set(newspa, props);
5122 if (error)
5123 goto out;
5124 }
5125
5126 /* flush everything */
5127 txg = spa_vdev_config_enter(newspa);
5128 vdev_config_dirty(newspa->spa_root_vdev);
5129 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5130
5131 if (zio_injection_enabled)
5132 zio_handle_panic_injection(spa, FTAG, 2);
5133
5134 spa_async_resume(newspa);
5135
5136 /* finally, update the original pool's config */
5137 txg = spa_vdev_config_enter(spa);
5138 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5139 error = dmu_tx_assign(tx, TXG_WAIT);
5140 if (error != 0)
5141 dmu_tx_abort(tx);
5142 for (c = 0; c < children; c++) {
5143 if (vml[c] != NULL) {
5144 vdev_split(vml[c]);
5145 if (error == 0)
5146 spa_history_log_internal(spa, "detach", tx,
5147 "vdev=%s", vml[c]->vdev_path);
5148 vdev_free(vml[c]);
5149 }
5150 }
5151 vdev_config_dirty(spa->spa_root_vdev);
5152 spa->spa_config_splitting = NULL;
5153 nvlist_free(nvl);
5154 if (error == 0)
5155 dmu_tx_commit(tx);
5156 (void) spa_vdev_exit(spa, NULL, txg, 0);
5157
5158 if (zio_injection_enabled)
5159 zio_handle_panic_injection(spa, FTAG, 3);
5160
5161 /* split is complete; log a history record */
5162 spa_history_log_internal(newspa, "split", NULL,
5163 "from pool %s", spa_name(spa));
5164
5165 kmem_free(vml, children * sizeof (vdev_t *));
5166
5167 /* if we're not going to mount the filesystems in userland, export */
5168 if (exp)
5169 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5170 B_FALSE, B_FALSE);
5171
5172 return (error);
5173
5174 out:
5175 spa_unload(newspa);
5176 spa_deactivate(newspa);
5177 spa_remove(newspa);
5178
5179 txg = spa_vdev_config_enter(spa);
5180
5181 /* re-online all offlined disks */
5182 for (c = 0; c < children; c++) {
5183 if (vml[c] != NULL)
5184 vml[c]->vdev_offline = B_FALSE;
5185 }
5186 vdev_reopen(spa->spa_root_vdev);
5187
5188 nvlist_free(spa->spa_config_splitting);
5189 spa->spa_config_splitting = NULL;
5190 (void) spa_vdev_exit(spa, NULL, txg, error);
5191
5192 kmem_free(vml, children * sizeof (vdev_t *));
5193 return (error);
5194 }
5195
5196 static nvlist_t *
5197 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5198 {
5199 int i;
5200
5201 for (i = 0; i < count; i++) {
5202 uint64_t guid;
5203
5204 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5205 &guid) == 0);
5206
5207 if (guid == target_guid)
5208 return (nvpp[i]);
5209 }
5210
5211 return (NULL);
5212 }
5213
5214 static void
5215 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5216 nvlist_t *dev_to_remove)
5217 {
5218 nvlist_t **newdev = NULL;
5219 int i, j;
5220
5221 if (count > 1)
5222 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_PUSHPAGE);
5223
5224 for (i = 0, j = 0; i < count; i++) {
5225 if (dev[i] == dev_to_remove)
5226 continue;
5227 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_PUSHPAGE) == 0);
5228 }
5229
5230 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5231 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5232
5233 for (i = 0; i < count - 1; i++)
5234 nvlist_free(newdev[i]);
5235
5236 if (count > 1)
5237 kmem_free(newdev, (count - 1) * sizeof (void *));
5238 }
5239
5240 /*
5241 * Evacuate the device.
5242 */
5243 static int
5244 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5245 {
5246 uint64_t txg;
5247 int error = 0;
5248
5249 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5250 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5251 ASSERT(vd == vd->vdev_top);
5252
5253 /*
5254 * Evacuate the device. We don't hold the config lock as writer
5255 * since we need to do I/O but we do keep the
5256 * spa_namespace_lock held. Once this completes the device
5257 * should no longer have any blocks allocated on it.
5258 */
5259 if (vd->vdev_islog) {
5260 if (vd->vdev_stat.vs_alloc != 0)
5261 error = spa_offline_log(spa);
5262 } else {
5263 error = SET_ERROR(ENOTSUP);
5264 }
5265
5266 if (error)
5267 return (error);
5268
5269 /*
5270 * The evacuation succeeded. Remove any remaining MOS metadata
5271 * associated with this vdev, and wait for these changes to sync.
5272 */
5273 ASSERT0(vd->vdev_stat.vs_alloc);
5274 txg = spa_vdev_config_enter(spa);
5275 vd->vdev_removing = B_TRUE;
5276 vdev_dirty_leaves(vd, VDD_DTL, txg);
5277 vdev_config_dirty(vd);
5278 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5279
5280 return (0);
5281 }
5282
5283 /*
5284 * Complete the removal by cleaning up the namespace.
5285 */
5286 static void
5287 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5288 {
5289 vdev_t *rvd = spa->spa_root_vdev;
5290 uint64_t id = vd->vdev_id;
5291 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5292
5293 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5294 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5295 ASSERT(vd == vd->vdev_top);
5296
5297 /*
5298 * Only remove any devices which are empty.
5299 */
5300 if (vd->vdev_stat.vs_alloc != 0)
5301 return;
5302
5303 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5304
5305 if (list_link_active(&vd->vdev_state_dirty_node))
5306 vdev_state_clean(vd);
5307 if (list_link_active(&vd->vdev_config_dirty_node))
5308 vdev_config_clean(vd);
5309
5310 vdev_free(vd);
5311
5312 if (last_vdev) {
5313 vdev_compact_children(rvd);
5314 } else {
5315 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5316 vdev_add_child(rvd, vd);
5317 }
5318 vdev_config_dirty(rvd);
5319
5320 /*
5321 * Reassess the health of our root vdev.
