]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
FreeBSD: Add support for lockless lookup
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 */
36
37 /*
38 * SPA: Storage Pool Allocator
39 *
40 * This file contains all the routines used when modifying on-disk SPA state.
41 * This includes opening, importing, destroying, exporting a pool, and syncing a
42 * pool.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_rebuild.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_disk.h>
63 #include <sys/metaslab.h>
64 #include <sys/metaslab_impl.h>
65 #include <sys/mmp.h>
66 #include <sys/uberblock_impl.h>
67 #include <sys/txg.h>
68 #include <sys/avl.h>
69 #include <sys/bpobj.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/unique.h>
73 #include <sys/dsl_pool.h>
74 #include <sys/dsl_dataset.h>
75 #include <sys/dsl_dir.h>
76 #include <sys/dsl_prop.h>
77 #include <sys/dsl_synctask.h>
78 #include <sys/fs/zfs.h>
79 #include <sys/arc.h>
80 #include <sys/callb.h>
81 #include <sys/systeminfo.h>
82 #include <sys/spa_boot.h>
83 #include <sys/zfs_ioctl.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/zfeature.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/zvol.h>
88
89 #ifdef _KERNEL
90 #include <sys/fm/protocol.h>
91 #include <sys/fm/util.h>
92 #include <sys/callb.h>
93 #include <sys/zone.h>
94 #include <sys/vmsystm.h>
95 #endif /* _KERNEL */
96
97 #include "zfs_prop.h"
98 #include "zfs_comutil.h"
99
100 /*
101 * The interval, in seconds, at which failed configuration cache file writes
102 * should be retried.
103 */
104 int zfs_ccw_retry_interval = 300;
105
106 typedef enum zti_modes {
107 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
108 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
109 ZTI_MODE_NULL, /* don't create a taskq */
110 ZTI_NMODES
111 } zti_modes_t;
112
113 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
114 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
117
118 #define ZTI_N(n) ZTI_P(n, 1)
119 #define ZTI_ONE ZTI_N(1)
120
121 typedef struct zio_taskq_info {
122 zti_modes_t zti_mode;
123 uint_t zti_value;
124 uint_t zti_count;
125 } zio_taskq_info_t;
126
127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
128 "iss", "iss_h", "int", "int_h"
129 };
130
131 /*
132 * This table defines the taskq settings for each ZFS I/O type. When
133 * initializing a pool, we use this table to create an appropriately sized
134 * taskq. Some operations are low volume and therefore have a small, static
135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
136 * macros. Other operations process a large amount of data; the ZTI_BATCH
137 * macro causes us to create a taskq oriented for throughput. Some operations
138 * are so high frequency and short-lived that the taskq itself can become a
139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
140 * additional degree of parallelism specified by the number of threads per-
141 * taskq and the number of taskqs; when dispatching an event in this case, the
142 * particular taskq is chosen at random.
143 *
144 * The different taskq priorities are to handle the different contexts (issue
145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
146 * need to be handled with minimum delay.
147 */
148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
152 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
157 };
158
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164
165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
167 uint_t zio_taskq_basedc = 80; /* base duty cycle */
168
169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
170
171 /*
172 * Report any spa_load_verify errors found, but do not fail spa_load.
173 * This is used by zdb to analyze non-idle pools.
174 */
175 boolean_t spa_load_verify_dryrun = B_FALSE;
176
177 /*
178 * This (illegal) pool name is used when temporarily importing a spa_t in order
179 * to get the vdev stats associated with the imported devices.
180 */
181 #define TRYIMPORT_NAME "$import"
182
183 /*
184 * For debugging purposes: print out vdev tree during pool import.
185 */
186 int spa_load_print_vdev_tree = B_FALSE;
187
188 /*
189 * A non-zero value for zfs_max_missing_tvds means that we allow importing
190 * pools with missing top-level vdevs. This is strictly intended for advanced
191 * pool recovery cases since missing data is almost inevitable. Pools with
192 * missing devices can only be imported read-only for safety reasons, and their
193 * fail-mode will be automatically set to "continue".
194 *
195 * With 1 missing vdev we should be able to import the pool and mount all
196 * datasets. User data that was not modified after the missing device has been
197 * added should be recoverable. This means that snapshots created prior to the
198 * addition of that device should be completely intact.
199 *
200 * With 2 missing vdevs, some datasets may fail to mount since there are
201 * dataset statistics that are stored as regular metadata. Some data might be
202 * recoverable if those vdevs were added recently.
203 *
204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205 * may be missing entirely. Chances of data recovery are very low. Note that
206 * there are also risks of performing an inadvertent rewind as we might be
207 * missing all the vdevs with the latest uberblocks.
208 */
209 unsigned long zfs_max_missing_tvds = 0;
210
211 /*
212 * The parameters below are similar to zfs_max_missing_tvds but are only
213 * intended for a preliminary open of the pool with an untrusted config which
214 * might be incomplete or out-dated.
215 *
216 * We are more tolerant for pools opened from a cachefile since we could have
217 * an out-dated cachefile where a device removal was not registered.
218 * We could have set the limit arbitrarily high but in the case where devices
219 * are really missing we would want to return the proper error codes; we chose
220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221 * and we get a chance to retrieve the trusted config.
222 */
223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224
225 /*
226 * In the case where config was assembled by scanning device paths (/dev/dsks
227 * by default) we are less tolerant since all the existing devices should have
228 * been detected and we want spa_load to return the right error codes.
229 */
230 uint64_t zfs_max_missing_tvds_scan = 0;
231
232 /*
233 * Debugging aid that pauses spa_sync() towards the end.
234 */
235 boolean_t zfs_pause_spa_sync = B_FALSE;
236
237 /*
238 * Variables to indicate the livelist condense zthr func should wait at certain
239 * points for the livelist to be removed - used to test condense/destroy races
240 */
241 int zfs_livelist_condense_zthr_pause = 0;
242 int zfs_livelist_condense_sync_pause = 0;
243
244 /*
245 * Variables to track whether or not condense cancellation has been
246 * triggered in testing.
247 */
248 int zfs_livelist_condense_sync_cancel = 0;
249 int zfs_livelist_condense_zthr_cancel = 0;
250
251 /*
252 * Variable to track whether or not extra ALLOC blkptrs were added to a
253 * livelist entry while it was being condensed (caused by the way we track
254 * remapped blkptrs in dbuf_remap_impl)
255 */
256 int zfs_livelist_condense_new_alloc = 0;
257
258 /*
259 * ==========================================================================
260 * SPA properties routines
261 * ==========================================================================
262 */
263
264 /*
265 * Add a (source=src, propname=propval) list to an nvlist.
266 */
267 static void
268 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
269 uint64_t intval, zprop_source_t src)
270 {
271 const char *propname = zpool_prop_to_name(prop);
272 nvlist_t *propval;
273
274 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
275 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
276
277 if (strval != NULL)
278 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
279 else
280 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
281
282 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
283 nvlist_free(propval);
284 }
285
286 /*
287 * Get property values from the spa configuration.
288 */
289 static void
290 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
291 {
292 vdev_t *rvd = spa->spa_root_vdev;
293 dsl_pool_t *pool = spa->spa_dsl_pool;
294 uint64_t size, alloc, cap, version;
295 const zprop_source_t src = ZPROP_SRC_NONE;
296 spa_config_dirent_t *dp;
297 metaslab_class_t *mc = spa_normal_class(spa);
298
299 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
300
301 if (rvd != NULL) {
302 alloc = metaslab_class_get_alloc(mc);
303 alloc += metaslab_class_get_alloc(spa_special_class(spa));
304 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
305
306 size = metaslab_class_get_space(mc);
307 size += metaslab_class_get_space(spa_special_class(spa));
308 size += metaslab_class_get_space(spa_dedup_class(spa));
309
310 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
311 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
312 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
313 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
314 size - alloc, src);
315 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
316 spa->spa_checkpoint_info.sci_dspace, src);
317
318 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
319 metaslab_class_fragmentation(mc), src);
320 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
321 metaslab_class_expandable_space(mc), src);
322 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
323 (spa_mode(spa) == SPA_MODE_READ), src);
324
325 cap = (size == 0) ? 0 : (alloc * 100 / size);
326 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
327
328 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
329 ddt_get_pool_dedup_ratio(spa), src);
330
331 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
332 rvd->vdev_state, src);
333
334 version = spa_version(spa);
335 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
337 version, ZPROP_SRC_DEFAULT);
338 } else {
339 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
340 version, ZPROP_SRC_LOCAL);
341 }
342 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
343 NULL, spa_load_guid(spa), src);
344 }
345
346 if (pool != NULL) {
347 /*
348 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
349 * when opening pools before this version freedir will be NULL.
350 */
351 if (pool->dp_free_dir != NULL) {
352 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
353 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
354 src);
355 } else {
356 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
357 NULL, 0, src);
358 }
359
360 if (pool->dp_leak_dir != NULL) {
361 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
362 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
363 src);
364 } else {
365 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
366 NULL, 0, src);
367 }
368 }
369
370 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
371
372 if (spa->spa_comment != NULL) {
373 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
374 0, ZPROP_SRC_LOCAL);
375 }
376
377 if (spa->spa_root != NULL)
378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
379 0, ZPROP_SRC_LOCAL);
380
381 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
382 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
383 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
384 } else {
385 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
386 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
387 }
388
389 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
390 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
391 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
392 } else {
393 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
394 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
395 }
396
397 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
398 if (dp->scd_path == NULL) {
399 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
400 "none", 0, ZPROP_SRC_LOCAL);
401 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
402 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
403 dp->scd_path, 0, ZPROP_SRC_LOCAL);
404 }
405 }
406 }
407
408 /*
409 * Get zpool property values.
410 */
411 int
412 spa_prop_get(spa_t *spa, nvlist_t **nvp)
413 {
414 objset_t *mos = spa->spa_meta_objset;
415 zap_cursor_t zc;
416 zap_attribute_t za;
417 dsl_pool_t *dp;
418 int err;
419
420 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
421 if (err)
422 return (err);
423
424 dp = spa_get_dsl(spa);
425 dsl_pool_config_enter(dp, FTAG);
426 mutex_enter(&spa->spa_props_lock);
427
428 /*
429 * Get properties from the spa config.
430 */
431 spa_prop_get_config(spa, nvp);
432
433 /* If no pool property object, no more prop to get. */
434 if (mos == NULL || spa->spa_pool_props_object == 0)
435 goto out;
436
437 /*
438 * Get properties from the MOS pool property object.
439 */
440 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
441 (err = zap_cursor_retrieve(&zc, &za)) == 0;
442 zap_cursor_advance(&zc)) {
443 uint64_t intval = 0;
444 char *strval = NULL;
445 zprop_source_t src = ZPROP_SRC_DEFAULT;
446 zpool_prop_t prop;
447
448 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
449 continue;
450
451 switch (za.za_integer_length) {
452 case 8:
453 /* integer property */
454 if (za.za_first_integer !=
455 zpool_prop_default_numeric(prop))
456 src = ZPROP_SRC_LOCAL;
457
458 if (prop == ZPOOL_PROP_BOOTFS) {
459 dsl_dataset_t *ds = NULL;
460
461 err = dsl_dataset_hold_obj(dp,
462 za.za_first_integer, FTAG, &ds);
463 if (err != 0)
464 break;
465
466 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
467 KM_SLEEP);
468 dsl_dataset_name(ds, strval);
469 dsl_dataset_rele(ds, FTAG);
470 } else {
471 strval = NULL;
472 intval = za.za_first_integer;
473 }
474
475 spa_prop_add_list(*nvp, prop, strval, intval, src);
476
477 if (strval != NULL)
478 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
479
480 break;
481
482 case 1:
483 /* string property */
484 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
485 err = zap_lookup(mos, spa->spa_pool_props_object,
486 za.za_name, 1, za.za_num_integers, strval);
487 if (err) {
488 kmem_free(strval, za.za_num_integers);
489 break;
490 }
491 spa_prop_add_list(*nvp, prop, strval, 0, src);
492 kmem_free(strval, za.za_num_integers);
493 break;
494
495 default:
496 break;
497 }
498 }
499 zap_cursor_fini(&zc);
500 out:
501 mutex_exit(&spa->spa_props_lock);
502 dsl_pool_config_exit(dp, FTAG);
503 if (err && err != ENOENT) {
504 nvlist_free(*nvp);
505 *nvp = NULL;
506 return (err);
507 }
508
509 return (0);
510 }
511
512 /*
513 * Validate the given pool properties nvlist and modify the list
514 * for the property values to be set.
515 */
516 static int
517 spa_prop_validate(spa_t *spa, nvlist_t *props)
518 {
519 nvpair_t *elem;
520 int error = 0, reset_bootfs = 0;
521 uint64_t objnum = 0;
522 boolean_t has_feature = B_FALSE;
523
524 elem = NULL;
525 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
526 uint64_t intval;
527 char *strval, *slash, *check, *fname;
528 const char *propname = nvpair_name(elem);
529 zpool_prop_t prop = zpool_name_to_prop(propname);
530
531 switch (prop) {
532 case ZPOOL_PROP_INVAL:
533 if (!zpool_prop_feature(propname)) {
534 error = SET_ERROR(EINVAL);
535 break;
536 }
537
538 /*
539 * Sanitize the input.
540 */
541 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
542 error = SET_ERROR(EINVAL);
543 break;
544 }
545
546 if (nvpair_value_uint64(elem, &intval) != 0) {
547 error = SET_ERROR(EINVAL);
548 break;
549 }
550
551 if (intval != 0) {
552 error = SET_ERROR(EINVAL);
553 break;
554 }
555
556 fname = strchr(propname, '@') + 1;
557 if (zfeature_lookup_name(fname, NULL) != 0) {
558 error = SET_ERROR(EINVAL);
559 break;
560 }
561
562 has_feature = B_TRUE;
563 break;
564
565 case ZPOOL_PROP_VERSION:
566 error = nvpair_value_uint64(elem, &intval);
567 if (!error &&
568 (intval < spa_version(spa) ||
569 intval > SPA_VERSION_BEFORE_FEATURES ||
570 has_feature))
571 error = SET_ERROR(EINVAL);
572 break;
573
574 case ZPOOL_PROP_DELEGATION:
575 case ZPOOL_PROP_AUTOREPLACE:
576 case ZPOOL_PROP_LISTSNAPS:
577 case ZPOOL_PROP_AUTOEXPAND:
578 case ZPOOL_PROP_AUTOTRIM:
579 error = nvpair_value_uint64(elem, &intval);
580 if (!error && intval > 1)
581 error = SET_ERROR(EINVAL);
582 break;
583
584 case ZPOOL_PROP_MULTIHOST:
585 error = nvpair_value_uint64(elem, &intval);
586 if (!error && intval > 1)
587 error = SET_ERROR(EINVAL);
588
589 if (!error) {
590 uint32_t hostid = zone_get_hostid(NULL);
591 if (hostid)
592 spa->spa_hostid = hostid;
593 else
594 error = SET_ERROR(ENOTSUP);
595 }
596
597 break;
598
599 case ZPOOL_PROP_BOOTFS:
600 /*
601 * If the pool version is less than SPA_VERSION_BOOTFS,
602 * or the pool is still being created (version == 0),
603 * the bootfs property cannot be set.
604 */
605 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
606 error = SET_ERROR(ENOTSUP);
607 break;
608 }
609
610 /*
611 * Make sure the vdev config is bootable
612 */
613 if (!vdev_is_bootable(spa->spa_root_vdev)) {
614 error = SET_ERROR(ENOTSUP);
615 break;
616 }
617
618 reset_bootfs = 1;
619
620 error = nvpair_value_string(elem, &strval);
621
622 if (!error) {
623 objset_t *os;
624 uint64_t propval;
625
626 if (strval == NULL || strval[0] == '\0') {
627 objnum = zpool_prop_default_numeric(
628 ZPOOL_PROP_BOOTFS);
629 break;
630 }
631
632 error = dmu_objset_hold(strval, FTAG, &os);
633 if (error != 0)
634 break;
635
636 /*
637 * Must be ZPL, and its property settings
638 * must be supported by GRUB (compression
639 * is not gzip, and large dnodes are not
640 * used).
641 */
642
643 if (dmu_objset_type(os) != DMU_OST_ZFS) {
644 error = SET_ERROR(ENOTSUP);
645 } else if ((error =
646 dsl_prop_get_int_ds(dmu_objset_ds(os),
647 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
648 &propval)) == 0 &&
649 !BOOTFS_COMPRESS_VALID(propval)) {
650 error = SET_ERROR(ENOTSUP);
651 } else if ((error =
652 dsl_prop_get_int_ds(dmu_objset_ds(os),
653 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
654 &propval)) == 0 &&
655 propval != ZFS_DNSIZE_LEGACY) {
656 error = SET_ERROR(ENOTSUP);
657 } else {
658 objnum = dmu_objset_id(os);
659 }
660 dmu_objset_rele(os, FTAG);
661 }
662 break;
663
664 case ZPOOL_PROP_FAILUREMODE:
665 error = nvpair_value_uint64(elem, &intval);
666 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 error = SET_ERROR(EINVAL);
668
669 /*
670 * This is a special case which only occurs when
671 * the pool has completely failed. This allows
672 * the user to change the in-core failmode property
673 * without syncing it out to disk (I/Os might
674 * currently be blocked). We do this by returning
675 * EIO to the caller (spa_prop_set) to trick it
676 * into thinking we encountered a property validation
677 * error.
678 */
679 if (!error && spa_suspended(spa)) {
680 spa->spa_failmode = intval;
681 error = SET_ERROR(EIO);
682 }
683 break;
684
685 case ZPOOL_PROP_CACHEFILE:
686 if ((error = nvpair_value_string(elem, &strval)) != 0)
687 break;
688
689 if (strval[0] == '\0')
690 break;
691
692 if (strcmp(strval, "none") == 0)
693 break;
694
695 if (strval[0] != '/') {
696 error = SET_ERROR(EINVAL);
697 break;
698 }
699
700 slash = strrchr(strval, '/');
701 ASSERT(slash != NULL);
702
703 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 strcmp(slash, "/..") == 0)
705 error = SET_ERROR(EINVAL);
706 break;
707
708 case ZPOOL_PROP_COMMENT:
709 if ((error = nvpair_value_string(elem, &strval)) != 0)
710 break;
711 for (check = strval; *check != '\0'; check++) {
712 if (!isprint(*check)) {
713 error = SET_ERROR(EINVAL);
714 break;
715 }
716 }
717 if (strlen(strval) > ZPROP_MAX_COMMENT)
718 error = SET_ERROR(E2BIG);
719 break;
720
721 default:
722 break;
723 }
724
725 if (error)
726 break;
727 }
728
729 (void) nvlist_remove_all(props,
730 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731
732 if (!error && reset_bootfs) {
733 error = nvlist_remove(props,
734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735
736 if (!error) {
737 error = nvlist_add_uint64(props,
738 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 }
740 }
741
742 return (error);
743 }
744
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 char *cachefile;
749 spa_config_dirent_t *dp;
750
751 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 &cachefile) != 0)
753 return;
754
755 dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 KM_SLEEP);
757
758 if (cachefile[0] == '\0')
759 dp->scd_path = spa_strdup(spa_config_path);
760 else if (strcmp(cachefile, "none") == 0)
761 dp->scd_path = NULL;
762 else
763 dp->scd_path = spa_strdup(cachefile);
764
765 list_insert_head(&spa->spa_config_list, dp);
766 if (need_sync)
767 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 int error;
774 nvpair_t *elem = NULL;
775 boolean_t need_sync = B_FALSE;
776
777 if ((error = spa_prop_validate(spa, nvp)) != 0)
778 return (error);
779
780 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782
783 if (prop == ZPOOL_PROP_CACHEFILE ||
784 prop == ZPOOL_PROP_ALTROOT ||
785 prop == ZPOOL_PROP_READONLY)
786 continue;
787
788 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 uint64_t ver;
790
791 if (prop == ZPOOL_PROP_VERSION) {
792 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 } else {
794 ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 ver = SPA_VERSION_FEATURES;
796 need_sync = B_TRUE;
797 }
798
799 /* Save time if the version is already set. */
800 if (ver == spa_version(spa))
801 continue;
802
803 /*
804 * In addition to the pool directory object, we might
805 * create the pool properties object, the features for
806 * read object, the features for write object, or the
807 * feature descriptions object.
808 */
809 error = dsl_sync_task(spa->spa_name, NULL,
810 spa_sync_version, &ver,
811 6, ZFS_SPACE_CHECK_RESERVED);
812 if (error)
813 return (error);
814 continue;
815 }
816
817 need_sync = B_TRUE;
818 break;
819 }
820
821 if (need_sync) {
822 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 }
825
826 return (0);
827 }
828
829 /*
830 * If the bootfs property value is dsobj, clear it.
831 */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 VERIFY(zap_remove(spa->spa_meta_objset,
837 spa->spa_pool_props_object,
838 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 spa->spa_bootfs = 0;
840 }
841 }
842
843 /*ARGSUSED*/
844 static int
845 spa_change_guid_check(void *arg, dmu_tx_t *tx)
846 {
847 uint64_t *newguid __maybe_unused = arg;
848 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
849 vdev_t *rvd = spa->spa_root_vdev;
850 uint64_t vdev_state;
851
852 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
853 int error = (spa_has_checkpoint(spa)) ?
854 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
855 return (SET_ERROR(error));
856 }
857
858 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859 vdev_state = rvd->vdev_state;
860 spa_config_exit(spa, SCL_STATE, FTAG);
861
862 if (vdev_state != VDEV_STATE_HEALTHY)
863 return (SET_ERROR(ENXIO));
864
865 ASSERT3U(spa_guid(spa), !=, *newguid);
866
867 return (0);
868 }
869
870 static void
871 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
872 {
873 uint64_t *newguid = arg;
874 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
875 uint64_t oldguid;
876 vdev_t *rvd = spa->spa_root_vdev;
877
878 oldguid = spa_guid(spa);
879
880 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
881 rvd->vdev_guid = *newguid;
882 rvd->vdev_guid_sum += (*newguid - oldguid);
883 vdev_config_dirty(rvd);
884 spa_config_exit(spa, SCL_STATE, FTAG);
885
886 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
887 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
888 }
889
890 /*
891 * Change the GUID for the pool. This is done so that we can later
892 * re-import a pool built from a clone of our own vdevs. We will modify
893 * the root vdev's guid, our own pool guid, and then mark all of our
894 * vdevs dirty. Note that we must make sure that all our vdevs are
895 * online when we do this, or else any vdevs that weren't present
896 * would be orphaned from our pool. We are also going to issue a
897 * sysevent to update any watchers.
898 */
899 int
900 spa_change_guid(spa_t *spa)
901 {
902 int error;
903 uint64_t guid;
904
905 mutex_enter(&spa->spa_vdev_top_lock);
906 mutex_enter(&spa_namespace_lock);
907 guid = spa_generate_guid(NULL);
908
909 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
910 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
911
912 if (error == 0) {
913 spa_write_cachefile(spa, B_FALSE, B_TRUE);
914 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
915 }
916
917 mutex_exit(&spa_namespace_lock);
918 mutex_exit(&spa->spa_vdev_top_lock);
919
920 return (error);
921 }
922
923 /*
924 * ==========================================================================
925 * SPA state manipulation (open/create/destroy/import/export)
926 * ==========================================================================
927 */
928
929 static int
930 spa_error_entry_compare(const void *a, const void *b)
931 {
932 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
933 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
934 int ret;
935
936 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
937 sizeof (zbookmark_phys_t));
938
939 return (TREE_ISIGN(ret));
940 }
941
942 /*
943 * Utility function which retrieves copies of the current logs and
944 * re-initializes them in the process.
945 */
946 void
947 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
948 {
949 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
950
951 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
952 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
953
954 avl_create(&spa->spa_errlist_scrub,
955 spa_error_entry_compare, sizeof (spa_error_entry_t),
956 offsetof(spa_error_entry_t, se_avl));
957 avl_create(&spa->spa_errlist_last,
958 spa_error_entry_compare, sizeof (spa_error_entry_t),
959 offsetof(spa_error_entry_t, se_avl));
960 }
961
962 static void
963 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
964 {
965 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
966 enum zti_modes mode = ztip->zti_mode;
967 uint_t value = ztip->zti_value;
968 uint_t count = ztip->zti_count;
969 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970 uint_t flags = 0;
971 boolean_t batch = B_FALSE;
972
973 if (mode == ZTI_MODE_NULL) {
974 tqs->stqs_count = 0;
975 tqs->stqs_taskq = NULL;
976 return;
977 }
978
979 ASSERT3U(count, >, 0);
980
981 tqs->stqs_count = count;
982 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
983
984 switch (mode) {
985 case ZTI_MODE_FIXED:
986 ASSERT3U(value, >=, 1);
987 value = MAX(value, 1);
988 flags |= TASKQ_DYNAMIC;
989 break;
990
991 case ZTI_MODE_BATCH:
992 batch = B_TRUE;
993 flags |= TASKQ_THREADS_CPU_PCT;
994 value = MIN(zio_taskq_batch_pct, 100);
995 break;
996
997 default:
998 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
999 "spa_activate()",
1000 zio_type_name[t], zio_taskq_types[q], mode, value);
1001 break;
1002 }
1003
1004 for (uint_t i = 0; i < count; i++) {
1005 taskq_t *tq;
1006 char name[32];
1007
1008 (void) snprintf(name, sizeof (name), "%s_%s",
1009 zio_type_name[t], zio_taskq_types[q]);
1010
1011 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1012 if (batch)
1013 flags |= TASKQ_DC_BATCH;
1014
1015 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1016 spa->spa_proc, zio_taskq_basedc, flags);
1017 } else {
1018 pri_t pri = maxclsyspri;
1019 /*
1020 * The write issue taskq can be extremely CPU
1021 * intensive. Run it at slightly less important
1022 * priority than the other taskqs. Under Linux this
1023 * means incrementing the priority value on platforms
1024 * like illumos it should be decremented.
1025 */
1026 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1027 pri++;
1028
1029 tq = taskq_create_proc(name, value, pri, 50,
1030 INT_MAX, spa->spa_proc, flags);
1031 }
1032
1033 tqs->stqs_taskq[i] = tq;
1034 }
1035 }
1036
1037 static void
1038 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1039 {
1040 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1041
1042 if (tqs->stqs_taskq == NULL) {
1043 ASSERT3U(tqs->stqs_count, ==, 0);
1044 return;
1045 }
1046
1047 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1048 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1049 taskq_destroy(tqs->stqs_taskq[i]);
1050 }
1051
1052 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1053 tqs->stqs_taskq = NULL;
1054 }
1055
1056 /*
1057 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1058 * Note that a type may have multiple discrete taskqs to avoid lock contention
1059 * on the taskq itself. In that case we choose which taskq at random by using
1060 * the low bits of gethrtime().
1061 */
1062 void
1063 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1064 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1065 {
1066 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1067 taskq_t *tq;
1068
1069 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1070 ASSERT3U(tqs->stqs_count, !=, 0);
1071
1072 if (tqs->stqs_count == 1) {
1073 tq = tqs->stqs_taskq[0];
1074 } else {
1075 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1076 }
1077
1078 taskq_dispatch_ent(tq, func, arg, flags, ent);
1079 }
1080
1081 /*
1082 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1083 */
1084 void
1085 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1086 task_func_t *func, void *arg, uint_t flags)
1087 {
1088 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1089 taskq_t *tq;
1090 taskqid_t id;
1091
1092 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1093 ASSERT3U(tqs->stqs_count, !=, 0);
1094
1095 if (tqs->stqs_count == 1) {
1096 tq = tqs->stqs_taskq[0];
1097 } else {
1098 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1099 }
1100
1101 id = taskq_dispatch(tq, func, arg, flags);
1102 if (id)
1103 taskq_wait_id(tq, id);
1104 }
1105
1106 static void
1107 spa_create_zio_taskqs(spa_t *spa)
1108 {
1109 for (int t = 0; t < ZIO_TYPES; t++) {
1110 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1111 spa_taskqs_init(spa, t, q);
1112 }
1113 }
1114 }
1115
1116 /*
1117 * Disabled until spa_thread() can be adapted for Linux.
1118 */
1119 #undef HAVE_SPA_THREAD
1120
1121 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1122 static void
1123 spa_thread(void *arg)
1124 {
1125 psetid_t zio_taskq_psrset_bind = PS_NONE;
1126 callb_cpr_t cprinfo;
1127
1128 spa_t *spa = arg;
1129 user_t *pu = PTOU(curproc);
1130
1131 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1132 spa->spa_name);
1133
1134 ASSERT(curproc != &p0);
1135 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1136 "zpool-%s", spa->spa_name);
1137 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1138
1139 /* bind this thread to the requested psrset */
1140 if (zio_taskq_psrset_bind != PS_NONE) {
1141 pool_lock();
1142 mutex_enter(&cpu_lock);
1143 mutex_enter(&pidlock);
1144 mutex_enter(&curproc->p_lock);
1145
1146 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1147 0, NULL, NULL) == 0) {
1148 curthread->t_bind_pset = zio_taskq_psrset_bind;
1149 } else {
1150 cmn_err(CE_WARN,
1151 "Couldn't bind process for zfs pool \"%s\" to "
1152 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1153 }
1154
1155 mutex_exit(&curproc->p_lock);
1156 mutex_exit(&pidlock);
1157 mutex_exit(&cpu_lock);
1158 pool_unlock();
1159 }
1160
1161 if (zio_taskq_sysdc) {
1162 sysdc_thread_enter(curthread, 100, 0);
1163 }
1164
1165 spa->spa_proc = curproc;
1166 spa->spa_did = curthread->t_did;
1167
1168 spa_create_zio_taskqs(spa);
1169
1170 mutex_enter(&spa->spa_proc_lock);
1171 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1172
1173 spa->spa_proc_state = SPA_PROC_ACTIVE;
1174 cv_broadcast(&spa->spa_proc_cv);
1175
1176 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1177 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1178 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1179 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1180
1181 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1182 spa->spa_proc_state = SPA_PROC_GONE;
1183 spa->spa_proc = &p0;
1184 cv_broadcast(&spa->spa_proc_cv);
1185 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1186
1187 mutex_enter(&curproc->p_lock);
1188 lwp_exit();
1189 }
1190 #endif
1191
1192 /*
1193 * Activate an uninitialized pool.
1194 */
1195 static void
1196 spa_activate(spa_t *spa, spa_mode_t mode)
1197 {
1198 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1199
1200 spa->spa_state = POOL_STATE_ACTIVE;
1201 spa->spa_mode = mode;
1202
1203 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1204 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1205 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1206 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1207
1208 /* Try to create a covering process */
1209 mutex_enter(&spa->spa_proc_lock);
1210 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1211 ASSERT(spa->spa_proc == &p0);
1212 spa->spa_did = 0;
1213
1214 #ifdef HAVE_SPA_THREAD
1215 /* Only create a process if we're going to be around a while. */
1216 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1217 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1218 NULL, 0) == 0) {
1219 spa->spa_proc_state = SPA_PROC_CREATED;
1220 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1221 cv_wait(&spa->spa_proc_cv,
1222 &spa->spa_proc_lock);
1223 }
1224 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1225 ASSERT(spa->spa_proc != &p0);
1226 ASSERT(spa->spa_did != 0);
1227 } else {
1228 #ifdef _KERNEL
1229 cmn_err(CE_WARN,
1230 "Couldn't create process for zfs pool \"%s\"\n",
1231 spa->spa_name);
1232 #endif
1233 }
1234 }
1235 #endif /* HAVE_SPA_THREAD */
1236 mutex_exit(&spa->spa_proc_lock);
1237
1238 /* If we didn't create a process, we need to create our taskqs. */
1239 if (spa->spa_proc == &p0) {
1240 spa_create_zio_taskqs(spa);
1241 }
1242
1243 for (size_t i = 0; i < TXG_SIZE; i++) {
1244 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1245 ZIO_FLAG_CANFAIL);
1246 }
1247
1248 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1249 offsetof(vdev_t, vdev_config_dirty_node));
1250 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1251 offsetof(objset_t, os_evicting_node));
1252 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1253 offsetof(vdev_t, vdev_state_dirty_node));
1254
1255 txg_list_create(&spa->spa_vdev_txg_list, spa,
1256 offsetof(struct vdev, vdev_txg_node));
1257
1258 avl_create(&spa->spa_errlist_scrub,
1259 spa_error_entry_compare, sizeof (spa_error_entry_t),
1260 offsetof(spa_error_entry_t, se_avl));
1261 avl_create(&spa->spa_errlist_last,
1262 spa_error_entry_compare, sizeof (spa_error_entry_t),
1263 offsetof(spa_error_entry_t, se_avl));
1264
1265 spa_keystore_init(&spa->spa_keystore);
1266
1267 /*
1268 * This taskq is used to perform zvol-minor-related tasks
1269 * asynchronously. This has several advantages, including easy
1270 * resolution of various deadlocks (zfsonlinux bug #3681).
1271 *
1272 * The taskq must be single threaded to ensure tasks are always
1273 * processed in the order in which they were dispatched.
1274 *
1275 * A taskq per pool allows one to keep the pools independent.
1276 * This way if one pool is suspended, it will not impact another.
1277 *
1278 * The preferred location to dispatch a zvol minor task is a sync
1279 * task. In this context, there is easy access to the spa_t and minimal
1280 * error handling is required because the sync task must succeed.
1281 */
1282 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1283 1, INT_MAX, 0);
1284
1285 /*
1286 * Taskq dedicated to prefetcher threads: this is used to prevent the
1287 * pool traverse code from monopolizing the global (and limited)
1288 * system_taskq by inappropriately scheduling long running tasks on it.
1289 */
1290 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1291 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1292
1293 /*
1294 * The taskq to upgrade datasets in this pool. Currently used by
1295 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1296 */
1297 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1298 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1299 }
1300
1301 /*
1302 * Opposite of spa_activate().
1303 */
1304 static void
1305 spa_deactivate(spa_t *spa)
1306 {
1307 ASSERT(spa->spa_sync_on == B_FALSE);
1308 ASSERT(spa->spa_dsl_pool == NULL);
1309 ASSERT(spa->spa_root_vdev == NULL);
1310 ASSERT(spa->spa_async_zio_root == NULL);
1311 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1312
1313 spa_evicting_os_wait(spa);
1314
1315 if (spa->spa_zvol_taskq) {
1316 taskq_destroy(spa->spa_zvol_taskq);
1317 spa->spa_zvol_taskq = NULL;
1318 }
1319
1320 if (spa->spa_prefetch_taskq) {
1321 taskq_destroy(spa->spa_prefetch_taskq);
1322 spa->spa_prefetch_taskq = NULL;
1323 }
1324
1325 if (spa->spa_upgrade_taskq) {
1326 taskq_destroy(spa->spa_upgrade_taskq);
1327 spa->spa_upgrade_taskq = NULL;
1328 }
1329
1330 txg_list_destroy(&spa->spa_vdev_txg_list);
1331
1332 list_destroy(&spa->spa_config_dirty_list);
1333 list_destroy(&spa->spa_evicting_os_list);
1334 list_destroy(&spa->spa_state_dirty_list);
1335
1336 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1337
1338 for (int t = 0; t < ZIO_TYPES; t++) {
1339 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1340 spa_taskqs_fini(spa, t, q);
1341 }
1342 }
1343
1344 for (size_t i = 0; i < TXG_SIZE; i++) {
1345 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1346 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1347 spa->spa_txg_zio[i] = NULL;
1348 }
1349
1350 metaslab_class_destroy(spa->spa_normal_class);
1351 spa->spa_normal_class = NULL;
1352
1353 metaslab_class_destroy(spa->spa_log_class);
1354 spa->spa_log_class = NULL;
1355
1356 metaslab_class_destroy(spa->spa_special_class);
1357 spa->spa_special_class = NULL;
1358
1359 metaslab_class_destroy(spa->spa_dedup_class);
1360 spa->spa_dedup_class = NULL;
1361
1362 /*
1363 * If this was part of an import or the open otherwise failed, we may
1364 * still have errors left in the queues. Empty them just in case.
