]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Avoid posting duplicate zpool events
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 */
36
37 /*
38 * SPA: Storage Pool Allocator
39 *
40 * This file contains all the routines used when modifying on-disk SPA state.
41 * This includes opening, importing, destroying, exporting a pool, and syncing a
42 * pool.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_rebuild.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_disk.h>
63 #include <sys/metaslab.h>
64 #include <sys/metaslab_impl.h>
65 #include <sys/mmp.h>
66 #include <sys/uberblock_impl.h>
67 #include <sys/txg.h>
68 #include <sys/avl.h>
69 #include <sys/bpobj.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/unique.h>
73 #include <sys/dsl_pool.h>
74 #include <sys/dsl_dataset.h>
75 #include <sys/dsl_dir.h>
76 #include <sys/dsl_prop.h>
77 #include <sys/dsl_synctask.h>
78 #include <sys/fs/zfs.h>
79 #include <sys/arc.h>
80 #include <sys/callb.h>
81 #include <sys/systeminfo.h>
82 #include <sys/spa_boot.h>
83 #include <sys/zfs_ioctl.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/zfeature.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/zvol.h>
88
89 #ifdef _KERNEL
90 #include <sys/fm/protocol.h>
91 #include <sys/fm/util.h>
92 #include <sys/callb.h>
93 #include <sys/zone.h>
94 #include <sys/vmsystm.h>
95 #endif /* _KERNEL */
96
97 #include "zfs_prop.h"
98 #include "zfs_comutil.h"
99
100 /*
101 * The interval, in seconds, at which failed configuration cache file writes
102 * should be retried.
103 */
104 int zfs_ccw_retry_interval = 300;
105
106 typedef enum zti_modes {
107 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
108 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
109 ZTI_MODE_NULL, /* don't create a taskq */
110 ZTI_NMODES
111 } zti_modes_t;
112
113 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
114 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
117
118 #define ZTI_N(n) ZTI_P(n, 1)
119 #define ZTI_ONE ZTI_N(1)
120
121 typedef struct zio_taskq_info {
122 zti_modes_t zti_mode;
123 uint_t zti_value;
124 uint_t zti_count;
125 } zio_taskq_info_t;
126
127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
128 "iss", "iss_h", "int", "int_h"
129 };
130
131 /*
132 * This table defines the taskq settings for each ZFS I/O type. When
133 * initializing a pool, we use this table to create an appropriately sized
134 * taskq. Some operations are low volume and therefore have a small, static
135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
136 * macros. Other operations process a large amount of data; the ZTI_BATCH
137 * macro causes us to create a taskq oriented for throughput. Some operations
138 * are so high frequency and short-lived that the taskq itself can become a
139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
140 * additional degree of parallelism specified by the number of threads per-
141 * taskq and the number of taskqs; when dispatching an event in this case, the
142 * particular taskq is chosen at random.
143 *
144 * The different taskq priorities are to handle the different contexts (issue
145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
146 * need to be handled with minimum delay.
147 */
148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
152 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
157 };
158
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164
165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
167 uint_t zio_taskq_basedc = 80; /* base duty cycle */
168
169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
170
171 /*
172 * Report any spa_load_verify errors found, but do not fail spa_load.
173 * This is used by zdb to analyze non-idle pools.
174 */
175 boolean_t spa_load_verify_dryrun = B_FALSE;
176
177 /*
178 * This (illegal) pool name is used when temporarily importing a spa_t in order
179 * to get the vdev stats associated with the imported devices.
180 */
181 #define TRYIMPORT_NAME "$import"
182
183 /*
184 * For debugging purposes: print out vdev tree during pool import.
185 */
186 int spa_load_print_vdev_tree = B_FALSE;
187
188 /*
189 * A non-zero value for zfs_max_missing_tvds means that we allow importing
190 * pools with missing top-level vdevs. This is strictly intended for advanced
191 * pool recovery cases since missing data is almost inevitable. Pools with
192 * missing devices can only be imported read-only for safety reasons, and their
193 * fail-mode will be automatically set to "continue".
194 *
195 * With 1 missing vdev we should be able to import the pool and mount all
196 * datasets. User data that was not modified after the missing device has been
197 * added should be recoverable. This means that snapshots created prior to the
198 * addition of that device should be completely intact.
199 *
200 * With 2 missing vdevs, some datasets may fail to mount since there are
201 * dataset statistics that are stored as regular metadata. Some data might be
202 * recoverable if those vdevs were added recently.
203 *
204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205 * may be missing entirely. Chances of data recovery are very low. Note that
206 * there are also risks of performing an inadvertent rewind as we might be
207 * missing all the vdevs with the latest uberblocks.
208 */
209 unsigned long zfs_max_missing_tvds = 0;
210
211 /*
212 * The parameters below are similar to zfs_max_missing_tvds but are only
213 * intended for a preliminary open of the pool with an untrusted config which
214 * might be incomplete or out-dated.
215 *
216 * We are more tolerant for pools opened from a cachefile since we could have
217 * an out-dated cachefile where a device removal was not registered.
218 * We could have set the limit arbitrarily high but in the case where devices
219 * are really missing we would want to return the proper error codes; we chose
220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221 * and we get a chance to retrieve the trusted config.
222 */
223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224
225 /*
226 * In the case where config was assembled by scanning device paths (/dev/dsks
227 * by default) we are less tolerant since all the existing devices should have
228 * been detected and we want spa_load to return the right error codes.
229 */
230 uint64_t zfs_max_missing_tvds_scan = 0;
231
232 /*
233 * Debugging aid that pauses spa_sync() towards the end.
234 */
235 boolean_t zfs_pause_spa_sync = B_FALSE;
236
237 /*
238 * Variables to indicate the livelist condense zthr func should wait at certain
239 * points for the livelist to be removed - used to test condense/destroy races
240 */
241 int zfs_livelist_condense_zthr_pause = 0;
242 int zfs_livelist_condense_sync_pause = 0;
243
244 /*
245 * Variables to track whether or not condense cancellation has been
246 * triggered in testing.
247 */
248 int zfs_livelist_condense_sync_cancel = 0;
249 int zfs_livelist_condense_zthr_cancel = 0;
250
251 /*
252 * Variable to track whether or not extra ALLOC blkptrs were added to a
253 * livelist entry while it was being condensed (caused by the way we track
254 * remapped blkptrs in dbuf_remap_impl)
255 */
256 int zfs_livelist_condense_new_alloc = 0;
257
258 /*
259 * ==========================================================================
260 * SPA properties routines
261 * ==========================================================================
262 */
263
264 /*
265 * Add a (source=src, propname=propval) list to an nvlist.
266 */
267 static void
268 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
269 uint64_t intval, zprop_source_t src)
270 {
271 const char *propname = zpool_prop_to_name(prop);
272 nvlist_t *propval;
273
274 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
275 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
276
277 if (strval != NULL)
278 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
279 else
280 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
281
282 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
283 nvlist_free(propval);
284 }
285
286 /*
287 * Get property values from the spa configuration.
288 */
289 static void
290 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
291 {
292 vdev_t *rvd = spa->spa_root_vdev;
293 dsl_pool_t *pool = spa->spa_dsl_pool;
294 uint64_t size, alloc, cap, version;
295 const zprop_source_t src = ZPROP_SRC_NONE;
296 spa_config_dirent_t *dp;
297 metaslab_class_t *mc = spa_normal_class(spa);
298
299 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
300
301 if (rvd != NULL) {
302 alloc = metaslab_class_get_alloc(mc);
303 alloc += metaslab_class_get_alloc(spa_special_class(spa));
304 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
305
306 size = metaslab_class_get_space(mc);
307 size += metaslab_class_get_space(spa_special_class(spa));
308 size += metaslab_class_get_space(spa_dedup_class(spa));
309
310 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
311 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
312 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
313 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
314 size - alloc, src);
315 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
316 spa->spa_checkpoint_info.sci_dspace, src);
317
318 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
319 metaslab_class_fragmentation(mc), src);
320 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
321 metaslab_class_expandable_space(mc), src);
322 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
323 (spa_mode(spa) == SPA_MODE_READ), src);
324
325 cap = (size == 0) ? 0 : (alloc * 100 / size);
326 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
327
328 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
329 ddt_get_pool_dedup_ratio(spa), src);
330
331 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
332 rvd->vdev_state, src);
333
334 version = spa_version(spa);
335 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
337 version, ZPROP_SRC_DEFAULT);
338 } else {
339 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
340 version, ZPROP_SRC_LOCAL);
341 }
342 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
343 NULL, spa_load_guid(spa), src);
344 }
345
346 if (pool != NULL) {
347 /*
348 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
349 * when opening pools before this version freedir will be NULL.
350 */
351 if (pool->dp_free_dir != NULL) {
352 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
353 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
354 src);
355 } else {
356 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
357 NULL, 0, src);
358 }
359
360 if (pool->dp_leak_dir != NULL) {
361 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
362 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
363 src);
364 } else {
365 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
366 NULL, 0, src);
367 }
368 }
369
370 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
371
372 if (spa->spa_comment != NULL) {
373 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
374 0, ZPROP_SRC_LOCAL);
375 }
376
377 if (spa->spa_root != NULL)
378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
379 0, ZPROP_SRC_LOCAL);
380
381 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
382 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
383 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
384 } else {
385 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
386 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
387 }
388
389 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
390 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
391 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
392 } else {
393 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
394 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
395 }
396
397 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
398 if (dp->scd_path == NULL) {
399 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
400 "none", 0, ZPROP_SRC_LOCAL);
401 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
402 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
403 dp->scd_path, 0, ZPROP_SRC_LOCAL);
404 }
405 }
406 }
407
408 /*
409 * Get zpool property values.
410 */
411 int
412 spa_prop_get(spa_t *spa, nvlist_t **nvp)
413 {
414 objset_t *mos = spa->spa_meta_objset;
415 zap_cursor_t zc;
416 zap_attribute_t za;
417 dsl_pool_t *dp;
418 int err;
419
420 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
421 if (err)
422 return (err);
423
424 dp = spa_get_dsl(spa);
425 dsl_pool_config_enter(dp, FTAG);
426 mutex_enter(&spa->spa_props_lock);
427
428 /*
429 * Get properties from the spa config.
430 */
431 spa_prop_get_config(spa, nvp);
432
433 /* If no pool property object, no more prop to get. */
434 if (mos == NULL || spa->spa_pool_props_object == 0)
435 goto out;
436
437 /*
438 * Get properties from the MOS pool property object.
439 */
440 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
441 (err = zap_cursor_retrieve(&zc, &za)) == 0;
442 zap_cursor_advance(&zc)) {
443 uint64_t intval = 0;
444 char *strval = NULL;
445 zprop_source_t src = ZPROP_SRC_DEFAULT;
446 zpool_prop_t prop;
447
448 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
449 continue;
450
451 switch (za.za_integer_length) {
452 case 8:
453 /* integer property */
454 if (za.za_first_integer !=
455 zpool_prop_default_numeric(prop))
456 src = ZPROP_SRC_LOCAL;
457
458 if (prop == ZPOOL_PROP_BOOTFS) {
459 dsl_dataset_t *ds = NULL;
460
461 err = dsl_dataset_hold_obj(dp,
462 za.za_first_integer, FTAG, &ds);
463 if (err != 0)
464 break;
465
466 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
467 KM_SLEEP);
468 dsl_dataset_name(ds, strval);
469 dsl_dataset_rele(ds, FTAG);
470 } else {
471 strval = NULL;
472 intval = za.za_first_integer;
473 }
474
475 spa_prop_add_list(*nvp, prop, strval, intval, src);
476
477 if (strval != NULL)
478 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
479
480 break;
481
482 case 1:
483 /* string property */
484 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
485 err = zap_lookup(mos, spa->spa_pool_props_object,
486 za.za_name, 1, za.za_num_integers, strval);
487 if (err) {
488 kmem_free(strval, za.za_num_integers);
489 break;
490 }
491 spa_prop_add_list(*nvp, prop, strval, 0, src);
492 kmem_free(strval, za.za_num_integers);
493 break;
494
495 default:
496 break;
497 }
498 }
499 zap_cursor_fini(&zc);
500 out:
501 mutex_exit(&spa->spa_props_lock);
502 dsl_pool_config_exit(dp, FTAG);
503 if (err && err != ENOENT) {
504 nvlist_free(*nvp);
505 *nvp = NULL;
506 return (err);
507 }
508
509 return (0);
510 }
511
512 /*
513 * Validate the given pool properties nvlist and modify the list
514 * for the property values to be set.
515 */
516 static int
517 spa_prop_validate(spa_t *spa, nvlist_t *props)
518 {
519 nvpair_t *elem;
520 int error = 0, reset_bootfs = 0;
521 uint64_t objnum = 0;
522 boolean_t has_feature = B_FALSE;
523
524 elem = NULL;
525 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
526 uint64_t intval;
527 char *strval, *slash, *check, *fname;
528 const char *propname = nvpair_name(elem);
529 zpool_prop_t prop = zpool_name_to_prop(propname);
530
531 switch (prop) {
532 case ZPOOL_PROP_INVAL:
533 if (!zpool_prop_feature(propname)) {
534 error = SET_ERROR(EINVAL);
535 break;
536 }
537
538 /*
539 * Sanitize the input.
540 */
541 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
542 error = SET_ERROR(EINVAL);
543 break;
544 }
545
546 if (nvpair_value_uint64(elem, &intval) != 0) {
547 error = SET_ERROR(EINVAL);
548 break;
549 }
550
551 if (intval != 0) {
552 error = SET_ERROR(EINVAL);
553 break;
554 }
555
556 fname = strchr(propname, '@') + 1;
557 if (zfeature_lookup_name(fname, NULL) != 0) {
558 error = SET_ERROR(EINVAL);
559 break;
560 }
561
562 has_feature = B_TRUE;
563 break;
564
565 case ZPOOL_PROP_VERSION:
566 error = nvpair_value_uint64(elem, &intval);
567 if (!error &&
568 (intval < spa_version(spa) ||
569 intval > SPA_VERSION_BEFORE_FEATURES ||
570 has_feature))
571 error = SET_ERROR(EINVAL);
572 break;
573
574 case ZPOOL_PROP_DELEGATION:
575 case ZPOOL_PROP_AUTOREPLACE:
576 case ZPOOL_PROP_LISTSNAPS:
577 case ZPOOL_PROP_AUTOEXPAND:
578 case ZPOOL_PROP_AUTOTRIM:
579 error = nvpair_value_uint64(elem, &intval);
580 if (!error && intval > 1)
581 error = SET_ERROR(EINVAL);
582 break;
583
584 case ZPOOL_PROP_MULTIHOST:
585 error = nvpair_value_uint64(elem, &intval);
586 if (!error && intval > 1)
587 error = SET_ERROR(EINVAL);
588
589 if (!error) {
590 uint32_t hostid = zone_get_hostid(NULL);
591 if (hostid)
592 spa->spa_hostid = hostid;
593 else
594 error = SET_ERROR(ENOTSUP);
595 }
596
597 break;
598
599 case ZPOOL_PROP_BOOTFS:
600 /*
601 * If the pool version is less than SPA_VERSION_BOOTFS,
602 * or the pool is still being created (version == 0),
603 * the bootfs property cannot be set.
604 */
605 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
606 error = SET_ERROR(ENOTSUP);
607 break;
608 }
609
610 /*
611 * Make sure the vdev config is bootable
612 */
613 if (!vdev_is_bootable(spa->spa_root_vdev)) {
614 error = SET_ERROR(ENOTSUP);
615 break;
616 }
617
618 reset_bootfs = 1;
619
620 error = nvpair_value_string(elem, &strval);
621
622 if (!error) {
623 objset_t *os;
624
625 if (strval == NULL || strval[0] == '\0') {
626 objnum = zpool_prop_default_numeric(
627 ZPOOL_PROP_BOOTFS);
628 break;
629 }
630
631 error = dmu_objset_hold(strval, FTAG, &os);
632 if (error != 0)
633 break;
634
635 /* Must be ZPL. */
636 if (dmu_objset_type(os) != DMU_OST_ZFS) {
637 error = SET_ERROR(ENOTSUP);
638 } else {
639 objnum = dmu_objset_id(os);
640 }
641 dmu_objset_rele(os, FTAG);
642 }
643 break;
644
645 case ZPOOL_PROP_FAILUREMODE:
646 error = nvpair_value_uint64(elem, &intval);
647 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
648 error = SET_ERROR(EINVAL);
649
650 /*
651 * This is a special case which only occurs when
652 * the pool has completely failed. This allows
653 * the user to change the in-core failmode property
654 * without syncing it out to disk (I/Os might
655 * currently be blocked). We do this by returning
656 * EIO to the caller (spa_prop_set) to trick it
657 * into thinking we encountered a property validation
658 * error.
659 */
660 if (!error && spa_suspended(spa)) {
661 spa->spa_failmode = intval;
662 error = SET_ERROR(EIO);
663 }
664 break;
665
666 case ZPOOL_PROP_CACHEFILE:
667 if ((error = nvpair_value_string(elem, &strval)) != 0)
668 break;
669
670 if (strval[0] == '\0')
671 break;
672
673 if (strcmp(strval, "none") == 0)
674 break;
675
676 if (strval[0] != '/') {
677 error = SET_ERROR(EINVAL);
678 break;
679 }
680
681 slash = strrchr(strval, '/');
682 ASSERT(slash != NULL);
683
684 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
685 strcmp(slash, "/..") == 0)
686 error = SET_ERROR(EINVAL);
687 break;
688
689 case ZPOOL_PROP_COMMENT:
690 if ((error = nvpair_value_string(elem, &strval)) != 0)
691 break;
692 for (check = strval; *check != '\0'; check++) {
693 if (!isprint(*check)) {
694 error = SET_ERROR(EINVAL);
695 break;
696 }
697 }
698 if (strlen(strval) > ZPROP_MAX_COMMENT)
699 error = SET_ERROR(E2BIG);
700 break;
701
702 default:
703 break;
704 }
705
706 if (error)
707 break;
708 }
709
710 (void) nvlist_remove_all(props,
711 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
712
713 if (!error && reset_bootfs) {
714 error = nvlist_remove(props,
715 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
716
717 if (!error) {
718 error = nvlist_add_uint64(props,
719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
720 }
721 }
722
723 return (error);
724 }
725
726 void
727 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
728 {
729 char *cachefile;
730 spa_config_dirent_t *dp;
731
732 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
733 &cachefile) != 0)
734 return;
735
736 dp = kmem_alloc(sizeof (spa_config_dirent_t),
737 KM_SLEEP);
738
739 if (cachefile[0] == '\0')
740 dp->scd_path = spa_strdup(spa_config_path);
741 else if (strcmp(cachefile, "none") == 0)
742 dp->scd_path = NULL;
743 else
744 dp->scd_path = spa_strdup(cachefile);
745
746 list_insert_head(&spa->spa_config_list, dp);
747 if (need_sync)
748 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
749 }
750
751 int
752 spa_prop_set(spa_t *spa, nvlist_t *nvp)
753 {
754 int error;
755 nvpair_t *elem = NULL;
756 boolean_t need_sync = B_FALSE;
757
758 if ((error = spa_prop_validate(spa, nvp)) != 0)
759 return (error);
760
761 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
762 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
763
764 if (prop == ZPOOL_PROP_CACHEFILE ||
765 prop == ZPOOL_PROP_ALTROOT ||
766 prop == ZPOOL_PROP_READONLY)
767 continue;
768
769 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
770 uint64_t ver;
771
772 if (prop == ZPOOL_PROP_VERSION) {
773 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
774 } else {
775 ASSERT(zpool_prop_feature(nvpair_name(elem)));
776 ver = SPA_VERSION_FEATURES;
777 need_sync = B_TRUE;
778 }
779
780 /* Save time if the version is already set. */
781 if (ver == spa_version(spa))
782 continue;
783
784 /*
785 * In addition to the pool directory object, we might
786 * create the pool properties object, the features for
787 * read object, the features for write object, or the
788 * feature descriptions object.
789 */
790 error = dsl_sync_task(spa->spa_name, NULL,
791 spa_sync_version, &ver,
792 6, ZFS_SPACE_CHECK_RESERVED);
793 if (error)
794 return (error);
795 continue;
796 }
797
798 need_sync = B_TRUE;
799 break;
800 }
801
802 if (need_sync) {
803 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
804 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
805 }
806
807 return (0);
808 }
809
810 /*
811 * If the bootfs property value is dsobj, clear it.
812 */
813 void
814 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
815 {
816 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
817 VERIFY(zap_remove(spa->spa_meta_objset,
818 spa->spa_pool_props_object,
819 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
820 spa->spa_bootfs = 0;
821 }
822 }
823
824 /*ARGSUSED*/
825 static int
826 spa_change_guid_check(void *arg, dmu_tx_t *tx)
827 {
828 uint64_t *newguid __maybe_unused = arg;
829 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
830 vdev_t *rvd = spa->spa_root_vdev;
831 uint64_t vdev_state;
832
833 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
834 int error = (spa_has_checkpoint(spa)) ?
835 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
836 return (SET_ERROR(error));
837 }
838
839 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
840 vdev_state = rvd->vdev_state;
841 spa_config_exit(spa, SCL_STATE, FTAG);
842
843 if (vdev_state != VDEV_STATE_HEALTHY)
844 return (SET_ERROR(ENXIO));
845
846 ASSERT3U(spa_guid(spa), !=, *newguid);
847
848 return (0);
849 }
850
851 static void
852 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
853 {
854 uint64_t *newguid = arg;
855 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
856 uint64_t oldguid;
857 vdev_t *rvd = spa->spa_root_vdev;
858
859 oldguid = spa_guid(spa);
860
861 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
862 rvd->vdev_guid = *newguid;
863 rvd->vdev_guid_sum += (*newguid - oldguid);
864 vdev_config_dirty(rvd);
865 spa_config_exit(spa, SCL_STATE, FTAG);
866
867 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
868 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
869 }
870
871 /*
872 * Change the GUID for the pool. This is done so that we can later
873 * re-import a pool built from a clone of our own vdevs. We will modify
874 * the root vdev's guid, our own pool guid, and then mark all of our
875 * vdevs dirty. Note that we must make sure that all our vdevs are
876 * online when we do this, or else any vdevs that weren't present
877 * would be orphaned from our pool. We are also going to issue a
878 * sysevent to update any watchers.
879 */
880 int
881 spa_change_guid(spa_t *spa)
882 {
883 int error;
884 uint64_t guid;
885
886 mutex_enter(&spa->spa_vdev_top_lock);
887 mutex_enter(&spa_namespace_lock);
888 guid = spa_generate_guid(NULL);
889
890 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
891 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
892
893 if (error == 0) {
894 spa_write_cachefile(spa, B_FALSE, B_TRUE);
895 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
896 }
897
898 mutex_exit(&spa_namespace_lock);
899 mutex_exit(&spa->spa_vdev_top_lock);
900
901 return (error);
902 }
903
904 /*
905 * ==========================================================================
906 * SPA state manipulation (open/create/destroy/import/export)
907 * ==========================================================================
908 */
909
910 static int
911 spa_error_entry_compare(const void *a, const void *b)
912 {
913 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
914 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
915 int ret;
916
917 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
918 sizeof (zbookmark_phys_t));
919
920 return (TREE_ISIGN(ret));
921 }
922
923 /*
924 * Utility function which retrieves copies of the current logs and
925 * re-initializes them in the process.
926 */
927 void
928 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
929 {
930 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
931
932 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
933 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
934
935 avl_create(&spa->spa_errlist_scrub,
936 spa_error_entry_compare, sizeof (spa_error_entry_t),
937 offsetof(spa_error_entry_t, se_avl));
938 avl_create(&spa->spa_errlist_last,
939 spa_error_entry_compare, sizeof (spa_error_entry_t),
940 offsetof(spa_error_entry_t, se_avl));
941 }
942
943 static void
944 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945 {
946 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
947 enum zti_modes mode = ztip->zti_mode;
948 uint_t value = ztip->zti_value;
949 uint_t count = ztip->zti_count;
950 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
951 uint_t flags = 0;
952 boolean_t batch = B_FALSE;
953
954 if (mode == ZTI_MODE_NULL) {
955 tqs->stqs_count = 0;
956 tqs->stqs_taskq = NULL;
957 return;
958 }
959
960 ASSERT3U(count, >, 0);
961
962 tqs->stqs_count = count;
963 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
964
965 switch (mode) {
966 case ZTI_MODE_FIXED:
967 ASSERT3U(value, >=, 1);
968 value = MAX(value, 1);
969 flags |= TASKQ_DYNAMIC;
970 break;
971
972 case ZTI_MODE_BATCH:
973 batch = B_TRUE;
974 flags |= TASKQ_THREADS_CPU_PCT;
975 value = MIN(zio_taskq_batch_pct, 100);
976 break;
977
978 default:
979 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
980 "spa_activate()",
981 zio_type_name[t], zio_taskq_types[q], mode, value);
982 break;
983 }
984
985 for (uint_t i = 0; i < count; i++) {
986 taskq_t *tq;
987 char name[32];
988
989 (void) snprintf(name, sizeof (name), "%s_%s",
990 zio_type_name[t], zio_taskq_types[q]);
991
992 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
993 if (batch)
994 flags |= TASKQ_DC_BATCH;
995
996 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
997 spa->spa_proc, zio_taskq_basedc, flags);
998 } else {
999 pri_t pri = maxclsyspri;
1000 /*
1001 * The write issue taskq can be extremely CPU
1002 * intensive. Run it at slightly less important
1003 * priority than the other taskqs. Under Linux this
1004 * means incrementing the priority value on platforms
1005 * like illumos it should be decremented.
1006 */
1007 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1008 pri++;
1009
1010 tq = taskq_create_proc(name, value, pri, 50,
1011 INT_MAX, spa->spa_proc, flags);
1012 }
1013
1014 tqs->stqs_taskq[i] = tq;
1015 }
1016 }
1017
1018 static void
1019 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1020 {
1021 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1022
1023 if (tqs->stqs_taskq == NULL) {
1024 ASSERT3U(tqs->stqs_count, ==, 0);
1025 return;
1026 }
1027
1028 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1029 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1030 taskq_destroy(tqs->stqs_taskq[i]);
1031 }
1032
1033 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1034 tqs->stqs_taskq = NULL;
1035 }
1036
1037 /*
1038 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1039 * Note that a type may have multiple discrete taskqs to avoid lock contention
1040 * on the taskq itself. In that case we choose which taskq at random by using
1041 * the low bits of gethrtime().
1042 */
1043 void
1044 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1045 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1046 {
1047 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1048 taskq_t *tq;
1049
1050 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1051 ASSERT3U(tqs->stqs_count, !=, 0);
1052
1053 if (tqs->stqs_count == 1) {
1054 tq = tqs->stqs_taskq[0];
1055 } else {
1056 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1057 }
1058
1059 taskq_dispatch_ent(tq, func, arg, flags, ent);
1060 }
1061
1062 /*
1063 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1064 */
1065 void
1066 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1067 task_func_t *func, void *arg, uint_t flags)
1068 {
1069 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1070 taskq_t *tq;
1071 taskqid_t id;
1072
1073 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1074 ASSERT3U(tqs->stqs_count, !=, 0);
1075
1076 if (tqs->stqs_count == 1) {
1077 tq = tqs->stqs_taskq[0];
1078 } else {
1079 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1080 }
1081
1082 id = taskq_dispatch(tq, func, arg, flags);
1083 if (id)
1084 taskq_wait_id(tq, id);
1085 }
1086
1087 static void
1088 spa_create_zio_taskqs(spa_t *spa)
1089 {
1090 for (int t = 0; t < ZIO_TYPES; t++) {
1091 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1092 spa_taskqs_init(spa, t, q);
1093 }
1094 }
1095 }
1096
1097 /*
1098 * Disabled until spa_thread() can be adapted for Linux.
1099 */
1100 #undef HAVE_SPA_THREAD
1101
1102 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1103 static void
1104 spa_thread(void *arg)
1105 {
1106 psetid_t zio_taskq_psrset_bind = PS_NONE;
1107 callb_cpr_t cprinfo;
1108
1109 spa_t *spa = arg;
1110 user_t *pu = PTOU(curproc);
1111
1112 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1113 spa->spa_name);
1114
1115 ASSERT(curproc != &p0);
1116 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1117 "zpool-%s", spa->spa_name);
1118 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1119
1120 /* bind this thread to the requested psrset */
1121 if (zio_taskq_psrset_bind != PS_NONE) {
1122 pool_lock();
1123 mutex_enter(&cpu_lock);
1124 mutex_enter(&pidlock);
1125 mutex_enter(&curproc->p_lock);
1126
1127 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1128 0, NULL, NULL) == 0) {
1129 curthread->t_bind_pset = zio_taskq_psrset_bind;
1130 } else {
1131 cmn_err(CE_WARN,
1132 "Couldn't bind process for zfs pool \"%s\" to "
1133 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1134 }
1135
1136 mutex_exit(&curproc->p_lock);
1137 mutex_exit(&pidlock);
1138 mutex_exit(&cpu_lock);
1139 pool_unlock();
1140 }
1141
1142 if (zio_taskq_sysdc) {
1143 sysdc_thread_enter(curthread, 100, 0);
1144 }
1145
1146 spa->spa_proc = curproc;
1147 spa->spa_did = curthread->t_did;
1148
1149 spa_create_zio_taskqs(spa);
1150
1151 mutex_enter(&spa->spa_proc_lock);
1152 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1153
1154 spa->spa_proc_state = SPA_PROC_ACTIVE;
1155 cv_broadcast(&spa->spa_proc_cv);
1156
1157 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1158 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1159 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1160 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1161
1162 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1163 spa->spa_proc_state = SPA_PROC_GONE;
1164 spa->spa_proc = &p0;
1165 cv_broadcast(&spa->spa_proc_cv);
1166 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1167
1168 mutex_enter(&curproc->p_lock);
1169 lwp_exit();
1170 }
1171 #endif
1172
1173 /*
1174 * Activate an uninitialized pool.
1175 */
1176 static void
1177 spa_activate(spa_t *spa, spa_mode_t mode)
1178 {
1179 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1180
1181 spa->spa_state = POOL_STATE_ACTIVE;
1182 spa->spa_mode = mode;
1183
1184 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1185 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1186 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1187 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1188
1189 /* Try to create a covering process */
1190 mutex_enter(&spa->spa_proc_lock);
1191 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1192 ASSERT(spa->spa_proc == &p0);
1193 spa->spa_did = 0;
1194
1195 #ifdef HAVE_SPA_THREAD
1196 /* Only create a process if we're going to be around a while. */
1197 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1198 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1199 NULL, 0) == 0) {
1200 spa->spa_proc_state = SPA_PROC_CREATED;
1201 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1202 cv_wait(&spa->spa_proc_cv,
1203 &spa->spa_proc_lock);
1204 }
1205 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1206 ASSERT(spa->spa_proc != &p0);
1207 ASSERT(spa->spa_did != 0);
1208 } else {
1209 #ifdef _KERNEL
1210 cmn_err(CE_WARN,
1211 "Couldn't create process for zfs pool \"%s\"\n",
1212 spa->spa_name);
1213 #endif
1214 }
1215 }
1216 #endif /* HAVE_SPA_THREAD */
1217 mutex_exit(&spa->spa_proc_lock);
1218
1219 /* If we didn't create a process, we need to create our taskqs. */
1220 if (spa->spa_proc == &p0) {
1221 spa_create_zio_taskqs(spa);
1222 }
1223
1224 for (size_t i = 0; i < TXG_SIZE; i++) {
1225 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1226 ZIO_FLAG_CANFAIL);
1227 }
1228
1229 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1230 offsetof(vdev_t, vdev_config_dirty_node));
1231 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1232 offsetof(objset_t, os_evicting_node));
1233 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1234 offsetof(vdev_t, vdev_state_dirty_node));
1235
1236 txg_list_create(&spa->spa_vdev_txg_list, spa,
1237 offsetof(struct vdev, vdev_txg_node));
1238
1239 avl_create(&spa->spa_errlist_scrub,
1240 spa_error_entry_compare, sizeof (spa_error_entry_t),
1241 offsetof(spa_error_entry_t, se_avl));
1242 avl_create(&spa->spa_errlist_last,
1243 spa_error_entry_compare, sizeof (spa_error_entry_t),
1244 offsetof(spa_error_entry_t, se_avl));
1245
1246 spa_keystore_init(&spa->spa_keystore);
1247
1248 /*
1249 * This taskq is used to perform zvol-minor-related tasks
1250 * asynchronously. This has several advantages, including easy
1251 * resolution of various deadlocks (zfsonlinux bug #3681).
1252 *
1253 * The taskq must be single threaded to ensure tasks are always
1254 * processed in the order in which they were dispatched.
1255 *
1256 * A taskq per pool allows one to keep the pools independent.
1257 * This way if one pool is suspended, it will not impact another.
1258 *
1259 * The preferred location to dispatch a zvol minor task is a sync
1260 * task. In this context, there is easy access to the spa_t and minimal
1261 * error handling is required because the sync task must succeed.
1262 */
1263 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1264 1, INT_MAX, 0);
1265
1266 /*
1267 * Taskq dedicated to prefetcher threads: this is used to prevent the
1268 * pool traverse code from monopolizing the global (and limited)
1269 * system_taskq by inappropriately scheduling long running tasks on it.
1270 */
1271 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1272 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1273
1274 /*
1275 * The taskq to upgrade datasets in this pool. Currently used by
1276 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1277 */
1278 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1279 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1280 }
1281
1282 /*
1283 * Opposite of spa_activate().
1284 */
1285 static void
1286 spa_deactivate(spa_t *spa)
1287 {
1288 ASSERT(spa->spa_sync_on == B_FALSE);
1289 ASSERT(spa->spa_dsl_pool == NULL);
1290 ASSERT(spa->spa_root_vdev == NULL);
1291 ASSERT(spa->spa_async_zio_root == NULL);
1292 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1293
1294 spa_evicting_os_wait(spa);
1295
1296 if (spa->spa_zvol_taskq) {
1297 taskq_destroy(spa->spa_zvol_taskq);
1298 spa->spa_zvol_taskq = NULL;
1299 }
1300
1301 if (spa->spa_prefetch_taskq) {
1302 taskq_destroy(spa->spa_prefetch_taskq);
1303 spa->spa_prefetch_taskq = NULL;
1304 }
1305
1306 if (spa->spa_upgrade_taskq) {
1307 taskq_destroy(spa->spa_upgrade_taskq);
1308 spa->spa_upgrade_taskq = NULL;
1309 }
1310
1311 txg_list_destroy(&spa->spa_vdev_txg_list);
1312
1313 list_destroy(&spa->spa_config_dirty_list);
1314 list_destroy(&spa->spa_evicting_os_list);
1315 list_destroy(&spa->spa_state_dirty_list);
1316
1317 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1318
1319 for (int t = 0; t < ZIO_TYPES; t++) {
1320 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1321 spa_taskqs_fini(spa, t, q);
1322 }
1323 }
1324
1325 for (size_t i = 0; i < TXG_SIZE; i++) {
1326 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1327 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1328 spa->spa_txg_zio[i] = NULL;
1329 }
1330
1331 metaslab_class_destroy(spa->spa_normal_class);
1332 spa->spa_normal_class = NULL;
1333
1334 metaslab_class_destroy(spa->spa_log_class);
1335 spa->spa_log_class = NULL;
1336
1337 metaslab_class_destroy(spa->spa_special_class);
1338 spa->spa_special_class = NULL;
1339
1340 metaslab_class_destroy(spa->spa_dedup_class);
1341 spa->spa_dedup_class = NULL;
1342
1343 /*
1344 * If this was part of an import or the open otherwise failed, we may
1345 * still have errors left in the queues. Empty them just in case.