5322 */
5323 vdev_reopen(rvd);
5324 }
5325
5326 /*
5327 * Remove a device from the pool -
5328 *
5329 * Removing a device from the vdev namespace requires several steps
5330 * and can take a significant amount of time. As a result we use
5331 * the spa_vdev_config_[enter/exit] functions which allow us to
5332 * grab and release the spa_config_lock while still holding the namespace
5333 * lock. During each step the configuration is synced out.
5334 *
5335 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5336 * devices.
5337 */
5338 int
5339 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5340 {
5341 vdev_t *vd;
5342 metaslab_group_t *mg;
5343 nvlist_t **spares, **l2cache, *nv;
5344 uint64_t txg = 0;
5345 uint_t nspares, nl2cache;
5346 int error = 0;
5347 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5348
5349 ASSERT(spa_writeable(spa));
5350
5351 if (!locked)
5352 txg = spa_vdev_enter(spa);
5353
5354 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5355
5356 if (spa->spa_spares.sav_vdevs != NULL &&
5357 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5358 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5359 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5360 /*
5361 * Only remove the hot spare if it's not currently in use
5362 * in this pool.
5363 */
5364 if (vd == NULL || unspare) {
5365 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5366 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5367 spa_load_spares(spa);
5368 spa->spa_spares.sav_sync = B_TRUE;
5369 } else {
5370 error = SET_ERROR(EBUSY);
5371 }
5372 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5373 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5374 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5375 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5376 /*
5377 * Cache devices can always be removed.
5378 */
5379 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5380 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5381 spa_load_l2cache(spa);
5382 spa->spa_l2cache.sav_sync = B_TRUE;
5383 } else if (vd != NULL && vd->vdev_islog) {
5384 ASSERT(!locked);
5385 ASSERT(vd == vd->vdev_top);
5386
5387 mg = vd->vdev_mg;
5388
5389 /*
5390 * Stop allocating from this vdev.
5391 */
5392 metaslab_group_passivate(mg);
5393
5394 /*
5395 * Wait for the youngest allocations and frees to sync,
5396 * and then wait for the deferral of those frees to finish.
5397 */
5398 spa_vdev_config_exit(spa, NULL,
5399 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5400
5401 /*
5402 * Attempt to evacuate the vdev.
5403 */
5404 error = spa_vdev_remove_evacuate(spa, vd);
5405
5406 txg = spa_vdev_config_enter(spa);
5407
5408 /*
5409 * If we couldn't evacuate the vdev, unwind.
5410 */
5411 if (error) {
5412 metaslab_group_activate(mg);
5413 return (spa_vdev_exit(spa, NULL, txg, error));
5414 }
5415
5416 /*
5417 * Clean up the vdev namespace.
5418 */
5419 spa_vdev_remove_from_namespace(spa, vd);
5420
5421 } else if (vd != NULL) {
5422 /*
5423 * Normal vdevs cannot be removed (yet).
5424 */
5425 error = SET_ERROR(ENOTSUP);
5426 } else {
5427 /*
5428 * There is no vdev of any kind with the specified guid.
5429 */
5430 error = SET_ERROR(ENOENT);
5431 }
5432
5433 if (!locked)
5434 return (spa_vdev_exit(spa, NULL, txg, error));
5435
5436 return (error);
5437 }
5438
5439 /*
5440 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5441 * currently spared, so we can detach it.
5442 */
5443 static vdev_t *
5444 spa_vdev_resilver_done_hunt(vdev_t *vd)
5445 {
5446 vdev_t *newvd, *oldvd;
5447 int c;
5448
5449 for (c = 0; c < vd->vdev_children; c++) {
5450 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5451 if (oldvd != NULL)
5452 return (oldvd);
5453 }
5454
5455 /*
5456 * Check for a completed replacement. We always consider the first
5457 * vdev in the list to be the oldest vdev, and the last one to be
5458 * the newest (see spa_vdev_attach() for how that works). In
5459 * the case where the newest vdev is faulted, we will not automatically
5460 * remove it after a resilver completes. This is OK as it will require
5461 * user intervention to determine which disk the admin wishes to keep.
5462 */
5463 if (vd->vdev_ops == &vdev_replacing_ops) {
5464 ASSERT(vd->vdev_children > 1);
5465
5466 newvd = vd->vdev_child[vd->vdev_children - 1];
5467 oldvd = vd->vdev_child[0];
5468
5469 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5470 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5471 !vdev_dtl_required(oldvd))
5472 return (oldvd);
5473 }
5474
5475 /*
5476 * Check for a completed resilver with the 'unspare' flag set.
5477 */
5478 if (vd->vdev_ops == &vdev_spare_ops) {
5479 vdev_t *first = vd->vdev_child[0];
5480 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5481
5482 if (last->vdev_unspare) {
5483 oldvd = first;
5484 newvd = last;
5485 } else if (first->vdev_unspare) {
5486 oldvd = last;
5487 newvd = first;
5488 } else {
5489 oldvd = NULL;
5490 }
5491
5492 if (oldvd != NULL &&
5493 vdev_dtl_empty(newvd, DTL_MISSING) &&
5494 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5495 !vdev_dtl_required(oldvd))
5496 return (oldvd);
5497
5498 /*
5499 * If there are more than two spares attached to a disk,
5500 * and those spares are not required, then we want to
5501 * attempt to free them up now so that they can be used
5502 * by other pools. Once we're back down to a single
5503 * disk+spare, we stop removing them.