1365 */
1366 spa_errlog_drain(spa);
1367 avl_destroy(&spa->spa_errlist_scrub);
1368 avl_destroy(&spa->spa_errlist_last);
1369
1370 spa_keystore_fini(&spa->spa_keystore);
1371
1372 spa->spa_state = POOL_STATE_UNINITIALIZED;
1373
1374 mutex_enter(&spa->spa_proc_lock);
1375 if (spa->spa_proc_state != SPA_PROC_NONE) {
1376 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1377 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1378 cv_broadcast(&spa->spa_proc_cv);
1379 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1380 ASSERT(spa->spa_proc != &p0);
1381 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1382 }
1383 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1384 spa->spa_proc_state = SPA_PROC_NONE;
1385 }
1386 ASSERT(spa->spa_proc == &p0);
1387 mutex_exit(&spa->spa_proc_lock);
1388
1389 /*
1390 * We want to make sure spa_thread() has actually exited the ZFS
1391 * module, so that the module can't be unloaded out from underneath
1392 * it.
1393 */
1394 if (spa->spa_did != 0) {
1395 thread_join(spa->spa_did);
1396 spa->spa_did = 0;
1397 }
1398 }
1399
1400 /*
1401 * Verify a pool configuration, and construct the vdev tree appropriately. This
1402 * will create all the necessary vdevs in the appropriate layout, with each vdev
1403 * in the CLOSED state. This will prep the pool before open/creation/import.
1404 * All vdev validation is done by the vdev_alloc() routine.
1405 */
1406 int
1407 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1408 uint_t id, int atype)
1409 {
1410 nvlist_t **child;
1411 uint_t children;
1412 int error;
1413
1414 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1415 return (error);
1416
1417 if ((*vdp)->vdev_ops->vdev_op_leaf)
1418 return (0);
1419
1420 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1421 &child, &children);
1422
1423 if (error == ENOENT)
1424 return (0);
1425
1426 if (error) {
1427 vdev_free(*vdp);
1428 *vdp = NULL;
1429 return (SET_ERROR(EINVAL));
1430 }
1431
1432 for (int c = 0; c < children; c++) {
1433 vdev_t *vd;
1434 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1435 atype)) != 0) {
1436 vdev_free(*vdp);
1437 *vdp = NULL;
1438 return (error);
1439 }
1440 }
1441
1442 ASSERT(*vdp != NULL);
1443
1444 return (0);
1445 }
1446
1447 static boolean_t
1448 spa_should_flush_logs_on_unload(spa_t *spa)
1449 {
1450 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1451 return (B_FALSE);
1452
1453 if (!spa_writeable(spa))
1454 return (B_FALSE);
1455
1456 if (!spa->spa_sync_on)
1457 return (B_FALSE);
1458
1459 if (spa_state(spa) != POOL_STATE_EXPORTED)
1460 return (B_FALSE);
1461
1462 if (zfs_keep_log_spacemaps_at_export)
1463 return (B_FALSE);
1464
1465 return (B_TRUE);
1466 }
1467
1468 /*
1469 * Opens a transaction that will set the flag that will instruct
1470 * spa_sync to attempt to flush all the metaslabs for that txg.
1471 */
1472 static void
1473 spa_unload_log_sm_flush_all(spa_t *spa)
1474 {
1475 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1476 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1477
1478 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1479 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1480
1481 dmu_tx_commit(tx);
1482 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1483 }
1484
1485 static void
1486 spa_unload_log_sm_metadata(spa_t *spa)
1487 {
1488 void *cookie = NULL;
1489 spa_log_sm_t *sls;
1490 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1491 &cookie)) != NULL) {
1492 VERIFY0(sls->sls_mscount);
1493 kmem_free(sls, sizeof (spa_log_sm_t));
1494 }
1495
1496 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1497 e != NULL; e = list_head(&spa->spa_log_summary)) {
1498 VERIFY0(e->lse_mscount);
1499 list_remove(&spa->spa_log_summary, e);
1500 kmem_free(e, sizeof (log_summary_entry_t));
1501 }
1502
1503 spa->spa_unflushed_stats.sus_nblocks = 0;
1504 spa->spa_unflushed_stats.sus_memused = 0;
1505 spa->spa_unflushed_stats.sus_blocklimit = 0;
1506 }
1507
1508 static void
1509 spa_destroy_aux_threads(spa_t *spa)
1510 {
1511 if (spa->spa_condense_zthr != NULL) {
1512 zthr_destroy(spa->spa_condense_zthr);
1513 spa->spa_condense_zthr = NULL;
1514 }
1515 if (spa->spa_checkpoint_discard_zthr != NULL) {
1516 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1517 spa->spa_checkpoint_discard_zthr = NULL;
1518 }
1519 if (spa->spa_livelist_delete_zthr != NULL) {
1520 zthr_destroy(spa->spa_livelist_delete_zthr);
1521 spa->spa_livelist_delete_zthr = NULL;
1522 }
1523 if (spa->spa_livelist_condense_zthr != NULL) {
1524 zthr_destroy(spa->spa_livelist_condense_zthr);
1525 spa->spa_livelist_condense_zthr = NULL;
1526 }
1527 }
1528
1529 /*
1530 * Opposite of spa_load().
1531 */
1532 static void
1533 spa_unload(spa_t *spa)
1534 {
1535 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1536 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1537
1538 spa_import_progress_remove(spa_guid(spa));
1539 spa_load_note(spa, "UNLOADING");
1540
1541 spa_wake_waiters(spa);
1542
1543 /*
1544 * If the log space map feature is enabled and the pool is getting
1545 * exported (but not destroyed), we want to spend some time flushing
1546 * as many metaslabs as we can in an attempt to destroy log space
1547 * maps and save import time.
1548 */
1549 if (spa_should_flush_logs_on_unload(spa))
1550 spa_unload_log_sm_flush_all(spa);
1551
1552 /*
1553 * Stop async tasks.
1554 */
1555 spa_async_suspend(spa);
1556
1557 if (spa->spa_root_vdev) {
1558 vdev_t *root_vdev = spa->spa_root_vdev;
1559 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1560 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1561 vdev_autotrim_stop_all(spa);
1562 vdev_rebuild_stop_all(spa);
1563 }
1564
1565 /*
1566 * Stop syncing.
1567 */
1568 if (spa->spa_sync_on) {
1569 txg_sync_stop(spa->spa_dsl_pool);
1570 spa->spa_sync_on = B_FALSE;
1571 }
1572
1573 /*
1574 * This ensures that there is no async metaslab prefetching
1575 * while we attempt to unload the spa.
1576 */
1577 if (spa->spa_root_vdev != NULL) {
1578 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1579 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1580 if (vc->vdev_mg != NULL)
1581 taskq_wait(vc->vdev_mg->mg_taskq);
1582 }
1583 }
1584
1585 if (spa->spa_mmp.mmp_thread)
1586 mmp_thread_stop(spa);
1587
1588 /*
1589 * Wait for any outstanding async I/O to complete.
1590 */
1591 if (spa->spa_async_zio_root != NULL) {
1592 for (int i = 0; i < max_ncpus; i++)
1593 (void) zio_wait(spa->spa_async_zio_root[i]);
1594 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1595 spa->spa_async_zio_root = NULL;
1596 }
1597
1598 if (spa->spa_vdev_removal != NULL) {
1599 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1600 spa->spa_vdev_removal = NULL;
1601 }
1602
1603 spa_destroy_aux_threads(spa);
1604
1605 spa_condense_fini(spa);
1606
1607 bpobj_close(&spa->spa_deferred_bpobj);
1608
1609 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1610
1611 /*
1612 * Close all vdevs.
1613 */
1614 if (spa->spa_root_vdev)
1615 vdev_free(spa->spa_root_vdev);
1616 ASSERT(spa->spa_root_vdev == NULL);
1617
1618 /*
1619 * Close the dsl pool.
1620 */
1621 if (spa->spa_dsl_pool) {
1622 dsl_pool_close(spa->spa_dsl_pool);
1623 spa->spa_dsl_pool = NULL;
1624 spa->spa_meta_objset = NULL;
1625 }
1626
1627 ddt_unload(spa);
1628 spa_unload_log_sm_metadata(spa);
1629
1630 /*
1631 * Drop and purge level 2 cache
1632 */
1633 spa_l2cache_drop(spa);
1634
1635 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1636 vdev_free(spa->spa_spares.sav_vdevs[i]);
1637 if (spa->spa_spares.sav_vdevs) {
1638 kmem_free(spa->spa_spares.sav_vdevs,
1639 spa->spa_spares.sav_count * sizeof (void *));
1640 spa->spa_spares.sav_vdevs = NULL;
1641 }
1642 if (spa->spa_spares.sav_config) {
1643 nvlist_free(spa->spa_spares.sav_config);
1644 spa->spa_spares.sav_config = NULL;
1645 }
1646 spa->spa_spares.sav_count = 0;
1647
1648 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1649 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1650 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1651 }
1652 if (spa->spa_l2cache.sav_vdevs) {
1653 kmem_free(spa->spa_l2cache.sav_vdevs,
1654 spa->spa_l2cache.sav_count * sizeof (void *));
1655 spa->spa_l2cache.sav_vdevs = NULL;
1656 }
1657 if (spa->spa_l2cache.sav_config) {
1658 nvlist_free(spa->spa_l2cache.sav_config);
1659 spa->spa_l2cache.sav_config = NULL;
1660 }
1661 spa->spa_l2cache.sav_count = 0;
1662
1663 spa->spa_async_suspended = 0;
1664
1665 spa->spa_indirect_vdevs_loaded = B_FALSE;
1666
1667 if (spa->spa_comment != NULL) {
1668 spa_strfree(spa->spa_comment);
1669 spa->spa_comment = NULL;
1670 }
1671
1672 spa_config_exit(spa, SCL_ALL, spa);
1673 }
1674
1675 /*
1676 * Load (or re-load) the current list of vdevs describing the active spares for
1677 * this pool. When this is called, we have some form of basic information in
1678 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1679 * then re-generate a more complete list including status information.
1680 */
1681 void
1682 spa_load_spares(spa_t *spa)
1683 {
1684 nvlist_t **spares;
1685 uint_t nspares;
1686 int i;
1687 vdev_t *vd, *tvd;
1688
1689 #ifndef _KERNEL
1690 /*
1691 * zdb opens both the current state of the pool and the
1692 * checkpointed state (if present), with a different spa_t.
1693 *
1694 * As spare vdevs are shared among open pools, we skip loading
1695 * them when we load the checkpointed state of the pool.
1696 */
1697 if (!spa_writeable(spa))
1698 return;
1699 #endif
1700
1701 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1702
1703 /*
1704 * First, close and free any existing spare vdevs.
1705 */
1706 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1707 vd = spa->spa_spares.sav_vdevs[i];
1708
1709 /* Undo the call to spa_activate() below */
1710 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1711 B_FALSE)) != NULL && tvd->vdev_isspare)
1712 spa_spare_remove(tvd);
1713 vdev_close(vd);
1714 vdev_free(vd);
1715 }
1716
1717 if (spa->spa_spares.sav_vdevs)
1718 kmem_free(spa->spa_spares.sav_vdevs,
1719 spa->spa_spares.sav_count * sizeof (void *));
1720
1721 if (spa->spa_spares.sav_config == NULL)
1722 nspares = 0;
1723 else
1724 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1725 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1726
1727 spa->spa_spares.sav_count = (int)nspares;
1728 spa->spa_spares.sav_vdevs = NULL;
1729
1730 if (nspares == 0)
1731 return;
1732
1733 /*
1734 * Construct the array of vdevs, opening them to get status in the
1735 * process. For each spare, there is potentially two different vdev_t
1736 * structures associated with it: one in the list of spares (used only
1737 * for basic validation purposes) and one in the active vdev
1738 * configuration (if it's spared in). During this phase we open and
1739 * validate each vdev on the spare list. If the vdev also exists in the
1740 * active configuration, then we also mark this vdev as an active spare.
1741 */
1742 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1743 KM_SLEEP);
1744 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1745 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1746 VDEV_ALLOC_SPARE) == 0);
1747 ASSERT(vd != NULL);
1748
1749 spa->spa_spares.sav_vdevs[i] = vd;
1750
1751 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1752 B_FALSE)) != NULL) {
1753 if (!tvd->vdev_isspare)
1754 spa_spare_add(tvd);
1755
1756 /*
1757 * We only mark the spare active if we were successfully
1758 * able to load the vdev. Otherwise, importing a pool
1759 * with a bad active spare would result in strange
1760 * behavior, because multiple pool would think the spare
1761 * is actively in use.
1762 *
1763 * There is a vulnerability here to an equally bizarre
1764 * circumstance, where a dead active spare is later
1765 * brought back to life (onlined or otherwise). Given
1766 * the rarity of this scenario, and the extra complexity
1767 * it adds, we ignore the possibility.
1768 */
1769 if (!vdev_is_dead(tvd))
1770 spa_spare_activate(tvd);
1771 }
1772
1773 vd->vdev_top = vd;
1774 vd->vdev_aux = &spa->spa_spares;
1775
1776 if (vdev_open(vd) != 0)
1777 continue;
1778
1779 if (vdev_validate_aux(vd) == 0)
1780 spa_spare_add(vd);
1781 }
1782
1783 /*
1784 * Recompute the stashed list of spares, with status information
1785 * this time.
1786 */
1787 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1788 DATA_TYPE_NVLIST_ARRAY) == 0);
1789
1790 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1791 KM_SLEEP);
1792 for (i = 0; i < spa->spa_spares.sav_count; i++)
1793 spares[i] = vdev_config_generate(spa,
1794 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1795 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1796 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1797 for (i = 0; i < spa->spa_spares.sav_count; i++)
1798 nvlist_free(spares[i]);
1799 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1800 }
1801
1802 /*
1803 * Load (or re-load) the current list of vdevs describing the active l2cache for
1804 * this pool. When this is called, we have some form of basic information in
1805 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1806 * then re-generate a more complete list including status information.
1807 * Devices which are already active have their details maintained, and are
1808 * not re-opened.
1809 */
1810 void
1811 spa_load_l2cache(spa_t *spa)
1812 {
1813 nvlist_t **l2cache = NULL;
1814 uint_t nl2cache;
1815 int i, j, oldnvdevs;
1816 uint64_t guid;
1817 vdev_t *vd, **oldvdevs, **newvdevs;
1818 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1819
1820 #ifndef _KERNEL
1821 /*
1822 * zdb opens both the current state of the pool and the
1823 * checkpointed state (if present), with a different spa_t.
1824 *
1825 * As L2 caches are part of the ARC which is shared among open
1826 * pools, we skip loading them when we load the checkpointed
1827 * state of the pool.
1828 */
1829 if (!spa_writeable(spa))
1830 return;
1831 #endif
1832
1833 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1834
1835 oldvdevs = sav->sav_vdevs;
1836 oldnvdevs = sav->sav_count;
1837 sav->sav_vdevs = NULL;
1838 sav->sav_count = 0;
1839
1840 if (sav->sav_config == NULL) {
1841 nl2cache = 0;
1842 newvdevs = NULL;
1843 goto out;
1844 }
1845
1846 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1847 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1848 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1849
1850 /*
1851 * Process new nvlist of vdevs.
1852 */
1853 for (i = 0; i < nl2cache; i++) {
1854 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1855 &guid) == 0);
1856
1857 newvdevs[i] = NULL;
1858 for (j = 0; j < oldnvdevs; j++) {
1859 vd = oldvdevs[j];
1860 if (vd != NULL && guid == vd->vdev_guid) {
1861 /*
1862 * Retain previous vdev for add/remove ops.
1863 */
1864 newvdevs[i] = vd;
1865 oldvdevs[j] = NULL;
1866 break;
1867 }
1868 }
1869
1870 if (newvdevs[i] == NULL) {
1871 /*
1872 * Create new vdev
1873 */
1874 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1875 VDEV_ALLOC_L2CACHE) == 0);
1876 ASSERT(vd != NULL);
1877 newvdevs[i] = vd;
1878
1879 /*
1880 * Commit this vdev as an l2cache device,
1881 * even if it fails to open.
1882 */
1883 spa_l2cache_add(vd);
1884
1885 vd->vdev_top = vd;
1886 vd->vdev_aux = sav;
1887
1888 spa_l2cache_activate(vd);
1889
1890 if (vdev_open(vd) != 0)
1891 continue;
1892
1893 (void) vdev_validate_aux(vd);
1894
1895 if (!vdev_is_dead(vd))
1896 l2arc_add_vdev(spa, vd);
1897
1898 /*
1899 * Upon cache device addition to a pool or pool
1900 * creation with a cache device or if the header
1901 * of the device is invalid we issue an async
1902 * TRIM command for the whole device which will
1903 * execute if l2arc_trim_ahead > 0.
1904 */
1905 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1906 }
1907 }
1908
1909 sav->sav_vdevs = newvdevs;
1910 sav->sav_count = (int)nl2cache;
1911
1912 /*
1913 * Recompute the stashed list of l2cache devices, with status
1914 * information this time.
1915 */
1916 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1917 DATA_TYPE_NVLIST_ARRAY) == 0);
1918
1919 if (sav->sav_count > 0)
1920 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1921 KM_SLEEP);
1922 for (i = 0; i < sav->sav_count; i++)
1923 l2cache[i] = vdev_config_generate(spa,
1924 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1925 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1926 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1927
1928 out:
1929 /*
1930 * Purge vdevs that were dropped
1931 */
1932 for (i = 0; i < oldnvdevs; i++) {
1933 uint64_t pool;
1934
1935 vd = oldvdevs[i];
1936 if (vd != NULL) {
1937 ASSERT(vd->vdev_isl2cache);
1938
1939 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1940 pool != 0ULL && l2arc_vdev_present(vd))
1941 l2arc_remove_vdev(vd);
1942 vdev_clear_stats(vd);
1943 vdev_free(vd);
1944 }
1945 }
1946
1947 if (oldvdevs)
1948 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1949
1950 for (i = 0; i < sav->sav_count; i++)
1951 nvlist_free(l2cache[i]);
1952 if (sav->sav_count)
1953 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1954 }
1955
1956 static int
1957 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1958 {
1959 dmu_buf_t *db;
1960 char *packed = NULL;
1961 size_t nvsize = 0;
1962 int error;
1963 *value = NULL;
1964
1965 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1966 if (error)
1967 return (error);
1968
1969 nvsize = *(uint64_t *)db->db_data;
1970 dmu_buf_rele(db, FTAG);
1971
1972 packed = vmem_alloc(nvsize, KM_SLEEP);
1973 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1974 DMU_READ_PREFETCH);
1975 if (error == 0)
1976 error = nvlist_unpack(packed, nvsize, value, 0);
1977 vmem_free(packed, nvsize);
1978
1979 return (error);
1980 }
1981
1982 /*
1983 * Concrete top-level vdevs that are not missing and are not logs. At every
1984 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1985 */
1986 static uint64_t
1987 spa_healthy_core_tvds(spa_t *spa)
1988 {
1989 vdev_t *rvd = spa->spa_root_vdev;
1990 uint64_t tvds = 0;
1991
1992 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1993 vdev_t *vd = rvd->vdev_child[i];
1994 if (vd->vdev_islog)
1995 continue;
1996 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1997 tvds++;
1998 }
1999
2000 return (tvds);
2001 }
2002
2003 /*
2004 * Checks to see if the given vdev could not be opened, in which case we post a
2005 * sysevent to notify the autoreplace code that the device has been removed.
2006 */
2007 static void
2008 spa_check_removed(vdev_t *vd)
2009 {
2010 for (uint64_t c = 0; c < vd->vdev_children; c++)
2011 spa_check_removed(vd->vdev_child[c]);
2012
2013 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2014 vdev_is_concrete(vd)) {
2015 zfs_post_autoreplace(vd->vdev_spa, vd);
2016 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2017 }
2018 }
2019
2020 static int
2021 spa_check_for_missing_logs(spa_t *spa)
2022 {
2023 vdev_t *rvd = spa->spa_root_vdev;
2024
2025 /*
2026 * If we're doing a normal import, then build up any additional
2027 * diagnostic information about missing log devices.
2028 * We'll pass this up to the user for further processing.
2029 */
2030 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2031 nvlist_t **child, *nv;
2032 uint64_t idx = 0;
2033
2034 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2035 KM_SLEEP);
2036 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2037
2038 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2039 vdev_t *tvd = rvd->vdev_child[c];
2040
2041 /*
2042 * We consider a device as missing only if it failed
2043 * to open (i.e. offline or faulted is not considered
2044 * as missing).
2045 */
2046 if (tvd->vdev_islog &&
2047 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2048 child[idx++] = vdev_config_generate(spa, tvd,
2049 B_FALSE, VDEV_CONFIG_MISSING);
2050 }
2051 }
2052
2053 if (idx > 0) {
2054 fnvlist_add_nvlist_array(nv,
2055 ZPOOL_CONFIG_CHILDREN, child, idx);
2056 fnvlist_add_nvlist(spa->spa_load_info,
2057 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2058
2059 for (uint64_t i = 0; i < idx; i++)
2060 nvlist_free(child[i]);
2061 }
2062 nvlist_free(nv);
2063 kmem_free(child, rvd->vdev_children * sizeof (char **));
2064
2065 if (idx > 0) {
2066 spa_load_failed(spa, "some log devices are missing");
2067 vdev_dbgmsg_print_tree(rvd, 2);
2068 return (SET_ERROR(ENXIO));
2069 }
2070 } else {
2071 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2072 vdev_t *tvd = rvd->vdev_child[c];
2073
2074 if (tvd->vdev_islog &&
2075 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2076 spa_set_log_state(spa, SPA_LOG_CLEAR);
2077 spa_load_note(spa, "some log devices are "
2078 "missing, ZIL is dropped.");
2079 vdev_dbgmsg_print_tree(rvd, 2);
2080 break;
2081 }
2082 }
2083 }
2084
2085 return (0);
2086 }
2087
2088 /*
2089 * Check for missing log devices
2090 */
2091 static boolean_t
2092 spa_check_logs(spa_t *spa)
2093 {
2094 boolean_t rv = B_FALSE;
2095 dsl_pool_t *dp = spa_get_dsl(spa);
2096
2097 switch (spa->spa_log_state) {
2098 default:
2099 break;
2100 case SPA_LOG_MISSING:
2101 /* need to recheck in case slog has been restored */
2102 case SPA_LOG_UNKNOWN:
2103 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2104 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2105 if (rv)
2106 spa_set_log_state(spa, SPA_LOG_MISSING);
2107 break;
2108 }
2109 return (rv);
2110 }
2111
2112 static boolean_t
2113 spa_passivate_log(spa_t *spa)
2114 {
2115 vdev_t *rvd = spa->spa_root_vdev;
2116 boolean_t slog_found = B_FALSE;
2117
2118 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2119
2120 if (!spa_has_slogs(spa))
2121 return (B_FALSE);
2122
2123 for (int c = 0; c < rvd->vdev_children; c++) {
2124 vdev_t *tvd = rvd->vdev_child[c];
2125 metaslab_group_t *mg = tvd->vdev_mg;
2126
2127 if (tvd->vdev_islog) {
2128 metaslab_group_passivate(mg);
2129 slog_found = B_TRUE;
2130 }
2131 }
2132
2133 return (slog_found);
2134 }
2135
2136 static void
2137 spa_activate_log(spa_t *spa)
2138 {
2139 vdev_t *rvd = spa->spa_root_vdev;
2140
2141 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2142
2143 for (int c = 0; c < rvd->vdev_children; c++) {
2144 vdev_t *tvd = rvd->vdev_child[c];
2145 metaslab_group_t *mg = tvd->vdev_mg;
2146
2147 if (tvd->vdev_islog)
2148 metaslab_group_activate(mg);
2149 }
2150 }
2151
2152 int
2153 spa_reset_logs(spa_t *spa)
2154 {
2155 int error;
2156
2157 error = dmu_objset_find(spa_name(spa), zil_reset,
2158 NULL, DS_FIND_CHILDREN);
2159 if (error == 0) {
2160 /*
2161 * We successfully offlined the log device, sync out the
2162 * current txg so that the "stubby" block can be removed
2163 * by zil_sync().
2164 */
2165 txg_wait_synced(spa->spa_dsl_pool, 0);
2166 }
2167 return (error);
2168 }
2169
2170 static void
2171 spa_aux_check_removed(spa_aux_vdev_t *sav)
2172 {
2173 for (int i = 0; i < sav->sav_count; i++)
2174 spa_check_removed(sav->sav_vdevs[i]);
2175 }
2176
2177 void
2178 spa_claim_notify(zio_t *zio)
2179 {
2180 spa_t *spa = zio->io_spa;
2181
2182 if (zio->io_error)
2183 return;
2184
2185 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2186 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2187 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2188 mutex_exit(&spa->spa_props_lock);
2189 }
2190
2191 typedef struct spa_load_error {
2192 uint64_t sle_meta_count;
2193 uint64_t sle_data_count;
2194 } spa_load_error_t;
2195
2196 static void
2197 spa_load_verify_done(zio_t *zio)
2198 {
2199 blkptr_t *bp = zio->io_bp;
2200 spa_load_error_t *sle = zio->io_private;
2201 dmu_object_type_t type = BP_GET_TYPE(bp);
2202 int error = zio->io_error;
2203 spa_t *spa = zio->io_spa;
2204
2205 abd_free(zio->io_abd);
2206 if (error) {
2207 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2208 type != DMU_OT_INTENT_LOG)
2209 atomic_inc_64(&sle->sle_meta_count);
2210 else
2211 atomic_inc_64(&sle->sle_data_count);
2212 }
2213
2214 mutex_enter(&spa->spa_scrub_lock);
2215 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2216 cv_broadcast(&spa->spa_scrub_io_cv);
2217 mutex_exit(&spa->spa_scrub_lock);
2218 }
2219
2220 /*
2221 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2222 * By default, we set it to 1/16th of the arc.
2223 */
2224 int spa_load_verify_shift = 4;
2225 int spa_load_verify_metadata = B_TRUE;
2226 int spa_load_verify_data = B_TRUE;
2227
2228 /*ARGSUSED*/
2229 static int
2230 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2231 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2232 {
2233 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2234 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2235 return (0);
2236 /*
2237 * Note: normally this routine will not be called if
2238 * spa_load_verify_metadata is not set. However, it may be useful
2239 * to manually set the flag after the traversal has begun.
2240 */
2241 if (!spa_load_verify_metadata)
2242 return (0);
2243 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2244 return (0);
2245
2246 uint64_t maxinflight_bytes =
2247 arc_target_bytes() >> spa_load_verify_shift;
2248 zio_t *rio = arg;
2249 size_t size = BP_GET_PSIZE(bp);
2250
2251 mutex_enter(&spa->spa_scrub_lock);
2252 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2253 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2254 spa->spa_load_verify_bytes += size;
2255 mutex_exit(&spa->spa_scrub_lock);
2256
2257 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2258 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2259 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2260 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2261 return (0);
2262 }
2263
2264 /* ARGSUSED */
2265 static int
2266 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2267 {
2268 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2269 return (SET_ERROR(ENAMETOOLONG));
2270
2271 return (0);
2272 }
2273
2274 static int
2275 spa_load_verify(spa_t *spa)
2276 {
2277 zio_t *rio;
2278 spa_load_error_t sle = { 0 };
2279 zpool_load_policy_t policy;
2280 boolean_t verify_ok = B_FALSE;
2281 int error = 0;
2282
2283 zpool_get_load_policy(spa->spa_config, &policy);
2284
2285 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2286 return (0);
2287
2288 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2289 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2290 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2291 DS_FIND_CHILDREN);
2292 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2293 if (error != 0)
2294 return (error);
2295
2296 rio = zio_root(spa, NULL, &sle,
2297 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2298
2299 if (spa_load_verify_metadata) {
2300 if (spa->spa_extreme_rewind) {
2301 spa_load_note(spa, "performing a complete scan of the "
2302 "pool since extreme rewind is on. This may take "
2303 "a very long time.\n (spa_load_verify_data=%u, "
2304 "spa_load_verify_metadata=%u)",
2305 spa_load_verify_data, spa_load_verify_metadata);
2306 }
2307
2308 error = traverse_pool(spa, spa->spa_verify_min_txg,
2309 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2310 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2311 }
2312
2313 (void) zio_wait(rio);
2314 ASSERT0(spa->spa_load_verify_bytes);
2315
2316 spa->spa_load_meta_errors = sle.sle_meta_count;
2317 spa->spa_load_data_errors = sle.sle_data_count;
2318
2319 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2320 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2321 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2322 (u_longlong_t)sle.sle_data_count);
2323 }
2324
2325 if (spa_load_verify_dryrun ||
2326 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2327 sle.sle_data_count <= policy.zlp_maxdata)) {
2328 int64_t loss = 0;
2329
2330 verify_ok = B_TRUE;
2331 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2332 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2333
2334 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2335 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2336 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2337 VERIFY(nvlist_add_int64(spa->spa_load_info,
2338 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2339 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2340 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2341 } else {
2342 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2343 }
2344
2345 if (spa_load_verify_dryrun)
2346 return (0);
2347
2348 if (error) {
2349 if (error != ENXIO && error != EIO)
2350 error = SET_ERROR(EIO);
2351 return (error);
2352 }
2353
2354 return (verify_ok ? 0 : EIO);
2355 }
2356
2357 /*
2358 * Find a value in the pool props object.
2359 */
2360 static void
2361 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2362 {
2363 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2364 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2365 }
2366
2367 /*
2368 * Find a value in the pool directory object.
2369 */
2370 static int
2371 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2372 {
2373 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2374 name, sizeof (uint64_t), 1, val);
2375
2376 if (error != 0 && (error != ENOENT || log_enoent)) {
2377 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2378 "[error=%d]", name, error);
2379 }
2380
2381 return (error);
2382 }
2383
2384 static int
2385 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2386 {
2387 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2388 return (SET_ERROR(err));
2389 }
2390
2391 boolean_t
2392 spa_livelist_delete_check(spa_t *spa)
2393 {
2394 return (spa->spa_livelists_to_delete != 0);
2395 }
2396
2397 /* ARGSUSED */
2398 static boolean_t
2399 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2400 {
2401 spa_t *spa = arg;
2402 return (spa_livelist_delete_check(spa));
2403 }
2404
2405 static int
2406 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2407 {
2408 spa_t *spa = arg;
2409 zio_free(spa, tx->tx_txg, bp);
2410 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2411 -bp_get_dsize_sync(spa, bp),
2412 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2413 return (0);
2414 }
2415
2416 static int
2417 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2418 {
2419 int err;
2420 zap_cursor_t zc;
2421 zap_attribute_t za;
2422 zap_cursor_init(&zc, os, zap_obj);
2423 err = zap_cursor_retrieve(&zc, &za);
2424 zap_cursor_fini(&zc);
2425 if (err == 0)
2426 *llp = za.za_first_integer;
2427 return (err);
2428 }
2429
2430 /*
2431 * Components of livelist deletion that must be performed in syncing
2432 * context: freeing block pointers and updating the pool-wide data
2433 * structures to indicate how much work is left to do
2434 */
2435 typedef struct sublist_delete_arg {
2436 spa_t *spa;
2437 dsl_deadlist_t *ll;
2438 uint64_t key;
2439 bplist_t *to_free;
2440 } sublist_delete_arg_t;
2441
2442 static void
2443 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2444 {
2445 sublist_delete_arg_t *sda = arg;
2446 spa_t *spa = sda->spa;
2447 dsl_deadlist_t *ll = sda->ll;
2448 uint64_t key = sda->key;
2449 bplist_t *to_free = sda->to_free;
2450
2451 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2452 dsl_deadlist_remove_entry(ll, key, tx);
2453 }
2454
2455 typedef struct livelist_delete_arg {
2456 spa_t *spa;
2457 uint64_t ll_obj;
2458 uint64_t zap_obj;
2459 } livelist_delete_arg_t;
2460
2461 static void
2462 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2463 {
2464 livelist_delete_arg_t *lda = arg;
2465 spa_t *spa = lda->spa;
2466 uint64_t ll_obj = lda->ll_obj;
2467 uint64_t zap_obj = lda->zap_obj;
2468 objset_t *mos = spa->spa_meta_objset;
2469 uint64_t count;
2470
2471 /* free the livelist and decrement the feature count */
2472 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2473 dsl_deadlist_free(mos, ll_obj, tx);
2474 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2475 VERIFY0(zap_count(mos, zap_obj, &count));
2476 if (count == 0) {
2477 /* no more livelists to delete */
2478 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2479 DMU_POOL_DELETED_CLONES, tx));
2480 VERIFY0(zap_destroy(mos, zap_obj, tx));
2481 spa->spa_livelists_to_delete = 0;
2482 spa_notify_waiters(spa);
2483 }
2484 }
2485
2486 /*
2487 * Load in the value for the livelist to be removed and open it. Then,
2488 * load its first sublist and determine which block pointers should actually
2489 * be freed. Then, call a synctask which performs the actual frees and updates
2490 * the pool-wide livelist data.
2491 */
2492 /* ARGSUSED */
2493 static void
2494 spa_livelist_delete_cb(void *arg, zthr_t *z)
2495 {
2496 spa_t *spa = arg;
2497 uint64_t ll_obj = 0, count;
2498 objset_t *mos = spa->spa_meta_objset;
2499 uint64_t zap_obj = spa->spa_livelists_to_delete;
2500 /*
2501 * Determine the next livelist to delete. This function should only
2502 * be called if there is at least one deleted clone.