1346 */
1347 spa_errlog_drain(spa);
1348 avl_destroy(&spa->spa_errlist_scrub);
1349 avl_destroy(&spa->spa_errlist_last);
1350
1351 spa_keystore_fini(&spa->spa_keystore);
1352
1353 spa->spa_state = POOL_STATE_UNINITIALIZED;
1354
1355 mutex_enter(&spa->spa_proc_lock);
1356 if (spa->spa_proc_state != SPA_PROC_NONE) {
1357 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1358 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1359 cv_broadcast(&spa->spa_proc_cv);
1360 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1361 ASSERT(spa->spa_proc != &p0);
1362 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1363 }
1364 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1365 spa->spa_proc_state = SPA_PROC_NONE;
1366 }
1367 ASSERT(spa->spa_proc == &p0);
1368 mutex_exit(&spa->spa_proc_lock);
1369
1370 /*
1371 * We want to make sure spa_thread() has actually exited the ZFS
1372 * module, so that the module can't be unloaded out from underneath
1373 * it.
1374 */
1375 if (spa->spa_did != 0) {
1376 thread_join(spa->spa_did);
1377 spa->spa_did = 0;
1378 }
1379 }
1380
1381 /*
1382 * Verify a pool configuration, and construct the vdev tree appropriately. This
1383 * will create all the necessary vdevs in the appropriate layout, with each vdev
1384 * in the CLOSED state. This will prep the pool before open/creation/import.
1385 * All vdev validation is done by the vdev_alloc() routine.
1386 */
1387 int
1388 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1389 uint_t id, int atype)
1390 {
1391 nvlist_t **child;
1392 uint_t children;
1393 int error;
1394
1395 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1396 return (error);
1397
1398 if ((*vdp)->vdev_ops->vdev_op_leaf)
1399 return (0);
1400
1401 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1402 &child, &children);
1403
1404 if (error == ENOENT)
1405 return (0);
1406
1407 if (error) {
1408 vdev_free(*vdp);
1409 *vdp = NULL;
1410 return (SET_ERROR(EINVAL));
1411 }
1412
1413 for (int c = 0; c < children; c++) {
1414 vdev_t *vd;
1415 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1416 atype)) != 0) {
1417 vdev_free(*vdp);
1418 *vdp = NULL;
1419 return (error);
1420 }
1421 }
1422
1423 ASSERT(*vdp != NULL);
1424
1425 return (0);
1426 }
1427
1428 static boolean_t
1429 spa_should_flush_logs_on_unload(spa_t *spa)
1430 {
1431 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1432 return (B_FALSE);
1433
1434 if (!spa_writeable(spa))
1435 return (B_FALSE);
1436
1437 if (!spa->spa_sync_on)
1438 return (B_FALSE);
1439
1440 if (spa_state(spa) != POOL_STATE_EXPORTED)
1441 return (B_FALSE);
1442
1443 if (zfs_keep_log_spacemaps_at_export)
1444 return (B_FALSE);
1445
1446 return (B_TRUE);
1447 }
1448
1449 /*
1450 * Opens a transaction that will set the flag that will instruct
1451 * spa_sync to attempt to flush all the metaslabs for that txg.
1452 */
1453 static void
1454 spa_unload_log_sm_flush_all(spa_t *spa)
1455 {
1456 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1457 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1458
1459 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1460 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1461
1462 dmu_tx_commit(tx);
1463 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1464 }
1465
1466 static void
1467 spa_unload_log_sm_metadata(spa_t *spa)
1468 {
1469 void *cookie = NULL;
1470 spa_log_sm_t *sls;
1471 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1472 &cookie)) != NULL) {
1473 VERIFY0(sls->sls_mscount);
1474 kmem_free(sls, sizeof (spa_log_sm_t));
1475 }
1476
1477 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1478 e != NULL; e = list_head(&spa->spa_log_summary)) {
1479 VERIFY0(e->lse_mscount);
1480 list_remove(&spa->spa_log_summary, e);
1481 kmem_free(e, sizeof (log_summary_entry_t));
1482 }
1483
1484 spa->spa_unflushed_stats.sus_nblocks = 0;
1485 spa->spa_unflushed_stats.sus_memused = 0;
1486 spa->spa_unflushed_stats.sus_blocklimit = 0;
1487 }
1488
1489 static void
1490 spa_destroy_aux_threads(spa_t *spa)
1491 {
1492 if (spa->spa_condense_zthr != NULL) {
1493 zthr_destroy(spa->spa_condense_zthr);
1494 spa->spa_condense_zthr = NULL;
1495 }
1496 if (spa->spa_checkpoint_discard_zthr != NULL) {
1497 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1498 spa->spa_checkpoint_discard_zthr = NULL;
1499 }
1500 if (spa->spa_livelist_delete_zthr != NULL) {
1501 zthr_destroy(spa->spa_livelist_delete_zthr);
1502 spa->spa_livelist_delete_zthr = NULL;
1503 }
1504 if (spa->spa_livelist_condense_zthr != NULL) {
1505 zthr_destroy(spa->spa_livelist_condense_zthr);
1506 spa->spa_livelist_condense_zthr = NULL;
1507 }
1508 }
1509
1510 /*
1511 * Opposite of spa_load().
1512 */
1513 static void
1514 spa_unload(spa_t *spa)
1515 {
1516 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1517 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1518
1519 spa_import_progress_remove(spa_guid(spa));
1520 spa_load_note(spa, "UNLOADING");
1521
1522 spa_wake_waiters(spa);
1523
1524 /*
1525 * If the log space map feature is enabled and the pool is getting
1526 * exported (but not destroyed), we want to spend some time flushing
1527 * as many metaslabs as we can in an attempt to destroy log space
1528 * maps and save import time.
1529 */
1530 if (spa_should_flush_logs_on_unload(spa))
1531 spa_unload_log_sm_flush_all(spa);
1532
1533 /*
1534 * Stop async tasks.
1535 */
1536 spa_async_suspend(spa);
1537
1538 if (spa->spa_root_vdev) {
1539 vdev_t *root_vdev = spa->spa_root_vdev;
1540 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1541 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1542 vdev_autotrim_stop_all(spa);
1543 vdev_rebuild_stop_all(spa);
1544 }
1545
1546 /*
1547 * Stop syncing.
1548 */
1549 if (spa->spa_sync_on) {
1550 txg_sync_stop(spa->spa_dsl_pool);
1551 spa->spa_sync_on = B_FALSE;
1552 }
1553
1554 /*
1555 * This ensures that there is no async metaslab prefetching
1556 * while we attempt to unload the spa.
1557 */
1558 if (spa->spa_root_vdev != NULL) {
1559 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1560 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1561 if (vc->vdev_mg != NULL)
1562 taskq_wait(vc->vdev_mg->mg_taskq);
1563 }
1564 }
1565
1566 if (spa->spa_mmp.mmp_thread)
1567 mmp_thread_stop(spa);
1568
1569 /*
1570 * Wait for any outstanding async I/O to complete.
1571 */
1572 if (spa->spa_async_zio_root != NULL) {
1573 for (int i = 0; i < max_ncpus; i++)
1574 (void) zio_wait(spa->spa_async_zio_root[i]);
1575 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1576 spa->spa_async_zio_root = NULL;
1577 }
1578
1579 if (spa->spa_vdev_removal != NULL) {
1580 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1581 spa->spa_vdev_removal = NULL;
1582 }
1583
1584 spa_destroy_aux_threads(spa);
1585
1586 spa_condense_fini(spa);
1587
1588 bpobj_close(&spa->spa_deferred_bpobj);
1589
1590 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1591
1592 /*
1593 * Close all vdevs.
1594 */
1595 if (spa->spa_root_vdev)
1596 vdev_free(spa->spa_root_vdev);
1597 ASSERT(spa->spa_root_vdev == NULL);
1598
1599 /*
1600 * Close the dsl pool.
1601 */
1602 if (spa->spa_dsl_pool) {
1603 dsl_pool_close(spa->spa_dsl_pool);
1604 spa->spa_dsl_pool = NULL;
1605 spa->spa_meta_objset = NULL;
1606 }
1607
1608 ddt_unload(spa);
1609 spa_unload_log_sm_metadata(spa);
1610
1611 /*
1612 * Drop and purge level 2 cache
1613 */
1614 spa_l2cache_drop(spa);
1615
1616 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1617 vdev_free(spa->spa_spares.sav_vdevs[i]);
1618 if (spa->spa_spares.sav_vdevs) {
1619 kmem_free(spa->spa_spares.sav_vdevs,
1620 spa->spa_spares.sav_count * sizeof (void *));
1621 spa->spa_spares.sav_vdevs = NULL;
1622 }
1623 if (spa->spa_spares.sav_config) {
1624 nvlist_free(spa->spa_spares.sav_config);
1625 spa->spa_spares.sav_config = NULL;
1626 }
1627 spa->spa_spares.sav_count = 0;
1628
1629 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1630 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1631 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1632 }
1633 if (spa->spa_l2cache.sav_vdevs) {
1634 kmem_free(spa->spa_l2cache.sav_vdevs,
1635 spa->spa_l2cache.sav_count * sizeof (void *));
1636 spa->spa_l2cache.sav_vdevs = NULL;
1637 }
1638 if (spa->spa_l2cache.sav_config) {
1639 nvlist_free(spa->spa_l2cache.sav_config);
1640 spa->spa_l2cache.sav_config = NULL;
1641 }
1642 spa->spa_l2cache.sav_count = 0;
1643
1644 spa->spa_async_suspended = 0;
1645
1646 spa->spa_indirect_vdevs_loaded = B_FALSE;
1647
1648 if (spa->spa_comment != NULL) {
1649 spa_strfree(spa->spa_comment);
1650 spa->spa_comment = NULL;
1651 }
1652
1653 spa_config_exit(spa, SCL_ALL, spa);
1654 }
1655
1656 /*
1657 * Load (or re-load) the current list of vdevs describing the active spares for
1658 * this pool. When this is called, we have some form of basic information in
1659 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1660 * then re-generate a more complete list including status information.
1661 */
1662 void
1663 spa_load_spares(spa_t *spa)
1664 {
1665 nvlist_t **spares;
1666 uint_t nspares;
1667 int i;
1668 vdev_t *vd, *tvd;
1669
1670 #ifndef _KERNEL
1671 /*
1672 * zdb opens both the current state of the pool and the
1673 * checkpointed state (if present), with a different spa_t.
1674 *
1675 * As spare vdevs are shared among open pools, we skip loading
1676 * them when we load the checkpointed state of the pool.
1677 */
1678 if (!spa_writeable(spa))
1679 return;
1680 #endif
1681
1682 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1683
1684 /*
1685 * First, close and free any existing spare vdevs.
1686 */
1687 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1688 vd = spa->spa_spares.sav_vdevs[i];
1689
1690 /* Undo the call to spa_activate() below */
1691 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1692 B_FALSE)) != NULL && tvd->vdev_isspare)
1693 spa_spare_remove(tvd);
1694 vdev_close(vd);
1695 vdev_free(vd);
1696 }
1697
1698 if (spa->spa_spares.sav_vdevs)
1699 kmem_free(spa->spa_spares.sav_vdevs,
1700 spa->spa_spares.sav_count * sizeof (void *));
1701
1702 if (spa->spa_spares.sav_config == NULL)
1703 nspares = 0;
1704 else
1705 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1706 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1707
1708 spa->spa_spares.sav_count = (int)nspares;
1709 spa->spa_spares.sav_vdevs = NULL;
1710
1711 if (nspares == 0)
1712 return;
1713
1714 /*
1715 * Construct the array of vdevs, opening them to get status in the
1716 * process. For each spare, there is potentially two different vdev_t
1717 * structures associated with it: one in the list of spares (used only
1718 * for basic validation purposes) and one in the active vdev
1719 * configuration (if it's spared in). During this phase we open and
1720 * validate each vdev on the spare list. If the vdev also exists in the
1721 * active configuration, then we also mark this vdev as an active spare.
1722 */
1723 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1724 KM_SLEEP);
1725 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1726 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1727 VDEV_ALLOC_SPARE) == 0);
1728 ASSERT(vd != NULL);
1729
1730 spa->spa_spares.sav_vdevs[i] = vd;
1731
1732 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1733 B_FALSE)) != NULL) {
1734 if (!tvd->vdev_isspare)
1735 spa_spare_add(tvd);
1736
1737 /*
1738 * We only mark the spare active if we were successfully
1739 * able to load the vdev. Otherwise, importing a pool
1740 * with a bad active spare would result in strange
1741 * behavior, because multiple pool would think the spare
1742 * is actively in use.
1743 *
1744 * There is a vulnerability here to an equally bizarre
1745 * circumstance, where a dead active spare is later
1746 * brought back to life (onlined or otherwise). Given
1747 * the rarity of this scenario, and the extra complexity
1748 * it adds, we ignore the possibility.
1749 */
1750 if (!vdev_is_dead(tvd))
1751 spa_spare_activate(tvd);
1752 }
1753
1754 vd->vdev_top = vd;
1755 vd->vdev_aux = &spa->spa_spares;
1756
1757 if (vdev_open(vd) != 0)
1758 continue;
1759
1760 if (vdev_validate_aux(vd) == 0)
1761 spa_spare_add(vd);
1762 }
1763
1764 /*
1765 * Recompute the stashed list of spares, with status information
1766 * this time.
1767 */
1768 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1769 DATA_TYPE_NVLIST_ARRAY) == 0);
1770
1771 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1772 KM_SLEEP);
1773 for (i = 0; i < spa->spa_spares.sav_count; i++)
1774 spares[i] = vdev_config_generate(spa,
1775 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1776 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1777 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1778 for (i = 0; i < spa->spa_spares.sav_count; i++)
1779 nvlist_free(spares[i]);
1780 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1781 }
1782
1783 /*
1784 * Load (or re-load) the current list of vdevs describing the active l2cache for
1785 * this pool. When this is called, we have some form of basic information in
1786 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1787 * then re-generate a more complete list including status information.
1788 * Devices which are already active have their details maintained, and are
1789 * not re-opened.
1790 */
1791 void
1792 spa_load_l2cache(spa_t *spa)
1793 {
1794 nvlist_t **l2cache = NULL;
1795 uint_t nl2cache;
1796 int i, j, oldnvdevs;
1797 uint64_t guid;
1798 vdev_t *vd, **oldvdevs, **newvdevs;
1799 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1800
1801 #ifndef _KERNEL
1802 /*
1803 * zdb opens both the current state of the pool and the
1804 * checkpointed state (if present), with a different spa_t.
1805 *
1806 * As L2 caches are part of the ARC which is shared among open
1807 * pools, we skip loading them when we load the checkpointed
1808 * state of the pool.
1809 */
1810 if (!spa_writeable(spa))
1811 return;
1812 #endif
1813
1814 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1815
1816 oldvdevs = sav->sav_vdevs;
1817 oldnvdevs = sav->sav_count;
1818 sav->sav_vdevs = NULL;
1819 sav->sav_count = 0;
1820
1821 if (sav->sav_config == NULL) {
1822 nl2cache = 0;
1823 newvdevs = NULL;
1824 goto out;
1825 }
1826
1827 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1828 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1829 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1830
1831 /*
1832 * Process new nvlist of vdevs.
1833 */
1834 for (i = 0; i < nl2cache; i++) {
1835 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1836 &guid) == 0);
1837
1838 newvdevs[i] = NULL;
1839 for (j = 0; j < oldnvdevs; j++) {
1840 vd = oldvdevs[j];
1841 if (vd != NULL && guid == vd->vdev_guid) {
1842 /*
1843 * Retain previous vdev for add/remove ops.
1844 */
1845 newvdevs[i] = vd;
1846 oldvdevs[j] = NULL;
1847 break;
1848 }
1849 }
1850
1851 if (newvdevs[i] == NULL) {
1852 /*
1853 * Create new vdev
1854 */
1855 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1856 VDEV_ALLOC_L2CACHE) == 0);
1857 ASSERT(vd != NULL);
1858 newvdevs[i] = vd;
1859
1860 /*
1861 * Commit this vdev as an l2cache device,
1862 * even if it fails to open.
1863 */
1864 spa_l2cache_add(vd);
1865
1866 vd->vdev_top = vd;
1867 vd->vdev_aux = sav;
1868
1869 spa_l2cache_activate(vd);
1870
1871 if (vdev_open(vd) != 0)
1872 continue;
1873
1874 (void) vdev_validate_aux(vd);
1875
1876 if (!vdev_is_dead(vd))
1877 l2arc_add_vdev(spa, vd);
1878
1879 /*
1880 * Upon cache device addition to a pool or pool
1881 * creation with a cache device or if the header
1882 * of the device is invalid we issue an async
1883 * TRIM command for the whole device which will
1884 * execute if l2arc_trim_ahead > 0.
1885 */
1886 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1887 }
1888 }
1889
1890 sav->sav_vdevs = newvdevs;
1891 sav->sav_count = (int)nl2cache;
1892
1893 /*
1894 * Recompute the stashed list of l2cache devices, with status
1895 * information this time.
1896 */
1897 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1898 DATA_TYPE_NVLIST_ARRAY) == 0);
1899
1900 if (sav->sav_count > 0)
1901 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1902 KM_SLEEP);
1903 for (i = 0; i < sav->sav_count; i++)
1904 l2cache[i] = vdev_config_generate(spa,
1905 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1906 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1907 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1908
1909 out:
1910 /*
1911 * Purge vdevs that were dropped
1912 */
1913 for (i = 0; i < oldnvdevs; i++) {
1914 uint64_t pool;
1915
1916 vd = oldvdevs[i];
1917 if (vd != NULL) {
1918 ASSERT(vd->vdev_isl2cache);
1919
1920 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1921 pool != 0ULL && l2arc_vdev_present(vd))
1922 l2arc_remove_vdev(vd);
1923 vdev_clear_stats(vd);
1924 vdev_free(vd);
1925 }
1926 }
1927
1928 if (oldvdevs)
1929 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1930
1931 for (i = 0; i < sav->sav_count; i++)
1932 nvlist_free(l2cache[i]);
1933 if (sav->sav_count)
1934 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1935 }
1936
1937 static int
1938 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1939 {
1940 dmu_buf_t *db;
1941 char *packed = NULL;
1942 size_t nvsize = 0;
1943 int error;
1944 *value = NULL;
1945
1946 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1947 if (error)
1948 return (error);
1949
1950 nvsize = *(uint64_t *)db->db_data;
1951 dmu_buf_rele(db, FTAG);
1952
1953 packed = vmem_alloc(nvsize, KM_SLEEP);
1954 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1955 DMU_READ_PREFETCH);
1956 if (error == 0)
1957 error = nvlist_unpack(packed, nvsize, value, 0);
1958 vmem_free(packed, nvsize);
1959
1960 return (error);
1961 }
1962
1963 /*
1964 * Concrete top-level vdevs that are not missing and are not logs. At every
1965 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1966 */
1967 static uint64_t
1968 spa_healthy_core_tvds(spa_t *spa)
1969 {
1970 vdev_t *rvd = spa->spa_root_vdev;
1971 uint64_t tvds = 0;
1972
1973 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1974 vdev_t *vd = rvd->vdev_child[i];
1975 if (vd->vdev_islog)
1976 continue;
1977 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1978 tvds++;
1979 }
1980
1981 return (tvds);
1982 }
1983
1984 /*
1985 * Checks to see if the given vdev could not be opened, in which case we post a
1986 * sysevent to notify the autoreplace code that the device has been removed.
1987 */
1988 static void
1989 spa_check_removed(vdev_t *vd)
1990 {
1991 for (uint64_t c = 0; c < vd->vdev_children; c++)
1992 spa_check_removed(vd->vdev_child[c]);
1993
1994 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1995 vdev_is_concrete(vd)) {
1996 zfs_post_autoreplace(vd->vdev_spa, vd);
1997 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1998 }
1999 }
2000
2001 static int
2002 spa_check_for_missing_logs(spa_t *spa)
2003 {
2004 vdev_t *rvd = spa->spa_root_vdev;
2005
2006 /*
2007 * If we're doing a normal import, then build up any additional
2008 * diagnostic information about missing log devices.
2009 * We'll pass this up to the user for further processing.
2010 */
2011 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2012 nvlist_t **child, *nv;
2013 uint64_t idx = 0;
2014
2015 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2016 KM_SLEEP);
2017 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2018
2019 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2020 vdev_t *tvd = rvd->vdev_child[c];
2021
2022 /*
2023 * We consider a device as missing only if it failed
2024 * to open (i.e. offline or faulted is not considered
2025 * as missing).
2026 */
2027 if (tvd->vdev_islog &&
2028 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2029 child[idx++] = vdev_config_generate(spa, tvd,
2030 B_FALSE, VDEV_CONFIG_MISSING);
2031 }
2032 }
2033
2034 if (idx > 0) {
2035 fnvlist_add_nvlist_array(nv,
2036 ZPOOL_CONFIG_CHILDREN, child, idx);
2037 fnvlist_add_nvlist(spa->spa_load_info,
2038 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2039
2040 for (uint64_t i = 0; i < idx; i++)
2041 nvlist_free(child[i]);
2042 }
2043 nvlist_free(nv);
2044 kmem_free(child, rvd->vdev_children * sizeof (char **));
2045
2046 if (idx > 0) {
2047 spa_load_failed(spa, "some log devices are missing");
2048 vdev_dbgmsg_print_tree(rvd, 2);
2049 return (SET_ERROR(ENXIO));
2050 }
2051 } else {
2052 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2053 vdev_t *tvd = rvd->vdev_child[c];
2054
2055 if (tvd->vdev_islog &&
2056 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2057 spa_set_log_state(spa, SPA_LOG_CLEAR);
2058 spa_load_note(spa, "some log devices are "
2059 "missing, ZIL is dropped.");
2060 vdev_dbgmsg_print_tree(rvd, 2);
2061 break;
2062 }
2063 }
2064 }
2065
2066 return (0);
2067 }
2068
2069 /*
2070 * Check for missing log devices
2071 */
2072 static boolean_t
2073 spa_check_logs(spa_t *spa)
2074 {
2075 boolean_t rv = B_FALSE;
2076 dsl_pool_t *dp = spa_get_dsl(spa);
2077
2078 switch (spa->spa_log_state) {
2079 default:
2080 break;
2081 case SPA_LOG_MISSING:
2082 /* need to recheck in case slog has been restored */
2083 case SPA_LOG_UNKNOWN:
2084 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2085 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2086 if (rv)
2087 spa_set_log_state(spa, SPA_LOG_MISSING);
2088 break;
2089 }
2090 return (rv);
2091 }
2092
2093 static boolean_t
2094 spa_passivate_log(spa_t *spa)
2095 {
2096 vdev_t *rvd = spa->spa_root_vdev;
2097 boolean_t slog_found = B_FALSE;
2098
2099 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2100
2101 if (!spa_has_slogs(spa))
2102 return (B_FALSE);
2103
2104 for (int c = 0; c < rvd->vdev_children; c++) {
2105 vdev_t *tvd = rvd->vdev_child[c];
2106 metaslab_group_t *mg = tvd->vdev_mg;
2107
2108 if (tvd->vdev_islog) {
2109 metaslab_group_passivate(mg);
2110 slog_found = B_TRUE;
2111 }
2112 }
2113
2114 return (slog_found);
2115 }
2116
2117 static void
2118 spa_activate_log(spa_t *spa)
2119 {
2120 vdev_t *rvd = spa->spa_root_vdev;
2121
2122 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2123
2124 for (int c = 0; c < rvd->vdev_children; c++) {
2125 vdev_t *tvd = rvd->vdev_child[c];
2126 metaslab_group_t *mg = tvd->vdev_mg;
2127
2128 if (tvd->vdev_islog)
2129 metaslab_group_activate(mg);
2130 }
2131 }
2132
2133 int
2134 spa_reset_logs(spa_t *spa)
2135 {
2136 int error;
2137
2138 error = dmu_objset_find(spa_name(spa), zil_reset,
2139 NULL, DS_FIND_CHILDREN);
2140 if (error == 0) {
2141 /*
2142 * We successfully offlined the log device, sync out the
2143 * current txg so that the "stubby" block can be removed
2144 * by zil_sync().
2145 */
2146 txg_wait_synced(spa->spa_dsl_pool, 0);
2147 }
2148 return (error);
2149 }
2150
2151 static void
2152 spa_aux_check_removed(spa_aux_vdev_t *sav)
2153 {
2154 for (int i = 0; i < sav->sav_count; i++)
2155 spa_check_removed(sav->sav_vdevs[i]);
2156 }
2157
2158 void
2159 spa_claim_notify(zio_t *zio)
2160 {
2161 spa_t *spa = zio->io_spa;
2162
2163 if (zio->io_error)
2164 return;
2165
2166 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2167 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2168 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2169 mutex_exit(&spa->spa_props_lock);
2170 }
2171
2172 typedef struct spa_load_error {
2173 uint64_t sle_meta_count;
2174 uint64_t sle_data_count;
2175 } spa_load_error_t;
2176
2177 static void
2178 spa_load_verify_done(zio_t *zio)
2179 {
2180 blkptr_t *bp = zio->io_bp;
2181 spa_load_error_t *sle = zio->io_private;
2182 dmu_object_type_t type = BP_GET_TYPE(bp);
2183 int error = zio->io_error;
2184 spa_t *spa = zio->io_spa;
2185
2186 abd_free(zio->io_abd);
2187 if (error) {
2188 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2189 type != DMU_OT_INTENT_LOG)
2190 atomic_inc_64(&sle->sle_meta_count);
2191 else
2192 atomic_inc_64(&sle->sle_data_count);
2193 }
2194
2195 mutex_enter(&spa->spa_scrub_lock);
2196 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2197 cv_broadcast(&spa->spa_scrub_io_cv);
2198 mutex_exit(&spa->spa_scrub_lock);
2199 }
2200
2201 /*
2202 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2203 * By default, we set it to 1/16th of the arc.
2204 */
2205 int spa_load_verify_shift = 4;
2206 int spa_load_verify_metadata = B_TRUE;
2207 int spa_load_verify_data = B_TRUE;
2208
2209 /*ARGSUSED*/
2210 static int
2211 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2212 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2213 {
2214 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2215 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2216 return (0);
2217 /*
2218 * Note: normally this routine will not be called if
2219 * spa_load_verify_metadata is not set. However, it may be useful
2220 * to manually set the flag after the traversal has begun.
2221 */
2222 if (!spa_load_verify_metadata)
2223 return (0);
2224 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2225 return (0);
2226
2227 uint64_t maxinflight_bytes =
2228 arc_target_bytes() >> spa_load_verify_shift;
2229 zio_t *rio = arg;
2230 size_t size = BP_GET_PSIZE(bp);
2231
2232 mutex_enter(&spa->spa_scrub_lock);
2233 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2234 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2235 spa->spa_load_verify_bytes += size;
2236 mutex_exit(&spa->spa_scrub_lock);
2237
2238 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2239 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2240 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2241 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2242 return (0);
2243 }
2244
2245 /* ARGSUSED */
2246 static int
2247 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2248 {
2249 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2250 return (SET_ERROR(ENAMETOOLONG));
2251
2252 return (0);
2253 }
2254
2255 static int
2256 spa_load_verify(spa_t *spa)
2257 {
2258 zio_t *rio;
2259 spa_load_error_t sle = { 0 };
2260 zpool_load_policy_t policy;
2261 boolean_t verify_ok = B_FALSE;
2262 int error = 0;
2263
2264 zpool_get_load_policy(spa->spa_config, &policy);
2265
2266 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2267 return (0);
2268
2269 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2270 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2271 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2272 DS_FIND_CHILDREN);
2273 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2274 if (error != 0)
2275 return (error);
2276
2277 rio = zio_root(spa, NULL, &sle,
2278 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2279
2280 if (spa_load_verify_metadata) {
2281 if (spa->spa_extreme_rewind) {
2282 spa_load_note(spa, "performing a complete scan of the "
2283 "pool since extreme rewind is on. This may take "
2284 "a very long time.\n (spa_load_verify_data=%u, "
2285 "spa_load_verify_metadata=%u)",
2286 spa_load_verify_data, spa_load_verify_metadata);
2287 }
2288
2289 error = traverse_pool(spa, spa->spa_verify_min_txg,
2290 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2291 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2292 }
2293
2294 (void) zio_wait(rio);
2295 ASSERT0(spa->spa_load_verify_bytes);
2296
2297 spa->spa_load_meta_errors = sle.sle_meta_count;
2298 spa->spa_load_data_errors = sle.sle_data_count;
2299
2300 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2301 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2302 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2303 (u_longlong_t)sle.sle_data_count);
2304 }
2305
2306 if (spa_load_verify_dryrun ||
2307 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2308 sle.sle_data_count <= policy.zlp_maxdata)) {
2309 int64_t loss = 0;
2310
2311 verify_ok = B_TRUE;
2312 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2313 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2314
2315 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2316 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2317 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2318 VERIFY(nvlist_add_int64(spa->spa_load_info,
2319 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2320 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2321 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2322 } else {
2323 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2324 }
2325
2326 if (spa_load_verify_dryrun)
2327 return (0);
2328
2329 if (error) {
2330 if (error != ENXIO && error != EIO)
2331 error = SET_ERROR(EIO);
2332 return (error);
2333 }
2334
2335 return (verify_ok ? 0 : EIO);
2336 }
2337
2338 /*
2339 * Find a value in the pool props object.
2340 */
2341 static void
2342 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2343 {
2344 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2345 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2346 }
2347
2348 /*
2349 * Find a value in the pool directory object.
2350 */
2351 static int
2352 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2353 {
2354 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2355 name, sizeof (uint64_t), 1, val);
2356
2357 if (error != 0 && (error != ENOENT || log_enoent)) {
2358 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2359 "[error=%d]", name, error);
2360 }
2361
2362 return (error);
2363 }
2364
2365 static int
2366 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2367 {
2368 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2369 return (SET_ERROR(err));
2370 }
2371
2372 boolean_t
2373 spa_livelist_delete_check(spa_t *spa)
2374 {
2375 return (spa->spa_livelists_to_delete != 0);
2376 }
2377
2378 /* ARGSUSED */
2379 static boolean_t
2380 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2381 {
2382 spa_t *spa = arg;
2383 return (spa_livelist_delete_check(spa));
2384 }
2385
2386 static int
2387 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2388 {
2389 spa_t *spa = arg;
2390 zio_free(spa, tx->tx_txg, bp);
2391 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2392 -bp_get_dsize_sync(spa, bp),
2393 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2394 return (0);
2395 }
2396
2397 static int
2398 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2399 {
2400 int err;
2401 zap_cursor_t zc;
2402 zap_attribute_t za;
2403 zap_cursor_init(&zc, os, zap_obj);
2404 err = zap_cursor_retrieve(&zc, &za);
2405 zap_cursor_fini(&zc);
2406 if (err == 0)
2407 *llp = za.za_first_integer;
2408 return (err);
2409 }
2410
2411 /*
2412 * Components of livelist deletion that must be performed in syncing
2413 * context: freeing block pointers and updating the pool-wide data
2414 * structures to indicate how much work is left to do
2415 */
2416 typedef struct sublist_delete_arg {
2417 spa_t *spa;
2418 dsl_deadlist_t *ll;
2419 uint64_t key;
2420 bplist_t *to_free;
2421 } sublist_delete_arg_t;
2422
2423 static void
2424 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2425 {
2426 sublist_delete_arg_t *sda = arg;
2427 spa_t *spa = sda->spa;
2428 dsl_deadlist_t *ll = sda->ll;
2429 uint64_t key = sda->key;
2430 bplist_t *to_free = sda->to_free;
2431
2432 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2433 dsl_deadlist_remove_entry(ll, key, tx);
2434 }
2435
2436 typedef struct livelist_delete_arg {
2437 spa_t *spa;
2438 uint64_t ll_obj;
2439 uint64_t zap_obj;
2440 } livelist_delete_arg_t;
2441
2442 static void
2443 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2444 {
2445 livelist_delete_arg_t *lda = arg;
2446 spa_t *spa = lda->spa;
2447 uint64_t ll_obj = lda->ll_obj;
2448 uint64_t zap_obj = lda->zap_obj;
2449 objset_t *mos = spa->spa_meta_objset;
2450 uint64_t count;
2451
2452 /* free the livelist and decrement the feature count */
2453 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2454 dsl_deadlist_free(mos, ll_obj, tx);
2455 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2456 VERIFY0(zap_count(mos, zap_obj, &count));
2457 if (count == 0) {
2458 /* no more livelists to delete */
2459 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2460 DMU_POOL_DELETED_CLONES, tx));
2461 VERIFY0(zap_destroy(mos, zap_obj, tx));
2462 spa->spa_livelists_to_delete = 0;
2463 spa_notify_waiters(spa);
2464 }
2465 }
2466
2467 /*
2468 * Load in the value for the livelist to be removed and open it. Then,
2469 * load its first sublist and determine which block pointers should actually
2470 * be freed. Then, call a synctask which performs the actual frees and updates
2471 * the pool-wide livelist data.
2472 */
2473 /* ARGSUSED */
2474 static void
2475 spa_livelist_delete_cb(void *arg, zthr_t *z)
2476 {
2477 spa_t *spa = arg;
2478 uint64_t ll_obj = 0, count;
2479 objset_t *mos = spa->spa_meta_objset;
2480 uint64_t zap_obj = spa->spa_livelists_to_delete;
2481 /*
2482 * Determine the next livelist to delete. This function should only
2483 * be called if there is at least one deleted clone.
2484 */
2485 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2486 VERIFY0(zap_count(mos, ll_obj, &count));
2487 if (count > 0) {
2488 dsl_deadlist_t ll = { 0 };
2489 dsl_deadlist_entry_t *dle;
2490 bplist_t to_free;
2491 dsl_deadlist_open(&ll, mos, ll_obj);
2492 dle = dsl_deadlist_first(&ll);
2493 ASSERT3P(dle, !=, NULL);
2494 bplist_create(&to_free);
2495 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2496 z, NULL);
2497 if (err == 0) {
2498 sublist_delete_arg_t sync_arg = {
2499 .spa = spa,
2500 .ll = &ll,
2501 .key = dle->dle_mintxg,
2502 .to_free = &to_free
2503 };
2504 zfs_dbgmsg("deleting sublist (id %llu) from"
2505 " livelist %llu, %d remaining",
2506 dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2507 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2508 sublist_delete_sync, &sync_arg, 0,
2509 ZFS_SPACE_CHECK_DESTROY));
2510 } else {
2511 VERIFY3U(err, ==, EINTR);
2512 }
2513 bplist_clear(&to_free);
2514 bplist_destroy(&to_free);
2515 dsl_deadlist_close(&ll);
2516 } else {
2517 livelist_delete_arg_t sync_arg = {
2518 .spa = spa,
2519 .ll_obj = ll_obj,
2520 .zap_obj = zap_obj
2521 };
2522 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2523 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2524 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2525 }
2526 }
2527
2528 static void
2529 spa_start_livelist_destroy_thread(spa_t *spa)
2530 {
2531 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2532 spa->spa_livelist_delete_zthr =
2533 zthr_create("z_livelist_destroy",
2534 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2535 }
2536
2537 typedef struct livelist_new_arg {
2538 bplist_t *allocs;
2539 bplist_t *frees;
2540 } livelist_new_arg_t;
2541
2542 static int
2543 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2544 dmu_tx_t *tx)
2545 {
2546 ASSERT(tx == NULL);
2547 livelist_new_arg_t *lna = arg;
2548 if (bp_freed) {
2549 bplist_append(lna->frees, bp);
2550 } else {
2551 bplist_append(lna->allocs, bp);
2552 zfs_livelist_condense_new_alloc++;
2553 }
2554 return (0);
2555 }
2556
2557 typedef struct livelist_condense_arg {
2558 spa_t *spa;
2559 bplist_t to_keep;
2560 uint64_t first_size;
2561 uint64_t next_size;
2562 } livelist_condense_arg_t;
2563
2564 static void
2565 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2566 {
2567 livelist_condense_arg_t *lca = arg;
2568 spa_t *spa = lca->spa;
2569 bplist_t new_frees;
2570 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2571
2572 /* Have we been cancelled? */
2573 if (spa->spa_to_condense.cancelled) {
2574 zfs_livelist_condense_sync_cancel++;
2575 goto out;
2576 }
2577
2578 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2579 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2580 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2581
2582 /*
2583 * It's possible that the livelist was changed while the zthr was
2584 * running. Therefore, we need to check for new blkptrs in the two
2585 * entries being condensed and continue to track them in the livelist.