5504 */
5505 if (vd->vdev_children > 2) {
5506 newvd = vd->vdev_child[1];
5507
5508 if (newvd->vdev_isspare && last->vdev_isspare &&
5509 vdev_dtl_empty(last, DTL_MISSING) &&
5510 vdev_dtl_empty(last, DTL_OUTAGE) &&
5511 !vdev_dtl_required(newvd))
5512 return (newvd);
5513 }
5514 }
5515
5516 return (NULL);
5517 }
5518
5519 static void
5520 spa_vdev_resilver_done(spa_t *spa)
5521 {
5522 vdev_t *vd, *pvd, *ppvd;
5523 uint64_t guid, sguid, pguid, ppguid;
5524
5525 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5526
5527 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5528 pvd = vd->vdev_parent;
5529 ppvd = pvd->vdev_parent;
5530 guid = vd->vdev_guid;
5531 pguid = pvd->vdev_guid;
5532 ppguid = ppvd->vdev_guid;
5533 sguid = 0;
5534 /*
5535 * If we have just finished replacing a hot spared device, then
5536 * we need to detach the parent's first child (the original hot
5537 * spare) as well.
5538 */
5539 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5540 ppvd->vdev_children == 2) {
5541 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5542 sguid = ppvd->vdev_child[1]->vdev_guid;
5543 }
5544 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5545
5546 spa_config_exit(spa, SCL_ALL, FTAG);
5547 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5548 return;
5549 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5550 return;
5551 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5552 }
5553
5554 spa_config_exit(spa, SCL_ALL, FTAG);
5555 }
5556
5557 /*
5558 * Update the stored path or FRU for this vdev.
5559 */
5560 int
5561 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5562 boolean_t ispath)
5563 {
5564 vdev_t *vd;
5565 boolean_t sync = B_FALSE;
5566
5567 ASSERT(spa_writeable(spa));
5568
5569 spa_vdev_state_enter(spa, SCL_ALL);
5570
5571 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5572 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5573
5574 if (!vd->vdev_ops->vdev_op_leaf)
5575 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5576
5577 if (ispath) {
5578 if (strcmp(value, vd->vdev_path) != 0) {
5579 spa_strfree(vd->vdev_path);
5580 vd->vdev_path = spa_strdup(value);
5581 sync = B_TRUE;
5582 }
5583 } else {
5584 if (vd->vdev_fru == NULL) {
5585 vd->vdev_fru = spa_strdup(value);
5586 sync = B_TRUE;
5587 } else if (strcmp(value, vd->vdev_fru) != 0) {
5588 spa_strfree(vd->vdev_fru);
5589 vd->vdev_fru = spa_strdup(value);
5590 sync = B_TRUE;
5591 }
5592 }
5593
5594 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5595 }
5596
5597 int
5598 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5599 {
5600 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5601 }
5602
5603 int
5604 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5605 {
5606 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5607 }
5608
5609 /*
5610 * ==========================================================================
5611 * SPA Scanning
5612 * ==========================================================================
5613 */
5614
5615 int
5616 spa_scan_stop(spa_t *spa)
5617 {
5618 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5619 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5620 return (SET_ERROR(EBUSY));
5621 return (dsl_scan_cancel(spa->spa_dsl_pool));
5622 }
5623
5624 int
5625 spa_scan(spa_t *spa, pool_scan_func_t func)
5626 {
5627 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5628
5629 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5630 return (SET_ERROR(ENOTSUP));
5631
5632 /*
5633 * If a resilver was requested, but there is no DTL on a
5634 * writeable leaf device, we have nothing to do.
5635 */
5636 if (func == POOL_SCAN_RESILVER &&
5637 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5638 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5639 return (0);
5640 }
5641
5642 return (dsl_scan(spa->spa_dsl_pool, func));
5643 }
5644
5645 /*
5646 * ==========================================================================
5647 * SPA async task processing
5648 * ==========================================================================
5649 */
5650
5651 static void
5652 spa_async_remove(spa_t *spa, vdev_t *vd)
5653 {
5654 int c;
5655
5656 if (vd->vdev_remove_wanted) {
5657 vd->vdev_remove_wanted = B_FALSE;
5658 vd->vdev_delayed_close = B_FALSE;
5659 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5660
5661 /*
5662 * We want to clear the stats, but we don't want to do a full
5663 * vdev_clear() as that will cause us to throw away
5664 * degraded/faulted state as well as attempt to reopen the
5665 * device, all of which is a waste.
5666 */
5667 vd->vdev_stat.vs_read_errors = 0;
5668 vd->vdev_stat.vs_write_errors = 0;
5669 vd->vdev_stat.vs_checksum_errors = 0;
5670
5671 vdev_state_dirty(vd->vdev_top);
5672 }
5673
5674 for (c = 0; c < vd->vdev_children; c++)
5675 spa_async_remove(spa, vd->vdev_child[c]);
5676 }
5677
5678 static void
5679 spa_async_probe(spa_t *spa, vdev_t *vd)
5680 {
5681 int c;
5682
5683 if (vd->vdev_probe_wanted) {
5684 vd->vdev_probe_wanted = B_FALSE;
5685 vdev_reopen(vd); /* vdev_open() does the actual probe */
5686 }
5687
5688 for (c = 0; c < vd->vdev_children; c++)
5689 spa_async_probe(spa, vd->vdev_child[c]);
5690 }
5691
5692 static void
5693 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5694 {
5695 int c;
5696
5697 if (!spa->spa_autoexpand)
5698 return;
5699
5700 for (c = 0; c < vd->vdev_children; c++) {
5701 vdev_t *cvd = vd->vdev_child[c];
5702 spa_async_autoexpand(spa, cvd);
5703 }
5704
5705 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5706 return;
5707
5708 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5709 }
5710
5711 static void
5712 spa_async_thread(spa_t *spa)
5713 {
5714 int tasks, i;
5715
5716 ASSERT(spa->spa_sync_on);
5717
5718 mutex_enter(&spa->spa_async_lock);
5719 tasks = spa->spa_async_tasks;
5720 spa->spa_async_tasks = 0;
5721 mutex_exit(&spa->spa_async_lock);
5722
5723 /*
5724 * See if the config needs to be updated.
5725 */
5726 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5727 uint64_t old_space, new_space;
5728
5729 mutex_enter(&spa_namespace_lock);
5730 old_space = metaslab_class_get_space(spa_normal_class(spa));
5731 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5732 new_space = metaslab_class_get_space(spa_normal_class(spa));
5733 mutex_exit(&spa_namespace_lock);
5734
5735 /*
5736 * If the pool grew as a result of the config update,
5737 * then log an internal history event.