2503 */
2504 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2505 VERIFY0(zap_count(mos, ll_obj, &count));
2506 if (count > 0) {
2507 dsl_deadlist_t ll = { 0 };
2508 dsl_deadlist_entry_t *dle;
2509 bplist_t to_free;
2510 dsl_deadlist_open(&ll, mos, ll_obj);
2511 dle = dsl_deadlist_first(&ll);
2512 ASSERT3P(dle, !=, NULL);
2513 bplist_create(&to_free);
2514 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2515 z, NULL);
2516 if (err == 0) {
2517 sublist_delete_arg_t sync_arg = {
2518 .spa = spa,
2519 .ll = &ll,
2520 .key = dle->dle_mintxg,
2521 .to_free = &to_free
2522 };
2523 zfs_dbgmsg("deleting sublist (id %llu) from"
2524 " livelist %llu, %d remaining",
2525 dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2526 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2527 sublist_delete_sync, &sync_arg, 0,
2528 ZFS_SPACE_CHECK_DESTROY));
2529 } else {
2530 ASSERT(err == EINTR);
2531 }
2532 bplist_clear(&to_free);
2533 bplist_destroy(&to_free);
2534 dsl_deadlist_close(&ll);
2535 } else {
2536 livelist_delete_arg_t sync_arg = {
2537 .spa = spa,
2538 .ll_obj = ll_obj,
2539 .zap_obj = zap_obj
2540 };
2541 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2542 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2543 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2544 }
2545 }
2546
2547 static void
2548 spa_start_livelist_destroy_thread(spa_t *spa)
2549 {
2550 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2551 spa->spa_livelist_delete_zthr =
2552 zthr_create("z_livelist_destroy",
2553 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2554 }
2555
2556 typedef struct livelist_new_arg {
2557 bplist_t *allocs;
2558 bplist_t *frees;
2559 } livelist_new_arg_t;
2560
2561 static int
2562 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2563 dmu_tx_t *tx)
2564 {
2565 ASSERT(tx == NULL);
2566 livelist_new_arg_t *lna = arg;
2567 if (bp_freed) {
2568 bplist_append(lna->frees, bp);
2569 } else {
2570 bplist_append(lna->allocs, bp);
2571 zfs_livelist_condense_new_alloc++;
2572 }
2573 return (0);
2574 }
2575
2576 typedef struct livelist_condense_arg {
2577 spa_t *spa;
2578 bplist_t to_keep;
2579 uint64_t first_size;
2580 uint64_t next_size;
2581 } livelist_condense_arg_t;
2582
2583 static void
2584 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2585 {
2586 livelist_condense_arg_t *lca = arg;
2587 spa_t *spa = lca->spa;
2588 bplist_t new_frees;
2589 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2590
2591 /* Have we been cancelled? */
2592 if (spa->spa_to_condense.cancelled) {
2593 zfs_livelist_condense_sync_cancel++;
2594 goto out;
2595 }
2596
2597 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2598 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2599 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2600
2601 /*
2602 * It's possible that the livelist was changed while the zthr was
2603 * running. Therefore, we need to check for new blkptrs in the two
2604 * entries being condensed and continue to track them in the livelist.
2605 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2606 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2607 * we need to sort them into two different bplists.
2608 */
2609 uint64_t first_obj = first->dle_bpobj.bpo_object;
2610 uint64_t next_obj = next->dle_bpobj.bpo_object;
2611 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2612 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2613
2614 bplist_create(&new_frees);
2615 livelist_new_arg_t new_bps = {
2616 .allocs = &lca->to_keep,
2617 .frees = &new_frees,
2618 };
2619
2620 if (cur_first_size > lca->first_size) {
2621 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2622 livelist_track_new_cb, &new_bps, lca->first_size));
2623 }
2624 if (cur_next_size > lca->next_size) {
2625 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2626 livelist_track_new_cb, &new_bps, lca->next_size));
2627 }
2628
2629 dsl_deadlist_clear_entry(first, ll, tx);
2630 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2631 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2632
2633 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2634 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2635 bplist_destroy(&new_frees);
2636
2637 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2638 dsl_dataset_name(ds, dsname);
2639 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2640 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2641 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2642 cur_first_size, next_obj, cur_next_size,
2643 first->dle_bpobj.bpo_object,
2644 first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2645 out:
2646 dmu_buf_rele(ds->ds_dbuf, spa);
2647 spa->spa_to_condense.ds = NULL;
2648 bplist_clear(&lca->to_keep);
2649 bplist_destroy(&lca->to_keep);
2650 kmem_free(lca, sizeof (livelist_condense_arg_t));
2651 spa->spa_to_condense.syncing = B_FALSE;
2652 }
2653
2654 static void
2655 spa_livelist_condense_cb(void *arg, zthr_t *t)
2656 {
2657 while (zfs_livelist_condense_zthr_pause &&
2658 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2659 delay(1);
2660
2661 spa_t *spa = arg;
2662 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2663 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2664 uint64_t first_size, next_size;
2665
2666 livelist_condense_arg_t *lca =
2667 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2668 bplist_create(&lca->to_keep);
2669
2670 /*
2671 * Process the livelists (matching FREEs and ALLOCs) in open context
2672 * so we have minimal work in syncing context to condense.
2673 *
2674 * We save bpobj sizes (first_size and next_size) to use later in
2675 * syncing context to determine if entries were added to these sublists
2676 * while in open context. This is possible because the clone is still
2677 * active and open for normal writes and we want to make sure the new,
2678 * unprocessed blockpointers are inserted into the livelist normally.
2679 *
2680 * Note that dsl_process_sub_livelist() both stores the size number of
2681 * blockpointers and iterates over them while the bpobj's lock held, so
2682 * the sizes returned to us are consistent which what was actually
2683 * processed.
2684 */
2685 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2686 &first_size);
2687 if (err == 0)
2688 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2689 t, &next_size);
2690
2691 if (err == 0) {
2692 while (zfs_livelist_condense_sync_pause &&
2693 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2694 delay(1);
2695
2696 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2697 dmu_tx_mark_netfree(tx);
2698 dmu_tx_hold_space(tx, 1);
2699 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2700 if (err == 0) {
2701 /*
2702 * Prevent the condense zthr restarting before
2703 * the synctask completes.
2704 */
2705 spa->spa_to_condense.syncing = B_TRUE;
2706 lca->spa = spa;
2707 lca->first_size = first_size;
2708 lca->next_size = next_size;
2709 dsl_sync_task_nowait(spa_get_dsl(spa),
2710 spa_livelist_condense_sync, lca, 0,
2711 ZFS_SPACE_CHECK_NONE, tx);
2712 dmu_tx_commit(tx);
2713 return;
2714 }
2715 }
2716 /*
2717 * Condensing can not continue: either it was externally stopped or
2718 * we were unable to assign to a tx because the pool has run out of
2719 * space. In the second case, we'll just end up trying to condense
2720 * again in a later txg.
2721 */
2722 ASSERT(err != 0);
2723 bplist_clear(&lca->to_keep);
2724 bplist_destroy(&lca->to_keep);
2725 kmem_free(lca, sizeof (livelist_condense_arg_t));
2726 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2727 spa->spa_to_condense.ds = NULL;
2728 if (err == EINTR)
2729 zfs_livelist_condense_zthr_cancel++;
2730 }
2731
2732 /* ARGSUSED */
2733 /*
2734 * Check that there is something to condense but that a condense is not
2735 * already in progress and that condensing has not been cancelled.
2736 */
2737 static boolean_t
2738 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2739 {
2740 spa_t *spa = arg;
2741 if ((spa->spa_to_condense.ds != NULL) &&
2742 (spa->spa_to_condense.syncing == B_FALSE) &&
2743 (spa->spa_to_condense.cancelled == B_FALSE)) {
2744 return (B_TRUE);
2745 }
2746 return (B_FALSE);
2747 }
2748
2749 static void
2750 spa_start_livelist_condensing_thread(spa_t *spa)
2751 {
2752 spa->spa_to_condense.ds = NULL;
2753 spa->spa_to_condense.first = NULL;
2754 spa->spa_to_condense.next = NULL;
2755 spa->spa_to_condense.syncing = B_FALSE;
2756 spa->spa_to_condense.cancelled = B_FALSE;
2757
2758 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2759 spa->spa_livelist_condense_zthr =
2760 zthr_create("z_livelist_condense",
2761 spa_livelist_condense_cb_check,
2762 spa_livelist_condense_cb, spa);
2763 }
2764
2765 static void
2766 spa_spawn_aux_threads(spa_t *spa)
2767 {
2768 ASSERT(spa_writeable(spa));
2769
2770 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2771
2772 spa_start_indirect_condensing_thread(spa);
2773 spa_start_livelist_destroy_thread(spa);
2774 spa_start_livelist_condensing_thread(spa);
2775
2776 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2777 spa->spa_checkpoint_discard_zthr =
2778 zthr_create("z_checkpoint_discard",
2779 spa_checkpoint_discard_thread_check,
2780 spa_checkpoint_discard_thread, spa);
2781 }
2782
2783 /*
2784 * Fix up config after a partly-completed split. This is done with the
2785 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2786 * pool have that entry in their config, but only the splitting one contains
2787 * a list of all the guids of the vdevs that are being split off.
2788 *
2789 * This function determines what to do with that list: either rejoin
2790 * all the disks to the pool, or complete the splitting process. To attempt
2791 * the rejoin, each disk that is offlined is marked online again, and
2792 * we do a reopen() call. If the vdev label for every disk that was
2793 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2794 * then we call vdev_split() on each disk, and complete the split.
2795 *
2796 * Otherwise we leave the config alone, with all the vdevs in place in
2797 * the original pool.
2798 */
2799 static void
2800 spa_try_repair(spa_t *spa, nvlist_t *config)
2801 {
2802 uint_t extracted;
2803 uint64_t *glist;
2804 uint_t i, gcount;
2805 nvlist_t *nvl;
2806 vdev_t **vd;
2807 boolean_t attempt_reopen;
2808
2809 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2810 return;
2811
2812 /* check that the config is complete */
2813 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2814 &glist, &gcount) != 0)
2815 return;
2816
2817 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2818
2819 /* attempt to online all the vdevs & validate */
2820 attempt_reopen = B_TRUE;
2821 for (i = 0; i < gcount; i++) {
2822 if (glist[i] == 0) /* vdev is hole */
2823 continue;
2824
2825 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2826 if (vd[i] == NULL) {
2827 /*
2828 * Don't bother attempting to reopen the disks;
2829 * just do the split.
2830 */
2831 attempt_reopen = B_FALSE;
2832 } else {
2833 /* attempt to re-online it */
2834 vd[i]->vdev_offline = B_FALSE;
2835 }
2836 }
2837
2838 if (attempt_reopen) {
2839 vdev_reopen(spa->spa_root_vdev);
2840
2841 /* check each device to see what state it's in */
2842 for (extracted = 0, i = 0; i < gcount; i++) {
2843 if (vd[i] != NULL &&
2844 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2845 break;
2846 ++extracted;
2847 }
2848 }
2849
2850 /*
2851 * If every disk has been moved to the new pool, or if we never
2852 * even attempted to look at them, then we split them off for
2853 * good.
2854 */
2855 if (!attempt_reopen || gcount == extracted) {
2856 for (i = 0; i < gcount; i++)
2857 if (vd[i] != NULL)
2858 vdev_split(vd[i]);
2859 vdev_reopen(spa->spa_root_vdev);
2860 }
2861
2862 kmem_free(vd, gcount * sizeof (vdev_t *));
2863 }
2864
2865 static int
2866 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2867 {
2868 char *ereport = FM_EREPORT_ZFS_POOL;
2869 int error;
2870
2871 spa->spa_load_state = state;
2872 (void) spa_import_progress_set_state(spa_guid(spa),
2873 spa_load_state(spa));
2874
2875 gethrestime(&spa->spa_loaded_ts);
2876 error = spa_load_impl(spa, type, &ereport);
2877
2878 /*
2879 * Don't count references from objsets that are already closed
2880 * and are making their way through the eviction process.
2881 */
2882 spa_evicting_os_wait(spa);
2883 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2884 if (error) {
2885 if (error != EEXIST) {
2886 spa->spa_loaded_ts.tv_sec = 0;
2887 spa->spa_loaded_ts.tv_nsec = 0;
2888 }
2889 if (error != EBADF) {
2890 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2891 }
2892 }
2893 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2894 spa->spa_ena = 0;
2895
2896 (void) spa_import_progress_set_state(spa_guid(spa),
2897 spa_load_state(spa));
2898
2899 return (error);
2900 }
2901
2902 #ifdef ZFS_DEBUG
2903 /*
2904 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2905 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2906 * spa's per-vdev ZAP list.
2907 */
2908 static uint64_t
2909 vdev_count_verify_zaps(vdev_t *vd)
2910 {
2911 spa_t *spa = vd->vdev_spa;
2912 uint64_t total = 0;
2913
2914 if (vd->vdev_top_zap != 0) {
2915 total++;
2916 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2917 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2918 }
2919 if (vd->vdev_leaf_zap != 0) {
2920 total++;
2921 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2922 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2923 }
2924
2925 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2926 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2927 }
2928
2929 return (total);
2930 }
2931 #endif
2932
2933 /*
2934 * Determine whether the activity check is required.
2935 */
2936 static boolean_t
2937 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2938 nvlist_t *config)
2939 {
2940 uint64_t state = 0;
2941 uint64_t hostid = 0;
2942 uint64_t tryconfig_txg = 0;
2943 uint64_t tryconfig_timestamp = 0;
2944 uint16_t tryconfig_mmp_seq = 0;
2945 nvlist_t *nvinfo;
2946
2947 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2948 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2949 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2950 &tryconfig_txg);
2951 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2952 &tryconfig_timestamp);
2953 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2954 &tryconfig_mmp_seq);
2955 }
2956
2957 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2958
2959 /*
2960 * Disable the MMP activity check - This is used by zdb which
2961 * is intended to be used on potentially active pools.
2962 */
2963 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2964 return (B_FALSE);
2965
2966 /*
2967 * Skip the activity check when the MMP feature is disabled.
2968 */
2969 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2970 return (B_FALSE);
2971
2972 /*
2973 * If the tryconfig_ values are nonzero, they are the results of an
2974 * earlier tryimport. If they all match the uberblock we just found,
2975 * then the pool has not changed and we return false so we do not test
2976 * a second time.
2977 */
2978 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2979 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2980 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2981 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2982 return (B_FALSE);
2983
2984 /*
2985 * Allow the activity check to be skipped when importing the pool
2986 * on the same host which last imported it. Since the hostid from
2987 * configuration may be stale use the one read from the label.
2988 */
2989 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2990 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2991
2992 if (hostid == spa_get_hostid(spa))
2993 return (B_FALSE);
2994
2995 /*
2996 * Skip the activity test when the pool was cleanly exported.
2997 */
2998 if (state != POOL_STATE_ACTIVE)
2999 return (B_FALSE);
3000
3001 return (B_TRUE);
3002 }
3003
3004 /*
3005 * Nanoseconds the activity check must watch for changes on-disk.
3006 */
3007 static uint64_t
3008 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3009 {
3010 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3011 uint64_t multihost_interval = MSEC2NSEC(
3012 MMP_INTERVAL_OK(zfs_multihost_interval));
3013 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3014 multihost_interval);
3015
3016 /*
3017 * Local tunables determine a minimum duration except for the case
3018 * where we know when the remote host will suspend the pool if MMP
3019 * writes do not land.
3020 *
3021 * See Big Theory comment at the top of mmp.c for the reasoning behind
3022 * these cases and times.
3023 */
3024
3025 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3026
3027 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3028 MMP_FAIL_INT(ub) > 0) {
3029
3030 /* MMP on remote host will suspend pool after failed writes */
3031 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3032 MMP_IMPORT_SAFETY_FACTOR / 100;
3033
3034 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3035 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3036 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3037 MMP_INTERVAL(ub), import_intervals);
3038
3039 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3040 MMP_FAIL_INT(ub) == 0) {
3041
3042 /* MMP on remote host will never suspend pool */
3043 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3044 ub->ub_mmp_delay) * import_intervals);
3045
3046 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3047 "mmp_interval=%llu ub_mmp_delay=%llu "
3048 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3049 ub->ub_mmp_delay, import_intervals);
3050
3051 } else if (MMP_VALID(ub)) {
3052 /*
3053 * zfs-0.7 compatibility case
3054 */
3055
3056 import_delay = MAX(import_delay, (multihost_interval +
3057 ub->ub_mmp_delay) * import_intervals);
3058
3059 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3060 "import_intervals=%u leaves=%u", import_delay,
3061 ub->ub_mmp_delay, import_intervals,
3062 vdev_count_leaves(spa));
3063 } else {
3064 /* Using local tunings is the only reasonable option */
3065 zfs_dbgmsg("pool last imported on non-MMP aware "
3066 "host using import_delay=%llu multihost_interval=%llu "
3067 "import_intervals=%u", import_delay, multihost_interval,
3068 import_intervals);
3069 }
3070
3071 return (import_delay);
3072 }
3073
3074 /*
3075 * Perform the import activity check. If the user canceled the import or
3076 * we detected activity then fail.
3077 */
3078 static int
3079 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3080 {
3081 uint64_t txg = ub->ub_txg;
3082 uint64_t timestamp = ub->ub_timestamp;
3083 uint64_t mmp_config = ub->ub_mmp_config;
3084 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3085 uint64_t import_delay;
3086 hrtime_t import_expire;
3087 nvlist_t *mmp_label = NULL;
3088 vdev_t *rvd = spa->spa_root_vdev;
3089 kcondvar_t cv;
3090 kmutex_t mtx;
3091 int error = 0;
3092
3093 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3094 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3095 mutex_enter(&mtx);
3096
3097 /*
3098 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3099 * during the earlier tryimport. If the txg recorded there is 0 then
3100 * the pool is known to be active on another host.
3101 *
3102 * Otherwise, the pool might be in use on another host. Check for
3103 * changes in the uberblocks on disk if necessary.
3104 */
3105 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3106 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3107 ZPOOL_CONFIG_LOAD_INFO);
3108
3109 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3110 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3111 vdev_uberblock_load(rvd, ub, &mmp_label);
3112 error = SET_ERROR(EREMOTEIO);
3113 goto out;
3114 }
3115 }
3116
3117 import_delay = spa_activity_check_duration(spa, ub);
3118
3119 /* Add a small random factor in case of simultaneous imports (0-25%) */
3120 import_delay += import_delay * spa_get_random(250) / 1000;
3121
3122 import_expire = gethrtime() + import_delay;
3123
3124 while (gethrtime() < import_expire) {
3125 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3126 NSEC2SEC(import_expire - gethrtime()));
3127
3128 vdev_uberblock_load(rvd, ub, &mmp_label);
3129
3130 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3131 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3132 zfs_dbgmsg("multihost activity detected "
3133 "txg %llu ub_txg %llu "
3134 "timestamp %llu ub_timestamp %llu "
3135 "mmp_config %#llx ub_mmp_config %#llx",
3136 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3137 mmp_config, ub->ub_mmp_config);
3138
3139 error = SET_ERROR(EREMOTEIO);
3140 break;
3141 }
3142
3143 if (mmp_label) {
3144 nvlist_free(mmp_label);
3145 mmp_label = NULL;
3146 }
3147
3148 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3149 if (error != -1) {
3150 error = SET_ERROR(EINTR);
3151 break;
3152 }
3153 error = 0;
3154 }
3155
3156 out:
3157 mutex_exit(&mtx);
3158 mutex_destroy(&mtx);
3159 cv_destroy(&cv);
3160
3161 /*
3162 * If the pool is determined to be active store the status in the
3163 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3164 * available from configuration read from disk store them as well.
3165 * This allows 'zpool import' to generate a more useful message.
3166 *
3167 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3168 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3169 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3170 */
3171 if (error == EREMOTEIO) {
3172 char *hostname = "<unknown>";
3173 uint64_t hostid = 0;
3174
3175 if (mmp_label) {
3176 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3177 hostname = fnvlist_lookup_string(mmp_label,
3178 ZPOOL_CONFIG_HOSTNAME);
3179 fnvlist_add_string(spa->spa_load_info,
3180 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3181 }
3182
3183 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3184 hostid = fnvlist_lookup_uint64(mmp_label,
3185 ZPOOL_CONFIG_HOSTID);
3186 fnvlist_add_uint64(spa->spa_load_info,
3187 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3188 }
3189 }
3190
3191 fnvlist_add_uint64(spa->spa_load_info,
3192 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3193 fnvlist_add_uint64(spa->spa_load_info,
3194 ZPOOL_CONFIG_MMP_TXG, 0);
3195
3196 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3197 }
3198
3199 if (mmp_label)
3200 nvlist_free(mmp_label);
3201
3202 return (error);
3203 }
3204
3205 static int
3206 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3207 {
3208 uint64_t hostid;
3209 char *hostname;
3210 uint64_t myhostid = 0;
3211
3212 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3213 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3214 hostname = fnvlist_lookup_string(mos_config,
3215 ZPOOL_CONFIG_HOSTNAME);
3216
3217 myhostid = zone_get_hostid(NULL);
3218
3219 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3220 cmn_err(CE_WARN, "pool '%s' could not be "
3221 "loaded as it was last accessed by "
3222 "another system (host: %s hostid: 0x%llx). "
3223 "See: http://illumos.org/msg/ZFS-8000-EY",
3224 spa_name(spa), hostname, (u_longlong_t)hostid);
3225 spa_load_failed(spa, "hostid verification failed: pool "
3226 "last accessed by host: %s (hostid: 0x%llx)",
3227 hostname, (u_longlong_t)hostid);
3228 return (SET_ERROR(EBADF));
3229 }
3230 }
3231
3232 return (0);
3233 }
3234
3235 static int
3236 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3237 {
3238 int error = 0;
3239 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3240 int parse;
3241 vdev_t *rvd;
3242 uint64_t pool_guid;
3243 char *comment;
3244
3245 /*
3246 * Versioning wasn't explicitly added to the label until later, so if
3247 * it's not present treat it as the initial version.
3248 */
3249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3250 &spa->spa_ubsync.ub_version) != 0)
3251 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3252
3253 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3254 spa_load_failed(spa, "invalid config provided: '%s' missing",
3255 ZPOOL_CONFIG_POOL_GUID);
3256 return (SET_ERROR(EINVAL));
3257 }
3258
3259 /*
3260 * If we are doing an import, ensure that the pool is not already
3261 * imported by checking if its pool guid already exists in the
3262 * spa namespace.
3263 *
3264 * The only case that we allow an already imported pool to be
3265 * imported again, is when the pool is checkpointed and we want to
3266 * look at its checkpointed state from userland tools like zdb.
3267 */
3268 #ifdef _KERNEL
3269 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3270 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3271 spa_guid_exists(pool_guid, 0)) {
3272 #else
3273 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3274 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3275 spa_guid_exists(pool_guid, 0) &&
3276 !spa_importing_readonly_checkpoint(spa)) {
3277 #endif
3278 spa_load_failed(spa, "a pool with guid %llu is already open",
3279 (u_longlong_t)pool_guid);
3280 return (SET_ERROR(EEXIST));
3281 }
3282
3283 spa->spa_config_guid = pool_guid;
3284
3285 nvlist_free(spa->spa_load_info);
3286 spa->spa_load_info = fnvlist_alloc();
3287
3288 ASSERT(spa->spa_comment == NULL);
3289 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3290 spa->spa_comment = spa_strdup(comment);
3291
3292 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3293 &spa->spa_config_txg);
3294
3295 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3296 spa->spa_config_splitting = fnvlist_dup(nvl);
3297
3298 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3299 spa_load_failed(spa, "invalid config provided: '%s' missing",
3300 ZPOOL_CONFIG_VDEV_TREE);
3301 return (SET_ERROR(EINVAL));
3302 }
3303
3304 /*
3305 * Create "The Godfather" zio to hold all async IOs
3306 */
3307 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3308 KM_SLEEP);
3309 for (int i = 0; i < max_ncpus; i++) {
3310 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3311 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3312 ZIO_FLAG_GODFATHER);
3313 }
3314
3315 /*
3316 * Parse the configuration into a vdev tree. We explicitly set the
3317 * value that will be returned by spa_version() since parsing the
3318 * configuration requires knowing the version number.
3319 */
3320 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3321 parse = (type == SPA_IMPORT_EXISTING ?
3322 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3323 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3324 spa_config_exit(spa, SCL_ALL, FTAG);
3325
3326 if (error != 0) {
3327 spa_load_failed(spa, "unable to parse config [error=%d]",
3328 error);
3329 return (error);
3330 }
3331
3332 ASSERT(spa->spa_root_vdev == rvd);
3333 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3334 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3335
3336 if (type != SPA_IMPORT_ASSEMBLE) {
3337 ASSERT(spa_guid(spa) == pool_guid);
3338 }
3339
3340 return (0);
3341 }
3342
3343 /*
3344 * Recursively open all vdevs in the vdev tree. This function is called twice:
3345 * first with the untrusted config, then with the trusted config.
3346 */
3347 static int
3348 spa_ld_open_vdevs(spa_t *spa)
3349 {
3350 int error = 0;
3351
3352 /*
3353 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3354 * missing/unopenable for the root vdev to be still considered openable.
3355 */
3356 if (spa->spa_trust_config) {
3357 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3358 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3359 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3360 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3361 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3362 } else {
3363 spa->spa_missing_tvds_allowed = 0;
3364 }
3365
3366 spa->spa_missing_tvds_allowed =
3367 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3368
3369 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3370 error = vdev_open(spa->spa_root_vdev);
3371 spa_config_exit(spa, SCL_ALL, FTAG);
3372
3373 if (spa->spa_missing_tvds != 0) {
3374 spa_load_note(spa, "vdev tree has %lld missing top-level "
3375 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3376 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3377 /*
3378 * Although theoretically we could allow users to open
3379 * incomplete pools in RW mode, we'd need to add a lot
3380 * of extra logic (e.g. adjust pool space to account
3381 * for missing vdevs).
3382 * This limitation also prevents users from accidentally
3383 * opening the pool in RW mode during data recovery and
3384 * damaging it further.
3385 */
3386 spa_load_note(spa, "pools with missing top-level "
3387 "vdevs can only be opened in read-only mode.");
3388 error = SET_ERROR(ENXIO);
3389 } else {
3390 spa_load_note(spa, "current settings allow for maximum "
3391 "%lld missing top-level vdevs at this stage.",
3392 (u_longlong_t)spa->spa_missing_tvds_allowed);
3393 }
3394 }
3395 if (error != 0) {
3396 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3397 error);
3398 }
3399 if (spa->spa_missing_tvds != 0 || error != 0)
3400 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3401
3402 return (error);
3403 }
3404
3405 /*
3406 * We need to validate the vdev labels against the configuration that
3407 * we have in hand. This function is called twice: first with an untrusted
3408 * config, then with a trusted config. The validation is more strict when the
3409 * config is trusted.
3410 */
3411 static int
3412 spa_ld_validate_vdevs(spa_t *spa)
3413 {
3414 int error = 0;
3415 vdev_t *rvd = spa->spa_root_vdev;
3416
3417 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3418 error = vdev_validate(rvd);
3419 spa_config_exit(spa, SCL_ALL, FTAG);
3420
3421 if (error != 0) {
3422 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3423 return (error);
3424 }
3425
3426 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3427 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3428 "some vdevs");
3429 vdev_dbgmsg_print_tree(rvd, 2);
3430 return (SET_ERROR(ENXIO));
3431 }
3432
3433 return (0);
3434 }
3435
3436 static void
3437 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3438 {
3439 spa->spa_state = POOL_STATE_ACTIVE;
3440 spa->spa_ubsync = spa->spa_uberblock;
3441 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3442 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3443 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3444 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3445 spa->spa_claim_max_txg = spa->spa_first_txg;
3446 spa->spa_prev_software_version = ub->ub_software_version;
3447 }
3448
3449 static int
3450 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3451 {
3452 vdev_t *rvd = spa->spa_root_vdev;
3453 nvlist_t *label;
3454 uberblock_t *ub = &spa->spa_uberblock;
3455 boolean_t activity_check = B_FALSE;
3456
3457 /*
3458 * If we are opening the checkpointed state of the pool by
3459 * rewinding to it, at this point we will have written the
3460 * checkpointed uberblock to the vdev labels, so searching
3461 * the labels will find the right uberblock. However, if
3462 * we are opening the checkpointed state read-only, we have
3463 * not modified the labels. Therefore, we must ignore the
3464 * labels and continue using the spa_uberblock that was set
3465 * by spa_ld_checkpoint_rewind.
3466 *
3467 * Note that it would be fine to ignore the labels when
3468 * rewinding (opening writeable) as well. However, if we
3469 * crash just after writing the labels, we will end up
3470 * searching the labels. Doing so in the common case means
3471 * that this code path gets exercised normally, rather than
3472 * just in the edge case.
3473 */
3474 if (ub->ub_checkpoint_txg != 0 &&
3475 spa_importing_readonly_checkpoint(spa)) {
3476 spa_ld_select_uberblock_done(spa, ub);
3477 return (0);
3478 }
3479
3480 /*
3481 * Find the best uberblock.
3482 */
3483 vdev_uberblock_load(rvd, ub, &label);
3484
3485 /*
3486 * If we weren't able to find a single valid uberblock, return failure.
3487 */
3488 if (ub->ub_txg == 0) {
3489 nvlist_free(label);
3490 spa_load_failed(spa, "no valid uberblock found");
3491 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3492 }
3493
3494 if (spa->spa_load_max_txg != UINT64_MAX) {
3495 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3496 (u_longlong_t)spa->spa_load_max_txg);
3497 }
3498 spa_load_note(spa, "using uberblock with txg=%llu",
3499 (u_longlong_t)ub->ub_txg);
3500
3501
3502 /*
3503 * For pools which have the multihost property on determine if the
3504 * pool is truly inactive and can be safely imported. Prevent
3505 * hosts which don't have a hostid set from importing the pool.
3506 */
3507 activity_check = spa_activity_check_required(spa, ub, label,
3508 spa->spa_config);
3509 if (activity_check) {
3510 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3511 spa_get_hostid(spa) == 0) {
3512 nvlist_free(label);
3513 fnvlist_add_uint64(spa->spa_load_info,
3514 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3515 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3516 }
3517
3518 int error = spa_activity_check(spa, ub, spa->spa_config);
3519 if (error) {
3520 nvlist_free(label);
3521 return (error);
3522 }
3523
3524 fnvlist_add_uint64(spa->spa_load_info,
3525 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3526 fnvlist_add_uint64(spa->spa_load_info,
3527 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3528 fnvlist_add_uint16(spa->spa_load_info,
3529 ZPOOL_CONFIG_MMP_SEQ,
3530 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3531 }
3532
3533 /*
3534 * If the pool has an unsupported version we can't open it.
3535 */
3536 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3537 nvlist_free(label);
3538 spa_load_failed(spa, "version %llu is not supported",
3539 (u_longlong_t)ub->ub_version);
3540 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3541 }
3542
3543 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3544 nvlist_t *features;
3545
3546 /*
3547 * If we weren't able to find what's necessary for reading the
3548 * MOS in the label, return failure.
3549 */
3550 if (label == NULL) {
3551 spa_load_failed(spa, "label config unavailable");
3552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3553 ENXIO));
3554 }
3555
3556 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3557 &features) != 0) {
3558 nvlist_free(label);
3559 spa_load_failed(spa, "invalid label: '%s' missing",
3560 ZPOOL_CONFIG_FEATURES_FOR_READ);
3561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3562 ENXIO));
3563 }
3564
3565 /*
3566 * Update our in-core representation with the definitive values
3567 * from the label.
3568 */
3569 nvlist_free(spa->spa_label_features);
3570 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3571 }
3572
3573 nvlist_free(label);
3574
3575 /*
3576 * Look through entries in the label nvlist's features_for_read. If
3577 * there is a feature listed there which we don't understand then we
3578 * cannot open a pool.
3579 */
3580 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3581 nvlist_t *unsup_feat;
3582
3583 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3584 0);
3585
3586 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3587 NULL); nvp != NULL;
3588 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3589 if (!zfeature_is_supported(nvpair_name(nvp))) {
3590 VERIFY(nvlist_add_string(unsup_feat,
3591 nvpair_name(nvp), "") == 0);
3592 }
3593 }
3594
3595 if (!nvlist_empty(unsup_feat)) {
3596 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3597 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3598 nvlist_free(unsup_feat);
3599 spa_load_failed(spa, "some features are unsupported");
3600 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3601 ENOTSUP));
3602 }
3603
3604 nvlist_free(unsup_feat);
3605 }
3606
3607 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3608 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3609 spa_try_repair(spa, spa->spa_config);
3610 spa_config_exit(spa, SCL_ALL, FTAG);
3611 nvlist_free(spa->spa_config_splitting);
3612 spa->spa_config_splitting = NULL;
3613 }
3614
3615 /*
3616 * Initialize internal SPA structures.
3617 */
3618 spa_ld_select_uberblock_done(spa, ub);
3619
3620 return (0);
3621 }
3622
3623 static int
3624 spa_ld_open_rootbp(spa_t *spa)
3625 {
3626 int error = 0;
3627 vdev_t *rvd = spa->spa_root_vdev;
3628
3629 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3630 if (error != 0) {
3631 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3632 "[error=%d]", error);
3633 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3634 }
3635 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3636
3637 return (0);
3638 }
3639
3640 static int
3641 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3642 boolean_t reloading)
3643 {
3644 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3645 nvlist_t *nv, *mos_config, *policy;
3646 int error = 0, copy_error;
3647 uint64_t healthy_tvds, healthy_tvds_mos;
3648 uint64_t mos_config_txg;
3649
3650 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3651 != 0)
3652 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3653
3654 /*
3655 * If we're assembling a pool from a split, the config provided is
3656 * already trusted so there is nothing to do.
3657 */
3658 if (type == SPA_IMPORT_ASSEMBLE)
3659 return (0);
3660
3661 healthy_tvds = spa_healthy_core_tvds(spa);
3662
3663 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3664 != 0) {
3665 spa_load_failed(spa, "unable to retrieve MOS config");
3666 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3667 }
3668
3669 /*
3670 * If we are doing an open, pool owner wasn't verified yet, thus do
3671 * the verification here.
3672 */
3673 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3674 error = spa_verify_host(spa, mos_config);
3675 if (error != 0) {
3676 nvlist_free(mos_config);
3677 return (error);
3678 }
3679 }
3680
3681 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3682
3683 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3684
3685 /*
3686 * Build a new vdev tree from the trusted config
3687 */
3688 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3689
3690 /*
3691 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3692 * obtained by scanning /dev/dsk, then it will have the right vdev
3693 * paths. We update the trusted MOS config with this information.
3694 * We first try to copy the paths with vdev_copy_path_strict, which
3695 * succeeds only when both configs have exactly the same vdev tree.
3696 * If that fails, we fall back to a more flexible method that has a
3697 * best effort policy.
3698 */
3699 copy_error = vdev_copy_path_strict(rvd, mrvd);
3700 if (copy_error != 0 || spa_load_print_vdev_tree) {
3701 spa_load_note(spa, "provided vdev tree:");
3702 vdev_dbgmsg_print_tree(rvd, 2);
3703 spa_load_note(spa, "MOS vdev tree:");
3704 vdev_dbgmsg_print_tree(mrvd, 2);
3705 }
3706 if (copy_error != 0) {
3707 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3708 "back to vdev_copy_path_relaxed");
3709 vdev_copy_path_relaxed(rvd, mrvd);
3710 }
3711
3712 vdev_close(rvd);
3713 vdev_free(rvd);
3714 spa->spa_root_vdev = mrvd;
3715 rvd = mrvd;
3716 spa_config_exit(spa, SCL_ALL, FTAG);
3717
3718 /*
3719 * We will use spa_config if we decide to reload the spa or if spa_load
3720 * fails and we rewind. We must thus regenerate the config using the
3721 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3722 * pass settings on how to load the pool and is not stored in the MOS.
3723 * We copy it over to our new, trusted config.
3724 */
3725 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3726 ZPOOL_CONFIG_POOL_TXG);
3727 nvlist_free(mos_config);
3728 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3729 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3730 &policy) == 0)
3731 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3732 spa_config_set(spa, mos_config);
3733 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3734
3735 /*
3736 * Now that we got the config from the MOS, we should be more strict
3737 * in checking blkptrs and can make assumptions about the consistency
3738 * of the vdev tree. spa_trust_config must be set to true before opening
3739 * vdevs in order for them to be writeable.