2586 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2587 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2588 * we need to sort them into two different bplists.
2589 */
2590 uint64_t first_obj = first->dle_bpobj.bpo_object;
2591 uint64_t next_obj = next->dle_bpobj.bpo_object;
2592 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2593 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2594
2595 bplist_create(&new_frees);
2596 livelist_new_arg_t new_bps = {
2597 .allocs = &lca->to_keep,
2598 .frees = &new_frees,
2599 };
2600
2601 if (cur_first_size > lca->first_size) {
2602 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2603 livelist_track_new_cb, &new_bps, lca->first_size));
2604 }
2605 if (cur_next_size > lca->next_size) {
2606 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2607 livelist_track_new_cb, &new_bps, lca->next_size));
2608 }
2609
2610 dsl_deadlist_clear_entry(first, ll, tx);
2611 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2612 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2613
2614 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2615 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2616 bplist_destroy(&new_frees);
2617
2618 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2619 dsl_dataset_name(ds, dsname);
2620 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2621 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2622 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2623 cur_first_size, next_obj, cur_next_size,
2624 first->dle_bpobj.bpo_object,
2625 first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2626 out:
2627 dmu_buf_rele(ds->ds_dbuf, spa);
2628 spa->spa_to_condense.ds = NULL;
2629 bplist_clear(&lca->to_keep);
2630 bplist_destroy(&lca->to_keep);
2631 kmem_free(lca, sizeof (livelist_condense_arg_t));
2632 spa->spa_to_condense.syncing = B_FALSE;
2633 }
2634
2635 static void
2636 spa_livelist_condense_cb(void *arg, zthr_t *t)
2637 {
2638 while (zfs_livelist_condense_zthr_pause &&
2639 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2640 delay(1);
2641
2642 spa_t *spa = arg;
2643 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2644 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2645 uint64_t first_size, next_size;
2646
2647 livelist_condense_arg_t *lca =
2648 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2649 bplist_create(&lca->to_keep);
2650
2651 /*
2652 * Process the livelists (matching FREEs and ALLOCs) in open context
2653 * so we have minimal work in syncing context to condense.
2654 *
2655 * We save bpobj sizes (first_size and next_size) to use later in
2656 * syncing context to determine if entries were added to these sublists
2657 * while in open context. This is possible because the clone is still
2658 * active and open for normal writes and we want to make sure the new,
2659 * unprocessed blockpointers are inserted into the livelist normally.
2660 *
2661 * Note that dsl_process_sub_livelist() both stores the size number of
2662 * blockpointers and iterates over them while the bpobj's lock held, so
2663 * the sizes returned to us are consistent which what was actually
2664 * processed.
2665 */
2666 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2667 &first_size);
2668 if (err == 0)
2669 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2670 t, &next_size);
2671
2672 if (err == 0) {
2673 while (zfs_livelist_condense_sync_pause &&
2674 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2675 delay(1);
2676
2677 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2678 dmu_tx_mark_netfree(tx);
2679 dmu_tx_hold_space(tx, 1);
2680 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2681 if (err == 0) {
2682 /*
2683 * Prevent the condense zthr restarting before
2684 * the synctask completes.
2685 */
2686 spa->spa_to_condense.syncing = B_TRUE;
2687 lca->spa = spa;
2688 lca->first_size = first_size;
2689 lca->next_size = next_size;
2690 dsl_sync_task_nowait(spa_get_dsl(spa),
2691 spa_livelist_condense_sync, lca, tx);
2692 dmu_tx_commit(tx);
2693 return;
2694 }
2695 }
2696 /*
2697 * Condensing can not continue: either it was externally stopped or
2698 * we were unable to assign to a tx because the pool has run out of
2699 * space. In the second case, we'll just end up trying to condense
2700 * again in a later txg.
2701 */
2702 ASSERT(err != 0);
2703 bplist_clear(&lca->to_keep);
2704 bplist_destroy(&lca->to_keep);
2705 kmem_free(lca, sizeof (livelist_condense_arg_t));
2706 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2707 spa->spa_to_condense.ds = NULL;
2708 if (err == EINTR)
2709 zfs_livelist_condense_zthr_cancel++;
2710 }
2711
2712 /* ARGSUSED */
2713 /*
2714 * Check that there is something to condense but that a condense is not
2715 * already in progress and that condensing has not been cancelled.
2716 */
2717 static boolean_t
2718 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2719 {
2720 spa_t *spa = arg;
2721 if ((spa->spa_to_condense.ds != NULL) &&
2722 (spa->spa_to_condense.syncing == B_FALSE) &&
2723 (spa->spa_to_condense.cancelled == B_FALSE)) {
2724 return (B_TRUE);
2725 }
2726 return (B_FALSE);
2727 }
2728
2729 static void
2730 spa_start_livelist_condensing_thread(spa_t *spa)
2731 {
2732 spa->spa_to_condense.ds = NULL;
2733 spa->spa_to_condense.first = NULL;
2734 spa->spa_to_condense.next = NULL;
2735 spa->spa_to_condense.syncing = B_FALSE;
2736 spa->spa_to_condense.cancelled = B_FALSE;
2737
2738 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2739 spa->spa_livelist_condense_zthr =
2740 zthr_create("z_livelist_condense",
2741 spa_livelist_condense_cb_check,
2742 spa_livelist_condense_cb, spa);
2743 }
2744
2745 static void
2746 spa_spawn_aux_threads(spa_t *spa)
2747 {
2748 ASSERT(spa_writeable(spa));
2749
2750 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2751
2752 spa_start_indirect_condensing_thread(spa);
2753 spa_start_livelist_destroy_thread(spa);
2754 spa_start_livelist_condensing_thread(spa);
2755
2756 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2757 spa->spa_checkpoint_discard_zthr =
2758 zthr_create("z_checkpoint_discard",
2759 spa_checkpoint_discard_thread_check,
2760 spa_checkpoint_discard_thread, spa);
2761 }
2762
2763 /*
2764 * Fix up config after a partly-completed split. This is done with the
2765 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2766 * pool have that entry in their config, but only the splitting one contains
2767 * a list of all the guids of the vdevs that are being split off.
2768 *
2769 * This function determines what to do with that list: either rejoin
2770 * all the disks to the pool, or complete the splitting process. To attempt
2771 * the rejoin, each disk that is offlined is marked online again, and
2772 * we do a reopen() call. If the vdev label for every disk that was
2773 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2774 * then we call vdev_split() on each disk, and complete the split.
2775 *
2776 * Otherwise we leave the config alone, with all the vdevs in place in
2777 * the original pool.
2778 */
2779 static void
2780 spa_try_repair(spa_t *spa, nvlist_t *config)
2781 {
2782 uint_t extracted;
2783 uint64_t *glist;
2784 uint_t i, gcount;
2785 nvlist_t *nvl;
2786 vdev_t **vd;
2787 boolean_t attempt_reopen;
2788
2789 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2790 return;
2791
2792 /* check that the config is complete */
2793 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2794 &glist, &gcount) != 0)
2795 return;
2796
2797 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2798
2799 /* attempt to online all the vdevs & validate */
2800 attempt_reopen = B_TRUE;
2801 for (i = 0; i < gcount; i++) {
2802 if (glist[i] == 0) /* vdev is hole */
2803 continue;
2804
2805 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2806 if (vd[i] == NULL) {
2807 /*
2808 * Don't bother attempting to reopen the disks;
2809 * just do the split.
2810 */
2811 attempt_reopen = B_FALSE;
2812 } else {
2813 /* attempt to re-online it */
2814 vd[i]->vdev_offline = B_FALSE;
2815 }
2816 }
2817
2818 if (attempt_reopen) {
2819 vdev_reopen(spa->spa_root_vdev);
2820
2821 /* check each device to see what state it's in */
2822 for (extracted = 0, i = 0; i < gcount; i++) {
2823 if (vd[i] != NULL &&
2824 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2825 break;
2826 ++extracted;
2827 }
2828 }
2829
2830 /*
2831 * If every disk has been moved to the new pool, or if we never
2832 * even attempted to look at them, then we split them off for
2833 * good.
2834 */
2835 if (!attempt_reopen || gcount == extracted) {
2836 for (i = 0; i < gcount; i++)
2837 if (vd[i] != NULL)
2838 vdev_split(vd[i]);
2839 vdev_reopen(spa->spa_root_vdev);
2840 }
2841
2842 kmem_free(vd, gcount * sizeof (vdev_t *));
2843 }
2844
2845 static int
2846 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2847 {
2848 char *ereport = FM_EREPORT_ZFS_POOL;
2849 int error;
2850
2851 spa->spa_load_state = state;
2852 (void) spa_import_progress_set_state(spa_guid(spa),
2853 spa_load_state(spa));
2854
2855 gethrestime(&spa->spa_loaded_ts);
2856 error = spa_load_impl(spa, type, &ereport);
2857
2858 /*
2859 * Don't count references from objsets that are already closed
2860 * and are making their way through the eviction process.
2861 */
2862 spa_evicting_os_wait(spa);
2863 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2864 if (error) {
2865 if (error != EEXIST) {
2866 spa->spa_loaded_ts.tv_sec = 0;
2867 spa->spa_loaded_ts.tv_nsec = 0;
2868 }
2869 if (error != EBADF) {
2870 (void) zfs_ereport_post(ereport, spa,
2871 NULL, NULL, NULL, 0);
2872 }
2873 }
2874 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2875 spa->spa_ena = 0;
2876
2877 (void) spa_import_progress_set_state(spa_guid(spa),
2878 spa_load_state(spa));
2879
2880 return (error);
2881 }
2882
2883 #ifdef ZFS_DEBUG
2884 /*
2885 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2886 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2887 * spa's per-vdev ZAP list.
2888 */
2889 static uint64_t
2890 vdev_count_verify_zaps(vdev_t *vd)
2891 {
2892 spa_t *spa = vd->vdev_spa;
2893 uint64_t total = 0;
2894
2895 if (vd->vdev_top_zap != 0) {
2896 total++;
2897 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2898 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2899 }
2900 if (vd->vdev_leaf_zap != 0) {
2901 total++;
2902 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2903 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2904 }
2905
2906 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2907 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2908 }
2909
2910 return (total);
2911 }
2912 #endif
2913
2914 /*
2915 * Determine whether the activity check is required.
2916 */
2917 static boolean_t
2918 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2919 nvlist_t *config)
2920 {
2921 uint64_t state = 0;
2922 uint64_t hostid = 0;
2923 uint64_t tryconfig_txg = 0;
2924 uint64_t tryconfig_timestamp = 0;
2925 uint16_t tryconfig_mmp_seq = 0;
2926 nvlist_t *nvinfo;
2927
2928 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2929 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2930 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2931 &tryconfig_txg);
2932 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2933 &tryconfig_timestamp);
2934 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2935 &tryconfig_mmp_seq);
2936 }
2937
2938 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2939
2940 /*
2941 * Disable the MMP activity check - This is used by zdb which
2942 * is intended to be used on potentially active pools.
2943 */
2944 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2945 return (B_FALSE);
2946
2947 /*
2948 * Skip the activity check when the MMP feature is disabled.
2949 */
2950 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2951 return (B_FALSE);
2952
2953 /*
2954 * If the tryconfig_ values are nonzero, they are the results of an
2955 * earlier tryimport. If they all match the uberblock we just found,
2956 * then the pool has not changed and we return false so we do not test
2957 * a second time.
2958 */
2959 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2960 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2961 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2962 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2963 return (B_FALSE);
2964
2965 /*
2966 * Allow the activity check to be skipped when importing the pool
2967 * on the same host which last imported it. Since the hostid from
2968 * configuration may be stale use the one read from the label.
2969 */
2970 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2971 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2972
2973 if (hostid == spa_get_hostid(spa))
2974 return (B_FALSE);
2975
2976 /*
2977 * Skip the activity test when the pool was cleanly exported.
2978 */
2979 if (state != POOL_STATE_ACTIVE)
2980 return (B_FALSE);
2981
2982 return (B_TRUE);
2983 }
2984
2985 /*
2986 * Nanoseconds the activity check must watch for changes on-disk.
2987 */
2988 static uint64_t
2989 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2990 {
2991 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2992 uint64_t multihost_interval = MSEC2NSEC(
2993 MMP_INTERVAL_OK(zfs_multihost_interval));
2994 uint64_t import_delay = MAX(NANOSEC, import_intervals *
2995 multihost_interval);
2996
2997 /*
2998 * Local tunables determine a minimum duration except for the case
2999 * where we know when the remote host will suspend the pool if MMP
3000 * writes do not land.
3001 *
3002 * See Big Theory comment at the top of mmp.c for the reasoning behind
3003 * these cases and times.
3004 */
3005
3006 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3007
3008 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3009 MMP_FAIL_INT(ub) > 0) {
3010
3011 /* MMP on remote host will suspend pool after failed writes */
3012 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3013 MMP_IMPORT_SAFETY_FACTOR / 100;
3014
3015 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3016 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3017 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3018 MMP_INTERVAL(ub), import_intervals);
3019
3020 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3021 MMP_FAIL_INT(ub) == 0) {
3022
3023 /* MMP on remote host will never suspend pool */
3024 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3025 ub->ub_mmp_delay) * import_intervals);
3026
3027 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3028 "mmp_interval=%llu ub_mmp_delay=%llu "
3029 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3030 ub->ub_mmp_delay, import_intervals);
3031
3032 } else if (MMP_VALID(ub)) {
3033 /*
3034 * zfs-0.7 compatibility case
3035 */
3036
3037 import_delay = MAX(import_delay, (multihost_interval +
3038 ub->ub_mmp_delay) * import_intervals);
3039
3040 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3041 "import_intervals=%u leaves=%u", import_delay,
3042 ub->ub_mmp_delay, import_intervals,
3043 vdev_count_leaves(spa));
3044 } else {
3045 /* Using local tunings is the only reasonable option */
3046 zfs_dbgmsg("pool last imported on non-MMP aware "
3047 "host using import_delay=%llu multihost_interval=%llu "
3048 "import_intervals=%u", import_delay, multihost_interval,
3049 import_intervals);
3050 }
3051
3052 return (import_delay);
3053 }
3054
3055 /*
3056 * Perform the import activity check. If the user canceled the import or
3057 * we detected activity then fail.
3058 */
3059 static int
3060 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3061 {
3062 uint64_t txg = ub->ub_txg;
3063 uint64_t timestamp = ub->ub_timestamp;
3064 uint64_t mmp_config = ub->ub_mmp_config;
3065 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3066 uint64_t import_delay;
3067 hrtime_t import_expire;
3068 nvlist_t *mmp_label = NULL;
3069 vdev_t *rvd = spa->spa_root_vdev;
3070 kcondvar_t cv;
3071 kmutex_t mtx;
3072 int error = 0;
3073
3074 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3075 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3076 mutex_enter(&mtx);
3077
3078 /*
3079 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3080 * during the earlier tryimport. If the txg recorded there is 0 then
3081 * the pool is known to be active on another host.
3082 *
3083 * Otherwise, the pool might be in use on another host. Check for
3084 * changes in the uberblocks on disk if necessary.
3085 */
3086 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3087 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3088 ZPOOL_CONFIG_LOAD_INFO);
3089
3090 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3091 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3092 vdev_uberblock_load(rvd, ub, &mmp_label);
3093 error = SET_ERROR(EREMOTEIO);
3094 goto out;
3095 }
3096 }
3097
3098 import_delay = spa_activity_check_duration(spa, ub);
3099
3100 /* Add a small random factor in case of simultaneous imports (0-25%) */
3101 import_delay += import_delay * spa_get_random(250) / 1000;
3102
3103 import_expire = gethrtime() + import_delay;
3104
3105 while (gethrtime() < import_expire) {
3106 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3107 NSEC2SEC(import_expire - gethrtime()));
3108
3109 vdev_uberblock_load(rvd, ub, &mmp_label);
3110
3111 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3112 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3113 zfs_dbgmsg("multihost activity detected "
3114 "txg %llu ub_txg %llu "
3115 "timestamp %llu ub_timestamp %llu "
3116 "mmp_config %#llx ub_mmp_config %#llx",
3117 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3118 mmp_config, ub->ub_mmp_config);
3119
3120 error = SET_ERROR(EREMOTEIO);
3121 break;
3122 }
3123
3124 if (mmp_label) {
3125 nvlist_free(mmp_label);
3126 mmp_label = NULL;
3127 }
3128
3129 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3130 if (error != -1) {
3131 error = SET_ERROR(EINTR);
3132 break;
3133 }
3134 error = 0;
3135 }
3136
3137 out:
3138 mutex_exit(&mtx);
3139 mutex_destroy(&mtx);
3140 cv_destroy(&cv);
3141
3142 /*
3143 * If the pool is determined to be active store the status in the
3144 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3145 * available from configuration read from disk store them as well.
3146 * This allows 'zpool import' to generate a more useful message.
3147 *
3148 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3149 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3150 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3151 */
3152 if (error == EREMOTEIO) {
3153 char *hostname = "<unknown>";
3154 uint64_t hostid = 0;
3155
3156 if (mmp_label) {
3157 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3158 hostname = fnvlist_lookup_string(mmp_label,
3159 ZPOOL_CONFIG_HOSTNAME);
3160 fnvlist_add_string(spa->spa_load_info,
3161 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3162 }
3163
3164 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3165 hostid = fnvlist_lookup_uint64(mmp_label,
3166 ZPOOL_CONFIG_HOSTID);
3167 fnvlist_add_uint64(spa->spa_load_info,
3168 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3169 }
3170 }
3171
3172 fnvlist_add_uint64(spa->spa_load_info,
3173 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3174 fnvlist_add_uint64(spa->spa_load_info,
3175 ZPOOL_CONFIG_MMP_TXG, 0);
3176
3177 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3178 }
3179
3180 if (mmp_label)
3181 nvlist_free(mmp_label);
3182
3183 return (error);
3184 }
3185
3186 static int
3187 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3188 {
3189 uint64_t hostid;
3190 char *hostname;
3191 uint64_t myhostid = 0;
3192
3193 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3194 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3195 hostname = fnvlist_lookup_string(mos_config,
3196 ZPOOL_CONFIG_HOSTNAME);
3197
3198 myhostid = zone_get_hostid(NULL);
3199
3200 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3201 cmn_err(CE_WARN, "pool '%s' could not be "
3202 "loaded as it was last accessed by "
3203 "another system (host: %s hostid: 0x%llx). "
3204 "See: https://openzfs.github.io/openzfs-docs/msg/"
3205 "ZFS-8000-EY",
3206 spa_name(spa), hostname, (u_longlong_t)hostid);
3207 spa_load_failed(spa, "hostid verification failed: pool "
3208 "last accessed by host: %s (hostid: 0x%llx)",
3209 hostname, (u_longlong_t)hostid);
3210 return (SET_ERROR(EBADF));
3211 }
3212 }
3213
3214 return (0);
3215 }
3216
3217 static int
3218 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3219 {
3220 int error = 0;
3221 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3222 int parse;
3223 vdev_t *rvd;
3224 uint64_t pool_guid;
3225 char *comment;
3226
3227 /*
3228 * Versioning wasn't explicitly added to the label until later, so if
3229 * it's not present treat it as the initial version.
3230 */
3231 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3232 &spa->spa_ubsync.ub_version) != 0)
3233 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3234
3235 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3236 spa_load_failed(spa, "invalid config provided: '%s' missing",
3237 ZPOOL_CONFIG_POOL_GUID);
3238 return (SET_ERROR(EINVAL));
3239 }
3240
3241 /*
3242 * If we are doing an import, ensure that the pool is not already
3243 * imported by checking if its pool guid already exists in the
3244 * spa namespace.
3245 *
3246 * The only case that we allow an already imported pool to be
3247 * imported again, is when the pool is checkpointed and we want to
3248 * look at its checkpointed state from userland tools like zdb.
3249 */
3250 #ifdef _KERNEL
3251 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3252 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3253 spa_guid_exists(pool_guid, 0)) {
3254 #else
3255 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3256 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3257 spa_guid_exists(pool_guid, 0) &&
3258 !spa_importing_readonly_checkpoint(spa)) {
3259 #endif
3260 spa_load_failed(spa, "a pool with guid %llu is already open",
3261 (u_longlong_t)pool_guid);
3262 return (SET_ERROR(EEXIST));
3263 }
3264
3265 spa->spa_config_guid = pool_guid;
3266
3267 nvlist_free(spa->spa_load_info);
3268 spa->spa_load_info = fnvlist_alloc();
3269
3270 ASSERT(spa->spa_comment == NULL);
3271 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3272 spa->spa_comment = spa_strdup(comment);
3273
3274 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3275 &spa->spa_config_txg);
3276
3277 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3278 spa->spa_config_splitting = fnvlist_dup(nvl);
3279
3280 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3281 spa_load_failed(spa, "invalid config provided: '%s' missing",
3282 ZPOOL_CONFIG_VDEV_TREE);
3283 return (SET_ERROR(EINVAL));
3284 }
3285
3286 /*
3287 * Create "The Godfather" zio to hold all async IOs
3288 */
3289 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3290 KM_SLEEP);
3291 for (int i = 0; i < max_ncpus; i++) {
3292 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3293 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3294 ZIO_FLAG_GODFATHER);
3295 }
3296
3297 /*
3298 * Parse the configuration into a vdev tree. We explicitly set the
3299 * value that will be returned by spa_version() since parsing the
3300 * configuration requires knowing the version number.
3301 */
3302 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3303 parse = (type == SPA_IMPORT_EXISTING ?
3304 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3305 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3306 spa_config_exit(spa, SCL_ALL, FTAG);
3307
3308 if (error != 0) {
3309 spa_load_failed(spa, "unable to parse config [error=%d]",
3310 error);
3311 return (error);
3312 }
3313
3314 ASSERT(spa->spa_root_vdev == rvd);
3315 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3316 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3317
3318 if (type != SPA_IMPORT_ASSEMBLE) {
3319 ASSERT(spa_guid(spa) == pool_guid);
3320 }
3321
3322 return (0);
3323 }
3324
3325 /*
3326 * Recursively open all vdevs in the vdev tree. This function is called twice:
3327 * first with the untrusted config, then with the trusted config.
3328 */
3329 static int
3330 spa_ld_open_vdevs(spa_t *spa)
3331 {
3332 int error = 0;
3333
3334 /*
3335 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3336 * missing/unopenable for the root vdev to be still considered openable.
3337 */
3338 if (spa->spa_trust_config) {
3339 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3340 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3341 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3342 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3343 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3344 } else {
3345 spa->spa_missing_tvds_allowed = 0;
3346 }
3347
3348 spa->spa_missing_tvds_allowed =
3349 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3350
3351 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3352 error = vdev_open(spa->spa_root_vdev);
3353 spa_config_exit(spa, SCL_ALL, FTAG);
3354
3355 if (spa->spa_missing_tvds != 0) {
3356 spa_load_note(spa, "vdev tree has %lld missing top-level "
3357 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3358 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3359 /*
3360 * Although theoretically we could allow users to open
3361 * incomplete pools in RW mode, we'd need to add a lot
3362 * of extra logic (e.g. adjust pool space to account
3363 * for missing vdevs).
3364 * This limitation also prevents users from accidentally
3365 * opening the pool in RW mode during data recovery and
3366 * damaging it further.
3367 */
3368 spa_load_note(spa, "pools with missing top-level "
3369 "vdevs can only be opened in read-only mode.");
3370 error = SET_ERROR(ENXIO);
3371 } else {
3372 spa_load_note(spa, "current settings allow for maximum "
3373 "%lld missing top-level vdevs at this stage.",
3374 (u_longlong_t)spa->spa_missing_tvds_allowed);
3375 }
3376 }
3377 if (error != 0) {
3378 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3379 error);
3380 }
3381 if (spa->spa_missing_tvds != 0 || error != 0)
3382 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3383
3384 return (error);
3385 }
3386
3387 /*
3388 * We need to validate the vdev labels against the configuration that
3389 * we have in hand. This function is called twice: first with an untrusted
3390 * config, then with a trusted config. The validation is more strict when the
3391 * config is trusted.
3392 */
3393 static int
3394 spa_ld_validate_vdevs(spa_t *spa)
3395 {
3396 int error = 0;
3397 vdev_t *rvd = spa->spa_root_vdev;
3398
3399 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3400 error = vdev_validate(rvd);
3401 spa_config_exit(spa, SCL_ALL, FTAG);
3402
3403 if (error != 0) {
3404 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3405 return (error);
3406 }
3407
3408 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3409 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3410 "some vdevs");
3411 vdev_dbgmsg_print_tree(rvd, 2);
3412 return (SET_ERROR(ENXIO));
3413 }
3414
3415 return (0);
3416 }
3417
3418 static void
3419 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3420 {
3421 spa->spa_state = POOL_STATE_ACTIVE;
3422 spa->spa_ubsync = spa->spa_uberblock;
3423 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3424 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3425 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3426 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3427 spa->spa_claim_max_txg = spa->spa_first_txg;
3428 spa->spa_prev_software_version = ub->ub_software_version;
3429 }
3430
3431 static int
3432 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3433 {
3434 vdev_t *rvd = spa->spa_root_vdev;
3435 nvlist_t *label;
3436 uberblock_t *ub = &spa->spa_uberblock;
3437 boolean_t activity_check = B_FALSE;
3438
3439 /*
3440 * If we are opening the checkpointed state of the pool by
3441 * rewinding to it, at this point we will have written the
3442 * checkpointed uberblock to the vdev labels, so searching
3443 * the labels will find the right uberblock. However, if
3444 * we are opening the checkpointed state read-only, we have
3445 * not modified the labels. Therefore, we must ignore the
3446 * labels and continue using the spa_uberblock that was set
3447 * by spa_ld_checkpoint_rewind.
3448 *
3449 * Note that it would be fine to ignore the labels when
3450 * rewinding (opening writeable) as well. However, if we
3451 * crash just after writing the labels, we will end up
3452 * searching the labels. Doing so in the common case means
3453 * that this code path gets exercised normally, rather than
3454 * just in the edge case.
3455 */
3456 if (ub->ub_checkpoint_txg != 0 &&
3457 spa_importing_readonly_checkpoint(spa)) {
3458 spa_ld_select_uberblock_done(spa, ub);
3459 return (0);
3460 }
3461
3462 /*
3463 * Find the best uberblock.
3464 */
3465 vdev_uberblock_load(rvd, ub, &label);
3466
3467 /*
3468 * If we weren't able to find a single valid uberblock, return failure.
3469 */
3470 if (ub->ub_txg == 0) {
3471 nvlist_free(label);
3472 spa_load_failed(spa, "no valid uberblock found");
3473 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3474 }
3475
3476 if (spa->spa_load_max_txg != UINT64_MAX) {
3477 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3478 (u_longlong_t)spa->spa_load_max_txg);
3479 }
3480 spa_load_note(spa, "using uberblock with txg=%llu",
3481 (u_longlong_t)ub->ub_txg);
3482
3483
3484 /*
3485 * For pools which have the multihost property on determine if the
3486 * pool is truly inactive and can be safely imported. Prevent
3487 * hosts which don't have a hostid set from importing the pool.
3488 */
3489 activity_check = spa_activity_check_required(spa, ub, label,
3490 spa->spa_config);
3491 if (activity_check) {
3492 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3493 spa_get_hostid(spa) == 0) {
3494 nvlist_free(label);
3495 fnvlist_add_uint64(spa->spa_load_info,
3496 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3497 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3498 }
3499
3500 int error = spa_activity_check(spa, ub, spa->spa_config);
3501 if (error) {
3502 nvlist_free(label);
3503 return (error);
3504 }
3505
3506 fnvlist_add_uint64(spa->spa_load_info,
3507 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3508 fnvlist_add_uint64(spa->spa_load_info,
3509 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3510 fnvlist_add_uint16(spa->spa_load_info,
3511 ZPOOL_CONFIG_MMP_SEQ,
3512 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3513 }
3514
3515 /*
3516 * If the pool has an unsupported version we can't open it.
3517 */
3518 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3519 nvlist_free(label);
3520 spa_load_failed(spa, "version %llu is not supported",
3521 (u_longlong_t)ub->ub_version);
3522 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3523 }
3524
3525 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3526 nvlist_t *features;
3527
3528 /*
3529 * If we weren't able to find what's necessary for reading the
3530 * MOS in the label, return failure.
3531 */
3532 if (label == NULL) {
3533 spa_load_failed(spa, "label config unavailable");
3534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3535 ENXIO));
3536 }
3537
3538 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3539 &features) != 0) {
3540 nvlist_free(label);
3541 spa_load_failed(spa, "invalid label: '%s' missing",
3542 ZPOOL_CONFIG_FEATURES_FOR_READ);
3543 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3544 ENXIO));
3545 }
3546
3547 /*
3548 * Update our in-core representation with the definitive values
3549 * from the label.
3550 */
3551 nvlist_free(spa->spa_label_features);
3552 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3553 }
3554
3555 nvlist_free(label);
3556
3557 /*
3558 * Look through entries in the label nvlist's features_for_read. If
3559 * there is a feature listed there which we don't understand then we
3560 * cannot open a pool.
3561 */
3562 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3563 nvlist_t *unsup_feat;
3564
3565 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3566 0);
3567
3568 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3569 NULL); nvp != NULL;
3570 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3571 if (!zfeature_is_supported(nvpair_name(nvp))) {
3572 VERIFY(nvlist_add_string(unsup_feat,
3573 nvpair_name(nvp), "") == 0);
3574 }
3575 }
3576
3577 if (!nvlist_empty(unsup_feat)) {
3578 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3579 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3580 nvlist_free(unsup_feat);
3581 spa_load_failed(spa, "some features are unsupported");
3582 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3583 ENOTSUP));
3584 }
3585
3586 nvlist_free(unsup_feat);
3587 }
3588
3589 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3590 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3591 spa_try_repair(spa, spa->spa_config);
3592 spa_config_exit(spa, SCL_ALL, FTAG);
3593 nvlist_free(spa->spa_config_splitting);
3594 spa->spa_config_splitting = NULL;
3595 }
3596
3597 /*
3598 * Initialize internal SPA structures.
3599 */
3600 spa_ld_select_uberblock_done(spa, ub);
3601
3602 return (0);
3603 }
3604
3605 static int
3606 spa_ld_open_rootbp(spa_t *spa)
3607 {
3608 int error = 0;
3609 vdev_t *rvd = spa->spa_root_vdev;
3610
3611 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3612 if (error != 0) {
3613 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3614 "[error=%d]", error);
3615 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3616 }
3617 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3618
3619 return (0);
3620 }
3621
3622 static int
3623 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3624 boolean_t reloading)
3625 {
3626 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3627 nvlist_t *nv, *mos_config, *policy;
3628 int error = 0, copy_error;
3629 uint64_t healthy_tvds, healthy_tvds_mos;
3630 uint64_t mos_config_txg;
3631
3632 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3633 != 0)
3634 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3635
3636 /*
3637 * If we're assembling a pool from a split, the config provided is
3638 * already trusted so there is nothing to do.
3639 */
3640 if (type == SPA_IMPORT_ASSEMBLE)
3641 return (0);
3642
3643 healthy_tvds = spa_healthy_core_tvds(spa);
3644
3645 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3646 != 0) {
3647 spa_load_failed(spa, "unable to retrieve MOS config");
3648 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3649 }
3650
3651 /*
3652 * If we are doing an open, pool owner wasn't verified yet, thus do
3653 * the verification here.
3654 */
3655 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3656 error = spa_verify_host(spa, mos_config);
3657 if (error != 0) {
3658 nvlist_free(mos_config);
3659 return (error);
3660 }
3661 }
3662
3663 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3664
3665 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3666
3667 /*
3668 * Build a new vdev tree from the trusted config
3669 */
3670 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3671
3672 /*
3673 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3674 * obtained by scanning /dev/dsk, then it will have the right vdev
3675 * paths. We update the trusted MOS config with this information.
3676 * We first try to copy the paths with vdev_copy_path_strict, which
3677 * succeeds only when both configs have exactly the same vdev tree.
3678 * If that fails, we fall back to a more flexible method that has a
3679 * best effort policy.
3680 */
3681 copy_error = vdev_copy_path_strict(rvd, mrvd);
3682 if (copy_error != 0 || spa_load_print_vdev_tree) {
3683 spa_load_note(spa, "provided vdev tree:");
3684 vdev_dbgmsg_print_tree(rvd, 2);
3685 spa_load_note(spa, "MOS vdev tree:");
3686 vdev_dbgmsg_print_tree(mrvd, 2);
3687 }
3688 if (copy_error != 0) {
3689 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3690 "back to vdev_copy_path_relaxed");
3691 vdev_copy_path_relaxed(rvd, mrvd);
3692 }
3693
3694 vdev_close(rvd);
3695 vdev_free(rvd);
3696 spa->spa_root_vdev = mrvd;
3697 rvd = mrvd;
3698 spa_config_exit(spa, SCL_ALL, FTAG);
3699
3700 /*
3701 * We will use spa_config if we decide to reload the spa or if spa_load
3702 * fails and we rewind. We must thus regenerate the config using the
3703 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3704 * pass settings on how to load the pool and is not stored in the MOS.
3705 * We copy it over to our new, trusted config.
3706 */
3707 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3708 ZPOOL_CONFIG_POOL_TXG);
3709 nvlist_free(mos_config);
3710 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3711 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3712 &policy) == 0)
3713 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3714 spa_config_set(spa, mos_config);
3715 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3716
3717 /*
3718 * Now that we got the config from the MOS, we should be more strict
3719 * in checking blkptrs and can make assumptions about the consistency
3720 * of the vdev tree. spa_trust_config must be set to true before opening
3721 * vdevs in order for them to be writeable.
3722 */
3723 spa->spa_trust_config = B_TRUE;
3724
3725 /*
3726 * Open and validate the new vdev tree
3727 */
3728 error = spa_ld_open_vdevs(spa);
3729 if (error != 0)
3730 return (error);
3731
3732 error = spa_ld_validate_vdevs(spa);
3733 if (error != 0)
3734 return (error);
3735
3736 if (copy_error != 0 || spa_load_print_vdev_tree) {
3737 spa_load_note(spa, "final vdev tree:");
3738 vdev_dbgmsg_print_tree(rvd, 2);
3739 }
3740
3741 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3742 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3743 /*
3744 * Sanity check to make sure that we are indeed loading the
3745 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3746 * in the config provided and they happened to be the only ones
3747 * to have the latest uberblock, we could involuntarily perform
3748 * an extreme rewind.