5738 */
5739 if (new_space != old_space) {
5740 spa_history_log_internal(spa, "vdev online", NULL,
5741 "pool '%s' size: %llu(+%llu)",
5742 spa_name(spa), new_space, new_space - old_space);
5743 }
5744 }
5745
5746 /*
5747 * See if any devices need to be marked REMOVED.
5748 */
5749 if (tasks & SPA_ASYNC_REMOVE) {
5750 spa_vdev_state_enter(spa, SCL_NONE);
5751 spa_async_remove(spa, spa->spa_root_vdev);
5752 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5753 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5754 for (i = 0; i < spa->spa_spares.sav_count; i++)
5755 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5756 (void) spa_vdev_state_exit(spa, NULL, 0);
5757 }
5758
5759 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5760 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5761 spa_async_autoexpand(spa, spa->spa_root_vdev);
5762 spa_config_exit(spa, SCL_CONFIG, FTAG);
5763 }
5764
5765 /*
5766 * See if any devices need to be probed.
5767 */
5768 if (tasks & SPA_ASYNC_PROBE) {
5769 spa_vdev_state_enter(spa, SCL_NONE);
5770 spa_async_probe(spa, spa->spa_root_vdev);
5771 (void) spa_vdev_state_exit(spa, NULL, 0);
5772 }
5773
5774 /*
5775 * If any devices are done replacing, detach them.
5776 */
5777 if (tasks & SPA_ASYNC_RESILVER_DONE)
5778 spa_vdev_resilver_done(spa);
5779
5780 /*
5781 * Kick off a resilver.
5782 */
5783 if (tasks & SPA_ASYNC_RESILVER)
5784 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5785
5786 /*
5787 * Let the world know that we're done.
5788 */
5789 mutex_enter(&spa->spa_async_lock);
5790 spa->spa_async_thread = NULL;
5791 cv_broadcast(&spa->spa_async_cv);
5792 mutex_exit(&spa->spa_async_lock);
5793 thread_exit();
5794 }
5795
5796 void
5797 spa_async_suspend(spa_t *spa)
5798 {
5799 mutex_enter(&spa->spa_async_lock);
5800 spa->spa_async_suspended++;
5801 while (spa->spa_async_thread != NULL)
5802 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5803 mutex_exit(&spa->spa_async_lock);
5804 }
5805
5806 void
5807 spa_async_resume(spa_t *spa)
5808 {
5809 mutex_enter(&spa->spa_async_lock);
5810 ASSERT(spa->spa_async_suspended != 0);
5811 spa->spa_async_suspended--;
5812 mutex_exit(&spa->spa_async_lock);
5813 }
5814
5815 static void
5816 spa_async_dispatch(spa_t *spa)
5817 {
5818 mutex_enter(&spa->spa_async_lock);
5819 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5820 spa->spa_async_thread == NULL &&
5821 rootdir != NULL && !vn_is_readonly(rootdir))
5822 spa->spa_async_thread = thread_create(NULL, 0,
5823 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5824 mutex_exit(&spa->spa_async_lock);
5825 }
5826
5827 void
5828 spa_async_request(spa_t *spa, int task)
5829 {
5830 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5831 mutex_enter(&spa->spa_async_lock);
5832 spa->spa_async_tasks |= task;
5833 mutex_exit(&spa->spa_async_lock);
5834 }
5835
5836 /*
5837 * ==========================================================================
5838 * SPA syncing routines
5839 * ==========================================================================
5840 */
5841
5842 static int
5843 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5844 {
5845 bpobj_t *bpo = arg;
5846 bpobj_enqueue(bpo, bp, tx);
5847 return (0);
5848 }
5849
5850 static int
5851 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5852 {
5853 zio_t *zio = arg;
5854
5855 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5856 zio->io_flags));
5857 return (0);
5858 }
5859
5860 /*
5861 * Note: this simple function is not inlined to make it easier to dtrace the
5862 * amount of time spent syncing frees.
5863 */
5864 static void
5865 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5866 {
5867 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5868 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5869 VERIFY(zio_wait(zio) == 0);
5870 }
5871
5872 /*
5873 * Note: this simple function is not inlined to make it easier to dtrace the
5874 * amount of time spent syncing deferred frees.
5875 */
5876 static void
5877 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5878 {
5879 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5880 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5881 spa_free_sync_cb, zio, tx), ==, 0);
5882 VERIFY0(zio_wait(zio));
5883 }
5884
5885 static void
5886 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5887 {
5888 char *packed = NULL;
5889 size_t bufsize;
5890 size_t nvsize = 0;
5891 dmu_buf_t *db;
5892
5893 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5894
5895 /*
5896 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5897 * information. This avoids the dmu_buf_will_dirty() path and
5898 * saves us a pre-read to get data we don't actually care about.
5899 */
5900 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5901 packed = vmem_alloc(bufsize, KM_PUSHPAGE);
5902
5903 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5904 KM_PUSHPAGE) == 0);
5905 bzero(packed + nvsize, bufsize - nvsize);
5906
5907 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5908
5909 vmem_free(packed, bufsize);
5910
5911 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5912 dmu_buf_will_dirty(db, tx);
5913 *(uint64_t *)db->db_data = nvsize;
5914 dmu_buf_rele(db, FTAG);
5915 }
5916
5917 static void
5918 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5919 const char *config, const char *entry)
5920 {
5921 nvlist_t *nvroot;
5922 nvlist_t **list;
5923 int i;
5924
5925 if (!sav->sav_sync)
5926 return;
5927
5928 /*
5929 * Update the MOS nvlist describing the list of available devices.
5930 * spa_validate_aux() will have already made sure this nvlist is
5931 * valid and the vdevs are labeled appropriately.