3740 */
3741 spa->spa_trust_config = B_TRUE;
3742
3743 /*
3744 * Open and validate the new vdev tree
3745 */
3746 error = spa_ld_open_vdevs(spa);
3747 if (error != 0)
3748 return (error);
3749
3750 error = spa_ld_validate_vdevs(spa);
3751 if (error != 0)
3752 return (error);
3753
3754 if (copy_error != 0 || spa_load_print_vdev_tree) {
3755 spa_load_note(spa, "final vdev tree:");
3756 vdev_dbgmsg_print_tree(rvd, 2);
3757 }
3758
3759 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3760 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3761 /*
3762 * Sanity check to make sure that we are indeed loading the
3763 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3764 * in the config provided and they happened to be the only ones
3765 * to have the latest uberblock, we could involuntarily perform
3766 * an extreme rewind.
3767 */
3768 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3769 if (healthy_tvds_mos - healthy_tvds >=
3770 SPA_SYNC_MIN_VDEVS) {
3771 spa_load_note(spa, "config provided misses too many "
3772 "top-level vdevs compared to MOS (%lld vs %lld). ",
3773 (u_longlong_t)healthy_tvds,
3774 (u_longlong_t)healthy_tvds_mos);
3775 spa_load_note(spa, "vdev tree:");
3776 vdev_dbgmsg_print_tree(rvd, 2);
3777 if (reloading) {
3778 spa_load_failed(spa, "config was already "
3779 "provided from MOS. Aborting.");
3780 return (spa_vdev_err(rvd,
3781 VDEV_AUX_CORRUPT_DATA, EIO));
3782 }
3783 spa_load_note(spa, "spa must be reloaded using MOS "
3784 "config");
3785 return (SET_ERROR(EAGAIN));
3786 }
3787 }
3788
3789 error = spa_check_for_missing_logs(spa);
3790 if (error != 0)
3791 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3792
3793 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3794 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3795 "guid sum (%llu != %llu)",
3796 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3797 (u_longlong_t)rvd->vdev_guid_sum);
3798 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3799 ENXIO));
3800 }
3801
3802 return (0);
3803 }
3804
3805 static int
3806 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3807 {
3808 int error = 0;
3809 vdev_t *rvd = spa->spa_root_vdev;
3810
3811 /*
3812 * Everything that we read before spa_remove_init() must be stored
3813 * on concreted vdevs. Therefore we do this as early as possible.
3814 */
3815 error = spa_remove_init(spa);
3816 if (error != 0) {
3817 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3818 error);
3819 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3820 }
3821
3822 /*
3823 * Retrieve information needed to condense indirect vdev mappings.
3824 */
3825 error = spa_condense_init(spa);
3826 if (error != 0) {
3827 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3828 error);
3829 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3830 }
3831
3832 return (0);
3833 }
3834
3835 static int
3836 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3837 {
3838 int error = 0;
3839 vdev_t *rvd = spa->spa_root_vdev;
3840
3841 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3842 boolean_t missing_feat_read = B_FALSE;
3843 nvlist_t *unsup_feat, *enabled_feat;
3844
3845 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3846 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3847 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3848 }
3849
3850 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3851 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3852 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3853 }
3854
3855 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3856 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3857 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3858 }
3859
3860 enabled_feat = fnvlist_alloc();
3861 unsup_feat = fnvlist_alloc();
3862
3863 if (!spa_features_check(spa, B_FALSE,
3864 unsup_feat, enabled_feat))
3865 missing_feat_read = B_TRUE;
3866
3867 if (spa_writeable(spa) ||
3868 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3869 if (!spa_features_check(spa, B_TRUE,
3870 unsup_feat, enabled_feat)) {
3871 *missing_feat_writep = B_TRUE;
3872 }
3873 }
3874
3875 fnvlist_add_nvlist(spa->spa_load_info,
3876 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3877
3878 if (!nvlist_empty(unsup_feat)) {
3879 fnvlist_add_nvlist(spa->spa_load_info,
3880 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3881 }
3882
3883 fnvlist_free(enabled_feat);
3884 fnvlist_free(unsup_feat);
3885
3886 if (!missing_feat_read) {
3887 fnvlist_add_boolean(spa->spa_load_info,
3888 ZPOOL_CONFIG_CAN_RDONLY);
3889 }
3890
3891 /*
3892 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3893 * twofold: to determine whether the pool is available for
3894 * import in read-write mode and (if it is not) whether the
3895 * pool is available for import in read-only mode. If the pool
3896 * is available for import in read-write mode, it is displayed
3897 * as available in userland; if it is not available for import
3898 * in read-only mode, it is displayed as unavailable in
3899 * userland. If the pool is available for import in read-only
3900 * mode but not read-write mode, it is displayed as unavailable
3901 * in userland with a special note that the pool is actually
3902 * available for open in read-only mode.
3903 *
3904 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3905 * missing a feature for write, we must first determine whether
3906 * the pool can be opened read-only before returning to
3907 * userland in order to know whether to display the
3908 * abovementioned note.
3909 */
3910 if (missing_feat_read || (*missing_feat_writep &&
3911 spa_writeable(spa))) {
3912 spa_load_failed(spa, "pool uses unsupported features");
3913 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3914 ENOTSUP));
3915 }
3916
3917 /*
3918 * Load refcounts for ZFS features from disk into an in-memory
3919 * cache during SPA initialization.
3920 */
3921 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3922 uint64_t refcount;
3923
3924 error = feature_get_refcount_from_disk(spa,
3925 &spa_feature_table[i], &refcount);
3926 if (error == 0) {
3927 spa->spa_feat_refcount_cache[i] = refcount;
3928 } else if (error == ENOTSUP) {
3929 spa->spa_feat_refcount_cache[i] =
3930 SPA_FEATURE_DISABLED;
3931 } else {
3932 spa_load_failed(spa, "error getting refcount "
3933 "for feature %s [error=%d]",
3934 spa_feature_table[i].fi_guid, error);
3935 return (spa_vdev_err(rvd,
3936 VDEV_AUX_CORRUPT_DATA, EIO));
3937 }
3938 }
3939 }
3940
3941 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3942 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3943 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3944 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3945 }
3946
3947 /*
3948 * Encryption was added before bookmark_v2, even though bookmark_v2
3949 * is now a dependency. If this pool has encryption enabled without
3950 * bookmark_v2, trigger an errata message.
3951 */
3952 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3953 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3954 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3955 }
3956
3957 return (0);
3958 }
3959
3960 static int
3961 spa_ld_load_special_directories(spa_t *spa)
3962 {
3963 int error = 0;
3964 vdev_t *rvd = spa->spa_root_vdev;
3965
3966 spa->spa_is_initializing = B_TRUE;
3967 error = dsl_pool_open(spa->spa_dsl_pool);
3968 spa->spa_is_initializing = B_FALSE;
3969 if (error != 0) {
3970 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3971 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3972 }
3973
3974 return (0);
3975 }
3976
3977 static int
3978 spa_ld_get_props(spa_t *spa)
3979 {
3980 int error = 0;
3981 uint64_t obj;
3982 vdev_t *rvd = spa->spa_root_vdev;
3983
3984 /* Grab the checksum salt from the MOS. */
3985 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3986 DMU_POOL_CHECKSUM_SALT, 1,
3987 sizeof (spa->spa_cksum_salt.zcs_bytes),
3988 spa->spa_cksum_salt.zcs_bytes);
3989 if (error == ENOENT) {
3990 /* Generate a new salt for subsequent use */
3991 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3992 sizeof (spa->spa_cksum_salt.zcs_bytes));
3993 } else if (error != 0) {
3994 spa_load_failed(spa, "unable to retrieve checksum salt from "
3995 "MOS [error=%d]", error);
3996 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3997 }
3998
3999 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4000 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4001 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4002 if (error != 0) {
4003 spa_load_failed(spa, "error opening deferred-frees bpobj "
4004 "[error=%d]", error);
4005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4006 }
4007
4008 /*
4009 * Load the bit that tells us to use the new accounting function
4010 * (raid-z deflation). If we have an older pool, this will not
4011 * be present.
4012 */
4013 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4014 if (error != 0 && error != ENOENT)
4015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4016
4017 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4018 &spa->spa_creation_version, B_FALSE);
4019 if (error != 0 && error != ENOENT)
4020 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4021
4022 /*
4023 * Load the persistent error log. If we have an older pool, this will
4024 * not be present.
4025 */
4026 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4027 B_FALSE);
4028 if (error != 0 && error != ENOENT)
4029 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4030
4031 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4032 &spa->spa_errlog_scrub, B_FALSE);
4033 if (error != 0 && error != ENOENT)
4034 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4035
4036 /*
4037 * Load the livelist deletion field. If a livelist is queued for
4038 * deletion, indicate that in the spa
4039 */
4040 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4041 &spa->spa_livelists_to_delete, B_FALSE);
4042 if (error != 0 && error != ENOENT)
4043 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4044
4045 /*
4046 * Load the history object. If we have an older pool, this
4047 * will not be present.
4048 */
4049 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4050 if (error != 0 && error != ENOENT)
4051 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4052
4053 /*
4054 * Load the per-vdev ZAP map. If we have an older pool, this will not
4055 * be present; in this case, defer its creation to a later time to
4056 * avoid dirtying the MOS this early / out of sync context. See
4057 * spa_sync_config_object.
4058 */
4059
4060 /* The sentinel is only available in the MOS config. */
4061 nvlist_t *mos_config;
4062 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4063 spa_load_failed(spa, "unable to retrieve MOS config");
4064 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4065 }
4066
4067 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4068 &spa->spa_all_vdev_zaps, B_FALSE);
4069
4070 if (error == ENOENT) {
4071 VERIFY(!nvlist_exists(mos_config,
4072 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4073 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4074 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4075 } else if (error != 0) {
4076 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4077 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4078 /*
4079 * An older version of ZFS overwrote the sentinel value, so
4080 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4081 * destruction to later; see spa_sync_config_object.
4082 */
4083 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4084 /*
4085 * We're assuming that no vdevs have had their ZAPs created
4086 * before this. Better be sure of it.
4087 */
4088 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4089 }
4090 nvlist_free(mos_config);
4091
4092 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4093
4094 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4095 B_FALSE);
4096 if (error && error != ENOENT)
4097 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4098
4099 if (error == 0) {
4100 uint64_t autoreplace;
4101
4102 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4103 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4104 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4105 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4106 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4107 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4108 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4109 spa->spa_autoreplace = (autoreplace != 0);
4110 }
4111
4112 /*
4113 * If we are importing a pool with missing top-level vdevs,
4114 * we enforce that the pool doesn't panic or get suspended on
4115 * error since the likelihood of missing data is extremely high.
4116 */
4117 if (spa->spa_missing_tvds > 0 &&
4118 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4119 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4120 spa_load_note(spa, "forcing failmode to 'continue' "
4121 "as some top level vdevs are missing");
4122 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4123 }
4124
4125 return (0);
4126 }
4127
4128 static int
4129 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4130 {
4131 int error = 0;
4132 vdev_t *rvd = spa->spa_root_vdev;
4133
4134 /*
4135 * If we're assembling the pool from the split-off vdevs of
4136 * an existing pool, we don't want to attach the spares & cache
4137 * devices.
4138 */
4139
4140 /*
4141 * Load any hot spares for this pool.
4142 */
4143 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4144 B_FALSE);
4145 if (error != 0 && error != ENOENT)
4146 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4147 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4148 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4149 if (load_nvlist(spa, spa->spa_spares.sav_object,
4150 &spa->spa_spares.sav_config) != 0) {
4151 spa_load_failed(spa, "error loading spares nvlist");
4152 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4153 }
4154
4155 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4156 spa_load_spares(spa);
4157 spa_config_exit(spa, SCL_ALL, FTAG);
4158 } else if (error == 0) {
4159 spa->spa_spares.sav_sync = B_TRUE;
4160 }
4161
4162 /*
4163 * Load any level 2 ARC devices for this pool.
4164 */
4165 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4166 &spa->spa_l2cache.sav_object, B_FALSE);
4167 if (error != 0 && error != ENOENT)
4168 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4169 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4170 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4171 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4172 &spa->spa_l2cache.sav_config) != 0) {
4173 spa_load_failed(spa, "error loading l2cache nvlist");
4174 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4175 }
4176
4177 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4178 spa_load_l2cache(spa);
4179 spa_config_exit(spa, SCL_ALL, FTAG);
4180 } else if (error == 0) {
4181 spa->spa_l2cache.sav_sync = B_TRUE;
4182 }
4183
4184 return (0);
4185 }
4186
4187 static int
4188 spa_ld_load_vdev_metadata(spa_t *spa)
4189 {
4190 int error = 0;
4191 vdev_t *rvd = spa->spa_root_vdev;
4192
4193 /*
4194 * If the 'multihost' property is set, then never allow a pool to
4195 * be imported when the system hostid is zero. The exception to
4196 * this rule is zdb which is always allowed to access pools.
4197 */
4198 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4199 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4200 fnvlist_add_uint64(spa->spa_load_info,
4201 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4202 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4203 }
4204
4205 /*
4206 * If the 'autoreplace' property is set, then post a resource notifying
4207 * the ZFS DE that it should not issue any faults for unopenable
4208 * devices. We also iterate over the vdevs, and post a sysevent for any
4209 * unopenable vdevs so that the normal autoreplace handler can take
4210 * over.
4211 */
4212 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4213 spa_check_removed(spa->spa_root_vdev);
4214 /*
4215 * For the import case, this is done in spa_import(), because
4216 * at this point we're using the spare definitions from
4217 * the MOS config, not necessarily from the userland config.
4218 */
4219 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4220 spa_aux_check_removed(&spa->spa_spares);
4221 spa_aux_check_removed(&spa->spa_l2cache);
4222 }
4223 }
4224
4225 /*
4226 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4227 */
4228 error = vdev_load(rvd);
4229 if (error != 0) {
4230 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4231 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4232 }
4233
4234 error = spa_ld_log_spacemaps(spa);
4235 if (error != 0) {
4236 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4237 error);
4238 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4239 }
4240
4241 /*
4242 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4243 */
4244 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4245 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4246 spa_config_exit(spa, SCL_ALL, FTAG);
4247
4248 return (0);
4249 }
4250
4251 static int
4252 spa_ld_load_dedup_tables(spa_t *spa)
4253 {
4254 int error = 0;
4255 vdev_t *rvd = spa->spa_root_vdev;
4256
4257 error = ddt_load(spa);
4258 if (error != 0) {
4259 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4261 }
4262
4263 return (0);
4264 }
4265
4266 static int
4267 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4268 {
4269 vdev_t *rvd = spa->spa_root_vdev;
4270
4271 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4272 boolean_t missing = spa_check_logs(spa);
4273 if (missing) {
4274 if (spa->spa_missing_tvds != 0) {
4275 spa_load_note(spa, "spa_check_logs failed "
4276 "so dropping the logs");
4277 } else {
4278 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4279 spa_load_failed(spa, "spa_check_logs failed");
4280 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4281 ENXIO));
4282 }
4283 }
4284 }
4285
4286 return (0);
4287 }
4288
4289 static int
4290 spa_ld_verify_pool_data(spa_t *spa)
4291 {
4292 int error = 0;
4293 vdev_t *rvd = spa->spa_root_vdev;
4294
4295 /*
4296 * We've successfully opened the pool, verify that we're ready
4297 * to start pushing transactions.
4298 */
4299 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4300 error = spa_load_verify(spa);
4301 if (error != 0) {
4302 spa_load_failed(spa, "spa_load_verify failed "
4303 "[error=%d]", error);
4304 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4305 error));
4306 }
4307 }
4308
4309 return (0);
4310 }
4311
4312 static void
4313 spa_ld_claim_log_blocks(spa_t *spa)
4314 {
4315 dmu_tx_t *tx;
4316 dsl_pool_t *dp = spa_get_dsl(spa);
4317
4318 /*
4319 * Claim log blocks that haven't been committed yet.
4320 * This must all happen in a single txg.
4321 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4322 * invoked from zil_claim_log_block()'s i/o done callback.
4323 * Price of rollback is that we abandon the log.
4324 */
4325 spa->spa_claiming = B_TRUE;
4326
4327 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4328 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4329 zil_claim, tx, DS_FIND_CHILDREN);
4330 dmu_tx_commit(tx);
4331
4332 spa->spa_claiming = B_FALSE;
4333
4334 spa_set_log_state(spa, SPA_LOG_GOOD);
4335 }
4336
4337 static void
4338 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4339 boolean_t update_config_cache)
4340 {
4341 vdev_t *rvd = spa->spa_root_vdev;
4342 int need_update = B_FALSE;
4343
4344 /*
4345 * If the config cache is stale, or we have uninitialized
4346 * metaslabs (see spa_vdev_add()), then update the config.
4347 *
4348 * If this is a verbatim import, trust the current
4349 * in-core spa_config and update the disk labels.
4350 */
4351 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4352 spa->spa_load_state == SPA_LOAD_IMPORT ||
4353 spa->spa_load_state == SPA_LOAD_RECOVER ||
4354 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4355 need_update = B_TRUE;
4356
4357 for (int c = 0; c < rvd->vdev_children; c++)
4358 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4359 need_update = B_TRUE;
4360
4361 /*
4362 * Update the config cache asynchronously in case we're the
4363 * root pool, in which case the config cache isn't writable yet.
4364 */
4365 if (need_update)
4366 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4367 }
4368
4369 static void
4370 spa_ld_prepare_for_reload(spa_t *spa)
4371 {
4372 spa_mode_t mode = spa->spa_mode;
4373 int async_suspended = spa->spa_async_suspended;
4374
4375 spa_unload(spa);
4376 spa_deactivate(spa);
4377 spa_activate(spa, mode);
4378
4379 /*
4380 * We save the value of spa_async_suspended as it gets reset to 0 by
4381 * spa_unload(). We want to restore it back to the original value before
4382 * returning as we might be calling spa_async_resume() later.
4383 */
4384 spa->spa_async_suspended = async_suspended;
4385 }
4386
4387 static int
4388 spa_ld_read_checkpoint_txg(spa_t *spa)
4389 {
4390 uberblock_t checkpoint;
4391 int error = 0;
4392
4393 ASSERT0(spa->spa_checkpoint_txg);
4394 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4395
4396 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4397 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4398 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4399
4400 if (error == ENOENT)
4401 return (0);
4402
4403 if (error != 0)
4404 return (error);
4405
4406 ASSERT3U(checkpoint.ub_txg, !=, 0);
4407 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4408 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4409 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4410 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4411
4412 return (0);
4413 }
4414
4415 static int
4416 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4417 {
4418 int error = 0;
4419
4420 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4421 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4422
4423 /*
4424 * Never trust the config that is provided unless we are assembling
4425 * a pool following a split.
4426 * This means don't trust blkptrs and the vdev tree in general. This
4427 * also effectively puts the spa in read-only mode since
4428 * spa_writeable() checks for spa_trust_config to be true.
4429 * We will later load a trusted config from the MOS.
4430 */
4431 if (type != SPA_IMPORT_ASSEMBLE)
4432 spa->spa_trust_config = B_FALSE;
4433
4434 /*
4435 * Parse the config provided to create a vdev tree.
4436 */
4437 error = spa_ld_parse_config(spa, type);
4438 if (error != 0)
4439 return (error);
4440
4441 spa_import_progress_add(spa);
4442
4443 /*
4444 * Now that we have the vdev tree, try to open each vdev. This involves
4445 * opening the underlying physical device, retrieving its geometry and
4446 * probing the vdev with a dummy I/O. The state of each vdev will be set
4447 * based on the success of those operations. After this we'll be ready
4448 * to read from the vdevs.
4449 */
4450 error = spa_ld_open_vdevs(spa);
4451 if (error != 0)
4452 return (error);
4453
4454 /*
4455 * Read the label of each vdev and make sure that the GUIDs stored
4456 * there match the GUIDs in the config provided.
4457 * If we're assembling a new pool that's been split off from an
4458 * existing pool, the labels haven't yet been updated so we skip
4459 * validation for now.
4460 */
4461 if (type != SPA_IMPORT_ASSEMBLE) {
4462 error = spa_ld_validate_vdevs(spa);
4463 if (error != 0)
4464 return (error);
4465 }
4466
4467 /*
4468 * Read all vdev labels to find the best uberblock (i.e. latest,
4469 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4470 * get the list of features required to read blkptrs in the MOS from
4471 * the vdev label with the best uberblock and verify that our version
4472 * of zfs supports them all.
4473 */
4474 error = spa_ld_select_uberblock(spa, type);
4475 if (error != 0)
4476 return (error);
4477
4478 /*
4479 * Pass that uberblock to the dsl_pool layer which will open the root
4480 * blkptr. This blkptr points to the latest version of the MOS and will
4481 * allow us to read its contents.
4482 */
4483 error = spa_ld_open_rootbp(spa);
4484 if (error != 0)
4485 return (error);
4486
4487 return (0);
4488 }
4489
4490 static int
4491 spa_ld_checkpoint_rewind(spa_t *spa)
4492 {
4493 uberblock_t checkpoint;
4494 int error = 0;
4495
4496 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4497 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4498
4499 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4500 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4501 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4502
4503 if (error != 0) {
4504 spa_load_failed(spa, "unable to retrieve checkpointed "
4505 "uberblock from the MOS config [error=%d]", error);
4506
4507 if (error == ENOENT)
4508 error = ZFS_ERR_NO_CHECKPOINT;
4509
4510 return (error);
4511 }
4512
4513 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4514 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4515
4516 /*
4517 * We need to update the txg and timestamp of the checkpointed
4518 * uberblock to be higher than the latest one. This ensures that
4519 * the checkpointed uberblock is selected if we were to close and
4520 * reopen the pool right after we've written it in the vdev labels.
4521 * (also see block comment in vdev_uberblock_compare)
4522 */
4523 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4524 checkpoint.ub_timestamp = gethrestime_sec();
4525
4526 /*
4527 * Set current uberblock to be the checkpointed uberblock.
4528 */
4529 spa->spa_uberblock = checkpoint;
4530
4531 /*
4532 * If we are doing a normal rewind, then the pool is open for
4533 * writing and we sync the "updated" checkpointed uberblock to
4534 * disk. Once this is done, we've basically rewound the whole
4535 * pool and there is no way back.
4536 *
4537 * There are cases when we don't want to attempt and sync the
4538 * checkpointed uberblock to disk because we are opening a
4539 * pool as read-only. Specifically, verifying the checkpointed
4540 * state with zdb, and importing the checkpointed state to get
4541 * a "preview" of its content.
4542 */
4543 if (spa_writeable(spa)) {
4544 vdev_t *rvd = spa->spa_root_vdev;
4545
4546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4547 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4548 int svdcount = 0;
4549 int children = rvd->vdev_children;
4550 int c0 = spa_get_random(children);
4551
4552 for (int c = 0; c < children; c++) {
4553 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4554
4555 /* Stop when revisiting the first vdev */
4556 if (c > 0 && svd[0] == vd)
4557 break;
4558
4559 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4560 !vdev_is_concrete(vd))
4561 continue;
4562
4563 svd[svdcount++] = vd;
4564 if (svdcount == SPA_SYNC_MIN_VDEVS)
4565 break;
4566 }
4567 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4568 if (error == 0)
4569 spa->spa_last_synced_guid = rvd->vdev_guid;
4570 spa_config_exit(spa, SCL_ALL, FTAG);
4571
4572 if (error != 0) {
4573 spa_load_failed(spa, "failed to write checkpointed "
4574 "uberblock to the vdev labels [error=%d]", error);
4575 return (error);
4576 }
4577 }
4578
4579 return (0);
4580 }
4581
4582 static int
4583 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4584 boolean_t *update_config_cache)
4585 {
4586 int error;
4587
4588 /*
4589 * Parse the config for pool, open and validate vdevs,
4590 * select an uberblock, and use that uberblock to open
4591 * the MOS.
4592 */
4593 error = spa_ld_mos_init(spa, type);
4594 if (error != 0)
4595 return (error);
4596
4597 /*
4598 * Retrieve the trusted config stored in the MOS and use it to create
4599 * a new, exact version of the vdev tree, then reopen all vdevs.
4600 */
4601 error = spa_ld_trusted_config(spa, type, B_FALSE);
4602 if (error == EAGAIN) {
4603 if (update_config_cache != NULL)
4604 *update_config_cache = B_TRUE;
4605
4606 /*
4607 * Redo the loading process with the trusted config if it is
4608 * too different from the untrusted config.
4609 */
4610 spa_ld_prepare_for_reload(spa);
4611 spa_load_note(spa, "RELOADING");
4612 error = spa_ld_mos_init(spa, type);
4613 if (error != 0)
4614 return (error);
4615
4616 error = spa_ld_trusted_config(spa, type, B_TRUE);
4617 if (error != 0)
4618 return (error);
4619
4620 } else if (error != 0) {
4621 return (error);
4622 }
4623
4624 return (0);
4625 }
4626
4627 /*
4628 * Load an existing storage pool, using the config provided. This config
4629 * describes which vdevs are part of the pool and is later validated against
4630 * partial configs present in each vdev's label and an entire copy of the
4631 * config stored in the MOS.
4632 */
4633 static int
4634 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4635 {
4636 int error = 0;
4637 boolean_t missing_feat_write = B_FALSE;
4638 boolean_t checkpoint_rewind =
4639 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4640 boolean_t update_config_cache = B_FALSE;
4641
4642 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4643 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4644
4645 spa_load_note(spa, "LOADING");
4646
4647 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4648 if (error != 0)
4649 return (error);
4650
4651 /*
4652 * If we are rewinding to the checkpoint then we need to repeat
4653 * everything we've done so far in this function but this time
4654 * selecting the checkpointed uberblock and using that to open
4655 * the MOS.
4656 */
4657 if (checkpoint_rewind) {
4658 /*
4659 * If we are rewinding to the checkpoint update config cache
4660 * anyway.
4661 */
4662 update_config_cache = B_TRUE;
4663
4664 /*
4665 * Extract the checkpointed uberblock from the current MOS
4666 * and use this as the pool's uberblock from now on. If the
4667 * pool is imported as writeable we also write the checkpoint
4668 * uberblock to the labels, making the rewind permanent.
4669 */
4670 error = spa_ld_checkpoint_rewind(spa);
4671 if (error != 0)
4672 return (error);
4673
4674 /*
4675 * Redo the loading process again with the
4676 * checkpointed uberblock.
4677 */
4678 spa_ld_prepare_for_reload(spa);
4679 spa_load_note(spa, "LOADING checkpointed uberblock");
4680 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4681 if (error != 0)
4682 return (error);
4683 }
4684
4685 /*
4686 * Retrieve the checkpoint txg if the pool has a checkpoint.
4687 */
4688 error = spa_ld_read_checkpoint_txg(spa);
4689 if (error != 0)
4690 return (error);
4691
4692 /*
4693 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4694 * from the pool and their contents were re-mapped to other vdevs. Note
4695 * that everything that we read before this step must have been
4696 * rewritten on concrete vdevs after the last device removal was
4697 * initiated. Otherwise we could be reading from indirect vdevs before
4698 * we have loaded their mappings.
4699 */
4700 error = spa_ld_open_indirect_vdev_metadata(spa);
4701 if (error != 0)
4702 return (error);
4703
4704 /*
4705 * Retrieve the full list of active features from the MOS and check if
4706 * they are all supported.
4707 */
4708 error = spa_ld_check_features(spa, &missing_feat_write);
4709 if (error != 0)
4710 return (error);
4711
4712 /*
4713 * Load several special directories from the MOS needed by the dsl_pool
4714 * layer.
4715 */
4716 error = spa_ld_load_special_directories(spa);
4717 if (error != 0)
4718 return (error);
4719
4720 /*
4721 * Retrieve pool properties from the MOS.
4722 */
4723 error = spa_ld_get_props(spa);
4724 if (error != 0)
4725 return (error);
4726
4727 /*
4728 * Retrieve the list of auxiliary devices - cache devices and spares -
4729 * and open them.
4730 */
4731 error = spa_ld_open_aux_vdevs(spa, type);
4732 if (error != 0)
4733 return (error);
4734
4735 /*
4736 * Load the metadata for all vdevs. Also check if unopenable devices
4737 * should be autoreplaced.
4738 */
4739 error = spa_ld_load_vdev_metadata(spa);
4740 if (error != 0)
4741 return (error);
4742
4743 error = spa_ld_load_dedup_tables(spa);
4744 if (error != 0)
4745 return (error);
4746
4747 /*
4748 * Verify the logs now to make sure we don't have any unexpected errors
4749 * when we claim log blocks later.
4750 */
4751 error = spa_ld_verify_logs(spa, type, ereport);
4752 if (error != 0)
4753 return (error);
4754
4755 if (missing_feat_write) {
4756 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4757
4758 /*
4759 * At this point, we know that we can open the pool in
4760 * read-only mode but not read-write mode. We now have enough
4761 * information and can return to userland.
4762 */
4763 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4764 ENOTSUP));
4765 }
4766
4767 /*
4768 * Traverse the last txgs to make sure the pool was left off in a safe
4769 * state. When performing an extreme rewind, we verify the whole pool,
4770 * which can take a very long time.
4771 */
4772 error = spa_ld_verify_pool_data(spa);
4773 if (error != 0)
4774 return (error);
4775
4776 /*
4777 * Calculate the deflated space for the pool. This must be done before
4778 * we write anything to the pool because we'd need to update the space
4779 * accounting using the deflated sizes.
4780 */
4781 spa_update_dspace(spa);
4782
4783 /*
4784 * We have now retrieved all the information we needed to open the
4785 * pool. If we are importing the pool in read-write mode, a few
4786 * additional steps must be performed to finish the import.
4787 */
4788 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4789 spa->spa_load_max_txg == UINT64_MAX)) {
4790 uint64_t config_cache_txg = spa->spa_config_txg;
4791
4792 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4793
4794 /*
4795 * In case of a checkpoint rewind, log the original txg
4796 * of the checkpointed uberblock.
4797 */
4798 if (checkpoint_rewind) {
4799 spa_history_log_internal(spa, "checkpoint rewind",
4800 NULL, "rewound state to txg=%llu",
4801 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4802 }
4803
4804 /*
4805 * Traverse the ZIL and claim all blocks.
4806 */
4807 spa_ld_claim_log_blocks(spa);
4808
4809 /*
4810 * Kick-off the syncing thread.
4811 */
4812 spa->spa_sync_on = B_TRUE;
4813 txg_sync_start(spa->spa_dsl_pool);
4814 mmp_thread_start(spa);
4815
4816 /*
4817 * Wait for all claims to sync. We sync up to the highest
4818 * claimed log block birth time so that claimed log blocks
4819 * don't appear to be from the future. spa_claim_max_txg
4820 * will have been set for us by ZIL traversal operations
4821 * performed above.
4822 */
4823 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4824
4825 /*
4826 * Check if we need to request an update of the config. On the
4827 * next sync, we would update the config stored in vdev labels
4828 * and the cachefile (by default /etc/zfs/zpool.cache).
4829 */
4830 spa_ld_check_for_config_update(spa, config_cache_txg,
4831 update_config_cache);
4832
4833 /*
4834 * Check if a rebuild was in progress and if so resume it.
4835 * Then check all DTLs to see if anything needs resilvering.
4836 * The resilver will be deferred if a rebuild was started.
4837 */
4838 if (vdev_rebuild_active(spa->spa_root_vdev)) {
4839 vdev_rebuild_restart(spa);
4840 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4841 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4842 spa_async_request(spa, SPA_ASYNC_RESILVER);
4843 }
4844
4845 /*
4846 * Log the fact that we booted up (so that we can detect if
4847 * we rebooted in the middle of an operation).
4848 */
4849 spa_history_log_version(spa, "open", NULL);
4850
4851 spa_restart_removal(spa);
4852 spa_spawn_aux_threads(spa);
4853
4854 /*
4855 * Delete any inconsistent datasets.
4856 *
4857 * Note:
4858 * Since we may be issuing deletes for clones here,
4859 * we make sure to do so after we've spawned all the
4860 * auxiliary threads above (from which the livelist
4861 * deletion zthr is part of).
4862 */
4863 (void) dmu_objset_find(spa_name(spa),
4864 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4865
4866 /*
4867 * Clean up any stale temporary dataset userrefs.
4868 */
4869 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4870
4871 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4872 vdev_initialize_restart(spa->spa_root_vdev);
4873 vdev_trim_restart(spa->spa_root_vdev);
4874 vdev_autotrim_restart(spa);
4875 spa_config_exit(spa, SCL_CONFIG, FTAG);
4876 }
4877
4878 spa_import_progress_remove(spa_guid(spa));
4879 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4880
4881 spa_load_note(spa, "LOADED");
4882
4883 return (0);
4884 }
4885
4886 static int
4887 spa_load_retry(spa_t *spa, spa_load_state_t state)
4888 {
4889 spa_mode_t mode = spa->spa_mode;
4890
4891 spa_unload(spa);
4892 spa_deactivate(spa);
4893
4894 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4895
4896 spa_activate(spa, mode);
4897 spa_async_suspend(spa);
4898
4899 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4900 (u_longlong_t)spa->spa_load_max_txg);
4901
4902 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4903 }
4904
4905 /*
4906 * If spa_load() fails this function will try loading prior txg's. If
4907 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4908 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4909 * function will not rewind the pool and will return the same error as
4910 * spa_load().
4911 */
4912 static int
4913 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4914 int rewind_flags)
4915 {
4916 nvlist_t *loadinfo = NULL;
4917 nvlist_t *config = NULL;
4918 int load_error, rewind_error;
4919 uint64_t safe_rewind_txg;
4920 uint64_t min_txg;
4921
4922 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4923 spa->spa_load_max_txg = spa->spa_load_txg;
4924 spa_set_log_state(spa, SPA_LOG_CLEAR);
4925 } else {
4926 spa->spa_load_max_txg = max_request;
4927 if (max_request != UINT64_MAX)
4928 spa->spa_extreme_rewind = B_TRUE;
4929 }
4930
4931 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4932 if (load_error == 0)
4933 return (0);
4934 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4935 /*
4936 * When attempting checkpoint-rewind on a pool with no
4937 * checkpoint, we should not attempt to load uberblocks
4938 * from previous txgs when spa_load fails.
4939 */
4940 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4941 spa_import_progress_remove(spa_guid(spa));
4942 return (load_error);
4943 }
4944
4945 if (spa->spa_root_vdev != NULL)
4946 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4947
4948 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4949 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4950
4951 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4952 nvlist_free(config);
4953 spa_import_progress_remove(spa_guid(spa));
4954 return (load_error);
4955 }
4956
4957 if (state == SPA_LOAD_RECOVER) {
4958 /* Price of rolling back is discarding txgs, including log */
4959 spa_set_log_state(spa, SPA_LOG_CLEAR);
4960 } else {
4961 /*
4962 * If we aren't rolling back save the load info from our first
4963 * import attempt so that we can restore it after attempting
4964 * to rewind.
4965 */
4966 loadinfo = spa->spa_load_info;
4967 spa->spa_load_info = fnvlist_alloc();
4968 }
4969
4970 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4971 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4972 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4973 TXG_INITIAL : safe_rewind_txg;
4974
4975 /*
4976 * Continue as long as we're finding errors, we're still within
4977 * the acceptable rewind range, and we're still finding uberblocks
4978 */
4979 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4980 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4981 if (spa->spa_load_max_txg < safe_rewind_txg)
4982 spa->spa_extreme_rewind = B_TRUE;
4983 rewind_error = spa_load_retry(spa, state);
4984 }
4985
4986 spa->spa_extreme_rewind = B_FALSE;
4987 spa->spa_load_max_txg = UINT64_MAX;
4988
4989 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4990 spa_config_set(spa, config);
4991 else
4992 nvlist_free(config);
4993
4994 if (state == SPA_LOAD_RECOVER) {
4995 ASSERT3P(loadinfo, ==, NULL);
4996 spa_import_progress_remove(spa_guid(spa));
4997 return (rewind_error);
4998 } else {
4999 /* Store the rewind info as part of the initial load info */
5000 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5001 spa->spa_load_info);
5002
5003 /* Restore the initial load info */
5004 fnvlist_free(spa->spa_load_info);
5005 spa->spa_load_info = loadinfo;
5006
5007 spa_import_progress_remove(spa_guid(spa));
5008 return (load_error);
5009 }
5010 }
5011
5012 /*
5013 * Pool Open/Import
5014 *
5015 * The import case is identical to an open except that the configuration is sent
5016 * down from userland, instead of grabbed from the configuration cache. For the
5017 * case of an open, the pool configuration will exist in the
5018 * POOL_STATE_UNINITIALIZED state.