3749 */
3750 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3751 if (healthy_tvds_mos - healthy_tvds >=
3752 SPA_SYNC_MIN_VDEVS) {
3753 spa_load_note(spa, "config provided misses too many "
3754 "top-level vdevs compared to MOS (%lld vs %lld). ",
3755 (u_longlong_t)healthy_tvds,
3756 (u_longlong_t)healthy_tvds_mos);
3757 spa_load_note(spa, "vdev tree:");
3758 vdev_dbgmsg_print_tree(rvd, 2);
3759 if (reloading) {
3760 spa_load_failed(spa, "config was already "
3761 "provided from MOS. Aborting.");
3762 return (spa_vdev_err(rvd,
3763 VDEV_AUX_CORRUPT_DATA, EIO));
3764 }
3765 spa_load_note(spa, "spa must be reloaded using MOS "
3766 "config");
3767 return (SET_ERROR(EAGAIN));
3768 }
3769 }
3770
3771 error = spa_check_for_missing_logs(spa);
3772 if (error != 0)
3773 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3774
3775 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3776 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3777 "guid sum (%llu != %llu)",
3778 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3779 (u_longlong_t)rvd->vdev_guid_sum);
3780 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3781 ENXIO));
3782 }
3783
3784 return (0);
3785 }
3786
3787 static int
3788 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3789 {
3790 int error = 0;
3791 vdev_t *rvd = spa->spa_root_vdev;
3792
3793 /*
3794 * Everything that we read before spa_remove_init() must be stored
3795 * on concreted vdevs. Therefore we do this as early as possible.
3796 */
3797 error = spa_remove_init(spa);
3798 if (error != 0) {
3799 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3800 error);
3801 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3802 }
3803
3804 /*
3805 * Retrieve information needed to condense indirect vdev mappings.
3806 */
3807 error = spa_condense_init(spa);
3808 if (error != 0) {
3809 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3810 error);
3811 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3812 }
3813
3814 return (0);
3815 }
3816
3817 static int
3818 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3819 {
3820 int error = 0;
3821 vdev_t *rvd = spa->spa_root_vdev;
3822
3823 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3824 boolean_t missing_feat_read = B_FALSE;
3825 nvlist_t *unsup_feat, *enabled_feat;
3826
3827 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3828 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3829 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3830 }
3831
3832 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3833 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3834 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3835 }
3836
3837 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3838 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3839 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3840 }
3841
3842 enabled_feat = fnvlist_alloc();
3843 unsup_feat = fnvlist_alloc();
3844
3845 if (!spa_features_check(spa, B_FALSE,
3846 unsup_feat, enabled_feat))
3847 missing_feat_read = B_TRUE;
3848
3849 if (spa_writeable(spa) ||
3850 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3851 if (!spa_features_check(spa, B_TRUE,
3852 unsup_feat, enabled_feat)) {
3853 *missing_feat_writep = B_TRUE;
3854 }
3855 }
3856
3857 fnvlist_add_nvlist(spa->spa_load_info,
3858 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3859
3860 if (!nvlist_empty(unsup_feat)) {
3861 fnvlist_add_nvlist(spa->spa_load_info,
3862 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3863 }
3864
3865 fnvlist_free(enabled_feat);
3866 fnvlist_free(unsup_feat);
3867
3868 if (!missing_feat_read) {
3869 fnvlist_add_boolean(spa->spa_load_info,
3870 ZPOOL_CONFIG_CAN_RDONLY);
3871 }
3872
3873 /*
3874 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3875 * twofold: to determine whether the pool is available for
3876 * import in read-write mode and (if it is not) whether the
3877 * pool is available for import in read-only mode. If the pool
3878 * is available for import in read-write mode, it is displayed
3879 * as available in userland; if it is not available for import
3880 * in read-only mode, it is displayed as unavailable in
3881 * userland. If the pool is available for import in read-only
3882 * mode but not read-write mode, it is displayed as unavailable
3883 * in userland with a special note that the pool is actually
3884 * available for open in read-only mode.
3885 *
3886 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3887 * missing a feature for write, we must first determine whether
3888 * the pool can be opened read-only before returning to
3889 * userland in order to know whether to display the
3890 * abovementioned note.
3891 */
3892 if (missing_feat_read || (*missing_feat_writep &&
3893 spa_writeable(spa))) {
3894 spa_load_failed(spa, "pool uses unsupported features");
3895 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3896 ENOTSUP));
3897 }
3898
3899 /*
3900 * Load refcounts for ZFS features from disk into an in-memory
3901 * cache during SPA initialization.
3902 */
3903 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3904 uint64_t refcount;
3905
3906 error = feature_get_refcount_from_disk(spa,
3907 &spa_feature_table[i], &refcount);
3908 if (error == 0) {
3909 spa->spa_feat_refcount_cache[i] = refcount;
3910 } else if (error == ENOTSUP) {
3911 spa->spa_feat_refcount_cache[i] =
3912 SPA_FEATURE_DISABLED;
3913 } else {
3914 spa_load_failed(spa, "error getting refcount "
3915 "for feature %s [error=%d]",
3916 spa_feature_table[i].fi_guid, error);
3917 return (spa_vdev_err(rvd,
3918 VDEV_AUX_CORRUPT_DATA, EIO));
3919 }
3920 }
3921 }
3922
3923 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3924 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3925 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3926 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3927 }
3928
3929 /*
3930 * Encryption was added before bookmark_v2, even though bookmark_v2
3931 * is now a dependency. If this pool has encryption enabled without
3932 * bookmark_v2, trigger an errata message.
3933 */
3934 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3935 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3936 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3937 }
3938
3939 return (0);
3940 }
3941
3942 static int
3943 spa_ld_load_special_directories(spa_t *spa)
3944 {
3945 int error = 0;
3946 vdev_t *rvd = spa->spa_root_vdev;
3947
3948 spa->spa_is_initializing = B_TRUE;
3949 error = dsl_pool_open(spa->spa_dsl_pool);
3950 spa->spa_is_initializing = B_FALSE;
3951 if (error != 0) {
3952 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3953 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3954 }
3955
3956 return (0);
3957 }
3958
3959 static int
3960 spa_ld_get_props(spa_t *spa)
3961 {
3962 int error = 0;
3963 uint64_t obj;
3964 vdev_t *rvd = spa->spa_root_vdev;
3965
3966 /* Grab the checksum salt from the MOS. */
3967 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3968 DMU_POOL_CHECKSUM_SALT, 1,
3969 sizeof (spa->spa_cksum_salt.zcs_bytes),
3970 spa->spa_cksum_salt.zcs_bytes);
3971 if (error == ENOENT) {
3972 /* Generate a new salt for subsequent use */
3973 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3974 sizeof (spa->spa_cksum_salt.zcs_bytes));
3975 } else if (error != 0) {
3976 spa_load_failed(spa, "unable to retrieve checksum salt from "
3977 "MOS [error=%d]", error);
3978 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3979 }
3980
3981 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3982 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3983 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3984 if (error != 0) {
3985 spa_load_failed(spa, "error opening deferred-frees bpobj "
3986 "[error=%d]", error);
3987 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3988 }
3989
3990 /*
3991 * Load the bit that tells us to use the new accounting function
3992 * (raid-z deflation). If we have an older pool, this will not
3993 * be present.
3994 */
3995 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3996 if (error != 0 && error != ENOENT)
3997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3998
3999 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4000 &spa->spa_creation_version, B_FALSE);
4001 if (error != 0 && error != ENOENT)
4002 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4003
4004 /*
4005 * Load the persistent error log. If we have an older pool, this will
4006 * not be present.
4007 */
4008 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4009 B_FALSE);
4010 if (error != 0 && error != ENOENT)
4011 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4012
4013 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4014 &spa->spa_errlog_scrub, B_FALSE);
4015 if (error != 0 && error != ENOENT)
4016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4017
4018 /*
4019 * Load the livelist deletion field. If a livelist is queued for
4020 * deletion, indicate that in the spa
4021 */
4022 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4023 &spa->spa_livelists_to_delete, B_FALSE);
4024 if (error != 0 && error != ENOENT)
4025 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4026
4027 /*
4028 * Load the history object. If we have an older pool, this
4029 * will not be present.
4030 */
4031 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4032 if (error != 0 && error != ENOENT)
4033 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4034
4035 /*
4036 * Load the per-vdev ZAP map. If we have an older pool, this will not
4037 * be present; in this case, defer its creation to a later time to
4038 * avoid dirtying the MOS this early / out of sync context. See
4039 * spa_sync_config_object.
4040 */
4041
4042 /* The sentinel is only available in the MOS config. */
4043 nvlist_t *mos_config;
4044 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4045 spa_load_failed(spa, "unable to retrieve MOS config");
4046 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4047 }
4048
4049 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4050 &spa->spa_all_vdev_zaps, B_FALSE);
4051
4052 if (error == ENOENT) {
4053 VERIFY(!nvlist_exists(mos_config,
4054 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4055 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4056 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4057 } else if (error != 0) {
4058 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4059 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4060 /*
4061 * An older version of ZFS overwrote the sentinel value, so
4062 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4063 * destruction to later; see spa_sync_config_object.
4064 */
4065 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4066 /*
4067 * We're assuming that no vdevs have had their ZAPs created
4068 * before this. Better be sure of it.
4069 */
4070 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4071 }
4072 nvlist_free(mos_config);
4073
4074 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4075
4076 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4077 B_FALSE);
4078 if (error && error != ENOENT)
4079 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4080
4081 if (error == 0) {
4082 uint64_t autoreplace;
4083
4084 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4085 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4086 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4087 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4088 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4089 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4090 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4091 spa->spa_autoreplace = (autoreplace != 0);
4092 }
4093
4094 /*
4095 * If we are importing a pool with missing top-level vdevs,
4096 * we enforce that the pool doesn't panic or get suspended on
4097 * error since the likelihood of missing data is extremely high.
4098 */
4099 if (spa->spa_missing_tvds > 0 &&
4100 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4101 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4102 spa_load_note(spa, "forcing failmode to 'continue' "
4103 "as some top level vdevs are missing");
4104 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4105 }
4106
4107 return (0);
4108 }
4109
4110 static int
4111 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4112 {
4113 int error = 0;
4114 vdev_t *rvd = spa->spa_root_vdev;
4115
4116 /*
4117 * If we're assembling the pool from the split-off vdevs of
4118 * an existing pool, we don't want to attach the spares & cache
4119 * devices.
4120 */
4121
4122 /*
4123 * Load any hot spares for this pool.
4124 */
4125 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4126 B_FALSE);
4127 if (error != 0 && error != ENOENT)
4128 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4129 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4130 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4131 if (load_nvlist(spa, spa->spa_spares.sav_object,
4132 &spa->spa_spares.sav_config) != 0) {
4133 spa_load_failed(spa, "error loading spares nvlist");
4134 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4135 }
4136
4137 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4138 spa_load_spares(spa);
4139 spa_config_exit(spa, SCL_ALL, FTAG);
4140 } else if (error == 0) {
4141 spa->spa_spares.sav_sync = B_TRUE;
4142 }
4143
4144 /*
4145 * Load any level 2 ARC devices for this pool.
4146 */
4147 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4148 &spa->spa_l2cache.sav_object, B_FALSE);
4149 if (error != 0 && error != ENOENT)
4150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4151 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4152 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4153 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4154 &spa->spa_l2cache.sav_config) != 0) {
4155 spa_load_failed(spa, "error loading l2cache nvlist");
4156 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4157 }
4158
4159 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4160 spa_load_l2cache(spa);
4161 spa_config_exit(spa, SCL_ALL, FTAG);
4162 } else if (error == 0) {
4163 spa->spa_l2cache.sav_sync = B_TRUE;
4164 }
4165
4166 return (0);
4167 }
4168
4169 static int
4170 spa_ld_load_vdev_metadata(spa_t *spa)
4171 {
4172 int error = 0;
4173 vdev_t *rvd = spa->spa_root_vdev;
4174
4175 /*
4176 * If the 'multihost' property is set, then never allow a pool to
4177 * be imported when the system hostid is zero. The exception to
4178 * this rule is zdb which is always allowed to access pools.
4179 */
4180 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4181 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4182 fnvlist_add_uint64(spa->spa_load_info,
4183 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4184 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4185 }
4186
4187 /*
4188 * If the 'autoreplace' property is set, then post a resource notifying
4189 * the ZFS DE that it should not issue any faults for unopenable
4190 * devices. We also iterate over the vdevs, and post a sysevent for any
4191 * unopenable vdevs so that the normal autoreplace handler can take
4192 * over.
4193 */
4194 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4195 spa_check_removed(spa->spa_root_vdev);
4196 /*
4197 * For the import case, this is done in spa_import(), because
4198 * at this point we're using the spare definitions from
4199 * the MOS config, not necessarily from the userland config.
4200 */
4201 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4202 spa_aux_check_removed(&spa->spa_spares);
4203 spa_aux_check_removed(&spa->spa_l2cache);
4204 }
4205 }
4206
4207 /*
4208 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4209 */
4210 error = vdev_load(rvd);
4211 if (error != 0) {
4212 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4213 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4214 }
4215
4216 error = spa_ld_log_spacemaps(spa);
4217 if (error != 0) {
4218 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4219 error);
4220 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4221 }
4222
4223 /*
4224 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4225 */
4226 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4227 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4228 spa_config_exit(spa, SCL_ALL, FTAG);
4229
4230 return (0);
4231 }
4232
4233 static int
4234 spa_ld_load_dedup_tables(spa_t *spa)
4235 {
4236 int error = 0;
4237 vdev_t *rvd = spa->spa_root_vdev;
4238
4239 error = ddt_load(spa);
4240 if (error != 0) {
4241 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4242 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4243 }
4244
4245 return (0);
4246 }
4247
4248 static int
4249 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4250 {
4251 vdev_t *rvd = spa->spa_root_vdev;
4252
4253 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4254 boolean_t missing = spa_check_logs(spa);
4255 if (missing) {
4256 if (spa->spa_missing_tvds != 0) {
4257 spa_load_note(spa, "spa_check_logs failed "
4258 "so dropping the logs");
4259 } else {
4260 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4261 spa_load_failed(spa, "spa_check_logs failed");
4262 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4263 ENXIO));
4264 }
4265 }
4266 }
4267
4268 return (0);
4269 }
4270
4271 static int
4272 spa_ld_verify_pool_data(spa_t *spa)
4273 {
4274 int error = 0;
4275 vdev_t *rvd = spa->spa_root_vdev;
4276
4277 /*
4278 * We've successfully opened the pool, verify that we're ready
4279 * to start pushing transactions.
4280 */
4281 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4282 error = spa_load_verify(spa);
4283 if (error != 0) {
4284 spa_load_failed(spa, "spa_load_verify failed "
4285 "[error=%d]", error);
4286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4287 error));
4288 }
4289 }
4290
4291 return (0);
4292 }
4293
4294 static void
4295 spa_ld_claim_log_blocks(spa_t *spa)
4296 {
4297 dmu_tx_t *tx;
4298 dsl_pool_t *dp = spa_get_dsl(spa);
4299
4300 /*
4301 * Claim log blocks that haven't been committed yet.
4302 * This must all happen in a single txg.
4303 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4304 * invoked from zil_claim_log_block()'s i/o done callback.
4305 * Price of rollback is that we abandon the log.
4306 */
4307 spa->spa_claiming = B_TRUE;
4308
4309 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4310 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4311 zil_claim, tx, DS_FIND_CHILDREN);
4312 dmu_tx_commit(tx);
4313
4314 spa->spa_claiming = B_FALSE;
4315
4316 spa_set_log_state(spa, SPA_LOG_GOOD);
4317 }
4318
4319 static void
4320 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4321 boolean_t update_config_cache)
4322 {
4323 vdev_t *rvd = spa->spa_root_vdev;
4324 int need_update = B_FALSE;
4325
4326 /*
4327 * If the config cache is stale, or we have uninitialized
4328 * metaslabs (see spa_vdev_add()), then update the config.
4329 *
4330 * If this is a verbatim import, trust the current
4331 * in-core spa_config and update the disk labels.
4332 */
4333 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4334 spa->spa_load_state == SPA_LOAD_IMPORT ||
4335 spa->spa_load_state == SPA_LOAD_RECOVER ||
4336 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4337 need_update = B_TRUE;
4338
4339 for (int c = 0; c < rvd->vdev_children; c++)
4340 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4341 need_update = B_TRUE;
4342
4343 /*
4344 * Update the config cache asynchronously in case we're the
4345 * root pool, in which case the config cache isn't writable yet.
4346 */
4347 if (need_update)
4348 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4349 }
4350
4351 static void
4352 spa_ld_prepare_for_reload(spa_t *spa)
4353 {
4354 spa_mode_t mode = spa->spa_mode;
4355 int async_suspended = spa->spa_async_suspended;
4356
4357 spa_unload(spa);
4358 spa_deactivate(spa);
4359 spa_activate(spa, mode);
4360
4361 /*
4362 * We save the value of spa_async_suspended as it gets reset to 0 by
4363 * spa_unload(). We want to restore it back to the original value before
4364 * returning as we might be calling spa_async_resume() later.
4365 */
4366 spa->spa_async_suspended = async_suspended;
4367 }
4368
4369 static int
4370 spa_ld_read_checkpoint_txg(spa_t *spa)
4371 {
4372 uberblock_t checkpoint;
4373 int error = 0;
4374
4375 ASSERT0(spa->spa_checkpoint_txg);
4376 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4377
4378 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4379 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4380 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4381
4382 if (error == ENOENT)
4383 return (0);
4384
4385 if (error != 0)
4386 return (error);
4387
4388 ASSERT3U(checkpoint.ub_txg, !=, 0);
4389 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4390 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4391 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4392 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4393
4394 return (0);
4395 }
4396
4397 static int
4398 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4399 {
4400 int error = 0;
4401
4402 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4403 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4404
4405 /*
4406 * Never trust the config that is provided unless we are assembling
4407 * a pool following a split.
4408 * This means don't trust blkptrs and the vdev tree in general. This
4409 * also effectively puts the spa in read-only mode since
4410 * spa_writeable() checks for spa_trust_config to be true.
4411 * We will later load a trusted config from the MOS.
4412 */
4413 if (type != SPA_IMPORT_ASSEMBLE)
4414 spa->spa_trust_config = B_FALSE;
4415
4416 /*
4417 * Parse the config provided to create a vdev tree.
4418 */
4419 error = spa_ld_parse_config(spa, type);
4420 if (error != 0)
4421 return (error);
4422
4423 spa_import_progress_add(spa);
4424
4425 /*
4426 * Now that we have the vdev tree, try to open each vdev. This involves
4427 * opening the underlying physical device, retrieving its geometry and
4428 * probing the vdev with a dummy I/O. The state of each vdev will be set
4429 * based on the success of those operations. After this we'll be ready
4430 * to read from the vdevs.
4431 */
4432 error = spa_ld_open_vdevs(spa);
4433 if (error != 0)
4434 return (error);
4435
4436 /*
4437 * Read the label of each vdev and make sure that the GUIDs stored
4438 * there match the GUIDs in the config provided.
4439 * If we're assembling a new pool that's been split off from an
4440 * existing pool, the labels haven't yet been updated so we skip
4441 * validation for now.
4442 */
4443 if (type != SPA_IMPORT_ASSEMBLE) {
4444 error = spa_ld_validate_vdevs(spa);
4445 if (error != 0)
4446 return (error);
4447 }
4448
4449 /*
4450 * Read all vdev labels to find the best uberblock (i.e. latest,
4451 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4452 * get the list of features required to read blkptrs in the MOS from
4453 * the vdev label with the best uberblock and verify that our version
4454 * of zfs supports them all.
4455 */
4456 error = spa_ld_select_uberblock(spa, type);
4457 if (error != 0)
4458 return (error);
4459
4460 /*
4461 * Pass that uberblock to the dsl_pool layer which will open the root
4462 * blkptr. This blkptr points to the latest version of the MOS and will
4463 * allow us to read its contents.
4464 */
4465 error = spa_ld_open_rootbp(spa);
4466 if (error != 0)
4467 return (error);
4468
4469 return (0);
4470 }
4471
4472 static int
4473 spa_ld_checkpoint_rewind(spa_t *spa)
4474 {
4475 uberblock_t checkpoint;
4476 int error = 0;
4477
4478 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4479 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4480
4481 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4482 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4483 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4484
4485 if (error != 0) {
4486 spa_load_failed(spa, "unable to retrieve checkpointed "
4487 "uberblock from the MOS config [error=%d]", error);
4488
4489 if (error == ENOENT)
4490 error = ZFS_ERR_NO_CHECKPOINT;
4491
4492 return (error);
4493 }
4494
4495 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4496 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4497
4498 /*
4499 * We need to update the txg and timestamp of the checkpointed
4500 * uberblock to be higher than the latest one. This ensures that
4501 * the checkpointed uberblock is selected if we were to close and
4502 * reopen the pool right after we've written it in the vdev labels.
4503 * (also see block comment in vdev_uberblock_compare)
4504 */
4505 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4506 checkpoint.ub_timestamp = gethrestime_sec();
4507
4508 /*
4509 * Set current uberblock to be the checkpointed uberblock.
4510 */
4511 spa->spa_uberblock = checkpoint;
4512
4513 /*
4514 * If we are doing a normal rewind, then the pool is open for
4515 * writing and we sync the "updated" checkpointed uberblock to
4516 * disk. Once this is done, we've basically rewound the whole
4517 * pool and there is no way back.
4518 *
4519 * There are cases when we don't want to attempt and sync the
4520 * checkpointed uberblock to disk because we are opening a
4521 * pool as read-only. Specifically, verifying the checkpointed
4522 * state with zdb, and importing the checkpointed state to get
4523 * a "preview" of its content.
4524 */
4525 if (spa_writeable(spa)) {
4526 vdev_t *rvd = spa->spa_root_vdev;
4527
4528 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4529 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4530 int svdcount = 0;
4531 int children = rvd->vdev_children;
4532 int c0 = spa_get_random(children);
4533
4534 for (int c = 0; c < children; c++) {
4535 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4536
4537 /* Stop when revisiting the first vdev */
4538 if (c > 0 && svd[0] == vd)
4539 break;
4540
4541 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4542 !vdev_is_concrete(vd))
4543 continue;
4544
4545 svd[svdcount++] = vd;
4546 if (svdcount == SPA_SYNC_MIN_VDEVS)
4547 break;
4548 }
4549 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4550 if (error == 0)
4551 spa->spa_last_synced_guid = rvd->vdev_guid;
4552 spa_config_exit(spa, SCL_ALL, FTAG);
4553
4554 if (error != 0) {
4555 spa_load_failed(spa, "failed to write checkpointed "
4556 "uberblock to the vdev labels [error=%d]", error);
4557 return (error);
4558 }
4559 }
4560
4561 return (0);
4562 }
4563
4564 static int
4565 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4566 boolean_t *update_config_cache)
4567 {
4568 int error;
4569
4570 /*
4571 * Parse the config for pool, open and validate vdevs,
4572 * select an uberblock, and use that uberblock to open
4573 * the MOS.
4574 */
4575 error = spa_ld_mos_init(spa, type);
4576 if (error != 0)
4577 return (error);
4578
4579 /*
4580 * Retrieve the trusted config stored in the MOS and use it to create
4581 * a new, exact version of the vdev tree, then reopen all vdevs.
4582 */
4583 error = spa_ld_trusted_config(spa, type, B_FALSE);
4584 if (error == EAGAIN) {
4585 if (update_config_cache != NULL)
4586 *update_config_cache = B_TRUE;
4587
4588 /*
4589 * Redo the loading process with the trusted config if it is
4590 * too different from the untrusted config.
4591 */
4592 spa_ld_prepare_for_reload(spa);
4593 spa_load_note(spa, "RELOADING");
4594 error = spa_ld_mos_init(spa, type);
4595 if (error != 0)
4596 return (error);
4597
4598 error = spa_ld_trusted_config(spa, type, B_TRUE);
4599 if (error != 0)
4600 return (error);
4601
4602 } else if (error != 0) {
4603 return (error);
4604 }
4605
4606 return (0);
4607 }
4608
4609 /*
4610 * Load an existing storage pool, using the config provided. This config
4611 * describes which vdevs are part of the pool and is later validated against
4612 * partial configs present in each vdev's label and an entire copy of the
4613 * config stored in the MOS.
4614 */
4615 static int
4616 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4617 {
4618 int error = 0;
4619 boolean_t missing_feat_write = B_FALSE;
4620 boolean_t checkpoint_rewind =
4621 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4622 boolean_t update_config_cache = B_FALSE;
4623
4624 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4625 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4626
4627 spa_load_note(spa, "LOADING");
4628
4629 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4630 if (error != 0)
4631 return (error);
4632
4633 /*
4634 * If we are rewinding to the checkpoint then we need to repeat
4635 * everything we've done so far in this function but this time
4636 * selecting the checkpointed uberblock and using that to open
4637 * the MOS.
4638 */
4639 if (checkpoint_rewind) {
4640 /*
4641 * If we are rewinding to the checkpoint update config cache
4642 * anyway.
4643 */
4644 update_config_cache = B_TRUE;
4645
4646 /*
4647 * Extract the checkpointed uberblock from the current MOS
4648 * and use this as the pool's uberblock from now on. If the
4649 * pool is imported as writeable we also write the checkpoint
4650 * uberblock to the labels, making the rewind permanent.
4651 */
4652 error = spa_ld_checkpoint_rewind(spa);
4653 if (error != 0)
4654 return (error);
4655
4656 /*
4657 * Redo the loading process again with the
4658 * checkpointed uberblock.
4659 */
4660 spa_ld_prepare_for_reload(spa);
4661 spa_load_note(spa, "LOADING checkpointed uberblock");
4662 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4663 if (error != 0)
4664 return (error);
4665 }
4666
4667 /*
4668 * Retrieve the checkpoint txg if the pool has a checkpoint.
4669 */
4670 error = spa_ld_read_checkpoint_txg(spa);
4671 if (error != 0)
4672 return (error);
4673
4674 /*
4675 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4676 * from the pool and their contents were re-mapped to other vdevs. Note
4677 * that everything that we read before this step must have been
4678 * rewritten on concrete vdevs after the last device removal was
4679 * initiated. Otherwise we could be reading from indirect vdevs before
4680 * we have loaded their mappings.
4681 */
4682 error = spa_ld_open_indirect_vdev_metadata(spa);
4683 if (error != 0)
4684 return (error);
4685
4686 /*
4687 * Retrieve the full list of active features from the MOS and check if
4688 * they are all supported.
4689 */
4690 error = spa_ld_check_features(spa, &missing_feat_write);
4691 if (error != 0)
4692 return (error);
4693
4694 /*
4695 * Load several special directories from the MOS needed by the dsl_pool
4696 * layer.
4697 */
4698 error = spa_ld_load_special_directories(spa);
4699 if (error != 0)
4700 return (error);
4701
4702 /*
4703 * Retrieve pool properties from the MOS.
4704 */
4705 error = spa_ld_get_props(spa);
4706 if (error != 0)
4707 return (error);
4708
4709 /*
4710 * Retrieve the list of auxiliary devices - cache devices and spares -
4711 * and open them.
4712 */
4713 error = spa_ld_open_aux_vdevs(spa, type);
4714 if (error != 0)
4715 return (error);
4716
4717 /*
4718 * Load the metadata for all vdevs. Also check if unopenable devices
4719 * should be autoreplaced.
4720 */
4721 error = spa_ld_load_vdev_metadata(spa);
4722 if (error != 0)
4723 return (error);
4724
4725 error = spa_ld_load_dedup_tables(spa);
4726 if (error != 0)
4727 return (error);
4728
4729 /*
4730 * Verify the logs now to make sure we don't have any unexpected errors
4731 * when we claim log blocks later.
4732 */
4733 error = spa_ld_verify_logs(spa, type, ereport);
4734 if (error != 0)
4735 return (error);
4736
4737 if (missing_feat_write) {
4738 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4739
4740 /*
4741 * At this point, we know that we can open the pool in
4742 * read-only mode but not read-write mode. We now have enough
4743 * information and can return to userland.
4744 */
4745 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4746 ENOTSUP));
4747 }
4748
4749 /*
4750 * Traverse the last txgs to make sure the pool was left off in a safe
4751 * state. When performing an extreme rewind, we verify the whole pool,
4752 * which can take a very long time.
4753 */
4754 error = spa_ld_verify_pool_data(spa);
4755 if (error != 0)
4756 return (error);
4757
4758 /*
4759 * Calculate the deflated space for the pool. This must be done before
4760 * we write anything to the pool because we'd need to update the space
4761 * accounting using the deflated sizes.
4762 */
4763 spa_update_dspace(spa);
4764
4765 /*
4766 * We have now retrieved all the information we needed to open the
4767 * pool. If we are importing the pool in read-write mode, a few
4768 * additional steps must be performed to finish the import.
4769 */
4770 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4771 spa->spa_load_max_txg == UINT64_MAX)) {
4772 uint64_t config_cache_txg = spa->spa_config_txg;
4773
4774 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4775
4776 /*
4777 * In case of a checkpoint rewind, log the original txg
4778 * of the checkpointed uberblock.
4779 */
4780 if (checkpoint_rewind) {
4781 spa_history_log_internal(spa, "checkpoint rewind",
4782 NULL, "rewound state to txg=%llu",
4783 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4784 }
4785
4786 /*
4787 * Traverse the ZIL and claim all blocks.
4788 */
4789 spa_ld_claim_log_blocks(spa);
4790
4791 /*
4792 * Kick-off the syncing thread.
4793 */
4794 spa->spa_sync_on = B_TRUE;
4795 txg_sync_start(spa->spa_dsl_pool);
4796 mmp_thread_start(spa);
4797
4798 /*
4799 * Wait for all claims to sync. We sync up to the highest
4800 * claimed log block birth time so that claimed log blocks
4801 * don't appear to be from the future. spa_claim_max_txg
4802 * will have been set for us by ZIL traversal operations
4803 * performed above.
4804 */
4805 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4806
4807 /*
4808 * Check if we need to request an update of the config. On the
4809 * next sync, we would update the config stored in vdev labels
4810 * and the cachefile (by default /etc/zfs/zpool.cache).
4811 */
4812 spa_ld_check_for_config_update(spa, config_cache_txg,
4813 update_config_cache);
4814
4815 /*
4816 * Check if a rebuild was in progress and if so resume it.
4817 * Then check all DTLs to see if anything needs resilvering.
4818 * The resilver will be deferred if a rebuild was started.
4819 */
4820 if (vdev_rebuild_active(spa->spa_root_vdev)) {
4821 vdev_rebuild_restart(spa);
4822 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4823 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4824 spa_async_request(spa, SPA_ASYNC_RESILVER);
4825 }
4826
4827 /*
4828 * Log the fact that we booted up (so that we can detect if
4829 * we rebooted in the middle of an operation).
4830 */
4831 spa_history_log_version(spa, "open", NULL);
4832
4833 spa_restart_removal(spa);
4834 spa_spawn_aux_threads(spa);
4835
4836 /*
4837 * Delete any inconsistent datasets.
4838 *
4839 * Note:
4840 * Since we may be issuing deletes for clones here,
4841 * we make sure to do so after we've spawned all the
4842 * auxiliary threads above (from which the livelist
4843 * deletion zthr is part of).
4844 */
4845 (void) dmu_objset_find(spa_name(spa),
4846 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4847
4848 /*
4849 * Clean up any stale temporary dataset userrefs.
4850 */
4851 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4852
4853 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4854 vdev_initialize_restart(spa->spa_root_vdev);
4855 vdev_trim_restart(spa->spa_root_vdev);
4856 vdev_autotrim_restart(spa);
4857 spa_config_exit(spa, SCL_CONFIG, FTAG);
4858 }
4859
4860 spa_import_progress_remove(spa_guid(spa));
4861 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4862
4863 spa_load_note(spa, "LOADED");
4864
4865 return (0);
4866 }
4867
4868 static int
4869 spa_load_retry(spa_t *spa, spa_load_state_t state)
4870 {
4871 spa_mode_t mode = spa->spa_mode;
4872
4873 spa_unload(spa);
4874 spa_deactivate(spa);
4875
4876 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4877
4878 spa_activate(spa, mode);
4879 spa_async_suspend(spa);
4880
4881 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4882 (u_longlong_t)spa->spa_load_max_txg);
4883
4884 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4885 }
4886
4887 /*
4888 * If spa_load() fails this function will try loading prior txg's. If
4889 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4890 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4891 * function will not rewind the pool and will return the same error as
4892 * spa_load().
4893 */
4894 static int
4895 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4896 int rewind_flags)
4897 {
4898 nvlist_t *loadinfo = NULL;
4899 nvlist_t *config = NULL;
4900 int load_error, rewind_error;
4901 uint64_t safe_rewind_txg;
4902 uint64_t min_txg;
4903
4904 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4905 spa->spa_load_max_txg = spa->spa_load_txg;
4906 spa_set_log_state(spa, SPA_LOG_CLEAR);
4907 } else {
4908 spa->spa_load_max_txg = max_request;
4909 if (max_request != UINT64_MAX)
4910 spa->spa_extreme_rewind = B_TRUE;
4911 }
4912
4913 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4914 if (load_error == 0)
4915 return (0);
4916 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4917 /*
4918 * When attempting checkpoint-rewind on a pool with no
4919 * checkpoint, we should not attempt to load uberblocks
4920 * from previous txgs when spa_load fails.
4921 */
4922 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4923 spa_import_progress_remove(spa_guid(spa));
4924 return (load_error);
4925 }
4926
4927 if (spa->spa_root_vdev != NULL)
4928 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4929
4930 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4931 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4932
4933 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4934 nvlist_free(config);
4935 spa_import_progress_remove(spa_guid(spa));
4936 return (load_error);
4937 }
4938
4939 if (state == SPA_LOAD_RECOVER) {
4940 /* Price of rolling back is discarding txgs, including log */
4941 spa_set_log_state(spa, SPA_LOG_CLEAR);
4942 } else {
4943 /*
4944 * If we aren't rolling back save the load info from our first
4945 * import attempt so that we can restore it after attempting
4946 * to rewind.
4947 */
4948 loadinfo = spa->spa_load_info;
4949 spa->spa_load_info = fnvlist_alloc();
4950 }
4951
4952 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4953 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4954 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4955 TXG_INITIAL : safe_rewind_txg;
4956
4957 /*
4958 * Continue as long as we're finding errors, we're still within
4959 * the acceptable rewind range, and we're still finding uberblocks
4960 */
4961 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4962 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4963 if (spa->spa_load_max_txg < safe_rewind_txg)
4964 spa->spa_extreme_rewind = B_TRUE;
4965 rewind_error = spa_load_retry(spa, state);
4966 }
4967
4968 spa->spa_extreme_rewind = B_FALSE;
4969 spa->spa_load_max_txg = UINT64_MAX;
4970
4971 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4972 spa_config_set(spa, config);
4973 else
4974 nvlist_free(config);
4975
4976 if (state == SPA_LOAD_RECOVER) {
4977 ASSERT3P(loadinfo, ==, NULL);
4978 spa_import_progress_remove(spa_guid(spa));
4979 return (rewind_error);
4980 } else {
4981 /* Store the rewind info as part of the initial load info */
4982 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4983 spa->spa_load_info);
4984
4985 /* Restore the initial load info */
4986 fnvlist_free(spa->spa_load_info);
4987 spa->spa_load_info = loadinfo;
4988
4989 spa_import_progress_remove(spa_guid(spa));
4990 return (load_error);
4991 }
4992 }
4993
4994 /*
4995 * Pool Open/Import
4996 *
4997 * The import case is identical to an open except that the configuration is sent
4998 * down from userland, instead of grabbed from the configuration cache. For the
4999 * case of an open, the pool configuration will exist in the
5000 * POOL_STATE_UNINITIALIZED state.