5932 */
5933 if (sav->sav_object == 0) {
5934 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5935 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5936 sizeof (uint64_t), tx);
5937 VERIFY(zap_update(spa->spa_meta_objset,
5938 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5939 &sav->sav_object, tx) == 0);
5940 }
5941
5942 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_PUSHPAGE) == 0);
5943 if (sav->sav_count == 0) {
5944 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5945 } else {
5946 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_PUSHPAGE);
5947 for (i = 0; i < sav->sav_count; i++)
5948 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5949 B_FALSE, VDEV_CONFIG_L2CACHE);
5950 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5951 sav->sav_count) == 0);
5952 for (i = 0; i < sav->sav_count; i++)
5953 nvlist_free(list[i]);
5954 kmem_free(list, sav->sav_count * sizeof (void *));
5955 }
5956
5957 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5958 nvlist_free(nvroot);
5959
5960 sav->sav_sync = B_FALSE;
5961 }
5962
5963 static void
5964 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5965 {
5966 nvlist_t *config;
5967
5968 if (list_is_empty(&spa->spa_config_dirty_list))
5969 return;
5970
5971 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5972
5973 config = spa_config_generate(spa, spa->spa_root_vdev,
5974 dmu_tx_get_txg(tx), B_FALSE);
5975
5976 /*
5977 * If we're upgrading the spa version then make sure that
5978 * the config object gets updated with the correct version.
5979 */
5980 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5981 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5982 spa->spa_uberblock.ub_version);
5983
5984 spa_config_exit(spa, SCL_STATE, FTAG);
5985
5986 if (spa->spa_config_syncing)
5987 nvlist_free(spa->spa_config_syncing);
5988 spa->spa_config_syncing = config;
5989
5990 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5991 }
5992
5993 static void
5994 spa_sync_version(void *arg, dmu_tx_t *tx)
5995 {
5996 uint64_t *versionp = arg;
5997 uint64_t version = *versionp;
5998 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5999
6000 /*
6001 * Setting the version is special cased when first creating the pool.
6002 */
6003 ASSERT(tx->tx_txg != TXG_INITIAL);
6004
6005 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6006 ASSERT(version >= spa_version(spa));
6007
6008 spa->spa_uberblock.ub_version = version;
6009 vdev_config_dirty(spa->spa_root_vdev);
6010 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6011 }
6012
6013 /*
6014 * Set zpool properties.
6015 */
6016 static void
6017 spa_sync_props(void *arg, dmu_tx_t *tx)
6018 {
6019 nvlist_t *nvp = arg;
6020 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6021 objset_t *mos = spa->spa_meta_objset;
6022 nvpair_t *elem = NULL;
6023
6024 mutex_enter(&spa->spa_props_lock);
6025
6026 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6027 uint64_t intval;
6028 char *strval, *fname;
6029 zpool_prop_t prop;
6030 const char *propname;
6031 zprop_type_t proptype;
6032 spa_feature_t fid;
6033
6034 prop = zpool_name_to_prop(nvpair_name(elem));
6035 switch ((int)prop) {
6036 case ZPROP_INVAL:
6037 /*
6038 * We checked this earlier in spa_prop_validate().
6039 */
6040 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6041
6042 fname = strchr(nvpair_name(elem), '@') + 1;
6043 VERIFY0(zfeature_lookup_name(fname, &fid));
6044
6045 spa_feature_enable(spa, fid, tx);
6046 spa_history_log_internal(spa, "set", tx,
6047 "%s=enabled", nvpair_name(elem));
6048 break;
6049
6050 case ZPOOL_PROP_VERSION:
6051 intval = fnvpair_value_uint64(elem);
6052 /*
6053 * The version is synced seperatly before other
6054 * properties and should be correct by now.
6055 */
6056 ASSERT3U(spa_version(spa), >=, intval);
6057 break;
6058
6059 case ZPOOL_PROP_ALTROOT:
6060 /*
6061 * 'altroot' is a non-persistent property. It should
6062 * have been set temporarily at creation or import time.
6063 */
6064 ASSERT(spa->spa_root != NULL);
6065 break;
6066
6067 case ZPOOL_PROP_READONLY:
6068 case ZPOOL_PROP_CACHEFILE:
6069 /*
6070 * 'readonly' and 'cachefile' are also non-persisitent
6071 * properties.
6072 */
6073 break;
6074 case ZPOOL_PROP_COMMENT:
6075 strval = fnvpair_value_string(elem);
6076 if (spa->spa_comment != NULL)
6077 spa_strfree(spa->spa_comment);
6078 spa->spa_comment = spa_strdup(strval);
6079 /*
6080 * We need to dirty the configuration on all the vdevs
6081 * so that their labels get updated. It's unnecessary
6082 * to do this for pool creation since the vdev's
6083 * configuratoin has already been dirtied.
6084 */
6085 if (tx->tx_txg != TXG_INITIAL)
6086 vdev_config_dirty(spa->spa_root_vdev);
6087 spa_history_log_internal(spa, "set", tx,
6088 "%s=%s", nvpair_name(elem), strval);
6089 break;
6090 default:
6091 /*
6092 * Set pool property values in the poolprops mos object.