5019 *
5020 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5021 * the same time open the pool, without having to keep around the spa_t in some
5022 * ambiguous state.
5023 */
5024 static int
5025 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5026 nvlist_t **config)
5027 {
5028 spa_t *spa;
5029 spa_load_state_t state = SPA_LOAD_OPEN;
5030 int error;
5031 int locked = B_FALSE;
5032 int firstopen = B_FALSE;
5033
5034 *spapp = NULL;
5035
5036 /*
5037 * As disgusting as this is, we need to support recursive calls to this
5038 * function because dsl_dir_open() is called during spa_load(), and ends
5039 * up calling spa_open() again. The real fix is to figure out how to
5040 * avoid dsl_dir_open() calling this in the first place.
5041 */
5042 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5043 mutex_enter(&spa_namespace_lock);
5044 locked = B_TRUE;
5045 }
5046
5047 if ((spa = spa_lookup(pool)) == NULL) {
5048 if (locked)
5049 mutex_exit(&spa_namespace_lock);
5050 return (SET_ERROR(ENOENT));
5051 }
5052
5053 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5054 zpool_load_policy_t policy;
5055
5056 firstopen = B_TRUE;
5057
5058 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5059 &policy);
5060 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5061 state = SPA_LOAD_RECOVER;
5062
5063 spa_activate(spa, spa_mode_global);
5064
5065 if (state != SPA_LOAD_RECOVER)
5066 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5067 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5068
5069 zfs_dbgmsg("spa_open_common: opening %s", pool);
5070 error = spa_load_best(spa, state, policy.zlp_txg,
5071 policy.zlp_rewind);
5072
5073 if (error == EBADF) {
5074 /*
5075 * If vdev_validate() returns failure (indicated by
5076 * EBADF), it indicates that one of the vdevs indicates
5077 * that the pool has been exported or destroyed. If
5078 * this is the case, the config cache is out of sync and
5079 * we should remove the pool from the namespace.
5080 */
5081 spa_unload(spa);
5082 spa_deactivate(spa);
5083 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5084 spa_remove(spa);
5085 if (locked)
5086 mutex_exit(&spa_namespace_lock);
5087 return (SET_ERROR(ENOENT));
5088 }
5089
5090 if (error) {
5091 /*
5092 * We can't open the pool, but we still have useful
5093 * information: the state of each vdev after the
5094 * attempted vdev_open(). Return this to the user.
5095 */
5096 if (config != NULL && spa->spa_config) {
5097 VERIFY(nvlist_dup(spa->spa_config, config,
5098 KM_SLEEP) == 0);
5099 VERIFY(nvlist_add_nvlist(*config,
5100 ZPOOL_CONFIG_LOAD_INFO,
5101 spa->spa_load_info) == 0);
5102 }
5103 spa_unload(spa);
5104 spa_deactivate(spa);
5105 spa->spa_last_open_failed = error;
5106 if (locked)
5107 mutex_exit(&spa_namespace_lock);
5108 *spapp = NULL;
5109 return (error);
5110 }
5111 }
5112
5113 spa_open_ref(spa, tag);
5114
5115 if (config != NULL)
5116 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5117
5118 /*
5119 * If we've recovered the pool, pass back any information we
5120 * gathered while doing the load.
5121 */
5122 if (state == SPA_LOAD_RECOVER) {
5123 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5124 spa->spa_load_info) == 0);
5125 }
5126
5127 if (locked) {
5128 spa->spa_last_open_failed = 0;
5129 spa->spa_last_ubsync_txg = 0;
5130 spa->spa_load_txg = 0;
5131 mutex_exit(&spa_namespace_lock);
5132 }
5133
5134 if (firstopen)
5135 zvol_create_minors_recursive(spa_name(spa));
5136
5137 *spapp = spa;
5138
5139 return (0);
5140 }
5141
5142 int
5143 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5144 nvlist_t **config)
5145 {
5146 return (spa_open_common(name, spapp, tag, policy, config));
5147 }
5148
5149 int
5150 spa_open(const char *name, spa_t **spapp, void *tag)
5151 {
5152 return (spa_open_common(name, spapp, tag, NULL, NULL));
5153 }
5154
5155 /*
5156 * Lookup the given spa_t, incrementing the inject count in the process,
5157 * preventing it from being exported or destroyed.
5158 */
5159 spa_t *
5160 spa_inject_addref(char *name)
5161 {
5162 spa_t *spa;
5163
5164 mutex_enter(&spa_namespace_lock);
5165 if ((spa = spa_lookup(name)) == NULL) {
5166 mutex_exit(&spa_namespace_lock);
5167 return (NULL);
5168 }
5169 spa->spa_inject_ref++;
5170 mutex_exit(&spa_namespace_lock);
5171
5172 return (spa);
5173 }
5174
5175 void
5176 spa_inject_delref(spa_t *spa)
5177 {
5178 mutex_enter(&spa_namespace_lock);
5179 spa->spa_inject_ref--;
5180 mutex_exit(&spa_namespace_lock);
5181 }
5182
5183 /*
5184 * Add spares device information to the nvlist.
5185 */
5186 static void
5187 spa_add_spares(spa_t *spa, nvlist_t *config)
5188 {
5189 nvlist_t **spares;
5190 uint_t i, nspares;
5191 nvlist_t *nvroot;
5192 uint64_t guid;
5193 vdev_stat_t *vs;
5194 uint_t vsc;
5195 uint64_t pool;
5196
5197 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5198
5199 if (spa->spa_spares.sav_count == 0)
5200 return;
5201
5202 VERIFY(nvlist_lookup_nvlist(config,
5203 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5204 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5205 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5206 if (nspares != 0) {
5207 VERIFY(nvlist_add_nvlist_array(nvroot,
5208 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5209 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5210 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5211
5212 /*
5213 * Go through and find any spares which have since been
5214 * repurposed as an active spare. If this is the case, update
5215 * their status appropriately.
5216 */
5217 for (i = 0; i < nspares; i++) {
5218 VERIFY(nvlist_lookup_uint64(spares[i],
5219 ZPOOL_CONFIG_GUID, &guid) == 0);
5220 if (spa_spare_exists(guid, &pool, NULL) &&
5221 pool != 0ULL) {
5222 VERIFY(nvlist_lookup_uint64_array(
5223 spares[i], ZPOOL_CONFIG_VDEV_STATS,
5224 (uint64_t **)&vs, &vsc) == 0);
5225 vs->vs_state = VDEV_STATE_CANT_OPEN;
5226 vs->vs_aux = VDEV_AUX_SPARED;
5227 }
5228 }
5229 }
5230 }
5231
5232 /*
5233 * Add l2cache device information to the nvlist, including vdev stats.
5234 */
5235 static void
5236 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5237 {
5238 nvlist_t **l2cache;
5239 uint_t i, j, nl2cache;
5240 nvlist_t *nvroot;
5241 uint64_t guid;
5242 vdev_t *vd;
5243 vdev_stat_t *vs;
5244 uint_t vsc;
5245
5246 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5247
5248 if (spa->spa_l2cache.sav_count == 0)
5249 return;
5250
5251 VERIFY(nvlist_lookup_nvlist(config,
5252 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5253 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5254 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5255 if (nl2cache != 0) {
5256 VERIFY(nvlist_add_nvlist_array(nvroot,
5257 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5258 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5259 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5260
5261 /*
5262 * Update level 2 cache device stats.
5263 */
5264
5265 for (i = 0; i < nl2cache; i++) {
5266 VERIFY(nvlist_lookup_uint64(l2cache[i],
5267 ZPOOL_CONFIG_GUID, &guid) == 0);
5268
5269 vd = NULL;
5270 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5271 if (guid ==
5272 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5273 vd = spa->spa_l2cache.sav_vdevs[j];
5274 break;
5275 }
5276 }
5277 ASSERT(vd != NULL);
5278
5279 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5280 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5281 == 0);
5282 vdev_get_stats(vd, vs);
5283 vdev_config_generate_stats(vd, l2cache[i]);
5284
5285 }
5286 }
5287 }
5288
5289 static void
5290 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5291 {
5292 zap_cursor_t zc;
5293 zap_attribute_t za;
5294
5295 if (spa->spa_feat_for_read_obj != 0) {
5296 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5297 spa->spa_feat_for_read_obj);
5298 zap_cursor_retrieve(&zc, &za) == 0;
5299 zap_cursor_advance(&zc)) {
5300 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5301 za.za_num_integers == 1);
5302 VERIFY0(nvlist_add_uint64(features, za.za_name,
5303 za.za_first_integer));
5304 }
5305 zap_cursor_fini(&zc);
5306 }
5307
5308 if (spa->spa_feat_for_write_obj != 0) {
5309 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5310 spa->spa_feat_for_write_obj);
5311 zap_cursor_retrieve(&zc, &za) == 0;
5312 zap_cursor_advance(&zc)) {
5313 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5314 za.za_num_integers == 1);
5315 VERIFY0(nvlist_add_uint64(features, za.za_name,
5316 za.za_first_integer));
5317 }
5318 zap_cursor_fini(&zc);
5319 }
5320 }
5321
5322 static void
5323 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5324 {
5325 int i;
5326
5327 for (i = 0; i < SPA_FEATURES; i++) {
5328 zfeature_info_t feature = spa_feature_table[i];
5329 uint64_t refcount;
5330
5331 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5332 continue;
5333
5334 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5335 }
5336 }
5337
5338 /*
5339 * Store a list of pool features and their reference counts in the
5340 * config.
5341 *
5342 * The first time this is called on a spa, allocate a new nvlist, fetch
5343 * the pool features and reference counts from disk, then save the list
5344 * in the spa. In subsequent calls on the same spa use the saved nvlist
5345 * and refresh its values from the cached reference counts. This
5346 * ensures we don't block here on I/O on a suspended pool so 'zpool
5347 * clear' can resume the pool.
5348 */
5349 static void
5350 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5351 {
5352 nvlist_t *features;
5353
5354 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5355
5356 mutex_enter(&spa->spa_feat_stats_lock);
5357 features = spa->spa_feat_stats;
5358
5359 if (features != NULL) {
5360 spa_feature_stats_from_cache(spa, features);
5361 } else {
5362 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5363 spa->spa_feat_stats = features;
5364 spa_feature_stats_from_disk(spa, features);
5365 }
5366
5367 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5368 features));
5369
5370 mutex_exit(&spa->spa_feat_stats_lock);
5371 }
5372
5373 int
5374 spa_get_stats(const char *name, nvlist_t **config,
5375 char *altroot, size_t buflen)
5376 {
5377 int error;
5378 spa_t *spa;
5379
5380 *config = NULL;
5381 error = spa_open_common(name, &spa, FTAG, NULL, config);
5382
5383 if (spa != NULL) {
5384 /*
5385 * This still leaves a window of inconsistency where the spares
5386 * or l2cache devices could change and the config would be
5387 * self-inconsistent.
5388 */
5389 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5390
5391 if (*config != NULL) {
5392 uint64_t loadtimes[2];
5393
5394 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5395 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5396 VERIFY(nvlist_add_uint64_array(*config,
5397 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5398
5399 VERIFY(nvlist_add_uint64(*config,
5400 ZPOOL_CONFIG_ERRCOUNT,
5401 spa_get_errlog_size(spa)) == 0);
5402
5403 if (spa_suspended(spa)) {
5404 VERIFY(nvlist_add_uint64(*config,
5405 ZPOOL_CONFIG_SUSPENDED,
5406 spa->spa_failmode) == 0);
5407 VERIFY(nvlist_add_uint64(*config,
5408 ZPOOL_CONFIG_SUSPENDED_REASON,
5409 spa->spa_suspended) == 0);
5410 }
5411
5412 spa_add_spares(spa, *config);
5413 spa_add_l2cache(spa, *config);
5414 spa_add_feature_stats(spa, *config);
5415 }
5416 }
5417
5418 /*
5419 * We want to get the alternate root even for faulted pools, so we cheat
5420 * and call spa_lookup() directly.
5421 */
5422 if (altroot) {
5423 if (spa == NULL) {
5424 mutex_enter(&spa_namespace_lock);
5425 spa = spa_lookup(name);
5426 if (spa)
5427 spa_altroot(spa, altroot, buflen);
5428 else
5429 altroot[0] = '\0';
5430 spa = NULL;
5431 mutex_exit(&spa_namespace_lock);
5432 } else {
5433 spa_altroot(spa, altroot, buflen);
5434 }
5435 }
5436
5437 if (spa != NULL) {
5438 spa_config_exit(spa, SCL_CONFIG, FTAG);
5439 spa_close(spa, FTAG);
5440 }
5441
5442 return (error);
5443 }
5444
5445 /*
5446 * Validate that the auxiliary device array is well formed. We must have an
5447 * array of nvlists, each which describes a valid leaf vdev. If this is an
5448 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5449 * specified, as long as they are well-formed.
5450 */
5451 static int
5452 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5453 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5454 vdev_labeltype_t label)
5455 {
5456 nvlist_t **dev;
5457 uint_t i, ndev;
5458 vdev_t *vd;
5459 int error;
5460
5461 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5462
5463 /*
5464 * It's acceptable to have no devs specified.
5465 */
5466 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5467 return (0);
5468
5469 if (ndev == 0)
5470 return (SET_ERROR(EINVAL));
5471
5472 /*
5473 * Make sure the pool is formatted with a version that supports this
5474 * device type.
5475 */
5476 if (spa_version(spa) < version)
5477 return (SET_ERROR(ENOTSUP));
5478
5479 /*
5480 * Set the pending device list so we correctly handle device in-use
5481 * checking.
5482 */
5483 sav->sav_pending = dev;
5484 sav->sav_npending = ndev;
5485
5486 for (i = 0; i < ndev; i++) {
5487 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5488 mode)) != 0)
5489 goto out;
5490
5491 if (!vd->vdev_ops->vdev_op_leaf) {
5492 vdev_free(vd);
5493 error = SET_ERROR(EINVAL);
5494 goto out;
5495 }
5496
5497 vd->vdev_top = vd;
5498
5499 if ((error = vdev_open(vd)) == 0 &&
5500 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5501 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5502 vd->vdev_guid) == 0);
5503 }
5504
5505 vdev_free(vd);
5506
5507 if (error &&
5508 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5509 goto out;
5510 else
5511 error = 0;
5512 }
5513
5514 out:
5515 sav->sav_pending = NULL;
5516 sav->sav_npending = 0;
5517 return (error);
5518 }
5519
5520 static int
5521 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5522 {
5523 int error;
5524
5525 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5526
5527 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5528 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5529 VDEV_LABEL_SPARE)) != 0) {
5530 return (error);
5531 }
5532
5533 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5534 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5535 VDEV_LABEL_L2CACHE));
5536 }
5537
5538 static void
5539 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5540 const char *config)
5541 {
5542 int i;
5543
5544 if (sav->sav_config != NULL) {
5545 nvlist_t **olddevs;
5546 uint_t oldndevs;
5547 nvlist_t **newdevs;
5548
5549 /*
5550 * Generate new dev list by concatenating with the
5551 * current dev list.
5552 */
5553 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5554 &olddevs, &oldndevs) == 0);
5555
5556 newdevs = kmem_alloc(sizeof (void *) *
5557 (ndevs + oldndevs), KM_SLEEP);
5558 for (i = 0; i < oldndevs; i++)
5559 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5560 KM_SLEEP) == 0);
5561 for (i = 0; i < ndevs; i++)
5562 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5563 KM_SLEEP) == 0);
5564
5565 VERIFY(nvlist_remove(sav->sav_config, config,
5566 DATA_TYPE_NVLIST_ARRAY) == 0);
5567
5568 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5569 config, newdevs, ndevs + oldndevs) == 0);
5570 for (i = 0; i < oldndevs + ndevs; i++)
5571 nvlist_free(newdevs[i]);
5572 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5573 } else {
5574 /*
5575 * Generate a new dev list.
5576 */
5577 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5578 KM_SLEEP) == 0);
5579 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5580 devs, ndevs) == 0);
5581 }
5582 }
5583
5584 /*
5585 * Stop and drop level 2 ARC devices
5586 */
5587 void
5588 spa_l2cache_drop(spa_t *spa)
5589 {
5590 vdev_t *vd;
5591 int i;
5592 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5593
5594 for (i = 0; i < sav->sav_count; i++) {
5595 uint64_t pool;
5596
5597 vd = sav->sav_vdevs[i];
5598 ASSERT(vd != NULL);
5599
5600 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5601 pool != 0ULL && l2arc_vdev_present(vd))
5602 l2arc_remove_vdev(vd);
5603 }
5604 }
5605
5606 /*
5607 * Verify encryption parameters for spa creation. If we are encrypting, we must
5608 * have the encryption feature flag enabled.
5609 */
5610 static int
5611 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5612 boolean_t has_encryption)
5613 {
5614 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5615 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5616 !has_encryption)
5617 return (SET_ERROR(ENOTSUP));
5618
5619 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5620 }
5621
5622 /*
5623 * Pool Creation
5624 */
5625 int
5626 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5627 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5628 {
5629 spa_t *spa;
5630 char *altroot = NULL;
5631 vdev_t *rvd;
5632 dsl_pool_t *dp;
5633 dmu_tx_t *tx;
5634 int error = 0;
5635 uint64_t txg = TXG_INITIAL;
5636 nvlist_t **spares, **l2cache;
5637 uint_t nspares, nl2cache;
5638 uint64_t version, obj;
5639 boolean_t has_features;
5640 boolean_t has_encryption;
5641 boolean_t has_allocclass;
5642 spa_feature_t feat;
5643 char *feat_name;
5644 char *poolname;
5645 nvlist_t *nvl;
5646
5647 if (props == NULL ||
5648 nvlist_lookup_string(props, "tname", &poolname) != 0)
5649 poolname = (char *)pool;
5650
5651 /*
5652 * If this pool already exists, return failure.
5653 */
5654 mutex_enter(&spa_namespace_lock);
5655 if (spa_lookup(poolname) != NULL) {
5656 mutex_exit(&spa_namespace_lock);
5657 return (SET_ERROR(EEXIST));
5658 }
5659
5660 /*
5661 * Allocate a new spa_t structure.
5662 */
5663 nvl = fnvlist_alloc();
5664 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5665 (void) nvlist_lookup_string(props,
5666 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5667 spa = spa_add(poolname, nvl, altroot);
5668 fnvlist_free(nvl);
5669 spa_activate(spa, spa_mode_global);
5670
5671 if (props && (error = spa_prop_validate(spa, props))) {
5672 spa_deactivate(spa);
5673 spa_remove(spa);
5674 mutex_exit(&spa_namespace_lock);
5675 return (error);
5676 }
5677
5678 /*
5679 * Temporary pool names should never be written to disk.
5680 */
5681 if (poolname != pool)
5682 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5683
5684 has_features = B_FALSE;
5685 has_encryption = B_FALSE;
5686 has_allocclass = B_FALSE;
5687 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5688 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5689 if (zpool_prop_feature(nvpair_name(elem))) {
5690 has_features = B_TRUE;
5691
5692 feat_name = strchr(nvpair_name(elem), '@') + 1;
5693 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5694 if (feat == SPA_FEATURE_ENCRYPTION)
5695 has_encryption = B_TRUE;
5696 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5697 has_allocclass = B_TRUE;
5698 }
5699 }
5700
5701 /* verify encryption params, if they were provided */
5702 if (dcp != NULL) {
5703 error = spa_create_check_encryption_params(dcp, has_encryption);
5704 if (error != 0) {
5705 spa_deactivate(spa);
5706 spa_remove(spa);
5707 mutex_exit(&spa_namespace_lock);
5708 return (error);
5709 }
5710 }
5711 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5712 spa_deactivate(spa);
5713 spa_remove(spa);
5714 mutex_exit(&spa_namespace_lock);
5715 return (ENOTSUP);
5716 }
5717
5718 if (has_features || nvlist_lookup_uint64(props,
5719 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5720 version = SPA_VERSION;
5721 }
5722 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5723
5724 spa->spa_first_txg = txg;
5725 spa->spa_uberblock.ub_txg = txg - 1;
5726 spa->spa_uberblock.ub_version = version;
5727 spa->spa_ubsync = spa->spa_uberblock;
5728 spa->spa_load_state = SPA_LOAD_CREATE;
5729 spa->spa_removing_phys.sr_state = DSS_NONE;
5730 spa->spa_removing_phys.sr_removing_vdev = -1;
5731 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5732 spa->spa_indirect_vdevs_loaded = B_TRUE;
5733
5734 /*
5735 * Create "The Godfather" zio to hold all async IOs
5736 */
5737 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5738 KM_SLEEP);
5739 for (int i = 0; i < max_ncpus; i++) {
5740 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5741 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5742 ZIO_FLAG_GODFATHER);
5743 }
5744
5745 /*
5746 * Create the root vdev.
5747 */
5748 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5749
5750 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5751
5752 ASSERT(error != 0 || rvd != NULL);
5753 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5754
5755 if (error == 0 && !zfs_allocatable_devs(nvroot))
5756 error = SET_ERROR(EINVAL);
5757
5758 if (error == 0 &&
5759 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5760 (error = spa_validate_aux(spa, nvroot, txg,
5761 VDEV_ALLOC_ADD)) == 0) {
5762 /*
5763 * instantiate the metaslab groups (this will dirty the vdevs)
5764 * we can no longer error exit past this point
5765 */
5766 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5767 vdev_t *vd = rvd->vdev_child[c];
5768
5769 vdev_metaslab_set_size(vd);
5770 vdev_expand(vd, txg);
5771 }
5772 }
5773
5774 spa_config_exit(spa, SCL_ALL, FTAG);
5775
5776 if (error != 0) {
5777 spa_unload(spa);
5778 spa_deactivate(spa);
5779 spa_remove(spa);
5780 mutex_exit(&spa_namespace_lock);
5781 return (error);
5782 }
5783
5784 /*
5785 * Get the list of spares, if specified.
5786 */
5787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5788 &spares, &nspares) == 0) {
5789 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5790 KM_SLEEP) == 0);
5791 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5792 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5793 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5794 spa_load_spares(spa);
5795 spa_config_exit(spa, SCL_ALL, FTAG);
5796 spa->spa_spares.sav_sync = B_TRUE;
5797 }
5798
5799 /*
5800 * Get the list of level 2 cache devices, if specified.
5801 */
5802 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5803 &l2cache, &nl2cache) == 0) {
5804 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5805 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5806 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5807 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5808 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5809 spa_load_l2cache(spa);
5810 spa_config_exit(spa, SCL_ALL, FTAG);
5811 spa->spa_l2cache.sav_sync = B_TRUE;
5812 }
5813
5814 spa->spa_is_initializing = B_TRUE;
5815 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5816 spa->spa_is_initializing = B_FALSE;
5817
5818 /*
5819 * Create DDTs (dedup tables).
5820 */
5821 ddt_create(spa);
5822
5823 spa_update_dspace(spa);
5824
5825 tx = dmu_tx_create_assigned(dp, txg);
5826
5827 /*
5828 * Create the pool's history object.
5829 */
5830 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5831 spa_history_create_obj(spa, tx);
5832
5833 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5834 spa_history_log_version(spa, "create", tx);
5835
5836 /*
5837 * Create the pool config object.
5838 */
5839 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5840 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5841 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5842
5843 if (zap_add(spa->spa_meta_objset,
5844 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5845 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5846 cmn_err(CE_PANIC, "failed to add pool config");
5847 }
5848
5849 if (zap_add(spa->spa_meta_objset,
5850 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5851 sizeof (uint64_t), 1, &version, tx) != 0) {
5852 cmn_err(CE_PANIC, "failed to add pool version");
5853 }
5854
5855 /* Newly created pools with the right version are always deflated. */
5856 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5857 spa->spa_deflate = TRUE;
5858 if (zap_add(spa->spa_meta_objset,
5859 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5860 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5861 cmn_err(CE_PANIC, "failed to add deflate");
5862 }
5863 }
5864
5865 /*
5866 * Create the deferred-free bpobj. Turn off compression
5867 * because sync-to-convergence takes longer if the blocksize
5868 * keeps changing.
5869 */
5870 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5871 dmu_object_set_compress(spa->spa_meta_objset, obj,
5872 ZIO_COMPRESS_OFF, tx);
5873 if (zap_add(spa->spa_meta_objset,
5874 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5875 sizeof (uint64_t), 1, &obj, tx) != 0) {
5876 cmn_err(CE_PANIC, "failed to add bpobj");
5877 }
5878 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5879 spa->spa_meta_objset, obj));
5880
5881 /*
5882 * Generate some random noise for salted checksums to operate on.
5883 */
5884 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5885 sizeof (spa->spa_cksum_salt.zcs_bytes));
5886
5887 /*
5888 * Set pool properties.
5889 */
5890 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5891 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5892 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5893 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5894 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5895 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5896
5897 if (props != NULL) {
5898 spa_configfile_set(spa, props, B_FALSE);
5899 spa_sync_props(props, tx);
5900 }
5901
5902 dmu_tx_commit(tx);
5903
5904 spa->spa_sync_on = B_TRUE;
5905 txg_sync_start(dp);
5906 mmp_thread_start(spa);
5907 txg_wait_synced(dp, txg);
5908
5909 spa_spawn_aux_threads(spa);
5910
5911 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5912
5913 /*
5914 * Don't count references from objsets that are already closed
5915 * and are making their way through the eviction process.
5916 */
5917 spa_evicting_os_wait(spa);
5918 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5919 spa->spa_load_state = SPA_LOAD_NONE;
5920
5921 mutex_exit(&spa_namespace_lock);
5922
5923 return (0);
5924 }
5925
5926 /*
5927 * Import a non-root pool into the system.
5928 */
5929 int
5930 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5931 {
5932 spa_t *spa;
5933 char *altroot = NULL;
5934 spa_load_state_t state = SPA_LOAD_IMPORT;
5935 zpool_load_policy_t policy;
5936 spa_mode_t mode = spa_mode_global;
5937 uint64_t readonly = B_FALSE;
5938 int error;
5939 nvlist_t *nvroot;
5940 nvlist_t **spares, **l2cache;
5941 uint_t nspares, nl2cache;
5942
5943 /*
5944 * If a pool with this name exists, return failure.
5945 */
5946 mutex_enter(&spa_namespace_lock);
5947 if (spa_lookup(pool) != NULL) {
5948 mutex_exit(&spa_namespace_lock);
5949 return (SET_ERROR(EEXIST));
5950 }
5951
5952 /*
5953 * Create and initialize the spa structure.
5954 */
5955 (void) nvlist_lookup_string(props,
5956 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5957 (void) nvlist_lookup_uint64(props,
5958 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5959 if (readonly)
5960 mode = SPA_MODE_READ;
5961 spa = spa_add(pool, config, altroot);
5962 spa->spa_import_flags = flags;
5963
5964 /*
5965 * Verbatim import - Take a pool and insert it into the namespace
5966 * as if it had been loaded at boot.
5967 */
5968 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5969 if (props != NULL)
5970 spa_configfile_set(spa, props, B_FALSE);
5971
5972 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5973 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5974 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5975 mutex_exit(&spa_namespace_lock);
5976 return (0);
5977 }
5978
5979 spa_activate(spa, mode);
5980
5981 /*
5982 * Don't start async tasks until we know everything is healthy.
5983 */
5984 spa_async_suspend(spa);
5985
5986 zpool_get_load_policy(config, &policy);
5987 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5988 state = SPA_LOAD_RECOVER;
5989
5990 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5991
5992 if (state != SPA_LOAD_RECOVER) {
5993 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5994 zfs_dbgmsg("spa_import: importing %s", pool);
5995 } else {
5996 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5997 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5998 }
5999 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6000
6001 /*
6002 * Propagate anything learned while loading the pool and pass it
6003 * back to caller (i.e. rewind info, missing devices, etc).
6004 */
6005 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6006 spa->spa_load_info) == 0);
6007
6008 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6009 /*
6010 * Toss any existing sparelist, as it doesn't have any validity
6011 * anymore, and conflicts with spa_has_spare().
6012 */
6013 if (spa->spa_spares.sav_config) {
6014 nvlist_free(spa->spa_spares.sav_config);
6015 spa->spa_spares.sav_config = NULL;
6016 spa_load_spares(spa);
6017 }
6018 if (spa->spa_l2cache.sav_config) {
6019 nvlist_free(spa->spa_l2cache.sav_config);
6020 spa->spa_l2cache.sav_config = NULL;
6021 spa_load_l2cache(spa);
6022 }
6023
6024 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6025 &nvroot) == 0);
6026 spa_config_exit(spa, SCL_ALL, FTAG);
6027
6028 if (props != NULL)
6029 spa_configfile_set(spa, props, B_FALSE);
6030
6031 if (error != 0 || (props && spa_writeable(spa) &&
6032 (error = spa_prop_set(spa, props)))) {
6033 spa_unload(spa);
6034 spa_deactivate(spa);
6035 spa_remove(spa);
6036 mutex_exit(&spa_namespace_lock);
6037 return (error);
6038 }
6039
6040 spa_async_resume(spa);
6041
6042 /*
6043 * Override any spares and level 2 cache devices as specified by
6044 * the user, as these may have correct device names/devids, etc.
6045 */
6046 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6047 &spares, &nspares) == 0) {
6048 if (spa->spa_spares.sav_config)
6049 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6050 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6051 else
6052 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6053 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6054 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6055 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6056 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6057 spa_load_spares(spa);
6058 spa_config_exit(spa, SCL_ALL, FTAG);
6059 spa->spa_spares.sav_sync = B_TRUE;
6060 }
6061 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6062 &l2cache, &nl2cache) == 0) {
6063 if (spa->spa_l2cache.sav_config)
6064 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6065 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6066 else
6067 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6068 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6069 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6070 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6071 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6072 spa_load_l2cache(spa);
6073 spa_config_exit(spa, SCL_ALL, FTAG);
6074 spa->spa_l2cache.sav_sync = B_TRUE;
6075 }
6076
6077 /*
6078 * Check for any removed devices.
6079 */
6080 if (spa->spa_autoreplace) {
6081 spa_aux_check_removed(&spa->spa_spares);
6082 spa_aux_check_removed(&spa->spa_l2cache);
6083 }
6084
6085 if (spa_writeable(spa)) {
6086 /*
6087 * Update the config cache to include the newly-imported pool.
6088 */
6089 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6090 }
6091
6092 /*
6093 * It's possible that the pool was expanded while it was exported.
6094 * We kick off an async task to handle this for us.
6095 */
6096 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6097
6098 spa_history_log_version(spa, "import", NULL);
6099
6100 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6101
6102 mutex_exit(&spa_namespace_lock);
6103
6104 zvol_create_minors_recursive(pool);
6105
6106 return (0);
6107 }
6108
6109 nvlist_t *
6110 spa_tryimport(nvlist_t *tryconfig)
6111 {
6112 nvlist_t *config = NULL;
6113 char *poolname, *cachefile;
6114 spa_t *spa;
6115 uint64_t state;
6116 int error;
6117 zpool_load_policy_t policy;
6118
6119 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6120 return (NULL);
6121
6122 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6123 return (NULL);
6124
6125 /*
6126 * Create and initialize the spa structure.
6127 */
6128 mutex_enter(&spa_namespace_lock);
6129 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6130 spa_activate(spa, SPA_MODE_READ);
6131
6132 /*
6133 * Rewind pool if a max txg was provided.
6134 */
6135 zpool_get_load_policy(spa->spa_config, &policy);
6136 if (policy.zlp_txg != UINT64_MAX) {
6137 spa->spa_load_max_txg = policy.zlp_txg;
6138 spa->spa_extreme_rewind = B_TRUE;
6139 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6140 poolname, (longlong_t)policy.zlp_txg);
6141 } else {
6142 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6143 }
6144
6145 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6146 == 0) {
6147 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6148 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6149 } else {
6150 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6151 }
6152
6153 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6154
6155 /*
6156 * If 'tryconfig' was at least parsable, return the current config.
6157 */
6158 if (spa->spa_root_vdev != NULL) {
6159 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6160 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6161 poolname) == 0);
6162 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6163 state) == 0);
6164 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6165 spa->spa_uberblock.ub_timestamp) == 0);
6166 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6167 spa->spa_load_info) == 0);
6168 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6169 spa->spa_errata) == 0);
6170
6171 /*
6172 * If the bootfs property exists on this pool then we
6173 * copy it out so that external consumers can tell which
6174 * pools are bootable.
6175 */
6176 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6177 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6178
6179 /*
6180 * We have to play games with the name since the
6181 * pool was opened as TRYIMPORT_NAME.
6182 */
6183 if (dsl_dsobj_to_dsname(spa_name(spa),
6184 spa->spa_bootfs, tmpname) == 0) {
6185 char *cp;
6186 char *dsname;
6187
6188 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6189
6190 cp = strchr(tmpname, '/');
6191 if (cp == NULL) {
6192 (void) strlcpy(dsname, tmpname,
6193 MAXPATHLEN);
6194 } else {
6195 (void) snprintf(dsname, MAXPATHLEN,
6196 "%s/%s", poolname, ++cp);
6197 }
6198 VERIFY(nvlist_add_string(config,
6199 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6200 kmem_free(dsname, MAXPATHLEN);
6201 }
6202 kmem_free(tmpname, MAXPATHLEN);
6203 }
6204
6205 /*
6206 * Add the list of hot spares and level 2 cache devices.
6207 */
6208 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6209 spa_add_spares(spa, config);
6210 spa_add_l2cache(spa, config);
6211 spa_config_exit(spa, SCL_CONFIG, FTAG);
6212 }
6213
6214 spa_unload(spa);
6215 spa_deactivate(spa);
6216 spa_remove(spa);
6217 mutex_exit(&spa_namespace_lock);
6218
6219 return (config);
6220 }
6221
6222 /*
6223 * Pool export/destroy
6224 *
6225 * The act of destroying or exporting a pool is very simple. We make sure there
6226 * is no more pending I/O and any references to the pool are gone. Then, we
6227 * update the pool state and sync all the labels to disk, removing the
6228 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6229 * we don't sync the labels or remove the configuration cache.
6230 */
6231 static int
6232 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
6233 boolean_t force, boolean_t hardforce)
6234 {
6235 spa_t *spa;
6236
6237 if (oldconfig)
6238 *oldconfig = NULL;
6239
6240 if (!(spa_mode_global & SPA_MODE_WRITE))
6241 return (SET_ERROR(EROFS));
6242
6243 mutex_enter(&spa_namespace_lock);
6244 if ((spa = spa_lookup(pool)) == NULL) {
6245 mutex_exit(&spa_namespace_lock);
6246 return (SET_ERROR(ENOENT));
6247 }
6248
6249 if (spa->spa_is_exporting) {
6250 /* the pool is being exported by another thread */
6251 mutex_exit(&spa_namespace_lock);
6252 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6253 }
6254 spa->spa_is_exporting = B_TRUE;
6255
6256 /*
6257 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6258 * reacquire the namespace lock, and see if we can export.