5001 *
5002 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5003 * the same time open the pool, without having to keep around the spa_t in some
5004 * ambiguous state.
5005 */
5006 static int
5007 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5008 nvlist_t **config)
5009 {
5010 spa_t *spa;
5011 spa_load_state_t state = SPA_LOAD_OPEN;
5012 int error;
5013 int locked = B_FALSE;
5014 int firstopen = B_FALSE;
5015
5016 *spapp = NULL;
5017
5018 /*
5019 * As disgusting as this is, we need to support recursive calls to this
5020 * function because dsl_dir_open() is called during spa_load(), and ends
5021 * up calling spa_open() again. The real fix is to figure out how to
5022 * avoid dsl_dir_open() calling this in the first place.
5023 */
5024 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5025 mutex_enter(&spa_namespace_lock);
5026 locked = B_TRUE;
5027 }
5028
5029 if ((spa = spa_lookup(pool)) == NULL) {
5030 if (locked)
5031 mutex_exit(&spa_namespace_lock);
5032 return (SET_ERROR(ENOENT));
5033 }
5034
5035 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5036 zpool_load_policy_t policy;
5037
5038 firstopen = B_TRUE;
5039
5040 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5041 &policy);
5042 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5043 state = SPA_LOAD_RECOVER;
5044
5045 spa_activate(spa, spa_mode_global);
5046
5047 if (state != SPA_LOAD_RECOVER)
5048 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5049 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5050
5051 zfs_dbgmsg("spa_open_common: opening %s", pool);
5052 error = spa_load_best(spa, state, policy.zlp_txg,
5053 policy.zlp_rewind);
5054
5055 if (error == EBADF) {
5056 /*
5057 * If vdev_validate() returns failure (indicated by
5058 * EBADF), it indicates that one of the vdevs indicates
5059 * that the pool has been exported or destroyed. If
5060 * this is the case, the config cache is out of sync and
5061 * we should remove the pool from the namespace.
5062 */
5063 spa_unload(spa);
5064 spa_deactivate(spa);
5065 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5066 spa_remove(spa);
5067 if (locked)
5068 mutex_exit(&spa_namespace_lock);
5069 return (SET_ERROR(ENOENT));
5070 }
5071
5072 if (error) {
5073 /*
5074 * We can't open the pool, but we still have useful
5075 * information: the state of each vdev after the
5076 * attempted vdev_open(). Return this to the user.
5077 */
5078 if (config != NULL && spa->spa_config) {
5079 VERIFY(nvlist_dup(spa->spa_config, config,
5080 KM_SLEEP) == 0);
5081 VERIFY(nvlist_add_nvlist(*config,
5082 ZPOOL_CONFIG_LOAD_INFO,
5083 spa->spa_load_info) == 0);
5084 }
5085 spa_unload(spa);
5086 spa_deactivate(spa);
5087 spa->spa_last_open_failed = error;
5088 if (locked)
5089 mutex_exit(&spa_namespace_lock);
5090 *spapp = NULL;
5091 return (error);
5092 }
5093 }
5094
5095 spa_open_ref(spa, tag);
5096
5097 if (config != NULL)
5098 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5099
5100 /*
5101 * If we've recovered the pool, pass back any information we
5102 * gathered while doing the load.
5103 */
5104 if (state == SPA_LOAD_RECOVER) {
5105 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5106 spa->spa_load_info) == 0);
5107 }
5108
5109 if (locked) {
5110 spa->spa_last_open_failed = 0;
5111 spa->spa_last_ubsync_txg = 0;
5112 spa->spa_load_txg = 0;
5113 mutex_exit(&spa_namespace_lock);
5114 }
5115
5116 if (firstopen)
5117 zvol_create_minors_recursive(spa_name(spa));
5118
5119 *spapp = spa;
5120
5121 return (0);
5122 }
5123
5124 int
5125 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5126 nvlist_t **config)
5127 {
5128 return (spa_open_common(name, spapp, tag, policy, config));
5129 }
5130
5131 int
5132 spa_open(const char *name, spa_t **spapp, void *tag)
5133 {
5134 return (spa_open_common(name, spapp, tag, NULL, NULL));
5135 }
5136
5137 /*
5138 * Lookup the given spa_t, incrementing the inject count in the process,
5139 * preventing it from being exported or destroyed.
5140 */
5141 spa_t *
5142 spa_inject_addref(char *name)
5143 {
5144 spa_t *spa;
5145
5146 mutex_enter(&spa_namespace_lock);
5147 if ((spa = spa_lookup(name)) == NULL) {
5148 mutex_exit(&spa_namespace_lock);
5149 return (NULL);
5150 }
5151 spa->spa_inject_ref++;
5152 mutex_exit(&spa_namespace_lock);
5153
5154 return (spa);
5155 }
5156
5157 void
5158 spa_inject_delref(spa_t *spa)
5159 {
5160 mutex_enter(&spa_namespace_lock);
5161 spa->spa_inject_ref--;
5162 mutex_exit(&spa_namespace_lock);
5163 }
5164
5165 /*
5166 * Add spares device information to the nvlist.
5167 */
5168 static void
5169 spa_add_spares(spa_t *spa, nvlist_t *config)
5170 {
5171 nvlist_t **spares;
5172 uint_t i, nspares;
5173 nvlist_t *nvroot;
5174 uint64_t guid;
5175 vdev_stat_t *vs;
5176 uint_t vsc;
5177 uint64_t pool;
5178
5179 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5180
5181 if (spa->spa_spares.sav_count == 0)
5182 return;
5183
5184 VERIFY(nvlist_lookup_nvlist(config,
5185 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5186 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5187 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5188 if (nspares != 0) {
5189 VERIFY(nvlist_add_nvlist_array(nvroot,
5190 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5191 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5192 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5193
5194 /*
5195 * Go through and find any spares which have since been
5196 * repurposed as an active spare. If this is the case, update
5197 * their status appropriately.
5198 */
5199 for (i = 0; i < nspares; i++) {
5200 VERIFY(nvlist_lookup_uint64(spares[i],
5201 ZPOOL_CONFIG_GUID, &guid) == 0);
5202 if (spa_spare_exists(guid, &pool, NULL) &&
5203 pool != 0ULL) {
5204 VERIFY(nvlist_lookup_uint64_array(
5205 spares[i], ZPOOL_CONFIG_VDEV_STATS,
5206 (uint64_t **)&vs, &vsc) == 0);
5207 vs->vs_state = VDEV_STATE_CANT_OPEN;
5208 vs->vs_aux = VDEV_AUX_SPARED;
5209 }
5210 }
5211 }
5212 }
5213
5214 /*
5215 * Add l2cache device information to the nvlist, including vdev stats.
5216 */
5217 static void
5218 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5219 {
5220 nvlist_t **l2cache;
5221 uint_t i, j, nl2cache;
5222 nvlist_t *nvroot;
5223 uint64_t guid;
5224 vdev_t *vd;
5225 vdev_stat_t *vs;
5226 uint_t vsc;
5227
5228 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5229
5230 if (spa->spa_l2cache.sav_count == 0)
5231 return;
5232
5233 VERIFY(nvlist_lookup_nvlist(config,
5234 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5235 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5236 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5237 if (nl2cache != 0) {
5238 VERIFY(nvlist_add_nvlist_array(nvroot,
5239 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5240 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5241 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5242
5243 /*
5244 * Update level 2 cache device stats.
5245 */
5246
5247 for (i = 0; i < nl2cache; i++) {
5248 VERIFY(nvlist_lookup_uint64(l2cache[i],
5249 ZPOOL_CONFIG_GUID, &guid) == 0);
5250
5251 vd = NULL;
5252 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5253 if (guid ==
5254 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5255 vd = spa->spa_l2cache.sav_vdevs[j];
5256 break;
5257 }
5258 }
5259 ASSERT(vd != NULL);
5260
5261 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5262 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5263 == 0);
5264 vdev_get_stats(vd, vs);
5265 vdev_config_generate_stats(vd, l2cache[i]);
5266
5267 }
5268 }
5269 }
5270
5271 static void
5272 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5273 {
5274 zap_cursor_t zc;
5275 zap_attribute_t za;
5276
5277 if (spa->spa_feat_for_read_obj != 0) {
5278 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5279 spa->spa_feat_for_read_obj);
5280 zap_cursor_retrieve(&zc, &za) == 0;
5281 zap_cursor_advance(&zc)) {
5282 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5283 za.za_num_integers == 1);
5284 VERIFY0(nvlist_add_uint64(features, za.za_name,
5285 za.za_first_integer));
5286 }
5287 zap_cursor_fini(&zc);
5288 }
5289
5290 if (spa->spa_feat_for_write_obj != 0) {
5291 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5292 spa->spa_feat_for_write_obj);
5293 zap_cursor_retrieve(&zc, &za) == 0;
5294 zap_cursor_advance(&zc)) {
5295 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5296 za.za_num_integers == 1);
5297 VERIFY0(nvlist_add_uint64(features, za.za_name,
5298 za.za_first_integer));
5299 }
5300 zap_cursor_fini(&zc);
5301 }
5302 }
5303
5304 static void
5305 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5306 {
5307 int i;
5308
5309 for (i = 0; i < SPA_FEATURES; i++) {
5310 zfeature_info_t feature = spa_feature_table[i];
5311 uint64_t refcount;
5312
5313 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5314 continue;
5315
5316 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5317 }
5318 }
5319
5320 /*
5321 * Store a list of pool features and their reference counts in the
5322 * config.
5323 *
5324 * The first time this is called on a spa, allocate a new nvlist, fetch
5325 * the pool features and reference counts from disk, then save the list
5326 * in the spa. In subsequent calls on the same spa use the saved nvlist
5327 * and refresh its values from the cached reference counts. This
5328 * ensures we don't block here on I/O on a suspended pool so 'zpool
5329 * clear' can resume the pool.
5330 */
5331 static void
5332 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5333 {
5334 nvlist_t *features;
5335
5336 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5337
5338 mutex_enter(&spa->spa_feat_stats_lock);
5339 features = spa->spa_feat_stats;
5340
5341 if (features != NULL) {
5342 spa_feature_stats_from_cache(spa, features);
5343 } else {
5344 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5345 spa->spa_feat_stats = features;
5346 spa_feature_stats_from_disk(spa, features);
5347 }
5348
5349 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5350 features));
5351
5352 mutex_exit(&spa->spa_feat_stats_lock);
5353 }
5354
5355 int
5356 spa_get_stats(const char *name, nvlist_t **config,
5357 char *altroot, size_t buflen)
5358 {
5359 int error;
5360 spa_t *spa;
5361
5362 *config = NULL;
5363 error = spa_open_common(name, &spa, FTAG, NULL, config);
5364
5365 if (spa != NULL) {
5366 /*
5367 * This still leaves a window of inconsistency where the spares
5368 * or l2cache devices could change and the config would be
5369 * self-inconsistent.
5370 */
5371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5372
5373 if (*config != NULL) {
5374 uint64_t loadtimes[2];
5375
5376 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5377 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5378 VERIFY(nvlist_add_uint64_array(*config,
5379 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5380
5381 VERIFY(nvlist_add_uint64(*config,
5382 ZPOOL_CONFIG_ERRCOUNT,
5383 spa_get_errlog_size(spa)) == 0);
5384
5385 if (spa_suspended(spa)) {
5386 VERIFY(nvlist_add_uint64(*config,
5387 ZPOOL_CONFIG_SUSPENDED,
5388 spa->spa_failmode) == 0);
5389 VERIFY(nvlist_add_uint64(*config,
5390 ZPOOL_CONFIG_SUSPENDED_REASON,
5391 spa->spa_suspended) == 0);
5392 }
5393
5394 spa_add_spares(spa, *config);
5395 spa_add_l2cache(spa, *config);
5396 spa_add_feature_stats(spa, *config);
5397 }
5398 }
5399
5400 /*
5401 * We want to get the alternate root even for faulted pools, so we cheat
5402 * and call spa_lookup() directly.
5403 */
5404 if (altroot) {
5405 if (spa == NULL) {
5406 mutex_enter(&spa_namespace_lock);
5407 spa = spa_lookup(name);
5408 if (spa)
5409 spa_altroot(spa, altroot, buflen);
5410 else
5411 altroot[0] = '\0';
5412 spa = NULL;
5413 mutex_exit(&spa_namespace_lock);
5414 } else {
5415 spa_altroot(spa, altroot, buflen);
5416 }
5417 }
5418
5419 if (spa != NULL) {
5420 spa_config_exit(spa, SCL_CONFIG, FTAG);
5421 spa_close(spa, FTAG);
5422 }
5423
5424 return (error);
5425 }
5426
5427 /*
5428 * Validate that the auxiliary device array is well formed. We must have an
5429 * array of nvlists, each which describes a valid leaf vdev. If this is an
5430 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5431 * specified, as long as they are well-formed.
5432 */
5433 static int
5434 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5435 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5436 vdev_labeltype_t label)
5437 {
5438 nvlist_t **dev;
5439 uint_t i, ndev;
5440 vdev_t *vd;
5441 int error;
5442
5443 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5444
5445 /*
5446 * It's acceptable to have no devs specified.
5447 */
5448 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5449 return (0);
5450
5451 if (ndev == 0)
5452 return (SET_ERROR(EINVAL));
5453
5454 /*
5455 * Make sure the pool is formatted with a version that supports this
5456 * device type.
5457 */
5458 if (spa_version(spa) < version)
5459 return (SET_ERROR(ENOTSUP));
5460
5461 /*
5462 * Set the pending device list so we correctly handle device in-use
5463 * checking.
5464 */
5465 sav->sav_pending = dev;
5466 sav->sav_npending = ndev;
5467
5468 for (i = 0; i < ndev; i++) {
5469 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5470 mode)) != 0)
5471 goto out;
5472
5473 if (!vd->vdev_ops->vdev_op_leaf) {
5474 vdev_free(vd);
5475 error = SET_ERROR(EINVAL);
5476 goto out;
5477 }
5478
5479 vd->vdev_top = vd;
5480
5481 if ((error = vdev_open(vd)) == 0 &&
5482 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5483 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5484 vd->vdev_guid) == 0);
5485 }
5486
5487 vdev_free(vd);
5488
5489 if (error &&
5490 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5491 goto out;
5492 else
5493 error = 0;
5494 }
5495
5496 out:
5497 sav->sav_pending = NULL;
5498 sav->sav_npending = 0;
5499 return (error);
5500 }
5501
5502 static int
5503 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5504 {
5505 int error;
5506
5507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5508
5509 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5510 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5511 VDEV_LABEL_SPARE)) != 0) {
5512 return (error);
5513 }
5514
5515 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5516 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5517 VDEV_LABEL_L2CACHE));
5518 }
5519
5520 static void
5521 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5522 const char *config)
5523 {
5524 int i;
5525
5526 if (sav->sav_config != NULL) {
5527 nvlist_t **olddevs;
5528 uint_t oldndevs;
5529 nvlist_t **newdevs;
5530
5531 /*
5532 * Generate new dev list by concatenating with the
5533 * current dev list.
5534 */
5535 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5536 &olddevs, &oldndevs) == 0);
5537
5538 newdevs = kmem_alloc(sizeof (void *) *
5539 (ndevs + oldndevs), KM_SLEEP);
5540 for (i = 0; i < oldndevs; i++)
5541 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5542 KM_SLEEP) == 0);
5543 for (i = 0; i < ndevs; i++)
5544 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5545 KM_SLEEP) == 0);
5546
5547 VERIFY(nvlist_remove(sav->sav_config, config,
5548 DATA_TYPE_NVLIST_ARRAY) == 0);
5549
5550 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5551 config, newdevs, ndevs + oldndevs) == 0);
5552 for (i = 0; i < oldndevs + ndevs; i++)
5553 nvlist_free(newdevs[i]);
5554 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5555 } else {
5556 /*
5557 * Generate a new dev list.
5558 */
5559 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5560 KM_SLEEP) == 0);
5561 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5562 devs, ndevs) == 0);
5563 }
5564 }
5565
5566 /*
5567 * Stop and drop level 2 ARC devices
5568 */
5569 void
5570 spa_l2cache_drop(spa_t *spa)
5571 {
5572 vdev_t *vd;
5573 int i;
5574 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5575
5576 for (i = 0; i < sav->sav_count; i++) {
5577 uint64_t pool;
5578
5579 vd = sav->sav_vdevs[i];
5580 ASSERT(vd != NULL);
5581
5582 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5583 pool != 0ULL && l2arc_vdev_present(vd))
5584 l2arc_remove_vdev(vd);
5585 }
5586 }
5587
5588 /*
5589 * Verify encryption parameters for spa creation. If we are encrypting, we must
5590 * have the encryption feature flag enabled.
5591 */
5592 static int
5593 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5594 boolean_t has_encryption)
5595 {
5596 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5597 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5598 !has_encryption)
5599 return (SET_ERROR(ENOTSUP));
5600
5601 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5602 }
5603
5604 /*
5605 * Pool Creation
5606 */
5607 int
5608 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5609 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5610 {
5611 spa_t *spa;
5612 char *altroot = NULL;
5613 vdev_t *rvd;
5614 dsl_pool_t *dp;
5615 dmu_tx_t *tx;
5616 int error = 0;
5617 uint64_t txg = TXG_INITIAL;
5618 nvlist_t **spares, **l2cache;
5619 uint_t nspares, nl2cache;
5620 uint64_t version, obj;
5621 boolean_t has_features;
5622 boolean_t has_encryption;
5623 boolean_t has_allocclass;
5624 spa_feature_t feat;
5625 char *feat_name;
5626 char *poolname;
5627 nvlist_t *nvl;
5628
5629 if (props == NULL ||
5630 nvlist_lookup_string(props, "tname", &poolname) != 0)
5631 poolname = (char *)pool;
5632
5633 /*
5634 * If this pool already exists, return failure.
5635 */
5636 mutex_enter(&spa_namespace_lock);
5637 if (spa_lookup(poolname) != NULL) {
5638 mutex_exit(&spa_namespace_lock);
5639 return (SET_ERROR(EEXIST));
5640 }
5641
5642 /*
5643 * Allocate a new spa_t structure.
5644 */
5645 nvl = fnvlist_alloc();
5646 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5647 (void) nvlist_lookup_string(props,
5648 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5649 spa = spa_add(poolname, nvl, altroot);
5650 fnvlist_free(nvl);
5651 spa_activate(spa, spa_mode_global);
5652
5653 if (props && (error = spa_prop_validate(spa, props))) {
5654 spa_deactivate(spa);
5655 spa_remove(spa);
5656 mutex_exit(&spa_namespace_lock);
5657 return (error);
5658 }
5659
5660 /*
5661 * Temporary pool names should never be written to disk.
5662 */
5663 if (poolname != pool)
5664 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5665
5666 has_features = B_FALSE;
5667 has_encryption = B_FALSE;
5668 has_allocclass = B_FALSE;
5669 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5670 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5671 if (zpool_prop_feature(nvpair_name(elem))) {
5672 has_features = B_TRUE;
5673
5674 feat_name = strchr(nvpair_name(elem), '@') + 1;
5675 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5676 if (feat == SPA_FEATURE_ENCRYPTION)
5677 has_encryption = B_TRUE;
5678 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5679 has_allocclass = B_TRUE;
5680 }
5681 }
5682
5683 /* verify encryption params, if they were provided */
5684 if (dcp != NULL) {
5685 error = spa_create_check_encryption_params(dcp, has_encryption);
5686 if (error != 0) {
5687 spa_deactivate(spa);
5688 spa_remove(spa);
5689 mutex_exit(&spa_namespace_lock);
5690 return (error);
5691 }
5692 }
5693 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5694 spa_deactivate(spa);
5695 spa_remove(spa);
5696 mutex_exit(&spa_namespace_lock);
5697 return (ENOTSUP);
5698 }
5699
5700 if (has_features || nvlist_lookup_uint64(props,
5701 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5702 version = SPA_VERSION;
5703 }
5704 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5705
5706 spa->spa_first_txg = txg;
5707 spa->spa_uberblock.ub_txg = txg - 1;
5708 spa->spa_uberblock.ub_version = version;
5709 spa->spa_ubsync = spa->spa_uberblock;
5710 spa->spa_load_state = SPA_LOAD_CREATE;
5711 spa->spa_removing_phys.sr_state = DSS_NONE;
5712 spa->spa_removing_phys.sr_removing_vdev = -1;
5713 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5714 spa->spa_indirect_vdevs_loaded = B_TRUE;
5715
5716 /*
5717 * Create "The Godfather" zio to hold all async IOs
5718 */
5719 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5720 KM_SLEEP);
5721 for (int i = 0; i < max_ncpus; i++) {
5722 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5723 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5724 ZIO_FLAG_GODFATHER);
5725 }
5726
5727 /*
5728 * Create the root vdev.
5729 */
5730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5731
5732 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5733
5734 ASSERT(error != 0 || rvd != NULL);
5735 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5736
5737 if (error == 0 && !zfs_allocatable_devs(nvroot))
5738 error = SET_ERROR(EINVAL);
5739
5740 if (error == 0 &&
5741 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5742 (error = spa_validate_aux(spa, nvroot, txg,
5743 VDEV_ALLOC_ADD)) == 0) {
5744 /*
5745 * instantiate the metaslab groups (this will dirty the vdevs)
5746 * we can no longer error exit past this point
5747 */
5748 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5749 vdev_t *vd = rvd->vdev_child[c];
5750
5751 vdev_ashift_optimize(vd);
5752 vdev_metaslab_set_size(vd);
5753 vdev_expand(vd, txg);
5754 }
5755 }
5756
5757 spa_config_exit(spa, SCL_ALL, FTAG);
5758
5759 if (error != 0) {
5760 spa_unload(spa);
5761 spa_deactivate(spa);
5762 spa_remove(spa);
5763 mutex_exit(&spa_namespace_lock);
5764 return (error);
5765 }
5766
5767 /*
5768 * Get the list of spares, if specified.
5769 */
5770 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5771 &spares, &nspares) == 0) {
5772 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5773 KM_SLEEP) == 0);
5774 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5775 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5776 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5777 spa_load_spares(spa);
5778 spa_config_exit(spa, SCL_ALL, FTAG);
5779 spa->spa_spares.sav_sync = B_TRUE;
5780 }
5781
5782 /*
5783 * Get the list of level 2 cache devices, if specified.
5784 */
5785 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5786 &l2cache, &nl2cache) == 0) {
5787 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5788 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5789 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5790 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5791 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5792 spa_load_l2cache(spa);
5793 spa_config_exit(spa, SCL_ALL, FTAG);
5794 spa->spa_l2cache.sav_sync = B_TRUE;
5795 }
5796
5797 spa->spa_is_initializing = B_TRUE;
5798 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5799 spa->spa_is_initializing = B_FALSE;
5800
5801 /*
5802 * Create DDTs (dedup tables).
5803 */
5804 ddt_create(spa);
5805
5806 spa_update_dspace(spa);
5807
5808 tx = dmu_tx_create_assigned(dp, txg);
5809
5810 /*
5811 * Create the pool's history object.
5812 */
5813 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5814 spa_history_create_obj(spa, tx);
5815
5816 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5817 spa_history_log_version(spa, "create", tx);
5818
5819 /*
5820 * Create the pool config object.
5821 */
5822 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5823 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5824 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5825
5826 if (zap_add(spa->spa_meta_objset,
5827 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5828 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5829 cmn_err(CE_PANIC, "failed to add pool config");
5830 }
5831
5832 if (zap_add(spa->spa_meta_objset,
5833 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5834 sizeof (uint64_t), 1, &version, tx) != 0) {
5835 cmn_err(CE_PANIC, "failed to add pool version");
5836 }
5837
5838 /* Newly created pools with the right version are always deflated. */
5839 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5840 spa->spa_deflate = TRUE;
5841 if (zap_add(spa->spa_meta_objset,
5842 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5843 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5844 cmn_err(CE_PANIC, "failed to add deflate");
5845 }
5846 }
5847
5848 /*
5849 * Create the deferred-free bpobj. Turn off compression
5850 * because sync-to-convergence takes longer if the blocksize
5851 * keeps changing.
5852 */
5853 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5854 dmu_object_set_compress(spa->spa_meta_objset, obj,
5855 ZIO_COMPRESS_OFF, tx);
5856 if (zap_add(spa->spa_meta_objset,
5857 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5858 sizeof (uint64_t), 1, &obj, tx) != 0) {
5859 cmn_err(CE_PANIC, "failed to add bpobj");
5860 }
5861 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5862 spa->spa_meta_objset, obj));
5863
5864 /*
5865 * Generate some random noise for salted checksums to operate on.
5866 */
5867 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5868 sizeof (spa->spa_cksum_salt.zcs_bytes));
5869
5870 /*
5871 * Set pool properties.
5872 */
5873 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5874 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5875 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5876 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5877 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5878 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5879
5880 if (props != NULL) {
5881 spa_configfile_set(spa, props, B_FALSE);
5882 spa_sync_props(props, tx);
5883 }
5884
5885 dmu_tx_commit(tx);
5886
5887 spa->spa_sync_on = B_TRUE;
5888 txg_sync_start(dp);
5889 mmp_thread_start(spa);
5890 txg_wait_synced(dp, txg);
5891
5892 spa_spawn_aux_threads(spa);
5893
5894 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5895
5896 /*
5897 * Don't count references from objsets that are already closed
5898 * and are making their way through the eviction process.
5899 */
5900 spa_evicting_os_wait(spa);
5901 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5902 spa->spa_load_state = SPA_LOAD_NONE;
5903
5904 mutex_exit(&spa_namespace_lock);
5905
5906 return (0);
5907 }
5908
5909 /*
5910 * Import a non-root pool into the system.
5911 */
5912 int
5913 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5914 {
5915 spa_t *spa;
5916 char *altroot = NULL;
5917 spa_load_state_t state = SPA_LOAD_IMPORT;
5918 zpool_load_policy_t policy;
5919 spa_mode_t mode = spa_mode_global;
5920 uint64_t readonly = B_FALSE;
5921 int error;
5922 nvlist_t *nvroot;
5923 nvlist_t **spares, **l2cache;
5924 uint_t nspares, nl2cache;
5925
5926 /*
5927 * If a pool with this name exists, return failure.
5928 */
5929 mutex_enter(&spa_namespace_lock);
5930 if (spa_lookup(pool) != NULL) {
5931 mutex_exit(&spa_namespace_lock);
5932 return (SET_ERROR(EEXIST));
5933 }
5934
5935 /*
5936 * Create and initialize the spa structure.
5937 */
5938 (void) nvlist_lookup_string(props,
5939 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5940 (void) nvlist_lookup_uint64(props,
5941 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5942 if (readonly)
5943 mode = SPA_MODE_READ;
5944 spa = spa_add(pool, config, altroot);
5945 spa->spa_import_flags = flags;
5946
5947 /*
5948 * Verbatim import - Take a pool and insert it into the namespace
5949 * as if it had been loaded at boot.
5950 */
5951 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5952 if (props != NULL)
5953 spa_configfile_set(spa, props, B_FALSE);
5954
5955 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5956 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5957 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5958 mutex_exit(&spa_namespace_lock);
5959 return (0);
5960 }
5961
5962 spa_activate(spa, mode);
5963
5964 /*
5965 * Don't start async tasks until we know everything is healthy.
5966 */
5967 spa_async_suspend(spa);
5968
5969 zpool_get_load_policy(config, &policy);
5970 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5971 state = SPA_LOAD_RECOVER;
5972
5973 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5974
5975 if (state != SPA_LOAD_RECOVER) {
5976 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5977 zfs_dbgmsg("spa_import: importing %s", pool);
5978 } else {
5979 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5980 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5981 }
5982 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5983
5984 /*
5985 * Propagate anything learned while loading the pool and pass it
5986 * back to caller (i.e. rewind info, missing devices, etc).
5987 */
5988 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5989 spa->spa_load_info) == 0);
5990
5991 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5992 /*
5993 * Toss any existing sparelist, as it doesn't have any validity
5994 * anymore, and conflicts with spa_has_spare().
5995 */
5996 if (spa->spa_spares.sav_config) {
5997 nvlist_free(spa->spa_spares.sav_config);
5998 spa->spa_spares.sav_config = NULL;
5999 spa_load_spares(spa);
6000 }
6001 if (spa->spa_l2cache.sav_config) {
6002 nvlist_free(spa->spa_l2cache.sav_config);
6003 spa->spa_l2cache.sav_config = NULL;
6004 spa_load_l2cache(spa);
6005 }
6006
6007 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6008 &nvroot) == 0);
6009 spa_config_exit(spa, SCL_ALL, FTAG);
6010
6011 if (props != NULL)
6012 spa_configfile_set(spa, props, B_FALSE);
6013
6014 if (error != 0 || (props && spa_writeable(spa) &&
6015 (error = spa_prop_set(spa, props)))) {
6016 spa_unload(spa);
6017 spa_deactivate(spa);
6018 spa_remove(spa);
6019 mutex_exit(&spa_namespace_lock);
6020 return (error);
6021 }
6022
6023 spa_async_resume(spa);
6024
6025 /*
6026 * Override any spares and level 2 cache devices as specified by
6027 * the user, as these may have correct device names/devids, etc.
6028 */
6029 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6030 &spares, &nspares) == 0) {
6031 if (spa->spa_spares.sav_config)
6032 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6033 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6034 else
6035 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6036 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6037 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6038 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6039 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6040 spa_load_spares(spa);
6041 spa_config_exit(spa, SCL_ALL, FTAG);
6042 spa->spa_spares.sav_sync = B_TRUE;
6043 }
6044 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6045 &l2cache, &nl2cache) == 0) {
6046 if (spa->spa_l2cache.sav_config)
6047 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6048 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6049 else
6050 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6051 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6052 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6053 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6054 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6055 spa_load_l2cache(spa);
6056 spa_config_exit(spa, SCL_ALL, FTAG);
6057 spa->spa_l2cache.sav_sync = B_TRUE;
6058 }
6059
6060 /*
6061 * Check for any removed devices.
6062 */
6063 if (spa->spa_autoreplace) {
6064 spa_aux_check_removed(&spa->spa_spares);
6065 spa_aux_check_removed(&spa->spa_l2cache);
6066 }
6067
6068 if (spa_writeable(spa)) {
6069 /*
6070 * Update the config cache to include the newly-imported pool.
6071 */
6072 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6073 }
6074
6075 /*
6076 * It's possible that the pool was expanded while it was exported.
6077 * We kick off an async task to handle this for us.
6078 */
6079 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6080
6081 spa_history_log_version(spa, "import", NULL);
6082
6083 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6084
6085 mutex_exit(&spa_namespace_lock);
6086
6087 zvol_create_minors_recursive(pool);
6088
6089 return (0);
6090 }
6091
6092 nvlist_t *
6093 spa_tryimport(nvlist_t *tryconfig)
6094 {
6095 nvlist_t *config = NULL;
6096 char *poolname, *cachefile;
6097 spa_t *spa;
6098 uint64_t state;
6099 int error;
6100 zpool_load_policy_t policy;
6101
6102 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6103 return (NULL);
6104
6105 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6106 return (NULL);
6107
6108 /*
6109 * Create and initialize the spa structure.
6110 */
6111 mutex_enter(&spa_namespace_lock);
6112 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6113 spa_activate(spa, SPA_MODE_READ);
6114
6115 /*
6116 * Rewind pool if a max txg was provided.
6117 */
6118 zpool_get_load_policy(spa->spa_config, &policy);
6119 if (policy.zlp_txg != UINT64_MAX) {
6120 spa->spa_load_max_txg = policy.zlp_txg;
6121 spa->spa_extreme_rewind = B_TRUE;
6122 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6123 poolname, (longlong_t)policy.zlp_txg);
6124 } else {
6125 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6126 }
6127
6128 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6129 == 0) {
6130 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6131 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6132 } else {
6133 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6134 }
6135
6136 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6137
6138 /*
6139 * If 'tryconfig' was at least parsable, return the current config.
6140 */
6141 if (spa->spa_root_vdev != NULL) {
6142 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6143 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6144 poolname) == 0);
6145 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6146 state) == 0);
6147 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6148 spa->spa_uberblock.ub_timestamp) == 0);
6149 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6150 spa->spa_load_info) == 0);
6151 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6152 spa->spa_errata) == 0);
6153
6154 /*
6155 * If the bootfs property exists on this pool then we
6156 * copy it out so that external consumers can tell which
6157 * pools are bootable.
6158 */
6159 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6160 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6161
6162 /*
6163 * We have to play games with the name since the
6164 * pool was opened as TRYIMPORT_NAME.
6165 */
6166 if (dsl_dsobj_to_dsname(spa_name(spa),
6167 spa->spa_bootfs, tmpname) == 0) {
6168 char *cp;
6169 char *dsname;
6170
6171 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6172
6173 cp = strchr(tmpname, '/');
6174 if (cp == NULL) {
6175 (void) strlcpy(dsname, tmpname,
6176 MAXPATHLEN);
6177 } else {
6178 (void) snprintf(dsname, MAXPATHLEN,
6179 "%s/%s", poolname, ++cp);
6180 }
6181 VERIFY(nvlist_add_string(config,
6182 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6183 kmem_free(dsname, MAXPATHLEN);
6184 }
6185 kmem_free(tmpname, MAXPATHLEN);
6186 }
6187
6188 /*
6189 * Add the list of hot spares and level 2 cache devices.
6190 */
6191 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6192 spa_add_spares(spa, config);
6193 spa_add_l2cache(spa, config);
6194 spa_config_exit(spa, SCL_CONFIG, FTAG);
6195 }
6196
6197 spa_unload(spa);
6198 spa_deactivate(spa);
6199 spa_remove(spa);
6200 mutex_exit(&spa_namespace_lock);
6201
6202 return (config);
6203 }
6204
6205 /*
6206 * Pool export/destroy
6207 *
6208 * The act of destroying or exporting a pool is very simple. We make sure there
6209 * is no more pending I/O and any references to the pool are gone. Then, we
6210 * update the pool state and sync all the labels to disk, removing the
6211 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6212 * we don't sync the labels or remove the configuration cache.
6213 */
6214 static int
6215 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
6216 boolean_t force, boolean_t hardforce)
6217 {
6218 spa_t *spa;
6219
6220 if (oldconfig)
6221 *oldconfig = NULL;
6222
6223 if (!(spa_mode_global & SPA_MODE_WRITE))
6224 return (SET_ERROR(EROFS));
6225
6226 mutex_enter(&spa_namespace_lock);
6227 if ((spa = spa_lookup(pool)) == NULL) {
6228 mutex_exit(&spa_namespace_lock);
6229 return (SET_ERROR(ENOENT));
6230 }
6231
6232 if (spa->spa_is_exporting) {
6233 /* the pool is being exported by another thread */
6234 mutex_exit(&spa_namespace_lock);
6235 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6236 }
6237 spa->spa_is_exporting = B_TRUE;
6238
6239 /*
6240 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6241 * reacquire the namespace lock, and see if we can export.