6093 */
6094 if (spa->spa_pool_props_object == 0) {
6095 spa->spa_pool_props_object =
6096 zap_create_link(mos, DMU_OT_POOL_PROPS,
6097 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6098 tx);
6099 }
6100
6101 /* normalize the property name */
6102 propname = zpool_prop_to_name(prop);
6103 proptype = zpool_prop_get_type(prop);
6104
6105 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6106 ASSERT(proptype == PROP_TYPE_STRING);
6107 strval = fnvpair_value_string(elem);
6108 VERIFY0(zap_update(mos,
6109 spa->spa_pool_props_object, propname,
6110 1, strlen(strval) + 1, strval, tx));
6111 spa_history_log_internal(spa, "set", tx,
6112 "%s=%s", nvpair_name(elem), strval);
6113 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6114 intval = fnvpair_value_uint64(elem);
6115
6116 if (proptype == PROP_TYPE_INDEX) {
6117 const char *unused;
6118 VERIFY0(zpool_prop_index_to_string(
6119 prop, intval, &unused));
6120 }
6121 VERIFY0(zap_update(mos,
6122 spa->spa_pool_props_object, propname,
6123 8, 1, &intval, tx));
6124 spa_history_log_internal(spa, "set", tx,
6125 "%s=%lld", nvpair_name(elem), intval);
6126 } else {
6127 ASSERT(0); /* not allowed */
6128 }
6129
6130 switch (prop) {
6131 case ZPOOL_PROP_DELEGATION:
6132 spa->spa_delegation = intval;
6133 break;
6134 case ZPOOL_PROP_BOOTFS:
6135 spa->spa_bootfs = intval;
6136 break;
6137 case ZPOOL_PROP_FAILUREMODE:
6138 spa->spa_failmode = intval;
6139 break;
6140 case ZPOOL_PROP_AUTOEXPAND:
6141 spa->spa_autoexpand = intval;
6142 if (tx->tx_txg != TXG_INITIAL)
6143 spa_async_request(spa,
6144 SPA_ASYNC_AUTOEXPAND);
6145 break;
6146 case ZPOOL_PROP_DEDUPDITTO:
6147 spa->spa_dedup_ditto = intval;
6148 break;
6149 default:
6150 break;
6151 }
6152 }
6153
6154 }
6155
6156 mutex_exit(&spa->spa_props_lock);
6157 }
6158
6159 /*
6160 * Perform one-time upgrade on-disk changes. spa_version() does not
6161 * reflect the new version this txg, so there must be no changes this
6162 * txg to anything that the upgrade code depends on after it executes.
6163 * Therefore this must be called after dsl_pool_sync() does the sync
6164 * tasks.
6165 */
6166 static void
6167 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6168 {
6169 dsl_pool_t *dp = spa->spa_dsl_pool;
6170
6171 ASSERT(spa->spa_sync_pass == 1);
6172
6173 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6174
6175 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6176 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6177 dsl_pool_create_origin(dp, tx);
6178
6179 /* Keeping the origin open increases spa_minref */
6180 spa->spa_minref += 3;
6181 }
6182
6183 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6184 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6185 dsl_pool_upgrade_clones(dp, tx);
6186 }
6187
6188 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6189 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6190 dsl_pool_upgrade_dir_clones(dp, tx);
6191
6192 /* Keeping the freedir open increases spa_minref */
6193 spa->spa_minref += 3;
6194 }
6195
6196 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6197 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6198 spa_feature_create_zap_objects(spa, tx);
6199 }
6200 rrw_exit(&dp->dp_config_rwlock, FTAG);
6201 }
6202
6203 /*
6204 * Sync the specified transaction group. New blocks may be dirtied as
6205 * part of the process, so we iterate until it converges.
6206 */
6207 void
6208 spa_sync(spa_t *spa, uint64_t txg)
6209 {
6210 dsl_pool_t *dp = spa->spa_dsl_pool;
6211 objset_t *mos = spa->spa_meta_objset;
6212 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6213 vdev_t *rvd = spa->spa_root_vdev;
6214 vdev_t *vd;
6215 dmu_tx_t *tx;
6216 int error;
6217 int c;
6218
6219 VERIFY(spa_writeable(spa));
6220
6221 /*
6222 * Lock out configuration changes.
6223 */
6224 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6225
6226 spa->spa_syncing_txg = txg;
6227 spa->spa_sync_pass = 0;
6228
6229 /*
6230 * If there are any pending vdev state changes, convert them
6231 * into config changes that go out with this transaction group.
6232 */
6233 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6234 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6235 /*
6236 * We need the write lock here because, for aux vdevs,
6237 * calling vdev_config_dirty() modifies sav_config.
6238 * This is ugly and will become unnecessary when we
6239 * eliminate the aux vdev wart by integrating all vdevs
6240 * into the root vdev tree.
6241 */
6242 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6243 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6244 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6245 vdev_state_clean(vd);
6246 vdev_config_dirty(vd);
6247 }
6248 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6249 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6250 }
6251 spa_config_exit(spa, SCL_STATE, FTAG);
6252
6253 tx = dmu_tx_create_assigned(dp, txg);
6254
6255 spa->spa_sync_starttime = gethrtime();
6256 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6257 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6258 spa_deadman, spa, TQ_PUSHPAGE, ddi_get_lbolt() +
6259 NSEC_TO_TICK(spa->spa_deadman_synctime));
6260
6261 /*
6262 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6263 * set spa_deflate if we have no raid-z vdevs.
6264 */
6265 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6266 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6267 int i;
6268
6269 for (i = 0; i < rvd->vdev_children; i++) {
6270 vd = rvd->vdev_child[i];
6271 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6272 break;
6273 }
6274 if (i == rvd->vdev_children) {
6275 spa->spa_deflate = TRUE;
6276 VERIFY(0 == zap_add(spa->spa_meta_objset,
6277 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6278 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6279 }
6280 }
6281
6282 /*
6283 * If anything has changed in this txg, or if someone is waiting
6284 * for this txg to sync (eg, spa_vdev_remove()), push the
6285 * deferred frees from the previous txg. If not, leave them
6286 * alone so that we don't generate work on an otherwise idle
6287 * system.
6288 */
6289 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6290 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6291 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6292 ((dsl_scan_active(dp->dp_scan) ||
6293 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6294 spa_sync_deferred_frees(spa, tx);
6295 }
6296
6297 /*
6298 * Iterate to convergence.
6299 */
6300 do {
6301 int pass = ++spa->spa_sync_pass;
6302
6303 spa_sync_config_object(spa, tx);
6304 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6305 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6306 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6307 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6308 spa_errlog_sync(spa, txg);
6309 dsl_pool_sync(dp, txg);
6310
6311 if (pass < zfs_sync_pass_deferred_free) {
6312 spa_sync_frees(spa, free_bpl, tx);
6313 } else {
6314 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6315 &spa->spa_deferred_bpobj, tx);
6316 }
6317
6318 ddt_sync(spa, txg);
6319 dsl_scan_sync(dp, tx);
6320
6321 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6322 vdev_sync(vd, txg);
6323
6324 if (pass == 1)
6325 spa_sync_upgrades(spa, tx);
6326
6327 } while (dmu_objset_is_dirty(mos, txg));
6328
6329 /*
6330 * Rewrite the vdev configuration (which includes the uberblock)
6331 * to commit the transaction group.