6259 */
6260 spa_open_ref(spa, FTAG);
6261 mutex_exit(&spa_namespace_lock);
6262 spa_async_suspend(spa);
6263 if (spa->spa_zvol_taskq) {
6264 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6265 taskq_wait(spa->spa_zvol_taskq);
6266 }
6267 mutex_enter(&spa_namespace_lock);
6268 spa_close(spa, FTAG);
6269
6270 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6271 goto export_spa;
6272 /*
6273 * The pool will be in core if it's openable, in which case we can
6274 * modify its state. Objsets may be open only because they're dirty,
6275 * so we have to force it to sync before checking spa_refcnt.
6276 */
6277 if (spa->spa_sync_on) {
6278 txg_wait_synced(spa->spa_dsl_pool, 0);
6279 spa_evicting_os_wait(spa);
6280 }
6281
6282 /*
6283 * A pool cannot be exported or destroyed if there are active
6284 * references. If we are resetting a pool, allow references by
6285 * fault injection handlers.
6286 */
6287 if (!spa_refcount_zero(spa) ||
6288 (spa->spa_inject_ref != 0 &&
6289 new_state != POOL_STATE_UNINITIALIZED)) {
6290 spa_async_resume(spa);
6291 spa->spa_is_exporting = B_FALSE;
6292 mutex_exit(&spa_namespace_lock);
6293 return (SET_ERROR(EBUSY));
6294 }
6295
6296 if (spa->spa_sync_on) {
6297 /*
6298 * A pool cannot be exported if it has an active shared spare.
6299 * This is to prevent other pools stealing the active spare
6300 * from an exported pool. At user's own will, such pool can
6301 * be forcedly exported.
6302 */
6303 if (!force && new_state == POOL_STATE_EXPORTED &&
6304 spa_has_active_shared_spare(spa)) {
6305 spa_async_resume(spa);
6306 spa->spa_is_exporting = B_FALSE;
6307 mutex_exit(&spa_namespace_lock);
6308 return (SET_ERROR(EXDEV));
6309 }
6310
6311 /*
6312 * We're about to export or destroy this pool. Make sure
6313 * we stop all initialization and trim activity here before
6314 * we set the spa_final_txg. This will ensure that all
6315 * dirty data resulting from the initialization is
6316 * committed to disk before we unload the pool.
6317 */
6318 if (spa->spa_root_vdev != NULL) {
6319 vdev_t *rvd = spa->spa_root_vdev;
6320 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6321 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6322 vdev_autotrim_stop_all(spa);
6323 vdev_rebuild_stop_all(spa);
6324 }
6325
6326 /*
6327 * We want this to be reflected on every label,
6328 * so mark them all dirty. spa_unload() will do the
6329 * final sync that pushes these changes out.
6330 */
6331 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6332 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6333 spa->spa_state = new_state;
6334 spa->spa_final_txg = spa_last_synced_txg(spa) +
6335 TXG_DEFER_SIZE + 1;
6336 vdev_config_dirty(spa->spa_root_vdev);
6337 spa_config_exit(spa, SCL_ALL, FTAG);
6338 }
6339 }
6340
6341 export_spa:
6342 if (new_state == POOL_STATE_DESTROYED)
6343 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6344 else if (new_state == POOL_STATE_EXPORTED)
6345 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6346
6347 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6348 spa_unload(spa);
6349 spa_deactivate(spa);
6350 }
6351
6352 if (oldconfig && spa->spa_config)
6353 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6354
6355 if (new_state != POOL_STATE_UNINITIALIZED) {
6356 if (!hardforce)
6357 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6358 spa_remove(spa);
6359 } else {
6360 /*
6361 * If spa_remove() is not called for this spa_t and
6362 * there is any possibility that it can be reused,
6363 * we make sure to reset the exporting flag.
6364 */
6365 spa->spa_is_exporting = B_FALSE;
6366 }
6367
6368 mutex_exit(&spa_namespace_lock);
6369 return (0);
6370 }
6371
6372 /*
6373 * Destroy a storage pool.
6374 */
6375 int
6376 spa_destroy(char *pool)
6377 {
6378 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6379 B_FALSE, B_FALSE));
6380 }
6381
6382 /*
6383 * Export a storage pool.
6384 */
6385 int
6386 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6387 boolean_t hardforce)
6388 {
6389 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6390 force, hardforce));
6391 }
6392
6393 /*
6394 * Similar to spa_export(), this unloads the spa_t without actually removing it
6395 * from the namespace in any way.
6396 */
6397 int
6398 spa_reset(char *pool)
6399 {
6400 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6401 B_FALSE, B_FALSE));
6402 }
6403
6404 /*
6405 * ==========================================================================
6406 * Device manipulation
6407 * ==========================================================================
6408 */
6409
6410 /*
6411 * Add a device to a storage pool.
6412 */
6413 int
6414 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6415 {
6416 uint64_t txg;
6417 int error;
6418 vdev_t *rvd = spa->spa_root_vdev;
6419 vdev_t *vd, *tvd;
6420 nvlist_t **spares, **l2cache;
6421 uint_t nspares, nl2cache;
6422
6423 ASSERT(spa_writeable(spa));
6424
6425 txg = spa_vdev_enter(spa);
6426
6427 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6428 VDEV_ALLOC_ADD)) != 0)
6429 return (spa_vdev_exit(spa, NULL, txg, error));
6430
6431 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6432
6433 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6434 &nspares) != 0)
6435 nspares = 0;
6436
6437 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6438 &nl2cache) != 0)
6439 nl2cache = 0;
6440
6441 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6442 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6443
6444 if (vd->vdev_children != 0 &&
6445 (error = vdev_create(vd, txg, B_FALSE)) != 0)
6446 return (spa_vdev_exit(spa, vd, txg, error));
6447
6448 /*
6449 * We must validate the spares and l2cache devices after checking the
6450 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6451 */
6452 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6453 return (spa_vdev_exit(spa, vd, txg, error));
6454
6455 /*
6456 * If we are in the middle of a device removal, we can only add
6457 * devices which match the existing devices in the pool.
6458 * If we are in the middle of a removal, or have some indirect
6459 * vdevs, we can not add raidz toplevels.
6460 */
6461 if (spa->spa_vdev_removal != NULL ||
6462 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6463 for (int c = 0; c < vd->vdev_children; c++) {
6464 tvd = vd->vdev_child[c];
6465 if (spa->spa_vdev_removal != NULL &&
6466 tvd->vdev_ashift != spa->spa_max_ashift) {
6467 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6468 }
6469 /* Fail if top level vdev is raidz */
6470 if (tvd->vdev_ops == &vdev_raidz_ops) {
6471 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6472 }
6473 /*
6474 * Need the top level mirror to be
6475 * a mirror of leaf vdevs only
6476 */
6477 if (tvd->vdev_ops == &vdev_mirror_ops) {
6478 for (uint64_t cid = 0;
6479 cid < tvd->vdev_children; cid++) {
6480 vdev_t *cvd = tvd->vdev_child[cid];
6481 if (!cvd->vdev_ops->vdev_op_leaf) {
6482 return (spa_vdev_exit(spa, vd,
6483 txg, EINVAL));
6484 }
6485 }
6486 }
6487 }
6488 }
6489
6490 for (int c = 0; c < vd->vdev_children; c++) {
6491 tvd = vd->vdev_child[c];
6492 vdev_remove_child(vd, tvd);
6493 tvd->vdev_id = rvd->vdev_children;
6494 vdev_add_child(rvd, tvd);
6495 vdev_config_dirty(tvd);
6496 }
6497
6498 if (nspares != 0) {
6499 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6500 ZPOOL_CONFIG_SPARES);
6501 spa_load_spares(spa);
6502 spa->spa_spares.sav_sync = B_TRUE;
6503 }
6504
6505 if (nl2cache != 0) {
6506 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6507 ZPOOL_CONFIG_L2CACHE);
6508 spa_load_l2cache(spa);
6509 spa->spa_l2cache.sav_sync = B_TRUE;
6510 }
6511
6512 /*
6513 * We have to be careful when adding new vdevs to an existing pool.
6514 * If other threads start allocating from these vdevs before we
6515 * sync the config cache, and we lose power, then upon reboot we may
6516 * fail to open the pool because there are DVAs that the config cache
6517 * can't translate. Therefore, we first add the vdevs without
6518 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6519 * and then let spa_config_update() initialize the new metaslabs.
6520 *
6521 * spa_load() checks for added-but-not-initialized vdevs, so that
6522 * if we lose power at any point in this sequence, the remaining
6523 * steps will be completed the next time we load the pool.
6524 */
6525 (void) spa_vdev_exit(spa, vd, txg, 0);
6526
6527 mutex_enter(&spa_namespace_lock);
6528 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6529 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6530 mutex_exit(&spa_namespace_lock);
6531
6532 return (0);
6533 }
6534
6535 /*
6536 * Attach a device to a mirror. The arguments are the path to any device
6537 * in the mirror, and the nvroot for the new device. If the path specifies
6538 * a device that is not mirrored, we automatically insert the mirror vdev.
6539 *
6540 * If 'replacing' is specified, the new device is intended to replace the
6541 * existing device; in this case the two devices are made into their own
6542 * mirror using the 'replacing' vdev, which is functionally identical to
6543 * the mirror vdev (it actually reuses all the same ops) but has a few
6544 * extra rules: you can't attach to it after it's been created, and upon
6545 * completion of resilvering, the first disk (the one being replaced)
6546 * is automatically detached.
6547 *
6548 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6549 * should be performed instead of traditional healing reconstruction. From
6550 * an administrators perspective these are both resilver operations.
6551 */
6552 int
6553 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6554 int rebuild)
6555 {
6556 uint64_t txg, dtl_max_txg;
6557 vdev_t *rvd = spa->spa_root_vdev;
6558 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6559 vdev_ops_t *pvops;
6560 char *oldvdpath, *newvdpath;
6561 int newvd_isspare;
6562 int error;
6563
6564 ASSERT(spa_writeable(spa));
6565
6566 txg = spa_vdev_enter(spa);
6567
6568 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6569
6570 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6571 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6572 error = (spa_has_checkpoint(spa)) ?
6573 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6574 return (spa_vdev_exit(spa, NULL, txg, error));
6575 }
6576
6577 if (rebuild) {
6578 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6579 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6580
6581 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6582 return (spa_vdev_exit(spa, NULL, txg,
6583 ZFS_ERR_RESILVER_IN_PROGRESS));
6584 } else {
6585 if (vdev_rebuild_active(rvd))
6586 return (spa_vdev_exit(spa, NULL, txg,
6587 ZFS_ERR_REBUILD_IN_PROGRESS));
6588 }
6589
6590 if (spa->spa_vdev_removal != NULL)
6591 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6592
6593 if (oldvd == NULL)
6594 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6595
6596 if (!oldvd->vdev_ops->vdev_op_leaf)
6597 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6598
6599 pvd = oldvd->vdev_parent;
6600
6601 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6602 VDEV_ALLOC_ATTACH)) != 0)
6603 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6604
6605 if (newrootvd->vdev_children != 1)
6606 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6607
6608 newvd = newrootvd->vdev_child[0];
6609
6610 if (!newvd->vdev_ops->vdev_op_leaf)
6611 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6612
6613 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6614 return (spa_vdev_exit(spa, newrootvd, txg, error));
6615
6616 /*
6617 * Spares can't replace logs
6618 */
6619 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6620 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6621
6622 if (rebuild) {
6623 /*
6624 * For rebuilds, the parent vdev must support reconstruction
6625 * using only space maps. This means the only allowable
6626 * parents are the root vdev or a mirror vdev.
6627 */
6628 if (pvd->vdev_ops != &vdev_mirror_ops &&
6629 pvd->vdev_ops != &vdev_root_ops) {
6630 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6631 }
6632 }
6633
6634 if (!replacing) {
6635 /*
6636 * For attach, the only allowable parent is a mirror or the root
6637 * vdev.
6638 */
6639 if (pvd->vdev_ops != &vdev_mirror_ops &&
6640 pvd->vdev_ops != &vdev_root_ops)
6641 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6642
6643 pvops = &vdev_mirror_ops;
6644 } else {
6645 /*
6646 * Active hot spares can only be replaced by inactive hot
6647 * spares.
6648 */
6649 if (pvd->vdev_ops == &vdev_spare_ops &&
6650 oldvd->vdev_isspare &&
6651 !spa_has_spare(spa, newvd->vdev_guid))
6652 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6653
6654 /*
6655 * If the source is a hot spare, and the parent isn't already a
6656 * spare, then we want to create a new hot spare. Otherwise, we
6657 * want to create a replacing vdev. The user is not allowed to
6658 * attach to a spared vdev child unless the 'isspare' state is
6659 * the same (spare replaces spare, non-spare replaces
6660 * non-spare).
6661 */
6662 if (pvd->vdev_ops == &vdev_replacing_ops &&
6663 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6664 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6665 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6666 newvd->vdev_isspare != oldvd->vdev_isspare) {
6667 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6668 }
6669
6670 if (newvd->vdev_isspare)
6671 pvops = &vdev_spare_ops;
6672 else
6673 pvops = &vdev_replacing_ops;
6674 }
6675
6676 /*
6677 * Make sure the new device is big enough.
6678 */
6679 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6680 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6681
6682 /*
6683 * The new device cannot have a higher alignment requirement
6684 * than the top-level vdev.
6685 */
6686 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6687 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6688
6689 /*
6690 * If this is an in-place replacement, update oldvd's path and devid
6691 * to make it distinguishable from newvd, and unopenable from now on.
6692 */
6693 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6694 spa_strfree(oldvd->vdev_path);
6695 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6696 KM_SLEEP);
6697 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6698 "%s/%s", newvd->vdev_path, "old");
6699 if (oldvd->vdev_devid != NULL) {
6700 spa_strfree(oldvd->vdev_devid);
6701 oldvd->vdev_devid = NULL;
6702 }
6703 }
6704
6705 /*
6706 * If the parent is not a mirror, or if we're replacing, insert the new
6707 * mirror/replacing/spare vdev above oldvd.
6708 */
6709 if (pvd->vdev_ops != pvops)
6710 pvd = vdev_add_parent(oldvd, pvops);
6711
6712 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6713 ASSERT(pvd->vdev_ops == pvops);
6714 ASSERT(oldvd->vdev_parent == pvd);
6715
6716 /*
6717 * Extract the new device from its root and add it to pvd.
6718 */
6719 vdev_remove_child(newrootvd, newvd);
6720 newvd->vdev_id = pvd->vdev_children;
6721 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6722 vdev_add_child(pvd, newvd);
6723
6724 /*
6725 * Reevaluate the parent vdev state.
6726 */
6727 vdev_propagate_state(pvd);
6728
6729 tvd = newvd->vdev_top;
6730 ASSERT(pvd->vdev_top == tvd);
6731 ASSERT(tvd->vdev_parent == rvd);
6732
6733 vdev_config_dirty(tvd);
6734
6735 /*
6736 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6737 * for any dmu_sync-ed blocks. It will propagate upward when
6738 * spa_vdev_exit() calls vdev_dtl_reassess().
6739 */
6740 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6741
6742 vdev_dtl_dirty(newvd, DTL_MISSING,
6743 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6744
6745 if (newvd->vdev_isspare) {
6746 spa_spare_activate(newvd);
6747 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6748 }
6749
6750 oldvdpath = spa_strdup(oldvd->vdev_path);
6751 newvdpath = spa_strdup(newvd->vdev_path);
6752 newvd_isspare = newvd->vdev_isspare;
6753
6754 /*
6755 * Mark newvd's DTL dirty in this txg.
6756 */
6757 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6758
6759 /*
6760 * Schedule the resilver or rebuild to restart in the future. We do
6761 * this to ensure that dmu_sync-ed blocks have been stitched into the
6762 * respective datasets.
6763 */
6764 if (rebuild) {
6765 newvd->vdev_rebuild_txg = txg;
6766
6767 vdev_rebuild(tvd);
6768 } else {
6769 newvd->vdev_resilver_txg = txg;
6770
6771 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6772 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6773 vdev_defer_resilver(newvd);
6774 } else {
6775 dsl_scan_restart_resilver(spa->spa_dsl_pool,
6776 dtl_max_txg);
6777 }
6778 }
6779
6780 if (spa->spa_bootfs)
6781 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6782
6783 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6784
6785 /*
6786 * Commit the config
6787 */
6788 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6789
6790 spa_history_log_internal(spa, "vdev attach", NULL,
6791 "%s vdev=%s %s vdev=%s",
6792 replacing && newvd_isspare ? "spare in" :
6793 replacing ? "replace" : "attach", newvdpath,
6794 replacing ? "for" : "to", oldvdpath);
6795
6796 spa_strfree(oldvdpath);
6797 spa_strfree(newvdpath);
6798
6799 return (0);
6800 }
6801
6802 /*
6803 * Detach a device from a mirror or replacing vdev.
6804 *
6805 * If 'replace_done' is specified, only detach if the parent
6806 * is a replacing vdev.
6807 */
6808 int
6809 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6810 {
6811 uint64_t txg;
6812 int error;
6813 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6814 vdev_t *vd, *pvd, *cvd, *tvd;
6815 boolean_t unspare = B_FALSE;
6816 uint64_t unspare_guid = 0;
6817 char *vdpath;
6818
6819 ASSERT(spa_writeable(spa));
6820
6821 txg = spa_vdev_detach_enter(spa, guid);
6822
6823 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6824
6825 /*
6826 * Besides being called directly from the userland through the
6827 * ioctl interface, spa_vdev_detach() can be potentially called
6828 * at the end of spa_vdev_resilver_done().
6829 *
6830 * In the regular case, when we have a checkpoint this shouldn't
6831 * happen as we never empty the DTLs of a vdev during the scrub
6832 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6833 * should never get here when we have a checkpoint.
6834 *
6835 * That said, even in a case when we checkpoint the pool exactly
6836 * as spa_vdev_resilver_done() calls this function everything
6837 * should be fine as the resilver will return right away.
6838 */
6839 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6840 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6841 error = (spa_has_checkpoint(spa)) ?
6842 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6843 return (spa_vdev_exit(spa, NULL, txg, error));
6844 }
6845
6846 if (vd == NULL)
6847 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6848
6849 if (!vd->vdev_ops->vdev_op_leaf)
6850 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6851
6852 pvd = vd->vdev_parent;
6853
6854 /*
6855 * If the parent/child relationship is not as expected, don't do it.
6856 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6857 * vdev that's replacing B with C. The user's intent in replacing
6858 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6859 * the replace by detaching C, the expected behavior is to end up
6860 * M(A,B). But suppose that right after deciding to detach C,
6861 * the replacement of B completes. We would have M(A,C), and then
6862 * ask to detach C, which would leave us with just A -- not what
6863 * the user wanted. To prevent this, we make sure that the
6864 * parent/child relationship hasn't changed -- in this example,
6865 * that C's parent is still the replacing vdev R.
6866 */
6867 if (pvd->vdev_guid != pguid && pguid != 0)
6868 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6869
6870 /*
6871 * Only 'replacing' or 'spare' vdevs can be replaced.
6872 */
6873 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6874 pvd->vdev_ops != &vdev_spare_ops)
6875 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6876
6877 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6878 spa_version(spa) >= SPA_VERSION_SPARES);
6879
6880 /*
6881 * Only mirror, replacing, and spare vdevs support detach.
6882 */
6883 if (pvd->vdev_ops != &vdev_replacing_ops &&
6884 pvd->vdev_ops != &vdev_mirror_ops &&
6885 pvd->vdev_ops != &vdev_spare_ops)
6886 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6887
6888 /*
6889 * If this device has the only valid copy of some data,
6890 * we cannot safely detach it.
6891 */
6892 if (vdev_dtl_required(vd))
6893 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6894
6895 ASSERT(pvd->vdev_children >= 2);
6896
6897 /*
6898 * If we are detaching the second disk from a replacing vdev, then
6899 * check to see if we changed the original vdev's path to have "/old"
6900 * at the end in spa_vdev_attach(). If so, undo that change now.
6901 */
6902 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6903 vd->vdev_path != NULL) {
6904 size_t len = strlen(vd->vdev_path);
6905
6906 for (int c = 0; c < pvd->vdev_children; c++) {
6907 cvd = pvd->vdev_child[c];
6908
6909 if (cvd == vd || cvd->vdev_path == NULL)
6910 continue;
6911
6912 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6913 strcmp(cvd->vdev_path + len, "/old") == 0) {
6914 spa_strfree(cvd->vdev_path);
6915 cvd->vdev_path = spa_strdup(vd->vdev_path);
6916 break;
6917 }
6918 }
6919 }
6920
6921 /*
6922 * If we are detaching the original disk from a spare, then it implies
6923 * that the spare should become a real disk, and be removed from the
6924 * active spare list for the pool.
6925 */
6926 if (pvd->vdev_ops == &vdev_spare_ops &&
6927 vd->vdev_id == 0 &&
6928 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6929 unspare = B_TRUE;
6930
6931 /*
6932 * Erase the disk labels so the disk can be used for other things.
6933 * This must be done after all other error cases are handled,
6934 * but before we disembowel vd (so we can still do I/O to it).
6935 * But if we can't do it, don't treat the error as fatal --
6936 * it may be that the unwritability of the disk is the reason
6937 * it's being detached!
6938 */
6939 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6940
6941 /*
6942 * Remove vd from its parent and compact the parent's children.
6943 */
6944 vdev_remove_child(pvd, vd);
6945 vdev_compact_children(pvd);
6946
6947 /*
6948 * Remember one of the remaining children so we can get tvd below.
6949 */
6950 cvd = pvd->vdev_child[pvd->vdev_children - 1];
6951
6952 /*
6953 * If we need to remove the remaining child from the list of hot spares,
6954 * do it now, marking the vdev as no longer a spare in the process.
6955 * We must do this before vdev_remove_parent(), because that can
6956 * change the GUID if it creates a new toplevel GUID. For a similar
6957 * reason, we must remove the spare now, in the same txg as the detach;
6958 * otherwise someone could attach a new sibling, change the GUID, and
6959 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6960 */
6961 if (unspare) {
6962 ASSERT(cvd->vdev_isspare);
6963 spa_spare_remove(cvd);
6964 unspare_guid = cvd->vdev_guid;
6965 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6966 cvd->vdev_unspare = B_TRUE;
6967 }
6968
6969 /*
6970 * If the parent mirror/replacing vdev only has one child,
6971 * the parent is no longer needed. Remove it from the tree.
6972 */
6973 if (pvd->vdev_children == 1) {
6974 if (pvd->vdev_ops == &vdev_spare_ops)
6975 cvd->vdev_unspare = B_FALSE;
6976 vdev_remove_parent(cvd);
6977 }
6978
6979 /*
6980 * We don't set tvd until now because the parent we just removed
6981 * may have been the previous top-level vdev.
6982 */
6983 tvd = cvd->vdev_top;
6984 ASSERT(tvd->vdev_parent == rvd);
6985
6986 /*
6987 * Reevaluate the parent vdev state.
6988 */
6989 vdev_propagate_state(cvd);
6990
6991 /*
6992 * If the 'autoexpand' property is set on the pool then automatically
6993 * try to expand the size of the pool. For example if the device we
6994 * just detached was smaller than the others, it may be possible to
6995 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6996 * first so that we can obtain the updated sizes of the leaf vdevs.
6997 */
6998 if (spa->spa_autoexpand) {
6999 vdev_reopen(tvd);
7000 vdev_expand(tvd, txg);
7001 }
7002
7003 vdev_config_dirty(tvd);
7004
7005 /*
7006 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7007 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7008 * But first make sure we're not on any *other* txg's DTL list, to
7009 * prevent vd from being accessed after it's freed.
7010 */
7011 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7012 for (int t = 0; t < TXG_SIZE; t++)
7013 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7014 vd->vdev_detached = B_TRUE;
7015 vdev_dirty(tvd, VDD_DTL, vd, txg);
7016
7017 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7018 spa_notify_waiters(spa);
7019
7020 /* hang on to the spa before we release the lock */
7021 spa_open_ref(spa, FTAG);
7022
7023 error = spa_vdev_exit(spa, vd, txg, 0);
7024
7025 spa_history_log_internal(spa, "detach", NULL,
7026 "vdev=%s", vdpath);
7027 spa_strfree(vdpath);
7028
7029 /*
7030 * If this was the removal of the original device in a hot spare vdev,
7031 * then we want to go through and remove the device from the hot spare
7032 * list of every other pool.
7033 */
7034 if (unspare) {
7035 spa_t *altspa = NULL;
7036
7037 mutex_enter(&spa_namespace_lock);
7038 while ((altspa = spa_next(altspa)) != NULL) {
7039 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7040 altspa == spa)
7041 continue;
7042
7043 spa_open_ref(altspa, FTAG);
7044 mutex_exit(&spa_namespace_lock);
7045 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7046 mutex_enter(&spa_namespace_lock);
7047 spa_close(altspa, FTAG);
7048 }
7049 mutex_exit(&spa_namespace_lock);
7050
7051 /* search the rest of the vdevs for spares to remove */
7052 spa_vdev_resilver_done(spa);
7053 }
7054
7055 /* all done with the spa; OK to release */
7056 mutex_enter(&spa_namespace_lock);
7057 spa_close(spa, FTAG);
7058 mutex_exit(&spa_namespace_lock);
7059
7060 return (error);
7061 }
7062
7063 static int
7064 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7065 list_t *vd_list)
7066 {
7067 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7068
7069 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7070
7071 /* Look up vdev and ensure it's a leaf. */
7072 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7073 if (vd == NULL || vd->vdev_detached) {
7074 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7075 return (SET_ERROR(ENODEV));
7076 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7077 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7078 return (SET_ERROR(EINVAL));
7079 } else if (!vdev_writeable(vd)) {
7080 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7081 return (SET_ERROR(EROFS));
7082 }
7083 mutex_enter(&vd->vdev_initialize_lock);
7084 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7085
7086 /*
7087 * When we activate an initialize action we check to see
7088 * if the vdev_initialize_thread is NULL. We do this instead
7089 * of using the vdev_initialize_state since there might be
7090 * a previous initialization process which has completed but
7091 * the thread is not exited.
7092 */
7093 if (cmd_type == POOL_INITIALIZE_START &&
7094 (vd->vdev_initialize_thread != NULL ||
7095 vd->vdev_top->vdev_removing)) {
7096 mutex_exit(&vd->vdev_initialize_lock);
7097 return (SET_ERROR(EBUSY));
7098 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7099 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7100 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7101 mutex_exit(&vd->vdev_initialize_lock);
7102 return (SET_ERROR(ESRCH));
7103 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7104 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7105 mutex_exit(&vd->vdev_initialize_lock);
7106 return (SET_ERROR(ESRCH));
7107 }
7108
7109 switch (cmd_type) {
7110 case POOL_INITIALIZE_START:
7111 vdev_initialize(vd);
7112 break;
7113 case POOL_INITIALIZE_CANCEL:
7114 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7115 break;
7116 case POOL_INITIALIZE_SUSPEND:
7117 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7118 break;
7119 default:
7120 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7121 }
7122 mutex_exit(&vd->vdev_initialize_lock);
7123
7124 return (0);
7125 }
7126
7127 int
7128 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7129 nvlist_t *vdev_errlist)
7130 {
7131 int total_errors = 0;
7132 list_t vd_list;
7133
7134 list_create(&vd_list, sizeof (vdev_t),
7135 offsetof(vdev_t, vdev_initialize_node));
7136
7137 /*
7138 * We hold the namespace lock through the whole function
7139 * to prevent any changes to the pool while we're starting or
7140 * stopping initialization. The config and state locks are held so that
7141 * we can properly assess the vdev state before we commit to
7142 * the initializing operation.
7143 */
7144 mutex_enter(&spa_namespace_lock);
7145
7146 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7147 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7148 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7149
7150 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7151 &vd_list);
7152 if (error != 0) {
7153 char guid_as_str[MAXNAMELEN];
7154
7155 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7156 "%llu", (unsigned long long)vdev_guid);
7157 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7158 total_errors++;
7159 }
7160 }
7161
7162 /* Wait for all initialize threads to stop. */
7163 vdev_initialize_stop_wait(spa, &vd_list);
7164
7165 /* Sync out the initializing state */
7166 txg_wait_synced(spa->spa_dsl_pool, 0);
7167 mutex_exit(&spa_namespace_lock);
7168
7169 list_destroy(&vd_list);
7170
7171 return (total_errors);
7172 }
7173
7174 static int
7175 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7176 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7177 {
7178 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7179
7180 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7181
7182 /* Look up vdev and ensure it's a leaf. */
7183 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7184 if (vd == NULL || vd->vdev_detached) {
7185 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7186 return (SET_ERROR(ENODEV));
7187 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7188 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7189 return (SET_ERROR(EINVAL));
7190 } else if (!vdev_writeable(vd)) {
7191 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7192 return (SET_ERROR(EROFS));
7193 } else if (!vd->vdev_has_trim) {
7194 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7195 return (SET_ERROR(EOPNOTSUPP));
7196 } else if (secure && !vd->vdev_has_securetrim) {
7197 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7198 return (SET_ERROR(EOPNOTSUPP));
7199 }
7200 mutex_enter(&vd->vdev_trim_lock);
7201 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7202
7203 /*
7204 * When we activate a TRIM action we check to see if the
7205 * vdev_trim_thread is NULL. We do this instead of using the
7206 * vdev_trim_state since there might be a previous TRIM process
7207 * which has completed but the thread is not exited.
7208 */
7209 if (cmd_type == POOL_TRIM_START &&
7210 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7211 mutex_exit(&vd->vdev_trim_lock);
7212 return (SET_ERROR(EBUSY));
7213 } else if (cmd_type == POOL_TRIM_CANCEL &&
7214 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7215 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7216 mutex_exit(&vd->vdev_trim_lock);
7217 return (SET_ERROR(ESRCH));
7218 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7219 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7220 mutex_exit(&vd->vdev_trim_lock);
7221 return (SET_ERROR(ESRCH));
7222 }
7223
7224 switch (cmd_type) {
7225 case POOL_TRIM_START:
7226 vdev_trim(vd, rate, partial, secure);
7227 break;
7228 case POOL_TRIM_CANCEL:
7229 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7230 break;
7231 case POOL_TRIM_SUSPEND:
7232 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7233 break;
7234 default:
7235 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7236 }
7237 mutex_exit(&vd->vdev_trim_lock);
7238
7239 return (0);
7240 }
7241
7242 /*
7243 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7244 * TRIM threads for each child vdev. These threads pass over all of the free
7245 * space in the vdev's metaslabs and issues TRIM commands for that space.
7246 */
7247 int
7248 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7249 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7250 {
7251 int total_errors = 0;
7252 list_t vd_list;
7253
7254 list_create(&vd_list, sizeof (vdev_t),
7255 offsetof(vdev_t, vdev_trim_node));
7256
7257 /*
7258 * We hold the namespace lock through the whole function
7259 * to prevent any changes to the pool while we're starting or
7260 * stopping TRIM. The config and state locks are held so that
7261 * we can properly assess the vdev state before we commit to
7262 * the TRIM operation.
7263 */
7264 mutex_enter(&spa_namespace_lock);
7265
7266 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7267 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7268 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7269
7270 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7271 rate, partial, secure, &vd_list);
7272 if (error != 0) {
7273 char guid_as_str[MAXNAMELEN];
7274
7275 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7276 "%llu", (unsigned long long)vdev_guid);
7277 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7278 total_errors++;
7279 }
7280 }
7281
7282 /* Wait for all TRIM threads to stop. */
7283 vdev_trim_stop_wait(spa, &vd_list);
7284
7285 /* Sync out the TRIM state */
7286 txg_wait_synced(spa->spa_dsl_pool, 0);
7287 mutex_exit(&spa_namespace_lock);
7288
7289 list_destroy(&vd_list);
7290
7291 return (total_errors);
7292 }
7293
7294 /*
7295 * Split a set of devices from their mirrors, and create a new pool from them.
7296 */
7297 int
7298 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7299 nvlist_t *props, boolean_t exp)
7300 {
7301 int error = 0;
7302 uint64_t txg, *glist;
7303 spa_t *newspa;
7304 uint_t c, children, lastlog;
7305 nvlist_t **child, *nvl, *tmp;
7306 dmu_tx_t *tx;
7307 char *altroot = NULL;
7308 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7309 boolean_t activate_slog;
7310
7311 ASSERT(spa_writeable(spa));
7312
7313 txg = spa_vdev_enter(spa);
7314
7315 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7316 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7317 error = (spa_has_checkpoint(spa)) ?
7318 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7319 return (spa_vdev_exit(spa, NULL, txg, error));
7320 }
7321
7322 /* clear the log and flush everything up to now */
7323 activate_slog = spa_passivate_log(spa);
7324 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7325 error = spa_reset_logs(spa);
7326 txg = spa_vdev_config_enter(spa);
7327
7328 if (activate_slog)
7329 spa_activate_log(spa);
7330
7331 if (error != 0)
7332 return (spa_vdev_exit(spa, NULL, txg, error));
7333
7334 /* check new spa name before going any further */
7335 if (spa_lookup(newname) != NULL)
7336 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7337
7338 /*
7339 * scan through all the children to ensure they're all mirrors
7340 */
7341 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7342 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7343 &children) != 0)
7344 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7345
7346 /* first, check to ensure we've got the right child count */
7347 rvd = spa->spa_root_vdev;
7348 lastlog = 0;
7349 for (c = 0; c < rvd->vdev_children; c++) {
7350 vdev_t *vd = rvd->vdev_child[c];
7351
7352 /* don't count the holes & logs as children */
7353 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7354 !vdev_is_concrete(vd))) {
7355 if (lastlog == 0)
7356 lastlog = c;
7357 continue;
7358 }
7359
7360 lastlog = 0;
7361 }
7362 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7363 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7364
7365 /* next, ensure no spare or cache devices are part of the split */
7366 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7367 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7368 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7369
7370 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7371 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7372
7373 /* then, loop over each vdev and validate it */
7374 for (c = 0; c < children; c++) {
7375 uint64_t is_hole = 0;
7376
7377 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7378 &is_hole);
7379
7380 if (is_hole != 0) {
7381 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7382 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7383 continue;
7384 } else {
7385 error = SET_ERROR(EINVAL);
7386 break;
7387 }
7388 }
7389
7390 /* deal with indirect vdevs */
7391 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7392 &vdev_indirect_ops)
7393 continue;
7394
7395 /* which disk is going to be split? */
7396 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7397 &glist[c]) != 0) {
7398 error = SET_ERROR(EINVAL);
7399 break;
7400 }
7401
7402 /* look it up in the spa */
7403 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7404 if (vml[c] == NULL) {
7405 error = SET_ERROR(ENODEV);
7406 break;
7407 }
7408
7409 /* make sure there's nothing stopping the split */
7410 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7411 vml[c]->vdev_islog ||
7412 !vdev_is_concrete(vml[c]) ||
7413 vml[c]->vdev_isspare ||
7414 vml[c]->vdev_isl2cache ||
7415 !vdev_writeable(vml[c]) ||
7416 vml[c]->vdev_children != 0 ||
7417 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7418 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7419 error = SET_ERROR(EINVAL);
7420 break;
7421 }
7422
7423 if (vdev_dtl_required(vml[c]) ||
7424 vdev_resilver_needed(vml[c], NULL, NULL)) {
7425 error = SET_ERROR(EBUSY);
7426 break;
7427 }
7428
7429 /* we need certain info from the top level */
7430 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7431 vml[c]->vdev_top->vdev_ms_array) == 0);
7432 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7433 vml[c]->vdev_top->vdev_ms_shift) == 0);
7434 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7435 vml[c]->vdev_top->vdev_asize) == 0);
7436 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7437 vml[c]->vdev_top->vdev_ashift) == 0);
7438
7439 /* transfer per-vdev ZAPs */
7440 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7441 VERIFY0(nvlist_add_uint64(child[c],
7442 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7443
7444 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7445 VERIFY0(nvlist_add_uint64(child[c],
7446 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7447 vml[c]->vdev_parent->vdev_top_zap));
7448 }
7449
7450 if (error != 0) {
7451 kmem_free(vml, children * sizeof (vdev_t *));
7452 kmem_free(glist, children * sizeof (uint64_t));
7453 return (spa_vdev_exit(spa, NULL, txg, error));
7454 }
7455
7456 /* stop writers from using the disks */
7457 for (c = 0; c < children; c++) {
7458 if (vml[c] != NULL)
7459 vml[c]->vdev_offline = B_TRUE;
7460 }
7461 vdev_reopen(spa->spa_root_vdev);
7462
7463 /*
7464 * Temporarily record the splitting vdevs in the spa config. This
7465 * will disappear once the config is regenerated.