6242 */
6243 spa_open_ref(spa, FTAG);
6244 mutex_exit(&spa_namespace_lock);
6245 spa_async_suspend(spa);
6246 if (spa->spa_zvol_taskq) {
6247 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6248 taskq_wait(spa->spa_zvol_taskq);
6249 }
6250 mutex_enter(&spa_namespace_lock);
6251 spa_close(spa, FTAG);
6252
6253 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6254 goto export_spa;
6255 /*
6256 * The pool will be in core if it's openable, in which case we can
6257 * modify its state. Objsets may be open only because they're dirty,
6258 * so we have to force it to sync before checking spa_refcnt.
6259 */
6260 if (spa->spa_sync_on) {
6261 txg_wait_synced(spa->spa_dsl_pool, 0);
6262 spa_evicting_os_wait(spa);
6263 }
6264
6265 /*
6266 * A pool cannot be exported or destroyed if there are active
6267 * references. If we are resetting a pool, allow references by
6268 * fault injection handlers.
6269 */
6270 if (!spa_refcount_zero(spa) ||
6271 (spa->spa_inject_ref != 0 &&
6272 new_state != POOL_STATE_UNINITIALIZED)) {
6273 spa_async_resume(spa);
6274 spa->spa_is_exporting = B_FALSE;
6275 mutex_exit(&spa_namespace_lock);
6276 return (SET_ERROR(EBUSY));
6277 }
6278
6279 if (spa->spa_sync_on) {
6280 /*
6281 * A pool cannot be exported if it has an active shared spare.
6282 * This is to prevent other pools stealing the active spare
6283 * from an exported pool. At user's own will, such pool can
6284 * be forcedly exported.
6285 */
6286 if (!force && new_state == POOL_STATE_EXPORTED &&
6287 spa_has_active_shared_spare(spa)) {
6288 spa_async_resume(spa);
6289 spa->spa_is_exporting = B_FALSE;
6290 mutex_exit(&spa_namespace_lock);
6291 return (SET_ERROR(EXDEV));
6292 }
6293
6294 /*
6295 * We're about to export or destroy this pool. Make sure
6296 * we stop all initialization and trim activity here before
6297 * we set the spa_final_txg. This will ensure that all
6298 * dirty data resulting from the initialization is
6299 * committed to disk before we unload the pool.
6300 */
6301 if (spa->spa_root_vdev != NULL) {
6302 vdev_t *rvd = spa->spa_root_vdev;
6303 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6304 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6305 vdev_autotrim_stop_all(spa);
6306 vdev_rebuild_stop_all(spa);
6307 }
6308
6309 /*
6310 * We want this to be reflected on every label,
6311 * so mark them all dirty. spa_unload() will do the
6312 * final sync that pushes these changes out.
6313 */
6314 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6315 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6316 spa->spa_state = new_state;
6317 spa->spa_final_txg = spa_last_synced_txg(spa) +
6318 TXG_DEFER_SIZE + 1;
6319 vdev_config_dirty(spa->spa_root_vdev);
6320 spa_config_exit(spa, SCL_ALL, FTAG);
6321 }
6322 }
6323
6324 export_spa:
6325 if (new_state == POOL_STATE_DESTROYED)
6326 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6327 else if (new_state == POOL_STATE_EXPORTED)
6328 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6329
6330 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6331 spa_unload(spa);
6332 spa_deactivate(spa);
6333 }
6334
6335 if (oldconfig && spa->spa_config)
6336 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6337
6338 if (new_state != POOL_STATE_UNINITIALIZED) {
6339 if (!hardforce)
6340 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6341 spa_remove(spa);
6342 } else {
6343 /*
6344 * If spa_remove() is not called for this spa_t and
6345 * there is any possibility that it can be reused,
6346 * we make sure to reset the exporting flag.
6347 */
6348 spa->spa_is_exporting = B_FALSE;
6349 }
6350
6351 mutex_exit(&spa_namespace_lock);
6352 return (0);
6353 }
6354
6355 /*
6356 * Destroy a storage pool.
6357 */
6358 int
6359 spa_destroy(char *pool)
6360 {
6361 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6362 B_FALSE, B_FALSE));
6363 }
6364
6365 /*
6366 * Export a storage pool.
6367 */
6368 int
6369 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6370 boolean_t hardforce)
6371 {
6372 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6373 force, hardforce));
6374 }
6375
6376 /*
6377 * Similar to spa_export(), this unloads the spa_t without actually removing it
6378 * from the namespace in any way.
6379 */
6380 int
6381 spa_reset(char *pool)
6382 {
6383 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6384 B_FALSE, B_FALSE));
6385 }
6386
6387 /*
6388 * ==========================================================================
6389 * Device manipulation
6390 * ==========================================================================
6391 */
6392
6393 /*
6394 * Add a device to a storage pool.
6395 */
6396 int
6397 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6398 {
6399 uint64_t txg;
6400 int error;
6401 vdev_t *rvd = spa->spa_root_vdev;
6402 vdev_t *vd, *tvd;
6403 nvlist_t **spares, **l2cache;
6404 uint_t nspares, nl2cache;
6405
6406 ASSERT(spa_writeable(spa));
6407
6408 txg = spa_vdev_enter(spa);
6409
6410 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6411 VDEV_ALLOC_ADD)) != 0)
6412 return (spa_vdev_exit(spa, NULL, txg, error));
6413
6414 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6415
6416 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6417 &nspares) != 0)
6418 nspares = 0;
6419
6420 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6421 &nl2cache) != 0)
6422 nl2cache = 0;
6423
6424 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6425 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6426
6427 if (vd->vdev_children != 0 &&
6428 (error = vdev_create(vd, txg, B_FALSE)) != 0)
6429 return (spa_vdev_exit(spa, vd, txg, error));
6430
6431 /*
6432 * We must validate the spares and l2cache devices after checking the
6433 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6434 */
6435 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6436 return (spa_vdev_exit(spa, vd, txg, error));
6437
6438 /*
6439 * If we are in the middle of a device removal, we can only add
6440 * devices which match the existing devices in the pool.
6441 * If we are in the middle of a removal, or have some indirect
6442 * vdevs, we can not add raidz toplevels.
6443 */
6444 if (spa->spa_vdev_removal != NULL ||
6445 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6446 for (int c = 0; c < vd->vdev_children; c++) {
6447 tvd = vd->vdev_child[c];
6448 if (spa->spa_vdev_removal != NULL &&
6449 tvd->vdev_ashift != spa->spa_max_ashift) {
6450 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6451 }
6452 /* Fail if top level vdev is raidz */
6453 if (tvd->vdev_ops == &vdev_raidz_ops) {
6454 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6455 }
6456 /*
6457 * Need the top level mirror to be
6458 * a mirror of leaf vdevs only
6459 */
6460 if (tvd->vdev_ops == &vdev_mirror_ops) {
6461 for (uint64_t cid = 0;
6462 cid < tvd->vdev_children; cid++) {
6463 vdev_t *cvd = tvd->vdev_child[cid];
6464 if (!cvd->vdev_ops->vdev_op_leaf) {
6465 return (spa_vdev_exit(spa, vd,
6466 txg, EINVAL));
6467 }
6468 }
6469 }
6470 }
6471 }
6472
6473 for (int c = 0; c < vd->vdev_children; c++) {
6474 tvd = vd->vdev_child[c];
6475 vdev_remove_child(vd, tvd);
6476 tvd->vdev_id = rvd->vdev_children;
6477 vdev_add_child(rvd, tvd);
6478 vdev_config_dirty(tvd);
6479 }
6480
6481 if (nspares != 0) {
6482 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6483 ZPOOL_CONFIG_SPARES);
6484 spa_load_spares(spa);
6485 spa->spa_spares.sav_sync = B_TRUE;
6486 }
6487
6488 if (nl2cache != 0) {
6489 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6490 ZPOOL_CONFIG_L2CACHE);
6491 spa_load_l2cache(spa);
6492 spa->spa_l2cache.sav_sync = B_TRUE;
6493 }
6494
6495 /*
6496 * We have to be careful when adding new vdevs to an existing pool.
6497 * If other threads start allocating from these vdevs before we
6498 * sync the config cache, and we lose power, then upon reboot we may
6499 * fail to open the pool because there are DVAs that the config cache
6500 * can't translate. Therefore, we first add the vdevs without
6501 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6502 * and then let spa_config_update() initialize the new metaslabs.
6503 *
6504 * spa_load() checks for added-but-not-initialized vdevs, so that
6505 * if we lose power at any point in this sequence, the remaining
6506 * steps will be completed the next time we load the pool.
6507 */
6508 (void) spa_vdev_exit(spa, vd, txg, 0);
6509
6510 mutex_enter(&spa_namespace_lock);
6511 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6512 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6513 mutex_exit(&spa_namespace_lock);
6514
6515 return (0);
6516 }
6517
6518 /*
6519 * Attach a device to a mirror. The arguments are the path to any device
6520 * in the mirror, and the nvroot for the new device. If the path specifies
6521 * a device that is not mirrored, we automatically insert the mirror vdev.
6522 *
6523 * If 'replacing' is specified, the new device is intended to replace the
6524 * existing device; in this case the two devices are made into their own
6525 * mirror using the 'replacing' vdev, which is functionally identical to
6526 * the mirror vdev (it actually reuses all the same ops) but has a few
6527 * extra rules: you can't attach to it after it's been created, and upon
6528 * completion of resilvering, the first disk (the one being replaced)
6529 * is automatically detached.
6530 *
6531 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6532 * should be performed instead of traditional healing reconstruction. From
6533 * an administrators perspective these are both resilver operations.
6534 */
6535 int
6536 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6537 int rebuild)
6538 {
6539 uint64_t txg, dtl_max_txg;
6540 vdev_t *rvd = spa->spa_root_vdev;
6541 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6542 vdev_ops_t *pvops;
6543 char *oldvdpath, *newvdpath;
6544 int newvd_isspare;
6545 int error;
6546
6547 ASSERT(spa_writeable(spa));
6548
6549 txg = spa_vdev_enter(spa);
6550
6551 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6552
6553 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6554 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6555 error = (spa_has_checkpoint(spa)) ?
6556 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6557 return (spa_vdev_exit(spa, NULL, txg, error));
6558 }
6559
6560 if (rebuild) {
6561 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6562 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6563
6564 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6565 return (spa_vdev_exit(spa, NULL, txg,
6566 ZFS_ERR_RESILVER_IN_PROGRESS));
6567 } else {
6568 if (vdev_rebuild_active(rvd))
6569 return (spa_vdev_exit(spa, NULL, txg,
6570 ZFS_ERR_REBUILD_IN_PROGRESS));
6571 }
6572
6573 if (spa->spa_vdev_removal != NULL)
6574 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6575
6576 if (oldvd == NULL)
6577 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6578
6579 if (!oldvd->vdev_ops->vdev_op_leaf)
6580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6581
6582 pvd = oldvd->vdev_parent;
6583
6584 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6585 VDEV_ALLOC_ATTACH)) != 0)
6586 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6587
6588 if (newrootvd->vdev_children != 1)
6589 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6590
6591 newvd = newrootvd->vdev_child[0];
6592
6593 if (!newvd->vdev_ops->vdev_op_leaf)
6594 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6595
6596 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6597 return (spa_vdev_exit(spa, newrootvd, txg, error));
6598
6599 /*
6600 * Spares can't replace logs
6601 */
6602 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6603 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6604
6605 if (rebuild) {
6606 /*
6607 * For rebuilds, the parent vdev must support reconstruction
6608 * using only space maps. This means the only allowable
6609 * parents are the root vdev or a mirror vdev.
6610 */
6611 if (pvd->vdev_ops != &vdev_mirror_ops &&
6612 pvd->vdev_ops != &vdev_root_ops) {
6613 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6614 }
6615 }
6616
6617 if (!replacing) {
6618 /*
6619 * For attach, the only allowable parent is a mirror or the root
6620 * vdev.
6621 */
6622 if (pvd->vdev_ops != &vdev_mirror_ops &&
6623 pvd->vdev_ops != &vdev_root_ops)
6624 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6625
6626 pvops = &vdev_mirror_ops;
6627 } else {
6628 /*
6629 * Active hot spares can only be replaced by inactive hot
6630 * spares.
6631 */
6632 if (pvd->vdev_ops == &vdev_spare_ops &&
6633 oldvd->vdev_isspare &&
6634 !spa_has_spare(spa, newvd->vdev_guid))
6635 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6636
6637 /*
6638 * If the source is a hot spare, and the parent isn't already a
6639 * spare, then we want to create a new hot spare. Otherwise, we
6640 * want to create a replacing vdev. The user is not allowed to
6641 * attach to a spared vdev child unless the 'isspare' state is
6642 * the same (spare replaces spare, non-spare replaces
6643 * non-spare).
6644 */
6645 if (pvd->vdev_ops == &vdev_replacing_ops &&
6646 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6647 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6648 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6649 newvd->vdev_isspare != oldvd->vdev_isspare) {
6650 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6651 }
6652
6653 if (newvd->vdev_isspare)
6654 pvops = &vdev_spare_ops;
6655 else
6656 pvops = &vdev_replacing_ops;
6657 }
6658
6659 /*
6660 * Make sure the new device is big enough.
6661 */
6662 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6663 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6664
6665 /*
6666 * The new device cannot have a higher alignment requirement
6667 * than the top-level vdev.
6668 */
6669 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6670 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6671
6672 /*
6673 * If this is an in-place replacement, update oldvd's path and devid
6674 * to make it distinguishable from newvd, and unopenable from now on.
6675 */
6676 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6677 spa_strfree(oldvd->vdev_path);
6678 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6679 KM_SLEEP);
6680 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6681 "%s/%s", newvd->vdev_path, "old");
6682 if (oldvd->vdev_devid != NULL) {
6683 spa_strfree(oldvd->vdev_devid);
6684 oldvd->vdev_devid = NULL;
6685 }
6686 }
6687
6688 /*
6689 * If the parent is not a mirror, or if we're replacing, insert the new
6690 * mirror/replacing/spare vdev above oldvd.
6691 */
6692 if (pvd->vdev_ops != pvops)
6693 pvd = vdev_add_parent(oldvd, pvops);
6694
6695 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6696 ASSERT(pvd->vdev_ops == pvops);
6697 ASSERT(oldvd->vdev_parent == pvd);
6698
6699 /*
6700 * Extract the new device from its root and add it to pvd.
6701 */
6702 vdev_remove_child(newrootvd, newvd);
6703 newvd->vdev_id = pvd->vdev_children;
6704 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6705 vdev_add_child(pvd, newvd);
6706
6707 /*
6708 * Reevaluate the parent vdev state.
6709 */
6710 vdev_propagate_state(pvd);
6711
6712 tvd = newvd->vdev_top;
6713 ASSERT(pvd->vdev_top == tvd);
6714 ASSERT(tvd->vdev_parent == rvd);
6715
6716 vdev_config_dirty(tvd);
6717
6718 /*
6719 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6720 * for any dmu_sync-ed blocks. It will propagate upward when
6721 * spa_vdev_exit() calls vdev_dtl_reassess().
6722 */
6723 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6724
6725 vdev_dtl_dirty(newvd, DTL_MISSING,
6726 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6727
6728 if (newvd->vdev_isspare) {
6729 spa_spare_activate(newvd);
6730 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6731 }
6732
6733 oldvdpath = spa_strdup(oldvd->vdev_path);
6734 newvdpath = spa_strdup(newvd->vdev_path);
6735 newvd_isspare = newvd->vdev_isspare;
6736
6737 /*
6738 * Mark newvd's DTL dirty in this txg.
6739 */
6740 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6741
6742 /*
6743 * Schedule the resilver or rebuild to restart in the future. We do
6744 * this to ensure that dmu_sync-ed blocks have been stitched into the
6745 * respective datasets.
6746 */
6747 if (rebuild) {
6748 newvd->vdev_rebuild_txg = txg;
6749
6750 vdev_rebuild(tvd);
6751 } else {
6752 newvd->vdev_resilver_txg = txg;
6753
6754 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6755 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6756 vdev_defer_resilver(newvd);
6757 } else {
6758 dsl_scan_restart_resilver(spa->spa_dsl_pool,
6759 dtl_max_txg);
6760 }
6761 }
6762
6763 if (spa->spa_bootfs)
6764 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6765
6766 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6767
6768 /*
6769 * Commit the config
6770 */
6771 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6772
6773 spa_history_log_internal(spa, "vdev attach", NULL,
6774 "%s vdev=%s %s vdev=%s",
6775 replacing && newvd_isspare ? "spare in" :
6776 replacing ? "replace" : "attach", newvdpath,
6777 replacing ? "for" : "to", oldvdpath);
6778
6779 spa_strfree(oldvdpath);
6780 spa_strfree(newvdpath);
6781
6782 return (0);
6783 }
6784
6785 /*
6786 * Detach a device from a mirror or replacing vdev.
6787 *
6788 * If 'replace_done' is specified, only detach if the parent
6789 * is a replacing vdev.
6790 */
6791 int
6792 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6793 {
6794 uint64_t txg;
6795 int error;
6796 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6797 vdev_t *vd, *pvd, *cvd, *tvd;
6798 boolean_t unspare = B_FALSE;
6799 uint64_t unspare_guid = 0;
6800 char *vdpath;
6801
6802 ASSERT(spa_writeable(spa));
6803
6804 txg = spa_vdev_detach_enter(spa, guid);
6805
6806 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6807
6808 /*
6809 * Besides being called directly from the userland through the
6810 * ioctl interface, spa_vdev_detach() can be potentially called
6811 * at the end of spa_vdev_resilver_done().
6812 *
6813 * In the regular case, when we have a checkpoint this shouldn't
6814 * happen as we never empty the DTLs of a vdev during the scrub
6815 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6816 * should never get here when we have a checkpoint.
6817 *
6818 * That said, even in a case when we checkpoint the pool exactly
6819 * as spa_vdev_resilver_done() calls this function everything
6820 * should be fine as the resilver will return right away.
6821 */
6822 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6823 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6824 error = (spa_has_checkpoint(spa)) ?
6825 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6826 return (spa_vdev_exit(spa, NULL, txg, error));
6827 }
6828
6829 if (vd == NULL)
6830 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6831
6832 if (!vd->vdev_ops->vdev_op_leaf)
6833 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6834
6835 pvd = vd->vdev_parent;
6836
6837 /*
6838 * If the parent/child relationship is not as expected, don't do it.
6839 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6840 * vdev that's replacing B with C. The user's intent in replacing
6841 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6842 * the replace by detaching C, the expected behavior is to end up
6843 * M(A,B). But suppose that right after deciding to detach C,
6844 * the replacement of B completes. We would have M(A,C), and then
6845 * ask to detach C, which would leave us with just A -- not what
6846 * the user wanted. To prevent this, we make sure that the
6847 * parent/child relationship hasn't changed -- in this example,
6848 * that C's parent is still the replacing vdev R.
6849 */
6850 if (pvd->vdev_guid != pguid && pguid != 0)
6851 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6852
6853 /*
6854 * Only 'replacing' or 'spare' vdevs can be replaced.
6855 */
6856 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6857 pvd->vdev_ops != &vdev_spare_ops)
6858 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6859
6860 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6861 spa_version(spa) >= SPA_VERSION_SPARES);
6862
6863 /*
6864 * Only mirror, replacing, and spare vdevs support detach.
6865 */
6866 if (pvd->vdev_ops != &vdev_replacing_ops &&
6867 pvd->vdev_ops != &vdev_mirror_ops &&
6868 pvd->vdev_ops != &vdev_spare_ops)
6869 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6870
6871 /*
6872 * If this device has the only valid copy of some data,
6873 * we cannot safely detach it.
6874 */
6875 if (vdev_dtl_required(vd))
6876 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6877
6878 ASSERT(pvd->vdev_children >= 2);
6879
6880 /*
6881 * If we are detaching the second disk from a replacing vdev, then
6882 * check to see if we changed the original vdev's path to have "/old"
6883 * at the end in spa_vdev_attach(). If so, undo that change now.
6884 */
6885 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6886 vd->vdev_path != NULL) {
6887 size_t len = strlen(vd->vdev_path);
6888
6889 for (int c = 0; c < pvd->vdev_children; c++) {
6890 cvd = pvd->vdev_child[c];
6891
6892 if (cvd == vd || cvd->vdev_path == NULL)
6893 continue;
6894
6895 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6896 strcmp(cvd->vdev_path + len, "/old") == 0) {
6897 spa_strfree(cvd->vdev_path);
6898 cvd->vdev_path = spa_strdup(vd->vdev_path);
6899 break;
6900 }
6901 }
6902 }
6903
6904 /*
6905 * If we are detaching the original disk from a spare, then it implies
6906 * that the spare should become a real disk, and be removed from the
6907 * active spare list for the pool.
6908 */
6909 if (pvd->vdev_ops == &vdev_spare_ops &&
6910 vd->vdev_id == 0 &&
6911 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6912 unspare = B_TRUE;
6913
6914 /*
6915 * Erase the disk labels so the disk can be used for other things.
6916 * This must be done after all other error cases are handled,
6917 * but before we disembowel vd (so we can still do I/O to it).
6918 * But if we can't do it, don't treat the error as fatal --
6919 * it may be that the unwritability of the disk is the reason
6920 * it's being detached!
6921 */
6922 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6923
6924 /*
6925 * Remove vd from its parent and compact the parent's children.
6926 */
6927 vdev_remove_child(pvd, vd);
6928 vdev_compact_children(pvd);
6929
6930 /*
6931 * Remember one of the remaining children so we can get tvd below.
6932 */
6933 cvd = pvd->vdev_child[pvd->vdev_children - 1];
6934
6935 /*
6936 * If we need to remove the remaining child from the list of hot spares,
6937 * do it now, marking the vdev as no longer a spare in the process.
6938 * We must do this before vdev_remove_parent(), because that can
6939 * change the GUID if it creates a new toplevel GUID. For a similar
6940 * reason, we must remove the spare now, in the same txg as the detach;
6941 * otherwise someone could attach a new sibling, change the GUID, and
6942 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6943 */
6944 if (unspare) {
6945 ASSERT(cvd->vdev_isspare);
6946 spa_spare_remove(cvd);
6947 unspare_guid = cvd->vdev_guid;
6948 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6949 cvd->vdev_unspare = B_TRUE;
6950 }
6951
6952 /*
6953 * If the parent mirror/replacing vdev only has one child,
6954 * the parent is no longer needed. Remove it from the tree.
6955 */
6956 if (pvd->vdev_children == 1) {
6957 if (pvd->vdev_ops == &vdev_spare_ops)
6958 cvd->vdev_unspare = B_FALSE;
6959 vdev_remove_parent(cvd);
6960 }
6961
6962 /*
6963 * We don't set tvd until now because the parent we just removed
6964 * may have been the previous top-level vdev.
6965 */
6966 tvd = cvd->vdev_top;
6967 ASSERT(tvd->vdev_parent == rvd);
6968
6969 /*
6970 * Reevaluate the parent vdev state.
6971 */
6972 vdev_propagate_state(cvd);
6973
6974 /*
6975 * If the 'autoexpand' property is set on the pool then automatically
6976 * try to expand the size of the pool. For example if the device we
6977 * just detached was smaller than the others, it may be possible to
6978 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6979 * first so that we can obtain the updated sizes of the leaf vdevs.
6980 */
6981 if (spa->spa_autoexpand) {
6982 vdev_reopen(tvd);
6983 vdev_expand(tvd, txg);
6984 }
6985
6986 vdev_config_dirty(tvd);
6987
6988 /*
6989 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6990 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6991 * But first make sure we're not on any *other* txg's DTL list, to
6992 * prevent vd from being accessed after it's freed.
6993 */
6994 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
6995 for (int t = 0; t < TXG_SIZE; t++)
6996 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6997 vd->vdev_detached = B_TRUE;
6998 vdev_dirty(tvd, VDD_DTL, vd, txg);
6999
7000 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7001 spa_notify_waiters(spa);
7002
7003 /* hang on to the spa before we release the lock */
7004 spa_open_ref(spa, FTAG);
7005
7006 error = spa_vdev_exit(spa, vd, txg, 0);
7007
7008 spa_history_log_internal(spa, "detach", NULL,
7009 "vdev=%s", vdpath);
7010 spa_strfree(vdpath);
7011
7012 /*
7013 * If this was the removal of the original device in a hot spare vdev,
7014 * then we want to go through and remove the device from the hot spare
7015 * list of every other pool.
7016 */
7017 if (unspare) {
7018 spa_t *altspa = NULL;
7019
7020 mutex_enter(&spa_namespace_lock);
7021 while ((altspa = spa_next(altspa)) != NULL) {
7022 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7023 altspa == spa)
7024 continue;
7025
7026 spa_open_ref(altspa, FTAG);
7027 mutex_exit(&spa_namespace_lock);
7028 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7029 mutex_enter(&spa_namespace_lock);
7030 spa_close(altspa, FTAG);
7031 }
7032 mutex_exit(&spa_namespace_lock);
7033
7034 /* search the rest of the vdevs for spares to remove */
7035 spa_vdev_resilver_done(spa);
7036 }
7037
7038 /* all done with the spa; OK to release */
7039 mutex_enter(&spa_namespace_lock);
7040 spa_close(spa, FTAG);
7041 mutex_exit(&spa_namespace_lock);
7042
7043 return (error);
7044 }
7045
7046 static int
7047 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7048 list_t *vd_list)
7049 {
7050 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7051
7052 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7053
7054 /* Look up vdev and ensure it's a leaf. */
7055 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7056 if (vd == NULL || vd->vdev_detached) {
7057 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7058 return (SET_ERROR(ENODEV));
7059 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7060 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7061 return (SET_ERROR(EINVAL));
7062 } else if (!vdev_writeable(vd)) {
7063 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7064 return (SET_ERROR(EROFS));
7065 }
7066 mutex_enter(&vd->vdev_initialize_lock);
7067 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7068
7069 /*
7070 * When we activate an initialize action we check to see
7071 * if the vdev_initialize_thread is NULL. We do this instead
7072 * of using the vdev_initialize_state since there might be
7073 * a previous initialization process which has completed but
7074 * the thread is not exited.
7075 */
7076 if (cmd_type == POOL_INITIALIZE_START &&
7077 (vd->vdev_initialize_thread != NULL ||
7078 vd->vdev_top->vdev_removing)) {
7079 mutex_exit(&vd->vdev_initialize_lock);
7080 return (SET_ERROR(EBUSY));
7081 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7082 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7083 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7084 mutex_exit(&vd->vdev_initialize_lock);
7085 return (SET_ERROR(ESRCH));
7086 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7087 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7088 mutex_exit(&vd->vdev_initialize_lock);
7089 return (SET_ERROR(ESRCH));
7090 }
7091
7092 switch (cmd_type) {
7093 case POOL_INITIALIZE_START:
7094 vdev_initialize(vd);
7095 break;
7096 case POOL_INITIALIZE_CANCEL:
7097 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7098 break;
7099 case POOL_INITIALIZE_SUSPEND:
7100 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7101 break;
7102 default:
7103 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7104 }
7105 mutex_exit(&vd->vdev_initialize_lock);
7106
7107 return (0);
7108 }
7109
7110 int
7111 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7112 nvlist_t *vdev_errlist)
7113 {
7114 int total_errors = 0;
7115 list_t vd_list;
7116
7117 list_create(&vd_list, sizeof (vdev_t),
7118 offsetof(vdev_t, vdev_initialize_node));
7119
7120 /*
7121 * We hold the namespace lock through the whole function
7122 * to prevent any changes to the pool while we're starting or
7123 * stopping initialization. The config and state locks are held so that
7124 * we can properly assess the vdev state before we commit to
7125 * the initializing operation.
7126 */
7127 mutex_enter(&spa_namespace_lock);
7128
7129 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7130 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7131 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7132
7133 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7134 &vd_list);
7135 if (error != 0) {
7136 char guid_as_str[MAXNAMELEN];
7137
7138 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7139 "%llu", (unsigned long long)vdev_guid);
7140 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7141 total_errors++;
7142 }
7143 }
7144
7145 /* Wait for all initialize threads to stop. */
7146 vdev_initialize_stop_wait(spa, &vd_list);
7147
7148 /* Sync out the initializing state */
7149 txg_wait_synced(spa->spa_dsl_pool, 0);
7150 mutex_exit(&spa_namespace_lock);
7151
7152 list_destroy(&vd_list);
7153
7154 return (total_errors);
7155 }
7156
7157 static int
7158 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7159 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7160 {
7161 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7162
7163 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7164
7165 /* Look up vdev and ensure it's a leaf. */
7166 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7167 if (vd == NULL || vd->vdev_detached) {
7168 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7169 return (SET_ERROR(ENODEV));
7170 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7171 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7172 return (SET_ERROR(EINVAL));
7173 } else if (!vdev_writeable(vd)) {
7174 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7175 return (SET_ERROR(EROFS));
7176 } else if (!vd->vdev_has_trim) {
7177 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7178 return (SET_ERROR(EOPNOTSUPP));
7179 } else if (secure && !vd->vdev_has_securetrim) {
7180 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7181 return (SET_ERROR(EOPNOTSUPP));
7182 }
7183 mutex_enter(&vd->vdev_trim_lock);
7184 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7185
7186 /*
7187 * When we activate a TRIM action we check to see if the
7188 * vdev_trim_thread is NULL. We do this instead of using the
7189 * vdev_trim_state since there might be a previous TRIM process
7190 * which has completed but the thread is not exited.
7191 */
7192 if (cmd_type == POOL_TRIM_START &&
7193 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7194 mutex_exit(&vd->vdev_trim_lock);
7195 return (SET_ERROR(EBUSY));
7196 } else if (cmd_type == POOL_TRIM_CANCEL &&
7197 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7198 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7199 mutex_exit(&vd->vdev_trim_lock);
7200 return (SET_ERROR(ESRCH));
7201 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7202 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7203 mutex_exit(&vd->vdev_trim_lock);
7204 return (SET_ERROR(ESRCH));
7205 }
7206
7207 switch (cmd_type) {
7208 case POOL_TRIM_START:
7209 vdev_trim(vd, rate, partial, secure);
7210 break;
7211 case POOL_TRIM_CANCEL:
7212 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7213 break;
7214 case POOL_TRIM_SUSPEND:
7215 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7216 break;
7217 default:
7218 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7219 }
7220 mutex_exit(&vd->vdev_trim_lock);
7221
7222 return (0);
7223 }
7224
7225 /*
7226 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7227 * TRIM threads for each child vdev. These threads pass over all of the free
7228 * space in the vdev's metaslabs and issues TRIM commands for that space.
7229 */
7230 int
7231 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7232 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7233 {
7234 int total_errors = 0;
7235 list_t vd_list;
7236
7237 list_create(&vd_list, sizeof (vdev_t),
7238 offsetof(vdev_t, vdev_trim_node));
7239
7240 /*
7241 * We hold the namespace lock through the whole function
7242 * to prevent any changes to the pool while we're starting or
7243 * stopping TRIM. The config and state locks are held so that
7244 * we can properly assess the vdev state before we commit to
7245 * the TRIM operation.
7246 */
7247 mutex_enter(&spa_namespace_lock);
7248
7249 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7250 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7251 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7252
7253 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7254 rate, partial, secure, &vd_list);
7255 if (error != 0) {
7256 char guid_as_str[MAXNAMELEN];
7257
7258 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7259 "%llu", (unsigned long long)vdev_guid);
7260 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7261 total_errors++;
7262 }
7263 }
7264
7265 /* Wait for all TRIM threads to stop. */
7266 vdev_trim_stop_wait(spa, &vd_list);
7267
7268 /* Sync out the TRIM state */
7269 txg_wait_synced(spa->spa_dsl_pool, 0);
7270 mutex_exit(&spa_namespace_lock);
7271
7272 list_destroy(&vd_list);
7273
7274 return (total_errors);
7275 }
7276
7277 /*
7278 * Split a set of devices from their mirrors, and create a new pool from them.
7279 */
7280 int
7281 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7282 nvlist_t *props, boolean_t exp)
7283 {
7284 int error = 0;
7285 uint64_t txg, *glist;
7286 spa_t *newspa;
7287 uint_t c, children, lastlog;
7288 nvlist_t **child, *nvl, *tmp;
7289 dmu_tx_t *tx;
7290 char *altroot = NULL;
7291 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7292 boolean_t activate_slog;
7293
7294 ASSERT(spa_writeable(spa));
7295
7296 txg = spa_vdev_enter(spa);
7297
7298 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7299 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7300 error = (spa_has_checkpoint(spa)) ?
7301 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7302 return (spa_vdev_exit(spa, NULL, txg, error));
7303 }
7304
7305 /* clear the log and flush everything up to now */
7306 activate_slog = spa_passivate_log(spa);
7307 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7308 error = spa_reset_logs(spa);
7309 txg = spa_vdev_config_enter(spa);
7310
7311 if (activate_slog)
7312 spa_activate_log(spa);
7313
7314 if (error != 0)
7315 return (spa_vdev_exit(spa, NULL, txg, error));
7316
7317 /* check new spa name before going any further */
7318 if (spa_lookup(newname) != NULL)
7319 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7320
7321 /*
7322 * scan through all the children to ensure they're all mirrors
7323 */
7324 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7325 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7326 &children) != 0)
7327 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7328
7329 /* first, check to ensure we've got the right child count */
7330 rvd = spa->spa_root_vdev;
7331 lastlog = 0;
7332 for (c = 0; c < rvd->vdev_children; c++) {
7333 vdev_t *vd = rvd->vdev_child[c];
7334
7335 /* don't count the holes & logs as children */
7336 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7337 !vdev_is_concrete(vd))) {
7338 if (lastlog == 0)
7339 lastlog = c;
7340 continue;
7341 }
7342
7343 lastlog = 0;
7344 }
7345 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7346 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7347
7348 /* next, ensure no spare or cache devices are part of the split */
7349 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7350 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7351 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7352
7353 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7354 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7355
7356 /* then, loop over each vdev and validate it */
7357 for (c = 0; c < children; c++) {
7358 uint64_t is_hole = 0;
7359
7360 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7361 &is_hole);
7362
7363 if (is_hole != 0) {
7364 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7365 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7366 continue;
7367 } else {
7368 error = SET_ERROR(EINVAL);
7369 break;
7370 }
7371 }
7372
7373 /* deal with indirect vdevs */
7374 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7375 &vdev_indirect_ops)
7376 continue;
7377
7378 /* which disk is going to be split? */
7379 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7380 &glist[c]) != 0) {
7381 error = SET_ERROR(EINVAL);
7382 break;
7383 }
7384
7385 /* look it up in the spa */
7386 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7387 if (vml[c] == NULL) {
7388 error = SET_ERROR(ENODEV);
7389 break;
7390 }
7391
7392 /* make sure there's nothing stopping the split */
7393 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7394 vml[c]->vdev_islog ||
7395 !vdev_is_concrete(vml[c]) ||
7396 vml[c]->vdev_isspare ||
7397 vml[c]->vdev_isl2cache ||
7398 !vdev_writeable(vml[c]) ||
7399 vml[c]->vdev_children != 0 ||
7400 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7401 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7402 error = SET_ERROR(EINVAL);
7403 break;
7404 }
7405
7406 if (vdev_dtl_required(vml[c]) ||
7407 vdev_resilver_needed(vml[c], NULL, NULL)) {
7408 error = SET_ERROR(EBUSY);
7409 break;
7410 }
7411
7412 /* we need certain info from the top level */
7413 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7414 vml[c]->vdev_top->vdev_ms_array) == 0);
7415 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7416 vml[c]->vdev_top->vdev_ms_shift) == 0);
7417 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7418 vml[c]->vdev_top->vdev_asize) == 0);
7419 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7420 vml[c]->vdev_top->vdev_ashift) == 0);
7421
7422 /* transfer per-vdev ZAPs */
7423 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7424 VERIFY0(nvlist_add_uint64(child[c],
7425 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7426
7427 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7428 VERIFY0(nvlist_add_uint64(child[c],
7429 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7430 vml[c]->vdev_parent->vdev_top_zap));
7431 }
7432
7433 if (error != 0) {
7434 kmem_free(vml, children * sizeof (vdev_t *));
7435 kmem_free(glist, children * sizeof (uint64_t));
7436 return (spa_vdev_exit(spa, NULL, txg, error));
7437 }
7438
7439 /* stop writers from using the disks */
7440 for (c = 0; c < children; c++) {
7441 if (vml[c] != NULL)
7442 vml[c]->vdev_offline = B_TRUE;
7443 }
7444 vdev_reopen(spa->spa_root_vdev);
7445
7446 /*
7447 * Temporarily record the splitting vdevs in the spa config. This
7448 * will disappear once the config is regenerated.