6332 *
6333 * If there are no dirty vdevs, we sync the uberblock to a few
6334 * random top-level vdevs that are known to be visible in the
6335 * config cache (see spa_vdev_add() for a complete description).
6336 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6337 */
6338 for (;;) {
6339 /*
6340 * We hold SCL_STATE to prevent vdev open/close/etc.
6341 * while we're attempting to write the vdev labels.
6342 */
6343 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6344
6345 if (list_is_empty(&spa->spa_config_dirty_list)) {
6346 vdev_t *svd[SPA_DVAS_PER_BP];
6347 int svdcount = 0;
6348 int children = rvd->vdev_children;
6349 int c0 = spa_get_random(children);
6350
6351 for (c = 0; c < children; c++) {
6352 vd = rvd->vdev_child[(c0 + c) % children];
6353 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6354 continue;
6355 svd[svdcount++] = vd;
6356 if (svdcount == SPA_DVAS_PER_BP)
6357 break;
6358 }
6359 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6360 if (error != 0)
6361 error = vdev_config_sync(svd, svdcount, txg,
6362 B_TRUE);
6363 } else {
6364 error = vdev_config_sync(rvd->vdev_child,
6365 rvd->vdev_children, txg, B_FALSE);
6366 if (error != 0)
6367 error = vdev_config_sync(rvd->vdev_child,
6368 rvd->vdev_children, txg, B_TRUE);
6369 }
6370
6371 if (error == 0)
6372 spa->spa_last_synced_guid = rvd->vdev_guid;
6373
6374 spa_config_exit(spa, SCL_STATE, FTAG);
6375
6376 if (error == 0)
6377 break;
6378 zio_suspend(spa, NULL);
6379 zio_resume_wait(spa);
6380 }
6381 dmu_tx_commit(tx);
6382
6383 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6384 spa->spa_deadman_tqid = 0;
6385
6386 /*
6387 * Clear the dirty config list.
6388 */
6389 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6390 vdev_config_clean(vd);
6391
6392 /*
6393 * Now that the new config has synced transactionally,
6394 * let it become visible to the config cache.
6395 */
6396 if (spa->spa_config_syncing != NULL) {
6397 spa_config_set(spa, spa->spa_config_syncing);
6398 spa->spa_config_txg = txg;
6399 spa->spa_config_syncing = NULL;
6400 }
6401
6402 spa->spa_ubsync = spa->spa_uberblock;
6403
6404 dsl_pool_sync_done(dp, txg);
6405
6406 /*
6407 * Update usable space statistics.
6408 */
6409 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6410 vdev_sync_done(vd, txg);
6411
6412 spa_update_dspace(spa);
6413
6414 /*
6415 * It had better be the case that we didn't dirty anything
6416 * since vdev_config_sync().
6417 */
6418 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6419 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6420 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6421
6422 spa->spa_sync_pass = 0;
6423
6424 spa_config_exit(spa, SCL_CONFIG, FTAG);
6425
6426 spa_handle_ignored_writes(spa);
6427
6428 /*
6429 * If any async tasks have been requested, kick them off.
6430 */
6431 spa_async_dispatch(spa);
6432 }
6433
6434 /*
6435 * Sync all pools. We don't want to hold the namespace lock across these
6436 * operations, so we take a reference on the spa_t and drop the lock during the
6437 * sync.
6438 */
6439 void
6440 spa_sync_allpools(void)
6441 {
6442 spa_t *spa = NULL;
6443 mutex_enter(&spa_namespace_lock);
6444 while ((spa = spa_next(spa)) != NULL) {
6445 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6446 !spa_writeable(spa) || spa_suspended(spa))
6447 continue;
6448 spa_open_ref(spa, FTAG);
6449 mutex_exit(&spa_namespace_lock);
6450 txg_wait_synced(spa_get_dsl(spa), 0);
6451 mutex_enter(&spa_namespace_lock);
6452 spa_close(spa, FTAG);
6453 }
6454 mutex_exit(&spa_namespace_lock);
6455 }
6456
6457 /*
6458 * ==========================================================================
6459 * Miscellaneous routines
6460 * ==========================================================================
6461 */
6462
6463 /*
6464 * Remove all pools in the system.
6465 */
6466 void
6467 spa_evict_all(void)
6468 {
6469 spa_t *spa;
6470
6471 /*
6472 * Remove all cached state. All pools should be closed now,
6473 * so every spa in the AVL tree should be unreferenced.
6474 */
6475 mutex_enter(&spa_namespace_lock);
6476 while ((spa = spa_next(NULL)) != NULL) {
6477 /*
6478 * Stop async tasks. The async thread may need to detach
6479 * a device that's been replaced, which requires grabbing
6480 * spa_namespace_lock, so we must drop it here.
6481 */
6482 spa_open_ref(spa, FTAG);
6483 mutex_exit(&spa_namespace_lock);
6484 spa_async_suspend(spa);
6485 mutex_enter(&spa_namespace_lock);
6486 spa_close(spa, FTAG);
6487
6488 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6489 spa_unload(spa);
6490 spa_deactivate(spa);
6491 }
6492 spa_remove(spa);
6493 }
6494 mutex_exit(&spa_namespace_lock);
6495 }
6496
6497 vdev_t *
6498 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6499 {
6500 vdev_t *vd;
6501 int i;
6502
6503 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6504 return (vd);
6505
6506 if (aux) {
6507 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6508 vd = spa->spa_l2cache.sav_vdevs[i];
6509 if (vd->vdev_guid == guid)
6510 return (vd);
6511 }
6512
6513 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6514 vd = spa->spa_spares.sav_vdevs[i];
6515 if (vd->vdev_guid == guid)
6516 return (vd);
6517 }
6518 }
6519
6520 return (NULL);
6521 }
6522
6523 void
6524 spa_upgrade(spa_t *spa, uint64_t version)
6525 {
6526 ASSERT(spa_writeable(spa));
6527
6528 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6529
6530 /*
6531 * This should only be called for a non-faulted pool, and since a
6532 * future version would result in an unopenable pool, this shouldn't be
6533 * possible.