7466 */
7467 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7468 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7469 glist, children) == 0);
7470 kmem_free(glist, children * sizeof (uint64_t));
7471
7472 mutex_enter(&spa->spa_props_lock);
7473 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7474 nvl) == 0);
7475 mutex_exit(&spa->spa_props_lock);
7476 spa->spa_config_splitting = nvl;
7477 vdev_config_dirty(spa->spa_root_vdev);
7478
7479 /* configure and create the new pool */
7480 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7481 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7482 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7483 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7484 spa_version(spa)) == 0);
7485 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7486 spa->spa_config_txg) == 0);
7487 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7488 spa_generate_guid(NULL)) == 0);
7489 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7490 (void) nvlist_lookup_string(props,
7491 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7492
7493 /* add the new pool to the namespace */
7494 newspa = spa_add(newname, config, altroot);
7495 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7496 newspa->spa_config_txg = spa->spa_config_txg;
7497 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7498
7499 /* release the spa config lock, retaining the namespace lock */
7500 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7501
7502 if (zio_injection_enabled)
7503 zio_handle_panic_injection(spa, FTAG, 1);
7504
7505 spa_activate(newspa, spa_mode_global);
7506 spa_async_suspend(newspa);
7507
7508 /*
7509 * Temporarily stop the initializing and TRIM activity. We set the
7510 * state to ACTIVE so that we know to resume initializing or TRIM
7511 * once the split has completed.
7512 */
7513 list_t vd_initialize_list;
7514 list_create(&vd_initialize_list, sizeof (vdev_t),
7515 offsetof(vdev_t, vdev_initialize_node));
7516
7517 list_t vd_trim_list;
7518 list_create(&vd_trim_list, sizeof (vdev_t),
7519 offsetof(vdev_t, vdev_trim_node));
7520
7521 for (c = 0; c < children; c++) {
7522 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7523 mutex_enter(&vml[c]->vdev_initialize_lock);
7524 vdev_initialize_stop(vml[c],
7525 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7526 mutex_exit(&vml[c]->vdev_initialize_lock);
7527
7528 mutex_enter(&vml[c]->vdev_trim_lock);
7529 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7530 mutex_exit(&vml[c]->vdev_trim_lock);
7531 }
7532 }
7533
7534 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7535 vdev_trim_stop_wait(spa, &vd_trim_list);
7536
7537 list_destroy(&vd_initialize_list);
7538 list_destroy(&vd_trim_list);
7539
7540 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7541 newspa->spa_is_splitting = B_TRUE;
7542
7543 /* create the new pool from the disks of the original pool */
7544 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7545 if (error)
7546 goto out;
7547
7548 /* if that worked, generate a real config for the new pool */
7549 if (newspa->spa_root_vdev != NULL) {
7550 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7551 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7552 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7553 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7554 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7555 B_TRUE));
7556 }
7557
7558 /* set the props */
7559 if (props != NULL) {
7560 spa_configfile_set(newspa, props, B_FALSE);
7561 error = spa_prop_set(newspa, props);
7562 if (error)
7563 goto out;
7564 }
7565
7566 /* flush everything */
7567 txg = spa_vdev_config_enter(newspa);
7568 vdev_config_dirty(newspa->spa_root_vdev);
7569 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7570
7571 if (zio_injection_enabled)
7572 zio_handle_panic_injection(spa, FTAG, 2);
7573
7574 spa_async_resume(newspa);
7575
7576 /* finally, update the original pool's config */
7577 txg = spa_vdev_config_enter(spa);
7578 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7579 error = dmu_tx_assign(tx, TXG_WAIT);
7580 if (error != 0)
7581 dmu_tx_abort(tx);
7582 for (c = 0; c < children; c++) {
7583 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7584 vdev_t *tvd = vml[c]->vdev_top;
7585
7586 /*
7587 * Need to be sure the detachable VDEV is not
7588 * on any *other* txg's DTL list to prevent it
7589 * from being accessed after it's freed.
7590 */
7591 for (int t = 0; t < TXG_SIZE; t++) {
7592 (void) txg_list_remove_this(
7593 &tvd->vdev_dtl_list, vml[c], t);
7594 }
7595
7596 vdev_split(vml[c]);
7597 if (error == 0)
7598 spa_history_log_internal(spa, "detach", tx,
7599 "vdev=%s", vml[c]->vdev_path);
7600
7601 vdev_free(vml[c]);
7602 }
7603 }
7604 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7605 vdev_config_dirty(spa->spa_root_vdev);
7606 spa->spa_config_splitting = NULL;
7607 nvlist_free(nvl);
7608 if (error == 0)
7609 dmu_tx_commit(tx);
7610 (void) spa_vdev_exit(spa, NULL, txg, 0);
7611
7612 if (zio_injection_enabled)
7613 zio_handle_panic_injection(spa, FTAG, 3);
7614
7615 /* split is complete; log a history record */
7616 spa_history_log_internal(newspa, "split", NULL,
7617 "from pool %s", spa_name(spa));
7618
7619 newspa->spa_is_splitting = B_FALSE;
7620 kmem_free(vml, children * sizeof (vdev_t *));
7621
7622 /* if we're not going to mount the filesystems in userland, export */
7623 if (exp)
7624 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7625 B_FALSE, B_FALSE);
7626
7627 return (error);
7628
7629 out:
7630 spa_unload(newspa);
7631 spa_deactivate(newspa);
7632 spa_remove(newspa);
7633
7634 txg = spa_vdev_config_enter(spa);
7635
7636 /* re-online all offlined disks */
7637 for (c = 0; c < children; c++) {
7638 if (vml[c] != NULL)
7639 vml[c]->vdev_offline = B_FALSE;
7640 }
7641
7642 /* restart initializing or trimming disks as necessary */
7643 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7644 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7645 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7646
7647 vdev_reopen(spa->spa_root_vdev);
7648
7649 nvlist_free(spa->spa_config_splitting);
7650 spa->spa_config_splitting = NULL;
7651 (void) spa_vdev_exit(spa, NULL, txg, error);
7652
7653 kmem_free(vml, children * sizeof (vdev_t *));
7654 return (error);
7655 }
7656
7657 /*
7658 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7659 * currently spared, so we can detach it.
7660 */
7661 static vdev_t *
7662 spa_vdev_resilver_done_hunt(vdev_t *vd)
7663 {
7664 vdev_t *newvd, *oldvd;
7665
7666 for (int c = 0; c < vd->vdev_children; c++) {
7667 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7668 if (oldvd != NULL)
7669 return (oldvd);
7670 }
7671
7672 /*
7673 * Check for a completed replacement. We always consider the first
7674 * vdev in the list to be the oldest vdev, and the last one to be
7675 * the newest (see spa_vdev_attach() for how that works). In
7676 * the case where the newest vdev is faulted, we will not automatically
7677 * remove it after a resilver completes. This is OK as it will require
7678 * user intervention to determine which disk the admin wishes to keep.
7679 */
7680 if (vd->vdev_ops == &vdev_replacing_ops) {
7681 ASSERT(vd->vdev_children > 1);
7682
7683 newvd = vd->vdev_child[vd->vdev_children - 1];
7684 oldvd = vd->vdev_child[0];
7685
7686 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7687 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7688 !vdev_dtl_required(oldvd))
7689 return (oldvd);
7690 }
7691
7692 /*
7693 * Check for a completed resilver with the 'unspare' flag set.
7694 * Also potentially update faulted state.
7695 */
7696 if (vd->vdev_ops == &vdev_spare_ops) {
7697 vdev_t *first = vd->vdev_child[0];
7698 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7699
7700 if (last->vdev_unspare) {
7701 oldvd = first;
7702 newvd = last;
7703 } else if (first->vdev_unspare) {
7704 oldvd = last;
7705 newvd = first;
7706 } else {
7707 oldvd = NULL;
7708 }
7709
7710 if (oldvd != NULL &&
7711 vdev_dtl_empty(newvd, DTL_MISSING) &&
7712 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7713 !vdev_dtl_required(oldvd))
7714 return (oldvd);
7715
7716 vdev_propagate_state(vd);
7717
7718 /*
7719 * If there are more than two spares attached to a disk,
7720 * and those spares are not required, then we want to
7721 * attempt to free them up now so that they can be used
7722 * by other pools. Once we're back down to a single
7723 * disk+spare, we stop removing them.
7724 */
7725 if (vd->vdev_children > 2) {
7726 newvd = vd->vdev_child[1];
7727
7728 if (newvd->vdev_isspare && last->vdev_isspare &&
7729 vdev_dtl_empty(last, DTL_MISSING) &&
7730 vdev_dtl_empty(last, DTL_OUTAGE) &&
7731 !vdev_dtl_required(newvd))
7732 return (newvd);
7733 }
7734 }
7735
7736 return (NULL);
7737 }
7738
7739 static void
7740 spa_vdev_resilver_done(spa_t *spa)
7741 {
7742 vdev_t *vd, *pvd, *ppvd;
7743 uint64_t guid, sguid, pguid, ppguid;
7744
7745 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7746
7747 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7748 pvd = vd->vdev_parent;
7749 ppvd = pvd->vdev_parent;
7750 guid = vd->vdev_guid;
7751 pguid = pvd->vdev_guid;
7752 ppguid = ppvd->vdev_guid;
7753 sguid = 0;
7754 /*
7755 * If we have just finished replacing a hot spared device, then
7756 * we need to detach the parent's first child (the original hot
7757 * spare) as well.
7758 */
7759 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7760 ppvd->vdev_children == 2) {
7761 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7762 sguid = ppvd->vdev_child[1]->vdev_guid;
7763 }
7764 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7765
7766 spa_config_exit(spa, SCL_ALL, FTAG);
7767 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7768 return;
7769 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7770 return;
7771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7772 }
7773
7774 spa_config_exit(spa, SCL_ALL, FTAG);
7775
7776 /*
7777 * If a detach was not performed above replace waiters will not have
7778 * been notified. In which case we must do so now.
7779 */
7780 spa_notify_waiters(spa);
7781 }
7782
7783 /*
7784 * Update the stored path or FRU for this vdev.
7785 */
7786 static int
7787 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7788 boolean_t ispath)
7789 {
7790 vdev_t *vd;
7791 boolean_t sync = B_FALSE;
7792
7793 ASSERT(spa_writeable(spa));
7794
7795 spa_vdev_state_enter(spa, SCL_ALL);
7796
7797 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7798 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7799
7800 if (!vd->vdev_ops->vdev_op_leaf)
7801 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7802
7803 if (ispath) {
7804 if (strcmp(value, vd->vdev_path) != 0) {
7805 spa_strfree(vd->vdev_path);
7806 vd->vdev_path = spa_strdup(value);
7807 sync = B_TRUE;
7808 }
7809 } else {
7810 if (vd->vdev_fru == NULL) {
7811 vd->vdev_fru = spa_strdup(value);
7812 sync = B_TRUE;
7813 } else if (strcmp(value, vd->vdev_fru) != 0) {
7814 spa_strfree(vd->vdev_fru);
7815 vd->vdev_fru = spa_strdup(value);
7816 sync = B_TRUE;
7817 }
7818 }
7819
7820 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7821 }
7822
7823 int
7824 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7825 {
7826 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7827 }
7828
7829 int
7830 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7831 {
7832 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7833 }
7834
7835 /*
7836 * ==========================================================================
7837 * SPA Scanning
7838 * ==========================================================================
7839 */
7840 int
7841 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7842 {
7843 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7844
7845 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7846 return (SET_ERROR(EBUSY));
7847
7848 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7849 }
7850
7851 int
7852 spa_scan_stop(spa_t *spa)
7853 {
7854 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7855 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7856 return (SET_ERROR(EBUSY));
7857 return (dsl_scan_cancel(spa->spa_dsl_pool));
7858 }
7859
7860 int
7861 spa_scan(spa_t *spa, pool_scan_func_t func)
7862 {
7863 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7864
7865 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7866 return (SET_ERROR(ENOTSUP));
7867
7868 if (func == POOL_SCAN_RESILVER &&
7869 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7870 return (SET_ERROR(ENOTSUP));
7871
7872 /*
7873 * If a resilver was requested, but there is no DTL on a
7874 * writeable leaf device, we have nothing to do.
7875 */
7876 if (func == POOL_SCAN_RESILVER &&
7877 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7878 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7879 return (0);
7880 }
7881
7882 return (dsl_scan(spa->spa_dsl_pool, func));
7883 }
7884
7885 /*
7886 * ==========================================================================
7887 * SPA async task processing
7888 * ==========================================================================
7889 */
7890
7891 static void
7892 spa_async_remove(spa_t *spa, vdev_t *vd)
7893 {
7894 if (vd->vdev_remove_wanted) {
7895 vd->vdev_remove_wanted = B_FALSE;
7896 vd->vdev_delayed_close = B_FALSE;
7897 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7898
7899 /*
7900 * We want to clear the stats, but we don't want to do a full
7901 * vdev_clear() as that will cause us to throw away
7902 * degraded/faulted state as well as attempt to reopen the
7903 * device, all of which is a waste.
7904 */
7905 vd->vdev_stat.vs_read_errors = 0;
7906 vd->vdev_stat.vs_write_errors = 0;
7907 vd->vdev_stat.vs_checksum_errors = 0;
7908
7909 vdev_state_dirty(vd->vdev_top);
7910 }
7911
7912 for (int c = 0; c < vd->vdev_children; c++)
7913 spa_async_remove(spa, vd->vdev_child[c]);
7914 }
7915
7916 static void
7917 spa_async_probe(spa_t *spa, vdev_t *vd)
7918 {
7919 if (vd->vdev_probe_wanted) {
7920 vd->vdev_probe_wanted = B_FALSE;
7921 vdev_reopen(vd); /* vdev_open() does the actual probe */
7922 }
7923
7924 for (int c = 0; c < vd->vdev_children; c++)
7925 spa_async_probe(spa, vd->vdev_child[c]);
7926 }
7927
7928 static void
7929 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7930 {
7931 if (!spa->spa_autoexpand)
7932 return;
7933
7934 for (int c = 0; c < vd->vdev_children; c++) {
7935 vdev_t *cvd = vd->vdev_child[c];
7936 spa_async_autoexpand(spa, cvd);
7937 }
7938
7939 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7940 return;
7941
7942 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
7943 }
7944
7945 static void
7946 spa_async_thread(void *arg)
7947 {
7948 spa_t *spa = (spa_t *)arg;
7949 dsl_pool_t *dp = spa->spa_dsl_pool;
7950 int tasks;
7951
7952 ASSERT(spa->spa_sync_on);
7953
7954 mutex_enter(&spa->spa_async_lock);
7955 tasks = spa->spa_async_tasks;
7956 spa->spa_async_tasks = 0;
7957 mutex_exit(&spa->spa_async_lock);
7958
7959 /*
7960 * See if the config needs to be updated.
7961 */
7962 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7963 uint64_t old_space, new_space;
7964
7965 mutex_enter(&spa_namespace_lock);
7966 old_space = metaslab_class_get_space(spa_normal_class(spa));
7967 old_space += metaslab_class_get_space(spa_special_class(spa));
7968 old_space += metaslab_class_get_space(spa_dedup_class(spa));
7969
7970 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7971
7972 new_space = metaslab_class_get_space(spa_normal_class(spa));
7973 new_space += metaslab_class_get_space(spa_special_class(spa));
7974 new_space += metaslab_class_get_space(spa_dedup_class(spa));
7975 mutex_exit(&spa_namespace_lock);
7976
7977 /*
7978 * If the pool grew as a result of the config update,
7979 * then log an internal history event.
7980 */
7981 if (new_space != old_space) {
7982 spa_history_log_internal(spa, "vdev online", NULL,
7983 "pool '%s' size: %llu(+%llu)",
7984 spa_name(spa), (u_longlong_t)new_space,
7985 (u_longlong_t)(new_space - old_space));
7986 }
7987 }
7988
7989 /*
7990 * See if any devices need to be marked REMOVED.
7991 */
7992 if (tasks & SPA_ASYNC_REMOVE) {
7993 spa_vdev_state_enter(spa, SCL_NONE);
7994 spa_async_remove(spa, spa->spa_root_vdev);
7995 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7996 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7997 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7998 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7999 (void) spa_vdev_state_exit(spa, NULL, 0);
8000 }
8001
8002 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8003 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8004 spa_async_autoexpand(spa, spa->spa_root_vdev);
8005 spa_config_exit(spa, SCL_CONFIG, FTAG);
8006 }
8007
8008 /*
8009 * See if any devices need to be probed.
8010 */
8011 if (tasks & SPA_ASYNC_PROBE) {
8012 spa_vdev_state_enter(spa, SCL_NONE);
8013 spa_async_probe(spa, spa->spa_root_vdev);
8014 (void) spa_vdev_state_exit(spa, NULL, 0);
8015 }
8016
8017 /*
8018 * If any devices are done replacing, detach them.
8019 */
8020 if (tasks & SPA_ASYNC_RESILVER_DONE)
8021 spa_vdev_resilver_done(spa);
8022
8023 /*
8024 * If any devices are done replacing, detach them. Then if no
8025 * top-level vdevs are rebuilding attempt to kick off a scrub.
8026 */
8027 if (tasks & SPA_ASYNC_REBUILD_DONE) {
8028 spa_vdev_resilver_done(spa);
8029
8030 if (!vdev_rebuild_active(spa->spa_root_vdev))
8031 (void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB);
8032 }
8033
8034 /*
8035 * Kick off a resilver.
8036 */
8037 if (tasks & SPA_ASYNC_RESILVER &&
8038 !vdev_rebuild_active(spa->spa_root_vdev) &&
8039 (!dsl_scan_resilvering(dp) ||
8040 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8041 dsl_scan_restart_resilver(dp, 0);
8042
8043 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8044 mutex_enter(&spa_namespace_lock);
8045 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8046 vdev_initialize_restart(spa->spa_root_vdev);
8047 spa_config_exit(spa, SCL_CONFIG, FTAG);
8048 mutex_exit(&spa_namespace_lock);
8049 }
8050
8051 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8052 mutex_enter(&spa_namespace_lock);
8053 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8054 vdev_trim_restart(spa->spa_root_vdev);
8055 spa_config_exit(spa, SCL_CONFIG, FTAG);
8056 mutex_exit(&spa_namespace_lock);
8057 }
8058
8059 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8060 mutex_enter(&spa_namespace_lock);
8061 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8062 vdev_autotrim_restart(spa);
8063 spa_config_exit(spa, SCL_CONFIG, FTAG);
8064 mutex_exit(&spa_namespace_lock);
8065 }
8066
8067 /*
8068 * Kick off L2 cache whole device TRIM.
8069 */
8070 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8071 mutex_enter(&spa_namespace_lock);
8072 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8073 vdev_trim_l2arc(spa);
8074 spa_config_exit(spa, SCL_CONFIG, FTAG);
8075 mutex_exit(&spa_namespace_lock);
8076 }
8077
8078 /*
8079 * Kick off L2 cache rebuilding.
8080 */
8081 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8082 mutex_enter(&spa_namespace_lock);
8083 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8084 l2arc_spa_rebuild_start(spa);
8085 spa_config_exit(spa, SCL_L2ARC, FTAG);
8086 mutex_exit(&spa_namespace_lock);
8087 }
8088
8089 /*
8090 * Let the world know that we're done.
8091 */
8092 mutex_enter(&spa->spa_async_lock);
8093 spa->spa_async_thread = NULL;
8094 cv_broadcast(&spa->spa_async_cv);
8095 mutex_exit(&spa->spa_async_lock);
8096 thread_exit();
8097 }
8098
8099 void
8100 spa_async_suspend(spa_t *spa)
8101 {
8102 mutex_enter(&spa->spa_async_lock);
8103 spa->spa_async_suspended++;
8104 while (spa->spa_async_thread != NULL)
8105 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8106 mutex_exit(&spa->spa_async_lock);
8107
8108 spa_vdev_remove_suspend(spa);
8109
8110 zthr_t *condense_thread = spa->spa_condense_zthr;
8111 if (condense_thread != NULL)
8112 zthr_cancel(condense_thread);
8113
8114 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8115 if (discard_thread != NULL)
8116 zthr_cancel(discard_thread);
8117
8118 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8119 if (ll_delete_thread != NULL)
8120 zthr_cancel(ll_delete_thread);
8121
8122 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8123 if (ll_condense_thread != NULL)
8124 zthr_cancel(ll_condense_thread);
8125 }
8126
8127 void
8128 spa_async_resume(spa_t *spa)
8129 {
8130 mutex_enter(&spa->spa_async_lock);
8131 ASSERT(spa->spa_async_suspended != 0);
8132 spa->spa_async_suspended--;
8133 mutex_exit(&spa->spa_async_lock);
8134 spa_restart_removal(spa);
8135
8136 zthr_t *condense_thread = spa->spa_condense_zthr;
8137 if (condense_thread != NULL)
8138 zthr_resume(condense_thread);
8139
8140 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8141 if (discard_thread != NULL)
8142 zthr_resume(discard_thread);
8143
8144 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8145 if (ll_delete_thread != NULL)
8146 zthr_resume(ll_delete_thread);
8147
8148 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8149 if (ll_condense_thread != NULL)
8150 zthr_resume(ll_condense_thread);
8151 }
8152
8153 static boolean_t
8154 spa_async_tasks_pending(spa_t *spa)
8155 {
8156 uint_t non_config_tasks;
8157 uint_t config_task;
8158 boolean_t config_task_suspended;
8159
8160 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8161 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8162 if (spa->spa_ccw_fail_time == 0) {
8163 config_task_suspended = B_FALSE;
8164 } else {
8165 config_task_suspended =
8166 (gethrtime() - spa->spa_ccw_fail_time) <
8167 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8168 }
8169
8170 return (non_config_tasks || (config_task && !config_task_suspended));
8171 }
8172
8173 static void
8174 spa_async_dispatch(spa_t *spa)
8175 {
8176 mutex_enter(&spa->spa_async_lock);
8177 if (spa_async_tasks_pending(spa) &&
8178 !spa->spa_async_suspended &&
8179 spa->spa_async_thread == NULL)
8180 spa->spa_async_thread = thread_create(NULL, 0,
8181 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8182 mutex_exit(&spa->spa_async_lock);
8183 }
8184
8185 void
8186 spa_async_request(spa_t *spa, int task)
8187 {
8188 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8189 mutex_enter(&spa->spa_async_lock);
8190 spa->spa_async_tasks |= task;
8191 mutex_exit(&spa->spa_async_lock);
8192 }
8193
8194 int
8195 spa_async_tasks(spa_t *spa)
8196 {
8197 return (spa->spa_async_tasks);
8198 }
8199
8200 /*
8201 * ==========================================================================
8202 * SPA syncing routines
8203 * ==========================================================================
8204 */
8205
8206
8207 static int
8208 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8209 dmu_tx_t *tx)
8210 {
8211 bpobj_t *bpo = arg;
8212 bpobj_enqueue(bpo, bp, bp_freed, tx);
8213 return (0);
8214 }
8215
8216 int
8217 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8218 {
8219 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8220 }
8221
8222 int
8223 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8224 {
8225 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8226 }
8227
8228 static int
8229 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8230 {
8231 zio_t *pio = arg;
8232
8233 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8234 pio->io_flags));
8235 return (0);
8236 }
8237
8238 static int
8239 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8240 dmu_tx_t *tx)
8241 {
8242 ASSERT(!bp_freed);
8243 return (spa_free_sync_cb(arg, bp, tx));
8244 }
8245
8246 /*
8247 * Note: this simple function is not inlined to make it easier to dtrace the
8248 * amount of time spent syncing frees.
8249 */
8250 static void
8251 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8252 {
8253 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8254 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8255 VERIFY(zio_wait(zio) == 0);
8256 }
8257
8258 /*
8259 * Note: this simple function is not inlined to make it easier to dtrace the
8260 * amount of time spent syncing deferred frees.
8261 */
8262 static void
8263 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8264 {
8265 if (spa_sync_pass(spa) != 1)
8266 return;
8267
8268 /*
8269 * Note:
8270 * If the log space map feature is active, we stop deferring
8271 * frees to the next TXG and therefore running this function
8272 * would be considered a no-op as spa_deferred_bpobj should
8273 * not have any entries.
8274 *
8275 * That said we run this function anyway (instead of returning
8276 * immediately) for the edge-case scenario where we just
8277 * activated the log space map feature in this TXG but we have
8278 * deferred frees from the previous TXG.
8279 */
8280 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8281 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8282 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8283 VERIFY0(zio_wait(zio));
8284 }
8285
8286 static void
8287 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8288 {
8289 char *packed = NULL;
8290 size_t bufsize;
8291 size_t nvsize = 0;
8292 dmu_buf_t *db;
8293
8294 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8295
8296 /*
8297 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8298 * information. This avoids the dmu_buf_will_dirty() path and
8299 * saves us a pre-read to get data we don't actually care about.
8300 */
8301 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8302 packed = vmem_alloc(bufsize, KM_SLEEP);
8303
8304 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8305 KM_SLEEP) == 0);
8306 bzero(packed + nvsize, bufsize - nvsize);
8307
8308 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8309
8310 vmem_free(packed, bufsize);
8311
8312 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8313 dmu_buf_will_dirty(db, tx);
8314 *(uint64_t *)db->db_data = nvsize;
8315 dmu_buf_rele(db, FTAG);
8316 }
8317
8318 static void
8319 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8320 const char *config, const char *entry)
8321 {
8322 nvlist_t *nvroot;
8323 nvlist_t **list;
8324 int i;
8325
8326 if (!sav->sav_sync)
8327 return;
8328
8329 /*
8330 * Update the MOS nvlist describing the list of available devices.
8331 * spa_validate_aux() will have already made sure this nvlist is
8332 * valid and the vdevs are labeled appropriately.
8333 */
8334 if (sav->sav_object == 0) {
8335 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8336 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8337 sizeof (uint64_t), tx);
8338 VERIFY(zap_update(spa->spa_meta_objset,
8339 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8340 &sav->sav_object, tx) == 0);
8341 }
8342
8343 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8344 if (sav->sav_count == 0) {
8345 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8346 } else {
8347 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8348 for (i = 0; i < sav->sav_count; i++)
8349 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8350 B_FALSE, VDEV_CONFIG_L2CACHE);
8351 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8352 sav->sav_count) == 0);
8353 for (i = 0; i < sav->sav_count; i++)
8354 nvlist_free(list[i]);
8355 kmem_free(list, sav->sav_count * sizeof (void *));
8356 }
8357
8358 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8359 nvlist_free(nvroot);
8360
8361 sav->sav_sync = B_FALSE;
8362 }
8363
8364 /*
8365 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8366 * The all-vdev ZAP must be empty.
8367 */
8368 static void
8369 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8370 {
8371 spa_t *spa = vd->vdev_spa;
8372
8373 if (vd->vdev_top_zap != 0) {
8374 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8375 vd->vdev_top_zap, tx));
8376 }
8377 if (vd->vdev_leaf_zap != 0) {
8378 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8379 vd->vdev_leaf_zap, tx));
8380 }
8381 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8382 spa_avz_build(vd->vdev_child[i], avz, tx);
8383 }
8384 }
8385
8386 static void
8387 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8388 {
8389 nvlist_t *config;
8390
8391 /*
8392 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8393 * its config may not be dirty but we still need to build per-vdev ZAPs.
8394 * Similarly, if the pool is being assembled (e.g. after a split), we
8395 * need to rebuild the AVZ although the config may not be dirty.
8396 */
8397 if (list_is_empty(&spa->spa_config_dirty_list) &&
8398 spa->spa_avz_action == AVZ_ACTION_NONE)
8399 return;
8400
8401 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8402
8403 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8404 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8405 spa->spa_all_vdev_zaps != 0);
8406
8407 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8408 /* Make and build the new AVZ */
8409 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8410 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8411 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8412
8413 /* Diff old AVZ with new one */
8414 zap_cursor_t zc;
8415 zap_attribute_t za;
8416
8417 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8418 spa->spa_all_vdev_zaps);
8419 zap_cursor_retrieve(&zc, &za) == 0;
8420 zap_cursor_advance(&zc)) {
8421 uint64_t vdzap = za.za_first_integer;
8422 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8423 vdzap) == ENOENT) {
8424 /*
8425 * ZAP is listed in old AVZ but not in new one;
8426 * destroy it
8427 */
8428 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8429 tx));
8430 }
8431 }
8432
8433 zap_cursor_fini(&zc);
8434
8435 /* Destroy the old AVZ */
8436 VERIFY0(zap_destroy(spa->spa_meta_objset,
8437 spa->spa_all_vdev_zaps, tx));
8438
8439 /* Replace the old AVZ in the dir obj with the new one */
8440 VERIFY0(zap_update(spa->spa_meta_objset,
8441 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8442 sizeof (new_avz), 1, &new_avz, tx));
8443
8444 spa->spa_all_vdev_zaps = new_avz;
8445 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8446 zap_cursor_t zc;
8447 zap_attribute_t za;
8448
8449 /* Walk through the AVZ and destroy all listed ZAPs */
8450 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8451 spa->spa_all_vdev_zaps);
8452 zap_cursor_retrieve(&zc, &za) == 0;
8453 zap_cursor_advance(&zc)) {
8454 uint64_t zap = za.za_first_integer;
8455 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8456 }
8457
8458 zap_cursor_fini(&zc);
8459
8460 /* Destroy and unlink the AVZ itself */
8461 VERIFY0(zap_destroy(spa->spa_meta_objset,
8462 spa->spa_all_vdev_zaps, tx));
8463 VERIFY0(zap_remove(spa->spa_meta_objset,
8464 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8465 spa->spa_all_vdev_zaps = 0;
8466 }
8467
8468 if (spa->spa_all_vdev_zaps == 0) {
8469 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8470 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8471 DMU_POOL_VDEV_ZAP_MAP, tx);
8472 }
8473 spa->spa_avz_action = AVZ_ACTION_NONE;
8474
8475 /* Create ZAPs for vdevs that don't have them. */
8476 vdev_construct_zaps(spa->spa_root_vdev, tx);
8477
8478 config = spa_config_generate(spa, spa->spa_root_vdev,
8479 dmu_tx_get_txg(tx), B_FALSE);
8480
8481 /*
8482 * If we're upgrading the spa version then make sure that
8483 * the config object gets updated with the correct version.
8484 */
8485 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8486 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8487 spa->spa_uberblock.ub_version);
8488
8489 spa_config_exit(spa, SCL_STATE, FTAG);
8490
8491 nvlist_free(spa->spa_config_syncing);
8492 spa->spa_config_syncing = config;
8493
8494 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8495 }
8496
8497 static void
8498 spa_sync_version(void *arg, dmu_tx_t *tx)
8499 {
8500 uint64_t *versionp = arg;
8501 uint64_t version = *versionp;
8502 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8503
8504 /*
8505 * Setting the version is special cased when first creating the pool.
8506 */
8507 ASSERT(tx->tx_txg != TXG_INITIAL);
8508
8509 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8510 ASSERT(version >= spa_version(spa));
8511
8512 spa->spa_uberblock.ub_version = version;
8513 vdev_config_dirty(spa->spa_root_vdev);
8514 spa_history_log_internal(spa, "set", tx, "version=%lld",
8515 (longlong_t)version);
8516 }
8517
8518 /*
8519 * Set zpool properties.
8520 */
8521 static void
8522 spa_sync_props(void *arg, dmu_tx_t *tx)
8523 {
8524 nvlist_t *nvp = arg;
8525 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8526 objset_t *mos = spa->spa_meta_objset;
8527 nvpair_t *elem = NULL;
8528
8529 mutex_enter(&spa->spa_props_lock);
8530
8531 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8532 uint64_t intval;
8533 char *strval, *fname;
8534 zpool_prop_t prop;
8535 const char *propname;
8536 zprop_type_t proptype;
8537 spa_feature_t fid;
8538
8539 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8540 case ZPOOL_PROP_INVAL:
8541 /*
8542 * We checked this earlier in spa_prop_validate().
8543 */
8544 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8545
8546 fname = strchr(nvpair_name(elem), '@') + 1;
8547 VERIFY0(zfeature_lookup_name(fname, &fid));
8548
8549 spa_feature_enable(spa, fid, tx);
8550 spa_history_log_internal(spa, "set", tx,
8551 "%s=enabled", nvpair_name(elem));
8552 break;
8553
8554 case ZPOOL_PROP_VERSION:
8555 intval = fnvpair_value_uint64(elem);
8556 /*
8557 * The version is synced separately before other
8558 * properties and should be correct by now.
8559 */
8560 ASSERT3U(spa_version(spa), >=, intval);
8561 break;
8562
8563 case ZPOOL_PROP_ALTROOT:
8564 /*
8565 * 'altroot' is a non-persistent property. It should
8566 * have been set temporarily at creation or import time.
8567 */
8568 ASSERT(spa->spa_root != NULL);
8569 break;
8570
8571 case ZPOOL_PROP_READONLY:
8572 case ZPOOL_PROP_CACHEFILE:
8573 /*
8574 * 'readonly' and 'cachefile' are also non-persistent
8575 * properties.
8576 */
8577 break;
8578 case ZPOOL_PROP_COMMENT:
8579 strval = fnvpair_value_string(elem);
8580 if (spa->spa_comment != NULL)
8581 spa_strfree(spa->spa_comment);
8582 spa->spa_comment = spa_strdup(strval);
8583 /*
8584 * We need to dirty the configuration on all the vdevs
8585 * so that their labels get updated. It's unnecessary
8586 * to do this for pool creation since the vdev's
8587 * configuration has already been dirtied.
8588 */
8589 if (tx->tx_txg != TXG_INITIAL)
8590 vdev_config_dirty(spa->spa_root_vdev);
8591 spa_history_log_internal(spa, "set", tx,
8592 "%s=%s", nvpair_name(elem), strval);
8593 break;
8594 default:
8595 /*
8596 * Set pool property values in the poolprops mos object.