7449 */
7450 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7451 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7452 glist, children) == 0);
7453 kmem_free(glist, children * sizeof (uint64_t));
7454
7455 mutex_enter(&spa->spa_props_lock);
7456 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7457 nvl) == 0);
7458 mutex_exit(&spa->spa_props_lock);
7459 spa->spa_config_splitting = nvl;
7460 vdev_config_dirty(spa->spa_root_vdev);
7461
7462 /* configure and create the new pool */
7463 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7464 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7465 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7466 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7467 spa_version(spa)) == 0);
7468 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7469 spa->spa_config_txg) == 0);
7470 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7471 spa_generate_guid(NULL)) == 0);
7472 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7473 (void) nvlist_lookup_string(props,
7474 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7475
7476 /* add the new pool to the namespace */
7477 newspa = spa_add(newname, config, altroot);
7478 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7479 newspa->spa_config_txg = spa->spa_config_txg;
7480 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7481
7482 /* release the spa config lock, retaining the namespace lock */
7483 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7484
7485 if (zio_injection_enabled)
7486 zio_handle_panic_injection(spa, FTAG, 1);
7487
7488 spa_activate(newspa, spa_mode_global);
7489 spa_async_suspend(newspa);
7490
7491 /*
7492 * Temporarily stop the initializing and TRIM activity. We set the
7493 * state to ACTIVE so that we know to resume initializing or TRIM
7494 * once the split has completed.
7495 */
7496 list_t vd_initialize_list;
7497 list_create(&vd_initialize_list, sizeof (vdev_t),
7498 offsetof(vdev_t, vdev_initialize_node));
7499
7500 list_t vd_trim_list;
7501 list_create(&vd_trim_list, sizeof (vdev_t),
7502 offsetof(vdev_t, vdev_trim_node));
7503
7504 for (c = 0; c < children; c++) {
7505 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7506 mutex_enter(&vml[c]->vdev_initialize_lock);
7507 vdev_initialize_stop(vml[c],
7508 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7509 mutex_exit(&vml[c]->vdev_initialize_lock);
7510
7511 mutex_enter(&vml[c]->vdev_trim_lock);
7512 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7513 mutex_exit(&vml[c]->vdev_trim_lock);
7514 }
7515 }
7516
7517 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7518 vdev_trim_stop_wait(spa, &vd_trim_list);
7519
7520 list_destroy(&vd_initialize_list);
7521 list_destroy(&vd_trim_list);
7522
7523 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7524 newspa->spa_is_splitting = B_TRUE;
7525
7526 /* create the new pool from the disks of the original pool */
7527 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7528 if (error)
7529 goto out;
7530
7531 /* if that worked, generate a real config for the new pool */
7532 if (newspa->spa_root_vdev != NULL) {
7533 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7534 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7535 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7536 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7537 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7538 B_TRUE));
7539 }
7540
7541 /* set the props */
7542 if (props != NULL) {
7543 spa_configfile_set(newspa, props, B_FALSE);
7544 error = spa_prop_set(newspa, props);
7545 if (error)
7546 goto out;
7547 }
7548
7549 /* flush everything */
7550 txg = spa_vdev_config_enter(newspa);
7551 vdev_config_dirty(newspa->spa_root_vdev);
7552 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7553
7554 if (zio_injection_enabled)
7555 zio_handle_panic_injection(spa, FTAG, 2);
7556
7557 spa_async_resume(newspa);
7558
7559 /* finally, update the original pool's config */
7560 txg = spa_vdev_config_enter(spa);
7561 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7562 error = dmu_tx_assign(tx, TXG_WAIT);
7563 if (error != 0)
7564 dmu_tx_abort(tx);
7565 for (c = 0; c < children; c++) {
7566 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7567 vdev_t *tvd = vml[c]->vdev_top;
7568
7569 /*
7570 * Need to be sure the detachable VDEV is not
7571 * on any *other* txg's DTL list to prevent it
7572 * from being accessed after it's freed.
7573 */
7574 for (int t = 0; t < TXG_SIZE; t++) {
7575 (void) txg_list_remove_this(
7576 &tvd->vdev_dtl_list, vml[c], t);
7577 }
7578
7579 vdev_split(vml[c]);
7580 if (error == 0)
7581 spa_history_log_internal(spa, "detach", tx,
7582 "vdev=%s", vml[c]->vdev_path);
7583
7584 vdev_free(vml[c]);
7585 }
7586 }
7587 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7588 vdev_config_dirty(spa->spa_root_vdev);
7589 spa->spa_config_splitting = NULL;
7590 nvlist_free(nvl);
7591 if (error == 0)
7592 dmu_tx_commit(tx);
7593 (void) spa_vdev_exit(spa, NULL, txg, 0);
7594
7595 if (zio_injection_enabled)
7596 zio_handle_panic_injection(spa, FTAG, 3);
7597
7598 /* split is complete; log a history record */
7599 spa_history_log_internal(newspa, "split", NULL,
7600 "from pool %s", spa_name(spa));
7601
7602 newspa->spa_is_splitting = B_FALSE;
7603 kmem_free(vml, children * sizeof (vdev_t *));
7604
7605 /* if we're not going to mount the filesystems in userland, export */
7606 if (exp)
7607 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7608 B_FALSE, B_FALSE);
7609
7610 return (error);
7611
7612 out:
7613 spa_unload(newspa);
7614 spa_deactivate(newspa);
7615 spa_remove(newspa);
7616
7617 txg = spa_vdev_config_enter(spa);
7618
7619 /* re-online all offlined disks */
7620 for (c = 0; c < children; c++) {
7621 if (vml[c] != NULL)
7622 vml[c]->vdev_offline = B_FALSE;
7623 }
7624
7625 /* restart initializing or trimming disks as necessary */
7626 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7627 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7628 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7629
7630 vdev_reopen(spa->spa_root_vdev);
7631
7632 nvlist_free(spa->spa_config_splitting);
7633 spa->spa_config_splitting = NULL;
7634 (void) spa_vdev_exit(spa, NULL, txg, error);
7635
7636 kmem_free(vml, children * sizeof (vdev_t *));
7637 return (error);
7638 }
7639
7640 /*
7641 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7642 * currently spared, so we can detach it.
7643 */
7644 static vdev_t *
7645 spa_vdev_resilver_done_hunt(vdev_t *vd)
7646 {
7647 vdev_t *newvd, *oldvd;
7648
7649 for (int c = 0; c < vd->vdev_children; c++) {
7650 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7651 if (oldvd != NULL)
7652 return (oldvd);
7653 }
7654
7655 /*
7656 * Check for a completed replacement. We always consider the first
7657 * vdev in the list to be the oldest vdev, and the last one to be
7658 * the newest (see spa_vdev_attach() for how that works). In
7659 * the case where the newest vdev is faulted, we will not automatically
7660 * remove it after a resilver completes. This is OK as it will require
7661 * user intervention to determine which disk the admin wishes to keep.
7662 */
7663 if (vd->vdev_ops == &vdev_replacing_ops) {
7664 ASSERT(vd->vdev_children > 1);
7665
7666 newvd = vd->vdev_child[vd->vdev_children - 1];
7667 oldvd = vd->vdev_child[0];
7668
7669 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7670 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7671 !vdev_dtl_required(oldvd))
7672 return (oldvd);
7673 }
7674
7675 /*
7676 * Check for a completed resilver with the 'unspare' flag set.
7677 * Also potentially update faulted state.
7678 */
7679 if (vd->vdev_ops == &vdev_spare_ops) {
7680 vdev_t *first = vd->vdev_child[0];
7681 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7682
7683 if (last->vdev_unspare) {
7684 oldvd = first;
7685 newvd = last;
7686 } else if (first->vdev_unspare) {
7687 oldvd = last;
7688 newvd = first;
7689 } else {
7690 oldvd = NULL;
7691 }
7692
7693 if (oldvd != NULL &&
7694 vdev_dtl_empty(newvd, DTL_MISSING) &&
7695 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7696 !vdev_dtl_required(oldvd))
7697 return (oldvd);
7698
7699 vdev_propagate_state(vd);
7700
7701 /*
7702 * If there are more than two spares attached to a disk,
7703 * and those spares are not required, then we want to
7704 * attempt to free them up now so that they can be used
7705 * by other pools. Once we're back down to a single
7706 * disk+spare, we stop removing them.
7707 */
7708 if (vd->vdev_children > 2) {
7709 newvd = vd->vdev_child[1];
7710
7711 if (newvd->vdev_isspare && last->vdev_isspare &&
7712 vdev_dtl_empty(last, DTL_MISSING) &&
7713 vdev_dtl_empty(last, DTL_OUTAGE) &&
7714 !vdev_dtl_required(newvd))
7715 return (newvd);
7716 }
7717 }
7718
7719 return (NULL);
7720 }
7721
7722 static void
7723 spa_vdev_resilver_done(spa_t *spa)
7724 {
7725 vdev_t *vd, *pvd, *ppvd;
7726 uint64_t guid, sguid, pguid, ppguid;
7727
7728 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7729
7730 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7731 pvd = vd->vdev_parent;
7732 ppvd = pvd->vdev_parent;
7733 guid = vd->vdev_guid;
7734 pguid = pvd->vdev_guid;
7735 ppguid = ppvd->vdev_guid;
7736 sguid = 0;
7737 /*
7738 * If we have just finished replacing a hot spared device, then
7739 * we need to detach the parent's first child (the original hot
7740 * spare) as well.
7741 */
7742 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7743 ppvd->vdev_children == 2) {
7744 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7745 sguid = ppvd->vdev_child[1]->vdev_guid;
7746 }
7747 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7748
7749 spa_config_exit(spa, SCL_ALL, FTAG);
7750 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7751 return;
7752 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7753 return;
7754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7755 }
7756
7757 spa_config_exit(spa, SCL_ALL, FTAG);
7758
7759 /*
7760 * If a detach was not performed above replace waiters will not have
7761 * been notified. In which case we must do so now.
7762 */
7763 spa_notify_waiters(spa);
7764 }
7765
7766 /*
7767 * Update the stored path or FRU for this vdev.
7768 */
7769 static int
7770 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7771 boolean_t ispath)
7772 {
7773 vdev_t *vd;
7774 boolean_t sync = B_FALSE;
7775
7776 ASSERT(spa_writeable(spa));
7777
7778 spa_vdev_state_enter(spa, SCL_ALL);
7779
7780 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7781 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7782
7783 if (!vd->vdev_ops->vdev_op_leaf)
7784 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7785
7786 if (ispath) {
7787 if (strcmp(value, vd->vdev_path) != 0) {
7788 spa_strfree(vd->vdev_path);
7789 vd->vdev_path = spa_strdup(value);
7790 sync = B_TRUE;
7791 }
7792 } else {
7793 if (vd->vdev_fru == NULL) {
7794 vd->vdev_fru = spa_strdup(value);
7795 sync = B_TRUE;
7796 } else if (strcmp(value, vd->vdev_fru) != 0) {
7797 spa_strfree(vd->vdev_fru);
7798 vd->vdev_fru = spa_strdup(value);
7799 sync = B_TRUE;
7800 }
7801 }
7802
7803 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7804 }
7805
7806 int
7807 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7808 {
7809 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7810 }
7811
7812 int
7813 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7814 {
7815 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7816 }
7817
7818 /*
7819 * ==========================================================================
7820 * SPA Scanning
7821 * ==========================================================================
7822 */
7823 int
7824 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7825 {
7826 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7827
7828 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7829 return (SET_ERROR(EBUSY));
7830
7831 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7832 }
7833
7834 int
7835 spa_scan_stop(spa_t *spa)
7836 {
7837 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7838 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7839 return (SET_ERROR(EBUSY));
7840 return (dsl_scan_cancel(spa->spa_dsl_pool));
7841 }
7842
7843 int
7844 spa_scan(spa_t *spa, pool_scan_func_t func)
7845 {
7846 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7847
7848 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7849 return (SET_ERROR(ENOTSUP));
7850
7851 if (func == POOL_SCAN_RESILVER &&
7852 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7853 return (SET_ERROR(ENOTSUP));
7854
7855 /*
7856 * If a resilver was requested, but there is no DTL on a
7857 * writeable leaf device, we have nothing to do.
7858 */
7859 if (func == POOL_SCAN_RESILVER &&
7860 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7861 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7862 return (0);
7863 }
7864
7865 return (dsl_scan(spa->spa_dsl_pool, func));
7866 }
7867
7868 /*
7869 * ==========================================================================
7870 * SPA async task processing
7871 * ==========================================================================
7872 */
7873
7874 static void
7875 spa_async_remove(spa_t *spa, vdev_t *vd)
7876 {
7877 if (vd->vdev_remove_wanted) {
7878 vd->vdev_remove_wanted = B_FALSE;
7879 vd->vdev_delayed_close = B_FALSE;
7880 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7881
7882 /*
7883 * We want to clear the stats, but we don't want to do a full
7884 * vdev_clear() as that will cause us to throw away
7885 * degraded/faulted state as well as attempt to reopen the
7886 * device, all of which is a waste.
7887 */
7888 vd->vdev_stat.vs_read_errors = 0;
7889 vd->vdev_stat.vs_write_errors = 0;
7890 vd->vdev_stat.vs_checksum_errors = 0;
7891
7892 vdev_state_dirty(vd->vdev_top);
7893 }
7894
7895 for (int c = 0; c < vd->vdev_children; c++)
7896 spa_async_remove(spa, vd->vdev_child[c]);
7897 }
7898
7899 static void
7900 spa_async_probe(spa_t *spa, vdev_t *vd)
7901 {
7902 if (vd->vdev_probe_wanted) {
7903 vd->vdev_probe_wanted = B_FALSE;
7904 vdev_reopen(vd); /* vdev_open() does the actual probe */
7905 }
7906
7907 for (int c = 0; c < vd->vdev_children; c++)
7908 spa_async_probe(spa, vd->vdev_child[c]);
7909 }
7910
7911 static void
7912 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7913 {
7914 if (!spa->spa_autoexpand)
7915 return;
7916
7917 for (int c = 0; c < vd->vdev_children; c++) {
7918 vdev_t *cvd = vd->vdev_child[c];
7919 spa_async_autoexpand(spa, cvd);
7920 }
7921
7922 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7923 return;
7924
7925 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
7926 }
7927
7928 static void
7929 spa_async_thread(void *arg)
7930 {
7931 spa_t *spa = (spa_t *)arg;
7932 dsl_pool_t *dp = spa->spa_dsl_pool;
7933 int tasks;
7934
7935 ASSERT(spa->spa_sync_on);
7936
7937 mutex_enter(&spa->spa_async_lock);
7938 tasks = spa->spa_async_tasks;
7939 spa->spa_async_tasks = 0;
7940 mutex_exit(&spa->spa_async_lock);
7941
7942 /*
7943 * See if the config needs to be updated.
7944 */
7945 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7946 uint64_t old_space, new_space;
7947
7948 mutex_enter(&spa_namespace_lock);
7949 old_space = metaslab_class_get_space(spa_normal_class(spa));
7950 old_space += metaslab_class_get_space(spa_special_class(spa));
7951 old_space += metaslab_class_get_space(spa_dedup_class(spa));
7952
7953 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7954
7955 new_space = metaslab_class_get_space(spa_normal_class(spa));
7956 new_space += metaslab_class_get_space(spa_special_class(spa));
7957 new_space += metaslab_class_get_space(spa_dedup_class(spa));
7958 mutex_exit(&spa_namespace_lock);
7959
7960 /*
7961 * If the pool grew as a result of the config update,
7962 * then log an internal history event.
7963 */
7964 if (new_space != old_space) {
7965 spa_history_log_internal(spa, "vdev online", NULL,
7966 "pool '%s' size: %llu(+%llu)",
7967 spa_name(spa), (u_longlong_t)new_space,
7968 (u_longlong_t)(new_space - old_space));
7969 }
7970 }
7971
7972 /*
7973 * See if any devices need to be marked REMOVED.
7974 */
7975 if (tasks & SPA_ASYNC_REMOVE) {
7976 spa_vdev_state_enter(spa, SCL_NONE);
7977 spa_async_remove(spa, spa->spa_root_vdev);
7978 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7979 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7980 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7981 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7982 (void) spa_vdev_state_exit(spa, NULL, 0);
7983 }
7984
7985 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7986 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7987 spa_async_autoexpand(spa, spa->spa_root_vdev);
7988 spa_config_exit(spa, SCL_CONFIG, FTAG);
7989 }
7990
7991 /*
7992 * See if any devices need to be probed.
7993 */
7994 if (tasks & SPA_ASYNC_PROBE) {
7995 spa_vdev_state_enter(spa, SCL_NONE);
7996 spa_async_probe(spa, spa->spa_root_vdev);
7997 (void) spa_vdev_state_exit(spa, NULL, 0);
7998 }
7999
8000 /*
8001 * If any devices are done replacing, detach them.
8002 */
8003 if (tasks & SPA_ASYNC_RESILVER_DONE)
8004 spa_vdev_resilver_done(spa);
8005
8006 /*
8007 * If any devices are done replacing, detach them. Then if no
8008 * top-level vdevs are rebuilding attempt to kick off a scrub.
8009 */
8010 if (tasks & SPA_ASYNC_REBUILD_DONE) {
8011 spa_vdev_resilver_done(spa);
8012
8013 if (!vdev_rebuild_active(spa->spa_root_vdev))
8014 (void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB);
8015 }
8016
8017 /*
8018 * Kick off a resilver.
8019 */
8020 if (tasks & SPA_ASYNC_RESILVER &&
8021 !vdev_rebuild_active(spa->spa_root_vdev) &&
8022 (!dsl_scan_resilvering(dp) ||
8023 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8024 dsl_scan_restart_resilver(dp, 0);
8025
8026 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8027 mutex_enter(&spa_namespace_lock);
8028 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8029 vdev_initialize_restart(spa->spa_root_vdev);
8030 spa_config_exit(spa, SCL_CONFIG, FTAG);
8031 mutex_exit(&spa_namespace_lock);
8032 }
8033
8034 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8035 mutex_enter(&spa_namespace_lock);
8036 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8037 vdev_trim_restart(spa->spa_root_vdev);
8038 spa_config_exit(spa, SCL_CONFIG, FTAG);
8039 mutex_exit(&spa_namespace_lock);
8040 }
8041
8042 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8043 mutex_enter(&spa_namespace_lock);
8044 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8045 vdev_autotrim_restart(spa);
8046 spa_config_exit(spa, SCL_CONFIG, FTAG);
8047 mutex_exit(&spa_namespace_lock);
8048 }
8049
8050 /*
8051 * Kick off L2 cache whole device TRIM.
8052 */
8053 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8054 mutex_enter(&spa_namespace_lock);
8055 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8056 vdev_trim_l2arc(spa);
8057 spa_config_exit(spa, SCL_CONFIG, FTAG);
8058 mutex_exit(&spa_namespace_lock);
8059 }
8060
8061 /*
8062 * Kick off L2 cache rebuilding.
8063 */
8064 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8065 mutex_enter(&spa_namespace_lock);
8066 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8067 l2arc_spa_rebuild_start(spa);
8068 spa_config_exit(spa, SCL_L2ARC, FTAG);
8069 mutex_exit(&spa_namespace_lock);
8070 }
8071
8072 /*
8073 * Let the world know that we're done.
8074 */
8075 mutex_enter(&spa->spa_async_lock);
8076 spa->spa_async_thread = NULL;
8077 cv_broadcast(&spa->spa_async_cv);
8078 mutex_exit(&spa->spa_async_lock);
8079 thread_exit();
8080 }
8081
8082 void
8083 spa_async_suspend(spa_t *spa)
8084 {
8085 mutex_enter(&spa->spa_async_lock);
8086 spa->spa_async_suspended++;
8087 while (spa->spa_async_thread != NULL)
8088 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8089 mutex_exit(&spa->spa_async_lock);
8090
8091 spa_vdev_remove_suspend(spa);
8092
8093 zthr_t *condense_thread = spa->spa_condense_zthr;
8094 if (condense_thread != NULL)
8095 zthr_cancel(condense_thread);
8096
8097 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8098 if (discard_thread != NULL)
8099 zthr_cancel(discard_thread);
8100
8101 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8102 if (ll_delete_thread != NULL)
8103 zthr_cancel(ll_delete_thread);
8104
8105 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8106 if (ll_condense_thread != NULL)
8107 zthr_cancel(ll_condense_thread);
8108 }
8109
8110 void
8111 spa_async_resume(spa_t *spa)
8112 {
8113 mutex_enter(&spa->spa_async_lock);
8114 ASSERT(spa->spa_async_suspended != 0);
8115 spa->spa_async_suspended--;
8116 mutex_exit(&spa->spa_async_lock);
8117 spa_restart_removal(spa);
8118
8119 zthr_t *condense_thread = spa->spa_condense_zthr;
8120 if (condense_thread != NULL)
8121 zthr_resume(condense_thread);
8122
8123 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8124 if (discard_thread != NULL)
8125 zthr_resume(discard_thread);
8126
8127 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8128 if (ll_delete_thread != NULL)
8129 zthr_resume(ll_delete_thread);
8130
8131 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8132 if (ll_condense_thread != NULL)
8133 zthr_resume(ll_condense_thread);
8134 }
8135
8136 static boolean_t
8137 spa_async_tasks_pending(spa_t *spa)
8138 {
8139 uint_t non_config_tasks;
8140 uint_t config_task;
8141 boolean_t config_task_suspended;
8142
8143 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8144 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8145 if (spa->spa_ccw_fail_time == 0) {
8146 config_task_suspended = B_FALSE;
8147 } else {
8148 config_task_suspended =
8149 (gethrtime() - spa->spa_ccw_fail_time) <
8150 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8151 }
8152
8153 return (non_config_tasks || (config_task && !config_task_suspended));
8154 }
8155
8156 static void
8157 spa_async_dispatch(spa_t *spa)
8158 {
8159 mutex_enter(&spa->spa_async_lock);
8160 if (spa_async_tasks_pending(spa) &&
8161 !spa->spa_async_suspended &&
8162 spa->spa_async_thread == NULL)
8163 spa->spa_async_thread = thread_create(NULL, 0,
8164 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8165 mutex_exit(&spa->spa_async_lock);
8166 }
8167
8168 void
8169 spa_async_request(spa_t *spa, int task)
8170 {
8171 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8172 mutex_enter(&spa->spa_async_lock);
8173 spa->spa_async_tasks |= task;
8174 mutex_exit(&spa->spa_async_lock);
8175 }
8176
8177 int
8178 spa_async_tasks(spa_t *spa)
8179 {
8180 return (spa->spa_async_tasks);
8181 }
8182
8183 /*
8184 * ==========================================================================
8185 * SPA syncing routines
8186 * ==========================================================================
8187 */
8188
8189
8190 static int
8191 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8192 dmu_tx_t *tx)
8193 {
8194 bpobj_t *bpo = arg;
8195 bpobj_enqueue(bpo, bp, bp_freed, tx);
8196 return (0);
8197 }
8198
8199 int
8200 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8201 {
8202 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8203 }
8204
8205 int
8206 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8207 {
8208 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8209 }
8210
8211 static int
8212 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8213 {
8214 zio_t *pio = arg;
8215
8216 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8217 pio->io_flags));
8218 return (0);
8219 }
8220
8221 static int
8222 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8223 dmu_tx_t *tx)
8224 {
8225 ASSERT(!bp_freed);
8226 return (spa_free_sync_cb(arg, bp, tx));
8227 }
8228
8229 /*
8230 * Note: this simple function is not inlined to make it easier to dtrace the
8231 * amount of time spent syncing frees.
8232 */
8233 static void
8234 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8235 {
8236 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8237 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8238 VERIFY(zio_wait(zio) == 0);
8239 }
8240
8241 /*
8242 * Note: this simple function is not inlined to make it easier to dtrace the
8243 * amount of time spent syncing deferred frees.
8244 */
8245 static void
8246 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8247 {
8248 if (spa_sync_pass(spa) != 1)
8249 return;
8250
8251 /*
8252 * Note:
8253 * If the log space map feature is active, we stop deferring
8254 * frees to the next TXG and therefore running this function
8255 * would be considered a no-op as spa_deferred_bpobj should
8256 * not have any entries.
8257 *
8258 * That said we run this function anyway (instead of returning
8259 * immediately) for the edge-case scenario where we just
8260 * activated the log space map feature in this TXG but we have
8261 * deferred frees from the previous TXG.
8262 */
8263 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8264 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8265 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8266 VERIFY0(zio_wait(zio));
8267 }
8268
8269 static void
8270 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8271 {
8272 char *packed = NULL;
8273 size_t bufsize;
8274 size_t nvsize = 0;
8275 dmu_buf_t *db;
8276
8277 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8278
8279 /*
8280 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8281 * information. This avoids the dmu_buf_will_dirty() path and
8282 * saves us a pre-read to get data we don't actually care about.
8283 */
8284 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8285 packed = vmem_alloc(bufsize, KM_SLEEP);
8286
8287 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8288 KM_SLEEP) == 0);
8289 bzero(packed + nvsize, bufsize - nvsize);
8290
8291 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8292
8293 vmem_free(packed, bufsize);
8294
8295 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8296 dmu_buf_will_dirty(db, tx);
8297 *(uint64_t *)db->db_data = nvsize;
8298 dmu_buf_rele(db, FTAG);
8299 }
8300
8301 static void
8302 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8303 const char *config, const char *entry)
8304 {
8305 nvlist_t *nvroot;
8306 nvlist_t **list;
8307 int i;
8308
8309 if (!sav->sav_sync)
8310 return;
8311
8312 /*
8313 * Update the MOS nvlist describing the list of available devices.
8314 * spa_validate_aux() will have already made sure this nvlist is
8315 * valid and the vdevs are labeled appropriately.
8316 */
8317 if (sav->sav_object == 0) {
8318 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8319 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8320 sizeof (uint64_t), tx);
8321 VERIFY(zap_update(spa->spa_meta_objset,
8322 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8323 &sav->sav_object, tx) == 0);
8324 }
8325
8326 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8327 if (sav->sav_count == 0) {
8328 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8329 } else {
8330 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8331 for (i = 0; i < sav->sav_count; i++)
8332 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8333 B_FALSE, VDEV_CONFIG_L2CACHE);
8334 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8335 sav->sav_count) == 0);
8336 for (i = 0; i < sav->sav_count; i++)
8337 nvlist_free(list[i]);
8338 kmem_free(list, sav->sav_count * sizeof (void *));
8339 }
8340
8341 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8342 nvlist_free(nvroot);
8343
8344 sav->sav_sync = B_FALSE;
8345 }
8346
8347 /*
8348 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8349 * The all-vdev ZAP must be empty.
8350 */
8351 static void
8352 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8353 {
8354 spa_t *spa = vd->vdev_spa;
8355
8356 if (vd->vdev_top_zap != 0) {
8357 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8358 vd->vdev_top_zap, tx));
8359 }
8360 if (vd->vdev_leaf_zap != 0) {
8361 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8362 vd->vdev_leaf_zap, tx));
8363 }
8364 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8365 spa_avz_build(vd->vdev_child[i], avz, tx);
8366 }
8367 }
8368
8369 static void
8370 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8371 {
8372 nvlist_t *config;
8373
8374 /*
8375 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8376 * its config may not be dirty but we still need to build per-vdev ZAPs.
8377 * Similarly, if the pool is being assembled (e.g. after a split), we
8378 * need to rebuild the AVZ although the config may not be dirty.
8379 */
8380 if (list_is_empty(&spa->spa_config_dirty_list) &&
8381 spa->spa_avz_action == AVZ_ACTION_NONE)
8382 return;
8383
8384 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8385
8386 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8387 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8388 spa->spa_all_vdev_zaps != 0);
8389
8390 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8391 /* Make and build the new AVZ */
8392 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8393 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8394 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8395
8396 /* Diff old AVZ with new one */
8397 zap_cursor_t zc;
8398 zap_attribute_t za;
8399
8400 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8401 spa->spa_all_vdev_zaps);
8402 zap_cursor_retrieve(&zc, &za) == 0;
8403 zap_cursor_advance(&zc)) {
8404 uint64_t vdzap = za.za_first_integer;
8405 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8406 vdzap) == ENOENT) {
8407 /*
8408 * ZAP is listed in old AVZ but not in new one;
8409 * destroy it
8410 */
8411 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8412 tx));
8413 }
8414 }
8415
8416 zap_cursor_fini(&zc);
8417
8418 /* Destroy the old AVZ */
8419 VERIFY0(zap_destroy(spa->spa_meta_objset,
8420 spa->spa_all_vdev_zaps, tx));
8421
8422 /* Replace the old AVZ in the dir obj with the new one */
8423 VERIFY0(zap_update(spa->spa_meta_objset,
8424 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8425 sizeof (new_avz), 1, &new_avz, tx));
8426
8427 spa->spa_all_vdev_zaps = new_avz;
8428 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8429 zap_cursor_t zc;
8430 zap_attribute_t za;
8431
8432 /* Walk through the AVZ and destroy all listed ZAPs */
8433 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8434 spa->spa_all_vdev_zaps);
8435 zap_cursor_retrieve(&zc, &za) == 0;
8436 zap_cursor_advance(&zc)) {
8437 uint64_t zap = za.za_first_integer;
8438 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8439 }
8440
8441 zap_cursor_fini(&zc);
8442
8443 /* Destroy and unlink the AVZ itself */
8444 VERIFY0(zap_destroy(spa->spa_meta_objset,
8445 spa->spa_all_vdev_zaps, tx));
8446 VERIFY0(zap_remove(spa->spa_meta_objset,
8447 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8448 spa->spa_all_vdev_zaps = 0;
8449 }
8450
8451 if (spa->spa_all_vdev_zaps == 0) {
8452 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8453 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8454 DMU_POOL_VDEV_ZAP_MAP, tx);
8455 }
8456 spa->spa_avz_action = AVZ_ACTION_NONE;
8457
8458 /* Create ZAPs for vdevs that don't have them. */
8459 vdev_construct_zaps(spa->spa_root_vdev, tx);
8460
8461 config = spa_config_generate(spa, spa->spa_root_vdev,
8462 dmu_tx_get_txg(tx), B_FALSE);
8463
8464 /*
8465 * If we're upgrading the spa version then make sure that
8466 * the config object gets updated with the correct version.
8467 */
8468 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8469 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8470 spa->spa_uberblock.ub_version);
8471
8472 spa_config_exit(spa, SCL_STATE, FTAG);
8473
8474 nvlist_free(spa->spa_config_syncing);
8475 spa->spa_config_syncing = config;
8476
8477 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8478 }
8479
8480 static void
8481 spa_sync_version(void *arg, dmu_tx_t *tx)
8482 {
8483 uint64_t *versionp = arg;
8484 uint64_t version = *versionp;
8485 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8486
8487 /*
8488 * Setting the version is special cased when first creating the pool.
8489 */
8490 ASSERT(tx->tx_txg != TXG_INITIAL);
8491
8492 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8493 ASSERT(version >= spa_version(spa));
8494
8495 spa->spa_uberblock.ub_version = version;
8496 vdev_config_dirty(spa->spa_root_vdev);
8497 spa_history_log_internal(spa, "set", tx, "version=%lld",
8498 (longlong_t)version);
8499 }
8500
8501 /*
8502 * Set zpool properties.
8503 */
8504 static void
8505 spa_sync_props(void *arg, dmu_tx_t *tx)
8506 {
8507 nvlist_t *nvp = arg;
8508 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8509 objset_t *mos = spa->spa_meta_objset;
8510 nvpair_t *elem = NULL;
8511
8512 mutex_enter(&spa->spa_props_lock);
8513
8514 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8515 uint64_t intval;
8516 char *strval, *fname;
8517 zpool_prop_t prop;
8518 const char *propname;
8519 zprop_type_t proptype;
8520 spa_feature_t fid;
8521
8522 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8523 case ZPOOL_PROP_INVAL:
8524 /*
8525 * We checked this earlier in spa_prop_validate().
8526 */
8527 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8528
8529 fname = strchr(nvpair_name(elem), '@') + 1;
8530 VERIFY0(zfeature_lookup_name(fname, &fid));
8531
8532 spa_feature_enable(spa, fid, tx);
8533 spa_history_log_internal(spa, "set", tx,
8534 "%s=enabled", nvpair_name(elem));
8535 break;
8536
8537 case ZPOOL_PROP_VERSION:
8538 intval = fnvpair_value_uint64(elem);
8539 /*
8540 * The version is synced separately before other
8541 * properties and should be correct by now.
8542 */
8543 ASSERT3U(spa_version(spa), >=, intval);
8544 break;
8545
8546 case ZPOOL_PROP_ALTROOT:
8547 /*
8548 * 'altroot' is a non-persistent property. It should
8549 * have been set temporarily at creation or import time.
8550 */
8551 ASSERT(spa->spa_root != NULL);
8552 break;
8553
8554 case ZPOOL_PROP_READONLY:
8555 case ZPOOL_PROP_CACHEFILE:
8556 /*
8557 * 'readonly' and 'cachefile' are also non-persistent
8558 * properties.
8559 */
8560 break;
8561 case ZPOOL_PROP_COMMENT:
8562 strval = fnvpair_value_string(elem);
8563 if (spa->spa_comment != NULL)
8564 spa_strfree(spa->spa_comment);
8565 spa->spa_comment = spa_strdup(strval);
8566 /*
8567 * We need to dirty the configuration on all the vdevs
8568 * so that their labels get updated. It's unnecessary
8569 * to do this for pool creation since the vdev's
8570 * configuration has already been dirtied.
8571 */
8572 if (tx->tx_txg != TXG_INITIAL)
8573 vdev_config_dirty(spa->spa_root_vdev);
8574 spa_history_log_internal(spa, "set", tx,
8575 "%s=%s", nvpair_name(elem), strval);
8576 break;
8577 default:
8578 /*
8579 * Set pool property values in the poolprops mos object.