6534 */
6535 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6536 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6537
6538 spa->spa_uberblock.ub_version = version;
6539 vdev_config_dirty(spa->spa_root_vdev);
6540
6541 spa_config_exit(spa, SCL_ALL, FTAG);
6542
6543 txg_wait_synced(spa_get_dsl(spa), 0);
6544 }
6545
6546 boolean_t
6547 spa_has_spare(spa_t *spa, uint64_t guid)
6548 {
6549 int i;
6550 uint64_t spareguid;
6551 spa_aux_vdev_t *sav = &spa->spa_spares;
6552
6553 for (i = 0; i < sav->sav_count; i++)
6554 if (sav->sav_vdevs[i]->vdev_guid == guid)
6555 return (B_TRUE);
6556
6557 for (i = 0; i < sav->sav_npending; i++) {
6558 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6559 &spareguid) == 0 && spareguid == guid)
6560 return (B_TRUE);
6561 }
6562
6563 return (B_FALSE);
6564 }
6565
6566 /*
6567 * Check if a pool has an active shared spare device.
6568 * Note: reference count of an active spare is 2, as a spare and as a replace
6569 */
6570 static boolean_t
6571 spa_has_active_shared_spare(spa_t *spa)
6572 {
6573 int i, refcnt;
6574 uint64_t pool;
6575 spa_aux_vdev_t *sav = &spa->spa_spares;
6576
6577 for (i = 0; i < sav->sav_count; i++) {
6578 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6579 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6580 refcnt > 2)
6581 return (B_TRUE);
6582 }
6583
6584 return (B_FALSE);
6585 }
6586
6587 /*
6588 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6589 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6590 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6591 * or zdb as real changes.
6592 */
6593 void
6594 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6595 {
6596 #ifdef _KERNEL
6597 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6598 #endif
6599 }
6600
6601 #if defined(_KERNEL) && defined(HAVE_SPL)
6602 /* state manipulation functions */
6603 EXPORT_SYMBOL(spa_open);
6604 EXPORT_SYMBOL(spa_open_rewind);
6605 EXPORT_SYMBOL(spa_get_stats);
6606 EXPORT_SYMBOL(spa_create);
6607 EXPORT_SYMBOL(spa_import_rootpool);
6608 EXPORT_SYMBOL(spa_import);
6609 EXPORT_SYMBOL(spa_tryimport);
6610 EXPORT_SYMBOL(spa_destroy);
6611 EXPORT_SYMBOL(spa_export);
6612 EXPORT_SYMBOL(spa_reset);
6613 EXPORT_SYMBOL(spa_async_request);
6614 EXPORT_SYMBOL(spa_async_suspend);
6615 EXPORT_SYMBOL(spa_async_resume);
6616 EXPORT_SYMBOL(spa_inject_addref);
6617 EXPORT_SYMBOL(spa_inject_delref);
6618 EXPORT_SYMBOL(spa_scan_stat_init);
6619 EXPORT_SYMBOL(spa_scan_get_stats);
6620
6621 /* device maniion */
6622 EXPORT_SYMBOL(spa_vdev_add);
6623 EXPORT_SYMBOL(spa_vdev_attach);
6624 EXPORT_SYMBOL(spa_vdev_detach);
6625 EXPORT_SYMBOL(spa_vdev_remove);
6626 EXPORT_SYMBOL(spa_vdev_setpath);
6627 EXPORT_SYMBOL(spa_vdev_setfru);
6628 EXPORT_SYMBOL(spa_vdev_split_mirror);
6629
6630 /* spare statech is global across all pools) */
6631 EXPORT_SYMBOL(spa_spare_add);
6632 EXPORT_SYMBOL(spa_spare_remove);
6633 EXPORT_SYMBOL(spa_spare_exists);
6634 EXPORT_SYMBOL(spa_spare_activate);
6635
6636 /* L2ARC statech is global across all pools) */
6637 EXPORT_SYMBOL(spa_l2cache_add);
6638 EXPORT_SYMBOL(spa_l2cache_remove);
6639 EXPORT_SYMBOL(spa_l2cache_exists);
6640 EXPORT_SYMBOL(spa_l2cache_activate);
6641 EXPORT_SYMBOL(spa_l2cache_drop);
6642
6643 /* scanning */
6644 EXPORT_SYMBOL(spa_scan);
6645 EXPORT_SYMBOL(spa_scan_stop);
6646
6647 /* spa syncing */
6648 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6649 EXPORT_SYMBOL(spa_sync_allpools);
6650
6651 /* properties */
6652 EXPORT_SYMBOL(spa_prop_set);
6653 EXPORT_SYMBOL(spa_prop_get);
6654 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6655
6656 /* asynchronous event notification */
6657 EXPORT_SYMBOL(spa_event_notify);
6658 #endif
6659
6660 #if defined(_KERNEL) && defined(HAVE_SPL)
6661 module_param(spa_load_verify_maxinflight, int, 0644);
6662 MODULE_PARM_DESC(spa_load_verify_maxinflight,
6663 "Max concurrent traversal I/Os while verifying pool during import -X");
6664
6665 module_param(spa_load_verify_metadata, int, 0644);
6666 MODULE_PARM_DESC(spa_load_verify_metadata,
6667 "Set to traverse metadata on pool import");
6668
6669 module_param(spa_load_verify_data, int, 0644);
6670 MODULE_PARM_DESC(spa_load_verify_data,
6671 "Set to traverse data on pool import");
6672 #endif