8597 */
8598 if (spa->spa_pool_props_object == 0) {
8599 spa->spa_pool_props_object =
8600 zap_create_link(mos, DMU_OT_POOL_PROPS,
8601 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8602 tx);
8603 }
8604
8605 /* normalize the property name */
8606 propname = zpool_prop_to_name(prop);
8607 proptype = zpool_prop_get_type(prop);
8608
8609 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8610 ASSERT(proptype == PROP_TYPE_STRING);
8611 strval = fnvpair_value_string(elem);
8612 VERIFY0(zap_update(mos,
8613 spa->spa_pool_props_object, propname,
8614 1, strlen(strval) + 1, strval, tx));
8615 spa_history_log_internal(spa, "set", tx,
8616 "%s=%s", nvpair_name(elem), strval);
8617 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8618 intval = fnvpair_value_uint64(elem);
8619
8620 if (proptype == PROP_TYPE_INDEX) {
8621 const char *unused;
8622 VERIFY0(zpool_prop_index_to_string(
8623 prop, intval, &unused));
8624 }
8625 VERIFY0(zap_update(mos,
8626 spa->spa_pool_props_object, propname,
8627 8, 1, &intval, tx));
8628 spa_history_log_internal(spa, "set", tx,
8629 "%s=%lld", nvpair_name(elem),
8630 (longlong_t)intval);
8631 } else {
8632 ASSERT(0); /* not allowed */
8633 }
8634
8635 switch (prop) {
8636 case ZPOOL_PROP_DELEGATION:
8637 spa->spa_delegation = intval;
8638 break;
8639 case ZPOOL_PROP_BOOTFS:
8640 spa->spa_bootfs = intval;
8641 break;
8642 case ZPOOL_PROP_FAILUREMODE:
8643 spa->spa_failmode = intval;
8644 break;
8645 case ZPOOL_PROP_AUTOTRIM:
8646 spa->spa_autotrim = intval;
8647 spa_async_request(spa,
8648 SPA_ASYNC_AUTOTRIM_RESTART);
8649 break;
8650 case ZPOOL_PROP_AUTOEXPAND:
8651 spa->spa_autoexpand = intval;
8652 if (tx->tx_txg != TXG_INITIAL)
8653 spa_async_request(spa,
8654 SPA_ASYNC_AUTOEXPAND);
8655 break;
8656 case ZPOOL_PROP_MULTIHOST:
8657 spa->spa_multihost = intval;
8658 break;
8659 default:
8660 break;
8661 }
8662 }
8663
8664 }
8665
8666 mutex_exit(&spa->spa_props_lock);
8667 }
8668
8669 /*
8670 * Perform one-time upgrade on-disk changes. spa_version() does not
8671 * reflect the new version this txg, so there must be no changes this
8672 * txg to anything that the upgrade code depends on after it executes.
8673 * Therefore this must be called after dsl_pool_sync() does the sync
8674 * tasks.
8675 */
8676 static void
8677 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8678 {
8679 if (spa_sync_pass(spa) != 1)
8680 return;
8681
8682 dsl_pool_t *dp = spa->spa_dsl_pool;
8683 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8684
8685 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8686 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8687 dsl_pool_create_origin(dp, tx);
8688
8689 /* Keeping the origin open increases spa_minref */
8690 spa->spa_minref += 3;
8691 }
8692
8693 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8694 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8695 dsl_pool_upgrade_clones(dp, tx);
8696 }
8697
8698 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8699 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8700 dsl_pool_upgrade_dir_clones(dp, tx);
8701
8702 /* Keeping the freedir open increases spa_minref */
8703 spa->spa_minref += 3;
8704 }
8705
8706 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8707 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8708 spa_feature_create_zap_objects(spa, tx);
8709 }
8710
8711 /*
8712 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8713 * when possibility to use lz4 compression for metadata was added
8714 * Old pools that have this feature enabled must be upgraded to have
8715 * this feature active
8716 */
8717 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8718 boolean_t lz4_en = spa_feature_is_enabled(spa,
8719 SPA_FEATURE_LZ4_COMPRESS);
8720 boolean_t lz4_ac = spa_feature_is_active(spa,
8721 SPA_FEATURE_LZ4_COMPRESS);
8722
8723 if (lz4_en && !lz4_ac)
8724 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8725 }
8726
8727 /*
8728 * If we haven't written the salt, do so now. Note that the
8729 * feature may not be activated yet, but that's fine since
8730 * the presence of this ZAP entry is backwards compatible.
8731 */
8732 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8733 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8734 VERIFY0(zap_add(spa->spa_meta_objset,
8735 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8736 sizeof (spa->spa_cksum_salt.zcs_bytes),
8737 spa->spa_cksum_salt.zcs_bytes, tx));
8738 }
8739
8740 rrw_exit(&dp->dp_config_rwlock, FTAG);
8741 }
8742
8743 static void
8744 vdev_indirect_state_sync_verify(vdev_t *vd)
8745 {
8746 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8747 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8748
8749 if (vd->vdev_ops == &vdev_indirect_ops) {
8750 ASSERT(vim != NULL);
8751 ASSERT(vib != NULL);
8752 }
8753
8754 uint64_t obsolete_sm_object = 0;
8755 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8756 if (obsolete_sm_object != 0) {
8757 ASSERT(vd->vdev_obsolete_sm != NULL);
8758 ASSERT(vd->vdev_removing ||
8759 vd->vdev_ops == &vdev_indirect_ops);
8760 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8761 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8762 ASSERT3U(obsolete_sm_object, ==,
8763 space_map_object(vd->vdev_obsolete_sm));
8764 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8765 space_map_allocated(vd->vdev_obsolete_sm));
8766 }
8767 ASSERT(vd->vdev_obsolete_segments != NULL);
8768
8769 /*
8770 * Since frees / remaps to an indirect vdev can only
8771 * happen in syncing context, the obsolete segments
8772 * tree must be empty when we start syncing.
8773 */
8774 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8775 }
8776
8777 /*
8778 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8779 * async write queue depth in case it changed. The max queue depth will
8780 * not change in the middle of syncing out this txg.
8781 */
8782 static void
8783 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8784 {
8785 ASSERT(spa_writeable(spa));
8786
8787 vdev_t *rvd = spa->spa_root_vdev;
8788 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8789 zfs_vdev_queue_depth_pct / 100;
8790 metaslab_class_t *normal = spa_normal_class(spa);
8791 metaslab_class_t *special = spa_special_class(spa);
8792 metaslab_class_t *dedup = spa_dedup_class(spa);
8793
8794 uint64_t slots_per_allocator = 0;
8795 for (int c = 0; c < rvd->vdev_children; c++) {
8796 vdev_t *tvd = rvd->vdev_child[c];
8797
8798 metaslab_group_t *mg = tvd->vdev_mg;
8799 if (mg == NULL || !metaslab_group_initialized(mg))
8800 continue;
8801
8802 metaslab_class_t *mc = mg->mg_class;
8803 if (mc != normal && mc != special && mc != dedup)
8804 continue;
8805
8806 /*
8807 * It is safe to do a lock-free check here because only async
8808 * allocations look at mg_max_alloc_queue_depth, and async
8809 * allocations all happen from spa_sync().
8810 */
8811 for (int i = 0; i < mg->mg_allocators; i++) {
8812 ASSERT0(zfs_refcount_count(
8813 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8814 }
8815 mg->mg_max_alloc_queue_depth = max_queue_depth;
8816
8817 for (int i = 0; i < mg->mg_allocators; i++) {
8818 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8819 zfs_vdev_def_queue_depth;
8820 }
8821 slots_per_allocator += zfs_vdev_def_queue_depth;
8822 }
8823
8824 for (int i = 0; i < spa->spa_alloc_count; i++) {
8825 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8826 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8827 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8828 normal->mc_alloc_max_slots[i] = slots_per_allocator;
8829 special->mc_alloc_max_slots[i] = slots_per_allocator;
8830 dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8831 }
8832 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8833 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8834 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8835 }
8836
8837 static void
8838 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8839 {
8840 ASSERT(spa_writeable(spa));
8841
8842 vdev_t *rvd = spa->spa_root_vdev;
8843 for (int c = 0; c < rvd->vdev_children; c++) {
8844 vdev_t *vd = rvd->vdev_child[c];
8845 vdev_indirect_state_sync_verify(vd);
8846
8847 if (vdev_indirect_should_condense(vd)) {
8848 spa_condense_indirect_start_sync(vd, tx);
8849 break;
8850 }
8851 }
8852 }
8853
8854 static void
8855 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8856 {
8857 objset_t *mos = spa->spa_meta_objset;
8858 dsl_pool_t *dp = spa->spa_dsl_pool;
8859 uint64_t txg = tx->tx_txg;
8860 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8861
8862 do {
8863 int pass = ++spa->spa_sync_pass;
8864
8865 spa_sync_config_object(spa, tx);
8866 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8867 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8868 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8869 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8870 spa_errlog_sync(spa, txg);
8871 dsl_pool_sync(dp, txg);
8872
8873 if (pass < zfs_sync_pass_deferred_free ||
8874 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8875 /*
8876 * If the log space map feature is active we don't
8877 * care about deferred frees and the deferred bpobj
8878 * as the log space map should effectively have the
8879 * same results (i.e. appending only to one object).
8880 */
8881 spa_sync_frees(spa, free_bpl, tx);
8882 } else {
8883 /*
8884 * We can not defer frees in pass 1, because
8885 * we sync the deferred frees later in pass 1.
8886 */
8887 ASSERT3U(pass, >, 1);
8888 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
8889 &spa->spa_deferred_bpobj, tx);
8890 }
8891
8892 ddt_sync(spa, txg);
8893 dsl_scan_sync(dp, tx);
8894 svr_sync(spa, tx);
8895 spa_sync_upgrades(spa, tx);
8896
8897 spa_flush_metaslabs(spa, tx);
8898
8899 vdev_t *vd = NULL;
8900 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8901 != NULL)
8902 vdev_sync(vd, txg);
8903
8904 /*
8905 * Note: We need to check if the MOS is dirty because we could
8906 * have marked the MOS dirty without updating the uberblock
8907 * (e.g. if we have sync tasks but no dirty user data). We need
8908 * to check the uberblock's rootbp because it is updated if we
8909 * have synced out dirty data (though in this case the MOS will
8910 * most likely also be dirty due to second order effects, we
8911 * don't want to rely on that here).
8912 */
8913 if (pass == 1 &&
8914 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8915 !dmu_objset_is_dirty(mos, txg)) {
8916 /*
8917 * Nothing changed on the first pass, therefore this
8918 * TXG is a no-op. Avoid syncing deferred frees, so
8919 * that we can keep this TXG as a no-op.
8920 */
8921 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8922 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8923 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8924 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8925 break;
8926 }
8927
8928 spa_sync_deferred_frees(spa, tx);
8929 } while (dmu_objset_is_dirty(mos, txg));
8930 }
8931
8932 /*
8933 * Rewrite the vdev configuration (which includes the uberblock) to
8934 * commit the transaction group.
8935 *
8936 * If there are no dirty vdevs, we sync the uberblock to a few random
8937 * top-level vdevs that are known to be visible in the config cache
8938 * (see spa_vdev_add() for a complete description). If there *are* dirty
8939 * vdevs, sync the uberblock to all vdevs.
8940 */
8941 static void
8942 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8943 {
8944 vdev_t *rvd = spa->spa_root_vdev;
8945 uint64_t txg = tx->tx_txg;
8946
8947 for (;;) {
8948 int error = 0;
8949
8950 /*
8951 * We hold SCL_STATE to prevent vdev open/close/etc.
8952 * while we're attempting to write the vdev labels.
8953 */
8954 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8955
8956 if (list_is_empty(&spa->spa_config_dirty_list)) {
8957 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8958 int svdcount = 0;
8959 int children = rvd->vdev_children;
8960 int c0 = spa_get_random(children);
8961
8962 for (int c = 0; c < children; c++) {
8963 vdev_t *vd =
8964 rvd->vdev_child[(c0 + c) % children];
8965
8966 /* Stop when revisiting the first vdev */
8967 if (c > 0 && svd[0] == vd)
8968 break;
8969
8970 if (vd->vdev_ms_array == 0 ||
8971 vd->vdev_islog ||
8972 !vdev_is_concrete(vd))
8973 continue;
8974
8975 svd[svdcount++] = vd;
8976 if (svdcount == SPA_SYNC_MIN_VDEVS)
8977 break;
8978 }
8979 error = vdev_config_sync(svd, svdcount, txg);
8980 } else {
8981 error = vdev_config_sync(rvd->vdev_child,
8982 rvd->vdev_children, txg);
8983 }
8984
8985 if (error == 0)
8986 spa->spa_last_synced_guid = rvd->vdev_guid;
8987
8988 spa_config_exit(spa, SCL_STATE, FTAG);
8989
8990 if (error == 0)
8991 break;
8992 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8993 zio_resume_wait(spa);
8994 }
8995 }
8996
8997 /*
8998 * Sync the specified transaction group. New blocks may be dirtied as
8999 * part of the process, so we iterate until it converges.
9000 */
9001 void
9002 spa_sync(spa_t *spa, uint64_t txg)
9003 {
9004 vdev_t *vd = NULL;
9005
9006 VERIFY(spa_writeable(spa));
9007
9008 /*
9009 * Wait for i/os issued in open context that need to complete
9010 * before this txg syncs.
9011 */
9012 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9013 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9014 ZIO_FLAG_CANFAIL);
9015
9016 /*
9017 * Lock out configuration changes.
9018 */
9019 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9020
9021 spa->spa_syncing_txg = txg;
9022 spa->spa_sync_pass = 0;
9023
9024 for (int i = 0; i < spa->spa_alloc_count; i++) {
9025 mutex_enter(&spa->spa_alloc_locks[i]);
9026 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9027 mutex_exit(&spa->spa_alloc_locks[i]);
9028 }
9029
9030 /*
9031 * If there are any pending vdev state changes, convert them
9032 * into config changes that go out with this transaction group.
9033 */
9034 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9035 while (list_head(&spa->spa_state_dirty_list) != NULL) {
9036 /*
9037 * We need the write lock here because, for aux vdevs,
9038 * calling vdev_config_dirty() modifies sav_config.
9039 * This is ugly and will become unnecessary when we
9040 * eliminate the aux vdev wart by integrating all vdevs
9041 * into the root vdev tree.
9042 */
9043 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9044 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9045 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9046 vdev_state_clean(vd);
9047 vdev_config_dirty(vd);
9048 }
9049 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9050 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9051 }
9052 spa_config_exit(spa, SCL_STATE, FTAG);
9053
9054 dsl_pool_t *dp = spa->spa_dsl_pool;
9055 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9056
9057 spa->spa_sync_starttime = gethrtime();
9058 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9059 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9060 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9061 NSEC_TO_TICK(spa->spa_deadman_synctime));
9062
9063 /*
9064 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9065 * set spa_deflate if we have no raid-z vdevs.
9066 */
9067 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9068 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9069 vdev_t *rvd = spa->spa_root_vdev;
9070
9071 int i;
9072 for (i = 0; i < rvd->vdev_children; i++) {
9073 vd = rvd->vdev_child[i];
9074 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9075 break;
9076 }
9077 if (i == rvd->vdev_children) {
9078 spa->spa_deflate = TRUE;
9079 VERIFY0(zap_add(spa->spa_meta_objset,
9080 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9081 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9082 }
9083 }
9084
9085 spa_sync_adjust_vdev_max_queue_depth(spa);
9086
9087 spa_sync_condense_indirect(spa, tx);
9088
9089 spa_sync_iterate_to_convergence(spa, tx);
9090
9091 #ifdef ZFS_DEBUG
9092 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9093 /*
9094 * Make sure that the number of ZAPs for all the vdevs matches
9095 * the number of ZAPs in the per-vdev ZAP list. This only gets
9096 * called if the config is dirty; otherwise there may be
9097 * outstanding AVZ operations that weren't completed in
9098 * spa_sync_config_object.
9099 */
9100 uint64_t all_vdev_zap_entry_count;
9101 ASSERT0(zap_count(spa->spa_meta_objset,
9102 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9103 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9104 all_vdev_zap_entry_count);
9105 }
9106 #endif
9107
9108 if (spa->spa_vdev_removal != NULL) {
9109 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9110 }
9111
9112 spa_sync_rewrite_vdev_config(spa, tx);
9113 dmu_tx_commit(tx);
9114
9115 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9116 spa->spa_deadman_tqid = 0;
9117
9118 /*
9119 * Clear the dirty config list.
9120 */
9121 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9122 vdev_config_clean(vd);
9123
9124 /*
9125 * Now that the new config has synced transactionally,
9126 * let it become visible to the config cache.
9127 */
9128 if (spa->spa_config_syncing != NULL) {
9129 spa_config_set(spa, spa->spa_config_syncing);
9130 spa->spa_config_txg = txg;
9131 spa->spa_config_syncing = NULL;
9132 }
9133
9134 dsl_pool_sync_done(dp, txg);
9135
9136 for (int i = 0; i < spa->spa_alloc_count; i++) {
9137 mutex_enter(&spa->spa_alloc_locks[i]);
9138 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9139 mutex_exit(&spa->spa_alloc_locks[i]);
9140 }
9141
9142 /*
9143 * Update usable space statistics.
9144 */
9145 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9146 != NULL)
9147 vdev_sync_done(vd, txg);
9148
9149 metaslab_class_evict_old(spa->spa_normal_class, txg);
9150 metaslab_class_evict_old(spa->spa_log_class, txg);
9151
9152 spa_sync_close_syncing_log_sm(spa);
9153
9154 spa_update_dspace(spa);
9155
9156 /*
9157 * It had better be the case that we didn't dirty anything
9158 * since vdev_config_sync().
9159 */
9160 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9161 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9162 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9163
9164 while (zfs_pause_spa_sync)
9165 delay(1);
9166
9167 spa->spa_sync_pass = 0;
9168
9169 /*
9170 * Update the last synced uberblock here. We want to do this at
9171 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9172 * will be guaranteed that all the processing associated with
9173 * that txg has been completed.
9174 */
9175 spa->spa_ubsync = spa->spa_uberblock;
9176 spa_config_exit(spa, SCL_CONFIG, FTAG);
9177
9178 spa_handle_ignored_writes(spa);
9179
9180 /*
9181 * If any async tasks have been requested, kick them off.
9182 */
9183 spa_async_dispatch(spa);
9184 }
9185
9186 /*
9187 * Sync all pools. We don't want to hold the namespace lock across these
9188 * operations, so we take a reference on the spa_t and drop the lock during the
9189 * sync.
9190 */
9191 void
9192 spa_sync_allpools(void)
9193 {
9194 spa_t *spa = NULL;
9195 mutex_enter(&spa_namespace_lock);
9196 while ((spa = spa_next(spa)) != NULL) {
9197 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9198 !spa_writeable(spa) || spa_suspended(spa))
9199 continue;
9200 spa_open_ref(spa, FTAG);
9201 mutex_exit(&spa_namespace_lock);
9202 txg_wait_synced(spa_get_dsl(spa), 0);
9203 mutex_enter(&spa_namespace_lock);
9204 spa_close(spa, FTAG);
9205 }
9206 mutex_exit(&spa_namespace_lock);
9207 }
9208
9209 /*
9210 * ==========================================================================
9211 * Miscellaneous routines
9212 * ==========================================================================
9213 */
9214
9215 /*
9216 * Remove all pools in the system.
9217 */
9218 void
9219 spa_evict_all(void)
9220 {
9221 spa_t *spa;
9222
9223 /*
9224 * Remove all cached state. All pools should be closed now,
9225 * so every spa in the AVL tree should be unreferenced.
9226 */
9227 mutex_enter(&spa_namespace_lock);
9228 while ((spa = spa_next(NULL)) != NULL) {
9229 /*
9230 * Stop async tasks. The async thread may need to detach
9231 * a device that's been replaced, which requires grabbing
9232 * spa_namespace_lock, so we must drop it here.
9233 */
9234 spa_open_ref(spa, FTAG);
9235 mutex_exit(&spa_namespace_lock);
9236 spa_async_suspend(spa);
9237 mutex_enter(&spa_namespace_lock);
9238 spa_close(spa, FTAG);
9239
9240 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9241 spa_unload(spa);
9242 spa_deactivate(spa);
9243 }
9244 spa_remove(spa);
9245 }
9246 mutex_exit(&spa_namespace_lock);
9247 }
9248
9249 vdev_t *
9250 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9251 {
9252 vdev_t *vd;
9253 int i;
9254
9255 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9256 return (vd);
9257
9258 if (aux) {
9259 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9260 vd = spa->spa_l2cache.sav_vdevs[i];
9261 if (vd->vdev_guid == guid)
9262 return (vd);
9263 }
9264
9265 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9266 vd = spa->spa_spares.sav_vdevs[i];
9267 if (vd->vdev_guid == guid)
9268 return (vd);
9269 }
9270 }
9271
9272 return (NULL);
9273 }
9274
9275 void
9276 spa_upgrade(spa_t *spa, uint64_t version)
9277 {
9278 ASSERT(spa_writeable(spa));
9279
9280 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9281
9282 /*
9283 * This should only be called for a non-faulted pool, and since a
9284 * future version would result in an unopenable pool, this shouldn't be
9285 * possible.
9286 */
9287 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9288 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9289
9290 spa->spa_uberblock.ub_version = version;
9291 vdev_config_dirty(spa->spa_root_vdev);
9292
9293 spa_config_exit(spa, SCL_ALL, FTAG);
9294
9295 txg_wait_synced(spa_get_dsl(spa), 0);
9296 }
9297
9298 boolean_t
9299 spa_has_spare(spa_t *spa, uint64_t guid)
9300 {
9301 int i;
9302 uint64_t spareguid;
9303 spa_aux_vdev_t *sav = &spa->spa_spares;
9304
9305 for (i = 0; i < sav->sav_count; i++)
9306 if (sav->sav_vdevs[i]->vdev_guid == guid)
9307 return (B_TRUE);
9308
9309 for (i = 0; i < sav->sav_npending; i++) {
9310 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9311 &spareguid) == 0 && spareguid == guid)
9312 return (B_TRUE);
9313 }
9314
9315 return (B_FALSE);
9316 }
9317
9318 /*
9319 * Check if a pool has an active shared spare device.
9320 * Note: reference count of an active spare is 2, as a spare and as a replace
9321 */
9322 static boolean_t
9323 spa_has_active_shared_spare(spa_t *spa)
9324 {
9325 int i, refcnt;
9326 uint64_t pool;
9327 spa_aux_vdev_t *sav = &spa->spa_spares;
9328
9329 for (i = 0; i < sav->sav_count; i++) {
9330 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9331 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9332 refcnt > 2)
9333 return (B_TRUE);
9334 }
9335
9336 return (B_FALSE);
9337 }
9338
9339 uint64_t
9340 spa_total_metaslabs(spa_t *spa)
9341 {
9342 vdev_t *rvd = spa->spa_root_vdev;
9343
9344 uint64_t m = 0;
9345 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9346 vdev_t *vd = rvd->vdev_child[c];
9347 if (!vdev_is_concrete(vd))
9348 continue;
9349 m += vd->vdev_ms_count;
9350 }
9351 return (m);
9352 }
9353
9354 /*
9355 * Notify any waiting threads that some activity has switched from being in-
9356 * progress to not-in-progress so that the thread can wake up and determine
9357 * whether it is finished waiting.
9358 */
9359 void
9360 spa_notify_waiters(spa_t *spa)
9361 {
9362 /*
9363 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9364 * happening between the waiting thread's check and cv_wait.
9365 */
9366 mutex_enter(&spa->spa_activities_lock);
9367 cv_broadcast(&spa->spa_activities_cv);
9368 mutex_exit(&spa->spa_activities_lock);
9369 }
9370
9371 /*
9372 * Notify any waiting threads that the pool is exporting, and then block until
9373 * they are finished using the spa_t.
9374 */
9375 void
9376 spa_wake_waiters(spa_t *spa)
9377 {
9378 mutex_enter(&spa->spa_activities_lock);
9379 spa->spa_waiters_cancel = B_TRUE;
9380 cv_broadcast(&spa->spa_activities_cv);
9381 while (spa->spa_waiters != 0)
9382 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9383 spa->spa_waiters_cancel = B_FALSE;
9384 mutex_exit(&spa->spa_activities_lock);
9385 }
9386
9387 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9388 static boolean_t
9389 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9390 {
9391 spa_t *spa = vd->vdev_spa;
9392
9393 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9394 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9395 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9396 activity == ZPOOL_WAIT_TRIM);
9397
9398 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9399 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9400
9401 mutex_exit(&spa->spa_activities_lock);
9402 mutex_enter(lock);
9403 mutex_enter(&spa->spa_activities_lock);
9404
9405 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9406 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9407 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9408 mutex_exit(lock);
9409
9410 if (in_progress)
9411 return (B_TRUE);
9412
9413 for (int i = 0; i < vd->vdev_children; i++) {
9414 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9415 activity))
9416 return (B_TRUE);
9417 }
9418
9419 return (B_FALSE);
9420 }
9421
9422 /*
9423 * If use_guid is true, this checks whether the vdev specified by guid is
9424 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9425 * is being initialized/trimmed. The caller must hold the config lock and
9426 * spa_activities_lock.
9427 */
9428 static int
9429 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9430 zpool_wait_activity_t activity, boolean_t *in_progress)
9431 {
9432 mutex_exit(&spa->spa_activities_lock);
9433 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9434 mutex_enter(&spa->spa_activities_lock);
9435
9436 vdev_t *vd;
9437 if (use_guid) {
9438 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9439 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9440 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9441 return (EINVAL);
9442 }
9443 } else {
9444 vd = spa->spa_root_vdev;
9445 }
9446
9447 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9448
9449 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9450 return (0);
9451 }
9452
9453 /*
9454 * Locking for waiting threads
9455 * ---------------------------
9456 *
9457 * Waiting threads need a way to check whether a given activity is in progress,
9458 * and then, if it is, wait for it to complete. Each activity will have some
9459 * in-memory representation of the relevant on-disk state which can be used to
9460 * determine whether or not the activity is in progress. The in-memory state and
9461 * the locking used to protect it will be different for each activity, and may
9462 * not be suitable for use with a cvar (e.g., some state is protected by the
9463 * config lock). To allow waiting threads to wait without any races, another
9464 * lock, spa_activities_lock, is used.
9465 *
9466 * When the state is checked, both the activity-specific lock (if there is one)
9467 * and spa_activities_lock are held. In some cases, the activity-specific lock
9468 * is acquired explicitly (e.g. the config lock). In others, the locking is
9469 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9470 * thread releases the activity-specific lock and, if the activity is in
9471 * progress, then cv_waits using spa_activities_lock.
9472 *
9473 * The waiting thread is woken when another thread, one completing some
9474 * activity, updates the state of the activity and then calls
9475 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9476 * needs to hold its activity-specific lock when updating the state, and this
9477 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9478 *
9479 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9480 * and because it is held when the waiting thread checks the state of the
9481 * activity, it can never be the case that the completing thread both updates
9482 * the activity state and cv_broadcasts in between the waiting thread's check
9483 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9484 *
9485 * In order to prevent deadlock, when the waiting thread does its check, in some
9486 * cases it will temporarily drop spa_activities_lock in order to acquire the
9487 * activity-specific lock. The order in which spa_activities_lock and the
9488 * activity specific lock are acquired in the waiting thread is determined by
9489 * the order in which they are acquired in the completing thread; if the
9490 * completing thread calls spa_notify_waiters with the activity-specific lock
9491 * held, then the waiting thread must also acquire the activity-specific lock
9492 * first.
9493 */
9494
9495 static int
9496 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9497 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9498 {
9499 int error = 0;
9500
9501 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9502
9503 switch (activity) {
9504 case ZPOOL_WAIT_CKPT_DISCARD:
9505 *in_progress =
9506 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9507 zap_contains(spa_meta_objset(spa),
9508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9509 ENOENT);
9510 break;
9511 case ZPOOL_WAIT_FREE:
9512 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9513 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9514 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9515 spa_livelist_delete_check(spa));
9516 break;
9517 case ZPOOL_WAIT_INITIALIZE:
9518 case ZPOOL_WAIT_TRIM:
9519 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9520 activity, in_progress);
9521 break;
9522 case ZPOOL_WAIT_REPLACE:
9523 mutex_exit(&spa->spa_activities_lock);
9524 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9525 mutex_enter(&spa->spa_activities_lock);
9526
9527 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9528 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9529 break;
9530 case ZPOOL_WAIT_REMOVE:
9531 *in_progress = (spa->spa_removing_phys.sr_state ==
9532 DSS_SCANNING);
9533 break;
9534 case ZPOOL_WAIT_RESILVER:
9535 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9536 break;
9537 /* fall through */
9538 case ZPOOL_WAIT_SCRUB:
9539 {
9540 boolean_t scanning, paused, is_scrub;
9541 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9542
9543 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9544 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9545 paused = dsl_scan_is_paused_scrub(scn);
9546 *in_progress = (scanning && !paused &&
9547 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9548 break;
9549 }
9550 default:
9551 panic("unrecognized value for activity %d", activity);
9552 }
9553
9554 return (error);
9555 }
9556
9557 static int
9558 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9559 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9560 {
9561 /*
9562 * The tag is used to distinguish between instances of an activity.
9563 * 'initialize' and 'trim' are the only activities that we use this for.
9564 * The other activities can only have a single instance in progress in a
9565 * pool at one time, making the tag unnecessary.
9566 *
9567 * There can be multiple devices being replaced at once, but since they
9568 * all finish once resilvering finishes, we don't bother keeping track
9569 * of them individually, we just wait for them all to finish.
9570 */
9571 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9572 activity != ZPOOL_WAIT_TRIM)
9573 return (EINVAL);
9574
9575 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9576 return (EINVAL);
9577
9578 spa_t *spa;
9579 int error = spa_open(pool, &spa, FTAG);
9580 if (error != 0)
9581 return (error);
9582
9583 /*
9584 * Increment the spa's waiter count so that we can call spa_close and
9585 * still ensure that the spa_t doesn't get freed before this thread is
9586 * finished with it when the pool is exported. We want to call spa_close
9587 * before we start waiting because otherwise the additional ref would
9588 * prevent the pool from being exported or destroyed throughout the
9589 * potentially long wait.
9590 */
9591 mutex_enter(&spa->spa_activities_lock);
9592 spa->spa_waiters++;
9593 spa_close(spa, FTAG);
9594
9595 *waited = B_FALSE;
9596 for (;;) {
9597 boolean_t in_progress;
9598 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9599 &in_progress);
9600
9601 if (error || !in_progress || spa->spa_waiters_cancel)
9602 break;
9603
9604 *waited = B_TRUE;
9605
9606 if (cv_wait_sig(&spa->spa_activities_cv,
9607 &spa->spa_activities_lock) == 0) {
9608 error = EINTR;
9609 break;
9610 }
9611 }
9612
9613 spa->spa_waiters--;
9614 cv_signal(&spa->spa_waiters_cv);
9615 mutex_exit(&spa->spa_activities_lock);
9616
9617 return (error);
9618 }
9619
9620 /*
9621 * Wait for a particular instance of the specified activity to complete, where
9622 * the instance is identified by 'tag'
9623 */
9624 int
9625 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9626 boolean_t *waited)
9627 {
9628 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9629 }
9630
9631 /*
9632 * Wait for all instances of the specified activity complete
9633 */
9634 int
9635 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9636 {
9637
9638 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9639 }
9640
9641 sysevent_t *
9642 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9643 {
9644 sysevent_t *ev = NULL;
9645 #ifdef _KERNEL
9646 nvlist_t *resource;
9647
9648 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9649 if (resource) {
9650 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9651 ev->resource = resource;
9652 }
9653 #endif
9654 return (ev);
9655 }
9656
9657 void
9658 spa_event_post(sysevent_t *ev)
9659 {
9660 #ifdef _KERNEL
9661 if (ev) {
9662 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9663 kmem_free(ev, sizeof (*ev));
9664 }
9665 #endif
9666 }
9667
9668 /*
9669 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9670 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9671 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9672 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9673 * or zdb as real changes.
9674 */
9675 void
9676 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9677 {
9678 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9679 }
9680
9681 /* state manipulation functions */
9682 EXPORT_SYMBOL(spa_open);
9683 EXPORT_SYMBOL(spa_open_rewind);
9684 EXPORT_SYMBOL(spa_get_stats);
9685 EXPORT_SYMBOL(spa_create);
9686 EXPORT_SYMBOL(spa_import);
9687 EXPORT_SYMBOL(spa_tryimport);
9688 EXPORT_SYMBOL(spa_destroy);
9689 EXPORT_SYMBOL(spa_export);
9690 EXPORT_SYMBOL(spa_reset);
9691 EXPORT_SYMBOL(spa_async_request);
9692 EXPORT_SYMBOL(spa_async_suspend);
9693 EXPORT_SYMBOL(spa_async_resume);
9694 EXPORT_SYMBOL(spa_inject_addref);
9695 EXPORT_SYMBOL(spa_inject_delref);
9696 EXPORT_SYMBOL(spa_scan_stat_init);
9697 EXPORT_SYMBOL(spa_scan_get_stats);
9698
9699 /* device manipulation */
9700 EXPORT_SYMBOL(spa_vdev_add);
9701 EXPORT_SYMBOL(spa_vdev_attach);
9702 EXPORT_SYMBOL(spa_vdev_detach);
9703 EXPORT_SYMBOL(spa_vdev_setpath);
9704 EXPORT_SYMBOL(spa_vdev_setfru);
9705 EXPORT_SYMBOL(spa_vdev_split_mirror);
9706
9707 /* spare statech is global across all pools) */
9708 EXPORT_SYMBOL(spa_spare_add);
9709 EXPORT_SYMBOL(spa_spare_remove);
9710 EXPORT_SYMBOL(spa_spare_exists);
9711 EXPORT_SYMBOL(spa_spare_activate);
9712
9713 /* L2ARC statech is global across all pools) */
9714 EXPORT_SYMBOL(spa_l2cache_add);
9715 EXPORT_SYMBOL(spa_l2cache_remove);
9716 EXPORT_SYMBOL(spa_l2cache_exists);
9717 EXPORT_SYMBOL(spa_l2cache_activate);
9718 EXPORT_SYMBOL(spa_l2cache_drop);
9719
9720 /* scanning */
9721 EXPORT_SYMBOL(spa_scan);
9722 EXPORT_SYMBOL(spa_scan_stop);
9723
9724 /* spa syncing */
9725 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9726 EXPORT_SYMBOL(spa_sync_allpools);
9727
9728 /* properties */
9729 EXPORT_SYMBOL(spa_prop_set);
9730 EXPORT_SYMBOL(spa_prop_get);
9731 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9732
9733 /* asynchronous event notification */
9734 EXPORT_SYMBOL(spa_event_notify);
9735
9736 /* BEGIN CSTYLED */
9737 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9738 "log2(fraction of arc that can be used by inflight I/Os when "
9739 "verifying pool during import");
9740
9741 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9742 "Set to traverse metadata on pool import");
9743
9744 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9745 "Set to traverse data on pool import");
9746
9747 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9748 "Print vdev tree to zfs_dbgmsg during pool import");
9749
9750 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9751 "Percentage of CPUs to run an IO worker thread");
9752
9753 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9754 "Allow importing pool with up to this number of missing top-level "
9755 "vdevs (in read-only mode)");
9756
9757 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9758 "Set the livelist condense zthr to pause");
9759
9760 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9761 "Set the livelist condense synctask to pause");
9762
9763 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9764 "Whether livelist condensing was canceled in the synctask");
9765
9766 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9767 "Whether livelist condensing was canceled in the zthr function");
9768
9769 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9770 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
9771 "was being condensed");
9772 /* END CSTYLED */