8580 */
8581 if (spa->spa_pool_props_object == 0) {
8582 spa->spa_pool_props_object =
8583 zap_create_link(mos, DMU_OT_POOL_PROPS,
8584 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8585 tx);
8586 }
8587
8588 /* normalize the property name */
8589 propname = zpool_prop_to_name(prop);
8590 proptype = zpool_prop_get_type(prop);
8591
8592 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8593 ASSERT(proptype == PROP_TYPE_STRING);
8594 strval = fnvpair_value_string(elem);
8595 VERIFY0(zap_update(mos,
8596 spa->spa_pool_props_object, propname,
8597 1, strlen(strval) + 1, strval, tx));
8598 spa_history_log_internal(spa, "set", tx,
8599 "%s=%s", nvpair_name(elem), strval);
8600 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8601 intval = fnvpair_value_uint64(elem);
8602
8603 if (proptype == PROP_TYPE_INDEX) {
8604 const char *unused;
8605 VERIFY0(zpool_prop_index_to_string(
8606 prop, intval, &unused));
8607 }
8608 VERIFY0(zap_update(mos,
8609 spa->spa_pool_props_object, propname,
8610 8, 1, &intval, tx));
8611 spa_history_log_internal(spa, "set", tx,
8612 "%s=%lld", nvpair_name(elem),
8613 (longlong_t)intval);
8614 } else {
8615 ASSERT(0); /* not allowed */
8616 }
8617
8618 switch (prop) {
8619 case ZPOOL_PROP_DELEGATION:
8620 spa->spa_delegation = intval;
8621 break;
8622 case ZPOOL_PROP_BOOTFS:
8623 spa->spa_bootfs = intval;
8624 break;
8625 case ZPOOL_PROP_FAILUREMODE:
8626 spa->spa_failmode = intval;
8627 break;
8628 case ZPOOL_PROP_AUTOTRIM:
8629 spa->spa_autotrim = intval;
8630 spa_async_request(spa,
8631 SPA_ASYNC_AUTOTRIM_RESTART);
8632 break;
8633 case ZPOOL_PROP_AUTOEXPAND:
8634 spa->spa_autoexpand = intval;
8635 if (tx->tx_txg != TXG_INITIAL)
8636 spa_async_request(spa,
8637 SPA_ASYNC_AUTOEXPAND);
8638 break;
8639 case ZPOOL_PROP_MULTIHOST:
8640 spa->spa_multihost = intval;
8641 break;
8642 default:
8643 break;
8644 }
8645 }
8646
8647 }
8648
8649 mutex_exit(&spa->spa_props_lock);
8650 }
8651
8652 /*
8653 * Perform one-time upgrade on-disk changes. spa_version() does not
8654 * reflect the new version this txg, so there must be no changes this
8655 * txg to anything that the upgrade code depends on after it executes.
8656 * Therefore this must be called after dsl_pool_sync() does the sync
8657 * tasks.
8658 */
8659 static void
8660 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8661 {
8662 if (spa_sync_pass(spa) != 1)
8663 return;
8664
8665 dsl_pool_t *dp = spa->spa_dsl_pool;
8666 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8667
8668 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8669 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8670 dsl_pool_create_origin(dp, tx);
8671
8672 /* Keeping the origin open increases spa_minref */
8673 spa->spa_minref += 3;
8674 }
8675
8676 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8677 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8678 dsl_pool_upgrade_clones(dp, tx);
8679 }
8680
8681 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8682 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8683 dsl_pool_upgrade_dir_clones(dp, tx);
8684
8685 /* Keeping the freedir open increases spa_minref */
8686 spa->spa_minref += 3;
8687 }
8688
8689 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8690 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8691 spa_feature_create_zap_objects(spa, tx);
8692 }
8693
8694 /*
8695 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8696 * when possibility to use lz4 compression for metadata was added
8697 * Old pools that have this feature enabled must be upgraded to have
8698 * this feature active
8699 */
8700 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8701 boolean_t lz4_en = spa_feature_is_enabled(spa,
8702 SPA_FEATURE_LZ4_COMPRESS);
8703 boolean_t lz4_ac = spa_feature_is_active(spa,
8704 SPA_FEATURE_LZ4_COMPRESS);
8705
8706 if (lz4_en && !lz4_ac)
8707 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8708 }
8709
8710 /*
8711 * If we haven't written the salt, do so now. Note that the
8712 * feature may not be activated yet, but that's fine since
8713 * the presence of this ZAP entry is backwards compatible.
8714 */
8715 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8716 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8717 VERIFY0(zap_add(spa->spa_meta_objset,
8718 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8719 sizeof (spa->spa_cksum_salt.zcs_bytes),
8720 spa->spa_cksum_salt.zcs_bytes, tx));
8721 }
8722
8723 rrw_exit(&dp->dp_config_rwlock, FTAG);
8724 }
8725
8726 static void
8727 vdev_indirect_state_sync_verify(vdev_t *vd)
8728 {
8729 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8730 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8731
8732 if (vd->vdev_ops == &vdev_indirect_ops) {
8733 ASSERT(vim != NULL);
8734 ASSERT(vib != NULL);
8735 }
8736
8737 uint64_t obsolete_sm_object = 0;
8738 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8739 if (obsolete_sm_object != 0) {
8740 ASSERT(vd->vdev_obsolete_sm != NULL);
8741 ASSERT(vd->vdev_removing ||
8742 vd->vdev_ops == &vdev_indirect_ops);
8743 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8744 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8745 ASSERT3U(obsolete_sm_object, ==,
8746 space_map_object(vd->vdev_obsolete_sm));
8747 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8748 space_map_allocated(vd->vdev_obsolete_sm));
8749 }
8750 ASSERT(vd->vdev_obsolete_segments != NULL);
8751
8752 /*
8753 * Since frees / remaps to an indirect vdev can only
8754 * happen in syncing context, the obsolete segments
8755 * tree must be empty when we start syncing.
8756 */
8757 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8758 }
8759
8760 /*
8761 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8762 * async write queue depth in case it changed. The max queue depth will
8763 * not change in the middle of syncing out this txg.
8764 */
8765 static void
8766 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8767 {
8768 ASSERT(spa_writeable(spa));
8769
8770 vdev_t *rvd = spa->spa_root_vdev;
8771 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8772 zfs_vdev_queue_depth_pct / 100;
8773 metaslab_class_t *normal = spa_normal_class(spa);
8774 metaslab_class_t *special = spa_special_class(spa);
8775 metaslab_class_t *dedup = spa_dedup_class(spa);
8776
8777 uint64_t slots_per_allocator = 0;
8778 for (int c = 0; c < rvd->vdev_children; c++) {
8779 vdev_t *tvd = rvd->vdev_child[c];
8780
8781 metaslab_group_t *mg = tvd->vdev_mg;
8782 if (mg == NULL || !metaslab_group_initialized(mg))
8783 continue;
8784
8785 metaslab_class_t *mc = mg->mg_class;
8786 if (mc != normal && mc != special && mc != dedup)
8787 continue;
8788
8789 /*
8790 * It is safe to do a lock-free check here because only async
8791 * allocations look at mg_max_alloc_queue_depth, and async
8792 * allocations all happen from spa_sync().
8793 */
8794 for (int i = 0; i < mg->mg_allocators; i++) {
8795 ASSERT0(zfs_refcount_count(
8796 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8797 }
8798 mg->mg_max_alloc_queue_depth = max_queue_depth;
8799
8800 for (int i = 0; i < mg->mg_allocators; i++) {
8801 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8802 zfs_vdev_def_queue_depth;
8803 }
8804 slots_per_allocator += zfs_vdev_def_queue_depth;
8805 }
8806
8807 for (int i = 0; i < spa->spa_alloc_count; i++) {
8808 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8809 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8810 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8811 normal->mc_alloc_max_slots[i] = slots_per_allocator;
8812 special->mc_alloc_max_slots[i] = slots_per_allocator;
8813 dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8814 }
8815 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8816 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8817 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8818 }
8819
8820 static void
8821 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8822 {
8823 ASSERT(spa_writeable(spa));
8824
8825 vdev_t *rvd = spa->spa_root_vdev;
8826 for (int c = 0; c < rvd->vdev_children; c++) {
8827 vdev_t *vd = rvd->vdev_child[c];
8828 vdev_indirect_state_sync_verify(vd);
8829
8830 if (vdev_indirect_should_condense(vd)) {
8831 spa_condense_indirect_start_sync(vd, tx);
8832 break;
8833 }
8834 }
8835 }
8836
8837 static void
8838 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8839 {
8840 objset_t *mos = spa->spa_meta_objset;
8841 dsl_pool_t *dp = spa->spa_dsl_pool;
8842 uint64_t txg = tx->tx_txg;
8843 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8844
8845 do {
8846 int pass = ++spa->spa_sync_pass;
8847
8848 spa_sync_config_object(spa, tx);
8849 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8850 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8851 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8852 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8853 spa_errlog_sync(spa, txg);
8854 dsl_pool_sync(dp, txg);
8855
8856 if (pass < zfs_sync_pass_deferred_free ||
8857 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8858 /*
8859 * If the log space map feature is active we don't
8860 * care about deferred frees and the deferred bpobj
8861 * as the log space map should effectively have the
8862 * same results (i.e. appending only to one object).
8863 */
8864 spa_sync_frees(spa, free_bpl, tx);
8865 } else {
8866 /*
8867 * We can not defer frees in pass 1, because
8868 * we sync the deferred frees later in pass 1.
8869 */
8870 ASSERT3U(pass, >, 1);
8871 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
8872 &spa->spa_deferred_bpobj, tx);
8873 }
8874
8875 ddt_sync(spa, txg);
8876 dsl_scan_sync(dp, tx);
8877 svr_sync(spa, tx);
8878 spa_sync_upgrades(spa, tx);
8879
8880 spa_flush_metaslabs(spa, tx);
8881
8882 vdev_t *vd = NULL;
8883 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8884 != NULL)
8885 vdev_sync(vd, txg);
8886
8887 /*
8888 * Note: We need to check if the MOS is dirty because we could
8889 * have marked the MOS dirty without updating the uberblock
8890 * (e.g. if we have sync tasks but no dirty user data). We need
8891 * to check the uberblock's rootbp because it is updated if we
8892 * have synced out dirty data (though in this case the MOS will
8893 * most likely also be dirty due to second order effects, we
8894 * don't want to rely on that here).
8895 */
8896 if (pass == 1 &&
8897 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8898 !dmu_objset_is_dirty(mos, txg)) {
8899 /*
8900 * Nothing changed on the first pass, therefore this
8901 * TXG is a no-op. Avoid syncing deferred frees, so
8902 * that we can keep this TXG as a no-op.
8903 */
8904 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8905 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8906 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8907 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8908 break;
8909 }
8910
8911 spa_sync_deferred_frees(spa, tx);
8912 } while (dmu_objset_is_dirty(mos, txg));
8913 }
8914
8915 /*
8916 * Rewrite the vdev configuration (which includes the uberblock) to
8917 * commit the transaction group.
8918 *
8919 * If there are no dirty vdevs, we sync the uberblock to a few random
8920 * top-level vdevs that are known to be visible in the config cache
8921 * (see spa_vdev_add() for a complete description). If there *are* dirty
8922 * vdevs, sync the uberblock to all vdevs.
8923 */
8924 static void
8925 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8926 {
8927 vdev_t *rvd = spa->spa_root_vdev;
8928 uint64_t txg = tx->tx_txg;
8929
8930 for (;;) {
8931 int error = 0;
8932
8933 /*
8934 * We hold SCL_STATE to prevent vdev open/close/etc.
8935 * while we're attempting to write the vdev labels.
8936 */
8937 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8938
8939 if (list_is_empty(&spa->spa_config_dirty_list)) {
8940 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8941 int svdcount = 0;
8942 int children = rvd->vdev_children;
8943 int c0 = spa_get_random(children);
8944
8945 for (int c = 0; c < children; c++) {
8946 vdev_t *vd =
8947 rvd->vdev_child[(c0 + c) % children];
8948
8949 /* Stop when revisiting the first vdev */
8950 if (c > 0 && svd[0] == vd)
8951 break;
8952
8953 if (vd->vdev_ms_array == 0 ||
8954 vd->vdev_islog ||
8955 !vdev_is_concrete(vd))
8956 continue;
8957
8958 svd[svdcount++] = vd;
8959 if (svdcount == SPA_SYNC_MIN_VDEVS)
8960 break;
8961 }
8962 error = vdev_config_sync(svd, svdcount, txg);
8963 } else {
8964 error = vdev_config_sync(rvd->vdev_child,
8965 rvd->vdev_children, txg);
8966 }
8967
8968 if (error == 0)
8969 spa->spa_last_synced_guid = rvd->vdev_guid;
8970
8971 spa_config_exit(spa, SCL_STATE, FTAG);
8972
8973 if (error == 0)
8974 break;
8975 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8976 zio_resume_wait(spa);
8977 }
8978 }
8979
8980 /*
8981 * Sync the specified transaction group. New blocks may be dirtied as
8982 * part of the process, so we iterate until it converges.
8983 */
8984 void
8985 spa_sync(spa_t *spa, uint64_t txg)
8986 {
8987 vdev_t *vd = NULL;
8988
8989 VERIFY(spa_writeable(spa));
8990
8991 /*
8992 * Wait for i/os issued in open context that need to complete
8993 * before this txg syncs.
8994 */
8995 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8996 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8997 ZIO_FLAG_CANFAIL);
8998
8999 /*
9000 * Lock out configuration changes.
9001 */
9002 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9003
9004 spa->spa_syncing_txg = txg;
9005 spa->spa_sync_pass = 0;
9006
9007 for (int i = 0; i < spa->spa_alloc_count; i++) {
9008 mutex_enter(&spa->spa_alloc_locks[i]);
9009 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9010 mutex_exit(&spa->spa_alloc_locks[i]);
9011 }
9012
9013 /*
9014 * If there are any pending vdev state changes, convert them
9015 * into config changes that go out with this transaction group.
9016 */
9017 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9018 while (list_head(&spa->spa_state_dirty_list) != NULL) {
9019 /*
9020 * We need the write lock here because, for aux vdevs,
9021 * calling vdev_config_dirty() modifies sav_config.
9022 * This is ugly and will become unnecessary when we
9023 * eliminate the aux vdev wart by integrating all vdevs
9024 * into the root vdev tree.
9025 */
9026 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9027 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9028 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9029 vdev_state_clean(vd);
9030 vdev_config_dirty(vd);
9031 }
9032 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9033 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9034 }
9035 spa_config_exit(spa, SCL_STATE, FTAG);
9036
9037 dsl_pool_t *dp = spa->spa_dsl_pool;
9038 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9039
9040 spa->spa_sync_starttime = gethrtime();
9041 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9042 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9043 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9044 NSEC_TO_TICK(spa->spa_deadman_synctime));
9045
9046 /*
9047 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9048 * set spa_deflate if we have no raid-z vdevs.
9049 */
9050 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9051 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9052 vdev_t *rvd = spa->spa_root_vdev;
9053
9054 int i;
9055 for (i = 0; i < rvd->vdev_children; i++) {
9056 vd = rvd->vdev_child[i];
9057 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9058 break;
9059 }
9060 if (i == rvd->vdev_children) {
9061 spa->spa_deflate = TRUE;
9062 VERIFY0(zap_add(spa->spa_meta_objset,
9063 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9064 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9065 }
9066 }
9067
9068 spa_sync_adjust_vdev_max_queue_depth(spa);
9069
9070 spa_sync_condense_indirect(spa, tx);
9071
9072 spa_sync_iterate_to_convergence(spa, tx);
9073
9074 #ifdef ZFS_DEBUG
9075 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9076 /*
9077 * Make sure that the number of ZAPs for all the vdevs matches
9078 * the number of ZAPs in the per-vdev ZAP list. This only gets
9079 * called if the config is dirty; otherwise there may be
9080 * outstanding AVZ operations that weren't completed in
9081 * spa_sync_config_object.
9082 */
9083 uint64_t all_vdev_zap_entry_count;
9084 ASSERT0(zap_count(spa->spa_meta_objset,
9085 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9086 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9087 all_vdev_zap_entry_count);
9088 }
9089 #endif
9090
9091 if (spa->spa_vdev_removal != NULL) {
9092 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9093 }
9094
9095 spa_sync_rewrite_vdev_config(spa, tx);
9096 dmu_tx_commit(tx);
9097
9098 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9099 spa->spa_deadman_tqid = 0;
9100
9101 /*
9102 * Clear the dirty config list.
9103 */
9104 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9105 vdev_config_clean(vd);
9106
9107 /*
9108 * Now that the new config has synced transactionally,
9109 * let it become visible to the config cache.
9110 */
9111 if (spa->spa_config_syncing != NULL) {
9112 spa_config_set(spa, spa->spa_config_syncing);
9113 spa->spa_config_txg = txg;
9114 spa->spa_config_syncing = NULL;
9115 }
9116
9117 dsl_pool_sync_done(dp, txg);
9118
9119 for (int i = 0; i < spa->spa_alloc_count; i++) {
9120 mutex_enter(&spa->spa_alloc_locks[i]);
9121 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9122 mutex_exit(&spa->spa_alloc_locks[i]);
9123 }
9124
9125 /*
9126 * Update usable space statistics.
9127 */
9128 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9129 != NULL)
9130 vdev_sync_done(vd, txg);
9131
9132 metaslab_class_evict_old(spa->spa_normal_class, txg);
9133 metaslab_class_evict_old(spa->spa_log_class, txg);
9134
9135 spa_sync_close_syncing_log_sm(spa);
9136
9137 spa_update_dspace(spa);
9138
9139 /*
9140 * It had better be the case that we didn't dirty anything
9141 * since vdev_config_sync().
9142 */
9143 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9144 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9145 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9146
9147 while (zfs_pause_spa_sync)
9148 delay(1);
9149
9150 spa->spa_sync_pass = 0;
9151
9152 /*
9153 * Update the last synced uberblock here. We want to do this at
9154 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9155 * will be guaranteed that all the processing associated with
9156 * that txg has been completed.
9157 */
9158 spa->spa_ubsync = spa->spa_uberblock;
9159 spa_config_exit(spa, SCL_CONFIG, FTAG);
9160
9161 spa_handle_ignored_writes(spa);
9162
9163 /*
9164 * If any async tasks have been requested, kick them off.
9165 */
9166 spa_async_dispatch(spa);
9167 }
9168
9169 /*
9170 * Sync all pools. We don't want to hold the namespace lock across these
9171 * operations, so we take a reference on the spa_t and drop the lock during the
9172 * sync.
9173 */
9174 void
9175 spa_sync_allpools(void)
9176 {
9177 spa_t *spa = NULL;
9178 mutex_enter(&spa_namespace_lock);
9179 while ((spa = spa_next(spa)) != NULL) {
9180 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9181 !spa_writeable(spa) || spa_suspended(spa))
9182 continue;
9183 spa_open_ref(spa, FTAG);
9184 mutex_exit(&spa_namespace_lock);
9185 txg_wait_synced(spa_get_dsl(spa), 0);
9186 mutex_enter(&spa_namespace_lock);
9187 spa_close(spa, FTAG);
9188 }
9189 mutex_exit(&spa_namespace_lock);
9190 }
9191
9192 /*
9193 * ==========================================================================
9194 * Miscellaneous routines
9195 * ==========================================================================
9196 */
9197
9198 /*
9199 * Remove all pools in the system.
9200 */
9201 void
9202 spa_evict_all(void)
9203 {
9204 spa_t *spa;
9205
9206 /*
9207 * Remove all cached state. All pools should be closed now,
9208 * so every spa in the AVL tree should be unreferenced.
9209 */
9210 mutex_enter(&spa_namespace_lock);
9211 while ((spa = spa_next(NULL)) != NULL) {
9212 /*
9213 * Stop async tasks. The async thread may need to detach
9214 * a device that's been replaced, which requires grabbing
9215 * spa_namespace_lock, so we must drop it here.
9216 */
9217 spa_open_ref(spa, FTAG);
9218 mutex_exit(&spa_namespace_lock);
9219 spa_async_suspend(spa);
9220 mutex_enter(&spa_namespace_lock);
9221 spa_close(spa, FTAG);
9222
9223 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9224 spa_unload(spa);
9225 spa_deactivate(spa);
9226 }
9227 spa_remove(spa);
9228 }
9229 mutex_exit(&spa_namespace_lock);
9230 }
9231
9232 vdev_t *
9233 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9234 {
9235 vdev_t *vd;
9236 int i;
9237
9238 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9239 return (vd);
9240
9241 if (aux) {
9242 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9243 vd = spa->spa_l2cache.sav_vdevs[i];
9244 if (vd->vdev_guid == guid)
9245 return (vd);
9246 }
9247
9248 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9249 vd = spa->spa_spares.sav_vdevs[i];
9250 if (vd->vdev_guid == guid)
9251 return (vd);
9252 }
9253 }
9254
9255 return (NULL);
9256 }
9257
9258 void
9259 spa_upgrade(spa_t *spa, uint64_t version)
9260 {
9261 ASSERT(spa_writeable(spa));
9262
9263 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9264
9265 /*
9266 * This should only be called for a non-faulted pool, and since a
9267 * future version would result in an unopenable pool, this shouldn't be
9268 * possible.
9269 */
9270 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9271 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9272
9273 spa->spa_uberblock.ub_version = version;
9274 vdev_config_dirty(spa->spa_root_vdev);
9275
9276 spa_config_exit(spa, SCL_ALL, FTAG);
9277
9278 txg_wait_synced(spa_get_dsl(spa), 0);
9279 }
9280
9281 boolean_t
9282 spa_has_spare(spa_t *spa, uint64_t guid)
9283 {
9284 int i;
9285 uint64_t spareguid;
9286 spa_aux_vdev_t *sav = &spa->spa_spares;
9287
9288 for (i = 0; i < sav->sav_count; i++)
9289 if (sav->sav_vdevs[i]->vdev_guid == guid)
9290 return (B_TRUE);
9291
9292 for (i = 0; i < sav->sav_npending; i++) {
9293 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9294 &spareguid) == 0 && spareguid == guid)
9295 return (B_TRUE);
9296 }
9297
9298 return (B_FALSE);
9299 }
9300
9301 /*
9302 * Check if a pool has an active shared spare device.
9303 * Note: reference count of an active spare is 2, as a spare and as a replace
9304 */
9305 static boolean_t
9306 spa_has_active_shared_spare(spa_t *spa)
9307 {
9308 int i, refcnt;
9309 uint64_t pool;
9310 spa_aux_vdev_t *sav = &spa->spa_spares;
9311
9312 for (i = 0; i < sav->sav_count; i++) {
9313 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9314 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9315 refcnt > 2)
9316 return (B_TRUE);
9317 }
9318
9319 return (B_FALSE);
9320 }
9321
9322 uint64_t
9323 spa_total_metaslabs(spa_t *spa)
9324 {
9325 vdev_t *rvd = spa->spa_root_vdev;
9326
9327 uint64_t m = 0;
9328 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9329 vdev_t *vd = rvd->vdev_child[c];
9330 if (!vdev_is_concrete(vd))
9331 continue;
9332 m += vd->vdev_ms_count;
9333 }
9334 return (m);
9335 }
9336
9337 /*
9338 * Notify any waiting threads that some activity has switched from being in-
9339 * progress to not-in-progress so that the thread can wake up and determine
9340 * whether it is finished waiting.
9341 */
9342 void
9343 spa_notify_waiters(spa_t *spa)
9344 {
9345 /*
9346 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9347 * happening between the waiting thread's check and cv_wait.
9348 */
9349 mutex_enter(&spa->spa_activities_lock);
9350 cv_broadcast(&spa->spa_activities_cv);
9351 mutex_exit(&spa->spa_activities_lock);
9352 }
9353
9354 /*
9355 * Notify any waiting threads that the pool is exporting, and then block until
9356 * they are finished using the spa_t.
9357 */
9358 void
9359 spa_wake_waiters(spa_t *spa)
9360 {
9361 mutex_enter(&spa->spa_activities_lock);
9362 spa->spa_waiters_cancel = B_TRUE;
9363 cv_broadcast(&spa->spa_activities_cv);
9364 while (spa->spa_waiters != 0)
9365 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9366 spa->spa_waiters_cancel = B_FALSE;
9367 mutex_exit(&spa->spa_activities_lock);
9368 }
9369
9370 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9371 static boolean_t
9372 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9373 {
9374 spa_t *spa = vd->vdev_spa;
9375
9376 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9377 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9378 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9379 activity == ZPOOL_WAIT_TRIM);
9380
9381 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9382 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9383
9384 mutex_exit(&spa->spa_activities_lock);
9385 mutex_enter(lock);
9386 mutex_enter(&spa->spa_activities_lock);
9387
9388 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9389 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9390 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9391 mutex_exit(lock);
9392
9393 if (in_progress)
9394 return (B_TRUE);
9395
9396 for (int i = 0; i < vd->vdev_children; i++) {
9397 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9398 activity))
9399 return (B_TRUE);
9400 }
9401
9402 return (B_FALSE);
9403 }
9404
9405 /*
9406 * If use_guid is true, this checks whether the vdev specified by guid is
9407 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9408 * is being initialized/trimmed. The caller must hold the config lock and
9409 * spa_activities_lock.
9410 */
9411 static int
9412 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9413 zpool_wait_activity_t activity, boolean_t *in_progress)
9414 {
9415 mutex_exit(&spa->spa_activities_lock);
9416 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9417 mutex_enter(&spa->spa_activities_lock);
9418
9419 vdev_t *vd;
9420 if (use_guid) {
9421 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9422 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9423 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9424 return (EINVAL);
9425 }
9426 } else {
9427 vd = spa->spa_root_vdev;
9428 }
9429
9430 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9431
9432 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9433 return (0);
9434 }
9435
9436 /*
9437 * Locking for waiting threads
9438 * ---------------------------
9439 *
9440 * Waiting threads need a way to check whether a given activity is in progress,
9441 * and then, if it is, wait for it to complete. Each activity will have some
9442 * in-memory representation of the relevant on-disk state which can be used to
9443 * determine whether or not the activity is in progress. The in-memory state and
9444 * the locking used to protect it will be different for each activity, and may
9445 * not be suitable for use with a cvar (e.g., some state is protected by the
9446 * config lock). To allow waiting threads to wait without any races, another
9447 * lock, spa_activities_lock, is used.
9448 *
9449 * When the state is checked, both the activity-specific lock (if there is one)
9450 * and spa_activities_lock are held. In some cases, the activity-specific lock
9451 * is acquired explicitly (e.g. the config lock). In others, the locking is
9452 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9453 * thread releases the activity-specific lock and, if the activity is in
9454 * progress, then cv_waits using spa_activities_lock.
9455 *
9456 * The waiting thread is woken when another thread, one completing some
9457 * activity, updates the state of the activity and then calls
9458 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9459 * needs to hold its activity-specific lock when updating the state, and this
9460 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9461 *
9462 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9463 * and because it is held when the waiting thread checks the state of the
9464 * activity, it can never be the case that the completing thread both updates
9465 * the activity state and cv_broadcasts in between the waiting thread's check
9466 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9467 *
9468 * In order to prevent deadlock, when the waiting thread does its check, in some
9469 * cases it will temporarily drop spa_activities_lock in order to acquire the
9470 * activity-specific lock. The order in which spa_activities_lock and the
9471 * activity specific lock are acquired in the waiting thread is determined by
9472 * the order in which they are acquired in the completing thread; if the
9473 * completing thread calls spa_notify_waiters with the activity-specific lock
9474 * held, then the waiting thread must also acquire the activity-specific lock
9475 * first.
9476 */
9477
9478 static int
9479 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9480 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9481 {
9482 int error = 0;
9483
9484 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9485
9486 switch (activity) {
9487 case ZPOOL_WAIT_CKPT_DISCARD:
9488 *in_progress =
9489 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9490 zap_contains(spa_meta_objset(spa),
9491 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9492 ENOENT);
9493 break;
9494 case ZPOOL_WAIT_FREE:
9495 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9496 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9497 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9498 spa_livelist_delete_check(spa));
9499 break;
9500 case ZPOOL_WAIT_INITIALIZE:
9501 case ZPOOL_WAIT_TRIM:
9502 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9503 activity, in_progress);
9504 break;
9505 case ZPOOL_WAIT_REPLACE:
9506 mutex_exit(&spa->spa_activities_lock);
9507 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9508 mutex_enter(&spa->spa_activities_lock);
9509
9510 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9511 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9512 break;
9513 case ZPOOL_WAIT_REMOVE:
9514 *in_progress = (spa->spa_removing_phys.sr_state ==
9515 DSS_SCANNING);
9516 break;
9517 case ZPOOL_WAIT_RESILVER:
9518 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9519 break;
9520 /* fall through */
9521 case ZPOOL_WAIT_SCRUB:
9522 {
9523 boolean_t scanning, paused, is_scrub;
9524 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9525
9526 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9527 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9528 paused = dsl_scan_is_paused_scrub(scn);
9529 *in_progress = (scanning && !paused &&
9530 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9531 break;
9532 }
9533 default:
9534 panic("unrecognized value for activity %d", activity);
9535 }
9536
9537 return (error);
9538 }
9539
9540 static int
9541 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9542 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9543 {
9544 /*
9545 * The tag is used to distinguish between instances of an activity.
9546 * 'initialize' and 'trim' are the only activities that we use this for.
9547 * The other activities can only have a single instance in progress in a
9548 * pool at one time, making the tag unnecessary.
9549 *
9550 * There can be multiple devices being replaced at once, but since they
9551 * all finish once resilvering finishes, we don't bother keeping track
9552 * of them individually, we just wait for them all to finish.
9553 */
9554 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9555 activity != ZPOOL_WAIT_TRIM)
9556 return (EINVAL);
9557
9558 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9559 return (EINVAL);
9560
9561 spa_t *spa;
9562 int error = spa_open(pool, &spa, FTAG);
9563 if (error != 0)
9564 return (error);
9565
9566 /*
9567 * Increment the spa's waiter count so that we can call spa_close and
9568 * still ensure that the spa_t doesn't get freed before this thread is
9569 * finished with it when the pool is exported. We want to call spa_close
9570 * before we start waiting because otherwise the additional ref would
9571 * prevent the pool from being exported or destroyed throughout the
9572 * potentially long wait.
9573 */
9574 mutex_enter(&spa->spa_activities_lock);
9575 spa->spa_waiters++;
9576 spa_close(spa, FTAG);
9577
9578 *waited = B_FALSE;
9579 for (;;) {
9580 boolean_t in_progress;
9581 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9582 &in_progress);
9583
9584 if (error || !in_progress || spa->spa_waiters_cancel)
9585 break;
9586
9587 *waited = B_TRUE;
9588
9589 if (cv_wait_sig(&spa->spa_activities_cv,
9590 &spa->spa_activities_lock) == 0) {
9591 error = EINTR;
9592 break;
9593 }
9594 }
9595
9596 spa->spa_waiters--;
9597 cv_signal(&spa->spa_waiters_cv);
9598 mutex_exit(&spa->spa_activities_lock);
9599
9600 return (error);
9601 }
9602
9603 /*
9604 * Wait for a particular instance of the specified activity to complete, where
9605 * the instance is identified by 'tag'
9606 */
9607 int
9608 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9609 boolean_t *waited)
9610 {
9611 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9612 }
9613
9614 /*
9615 * Wait for all instances of the specified activity complete
9616 */
9617 int
9618 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9619 {
9620
9621 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9622 }
9623
9624 sysevent_t *
9625 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9626 {
9627 sysevent_t *ev = NULL;
9628 #ifdef _KERNEL
9629 nvlist_t *resource;
9630
9631 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9632 if (resource) {
9633 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9634 ev->resource = resource;
9635 }
9636 #endif
9637 return (ev);
9638 }
9639
9640 void
9641 spa_event_post(sysevent_t *ev)
9642 {
9643 #ifdef _KERNEL
9644 if (ev) {
9645 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9646 kmem_free(ev, sizeof (*ev));
9647 }
9648 #endif
9649 }
9650
9651 /*
9652 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9653 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9654 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9655 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9656 * or zdb as real changes.
9657 */
9658 void
9659 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9660 {
9661 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9662 }
9663
9664 /* state manipulation functions */
9665 EXPORT_SYMBOL(spa_open);
9666 EXPORT_SYMBOL(spa_open_rewind);
9667 EXPORT_SYMBOL(spa_get_stats);
9668 EXPORT_SYMBOL(spa_create);
9669 EXPORT_SYMBOL(spa_import);
9670 EXPORT_SYMBOL(spa_tryimport);
9671 EXPORT_SYMBOL(spa_destroy);
9672 EXPORT_SYMBOL(spa_export);
9673 EXPORT_SYMBOL(spa_reset);
9674 EXPORT_SYMBOL(spa_async_request);
9675 EXPORT_SYMBOL(spa_async_suspend);
9676 EXPORT_SYMBOL(spa_async_resume);
9677 EXPORT_SYMBOL(spa_inject_addref);
9678 EXPORT_SYMBOL(spa_inject_delref);
9679 EXPORT_SYMBOL(spa_scan_stat_init);
9680 EXPORT_SYMBOL(spa_scan_get_stats);
9681
9682 /* device manipulation */
9683 EXPORT_SYMBOL(spa_vdev_add);
9684 EXPORT_SYMBOL(spa_vdev_attach);
9685 EXPORT_SYMBOL(spa_vdev_detach);
9686 EXPORT_SYMBOL(spa_vdev_setpath);
9687 EXPORT_SYMBOL(spa_vdev_setfru);
9688 EXPORT_SYMBOL(spa_vdev_split_mirror);
9689
9690 /* spare statech is global across all pools) */
9691 EXPORT_SYMBOL(spa_spare_add);
9692 EXPORT_SYMBOL(spa_spare_remove);
9693 EXPORT_SYMBOL(spa_spare_exists);
9694 EXPORT_SYMBOL(spa_spare_activate);
9695
9696 /* L2ARC statech is global across all pools) */
9697 EXPORT_SYMBOL(spa_l2cache_add);
9698 EXPORT_SYMBOL(spa_l2cache_remove);
9699 EXPORT_SYMBOL(spa_l2cache_exists);
9700 EXPORT_SYMBOL(spa_l2cache_activate);
9701 EXPORT_SYMBOL(spa_l2cache_drop);
9702
9703 /* scanning */
9704 EXPORT_SYMBOL(spa_scan);
9705 EXPORT_SYMBOL(spa_scan_stop);
9706
9707 /* spa syncing */
9708 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9709 EXPORT_SYMBOL(spa_sync_allpools);
9710
9711 /* properties */
9712 EXPORT_SYMBOL(spa_prop_set);
9713 EXPORT_SYMBOL(spa_prop_get);
9714 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9715
9716 /* asynchronous event notification */
9717 EXPORT_SYMBOL(spa_event_notify);
9718
9719 /* BEGIN CSTYLED */
9720 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9721 "log2(fraction of arc that can be used by inflight I/Os when "
9722 "verifying pool during import");
9723
9724 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9725 "Set to traverse metadata on pool import");
9726
9727 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9728 "Set to traverse data on pool import");
9729
9730 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9731 "Print vdev tree to zfs_dbgmsg during pool import");
9732
9733 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9734 "Percentage of CPUs to run an IO worker thread");
9735
9736 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9737 "Allow importing pool with up to this number of missing top-level "
9738 "vdevs (in read-only mode)");
9739
9740 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9741 "Set the livelist condense zthr to pause");
9742
9743 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9744 "Set the livelist condense synctask to pause");
9745
9746 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9747 "Whether livelist condensing was canceled in the synctask");
9748
9749 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9750 "Whether livelist condensing was canceled in the zthr function");
9751
9752 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9753 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
9754 "was being condensed");
9755 /* END CSTYLED */